Sample records for reservoir conditions fluid

  1. Modeling Study of High Pressure and High Temperature Reservoir Fluids

    DEFF Research Database (Denmark)

    Varzandeh, Farhad

    S-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization...... be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on accurate description of the reservoir fluid behavior under...... HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive...

  2. Imaging fluid/solid interactions in hydrocarbon reservoir rocks. (United States)

    Uwins, P J; Baker, J C; Mackinnon, I D


    The environmental scanning electron microscope (ESEM) has been used to image liquid hydrocarbons in sandstones and oil shales. Additionally, the fluid sensitivity of selected clay minerals in hydrocarbon reservoirs was assessed via three case studies: HCl acid sensitivity of authigenic chlorite in sandstone reservoirs, freshwater sensitivity of authigenic illite/smectite in sandstone reservoirs, and bleach sensitivity of a volcanic reservoir containing abundant secondary chlorite/corrensite. The results showed the suitability of using ESEM for imaging liquid hydrocarbon films in hydrocarbon reservoirs and the importance of simulating in situ fluid-rock interactions for hydrocarbon production programmes. In each case, results of the ESEM studies greatly enhanced prediction of reservoir/borehole reactions and, in some cases, contradicted conventional wisdom regarding the outcome of potential engineering solutions.

  3. Fluid Assisted Compaction and Deformation of Reservoir Lithologies; FINAL

    International Nuclear Information System (INIS)

    Kronenberg, A.K.; Chester, F.M.; Chester, J.S.; Hajash, A.; He, W.; Karner, S.; Lenz, S.


    The compaction and diagenesis of sandstones that form reservoirs to hydrocarbons depend on mechanical compaction processes, fluid flow at local and regional scales, and chemical processes of dissolution, precipitation and diffusional solution transport. The compaction and distortional deformation of quartz aggregates exposed to reactive aqueous fluids have been investigated experimentally at varying critical and subcritical stress states and time scales. Pore fluid compositions and reaction rates during deformation have been measured and compared with creep rates. Relative contributions of mechanical and chemical processes to deformation and pore structure evolution have been evaluated using acoustic emission (AE) measurements and scanning electron microscope (SEM) observations. At the subcritical conditions investigated, creep rates and acoustic emission rates fit transient logarithmic creep laws. Based on AE and SEM observations, we conclude that intragranular cracking and grain rearrangement are the dominant strain mechanisms. Specimens show little evidence of stress-enhanced solution transfer. At long times under wet conditions, the dominant strain mechanism gradually shifts from critical cracking at grain contacts with high stress concentrations to fluid-assisted sub-critical cracking

  4. Tracing fluid flow in geothermal reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Rose, P.E.; Adams, M.C. [Univ. of Utah, Salt Lake City, UT (United States)


    A family of fluorescent compounds, the polycyclic aromatic sulfonates, were evaluated for application in intermediate- and high-temperature geothermal reservoirs. Whereas the naphthalene sulfonates were found to be very thermally stable and reasonably detectable, the amino-substituted naphthalene sulfonates were found to be somewhat less thermally stable, but much more detectable. A tracer test was conducted at the Dixie Valley, Nevada, geothermal reservoir using one of the substituted naphthalene sulfonates, amino G, and fluorescein. Four of 9 production wells showed tracer breakthrough during the first 200 days of the test. Reconstructed tracer return curves are presented that correct for the thermal decay of tracer assuming an average reservoir temperature of 227{degrees}C. In order to examine the feasibility of using numerical simulation to model tracer flow, we developed simple, two-dimensional models of the geothermal reservoir using the numerical simulation programs TETRAD and TOUGH2. By fitting model outputs to measured return curves, we show that numerical reservoir simulations can be calibrated with the tracer data. Both models predict the same order of elution, approximate tracer concentrations, and return curve shapes. Using these results, we propose a method for using numerical models to design a tracer test.

  5. Mechanisms of arsenic enrichment in geothermal and petroleum reservoirs fluids in Mexico. (United States)

    Birkle, Peter; Bundschuh, Jochen; Sracek, Ondra


    The lack of chemical similarity between thermal fluids in geothermal and petroleum reservoirs in Mexico indicates a distinct origin for arsenic in both types of reservoirs. Deep fluids from geothermal reservoirs along the Transmexican Volcanic Belt (TMVB) are characterized by elevated arsenic concentrations, within a range between 1 and 100 mg L(-1) at a depth from 600 to 3000 m b.s.l. Based on hierarchical cluster analysis (HCA), arsenic is linked to typical geothermal species like lithium, silica, and boron. The lack of correlation between arsenic and salinity reflects the importance of secondary water-rock interaction processes. The predominance of arsenic compared to Fe- and Cu-concentrations, and the occurrence of secondary minerals (sulfides and clay minerals) in temperature-dependent hydrothermal zones, supports this hypothesis. Neither magmatic fluids input, nor As mineralization is a prerequisite for As enrichment in Mexican geothermal fluids. In contrast, petroleum reservoir waters from sedimentary basins in SE-Mexico show maximum As concentrations of 2 mg L(-1), at depths from 2900 to 6100 m b.s.l. The linear chloride-arsenic correlation indicates that evaporated seawater represents the major source for aqueous arsenic in oil reservoirs, and only minor arsenic proportions are derived from interaction with carbonate host rock. Speciation modeling suggests the lack of arsenic solubility control in both geothermal and petroleum reservoirs, but precipitation/co-precipitation of As with secondary sulfides could occur in petroleum reservoirs with high iron concentrations. Geothermal fluids from magmatic-type reservoirs (Los Azufres and Los Humeros at the TMVB and Las Tres Vírgenes with a granodioritic basement) show relative constant arsenic concentrations through varying temperature conditions, which indicates that temperatures above 230-250 °C provide optimal and stable conditions for arsenic mobility. In contrast, temperature conditions for sedimentary

  6. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dilley, Lorie M. [Hattenburg Dilley & Linnell, LLC, Anchorage, AL (United States)


    The purpose of this project was to: 1) evaluate the relationship between geothermal fluid processes and the compositions of the fluid inclusion gases trapped in the reservoir rocks; and 2) develop methodologies for interpreting fluid inclusion gas data in terms of the chemical, thermal and hydrological properties of geothermal reservoirs. Phase 1 of this project was designed to conduct the following: 1) model the effects of boiling, condensation, conductive cooling and mixing on selected gaseous species; using fluid compositions obtained from geothermal wells, 2) evaluate, using quantitative analyses provided by New Mexico Tech (NMT), how these processes are recorded by fluid inclusions trapped in individual crystals; and 3) determine if the results obtained on individual crystals can be applied to the bulk fluid inclusion analyses determined by Fluid Inclusion Technology (FIT). Our initial studies however, suggested that numerical modeling of the data would be premature. We observed that the gas compositions, determined on bulk and individual samples were not the same as those discharged by the geothermal wells. Gases discharged from geothermal wells are CO2-rich and contain low concentrations of light gases (i.e. H2, He, N, Ar, CH4). In contrast many of our samples displayed enrichments in these light gases. Efforts were initiated to evaluate the reasons for the observed gas distributions. As a first step, we examined the potential importance of different reservoir processes using a variety of commonly employed gas ratios (e.g. Giggenbach plots). The second technical target was the development of interpretational methodologies. We have develop methodologies for the interpretation of fluid inclusion gas data, based on the results of Phase 1, geologic interpretation of fluid inclusion data, and integration of the data. These methodologies can be used in conjunction with the relevant geological and hydrological information on the system to

  7. New boundary conditions for oil reservoirs with fracture (United States)

    Andriyanova, Elena; Astafev, Vladimir


    Based on the fact that most of oil fields are on the late stage of field development, it becomes necessary to produce hard-to-extract oil, which can be obtained only by use of enhance oil recovery methods. For example many low permeable or shale formations can be developed only with application of massive hydraulic fracturing technique. In addition, modern geophysical researches show that mostly oil bearing formations are complicated with tectonic faults of different shape and permeability. These discontinuities exert essential influence on the field development process and on the well performance. For the modeling of fluid flow in the reservoir with some area of different permeability, we should determine the boundary conditions. In this article for the first time the boundary conditions for the problem of fluid filtration in the reservoir with some discontinuity are considered. This discontinuity represents thin but long area, which can be hydraulic fracturing of tectonic fault. The obtained boundary condition equations allow us to take into account pressure difference above and below the section and different values of permeability.

  8. Chemical conditions of the Japanese neutral geothermal reservoirs

    International Nuclear Information System (INIS)

    Chiba, H.


    The aqueous speciation were calculated for fluids of seven Japanese geothermal systems. The aqueous composition as well as CO 2 partial pressure of fluid in neutral pH geothermal reservoir are controlled by silicate, calcite and anhydrite minerals. The chemical composition of neutral pH geothermal reservoir can be predictable if two parameters (e.g. temperature and one of the cation activities) are provided. (author)

  9. Mixed Fluid Conditions: Capillary Phenomena

    KAUST Repository

    Santamarina, Carlos


    Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.

  10. General approach to characterizing reservoir fluids for EoS models using a large PVT database

    DEFF Research Database (Denmark)

    Varzandeh, Farhad; Stenby, Erling Halfdan; Yan, Wei


    Fluid characterization is needed when applying any EoS model to reservoir fluids. It is important especially for non-cubic models such as PC-SAFT where fluid characterization is less mature. Furthermore, there is a great interest to apply non-cubic models to high pressure high temperature reservoir...

  11. Characterization of microbial community and the alkylscccinate synthase genes in petroleum reservoir fluids of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lei; Mu, Bo-Zhong [University of Science and Technology (China)], email:; Gu, Ji-Dong [The University of Hong Kong (China)], email:


    Petroleum reservoirs represent a special ecosystem consisting of specific temperature, pressure, salt concentration, oil, gas, water, microorganisms and, enzymes among others. This paper presents the characterization of microbial community and the alkyl succinate synthase genes in petroleum reservoir fluids in China. A few samples were analyzed and the physical and chemical characteristics are given in a tabular form. A flow chart shows the methods and procedures for microbial activities. Six petroleum reservoirs were studied using an archaeal 16S rRNA gene-based approach to establish the presence of archaea and the results are given. The correlation of archaeal and bacterial communities with reservoir conditions and diversity of the arachaeal community in water-flooding petroleum reservoirs at different temperatures is also shown. From the study, it can be summarized that, among methane producers, CO2-reducing methanogens are mostly found in oil reservoir ecosystems and as more assA sequences are revealed, more comprehensive molecular probes can be designed to track the activity of anaerobic alkane-degrading organisms in the environment.

  12. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Hanks, Catherine


    then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat fluid properties published in the original reports. This comparison allowed estimation of the ‘lost’ light hydrocarbon fractions. An Umiat 'dead' oil sample then could be physically created by adding the lost light ends to the weatherized Umiat dead oil sample. This recreated sample was recombined with solution gas to create a 'pseudo-live' Umiat oil sample which was then used for experimental PVT and phase behavior studies to determine fluid properties over the range of reservoir pressures and temperatures. The phase behavior of the ‘pseudo-live’ oil was also simulated using the Peng- Robinson equations of state (EOS). The EOS model was tuned with measured experimental data to accurately simulate the differential liberation tests in order to obtain the necessary data for reservoir simulation studies, including bubble point pressure and oil viscosity. The bubble point pressure of the reconstructed Umiat oil is 345 psi, suggesting that maintenance of reservoir pressures above that pressure will be important for the any proposed production technique. A major part of predicting how the Umiat reservoir will perform is determining the relative permeability of oil in the presence of ice. Early in the project, UAF work on samples of the Umiat reservoir indicated that there is a significant reduction in the relatively permeability of oil in the presence of ice. However, it was not clear as to why this reduction occurred or where the ice resided. To explore this further, additional experimental and theoretical work was conducted. Core flood experiments were performed on two clean Berea sandstone cores under permafrost conditions to determine the relative permeability to oil (kro) over a temperature range of 23ºC to - 10ºC and for a range of connate water salinities. Both cores showed maximum reduction in relative permeability to oil when saturated

  13. Numerical modeling of fracking fluid and methane migration through fault zones in shale gas reservoirs (United States)

    Taherdangkoo, Reza; Tatomir, Alexandru; Sauter, Martin


    Hydraulic fracturing operation in shale gas reservoir has gained growing interest over the last few years. Groundwater contamination is one of the most important environmental concerns that have emerged surrounding shale gas development (Reagan et al., 2015). The potential impacts of hydraulic fracturing could be studied through the possible pathways for subsurface migration of contaminants towards overlying aquifers (Kissinger et al., 2013; Myers, 2012). The intent of this study is to investigate, by means of numerical simulation, two failure scenarios which are based on the presence of a fault zone that penetrates the full thickness of overburden and connect shale gas reservoir to aquifer. Scenario 1 addresses the potential transport of fracturing fluid from the shale into the subsurface. This scenario was modeled with COMSOL Multiphysics software. Scenario 2 deals with the leakage of methane from the reservoir into the overburden. The numerical modeling of this scenario was implemented in DuMux (free and open-source software), discrete fracture model (DFM) simulator (Tatomir, 2012). The modeling results are used to evaluate the influence of several important parameters (reservoir pressure, aquifer-reservoir separation thickness, fault zone inclination, porosity, permeability, etc.) that could affect the fluid transport through the fault zone. Furthermore, we determined the main transport mechanisms and circumstances in which would allow frack fluid or methane migrate through the fault zone into geological layers. The results show that presence of a conductive fault could reduce the contaminant travel time and a significant contaminant leakage, under certain hydraulic conditions, is most likely to occur. Bibliography Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., Jahnke, W., 2013. Hydraulic fracturing in unconventional gas reservoirs: risks in the geological system, part 2. Environ Earth Sci 70, 3855

  14. Adaptive forward-inverse modeling of reservoir fluids away from wellbores; TOPICAL

    International Nuclear Information System (INIS)

    Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G


    This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques[Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by signal

  15. Acid Fluid-Rock Interactions with Shales Comprising Unconventional Hydrocarbon Reservoirs and with Shale Capping Carbon Storage Reservoirs: Experimental Insights (United States)

    Kaszuba, J. P.; Bratcher, J.; Marcon, V.; Herz-Thyhsen, R.


    Injection of HCl is often a first stage in the hydraulic fracturing process. These acidic fluids react with marls or shales in unconventional reservoirs, reactions generally comparable to reaction between shale caprocks and acidic, carbonated formation waters in a carbon storage reservoir. Hydrothermal experiments examine acid fluid-rock interaction with 1) an unconventional shale reservoir and 2) a model shale capping a carbon storage reservoir. In the former, unconventional reservoir rock and hydraulic fracturing fluid possessing a range of ionic strengths (I = 0.01, 0.15) and initial pH values (2.5 and 7.3) reacted at 115°C and 35 MPa for 28 days. In the latter, a model carbon storage reservoir (Fe-rich dolomite), shale caprock (illite), and shale-reservoir mixture each reacted with formation water (I = 0.1 and pH 6.3) at 160°C and 25 MPa for ~15 days. These three experiments were subsequently injected with sufficient CO2 to maintain CO2 saturation in the water and allowed to react for ~40 additional days. Acidic frac fluid was rapidly buffered (from pH 2.5 to 6.2 after 38 hrs) by reaction with reservoir rock whereas the pH of near-neutral frac fluid decreased (from 7.3 to 6.9) after 47 hrs. Carbonate dissolution released Ca and Sr into solution and feldspar dissolution released SiO2 and Li; the extent of reaction was greater in the experiment containing acidic frac fluid. All three carbon storage experiments displayed a similar pH decrease of 1.5 units after the addition of CO2. The pH remained low for the duration of the experiments because the immiscible supercritical CO2 phase provided an infinite reservoir of carbonic acid that could not be consumed by reaction with the rock. In all three experiments, Ca, Fe, Mg, Mn and SO4 increase with injection, but slowly decline through termination of the experiments. This trend suggests initial dissolution followed by re-precipitation of carbonates, which can be seen in modeling and SEM results. New clay minerals

  16. On the feasibility of inducing oil mobilization in existing reservoirs via wellbore harmonic fluid action

    KAUST Repository

    Jeong, Chanseok


    Although vibration-based mobilization of oil remaining in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), research on its applicability at the reservoir scale is still at an early stage. In this paper, we use simplified models to study the potential for oil mobilization in homogeneous and fractured reservoirs, when harmonically oscillating fluids are injected/produced within a well. To this end, we investigate first whether waves, induced by fluid pressure oscillations at the well site, and propagating radially and away from the source in a homogeneous reservoir, could lead to oil droplet mobilization in the reservoir pore-space. We discuss both the fluid pore-pressure wave and the matrix elastic wave cases, as potential agents for increasing oil mobility. We then discuss the more realistic case of a fractured reservoir, where we study the fluid pore-pressure wave motion, while taking into account the leakage effect on the fracture wall. Numerical results show that, in homogeneous reservoirs, the rock-stress wave is a better energy-delivery agent than the fluid pore-pressure wave. However, neither the rock-stress wave nor the pore-pressure wave is likely to result in any significant residual oil mobilization at the reservoir scale. On the other hand, enhanced oil production from the fractured reservoir\\'s matrix zone, induced by cross-flow vibrations, appears to be feasible. In the fractured reservoir, the fluid pore-pressure wave is only weakly attenuated through the fractures, and thus could induce fluid exchange between the rock formation and the fracture space. The vibration-induced cross-flow is likely to improve the imbibition of water into the matrix zone and the expulsion of oil from it. © 2011 Elsevier B.V.

  17. Water Age Responses to Weather Conditions in a Hyper-Eutrophic Channel Reservoir in Southern China

    Directory of Open Access Journals (Sweden)

    Wei Du


    Full Text Available Channel reservoirs have the characteristics of both rivers and lakes, in which hydrodynamic conditions and the factors affecting the eutrophication process are complex and highly affected by weather conditions. Water age at any location in the reservoir is used as an indicator for describing the spatial and temporal variations of water exchange and nutrient transport. The hyper-eutrophic Changtan Reservoir (CTR in Southern China was investigated. Three weather conditions including wet, normal, and dry years were considered for assessing the response of water age by using the coupled watershed model Soil Water Assessment Tool (SWAT and the three-dimensional hydrodynamic model Environmental Fluid Hydrodynamic Code (EFDC. The results showed that the water age in CTR varied tremendously under different weather conditions. The averaged water ages at the downstream of CTR were 3 d, 60 d, and 110 d, respectively in the three typical wet, normal, and dry years. The highest water ages at the main tributary were >70 d, >100 d, and >200 d, respectively. The spatial distribution of water ages in the tributaries and the reservoir were mainly affected by precipitation. This paper provides useful information on water exchange and transport pathways in channel reservoir, which will be helpful in understanding nutrient dynamics for controlling algal blooms.

  18. Hydrogeologic controls on induced seismicity in crystalline basement rocks due to fluid injection into basal reservoirs. (United States)

    Zhang, Yipeng; Person, Mark; Rupp, John; Ellett, Kevin; Celia, Michael A; Gable, Carl W; Bowen, Brenda; Evans, James; Bandilla, Karl; Mozley, Peter; Dewers, Thomas; Elliot, Thomas


    A series of Mb 3.8-5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (∼70-150 m). We present a suite of simulations that use a simple hydrogeologic-geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10(-17)  m(2) and specific storage coefficient of 10(-7) /m, injection at a rate of 5455 m(3) /d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz  = 10(-13)  m(2) ) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10(-12)  m(2) ) and the surrounding crystalline basement (10(-18)  m(2) ), the failure region can extend laterally 10 km away from the injection well. © 2013, National Ground Water Association.

  19. Production of Natural Gas and Fluid Flow in Tight Sand Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Maria Cecilia Bravo


    This document reports progress of this research effort in identifying relationships and defining dependencies between macroscopic reservoir parameters strongly affected by microscopic flow dynamics and production well performance in tight gas sand reservoirs. These dependencies are investigated by identifying the main transport mechanisms at the pore scale that should affect fluids flow at the reservoir scale. A critical review of commercial reservoir simulators, used to predict tight sand gas reservoir, revealed that many are poor when used to model fluid flow through tight reservoirs. Conventional simulators ignore altogether or model incorrectly certain phenomena such as, Knudsen diffusion, electro-kinetic effects, ordinary diffusion mechanisms and water vaporization. We studied the effect of Knudsen's number in Klinkenberg's equation and evaluated the effect of different flow regimes on Klinkenberg's parameter b. We developed a model capable of explaining the pressure dependence of this parameter that has been experimentally observed, but not explained in the conventional formalisms. We demonstrated the relevance of this, so far ignored effect, in tight sands reservoir modeling. A 2-D numerical simulator based on equations that capture the above mentioned phenomena was developed. Dynamic implications of new equations are comprehensively discussed in our work and their relative contribution to the flow rate is evaluated. We performed several simulation sensitivity studies that evidenced that, in general terms, our formalism should be implemented in order to get more reliable tight sands gas reservoirs' predictions.

  20. Analysis of pressure variation of fluid in bounded circular reservoirs ...

    African Journals Online (AJOL)

    The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. The result obtained from the analysis also shows the pressure variation outside wellbore of the same reservoir. It is important to note that ...

  1. Analysis of pressure variation of fluid in bounded circular reservoirs ...

    African Journals Online (AJOL)

    The result obtained at the wellbore was compared with the results obtained by Van Everdigen and Hurst. It was shown that there was a strong positive correlation between the results. Keywords: Bounded circular reservoir, constant terminal rate, dimensionless variables, diffusivity equation, and Crank-Nicholson scheme.

  2. pressure analysis and fluid contact prediction for alpha reservoir

    African Journals Online (AJOL)


    1, 3, CENTER OF EXCELLENCE IN INTEGRATED PETROLEUM EXPLORATION AND EVALUATION STUDIES (IPEES),UNIVERSITY. OF BENIN, BENIN ... economic value of the asset. Early oil rim development can be negatively impacted by water coning and/or early gas breakthrough.[1].Oil rim reservoirs are common in.

  3. Discrimination of reservoir fluid contacts using compressional and ...

    African Journals Online (AJOL)

    Improved fluid detection and lithology discrimination using rock properties and attributes cross plots have been attempted using well log data in an Onshore Niger Delta field. Rock properties and attributes were extracted using empirical rock physics models on well logs and used to validate their potentials as pore fluid ...

  4. A Mathematical Model for the Analysis of the Pressure Transient Response of Fluid Flow in Fractal Reservoir

    Directory of Open Access Journals (Sweden)

    Jin-Zhou Zhao


    Full Text Available This study uses similar construction method of solution (SCMS to solve mathematical models of fluid spherical flow in a fractal reservoir which can avoid the complicated mathematical deduction. The models are presented in three kinds of outer boundary conditions (infinite, constant pressure, and closed. The influence of wellbore storage effect, skin factor, and variable flow rate production is also involved in the inner boundary conditions. The analytical solutions are constructed in the Laplace space and presented in a pattern with one continued fraction—the similar structure of solution. The pattern can bring convenience to well test analysis programming. The mathematical beauty of fractal is that the infinite complexity is formed with relatively simple equations. So the relation of reservoir parameters (wellbore storage effect, the skin factor, fractal dimension, and conductivity index, the formation pressure, and the wellbore pressure can be learnt easily. Type curves of the wellbore pressure and pressure derivative are plotted and analyzed in real domain using the Stehfest numerical invention algorithm. The SCMS and type curves can interpret intuitively transient pressure response of fractal spherical flow reservoir. The results obtained in this study have both theoretical and practical significance in evaluating fluid flow in such a fractal reservoir and embody the convenience of the SCMS.

  5. Basement Fault Reactivation by Fluid Injection into Sedimentary Reservoirs (United States)

    Peter, Eichhubl; Fan, Zhiqiang; Zhu, Cheng


    Many suspected injection-induced earthquakes occur in crystalline basement rather than in the overlying sedimentary injection reservoir. To address why earthquakes nucleate in the basement rather than the injection layer we investigate the relationship between pore pressure diffusion, rock matrix deformation, and induced fault reactivation through 3D fully coupled poroelastic finite element models. These models simulate the temporal and spatial perturbation of pore pressure and solid stresses within a basement fault that extends into overlying sedimentary layers and that is conductive for flow along the fault but a barrier for flow across. We compare the effects of direct pore pressure communication and indirect poroelastic stress transfer from the injection reservoir to the fault on increasing the Coulomb failure stress that could reactivate the basement fault for normal, reverse, and strike-slip faulting stress regimes. Our numerical results demonstrate that volumetric expansion of the reservoir causes a bending of the fault near the injector and induces shear tractions along the downdip direction of the fault in the basement. These induced shear tractions act to increase the Coulomb failure stress for a normal faulting stress regime, and decrease the Coulomb failure stress for a reverse faulting regime. For a strike-slip faulting stress regime, the induced shear tractions increase the Coulomb failure stress both in the reservoir and basement. The induced normal traction on the fault reduces the Coulomb failure stress in all three tectonic regimes, but is larger in the reservoir than in the basement due to the more pronounced poroelastic effect in the reservoir. As a result, strike-slip stress regimes favor fault reactivation in the basement. Whereas the magnitude of the direct pore pressure increase exceeds the magnitude of induced poroelastic stress change, the poroelastic stress change increases the Coulomb failure stress in the basement fault for the normal

  6. Ecological Aspects of Condition of Ground Deposits in Shershnevsky Reservoir (United States)

    Arkanova, I. A.; Denisov, S. E.; Knutarev, D. Yu


    The article considers the aspects of the condition of ground deposits influencing the operating conditions of the water intake facilities in the Shershnevsky reservoir being the only source of the utility and drinking water supply in Chelyabinsk. The object of the research is a section near the Sosnovskie intake stations of the Shershnevsky reservoir. Based on the hydrometric surveys of the studied section and using the Kriging method and the Surfer suite, we calculated the volume of ground deposits. As a result of the analyses, the authors have proved that ground deposits in the studied section have a technology-related nature which is connected with the annual growth of the volume of ground deposits which is inadmissible in the operating conditions of the pump stations of water intake facilities whereas ground deposits will fully block the intake windows of pump stations. In case the bed area of the Shershnevsky reservoir is not timely treated, the ground deposits here will complicate the operation of the pump stations which will result in a technological problem of the treatment facilities operation up to a transfer of the pump station premises to other territories less exposed to the deposits. The treatment of the Shershnevsky reservoir from the ground deposits accumulated in the course of time will help to considerably increase its actual capacity, which will allow one to increase water circulation paths and to improve the water quality indices. In its turn, the water quality improvement will decrease the supply of suspended solids into the water intake facilities and cut the reagent costs in the course of the treatment water works operation.

  7. Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS

    DEFF Research Database (Denmark)

    Frost, Michael; Kontogeorgis, Georgios; Stenby, Erling Halfdan


    The complex phase equilibrium between reservoir fluids and associating compounds like water and glycols has become more and more important as the increasing global energy demand pushes the oil industry to use advanced methods to increase oil recovery, such as increasing the use of various chemicals....... Promising results are also obtained with CPA EoS for ternary mixtures, with some deviations for the solubility of MEG/water in the hydrocarbon phase and for the hydrocarbons in the polar phase....... to ensure a constant and safe production. The CPA equation of state has been successfully applied in the past to well defined systems and gas condensates, containing associating compounds. It has also been extended to reservoir fluids in presence of water and polar chemicals using modified correlations...

  8. Monitoring of magnetic EOR fluids in reservoir under production by using the electromagnetic method (United States)

    KIM, S.; Min, D. J.; Moon, S.; Kim, W. K.; Shin, Y.


    To increase the amount of oil and gas extracted during production, some techniques like EOR (Enhanced Oil Recovery) are applied by injecting some materials such as water and CO2. Recently, there are some researches for injecting magnetic nanoparticles with fluids during EOR. The size of particle is nano-scale, which can prevent particles from adhering to the pores of reservoir. The main purpose of injecting magnetic nanoparticles is to monitor movement or distribution of EOR fluids. To monitor the injected magnetic EOR fluids in the reservoir, CSEM (controlled source electromagnetic method) can be the most optimized geophysical method among various geophysical monitoring methods. Depending on the reservoir circumstances, we can control the electric or magnetic sources to monitor reservoir during oil or gas production. In this study, we perform numerical simulation of CSEM for 3D horizontal-layered models assuming a reservoir under production. We suppose that there are two wells: one is for the controlled source; the other is for the receiver. By changing the distribution, movement and magnetization of EOR fluids, we compare the electric or magnetic fields recorded at the receiver. Maxwell's equations are the governing equation of CSEM and are approximated by using the edge-based finite-element method. Direct solver is applied to solve the linear equations. Because injected magnetic nanoparticle changes the conductivity of EOR fluid, there is high contrast of conductivity of reservoir. This high contrast of conductivity induces secondary electric or magnetic fields that are recorded at the receiver well. We compare these recorded secondary fields generated by various movement or distribution of magnetic EOR fluid. Acknowledgements This work was supported by the "Development of Technology for CO2 Marine Geological Storage" grant funded by the Ministry of Oceans and Fisheries of Korea, by the "Civil Military Technology Cooperation Center", and by the International

  9. Phase Envelope Calculations for Reservoir Fluids in the Presence of Capillary Pressure

    DEFF Research Database (Denmark)

    Lemus, Diego; Yan, Wei; Michelsen, Michael L.


    Reservoir fluids are multicomponent mixtures in confined spaces, where the role of capillary force becomes important when the average pore size is on the order of tens of nanometers, such as in tight rocks and shale. We present an algorithm for calculating the phase envelope of multicomponent...... the bubble and dew point curves but also other quality lines with vapor fractions between 0 and 1. The algorithm has been used to calculate the phase envelopes of binary, multicomponent and reservoir fluid systems for pore radius from 10 to 50 nm. The presence of capillary pressure changes the saturation...

  10. Phase Behaviors of Reservoir Fluids with Capillary Eff ect Using Particle Swarm Optimization

    KAUST Repository

    Ma, Zhiwei


    The study of phase behavior is important for the oil and gas industry. Many approaches have been proposed and developed for phase behavior calculation. In this thesis, an alternative method is introduced to study the phase behavior by means of minimization of Helmholtz free energy. For a system at fixed volume, constant temperature and constant number of moles, the Helmholtz free energy reaches minimum at the equilibrium state. Based on this theory, a stochastic method called Particle Swarm Optimization (PSO) algorithm, is implemented to compute the phase diagrams for several pure component and mixture systems. After comparing with experimental and the classical PT-ash calculation, we found the phase diagrams obtained by minimization of the Helmholtz Free Energy approach match the experimental and theoretical diagrams very well. Capillary effect is also considered in this thesis because it has a significant influence on the phase behavior of reservoir fluids. In this part, we focus on computing the phase envelopes, which consists of bubble and dew point lines. Both fixed and calculated capillary pressure from the Young-Laplace equation cases are introduced to study their effects on phase envelopes. We found that the existence of capillary pressure will change the phase envelopes. Positive capillary pressure reduces the dew point and bubble point temperatures under the same pressure condition, while the negative capillary pressure increases the dew point and bubble point temperatures. In addition, the change of contact angle and pore radius will affect the phase envelope. The effect of the pore radius on the phase envelope is insignificant when the radius is very large. These results may become reference for future research and study. Keywords: Phase Behavior; Particle Swarm Optimization; Capillary Pressure; Reservoir Fluids; Phase Equilibrium; Phase Envelope.

  11. Mineral Reactions in Shale Gas Reservoirs: Barite Scale Formation from Reusing Produced Water As Hydraulic Fracturing Fluid. (United States)

    Paukert Vankeuren, Amelia N; Hakala, J Alexandra; Jarvis, Karl; Moore, Johnathan E


    Hydraulic fracturing for gas production is now ubiquitous in shale plays, but relatively little is known about shale-hydraulic fracturing fluid (HFF) reactions within the reservoir. To investigate reactions during the shut-in period of hydraulic fracturing, experiments were conducted flowing different HFFs through fractured Marcellus shale cores at reservoir temperature and pressure (66 °C, 20 MPa) for one week. Results indicate HFFs with hydrochloric acid cause substantial dissolution of carbonate minerals, as expected, increasing effective fracture volume (fracture volume + near-fracture matrix porosity) by 56-65%. HFFs with reused produced water composition cause precipitation of secondary minerals, particularly barite, decreasing effective fracture volume by 1-3%. Barite precipitation occurs despite the presence of antiscalants in experiments with and without shale contact and is driven in part by addition of dissolved sulfate from the decomposition of persulfate breakers in HFF at reservoir conditions. The overall effect of mineral changes on the reservoir has yet to be quantified, but the significant amount of barite scale formed by HFFs with reused produced water composition could reduce effective fracture volume. Further study is required to extrapolate experimental results to reservoir-scale and to explore the effect that mineral changes from HFF interaction with shale might have on gas production.

  12. Radar Mapping of Fractures and Fluids in Hydrocarbon Reservoirs (United States)

    Stolarczyk, L. G.; Wattley, G. G.; Caffey, T. W.


    A stepped-frequency radar has been developed for mapping of fractures and fluids within 20 meters of the wellbore. The operating range has been achieved by using a radiating magnetic dipole operating in the low- and medium-frequency bands. Jim Wait has shown that the electromagnetic (EM) wave impedance in an electrically conductive media is largely imaginary, enabling energy to be stored in the near field instead of dissipated, as in the case for an electric dipole. This fact, combined with the low attenuation rate of a low-frequency band EM wave, enables radiation to penetrate deeply into the geology surrounding the wellbore. The radiation pattern features a vertical electric field for optimum electric current induction into vertical fractures. Current is also induced in sedimentary rock creating secondary waves that propagate back to the wellbore. The radiation pattern is electrically driven in azimuth around the wellbore. The receiving antenna is located in the null field of the radiating antenna so that the primary wave is below the thermal noise of the receiver input. By stepping the frequency through the low- and medium-frequency bands, the depth of investigation is varied, and enables electrical conductivity profiling away from the wellbore. Interpretation software has been developed for reconstructive imaging in dipping sedimentary layers. Because electrical conductivity can be related to oil/water saturation, both fractures and fluids can be mapped. Modeling suggests that swarms of fractures can be imaged and fluid type determined. This information will be useful in smart fracking and sealing. Conductivity tomography images will indicate bed dip, oil/water saturation, and map fluids. This paper will provide an overview of the technology development program.

  13. Tokamak two-fluid ignition conditions (United States)

    Guazzotto, L.; Betti, R.


    This work focuses on modeling the properties needed by a plasma to reach ignition, where ignition is the condition in which fusion power is produced at the steady state without any external input power. We extend the classic work by Lawson giving the ptotτE (product between density, temperature, and energy confinement time) needed for ignition [J. D. Lawson, Proc. Phys. Soc. London, Sect. B 70, 6 (1957)] by improving the original zero-dimensional, single fluid model. The effect of multi-fluid physics is included, by distinguishing ions, electrons, and α particles. The effects of one-dimensional density and temperature profiles are also considered. It is found that the multi-fluid model predicts a larger Lawson product required for ignition than the single-fluid one. A detailed analysis of the energy confinement times for each species and energy equilibration times between species shows that the electron energy confinement time is the parameter more strongly affecting the Lawson product needed for ignition. It is also found that peaked profiles (of either temperature or density) require a smaller Lawson product for ignition than flat profiles.

  14. The application of SEM in analyzing the damage to the petroleum reservoirs caused by drilling fluids

    International Nuclear Information System (INIS)

    Abdul Razak Ismail


    An experimental study has been conducted to analyze the damage to the potential oil and gas reservoirs due to the invasion of drilling fluid during drilling operation. Two types of rock samples representing low and high permeability were used to stimulate the petroleum reservoirs. Sea water based drilling fluids were used in this study. Detail observations to the rock samples were analyzed using scanning electron microscope (SEM). The results of both permeability restoration and SEM observation showed that severe permeability impairments were obtained for high permeability rock. These results indicate that the relative size of the barite particles and the pore size distribution and characteristics of the formation play an important role in determining the damage caused by the drilling fluids

  15. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou


    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  16. Formation Damage due to Drilling and Fracturing Fluids and Its Solution for Tight Naturally Fractured Sandstone Reservoirs

    Directory of Open Access Journals (Sweden)

    Tianbo Liang


    Full Text Available Drilling and fracturing fluids can interact with reservoir rock and cause formation damage that impedes hydrocarbon production. Tight sandstone reservoir with well-developed natural fractures has a complex pore structure where pores and pore throats have a wide range of diameters; formation damage in such type of reservoir can be complicated and severe. Reservoir rock samples with a wide range of fracture widths are tested through a multistep coreflood platform, where formation damage caused by the drilling and/or fracturing fluid is quantitatively evaluated and systematically studied. To further mitigate this damage, an acidic treating fluid is screened and evaluated using the same coreflood platform. Experimental results indicate that the drilling fluid causes the major damage, and the chosen treating fluid can enhance rock permeability both effectively and efficiently at least at the room temperature with the overburden pressure.

  17. Chemical and physical reservoir parameters at initial conditions in Berlin geothermal field, El Salvador: a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    D`Amore, F. [CNR, Pisa (Italy). International Institute for Geothermal Research ; Mejia, J.T. [Comision Ejuctiva Hidroelectrica del Rio Lempa, El Salvador (El Salvador)


    A study has been made to obtain the main chemical and physical reservoir conditions of the Berlin field (El Salvador), before the commencement of large-scale exploitation of the geothermal resource. The upflow zone and the main flow path within the geothermal system have been determined from the area distribution of chemical parameters such as Cl concentrations, ratios such as Na/K, K/Mg, K/Ca, and temperatures computed from silica concentrations and cation ratios. Gas compositions have been used to calculate reservoir parameters such as temperature, steam fraction and P{sub CO{sub 2}}. The computer code WATCH (new edition 1994) has been used to evaluate the temperature of equilibrium between the aqueous species and selected alteration minerals in the reservoir. The fluid in Berlin flows to the exploited reservoir from the south, entering it in the vicinity of well TR-5. Along its flow-path (south-north direction), the fluid is cooled by boiling and conductive cooling. The chloride-enthalpy diagram indicates the existence of a parent water, with a chemical composition similar to well TR-5, that boils and the residual brine produces the fluid of well TR-3, which is very concentrated in salts. The fluid of TR-5 is probably produced from this parent water, generating the fluids of wells TR-2 and TR-9 by boiling, and the fluids of wells TR-1 and TR-4 by conductive cooling. The computed values for the deep steam fraction clearly indicate that this is a liquid-dominated system, with computed temperature values decreasing from 310{sup o}C (upflow zone) to about 230{sup o}C, from south to north. (author)

  18. Can introduction of hydraulic fracturing fluids induce biogenic methanogenesis in the shale reservoirs? (United States)

    Sharma, S.; Wilson, T.; Wrighton, K. C.; Borton, M.; O'Banion, B.


    The hydraulic fracturing fluids (HFF) injected into the shale formation are composed primarily of water, proppant and some chemical additives ( 0.5- 2% by volume). The additives contain a lot of organic and inorganic compounds like ammonium sulfate, guar gum, boric acid, hydrochloric acid, citric acid, potassium carbonate, glutaraldehyde, ethylene glycols which serve as friction reducers, gelling agents, crosslinkers, biocides, corrosion/scale inhibitors, etc. The water and additives introduced into the formation ensue a variety of microbiogechmical reactions in the reservoir. For this study produced, water and gas samples were collected from several old and new Marcellus wells in SE Pennsylvania and NE West Virginia to better understand these microbe-water-rock interactions. The carbon isotopic composition of dissolved inorganic carbon (δ13CDIC) in the produced fluids and CO2 in produced gas (δ13CCO2) are highly enriched with values > +10‰ and +14 ‰ V-PDB respectively. The injected hydraulic fracturing fluid had low δ13CDIC values of < -8‰ V-PDB. The high carbon isotope values in produced fluids and gas possibly indicate 1) dissolution of 13C enriched carbonates in the host rock of reservoir, cement or drilling muds or 2) biogenic methanogenesis in the reservoir. The carbon signatures of carbonates in and around the landing zone and all possible sources of carbon put downhole were analyzed for their 13C signatures. The cement and silica sand had no detectable carbon in them. The drilling mud and carbonate veins had δ13C values of -1.8 and < 2.0 ‰ V-PDB respectively. Therefore, the high δ13CDIC signatures in produced water are possibly due to the microbial utilization of lighter carbon (12C) by microbes or methanogenic bacteria in the reservoir. It is possible that introduction of C containing nutrients like guar, methanol, methylamines, etc. stimulates certain methanogen species in the reservoir to produce biogenic methane. Genomic analysis reveals

  19. Improved method for measuring fluid loss at simulated fracture conditions

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, R.R.; Deysarkar, A.K.; Callanan, M.J.; Kohlhaas, C.A.


    A test apparatus is designed to carry out dynamic as well as static fluid loss tests of fracturing fluids. This test apparatus simulates the pressure difference, temperature, rate of shear, duration of shear, and fluid flow pattern expected under fracture conditions. For a typical crosslinked fracturing fluid, experimental results indicate that fluid loss values can be a function of temperature, pressure differential, rate of shear, and degree of non-Newtonian behavior of the fracturing fluid. A mathematical development is presented to calculate the fracturing fluid coefficient obtained from laboratory studies assuming this to be a combination of fracturing fluid coefficient and filter cake coefficient.

  20. Final Report: Development of a Chemical Model to Predict the Interactions between Supercritical CO2, Fluid and Rock in EGS Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian J. [University of Utah; Pan, Feng [University of Utah


    This report summarizes development of a coupled-process reservoir model for simulating enhanced geothermal systems (EGS) that utilize supercritical carbon dioxide as a working fluid. Specifically, the project team developed an advanced chemical kinetic model for evaluating important processes in EGS reservoirs, such as mineral precipitation and dissolution at elevated temperature and pressure, and for evaluating potential impacts on EGS surface facilities by related chemical processes. We assembled a new database for better-calibrated simulation of water/brine/ rock/CO2 interactions in EGS reservoirs. This database utilizes existing kinetic and other chemical data, and we updated those data to reflect corrections for elevated temperature and pressure conditions of EGS reservoirs.

  1. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan


    Cubic equations of state, such as the Soave-Redlich-Kwong (SRK) and the Peng-Robinson (PR) EoS, are still the mostly used models in PVT modeling of reservoir fluids, and almost the exclusively used models in compositional reservoir simulations. Nevertheless, it is promising that recently developed...... non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... of non-cubic models (PC-SAFT and Soave-BWR) and cubic models (SRK and PR) in several important aspects related to PVT modeling of reservoir fluids, including density description for typical pure components in reservoir fluids, description of binary VLE, prediction of multicomponent phase envelopes...

  2. Quantifying Fracture Heterogeneity in Different Domains of Folded Carbonate Rocks to Improve Fractured Reservoir Analog Fluid Flow Models

    NARCIS (Netherlands)

    Bisdom, K.; Bertotti, G.; Gauthier, B.D.M.; Hardebol, N.J.


    Fluid flow in carbonate reservoirs is largely controlled by multiscale fracture networks. Significant variations of fracture network porosity and permeability are caused by the 3D heterogeneity of the fracture network characteristics, such as intensity, orientation and size. Characterizing fracture

  3. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan


    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... fluid and polar compounds such as water and MEG. Satisfactory results are obtained for mutual solubility of MEG and gas condensate whereas some deviations are observed for the ternary system of MEG-water-gas condensate........ Prediction of mutual solubility of water, MEG and hydrocarbon fluids is important for the oil industry to ensure production and processing as well as to satisfy environmental regulations. The CPA equation of state has been successfully applied in the past to well defined systems containing associating...

  4. Fluid Micro-Reservoirs Array Design with Auto-Pressure Regulation for High-Speed 3D Printers

    Directory of Open Access Journals (Sweden)

    Moshe Einat


    Full Text Available Three dimensional (3D printing technology is rapidly evolving such that printing speed is now a crucial factor in technological developments and future applications. For printing heads based on the inkjet concept, the number of nozzles on the print head is a limiting factor of printing speed. This paper offers a method to practically increase the number of nozzles unlimitedly, and thus to dramatically ramp up printing speed. Fluid reservoirs are used in inkjet print heads to supply fluid through a manifold to the jetting chambers. The pressure in the reservoir’s outlet is important and influences device performance. Many efforts have been made to regulate pressure inside the fluid reservoirs so as to obtain a constant pressure in the chambers. When the number of nozzles is increased too much, the regulation of uniform pressure among all the nozzles becomes too complicated. In this paper, a different approach is taken. The reservoir is divided into an array of many micro-reservoirs. Each micro-reservoir supports one or a few chambers, and has a unique structure with auto-pressure regulation, where the outlet pressure is independent of the fluid level. The regulation is based on auto-compensation of the gravity force and a capillary force having the same dependence on the fluid level; this feature is obtained by adding a wedge in the reservoir with a unique shape. When the fluid level drops, the gravitational force and the capillary force decrease with it, but at similar rates. Terms for the force balance are derived and, consequently, a constant pressure in the fluid micro-reservoir segment is obtained automatically, with each segment being autonomous. This micro reservoir array is suggested for the enlargement of an inkjet print head and the achievement of high-speed 3D printing.


    International Nuclear Information System (INIS)

    Pollard, David; Aydin, Atilla


    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical


    Energy Technology Data Exchange (ETDEWEB)

    Pollard, David; Aydin, Atilla


    Fractures and faults are brittle structural heterogeneities that can act both as conduits and barriers with respect to fluid flow in rock. This range in the hydraulic effects of fractures and faults greatly complicates the challenges faced by geoscientists working on important problems: from groundwater aquifer and hydrocarbon reservoir management, to subsurface contaminant fate and transport, to underground nuclear waste isolation, to the subsurface sequestration of CO2 produced during fossil-fuel combustion. The research performed under DOE grant DE-FG03-94ER14462 aimed to address these challenges by laying a solid foundation, based on detailed geological mapping, laboratory experiments, and physical process modeling, on which to build our interpretive and predictive capabilities regarding the structure, patterns, and fluid flow properties of fractures and faults in sandstone reservoirs. The material in this final technical report focuses on the period of the investigation from July 1, 2001 to October 31, 2004. The Aztec Sandstone at the Valley of Fire, Nevada, provides an unusually rich natural laboratory in which exposures of joints, shear deformation bands, compaction bands and faults at scales ranging from centimeters to kilometers can be studied in an analog for sandstone aquifers and reservoirs. The suite of structures there has been documented and studied in detail using a combination of low-altitude aerial photography, outcrop-scale mapping and advanced computational analysis. In addition, chemical alteration patterns indicative of multiple paleo fluid flow events have been mapped at outcrop, local and regional scales. The Valley of Fire region has experienced multiple episodes of fluid flow and this is readily evident in the vibrant patterns of chemical alteration from which the Valley of Fire derives its name. We have successfully integrated detailed field and petrographic observation and analysis, process-based mechanical modeling, and numerical

  7. Fluid contacts and net-pay identification in three phase reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.; Cuesta, J.; Altamar, R.; Sanabria, M. [PDVSA Petroleos de Venezuela SA, Caracas (Venezuela, Bolivarian Republic of). Petrodelta; Gil, J. [Fusion Petroleum Technologies, The Woodlands, TX (United States)


    The Uracoa Field is located in the Monagas Sur area, close to the Orinoco belt in eastern Venezuela. Fluid contacts within the heavy oil reservoirs in Block 2 of the oilfield were identified using an integrated interpretation of three-dimensional seismic attributes, spectral decomposition and pseudo-impedances. This paper discussed the theory background on the quest for the oil bearing interval in the reservoir. The two step workflow and data testing were also described. This included well-seismic data; production data match; and de-tuning curve. The study was conducted by Petrodelta, a joint venture between Petroleos de Venezuela SA and Harvest Vinccler. It was concluded that the final product is a breakthrough for Petrodelta's development plan, and is the result of multidisciplinary interpretation and workstation capabilities. Two new drilling locations have been established. 2 refs., 5 figs.

  8. Buoyancy-driven CO2/brine flow at reservoir conditions (United States)

    Oh, J.; Kim, K.; Han, W.; Kim, T.; Kim, J.; Park, E.


    Suitable geological formations should guarantee a long-term safe and reliable storage of the injected supercritical CO2. In this study we targeted the cases of gravity-driven CO2 plume migration in a storage formation and the resulting CO2 leakage to overlying formation through a possible fractures or abandoned wells. A laboratory experiment and numerical model for two-phase core-flooding tests were designed to understand the buoyancy effect on supercritical CO2 migration under reservoir conditions. A series of core flooding tests were performed with Berea sandstone cores which have 20 % porosity and 1.7×10-13 m2 permeability. Unlike the normal core-flooding tests, the core was set up in a vertical direction and the CO2 was released at the bottom of the core to investigate the gravity effect on CO2 migration. During the test, the downstream pressure was maintained at 10 MPa, and the confining pressure was kept at 20 MPa. The temperature was set to be 40 °C to reflect the 1 km subsurface environment. The CO2-flooding (drainage) tests with brine-saturated core were performed with various CO2-release periods. The CO2 saturation was measured with a linear X-ray scanner. In addition to laboratory experiments, numerical simulations were performed to provide further insight into the CO2 migration behavior. TOUGH2 with ECO2N module was used to simulate CO2/brine core-flooding tests. Dimensionless numbers (Capillary number and Bond number) were calculated with the simulation results at various time points covering both the release and monitoring period.


    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow


    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  10. iTOUGH2-EOS1SC. Multiphase Reservoir Simulator for Water under Sub- and Supercritical Conditions. User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Magnusdottir, Lilja [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Finsterle, Stefan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    Supercritical fluids exist near magmatic heat sources in geothermal reservoirs, and the high enthalpy fluid is becoming more desirable for energy production with advancing technology. In geothermal modeling, the roots of the geothermal systems are normally avoided but in order to accurately predict the thermal behavior when wells are drilled close to magmatic intrusions, it is necessary to incorporate the heat sources into the modeling scheme. Modeling supercritical conditions poses a variety of challenges due to the large gradients in fluid properties near the critical zone. This work focused on using the iTOUGH2 simulator to model the extreme temperature and pressure conditions in magmatic geothermal systems.

  11. Experiments and Simulations of Fluid Flow in Heterogeneous Reservoir Models - Emphasis on Impacts from Crossbeds and Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Boerresen, Knut Arne


    Hydrocarbon recovery from subsurface reservoirs has become increasingly dependent on advanced recovery techniques that require improved understanding of the physics of fluid flow within and across geological units including small-scale heterogeneities and fractures. In this thesis, impacts from heterogeneities on local fluid flow are studied experimentally by means of imaging techniques to visualize fluid flow in two dimensions during flooding of larger reservoir models. Part 1 reflects the multi-disciplinary collaboration, by briefly introducing the relevant geology, the literature on experiments on fluid flow in bedded structures, and outlining the applied numerical simulator and imaging techniques applied to visualize fluid flow. The second part contains a synopsis of displacement experiments in naturally laminated sandstones and in crossbed laboratory models, and of the impact from incipient shear fractures on oil recovery. The detailed results obtained from the experiments and simulations are described in six papers, all included. 215 refs., 108 figs., 16 tabs.

  12. Development of Future Rule Curves for Multipurpose Reservoir Operation Using Conditional Genetic and Tabu Search Algorithms

    Directory of Open Access Journals (Sweden)

    Anongrit Kangrang


    Full Text Available Optimal rule curves are necessary guidelines in the reservoir operation that have been used to assess performance of any reservoir to satisfy water supply, irrigation, industrial, hydropower, and environmental conservation requirements. This study applied the conditional genetic algorithm (CGA and the conditional tabu search algorithm (CTSA technique to connect with the reservoir simulation model in order to search optimal reservoir rule curves. The Ubolrat Reservoir located in the northeast region of Thailand was an illustrative application including historic monthly inflow, future inflow generated by the SWAT hydrological model using 50-year future climate data from the PRECIS regional climate model in case of B2 emission scenario by IPCC SRES, water demand, hydrologic data, and physical reservoir data. The future and synthetic inflow data of reservoirs were used to simulate reservoir system for evaluating water situation. The situations of water shortage and excess water were shown in terms of frequency magnitude and duration. The results have shown that the optimal rule curves from CGA and CTSA connected with the simulation model can mitigate drought and flood situations than the existing rule curves. The optimal future rule curves were more suitable for future situations than the other rule curves.

  13. Influence of oil/gas reservoir driving conditions on reserves estimation using computer simulation

    Directory of Open Access Journals (Sweden)

    Stanisław Rychlicki


    Full Text Available One of the methods of assessing reserves is a calibration of a numerical model of a field with assumed driving conditions of the field. The influence of various energy systems assumed for the calculation on the calibration results are presented in the paper. A light oil field was selected for verification of resources on the basis of an analysis of driving conditions. At the first stage of calculations, a „Black Oil” type numerical model was used. The results of a classical „Black – Oil” model made the authors search for an alternative description of energy conditions in the reservoir. Therefore, a modified „Black-Oil” model with „vaporized oil” option, assuming that initially, after evaporation, the condensate in the reservoir was in a gaseous phase was used. The obtained simulation results for the analyzed reservoir prove the accuracy of energy conditions in the reservoir.

  14. Impact of Reservoir Fluid Saturation on Seismic Parameters: Endrod Gas Field, Hungary (United States)

    El Sayed, Abdel Moktader A.; El Sayed, Nahla A.


    Outlining the reservoir fluid types and saturation is the main object of the present research work. 37 core samples were collected from three different gas bearing zones in the Endrod gas field in Hungary. These samples are belonging to the Miocene and the Upper - Lower Pliocene. These samples were prepared and laboratory measurements were conducted. Compression and shear wave velocity were measured using the Sonic Viewer-170-OYO. The sonic velocities were measured at the frequencies of 63 and 33 kHz for compressional and shear wave respectively. All samples were subjected to complete petrophysical investigations. Sonic velocities and mechanical parameters such as young’s modulus, rigidity, and bulk modulus were measured when samples were saturated by 100%-75%-0% brine water. Several plots have been performed to show the relationship between seismic parameters and saturation percentages. Robust relationships were obtained, showing the impact of fluid saturation on seismic parameters. Seismic velocity, Poisson’s ratio, bulk modulus and rigidity prove to be applicable during hydrocarbon exploration or production stages. Relationships among the measured seismic parameters in gas/water fully and partially saturated samples are useful to outline the fluid type and saturation percentage especially in gas/water transitional zones.

  15. Movement of geothermal fluid in the Cerro Prieto field as determined from well log and reservoir engineering data

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.


    A hydrogeologic model of the Cerro Prieto geothermal field in its undisturbed state, developed on the basis of well log and reservoir engineering data, is discussed. According to this model, geothermal fluid enters the field from the east through a deep (>10,000 ft) sandstone aquifer which is overlain by a thick shale unit which locally prevents the upward migration of the fluid. As it flows westward, the fluid gradually rises through faults and sandy gaps in the shale unit. Eventually, some of the fluid leaks to the surface in the western part of the field, while the rest mixes with surrounding colder waters.

  16. EQUILGAS: Program to estimate temperatures and in situ two-phase conditions in geothermal reservoirs using three combined FT-HSH gas equilibria models (United States)

    Barragán, Rosa María; Núñez, José; Arellano, Víctor Manuel; Nieva, David


    Exploration and exploitation of geothermal resources require the estimation of important physical characteristics of reservoirs including temperatures, pressures and in situ two-phase conditions, in order to evaluate possible uses and/or investigate changes due to exploitation. As at relatively high temperatures (>150 °C) reservoir fluids usually attain chemical equilibrium in contact with hot rocks, different models based on the chemistry of fluids have been developed that allow deep conditions to be estimated. Currently either in water-dominated or steam-dominated reservoirs the chemistry of steam has been useful for working out reservoir conditions. In this context, three methods based on the Fischer-Tropsch (FT) and combined H2S-H2 (HSH) mineral-gas reactions have been developed for estimating temperatures and the quality of the in situ two-phase mixture prevailing in the reservoir. For these methods the mineral buffers considered to be controlling H2S-H2 composition of fluids are as follows. The pyrite-magnetite buffer (FT-HSH1); the pyrite-hematite buffer (FT-HSH2) and the pyrite-pyrrhotite buffer (FT-HSH3). Currently from such models the estimations of both, temperature and steam fraction in the two-phase fluid are obtained graphically by using a blank diagram with a background theoretical solution as reference. Thus large errors are involved since the isotherms are highly nonlinear functions while reservoir steam fractions are taken from a logarithmic scale. In order to facilitate the use of the three FT-HSH methods and minimize visual interpolation errors, the EQUILGAS program that numerically solves the equations of the FT-HSH methods was developed. In this work the FT-HSH methods and the EQUILGAS program are described. Illustrative examples for Mexican fields are also given in order to help the users in deciding which method could be more suitable for every specific data set.

  17. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Weislogel, Amy [West Virginia Univ., Morgantown, WV (United States)


    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  18. Reservoir monitoring using borehole radars to improve oil recovery : Suggestions from 3D electromagnetic and fluid modeling

    NARCIS (Netherlands)

    Zhou, F.; Miorali, M.; Slob, E.C.; Hu, Xiangyun


    The recently developed smart well technology allows for sectionalized production control by means of downhole inflow control valves and monitoring devices. We consider borehole radars as permanently installed downhole sensors to monitor fluid evolution in reservoirs, and it provides the

  19. Invasion of geothermal fluids into hydrocarbon reservoirs; La invasion de fluidos geotermicos en yacimientos de hidrocarburos

    Energy Technology Data Exchange (ETDEWEB)

    Suarez Arriaga, Mario Cesar [Universidad Michoacana, Facultad de Ciencias, Morelia, Michoacan (Mexico)]. E-mail:


    Oil reservoirs beneath the coast of the Gulf of Mexico contain geothermal brine at 150 degrees Celsius and produce a mixture of hot brine and oil. Water from an aquifer 6000 m deep flows vertically through conductive faults. These nonisothermal conditions affect the effective saturations and the relative permeability of the immiscible phases. Dynamic viscosities of oil and water diminish, affecting the displacement of both fluids. Studied wells produce from the oil-saturated zone above the aquifer, yet the total volume of produced water can equal or exceed the volume of oil. The presence of water is a severe problem. We produced an original numerical model able to predict the critical production when the wells start to be invaded by geothermal brine. The model has a single equation in partial derivatives, of a parabolic and nonlineal type, which is a function of water saturation, three-dimension space and time. A gas phase can be included in the model. This equation is a generalization of the classic isothermal result of Buckley-Leverett, in a single dimension. The model is solved numerically by using the Finite Element method on a nonstructured network. The historic effect of water invasion observed in some critical cases is reproduced. After production with both phases stable, a sudden brine invasion can occur with a sharp reduction of the oil volume produced. The immediate objective is to optimize the production so the well will be able to produce a stable water-oil mix where oil always prevails. [Spanish] Se reportan reservorios de aceite situados en la costa del Golfo de Mexico que son invadidos por salmuera geotermica con una temperatura de 150 grados centigrados, produciendo una mezcla variable de agua caliente y aceite. El agua de un acuifero, a 6000 metros de profundidad, fluye verticalmente por fallas conductivas. Estas condiciones no isotermicas afectan las saturaciones efectivas y las permeabilidades relativas de las fases inmiscibles. Las viscosidades

  20. Estimation of reservoir fluid volumes through 4-D seismic analysis on Gullfaks

    Energy Technology Data Exchange (ETDEWEB)

    Veire, H.S.; Reymond, S.B.; Signer, C.; Tenneboe, P.O.; Soenneland, L.; Schlumberger, Geco-Prakla


    4-D seismic has the potential to monitor hydrocarbon movement in reservoirs during production, and could thereby supplement the predictions of reservoir parameters offered by the reservoir simulator. However 4-D seismic is often more band limited than the vertical resolution required in the reservoir model. As a consequence the seismic data holds a composite response from reservoir parameter changes during production so that the inversion becomes non-unique. A procedure where data from the reservoir model are integrated with seismic data will be presented. The potential of such a procedure is demonstrated through a case study from a recent 4-D survey over the Gullfaks field. 2 figs.

  1. Interaction between Proppant Packing, Reservoir Depletion, and Fluid Flow in Pore Space (United States)

    Fan, M.; McClure, J. E.; Han, Y.; Chen, C.


    In the oil and gas industry, the performance of proppant pack in hydraulically created fractures has a significant influence on fracture conductivity. A better understanding of proppant transport and deposition pattern in a hydraulic fracture is vital for effective and economical production within oil and gas reservoirs. In this research, a numerical modeling approach, combining Particle Flow Code (PFC) and GPU-enhanced lattice Boltzmann simulator (GELBS), is adopted to advance the understanding of the interaction between proppant particle packing, depletion of reservoir formation, and transport of reservoir flow through the pore space. In this numerical work flow, PFC is used to simulate effective stress increase and proppant particle movement and rearrangement under increasing mechanical loading. The pore structure of the proppant pack evolves subsequently and the geometrical data are output for lattice Boltzmann (LB) simulation of proppant pack permeability. Three different proppant packs with fixed particle concentration and 12/18, 16/30, and 20/40 mesh sizes are generated. These proppant packs are compressed with specified loading stress and their subsequent geometries are used for fluid flow simulations. The simulation results are in good agreement with experimental observations, e.g., the conductivity of proppant packs decreases with increasing effective stress. Three proppant packs with the same average diameter were generated using different coefficients of variation (COVs) for the proppant diameter (namely cov5%, cov20%, and cov30%). By using the coupled PFC-LBM work flow, the proppant pack permeability as functions of effective stress and porosity is investigated. The results show that the proppant pack with a higher proppant diameter COV has lower permeability and porosity under the same effective stress, because smaller particles fill in the pore space between bigger particles. The relationship between porosity and permeability is also consistent with

  2. On the Versatility of Rheoreversible, Stimuli-responsive Hydraulic-Fracturing Fluids for Enhanced Geothermal Systems: Effect of Reservoir pH

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Carlos A.; Shao, Hongbo; Bonneville, Alain; Varga, Tamas; Zhong, Lirong


    Abstract The primary challenge for the feasibility of enhanced geothermal systems (EGS) is to cost-effectively create high-permeability reservoirs inside deep crystalline bedrock. Although fracturing fluids are commonly used for oil/gas, standard fracturing methods are not developed or proven for EGS temperatures and pressures. Furthermore, the environmental impacts of currently used fracturing methods are only recently being determined. These authors recently reported an environmentally benign, CO2-activated, rheoreversible fracturing fluid that enhances permeability through fracturing due to in situ volume expansion and gel formation. The potential of this novel fracturing fluid is evaluated in this work towards its application at geothermal sites under different pH conditions. Laboratory-scale fracturing experiments using Coso Geothermal rock cores under different pH environments were performed followed by X-ray microtomography characterization. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable polyallylamine (PAA) consistently and reproducibly creates/propagates fracture networks through highly impermeable crystalline rock from Coso EGS sites at considerably lower effective stress as compared to conventional fracturing fluids. In addition, permeability was significantly enhanced in a wide range of formation-water pH values. This effective, and environmentally-friendly fracturing fluid technology represents a potential alternative to conventional fracturing fluids.

  3. Comparison of fluid warmer performance during simulated clinical conditions. (United States)

    Patel, N; Smith, C E; Pinchak, A C


    The study evaluated the warming ability and flow rates associated with four fluid warming devices during pressure driven infusion and during wide open gravity driven roller clamp infusion. Warmers tested were the Astotherm, Flotem IIe, Level 1 System 250 and a modified cardioplegia heat exchanger. Fluids tested were crystalloid, red cells diluted with 200 ml, 0.9% saline, and undiluted red cells. The volume of fluid and outlet temperatures (point where i.v. tubing would be attached to the patient) were measured for each fluid and compared among warmers for each flow rate condition. For pressure driven infusion of red cells and crystalloid, the System 250, and modified heat exchanger delivered warmer fluids (33-35 degrees C) at higher flow rates (160-740 ml.min-1) than the Astotherm and Flotem (23-31 degrees C, 44-268 ml.min-1, P 32 degrees C) in warming crystalloid and red cells at pressure driven flow rates. Only the System 250 warmed red cells > 35 degrees C at gravity driven flow rates. The Flotem and Astotherm were not effective in warming rapidly infused solutions. None of the warmers tested was able to deliver fluids at normothermia (> 36.5 degrees C).

  4. Water level influences on body condition of Geophagus brasiliensis (Perciformes: Cichlidae in a Brazilian oligotrophic reservoir

    Directory of Open Access Journals (Sweden)

    Alejandra Filippo Gonzalez Neves dos Santos

    Full Text Available Effects of water level fluctuations on body condition of Geophagus brasiliensis were studied in a 30 km² Brazilian oligotrophic reservoir. Physiological condition (K and gonadosomatic index (GSI were compared according to water level (low and high. Females' best conditions were associated to higher resources availability during high water, since gonad development did not change between low and high water. Males' condition did not change between water levels, while the highest gonad development occurred in low water. Females presented higher reproductive investment than males, which allocated most of energy for somatic development. This strategy could be a mechanism to undergo the stress caused by oligotrophic characteristics of the reservoir enhanced during low water level.

  5. The No-Slip Boundary Condition in Fluid Mechanics

    Indian Academy of Sciences (India)

    Ideas leading to the resolution of the problem of no-slip condition for fluid velocity at a solid surface are traced in this concluding part of the article. In the continuum limit velocity slip being zero is established beyond any doubt now. Even turbulent flows which have a large velocity gradient near a wall have to satisfy the ...

  6. The No-Slip Boundary Condition in Fluid Mechanics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. The No-Slip Boundary Condition in Fluid Mechanics - Solution of the Sticky Problem. Sandeep Prabhakara M D Deshpande. General Article Volume 9 Issue 5 May 2004 pp 61-71 ...

  7. The No-Slip Boundary Condition in Fluid Mechanics

    Indian Academy of Sciences (India)

    Historical Development. A brief and excellent review of this problem of velocity slip in fluid flow is given in the book by Goldstein [1]. We freely borrow from this book adding some explanations and supple- ments based on the earlier discussion in Part 1. We saw that Newton tacitly assumed the no-slip condition in the.

  8. Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions

    Directory of Open Access Journals (Sweden)

    Shehzad Ahmed


    Full Text Available High-quality supercritical CO2 (sCO2 foam as a fracturing fluid is considered ideal for fracturing shale gas reservoirs. The apparent viscosity of the fracturing fluid holds an important role and governs the efficiency of the fracturing process. In this study, the viscosity of sCO2 foam and its empirical correlations are presented as a function of temperature, pressure, and shear rate. A series of experiments were performed to investigate the effect of temperature, pressure, and shear rate on the apparent viscosity of sCO2 foam generated by a widely used mixed surfactant system. An advanced high pressure, high temperature (HPHT foam rheometer was used to measure the apparent viscosity of the foam over a wide range of reservoir temperatures (40–120 °C, pressures (1000–2500 psi, and shear rates (10–500 s−1. A well-known power law model was modified to accommodate the individual and combined effect of temperature, pressure, and shear rate on the apparent viscosity of the foam. Flow indices of the power law were found to be a function of temperature, pressure, and shear rate. Nonlinear regression was also performed on the foam apparent viscosity data to develop these correlations. The newly developed correlations provide an accurate prediction of the foam’s apparent viscosity under different fracturing conditions. These correlations can be helpful for evaluating foam-fracturing efficiency by incorporating them into a fracturing simulator.

  9. analysis of pressure variation of fluid in an infinite acting reservoir

    African Journals Online (AJOL)

    The diffusivity equation was used in the analysis. The work covers the transient state where the reservoir is acting as if it was infinite in size. The finite element technique, using Lagrange quadratic shape elements was employed to carry out the analysis over the cross-section of the reservoir. The analysis was done with the ...

  10. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions (United States)

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.


    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  11. Damage evaluation on oil-based drill-in fluids for ultra-deep fractured tight sandstone gas reservoirs

    Directory of Open Access Journals (Sweden)

    Jinzhi Zhu


    Full Text Available In order to explore the damage mechanisms and improve the method to evaluate and optimize the performance of formation damage control of oil-based drill-in fluids, this paper took an ultra-deep fractured tight gas reservoir in piedmont configuration, located in the Cretaceous Bashijiqike Fm of the Tarim Basin, as an example. First, evaluation experiments were conducted on the filtrate invasion, the dynamic damage of oil-based drill-in fluids and the loading capacity of filter cakes. Meanwhile, the evaluating methods were optimized for the formation damage control effect of oil-based drill-in fluids in laboratory: pre-processing drill-in fluids before grading analysis; using the dynamic damage method to simulate the damage process for evaluating the percentage of regained permeability; and evaluating the loading capacity of filter cakes. The experimental results show that (1 oil phase trapping damage and solid phase invasion are the main formation damage types; (2 the damage degree of filtrate is the strongest on the matrix; and (3 the dynamic damage degree of oil-based drill-in fluids reaches medium strong to strong on fractures and filter cakes show a good sealing capacity for the fractures less than 100 μm. In conclusion, the filter cakes' loading capacity should be first guaranteed, and both percentage of regained permeability and liquid trapping damage degree should be both considered in the oil-based drill-in fluids prepared for those ultra-deep fractured tight sandstone gas reservoirs.

  12. An Embedded 3D Fracture Modeling Approach for Simulating Fracture-Dominated Fluid Flow and Heat Transfer in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wang, Cong [Colorado School of Mines; Winterfeld, Philip [Colorado School of Mines; Wu, Yu-Shu [Colorado School of Mines


    An efficient modeling approach is described for incorporating arbitrary 3D, discrete fractures, such as hydraulic fractures or faults, into modeling fracture-dominated fluid flow and heat transfer in fractured geothermal reservoirs. This technique allows 3D discrete fractures to be discretized independently from surrounding rock volume and inserted explicitly into a primary fracture/matrix grid, generated without including 3D discrete fractures in prior. An effective computational algorithm is developed to discretize these 3D discrete fractures and construct local connections between 3D fractures and fracture/matrix grid blocks of representing the surrounding rock volume. The constructed gridding information on 3D fractures is then added to the primary grid. This embedded fracture modeling approach can be directly implemented into a developed geothermal reservoir simulator via the integral finite difference (IFD) method or with TOUGH2 technology This embedded fracture modeling approach is very promising and computationally efficient to handle realistic 3D discrete fractures with complicated geometries, connections, and spatial distributions. Compared with other fracture modeling approaches, it avoids cumbersome 3D unstructured, local refining procedures, and increases computational efficiency by simplifying Jacobian matrix size and sparsity, while keeps sufficient accuracy. Several numeral simulations are present to demonstrate the utility and robustness of the proposed technique. Our numerical experiments show that this approach captures all the key patterns about fluid flow and heat transfer dominated by fractures in these cases. Thus, this approach is readily available to simulation of fractured geothermal reservoirs with both artificial and natural fractures.

  13. CO2 Capture by Injection of Flue Gas or CO2-N2 Mixtures into Hydrate Reservoirs: Dependence of CO2 Capture Efficiency on Gas Hydrate Reservoir Conditions. (United States)

    Hassanpouryouzband, Aliakbar; Yang, Jinhai; Tohidi, Bahman; Chuvilin, Evgeny; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey


    Injection of flue gas or CO 2 -N 2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO 2 . However, the thermodynamic process in which the CO 2 present in flue gas or a CO 2 -N 2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO 2 capture efficiency on reservoir conditions. The CO 2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO 2 in the flue gas was captured and stored as CO 2 hydrate or CO 2 -mixed hydrates, while methane-rich gas was produced. The efficiency of CO 2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO 2 can be captured from the injected flue gas or CO 2 -N 2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO 2 capture efficiency by flue gas or CO 2 -N 2 mixtures injection.

  14. Mineral-microbial interaction in long term experiments with sandstones and reservoir fluids exposed to CO2 (United States)

    Kasina, Monika; Morozova, Daria; Pellizzari, Linda; Würdemann, Hilke


    Microorganisms represent very effective geochemical catalysts, and may influence the process of the CO2 storage significantly. The goal of this study is to characterize the interactions between minerals and microorganisms during their exposure to the CO2 in a long term experiment in high pressure vessels to better understand the influence of biological processes on the composition of the reservoir sandstones and the long term stability of CO2 storage. The natural gas reservoir, proposed for the CO2 storage is characterized by high salinity (up to 420 g/l) and temperatures around 130°C, at depth of approximately 3.5 km. Microbial community of the reservoir fluid samples was dominated by different H2-oxidising, thiosulfate-oxidising and biocorrosive thermophilic bacteria as well as microorganisms similar to representatives from other deep environments, which have not previously been cultivated. The cells were attached to particles and were difficult to detect because of low cell numbers (Morozova et al., 2011). For the long term experiments, the autoclaved rock core samples from the core deposit were grinded, milled to the size of 0.5 mm and incubated with fresh reservoir fluids as inoculum for indigenous microorganisms in a N2/CH4/H2-atmosphere in high pressure vessels at a temperature of 80°C and pressure of 40 bars. Incubation was performed under lower temperature than in situ in order to favor the growth of the dormant microorganisms. After three months of incubation samples were exposed to high CO2 concentrations by insufflating it into the vessels. The sampling of rock and fluid material was executed 10 and 21 months after start of the experiment. Mineralogical analyses performed using XRD and SEM - EDS showed that main mineral components are quartz, feldspars, dolomite, anhydrite and calcite. Chemical fluid analyses using ICP-MS and ICP-OES showed that after CO2 exposure increasing Si4+ content in the fluid was noted after first sampling (ca. 25 relative

  15. Development of gas and gas condensate reservoirs

    Energy Technology Data Exchange (ETDEWEB)



    In the study of gas reservoir development, the first year topics are restricted on reservoir characterization. There are two types of reservoir characterization. One is the reservoir formation characterization and the other is the reservoir fluid characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. The results of conditional simulation has higher confidence level than the unconditional simulation because conditional simulation considers the sample location as well as distance correlation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. From the liquid volume fraction with pressure drop, the phase behavior of reservoir fluid can be estimated. The calculation results of fluid recombination, constant composition expansion, and constant volume depletion are matched very well with the experimental data. In swelling test of the reservoir fluid with lean gas, the accuracy of dew point pressure forecast depends on the component characterization. (author). 28 figs., 10 tabs.

  16. Constructing development and integrated coastal zone management in the conditions of the landslide slopes of Cheboksary water reservoir (Volga River) (United States)

    Nikonorova, I. V.


    Uncontrolled construction and insufficient accounting of engineering-geological and hydro-geological conditions of the coastal zone, intensified technogenic impact on sloping surfaces and active urbanization led to the emergence of serious problems and emergency situations on the coasts of many Volga reservoirs, including the Cheboksary reservoir, within Cheboksary urban district and adjacent territories of Chuvashia. This article is devoted to substantiation of the possibility of rational construction development of landslide slopes of the Cheboksary water reservoir.

  17. Analysis of pressure falloff tests of non-Newtonian power-law fluids in naturally-fractured bounded reservoirs

    Directory of Open Access Journals (Sweden)

    Omotayo Omosebi


    This article presents an analytic technique for interpreting pressure falloff tests of non-Newtonian Power-law fluids in wells that are located near boundaries in dual-porosity reservoirs. First, dimensionless pressure solutions are obtained and Stehfest inversion algorithm is used to develop new type curves. Subsequently, long-time analytic solutions are presented and interpretation procedure is proposed using direct synthesis. Two examples, including real field data from a heavy oil reservoir in Colombian eastern plains basin, are used to validate and demonstrate application of this technique. Results agree with conventional type-curve matching procedure. The approach proposed in this study avoids the use of type curves, which is prone to human errors. It provides a better alternative for direct estimation of formation and flow properties from falloff data.

  18. Estimation of particle size and initial growth kinetics of asphaltene particles using spectral analysis of reservoir fluid

    Energy Technology Data Exchange (ETDEWEB)

    Jamaluddin, A.; Joshi, N.; Mullins, O. [Schlumberger Canada Ltd., Calgary, AB (Canada); Creek, J. [Chevron Canada Resources, Calgary, AB (Canada); McFadden, J. [BHD Petroleum, Calgary, AB (Canada)


    One of the challenges facing heavy oil reservoir management and production operations is to minimize the impact of asphaltene deposition, the most aromatic and heaviest fraction of a crude oil. A study was conducted in which both fixed wavelength near infrared (NIR) and variable wavelength spectral analysis methods were applied to two individual crude oil samples obtained from one reservoir. The objective was to assess asphaltene properties. The samples were collected using 2 different sampling chambers and techniques. Both were homogenized and treated identically. The macroscopic properties of both samples were similar, but the microscopic asphaltene particle properties varied significantly in the asphaltene particle size, as did the formation kinetics between the 2 samples. The paper also presented estimates of asphaltene particle size and initial growth kinetics from the acquired data. The properties were used to determine the basic differences between fluid samples collected using different techniques. 14 refs., 1 tab., 9 figs.

  19. Balanced Flow Metering and Conditioning: Technology for Fluid Systems (United States)

    Kelley, Anthony R.


    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  20. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir. (United States)

    Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš


    Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can

  1. Aseismic Motions Drive a Sparse Seismicity During Fluid Injections Into a Fractured Zone in a Carbonate Reservoir (United States)

    Duboeuf, Laure; De Barros, Louis; Cappa, Frédéric; Guglielmi, Yves; Deschamps, Anne; Seguy, Simon


    An increase in fluid pressure in faults can trigger seismicity and large aseismic motions. Understanding how fluid and faults interact is an essential goal for seismic hazard and reservoir monitoring, but this key relation remains unclear. We developed an in situ experiment of fluid injections at a 10 meter scale. Water was injected at high pressure in different geological structures inside a fault damaged zone, in limestone at 280 m depth in the Low Noise Underground Laboratory (France). Induced seismicity, as well as strains, pressure, and flow rate, was continuously monitored during the injections. Although nonreversible deformations related to fracture reactivations were observed for all injections, only a few tests generated seismicity. Events are characterized by a 0.5-to-4 kHz content and a small magnitude (approximately -3.5). They are located within 1.5 m accuracy between 1 and 12 m from the injections. Comparing strain measurements and seismicity shows that more than 96% of the deformation is aseismic. The seismic moment is also small compared to the one expected from the injected volume. Moreover, a dual seismic behavior is observed as (1) the spatiotemporal distribution of some cluster of events is clearly independent from the fluid diffusion (2) while a diffusion-type pattern can be observed for some others clusters. The seismicity might therefore appear as an indirect effect to the fluid pressure, driven by aseismic motion and related stress perturbation transferred through failure.

  2. A non-reflecting boundary condition for the finite element modeling of infinite reservoir with layered sediment (United States)

    Gogoi, Indrani; Maity, Damodar


    The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.

  3. Study on Filtration and Damage Characteristics of Modified Dry CO2 Fracturing Fluid in Shale Gas Reservoir (United States)

    Xu, Guixi; Wang, Shuzhong; Luo, Xiangrong; Jing, Zefeng


    The filtration and damage characteristics of modified dry CO2 fracturing fluid in the shale is studied in this paper. The results show that the modified dry CO2 fracturing fluid has good leak-off characteristics. Compared with liquid CO2, supercritical CO2 has a better permeation and diffusion capacity in the porous medium. The damage rate of the modified dry CO2 fracturing fluid to shale core is only between 0.63%~3.84% with obvious little damage. Under liquid conditions, the increase of temperature makes the fracturing fluid more harmful to shale formation.

  4. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)


    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  5. Non-Markovian decay and lasing condition in an optical microcavity coupled to a structured reservoir

    International Nuclear Information System (INIS)

    Longhi, Stefano


    The decay dynamics of the classical electromagnetic field in a leaky optical resonator supporting a single mode coupled to a structured continuum of modes (reservoir) is theoretically investigated, and the issue of threshold condition for lasing in presence of an inverted medium is comprehensively addressed. Specific analytical results are given for a single-mode microcavity resonantly coupled to a coupled resonator optical waveguide, which supports a band of continuous modes acting as decay channels. For weak coupling, the usual exponential Weisskopf-Wigner (Markovian) decay of the field in the bare resonator is found, and the threshold for lasing increases linearly with the coupling strength. As the coupling between the microcavity and the structured reservoir increases, the field decay in the passive cavity shows nonexponential features, and correspondingly the threshold for lasing ceases to increase, reaching a maximum and then starting to decrease as the coupling strength is further increased. A singular behavior for the 'laser phase transition', which is a clear signature of strong non-Markovian dynamics, is found at critical values of the coupling between the microcavity and the reservoir

  6. Anisotropic fluid spheres of embedding class one using Karmarkar condition

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Maharaj, S.D. [School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, Private Bag X54001, Durban (South Africa)


    We obtain a new anisotropic solution for spherically symmetric spacetimes by analyzing the Karmarkar embedding condition. For this purpose we construct a suitable form of one of the gravitational potentials to obtain a closed form solution. This form of the remaining gravitational potential allows us to solve the embedding equation and integrate the field equations. The resulting new anisotropic solution is well behaved, which can be utilized to construct realistic static fluid spheres. Also we estimated the masses and radii of fluid spheres for LMC X-4, EXO 1785-248, PSR J1903+327 and 4U 1820-30 by using observational data set values. The masses and radii obtained show that our anisotropic solution can represent fluid spheres to a very good degree of accuracy. The physical validity of the solution depends on the parameter values of a, b and c. The solution is well behaved for the wide range of parameters values 0.00393 ≤ a ≤ 0.0055, 0.0002 ≤ b ≤ 0.0025 and 0.0107 ≤ c ≤ 0.0155. The range of corresponding physical parameters for the different compact stars are 0.3266 ≤ v{sub r0} ≤ 0.3708, 0.1583 ≤ v{sub t0} ≤ 0.2558, 0.3256 ≤ z{sub s} ≤ 0.4450 and 4.3587 ≤ Γ{sub 0} ≤ 5.6462. (orig.)

  7. Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Friley, J.R.


    Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

  8. Methods to Enrich Exosomes from Conditioned Media and Biological Fluids. (United States)

    Sharma, Shayna; Scholz-Romero, Katherin; Rice, Gregory E; Salomon, Carlos


    Exosomes are nano-vesicles which can transport a range of molecules including but not limited to proteins and miRNA. This ability of exosomes renders them useful in cellular communication often resulting in biological changes. They have several functions in facilitating normal biological processes such as immune responses and an involvement in pregnancy. However, they have also been linked to pathological conditions including cancer and pregnancy complications such as preeclampsia. An understanding for the role of exosomes in preeclampsia is based on the ability to purify and characterize exosomes. There have been several techniques proposed for the enrichment of exosomes such as ultracentrifugation, density gradient separation, and ultrafiltration although there is no widely accepted optimized technique. Here we describe a workflow for isolating exosomes from cell-conditioned media and biological fluids using a combination of centrifugation, buoyant density, and ultrafiltration approaches.

  9. Challenges of reservoir properties and production history matching in a CHOPS reservoir study

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Mahbub [Department of Geoscience, University of Calgary (Canada)


    In order to meet increasing world energy demand, wells have to be drilled within very thin reservoir beds. This paper, we present one of the solutions for optimizing the reservoir characterization. Reservoir characterization is the process between the discovery of a property and the reservoir management phase. Principal data for reservoir modeling are: 4D Seismic interpretation, wireline log interpretation, core analysis, and petrophysical analysis. Reservoir conditions, perforation and completion technology are the key issues to the production rate of cold production. Reservoir modeling intends to minimize the risk factor, maximize production, and help determine the location for infill drillings. Cold heavy oil production with sand (CHOPS) is a method for enhancing primary production from heavy oil reservoirs. Gravitational forces, natural fluid pressure gradients and foamy oil flow phenomena are the major driving forces of the CHOPS mechanism. Finally, Reservoir characterization allows better understanding of permeability and porosity prediction.

  10. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael


    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  11. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California. (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael


    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  12. Organic matter cycling in a neotropical reservoir: effects of temperature and experimental conditions

    Directory of Open Access Journals (Sweden)

    Flávia Bottino


    Full Text Available AIM:This study reports a comparison between decomposition kinetics of detritus derived from two macrophyte species (Polygonum lapathifolium L.: Polygonaceae; Eichhornia azurea (Sw. Kunth.: Pontederiaceae growing in a neotropical reservoir (Brazil, under laboratory and field conditions, in order to assess hypotheses on the main differences in factors affecting organic matter cycling, including the effect of temperature. METHODS: Plant and water samples were collected from the reservoir in August 2009. In field incubation mass loss was assessed using a litter bag technique and in the laboratory the decay was followed using a decomposition chamber maintained under controlled conditions (i.e. in the dark, at 15 ºC and 25 ºC. A kinetic model was adopted to explain and compare the organic matter decay, ANOVA (Repeated Measures testing was used to describe the differences between the treatments and a linear correlation was used to compare in situ and in vitro experiments. RESULTS: The mass decay was faster in natural conditions with rapid release of the labile-soluble portion. The simulated values of mineralization rates of dissolved organic matter and refractory organic matter were rapid in high temperatures (25 ºC. The high Q10 results (mainly for E. azurea, and experimental conditions, and outcomes of ANOVA testing indicate the temperature variation (10 ºC influence the rates of mass decay. CONCLUSIONS: The results suggested rapid organic matter cycling in warm months (from October to December supporting the microbial loop. Although the particulate organic matter losses are high in field conditions the results are of the same magnitude in both conditions suggesting an equivalence of the mass decay kinetic.

  13. Large scale in-situ BOrehole and Geofluid Simulator (i.BOGS) for the development and testing of borehole technologies at reservoir conditions (United States)

    Duda, Mandy; Bracke, Rolf; Stöckhert, Ferdinand; Wittig, Volker


    A fundamental problem of technological applications related to the exploration and provision of geothermal energy is the inaccessibility of subsurface processes. As a result, actual reservoir properties can only be determined using (a) indirect measurement techniques such as seismic surveys, machine feedback and geophysical borehole logging, (b) laboratory experiments capable of simulating in-situ properties, but failing to preserve temporal and spatial scales, or vice versa, and (c) numerical simulations. Moreover, technological applications related to the drilling process, the completion and cementation of a wellbore or the stimulation and exploitation of the reservoir are exposed to high pressure and temperature conditions as well as corrosive environments resulting from both, rock formation and geofluid characteristics. To address fundamental and applied questions in the context of geothermal energy provision and subsurface exploration in general one of Europe's largest geoscientific laboratory infrastructures is introduced. The in-situ Borehole and Geofluid Simulator (i.BOGS) allows to simulate quasi scale-preserving processes at reservoir conditions up to depths of 5000 m and represents a large scale pressure vessel for iso-/hydrostatic and pore pressures up to 125 MPa and temperatures from -10°C to 180°C. The autoclave can either be filled with large rock core samples (25 cm in diameter, up to 3 m length) or with fluids and technical borehole devices (e.g. pumps, sensors). The pressure vessel is equipped with an ultrasound system for active transmission and passive recording of acoustic emissions, and can be complemented by additional sensors. The i.BOGS forms the basic module for the Match.BOGS finally consisting of three modules, i.e. (A) the i.BOGS, (B) the Drill.BOGS, a drilling module to be attached to the i.BOGS capable of applying realistic torques and contact forces to a drilling device that enters the i.BOGS, and (C) the Fluid.BOGS, a geofluid

  14. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs (United States)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.


    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation

  15. The Controls of Pore-Throat Structure on Fluid Performance in Tight Clastic Rock Reservoir: A Case from the Upper Triassic of Chang 7 Member, Ordos Basin, China

    Directory of Open Access Journals (Sweden)

    Yunlong Zhang


    Full Text Available The characteristics of porosity and permeability in tight clastic rock reservoir have significant difference from those in conventional reservoir. The increased exploitation of tight gas and oil requests further understanding of fluid performance in the nanoscale pore-throat network of the tight reservoir. Typical tight sandstone and siltstone samples from Ordos Basin were investigated, and rate-controlled mercury injection capillary pressure (RMICP and nuclear magnetic resonance (NMR were employed in this paper, combined with helium porosity and air permeability data, to analyze the impact of pore-throat structure on the storage and seepage capacity of these tight oil reservoirs, revealing the control factors of economic petroleum production. The researches indicate that, in the tight clastic rock reservoir, largest throat is the key control on the permeability and potentially dominates the movable water saturation in the reservoir. The storage capacity of the reservoir consists of effective throat and pore space. Although it has a relatively steady and significant proportion that resulted from the throats, its variation is still dominated by the effective pores. A combination parameter (ε that was established to be as an integrated characteristic of pore-throat structure shows effectively prediction of physical capability for hydrocarbon resource of the tight clastic rock reservoir.

  16. Relationships among cyanobacteria, zooplankton and fish in sub-bloom conditions in the Sulejow Reservoir

    Directory of Open Access Journals (Sweden)

    Zbigniew Kaczkowski


    Full Text Available The occurrence of cyanobacteria is particularly characteristic of shallow eutrophic waters, and they often form massive ‘blooms’ that can affect aquatic invertebrates and fish. However, even a low abundance of cyanobacteria can be hazardous to aquatic organisms, due to the production of toxic metabolites. The aim of this study was to investigate the relationship between cyanobacteria and their toxicity (biological activity towards zooplankton and fish communities, when only low concentrations of cyanobacterial chlorophyll a (less than 20 μg L-1 are detected, i.e. in sub-bloom conditions. Measurements were performed in Sulejow Reservoir (Central Poland, a shallow, lowland, eutrophic reservoir, in which cyanobacterial blooms occur regularly. Fish were assessed using echo-sounding (distribution and by gillnetting (species composition. Simultaneously, zooplankton, cyanobacteria and physico-chemical characteristics were studied at 14 stations situated along hydroacoustic transects. Parameters that characterized the cyanobacteria (cyanobacterial chlorophyll a concentration, the number of 16S rRNA and the mcyA gene copies and microcystin (MC concentration were consistently correlated (based on a principal component analysis, and the highest values were found in the downstream region of the study area. This ‘cyano-complex’ was also positively correlated with oxygen concentration, pH and phosphate levels, but was negatively correlated with temperature and the concentrations of nitrates and nitrites. In Sulejow Reservoir in 2013 the biomass of large zooplankton filter feeders decreased along with increasing MC concentration and fish densities, while small filter feeders did not present such relationships with regards to fish densities. Fish abundance tended to decrease at stations with a lower abundance of cyanobacteria and with growing toxic genotype copies and MC concentration.

  17. Magma reservoir conditions beneath Tsurumi volcano, SW Japan: Evidence from amphibole thermobarometry and seismicity (United States)

    Nagasaki, Shiho; Ishibashi, Hidemi; Suwa, Yukiko; Yasuda, Atsushi; Hokanishi, Natsumi; Ohkura, Takahiro; Takemura, Keiji


    Calcic amphibole phenocrysts in the Tsurumidake summit (TS) lava, which was produced during the most recent eruption at Tsurumi Volcano (SW Japan) at around 7.5-10.5 ka, have been analyzed to determine the pre-eruptive conditions, such as temperature (T), pressure (P), oxygen fugacity (fO2), SiO2 content (SiO2melt), and FeO*/MgO ratio (FeO*/MgOmelt), of coexisting silicate melts in the magma reservoir beneath the volcano. Although most of the amphibole phenocrysts have been completely decomposed to a fine-grained opaque symplectite, 6% of the grains remain intact. The degree of amphibole breakdown (DAB), defined as the ratio of the area of symplectite to the area of symplectite plus relict amphibole in each phenocryst, varies from 20% to 100%. Compositional zoning was not observed in the amphibole grains, however, two distinct groups of amphibole phenocrysts have been identified based on their chemical compositions: group-I amphiboles, which are relatively Si-poor, and [6]Al-rich, and have a relatively high Mg# [100Mg/(Mg + Fe2 +)]; and group-II amphiboles, which are Si-rich, and [6]Al-poor, and have a relatively low Mg#. Empirical equations for geothermobarometry, oxygen barometry and chemometry that exclusively rely on the amphibole composition were applied to estimate the T-P-fO2-SiO2melt-FeO*/MgOmelt conditions of the silicate melts with which the amphibole crystals equilibrated. The results show that group-I and group-II amphiboles equilibrated with andesitic melts (group-I melts) and dacitic-rhyolitic melts (group-II melts), respectively. The T-P-fO2 conditions of group-I melts were estimated as 374-483 MPa ( 13.9-17.9 km depth), 950 °C, and NNO + 1.3, respectively, and those of group-II melts were 93-242 MPa ( 3.4-9.0 km depth), 824-913 °C, and NNO + 0.6-1.7, respectively. The estimated T-P-fO2-SiO2melt-FeO*/MgOmelt conditions were almost constant for group-I melts, whereas the T, ΔNNO, and FeO*/MgOmelt values of group-II melts decreased with increasing

  18. Occurrence and distribution characteristics of fluids in tight sandstone reservoirs in the Shilijiahan zone, northern Ordos Basin

    Directory of Open Access Journals (Sweden)

    Gongqiang Li


    Full Text Available High-yield gas layers, low-yield gas layers and (gas bearing water layers of Upper Paleozoic coexist in the Shilijiahan zone in the northern Ordos Basin, but gas–water distribution characteristics, laws and influence factors are not understood well, so the exploration and development of natural gas in this zone are restricted. In this paper, statistical analysis was carried out on the data of Upper Paleozoic formation water in this zone, e.g. salinity, pH value and ion concentration. It is shown that the formation water in this zone is of CaCl2 type. Then, the origin, types, controlling factors and spatial distribution characteristics of formation water were figured out by using core, mud logging, well logging and testing data, combined with the classification and evaluation results of geochemical characteristics of formation water. Besides, the logging identification chart of gas, water and dry layers in this zone was established. Finally, the occurrence and distribution laws of reservoir fluids were defined. The formation water of CaCl2 type indicates a good sealing capacity in this zone, which is favorable for natural gas accumulation. It is indicated that the reservoir fluids in this zone exist in the state of free water, capillary water and irreducible water. Free water is mainly distributed in the west of this zone, irreducible water in the east, and capillary water in the whole zone. The logging identification chart has been applied in many wells in this zone like Well Jin 86. The identification result is basically accordant with the gas testing result. It is verified that gas and water layers can be identified effectively based on this logging identification chart.

  19. The multiphase flow system used in exploiting depleted reservoirs: water-based Micro-bubble drilling fluid (United States)

    Li-hui, Zheng; Xiao-qing, He; Li-xia, Fu; Xiang-chun, Wang


    Water-based micro-bubble drilling fluid, which is used to exploit depleted reservoirs, is a complicated multiphase flow system that is composed of gas, water, oil, polymer, surfactants and solids. The gas phase is separate from bulk water by two layers and three membranes. They are "surface tension reducing membrane", "high viscosity layer", "high viscosity fixing membrane", "compatibility enhancing membrane" and "concentration transition layer of liner high polymer (LHP) & surfactants" from every gas phase centre to the bulk water. "Surface tension reducing membrane", "high viscosity layer" and "high viscosity fixing membrane" bond closely to pack air forming "air-bag", "compatibility enhancing membrane" and "concentration transition layer of LHP & surfactants" absorb outside "air-bag" to form "incompact zone". From another point of view, "air-bag" and "incompact zone" compose micro-bubble. Dynamic changes of "incompact zone" enable micro-bubble to exist lonely or aggregate together, and lead the whole fluid, which can wet both hydrophilic and hydrophobic surface, to possess very high viscosity at an extremely low shear rate but to possess good fluidity at a higher shear rate. When the water-based micro-bubble drilling fluid encounters leakage zones, it will automatically regulate the sizes and shapes of the bubbles according to the slot width of fracture, the height of cavern as well as the aperture of openings, or seal them by making use of high viscosity of the system at a very low shear rate. Measurements of the rheological parameters indicate that water-based micro-bubble drilling fluid has very high plastic viscosity, yield point, initial gel, final gel and high ratio of yield point and plastic viscosity. All of these properties make the multiphase flow system meet the requirements of petroleum drilling industry. Research on interface between gas and bulk water of this multiphase flow system can provide us with information of synthesizing effective agents to

  20. Method to form a barrier in a reservoir with a magnetorheological fluid

    NARCIS (Netherlands)

    Zitha, P.L.J.


    The invention relates to a method of winning oil from a source via a bored well, wherein a magnetorheological fluid is introduced into the source via the bored well to re duce the water content of the oil won. Oil drilling is resumed in the presence of a magnetic field, thereby increasing the oil

  1. Sustainability of small reservoirs and large scale water availability under current conditions and climate change

    NARCIS (Netherlands)

    Krol, Martinus S.; de Vries, Marjella J.; van Oel, P.R.; Carlos de Araújo, José


    Semi-arid river basins often rely on reservoirs for water supply. Small reservoirs may impact on large-scale water availability both by enhancing availability in a distributed sense and by subtracting water for large downstream user communities, e.g. served by large reservoirs. Both of these impacts

  2. Ecological aspects of the hydro power industry and possible means to improve ecological conditions of water reservoirs

    International Nuclear Information System (INIS)

    Chaika, A.


    In this report the analyse a hydro power generating structure as a multitask water management scheme and its environmental impact of water users was viewed. It is possible to improve sanitary, biological and hydraulic condition of reservoirs and limit water overgrowing by implementing the following set of measures: 1) limitation of poorly purified and non-organic discharges in these reservoirs by implementing purification structures; 2) construction of accumulation reservoirs for sewage water planted with plants-biological accumulators with consequent periodic removal of these plants; use of purificated water for irrigation; 3) limitation of biogens coming with agricultural drainage water; 4) annual removal of water plants in shallow places of reservoirs; 5) removal of silt (cleaning of the bottom) where technically possible; 6) aeration of reservoirs or their parts, especially shallow areas, including recreation areas; 7) controlled development of flora and fauna of reservoirs and neighbouring territories; it has been discovered that plant-eating fish has useful impact as biological purificatiors; 8) processing of seston (weighted plankton and remains of organisms) and water plants to get different producers (forage additions for animals, albumin-vitamin additions, chlorophyll and carotene paste, pharmaceutical materials and forage yeast). Development of silt removal technology is a very sharp problem especially for particular areas of Kiev reservoir contaminated with radioactive waste

  3. Microfluidic Investigation of Oil Mobilization in Shale Fracture Networks at Reservoir Conditions (United States)

    Porter, M. L.; Jimenez-Martinez, J.; Carey, J. W.; Viswanathan, H. S.


    Investigations of pore-scale fluid flow and transport phenomena using engineered micromodels has steadily increased in recent years. In these investigations fluid flow is restricted to two-dimensions allowing for real time visualization and quantification of complex flow and reactive transport behavior, which is difficult to obtain in other experimental systems. One drawback to these studies is the use of engineered materials that do not faithfully represent the rock properties (e.g., porosity, wettability, roughness, etc.) encountered in subsurface formations. In this work, we describe a unique high pressure (up to 1500 psi) and temperature (up to 80 °C) microfluidics experimental system in which we investigate fluid flow and transport in geo-material (e.g., shale, Portland cement, etc.) micromodels. The use of geo-material micromodels allows us to better represent fluid-rock interactions including wettability, chemical reactivity, and nano-scale porosity at conditions representative of natural subsurface environments. Here, we present experimental results in fracture systems with applications to hydrocarbon mobility in hydraulically fractured shale. Complex fracture network patterns are derived from 3D x-ray tomography images of actual fractures created in shale rock cores. We use both shale and glass micromodels, allowing for a detailed comparison between flow phenomena in the different materials. We discuss results from two-phase huff-and-puff experiments involving N2 and n-Decane, as well as three-phase displacement experiments involving supercritical CO2, brine, and n-Decane.

  4. The influence of tip clearance on performance and internal flow condition of fluid food pump using low viscous fluid

    International Nuclear Information System (INIS)

    Kubo, S; Ishioka, T; Fukutomi, J; Shigemitsu, T


    Fluid machines for fluid food have been used in wide variety of fields i.e. transportation, the filling, and for the improvement of quality of fluid foods. However, flow conditions of it are quite complicated because fluid foods are different from water. Therefore, design methods based on internal flow conditions have not been conducted. In this research, turbo-pumps having a small number of blades were used to decrease shear loss and keep wide flow passage. The influence of the tip clearance was investigated by the numerical analysis using the model with and without the tip clearance. In this paper, the influence of tip clearance on performances and internal flow conditions of turbo-pump using low viscous fluid were clarified by experimental and numerical analysis results. In addition, design methods based on the internal flow were considered. Further, the influences of viscosity on the performance characteristic and internal flow were investigated.


    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow


    Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.

  6. Final Report to DOE EERE – Geothermal Technologies Program Project Title: Monitoring and modeling of fluid flow in a developing enhanced geothermal system (EGS) reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, Michael [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The primary objective of this project was to improve our ability to predict performance of an Enhanced Geothermal System (EGS) reservoir over time by relating, in a quantitative manner, microseismic imaging with fluid and temperature changes within the reservoir. Historically, microseismic data have been used qualitatively to place bounds on the growth of EGS reservoirs created by large hydraulic fracturing experiments. Previous investigators used an experimentally based fracture opening relationship (fracture aperture as a function of pressure), the spatial extent of microseismic events, and some assumptions about fracture frequency to determine the size of an EGS reservoir created during large pumping tests. We addressed a number of issues (1) locating microearthquakes that occur during hydraulic fracturing, (2) obtaining more information about a reservoir than the microearthquake locations from the microearthquake data, for example, information about the seismic velocity structure of the reservoir or the scattering of seismic waves within the reservoir, (3) developing an improved methodology for estimating properties of fractures that intersect wellbores in a reservoir, and (4) developing a conceptual model for explaining the downward growth of observed seismicity that accompanies some hydraulic injections into geothermal reservoirs. We used two primary microseismic datasets for our work. The work was motivated by a dataset from the Salak Geothermal Field in Indonesia where seismicity accompanying a hydraulic injection was observed to migrate downward. We also used data from the Soultz EGS site in France. We also used Vertical Seismic Profiling data from a well in the United States. The work conducted is of benefit for characterizing reservoirs that are created by hydraulic fracturing for both EGS and for petroleum recovery.

  7. Method to form a barrier in a reservoir with a magnetorheological fluid


    Zitha, P.L.J.


    The invention relates to a method of winning oil from a source via a bored well, wherein a magnetorheological fluid is introduced into the source via the bored well to re duce the water content of the oil won. Oil drilling is resumed in the presence of a magnetic field, thereby increasing the oil yield and/or decreasing the water content of the drilled oil.

  8. The competition between H2O and CO2 adhesion at reservoir conditions

    DEFF Research Database (Denmark)

    Sølling, Theis Ivan; Budi, Akin; Mogensen, K.


    Density functional theory was applied (B3LYP) to answer whether conditions exist where CO2 adhesion to three different lithologies becomes stronger than H2O adhesion. The answer is that it does not seem to be the case. This is taken to indicate that the reservoirs that we have represented by simple...... models are prone to CO2 storage. Moreover, we have obtained an overview of the effect of including entropy contributions and zero point vibrational energies in the calculation of the adhesion energies. The consequence of applying simple dispersion and solvent models are also addressed. The study is based...... around very simplified model systems of calcite, quartz and clays in order address the basic effects. Rather than attempting to obtain quantitative agreement we are observing the qualitative trends. When entropy, ZPE and a continuum model is included the result is smaller binding energies. However...

  9. A Combined Thermodynamic and Kinetic Model for Barite Prediction at Oil Reservoir Conditions

    DEFF Research Database (Denmark)

    Zhen Wu, Bi Yun

    dependence of Pitzer parameters for NaCl, Na2SO4 and BaCl2 were derived from published osmotic coefficient data (PhD Study 2). Furthermore, barite solubility was determined experimentally at 90 °C and pressures of 150 and 250 bar. Comparison of barite solubilities calculated with the Pitzer model...... of this research was to develop a model, based on thermodynamics and kinetics, for predicting barite precipitation rates in saline waters at the pressures and temperatures of oil bearing reservoirs, using the geochemical modelling code PHREEQC. This task is complicated by the conditions where traditional methods...... to 90 C at 1 bar of pressure. Resulting thermodynamic and kinetic parameters were combined and coupled with PHREEQC to predict precipitation scaling rates in three oil production wells, where barite has been observed. Average linear growth rates of 3, 2.5 and 2 mm of barite per year were estimated...

  10. The No-Slip Boundary Condition in Fluid Mechanics

    Indian Academy of Sciences (India)

    POiseuille flow, flow resistance. Before considering the case of fluids, i.e. gases and liquids,. ______ . ..... the cylinders. But it is very likely that he would have then guessed correctly that the drag would increase with the length. This historical note is added to emphasize how difficult it was to understand the motion of a fluid in ...

  11. The No-Slip Boundary Condition in Fluid Mechanics

    Indian Academy of Sciences (India)

    some basic ideas connected to this problem so that the historical notes added afterwards will be appreciated .... Stress in a Fluid. When the fluid is at rest. only the normal stresses are exerted, the tangential stresses being zero. The normal stress at a point does not depend on the direction and it is the hy- drostatic pressure.

  12. DHI evaluation by combining rock physics simulation and statistical techniques for fluid identification of Cambrian-to-Cretaceous clastic reservoirs in Pakistan (United States)

    Ahmed, Nisar; Khalid, Perveiz; Shafi, Hafiz Muhammad Bilal; Connolly, Patrick


    The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli ( K sat and K sat- μ), lambda-mu-rho method ( λρ and μρ), P-to-S-wave velocity ratio ( V P/ V S), and Poisson's ratio ( σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K sat- μ, EEI, V P/ V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.

  13. Enhanced Wellbore Stabilization and Reservoir Productivity with Aphron Drilling Fluid Technology

    Energy Technology Data Exchange (ETDEWEB)

    Fred Growcock


    During this second Quarter of the Project, the first four tasks of Phase I--all focusing on the behavior of aphrons--were continued: (a) Aphron Visualization--evaluate and utilize various methods of monitoring and measuring aphron size distribution at elevated pressure; (b) Fluid Density--investigate the effects of pressure, temperature and chemical composition on the survivability of aphrons; (c) Aphron Air Diffusivity--determine the rate of loss of air from aphrons during pressurization; and (d) Pressure Transmissibility--determine whether aphron bridges created in fractures and pore throats reduce fracture propagation. The project team expanded the laboratory facilities and purchased a high-pressure system to measure bubble size distribution, a dissolved oxygen (DO) probe and computers for data acquisition. Although MASI Technologies LLC is not explicitly ISO-certified, all procedures are being documented in a manner commensurate with ISO 9001 certification, including equipment inventory and calibration, data gathering and reporting, chemical inventory and supplier data base, waste management procedures and emergency response plan. Several opportunities presented themselves to share the latest aphron drilling fluid technology with potential clients, including presentation of papers and working exhibit booths at the IADC/SPE Drilling Conference and the SPE Coiled Tubing Conference & Exhibition. In addition, a brief trip to the Formation Damage Symposium resulted in contacts for possible collaboration with ActiSystems, the University of Alberta and TUDRP/ACTS at the University of Tulsa. Preliminary results indicate that the Aphron Visualization and Pressure Transmissibility tasks should be completed on time. Although the Aphron Air Diffusivity task has been impeded by the lack of a suitable DO probe, it is hoped to be completed on time, too. The Fluid Density task, on the other hand, has had significant delays caused by faulty equipment and will likely require an

  14. Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Pennington; Mohamed Ibrahim; Roger Turpening; Sean Trisch; Josh Richardson; Carol Asiala; Walid Mabrouk


    Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal to the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through the perforation of the receiver well. The seismic images obtained, and

  15. Geochemistry of formation waters from the Wolfcamp and “Cline” shales: Insights into brine origin, reservoir connectivity, and fluid flow in the Permian Basin, USA (United States)

    Engle, Mark A.; Reyes, Francisco R.; Varonka, Matthew S.; Orem, William H.; Lin, Ma; Ianno, Adam J.; Westphal, Tiffani M.; Xu, Pei; Carroll, Kenneth C.


    Despite being one of the most important oil producing provinces in the United States, information on basinal hydrogeology and fluid flow in the Permian Basin of Texas and New Mexico is lacking. The source and geochemistry of brines from the basin were investigated (Ordovician- to Guadalupian-age reservoirs) by combining previously published data from conventional reservoirs with geochemical results for 39 new produced water samples, with a focus on those from shales. Salinity of the Ca–Cl-type brines in the basin generally increases with depth reaching a maximum in Devonian (median = 154 g/L) reservoirs, followed by decreases in salinity in the Silurian (median = 77 g/L) and Ordovician (median = 70 g/L) reservoirs. Isotopic data for B, O, H, and Sr and ion chemistry indicate three major types of water. Lower salinity fluids (Saline (>100 g/L), isotopically heavy (O and H) water in Leonardian [Permian] to Pennsylvanian reservoirs (2–3.2 km depth) is evaporated, Late Permian seawater. Water from the Permian Wolfcamp and Pennsylvanian “Cline” shales, which are isotopically similar but lower in salinity and enriched in alkalis, appear to have developed their composition due to post-illitization diffusion into the shales. Samples from the “Cline” shale are further enriched with NH4, Br, I and isotopically light B, sourced from the breakdown of marine kerogen in the unit. Lower salinity waters (3 km depth), which plot near the modern local meteoric water line, are distinct from the water in overlying reservoirs. We propose that these deep meteoric waters are part of a newly identified hydrogeologic unit: the Deep Basin Meteoric Aquifer System. Chemical, isotopic, and pressure data suggest that despite over-pressuring in the Wolfcamp shale, there is little potential for vertical fluid migration to the surface environment via natural conduits.

  16. Estimation of different coal compressibilities of coalbed methane reservoirs under replicated in situ condition (United States)

    Liu, Shimin

    Studies completed recently have shown that desorption of methane results in a change in the matrix volume of coal thus altering the permeability of, and production rates from, coalbed methane (CBM) reservoirs. An accurate estimation of different coal compressibilities is, therefore, critical in CBM operations in order to model and project gas production rates. Furthermore, a comprehensive knowledge of the dynamic permeability helps in understanding the unique feature of CBM production, an initial negative gas decline rate. In this study, different coal compressibility models were developed based on the assumption that the deformation of a depleting coalbed is limited to the vertical direction, that is, the reservoir is under uniaxial strain conditions. Simultaneously, experimental work was carried out replicating these conditions. The results showed that the matrix volumetric strain typically follows the Langmuir-type relationship. The agreement between the experimental results and those obtained using the proposed model was good. The proposed volumetric strain model successfully isolated the sorption-induced strain from the strain resulting from mechanical compression. It, therefore, provides a technique to integrate the sorption-induced strain alone into different analytical permeability models. The permeability variation of coal with a decrease in pore pressure under replicated in situ stress/strain conditions was measured. The results showed that decreasing pore pressure resulted in a significant decrease in horizontal stress and increased permeability. The permeability increased non-linearly with decreasing pore pressure, with a small increase in the high pressure range, increasing progressively as the pressure dropped below a certain value. The experimental results were also used to test the proposed coupled sorption-induced strain model and several analytical permeability models. One of the commonly used models overestimated the permeability increase between

  17. Analysis of nitrogen injection as alternative fluid to steam in heavy oil reservoir; Analise da injecao de nitrogenio como fluido alternativo ao vapor em reservatorio de oleo pesado

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marcos Allyson Felipe; Galvao, Edney Rafael Viana Pinheiro; Barillas, Jennys Lourdes; Mata, Wilson da; Dutra Junior, Tarcilio Viana [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)


    Many of hydrocarbon reserves existing in the world are formed by heavy oils (deg API between 10 and 20). Moreover, several heavy oil fields are mature and, thus, offer great challenges for oil industry. Among the thermal methods used to recover these resources, steam flooding has been the main economically viable alternative. Latent heat carried by steam heats the reservoir, reducing oil viscosity and facilitating the production. This method has many variations and has been studied both theoretically and experimentally (in pilot projects and in full field applications). In order to increase oil recovery and reduce steam injection costs, the injection of alternative fluid has been used on three main ways: alternately, co-injected with steam and after steam injection interruption. The main objective of these injection systems is to reduce the amount of heat supplied to the reservoir, using cheaper fluids and maintaining the same oil production levels. In this paper, the use of N{sub 2} as an alternative fluid to the steam was investigated. The analyzed parameters were oil recoveries and net cumulative oil productions. The reservoir simulation model corresponds to an oil reservoir of 100 m x 100 m x 28 m size, on a Cartesian coordinates system (x, y and z directions). It is a semi synthetic model with some reservoir data similar to those found in Potiguar Basin, Brazil. All studied cases were done using the simulator STARS from CMG (Computer Modelling Group, version 2009.10). It was found that N{sub 2} injection after steam injection interruption achieved the highest net cumulative oil compared to others injection system. Moreover, it was observed that N2 as alternative fluid to steam did not present increase on oil recovery. (author)

  18. In situ characterization of mixed-wettability in a reservoir rock at subsurface conditions. (United States)

    Alhammadi, Amer M; AlRatrout, Ahmed; Singh, Kamaljit; Bijeljic, Branko; Blunt, Martin J


    We used X-ray micro-tomography to image the in situ wettability, the distribution of contact angles, at the pore scale in calcite cores from a producing hydrocarbon reservoir at subsurface conditions. The contact angle was measured at hundreds of thousands of points for three samples after twenty pore volumes of brine flooding.We found a wide range of contact angles with values both above and below 90°. The hypothesized cause of wettability alteration by an adsorbed organic layer on surfaces contacted by crude oil after primary drainage was observed with Scanning Electron Microscopy (SEM) and identified using Energy Dispersive X-ray (EDX) analysis. However, not all oil-filled pores were altered towards oil-wet conditions, which suggests that water in surface roughness, or in adjacent micro-porosity, can protect the surface from a strong wettability alteration. The lowest oil recovery was observed for the most oil-wet sample, where the oil remained connected in thin sheet-like layers in the narrower regions of the pore space. The highest recovery was seen for the sample with an average contact angle close to 90°, with an intermediate recovery in a more water-wet system, where the oil was trapped in ganglia in the larger regions of the pore space.

  19. Alternate working fluids for solar air conditioning applications (United States)

    Evans, R. D.; Beck, J. K.


    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  20. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions: Quarterly Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO2 and H2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO2 has been suggested as an alternative fluid for subsurface fracturing such that CO2 enhanced gas recovery can also serve as a CO2 sequestration process. Limited data indicate that CO2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH4 in shale matrix. Therefore, fundamental understanding of CH4-CO2-H2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO2 sequestration. This project focuses on the systematic study of CH4-CO2-H2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.

  1. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    Shale is characterized by the predominant presence of nanometer-scale (1-100 nm) pores. The behavior of fluids in those pores directly controls shale gas storage and release in shale matrix and ultimately the wellbore production in unconventional reservoirs. Recently, it has been recognized that a fluid confined in nanopores can behave dramatically differently from the corresponding bulk phase due to nanopore confinement (Wang, 2014). CO2 and H2O, either preexisting or introduced, are two major components that coexist with shale gas (predominately CH4) during hydrofracturing and gas extraction. Note that liquid or supercritical CO2 has been suggested as an alternative fluid for subsurface fracturing such that CO2 enhanced gas recovery can also serve as a CO2 sequestration process. Limited data indicate that CO2 may preferentially adsorb in nanopores (particularly those in kerogen) and therefore displace CH4 in shale. Similarly, the presence of water moisture seems able to displace or trap CH4 in shale matrix. Therefore, fundamental understanding of CH4-CO2-H2O behavior and their interactions in shale nanopores is of great importance for gas production and the related CO2 sequestration. This project focuses on the systematic study of CH4-CO2-H2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.

  2. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan


    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon-water...... mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  3. Calculation of Interfacial Tensions of Hydrocarbon-water Systems under Reservoir Conditions

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan


    Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-brine systems. The new model was tested on a number of hydrocarbon-water/brine mixtures and two crude oil-water systems under reservoir conditions. The results show good agreement between the predicted and the experimental interfacial tension data.......Assuming that the number densities of each component in a mixture are linearly distributed across the interface between the coexisting vapor-liquid or liquid-liquid phases, we developed in this research work a linear-gradient-theory (LGT) model for computing the interfacial tension of hydrocarbon......-water mixtures on the basis of the SRK equation of state. With this model, it is unnecessary to solve the time-consuming density-profile equations of the gradient-theory model. In addition, a correlation was developed for representing the effect of electrolytes on the interfacial tension of hydrocarbon...

  4. Sedimentary tectonic evolution and reservoir-forming conditions of the Dazhou–Kaijiang paleo-uplift, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yueming Yang


    Full Text Available Great breakthrough recently achieved in the Sinian–Lower Paleozoic gas exploration in the Leshan–Longnüsi paleo-uplift, Sichuan Basin, has also made a common view reached, i.e., large-scale paleo-uplifts will be the most potential gas exploration target in the deep strata of this basin. Apart from the above-mentioned one, the other huge paleo-uplifts are all considered to be the ones formed in the post-Caledonian period, the impact of which, however, has rarely ever been discussed on the Sinian–Lower Paleozoic oil and gas reservoir formation. In view of this, based on outcrops, drilling and geophysical data, we analyzed the Sinian–Lower Paleozoic tectonic setting and sedimentary background in the East Sichuan Basin, studied the distribution rules of reservoirs and source rocks under the control of paleo-uplifts, and finally discussed, on the basis of structural evolution analysis, the conditions for the formation of Sinian–Lower Paleozoic gas reservoirs in this study area. The following findings were achieved. (1 The Dazhou–Kaijiang inherited uplift in NE Sichuan Basin which was developed before the Middle Cambrian controlled a large area of Sinian and Cambrian beach-facies development. (2 Beach-facies reservoirs were developed in the upper part of the paleo-uplift, while in the peripheral depression belts thick source rocks were developed like the Upper Sinian Doushantuo Fm and Lower Cambrian Qiongzhusi Fm, so there is a good source–reservoir assemblage. (3 Since the Permian epoch, the Dazhou–Kaijiang paleo-uplift had gradually become elevated from the slope zone, where the Permian oil generation peak occurred in the slope or lower and gentle uplift belts, while the Triassic gas generation peak occurred in the higher uplift belts, both with a favorable condition for hydrocarbon accumulation. (4 The lower structural layers, including the Lower Cambrian and its underlying strata, in the East Sichuan Basin, are now equipped with a

  5. Reservoir Simulations of Low-Temperature Geothermal Reservoirs (United States)

    Bedre, Madhur Ganesh

    The eastern United States generally has lower temperature gradients than the western United States. However, West Virginia, in particular, has higher temperature gradients compared to other eastern states. A recent study at Southern Methodist University by Blackwell et al. has shown the presence of a hot spot in the eastern part of West Virginia with temperatures reaching 150°C at a depth of between 4.5 and 5 km. This thesis work examines similar reservoirs at a depth of around 5 km resembling the geology of West Virginia, USA. The temperature gradients used are in accordance with the SMU study. In order to assess the effects of geothermal reservoir conditions on the lifetime of a low-temperature geothermal system, a sensitivity analysis study was performed on following seven natural and human-controlled parameters within a geothermal reservoir: reservoir temperature, injection fluid temperature, injection flow rate, porosity, rock thermal conductivity, water loss (%) and well spacing. This sensitivity analysis is completed by using ‘One factor at a time method (OFAT)’ and ‘Plackett-Burman design’ methods. The data used for this study was obtained by carrying out the reservoir simulations using TOUGH2 simulator. The second part of this work is to create a database of thermal potential and time-dependant reservoir conditions for low-temperature geothermal reservoirs by studying a number of possible scenarios. Variations in the parameters identified in sensitivity analysis study are used to expand the scope of database. Main results include the thermal potential of reservoir, pressure and temperature profile of the reservoir over its operational life (30 years for this study), the plant capacity and required pumping power. The results of this database will help the supply curves calculations for low-temperature geothermal reservoirs in the United States, which is the long term goal of the work being done by the geothermal research group under Dr. Anderson at

  6. Mechanical changes caused by CO2-driven cement dissolution in the Morrow B Sandstone at reservoir conditions: Experimental observations (United States)

    Wu, Z.; Luhmann, A. J.; Rinehart, A. J.; Mozley, P.; Dewers, T. A.


    Carbon Capture, Utilization and Storage (CCUS) in transmissive reservoirs is a proposed mechanism in reducing CO2 emissions. Injection of CO2 perturbs reservoir chemistry, and can modify porosity and permeability and alter mineralogy. However, little work has been done on the coupling of rock alteration by CO2 injection and the mechanical integrity of the reservoir. In this study, we perform flow-through experiments on calcite- and dolomite-cemented Pennsylvanian Morrow B Sandstone (West Texas, USA) cores. We hypothesize that poikilotopic calcite cement has a larger impact on chemo-mechanical alteration than disseminated dolomite cement given similar CO2 exposure. With one control brine flow-through experiment and two CO2-plus-brine flow-through experiments for each cement composition, flow rates of 0.1 and 0.01 ml/min were applied under 4200 psi pore fluid pressure and 5000 psi confining pressure at 71 °C. Fluid chemistry and permeability data enable monitoring of mineral dissolution. Ultrasonic velocities were measured pre-test using 1.2 MHz source-receiver pairs at 0.5 MPa axial load and show calcite-cemented samples with higher dynamic elastic moduli than dolomite-cemented samples. Velocities measured post-experiment will identify changes from fluid-rock interaction. We plan to conduct cylinder-splitting destructive mechanical test (Brazil test) to measure the pristine and altered tensile strength of different cemented sandstones. The experiments will identify extents to which cement composition and texture control chemo-mechanical degradation of CCUS reservoirs. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) through the Southwest Regional Partnership on Carbon Sequestration (SWP) under Award No. DE-FC26-05NT42591. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of

  7. Multiphase Calcite Cementation and Fluids Evolution of a Deeply Buried Carbonate Reservoir in the Upper Ordovician Lianglitag Formation, Tahe Oilfield, Tarim Basin, NW China

    Directory of Open Access Journals (Sweden)

    Jiaqing Liu


    Full Text Available Oil and gas have been found in the Upper Ordovician Lianglitag Formation carbonates in the Tahe Oilfield, Tarim Basin, NW China. This study documents the origin of diagenetic fluids by using a combination of petrology, SIMS, fluid inclusion, and radiogenic isotope analysis. Six stages of calcite cements were revealed. C1-C2 formed in marine to early burial environments. C3 has relatively low δ18OVPDB values (−8.45‰ to −6.50‰ and likely has a meteoric origin. Meteoric water probably fluxed into aquifers during the Early Paleozoic and Late Paleozoic uplift. C4 has δ18OVPDB values typically 3‰ higher than those of C3, and probably formed during shallow burial. C5 displays relatively negative δ18OVPDB values (−8.26‰ to −5.12‰, and the moderate-to-high fluid-inclusion temperatures imply that it precipitated in burial environments. C6 shows homogenization temperatures (up to 200°C higher than the maximum burial and much lower salinities (<10.61 wt% NaCl, which may suggest that the fluid was deeply recycled meteoric water. The average 87Sr/86Sr ratios of fracture- and vug-filling calcite cements are much higher, indicative of incorporation of radiogenic Sr. Caves and fractures constitute the dominant reservoir spaces. A corresponding diagenesis-related reservoir evolution model was established that favors exploration and prediction.

  8. Carbonation by fluid-rock interactions at High-Pressure conditions: implications for Carbon cycling in subduction zones (United States)

    Piccoli, Francesca; Vitale Brovarone, Alberto; Beyssac, Olivier; Martinez, Isabelle; Ague, Jay J.; Chaduteau, Carine


    Carbonate-bearing lithologies are the main carbon carrier into subduction zones. Their evolution during metamorphism largely controls the fate of carbon regulating its fluxes between shallow and deep reservoirs. In subduction zones, most works have focused on subtractive processes responsible for carbon release from subducting slabs. As an example, several recent works have stressed on the importance of carbonate dissolution as a mean to mobilize large amounts of carbon in subduction zones. By contrast, little is known on additive processes such as rock carbonation at high-pressure (HP) conditions. At shallow depths (e.g. ocean floor and shallow subduction zones, i.e. geo-biosphere and the atmosphere. We report the occurrence of eclogite-facies marbles associated with metasomatic systems in HP metamorphic unit in Alpine Corsica (France). We performed a field-based study on metasomatic marbles. We will present the petrology and geochemistry that characterize carbonate metasomatism together with fluid inclusions study and pseudosection modeling. Altogether, we bring strong evidences for the precipitation of these carbonate-rich assemblages from carbonic fluids during HP metamorphism. We propose that rock carbonation can occur at HP conditions by either vein-injection or chemical replacement mechanisms. Rock carbonation indicates that carbonic fluids produced by decarbonation reactions and carbonate dissolution may not be directly transferred to the mantle wedge, but may have a preferential and complex pathway within the slab and along slab/mantle interface. Rock carbonation by fluid-rock interactions has a potentially great impact on the residence time of carbon and oxygen and on carbonates isotopic signature in subduction zones. Lastly, carbonation may modulate the emission of CO2 at volcanic arcs over geological time scales.

  9. Estimating long-term evolution of fine sediment budget in the Iffezheim reservoir using a simplified method based on classification of boundary conditions (United States)

    Zhang, Qing; Hillebrand, Gudrun; Hoffmann, Thomas; Hinkelmann, Reinhard


    The Iffezheim reservoir is the last of a series of reservoirs on the Upper Rhine in Germany. Since its construction in 1977, approximately 115,000 m3 of fine sediments accumulate annually in the weir channel (WSA Freiburg, 2011). In order to obtain detailed information about the space-time development of the topography, the riverbed evolution was measured using echo sounding by the German Federal Waterways and Shipping Administration (WSV). 37 sets of sounding data, which have been obtained between July 2000 and February 2011, were used in this research. In a previous work, the morphodynamic processes in the Iffezheim reservoir were investigated using a high-resolution 3D model. The 3D computational fluid dynamic software SSIIM II (Olsen, 2014) was used for this purpose (Zhang et al., 2015). The model was calibrated using field measurements. A computational time of 14.5 hours, using 24 cores of a 2.4 GHz reference computer, was needed for simulating a period of three months on a grid of 238,013 cells. Thus, the long-term (e.g. 30 years) simulation of morphodynamics of the fine sediment budget in the Iffezheim reservoir with this model is not feasible. A low complexity approach of "classification of the boundary conditions of discharge and suspended sediment concentration" was applied in this research for a long-term numerical simulation. The basic idea of the approach is to replace instationary or quasi-steady simulations of deposition by a limited series of stationary ones. For these, daily volume changes were calculated considering representative discharge and concentration. Representative boundary conditions were determined by subdividing time series of discharge and concentration into classes and using central values per class. The amount of the deposition in the reservoir for a certain period can then be obtained by adding up the calculated daily depositions. This approach was applied to 10 short-term periods, between two successive echo sounding measurements

  10. Stabilized oil production conditions in the development equilibrium of a water-flooding reservoir

    Directory of Open Access Journals (Sweden)

    Renshi Nie


    Full Text Available Water injection can compensate for pressure depletion of production. This paper firstly investigated into the equilibrium issue among water influx, water injection and production. Equilibrium principle was elaborated through deduction of equilibrium equation and presentation of equilibrium curves with an “equilibrium point”. Influences of artificial controllable factors (e.g. well ratio of injection to production and total well number on equilibrium were particularly analyzed using field data. It was found that the influences were mainly reflected as the location move of equilibrium point with factor change. Then reservoir pressure maintenance level was especially introduced to reveal the variation law of liquid rate and oil rate with the rising of water cut. It was also found that, even if reservoir pressure kept constant, oil rate still inevitably declined. However, in the field, a stabilized oil rate was always pursued for development efficiency. Therefore, the equilibrium issue of stabilized oil production was studied deeply through probing into some effective measures to realize oil rate stability after the increase of water cut for the example reservoir. Successful example application indicated that the integrated approach was very practical and feasible, and hence could be used to the other similar reservoir.

  11. Changes in steam production due to the reservoir conditions in Cerro Prieto, Baja California; Cambios en la produccion de vapor debido a las condiciones del yacimiento en Cerro Prieto, Baja California

    Energy Technology Data Exchange (ETDEWEB)

    Morales Cardenas, Ramon; Rodriguez Rodriguez, Marco H. [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, B.C. (Mexico)]. E-mail:


    In more than 35 years of exploitation, thermodynamic conditions have changed in the Cerro Prieto geothermal reservoir. The effects are analyzed of the changes to the reservoir and their consequences to steam production in different field zones. For steam production, the most important features of reservoir fluids are enthalpies and pressures. The evolution of these features is presented in an enthalpy-pressure diagram. Here it can be seen that some reservoir zones have almost reached abandonment conditions. [Spanish] En mas de 35 anos de explotacion el yacimiento geotermico de Cerro Prieto ha experimentado cambios en sus condiciones termodinamicas. En este trabajo se analiza el efecto de esos cambios del yacimiento y su repercusion en la produccion de vapor para las diferentes zonas en las que se ha dividido el campo. Las propiedades mas importantes del fluido en el yacimiento para la produccion de vapor son su entalpia y su presion, por lo que se presenta la evolucion de esas propiedades en un diagrama de presion-entalpia, en el que se observa que hay zonas del yacimiento que estan proximas a alcanzar condiciones de abandono.

  12. Correction of compressor critical speed condition through fluid-film bearing optimization

    International Nuclear Information System (INIS)

    Spencer, J.W.; Obeid, V.E.


    A critical speed condition for an overhung centrifugal compressor was corrected through a relatively minor bearing modification. The resonant condition was evaluated analytically through rotor dynamic analyses (stability and forced response) which included fluid film bearing characterization and rotor model generation (experimentally evaluated by model analysis). The importance of adequate specification, inspection, and analytical characterization, of fluid film bearings are discussed. The effects of unbalance on the stability of plain journal bearings are also commented upon. 1 ref., 6 figs

  13. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1987 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Nelson, V. Lance


    This project monitored the daily passage of smolts during the 1988 spring outmigration at two migrant traps; one each on the Snake and Clearwater rivers. Due to the low runoff year, chinook salmon catch at the Snake River trap was very low. Steelhead trout catch was higher than normal, probably due to trap modifications and because the trap was moved to the east side of the river. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1987. Total cumulative recovery of PIT tagged fish at the three dams, with PIT tag detection systems was: 55% for chinook salmon, 73% for hatchery steelhead trout, and 75% for wild steelhead trout. Travel time through Lower Granite Reservoir for PIT tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three fold, and steelhead trout travel time decreased two fold. There was a statistical difference between estimates of travel time through Lower Granite Reservoir for PIT tagged and freeze branded steelhead trout, but not for chinook salmon. These differences may be related to the estimation techniques used for PIT tagged and freeze branded groups, rather than real differences in travel time. 10 figs, 15 tabs.

  14. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1988 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Nelson, William R.


    This project monitored the daily passage of smelts during the 1988 spring outmigration at two migrant traps; one each on the Snake and Clear-water rivers. Due to the low runoff year, chinook salmon catch at the Snake River trap was very low. Steelhead trout catch was higher than normal, probably due to trap modifications and because the trap was moved to the east side of the river. Chinook salmon and steelhead trout catch at the Clearwater River trap was similar to 1987. Total cumulative recovery of PIT tagged fish at the three dams, with PIT tag detection systems was: 55% for chinook salmon, 73% for hatchery steelhead trout, and 75% for wild steelhead trout. Travel time through Lower Granite Reservoir for PIT tagged chinook salmon and steelhead trout, marked at the head of the reservoir, was affected by discharge. Statistical analysis showed that as discharge increased from 40 kcfs to 80 kcfs, chinook salmon travel time decreased three fold, and steelhead trout travel time decreased two fold. There was a statistical difference between estimates of travel time through Lower Granite Reservoir for PIT tagged and freeze branded steelhead trout, but not for chinook salmon. These differences may be related to the estimation techniques used for PIT tagged and freeze branded groups, rather than real differences in travel time.

  15. Understanding the interaction of injected CO2 and reservoir fluids in the Cranfield enhanced oil recovery (EOR) field (MS, USA) by non-radiogenic noble gas isotopes (United States)

    Gyore, Domokos; Stuart, Finlay; Gilfillan, Stuart


    Identifying the mechanism by which the injected CO2 is stored in underground reservoirs is a key challenge for carbon sequestration. Developing tracing tools that are universally deployable will increase confidence that CO2 remains safely stored. CO2 has been injected into the Cranfield enhanced oil recovery (EOR) field (MS, USA) since 2008 and significant amount of CO2 has remained (stored) in the reservoir. Noble gases (He, Ne, Ar, Kr, Xe) are present as minor natural components in the injected CO2. He, Ne and Ar previously have been shown to be powerful tracers of the CO2 injected in the field (Györe et al., 2015). It also has been implied that interaction with the formation water might have been responsible for the observed CO2 loss. Here we will present work, which examines the role of reservoir fluids as a CO2 sink by examining non-radiogenic noble gas isotopes (20Ne, 36Ar, 84Kr, 132Xe). Gas samples from injection and production wells were taken 18 and 45 months after the start of injection. We will show that the fractionation of noble gases relative to Ar is consistent with the different degrees of CO2 - fluid interaction in the individual samples. The early injection samples indicate that the CO2 injected is in contact with the formation water. The spatial distribution of the data reveal significant heterogeneity in the reservoir with some wells exhibiting a relatively free flow path, where little formation water is contacted. Significantly, in the samples, where CO2 loss has been previously identified show active and ongoing contact. Data from the later stage of the injection shows that the CO2 - oil interaction has became more important than the CO2 - formation water interaction in controlling the noble gas fingerprint. This potentially provides a means to estimate the oil displacement efficiency. This dataset is a demonstration that noble gases can resolve CO2 storage mechanisms and its interaction with the reservoir fluids with high resolution

  16. The No-Slip Boundary Condition in Fluid Mechanics

    Indian Academy of Sciences (India) Keywords. No-slip boundary condition; Navier-Stokes equations; Poiseuille flow; flow resistance. Author Affiliations. Sandeep Prabhakara1 M D Deshpande2. Indian Institute of Technology, Kharagpur 721 302, India. CTFD Division National Aerospace Laboratories ...

  17. Quantification of a maximum injection volume of CO2 to avert geomechanical perturbations using a compositional fluid flow reservoir simulator (United States)

    Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.


    Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of

  18. Lattice Boltzmann Simulations of Fluid Flow in Continental Carbonate Reservoir Rocks and in Upscaled Rock Models Generated with Multiple-Point Geostatistics

    Directory of Open Access Journals (Sweden)

    J. Soete


    Full Text Available Microcomputed tomography (μCT and Lattice Boltzmann Method (LBM simulations were applied to continental carbonates to quantify fluid flow. Fluid flow characteristics in these complex carbonates with multiscale pore networks are unique and the applied method allows studying their heterogeneity and anisotropy. 3D pore network models were introduced to single-phase flow simulations in Palabos, a software tool for particle-based modelling of classic computational fluid dynamics. In addition, permeability simulations were also performed on rock models generated with multiple-point geostatistics (MPS. This allowed assessing the applicability of MPS in upscaling high-resolution porosity patterns into large rock models that exceed the volume limitations of the μCT. Porosity and tortuosity control fluid flow in these porous media. Micro- and mesopores influence flow properties at larger scales in continental carbonates. Upscaling with MPS is therefore necessary to overcome volume-resolution problems of CT scanning equipment. The presented LBM-MPS workflow is applicable to other lithologies, comprising different pore types, shapes, and pore networks altogether. The lack of straightforward porosity-permeability relationships in complex carbonates highlights the necessity for a 3D approach. 3D fluid flow studies provide the best understanding of flow through porous media, which is of crucial importance in reservoir modelling.

  19. Fluids acidity in Los Humeros geothermal reservoir, Puebla, Mexico: Mineralogical evaluation; Acidez de los fluidos del yacimiento geotermico de Los Humeros, Puebla, Mexico: Evaluacion mineralogica

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo M, Georgina; Arellano G, Victor Manuel; Portugal M, Enrique; Aragon A, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Martinez, Ignasio [Comision Federal de Electricidad (Mexico)


    The occurrence of the acidity in fluids from Los Humeros geothermal reservoir has been noticeable due to the accelerated corrosion of pipes lines of wells located mainly in the area known as Collapse Central and wells along the East direction of the field. On the base of the evaluation of all available chemical and mineralogical information for Los Humeros geothermal field the main objective of this work was to recognize evidences on the origin of geothermal fluids acidity. Considering the occurrence of HCl in other geothermal systems, no relation to the available information from Los Humeros was found. It is possible that the geothermal fluids acidity would be recent. It could be generated when the deep reservoir was reached by drilling wells. However, the occurrence of H{sub 2}SO{sub 4} is evident due to the advance argillic alteration of surface rocks in some areas of the field. It is probable that the model proposed by D' Amore, may be valid for the geothermal field of Los Humeros. Considering that the origin of the vapor phase from the deep reservoir would be a fluid (of very high salinity) that favored the formation of the HCl gas; which moved to the vapor zone when exploitation began being transported in the vapor phase toward the upper reservoir forming aqueous HCl. [Spanish] La presencia de acidez en los fluidos producidos por el yacimiento geotermico de Los Humeros se ha evidenciado por la acelerada corrosion de las tuberias de algunos pozos localizados principalmente en la zona conocida como Colapso central y en direccion Este del campo. Con el objeto de identificar evidencias que permitan establecer el origen de la acidez en los fluidos geotermicos, se llevo a cabo la evaluacion de la informacion quimica y mineralogica existente para el campo geotermico de Los Humeros. Empleando los criterios conocidos sobre la presencia de HCl en otros sistemas geotermicos no se encontro relacion con la informacion evaluada. Por lo que se sugiere que la acidez en

  20. Three Gorges Reservoir Area: soil erosion under natural condition vs. soil erosion under current land use (United States)

    Schönbrodt, Sarah; Behrens, Thorsten; Scholten, Thomas


    Apparently, the current most prominent human-induced example for large scale environmental impact is the Three Gorges Dam in China. The flooding alongside the Yangtze River, and its tributaries results in a vast loss of settlement and farmland area with productive, fertile valley soils. Due to the associated high land use dynamic on uphill-sites, the soil resources are underlying high land use pressure. Within our study, the soil erosion under natural conditions is compared to the soil erosion under current land use after the impoundment. Both were modeled using the empirical Universal Soil Loss Equation (USLE) which is able to predict long-term annual soil loss with limited data. The database consists of digital terrain data (45 m resolution DEM, erosive slope length based on Monte-Carlo-Aggregation according to Behrens et al. (2008)), field investigations of recent erosion forms, and literature studies. The natural disposition to soil erosion was calculated considering the USLE factors R, S, and K. The soil erosion under current land use was calculated taking into account all USLE factors. The study area is the catchment of the Xiangxi River in the Three Gorges Reservoir area. Within the Xiangxi Catchment (3,200 km²) the highly dynamic backwater area (580 km²), and two micro-scale study sites (Xiangjiaba with 2.8 km², and Quyuan with 88 km²) are considered more detailed as they are directly affected by the river impoundment. Central features of the Xiangxi Catchment are the subtropical monsoon climate, an extremely steep sloping relief (mean slope angle 39°, SD 22.8°) artificially fractured by farmland terraces, and a high soil erodibility (mean K factor 0.37, SD 0.13). On the catchment scale the natural disposition to soil erosion makes up to mean 518.0 t ha-1 a-1. The maximum potential soil loss of 1,730.1 t ha-1 a-1 under natural conditions is reached in the Quyuan site (mean 635.8 t ha-1 a-1) within the backwater area (mean 582.9 t ha-1 a-1). In the

  1. Prevalence of Ventilatory Conditions for Dynamic Fluid Responsiveness Prediction in 2 Tertiary Intensive Care Units. (United States)

    Mendes, Pedro V; Rodrigues, Bruno N; Miranda, Leandro C; Zampieri, Fernando G; Queiroz, Eduardo L; Schettino, Guilherme; Azevedo, Luciano C; Park, Marcelo; Taniguchi, Leandro U


    Dynamic parameters for fluid responsiveness obtained from heart-lung interaction during invasive mechanical ventilation require specific conditions not always present in intensive care unit (ICU) patients. The aim of this study was to examine the prevalence of these conditions in critically ill patients. We conducted a prospective observational study in 2 medical-surgical ICUs. We evaluated whether it would be possible to measure dynamic indices of fluid responsiveness when fluid expansion was administered. We recorded whether the patients were in controlled invasive mechanical ventilation with tidal volume >8 mL/kg and without arrhythmias. The proportion of patients who fulfilled these conditions was recorded. A post hoc subgroup analyses by terciles of Simplified Acute Physiology Score 3 (SAPS3) were performed. A total of 826 fluid challenges were undertaken in 424 patients during the study. The use of controlled mechanical ventilation with tidal volume > 8 mL/kg and without arrhythmias occurred in only 2.9% of the patients at the time of fluid challenge episodes. There was an increase in the prevalence of these conditions as the severity of the patients also increased: lower tercile of SAPS3 (0%), intermediate tercile (2%), and higher tercile (6.9%; P predicting fluid responsiveness in ICU may have restricted applicability in daily practice, even in more severe patients, due to low prevalence of required conditions. © The Author(s) 2014.

  2. Effects of impoundment on the body condition of fish in the Manso reservoir, Mato Grosso State, Brazil

    Directory of Open Access Journals (Sweden)

    Sandra Maria Lopes de Moura


    Full Text Available AIM: This study evaluated the body condition de Acestrorhynchus pantaneiro, Auchenipterus osteomystax, Pimelodus maculatus, Psectrogaster curviventris and Schizodon borellii in the Manso reservoir, Mato Grosso State, Brazil, during the first years after its formation (years I, II, III and IV. We hypothesized that sudden environmental changes alter differently the body condition, according to the time (sampling years and sex of individuals. Also, we checked the influence of the amount of food ingested and the reproductive status on nutritional status of the species. METHODS: The body condition (Kn, the feeding activity (SRI and reproductive (GSI were calculated only for adults. The difference between the sampling years and sexes (used as factors was assessed using the nonparametric Kruskal-Wallis test. Temporal influence was tested by Spearman correlation and the interaction between both factors by PERMANOVA. RESULTS: The values of the Kn showed two groups: group 1: species whose body condition decreased in the year II, with a posterior increase (A. pantaneiro, P. curviventris and S. borelli, considered sensitive to the reservoir filling; group 2: species whose body condition increased in the year II (A. osteomystax and P. maculatus, indicating a more rapid adaptation to new environmental conditions. Still, all parameters investigated were somehow affected by the dam, mainly the body condition and gonadosomatic index for several species. On the other hand, the least affected factor was the feeding activity. CONCLUSIONS: The results did not evidence a same pattern of either increase or decrease of body condition for all species examined, since everything indicates that responses are species-specific. Even with a lack of consistency in some results, we can draw some suggestions for future investigations. Responses to these questions will certainly contribute to aggregate data to help better explain the body condition of fish species in dammed

  3. The use of paleo-thermo-barometers and coupled thermal, fluid flow and pore fluid pressure modelling for hydrocarbon and reservoir prediction in fold and thrust belts

    NARCIS (Netherlands)

    Roure, F.; Andriessen, P.A.M.; Callot, J.P.; Ferket, H.; Gonzales, E.; Guilhaumou, N.; Hardebol, N.J.; Lacombe, O.; Malandain, J.; Mougin, P.; Muska, K.; Ortuno, S.; Sassi, W.; Swennen, R.; Vilasi, N.


    Basin modelling tools are now more efficient to reconstruct palinspastic structural cross sections and compute the history of temperature, pore-fluid pressure and fluid flow circulations in complex structural settings. In many cases and especially in areas where limited erosion occurred, the use of

  4. Complete genome sequence of a nonculturable Methanococcus maripaludis strain extracted in a metagenomic survey of petroleum reservoir fluids. (United States)

    Wang, Xiaoyi; Greenfield, Paul; Li, Dongmei; Hendry, Philip; Volk, Herbert; Sutherland, Tara D


    Extraction of genome sequences from metagenomic data is crucial for reconstructing the metabolism of microbial communities that cannot be mimicked in the laboratory. A complete Methanococcus maripaludis genome was generated from metagenomic data derived from a thermophilic subsurface oil reservoir. M. maripaludis is a hydrogenotrophic methanogenic species that is common in mesophilic saline environments. Comparison of the genome from the thermophilic, subsurface environment with the genome of the type species will provide insight into the adaptation of a methanogenic genome to an oil reservoir environment.


    Directory of Open Access Journals (Sweden)

    F. F. Oliveira

    Full Text Available Abstract In this work, a simplified kick simulator is developed using the ANSYS® CFX software in order to better understand the phenomena called kick. This simulator is based on the modeling of a petroleum well where a gas kick occurs. Dynamic behavior of some variables like pressure, viscosity, density and volume fraction of the fluid is analyzed in the final stretch of the modeled well. In the simulations nine different drilling fluids are used of two rheological categories, Ostwald de Waele, also known as Power-Law, and Bingham fluids, and the results are compared among them. In these comparisons what fluid allows faster or slower invasion of gas is analyzed, as well as how the gas spreads into the drilling fluid. The pressure behavior during the kick process is also compared t. It is observed that, for both fluids, the pressure behavior is similar to a conventional leak in a pipe.

  6. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1985 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Scully, Richard J.; Buettner, Edwin W.


    This project monitored the daily passage of smolts during the 1985 spring outmigration at three migrant traps, one each on the Snake, Clearwater, and Salmon rivers. Yearling chinook migration rate between Salmon River release sites and the Salmon River scoop trap averaged 23 km per day, about half the migration rate for the same brand groups when migrating from the Salmon River trap to the Snake River trap (48 km/day). Average migration rates for branded chinook and steelhead between release sites and the head of Lower Granite Reservoir were both near 27 km per day. The yearling chinook migration begins in earnest when Salmon River discharge makes a significant rise in early to mid-April. Most yearling chinook pass into Lower Granite Reservoir in April followed by passage of steelhead in May. Chinook smolt recapture data from the Snake River trap suggest a strong dependence of migration rate on quantity of Snake and Salmon river discharge. The ability of the Salmon River trap to catch yearling chinook decreased as discharge increased. No correlation between discharge level and efficiency was observed at the Snake or Clearwater trap for chinook or steelhead smolts. When comparing the size of smolts in the Salmon and Clearwater rivers, the former river has smaller yearling chinook and larger hatchery and wild steelhead. Salmon River hatchery steelhead smolts in 1985 averaged 2 cm smaller than in 1983 and were much healthier than in 1983. 4 refs., 32 figs., 18 tabs.

  7. Smolt Condition and Timing of Arrival at Lower Granite Reservoir, 1986 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Edwin W.; Nelson, V. Lance


    This project monitored the daily passage of smolts during the 1986 spring outmigration at two migrant traps, one each on the Snake and Clearwater rivers. Average migration rates for freeze-branded chinook salmon smolts were 28.2 km per day and 22.1 km per day for steelhead trout smolts between release sites and the head of Lower Granite Reservoir. The yearling chinook salmon migration begins in earnest when Salmon River discharge makes a significant rise in early to mid-April. Most yearling chinook salmon pass into Lower Granite Reservoir in April followed by passage of steelhead trout in May. Chinook salmon smolt recapture data from the Snake River trap suggest a strong dependence of migration rate on quantity of Snake and Salmon River discharge, although no statistical correlation exists at this time. Daily and seasonal descaling rates were calculated for each species at each trap. Rates were highest for hatchery steelhead trout, intermediate for yearling chinook salmon, and lowest for wild steelhead trout. Descaling rates were generally higher in 1986 than those observed in 1984 and 1985. 4 refs., 9 figs., 15 tabs.

  8. Operation of Dokan Reservoir under Stochastic Conditions as Regards the Inflows and the Energy Demands (United States)

    Rashed, G. I.


    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  9. Dokan Hydropower Reservoir Operation under Stochastic Conditions as Regards the Inflows and the Energy Demands (United States)

    Izat Rashed, Ghamgeen


    This paper presented a way of obtaining certain operating rules on time steps for the management of a large reservoir operation with a peak hydropower plant associated to it. The rules were allowed to have the form of non-linear regression equations which link a decision variable (here the water volume in the reservoir at the end of the time step) by several parameters influencing it. This paper considered the Dokan hydroelectric development KR-Iraq, which operation data are available for. It was showing that both the monthly average inflows and the monthly power demands are random variables. A model of deterministic dynamic programming intending the minimization of the total amount of the squares differences between the demanded energy and the generated energy is run with a multitude of annual scenarios of inflows and monthly required energies. The operating rules achieved allow the efficient and safe management of the operation and it is quietly and accurately known the forecast of the inflow and of the energy demand on the next time step.

  10. Analysis of Geothermal Reservoir and Well Operational Conditions using Monthly Production Reports from Nevada and California

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Koenraad J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Young, Katherine R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Johnston, Henry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snyder, Diana M. [Georgia State University


    When conducting techno-economic analysis of geothermal systems, assumptions are typically necessary for reservoir and wellbore parameters such as producer/injector well ratio, production temperature drawdown, and production/injection temperature, pressure and flow rate. To decrease uncertainty of several of these parameters, we analyzed field data reported by operators in monthly production reports. This paper presents results of a statistical analysis conducted on monthly production reports at 19 power plants in California and Nevada covering 196 production wells and 175 injection wells. The average production temperature was 304 degrees F (151 degrees C) for binary plants and 310 degrees F (154 degrees C) for flash plants. The average injection temperature was 169 degrees F (76 degrees C) for binary plants and 173 degrees F (78 degrees C) for flash plants. The average production temperature drawdown was 0.5% per year for binary plants and 0.8% per year for flash plants. The average production well flow rate was 112 L/s for binary plant wells and 62 L/s for flash plant wells. For all 19 plants combined, the median injectivity index value was 3.8 L/s/bar, and the average producer/injector well ratio was 1.6. As an additional example of analysis using data from monthly production reports, a coupled reservoir-wellbore model was developed to derive productivity curves at various pump horsepower settings. The workflow and model were applied to two example production wells.

  11. Starch degradation in rumen fluid as influenced by genotype, climatic conditions and maturity stage of maize, grown under controlled conditions

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.


    Starch is the major component of maize kernels, contributing significantly to the feeding value of forage maize when fed to ruminants. The effects of genotype, climatic conditions and maturity stage on starch content in the kernels and on in vitro starch degradability in rumen fluid were

  12. Length-weight relationship and condition factor of Macrobrachium amazonicum (Heller, 1862 (Decapoda, Palaemonidae from a reservoir in Bahia, Brazil

    Directory of Open Access Journals (Sweden)

    Sérgio Schwarz da Rocha

    Full Text Available ABSTRACT Macrobrachium amazonicum (Heller, 1862 is a freshwater prawn occurring in rivers and reservoirs of Central and South America. Given its broad geographical distribution, the species shows great intraspecific morphological, reproductive, physiological and ecological plasticity. Furthermore, it also stands out for its economic importance, especially in the states of North (Pará and Amapá and Northeast Brazil. Despite the wide geographic distribution and economic importance of M. amazonicum, the biology of this species is poorly known, particularly in Northeast Brazil. We analyzed the length-weight relationships and condition factor of males and females of M. amazonicum. Specimens were collected monthly from September 2008 to August 2009 at the Pedra do Cavalo Reservoir, city of Cabaceiras do Paraguaçu, State of Bahia. All specimens were sexed, measured and weighted. After that, length-weight relationships and the allometric (K and relative (Kr condition factors were calculated. Altogether 2,974 specimens were analyzed, 334 of which were males (11% and 2,640 were females (89%. Females were larger and heavier than males. Males and females showed isometric and negative allometric growth, respectively. Monthly variations in the condition factor were similar for both sexes, and correlated strongly with rainfall regime and temperature in the region. Such variations are not correlated with the reproductive cycle of the species, but are probably correlated with food availability and somatic growth.

  13. Friction Theory Prediction of Crude Oil Viscosity at Reservoir Conditions Based on Dead Oil Properties

    DEFF Research Database (Denmark)

    Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan


    of real fluids is obtained by a simple one-parameter tuning of a linear equation derived from a general one-parameter f-theory model. Further, this is achieved using simple cubic equations of state (EOS), such as the Peng-Robinson (PR) EOS or the Soave-Redlich-Kwong (SRK) EOS, which are commonly used...

  14. Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals

    DEFF Research Database (Denmark)

    Yan, Wei; Kontogeorgis, Georgios; Stenby, Erling Halfdan


    reservoirs. Conventional equation of state (EoS) with classical mixing rules cannot satisfactorily predict or even correlate the phase equilibrium of those systems. A promising model for such systems is the Cubic-Plus-Association (CPA) EoS, which has been successfully applied to well-defined systems...

  15. Exchange of stability for a column of fluid with variable Rayleigh number under free boundary conditions (United States)

    Korbly, L.


    The exchange of stabilities is demonstrated for a system with harmonic boundary conditions. The motion of fluid in the presence of temperatures gradients is described. It is shown that this principle holds under free, but not rigid or semirigid, boundary conditions.

  16. Drilling fluids engineering to drill extra-heavy oil reservoir on the Orinoco Oil Belt, eastern Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Pino, R.; Gonazalez, W. [Proamsa, Maturin, Monagas (Venezuela)


    Petrocedeno is an exploration and development company operating in Venezuela. As part of a multidisciplinary group, Proamsa has been working with Petrocedeno to drill horizontal wells while minimizing issues related to the handling of drilling fluids. Proamsa is the only 100 per cent Venezuelan Company involved in drilling extra-heavy oil wells. The drilling plan for Petrocedeno was divided into two campaigns. More than 400 horizontal wells were drilled during the first campaign from 1999 to 2003 which represented over 2,500,000 drilled feet into the Oficina Formation (pay zone of the field). From 2006, during the second drilling campaign, and another 154 horizontal wells having been drilled until 2006 utilizing the xantam gum viscoelastic fluid. This paper discussed the field geology of the Orinoco oil belt. Well design was also explained and discussed and drilling fluid design and new fluid formations were presented. The benefits of xantam gum viscoelastic fluid were also discussed. It was concluded that recycling of drilling fluid from well to well minimized volume and reduced costs. In addition, centrifugation of drilling fluids either on intermediate or horizontals sections while the rig was skidding was always a very good practice avoiding mixing additional volumes. It was also demonstrated that the initial idea to provide a drilling fluid service company with a 100 per cent national value was a success, as demonstrated by the high performance shown by Proamsa during the second drilling campaign with external technologic support. 6 refs., 4 tabs., 4 figs.

  17. Complement components of nerve regeneration conditioned fluid influence the microenvironment of nerve regeneration

    Directory of Open Access Journals (Sweden)

    Guang-shuai Li


    Full Text Available Nerve regeneration conditioned fluid is secreted by nerve stumps inside a nerve regeneration chamber. A better understanding of the proteinogram of nerve regeneration conditioned fluid can provide evidence for studying the role of the microenvironment in peripheral nerve regeneration. In this study, we used cylindrical silicone tubes as the nerve regeneration chamber model for the repair of injured rat sciatic nerve. Isobaric tags for relative and absolute quantitation proteomics technology and western blot analysis confirmed that there were more than 10 complement components (complement factor I, C1q-A, C1q-B, C2, C3, C4, C5, C7, C8ß and complement factor D in the nerve regeneration conditioned fluid and each varied at different time points. These findings suggest that all these complement components have a functional role in nerve regeneration.

  18. Understanding the True Stimulated Reservoir Volume in Shale Reservoirs

    KAUST Repository

    Hussain, Maaruf


    Successful exploitation of shale reservoirs largely depends on the effectiveness of hydraulic fracturing stimulation program. Favorable results have been attributed to intersection and reactivation of pre-existing fractures by hydraulically-induced fractures that connect the wellbore to a larger fracture surface area within the reservoir rock volume. Thus, accurate estimation of the stimulated reservoir volume (SRV) becomes critical for the reservoir performance simulation and production analysis. Micro-seismic events (MS) have been commonly used as a proxy to map out the SRV geometry, which could be erroneous because not all MS events are related to hydraulic fracture propagation. The case studies discussed here utilized a fully 3-D simulation approach to estimate the SRV. The simulation approach presented in this paper takes into account the real-time changes in the reservoir\\'s geomechanics as a function of fluid pressures. It is consisted of four separate coupled modules: geomechanics, hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive re-meshing. Reservoir stress condition, rock mechanical properties, and injected fluid pressure dictate how fracture elements could open or slide. Critical stress intensity factor was used as a fracture criterion governing the generation of new fractures or propagation of existing fractures and their directions. Our simulations were run on a Cray XC-40 HPC system. The studies outcomes proved the approach of using MS data as a proxy for SRV to be significantly flawed. Many of the observed stimulated natural fractures are stress related and very few that are closer to the injection field are connected. The situation is worsened in a highly laminated shale reservoir as the hydraulic fracture propagation is significantly hampered. High contrast in the in-situ stresses related strike-slip developed thereby shortens the extent of SRV. However, far field nature fractures that were not connected to

  19. EXP6 fluids at extreme conditions modeled by two-Yukawa potentials. (United States)

    Krejcí, Jan; Nezbeda, Ivo; Melnyk, Roman; Trokhymchuk, Andrij


    A two-Yukawa representation of the EXP6 fluids at supercritical temperatures and high pressures has been developed and examined using molecular simulations. A uniquely defined mapping of the repulsive part of the EXP6 potential curve onto the two-Yukawa potential is used. Two ranges of temperatures, one encountered in geochemical applications (T(geo) range) and the other at conditions of detonations (T(det) range), are considered and it is shown that the local structures of both fluids are practically identical. Deviations between the EXP6 and two-Yukawa potential functions at intermediate separations lead to differences in the thermodynamic properties of the two fluids at lower temperatures of the T(geo) range; at higher temperatures and in the high T(det) temperature range both the structural and thermodynamic properties of the EXP6 and two-Yukawa fluids are practically identical.

  20. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    Energy Technology Data Exchange (ETDEWEB)

    Nancy Moller Weare


    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (, which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  1. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Geothermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equipment

    International Nuclear Information System (INIS)

    Nancy Moller Weare


    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (, which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum

  2. Wettability Improvement with Enzymes: Application to Enhanced Oil Recovery under Conditions of the North Sea Reservoirs

    DEFF Research Database (Denmark)

    Khusainova, Alsu; Shapiro, Alexander; Stenby, Erling Halfdan


    , proteases and oxidoreductases, provided by Novozymes, have been investigated. Two commercial mixtures containing enzymes: Apollo-GreenZyme™ and EOR-ZYMAX™ have also been applied. The North Sea dead oil and the synthetic sea water were used as test fluids. Internal surface of a carbonate rock has been...... appear to be relatively ambiguous, while carbohydrases and oxidoreductases have the lowest potential for EOR in the light of the present experiments. Suggested mechanisms for wettability improvement for esterases/lipases are adsorption of enzymes onto the mineral and/or formation of additional...

  3. Stochastic Reservoir Characterization Constrained by Seismic Data

    Energy Technology Data Exchange (ETDEWEB)

    Eide, Alfhild Lien


    In order to predict future production of oil and gas from a petroleum reservoir, it is important to have a good description of the reservoir in terms of geometry and physical parameters. This description is used as input to large numerical models for the fluid flow in the reservoir. With increased quality of seismic data, it is becoming possible to extend their use from the study of large geologic structures such as seismic horizons to characterization of the properties of the reservoir between the horizons. Uncertainties because of the low resolution of seismic data can be successfully handled by means of stochastic modeling, and spatial statistics can provide tools for interpolation and simulation of reservoir properties not completely resolved by seismic data. This thesis deals with stochastic reservoir modeling conditioned to seismic data and well data. Part I presents a new model for stochastic reservoir characterization conditioned to seismic traces. Part II deals with stochastic simulation of high resolution impedance conditioned to measured impedance. Part III develops a new stochastic model for calcite cemented objects in a sandstone background; it is a superposition of a marked point model for the calcites and a continuous model for the background.

  4. Zn(II, Mn(II and Sr(II Behavior in a Natural Carbonate Reservoir System. Part II: Impact of Geological CO2 Storage Conditions

    Directory of Open Access Journals (Sweden)

    Auffray B.


    Full Text Available Some key points still prevent the full development of geological carbon sequestration in underground formations, especially concerning the assessment of the integrity of such storage. Indeed, the consequences of gas injection on chemistry and petrophysical properties are still much discussed in the scientific community, and are still not well known at either laboratory or field scale. In this article, the results of an experimental study about the mobilization of Trace Elements (TE during CO2 injection in a reservoir are presented. The experimental conditions range from typical storage formation conditions (90 bar, supercritical CO2 to shallower conditions (60 and 30 bar, CO2 as gas phase, and consider the dissolution of the two carbonates, coupled with the sorption of an initial concentration of 10−5 M of Zn(II, and the consequent release in solution of Mn(II and Sr(II. The investigation goes beyond the sole behavior of TE in the storage conditions: it presents the specific behavior of each element with respect to the pressure and the natural carbonate considered, showing that different equilibrium concentrations are to be expected if a fluid with a given concentration of TE leaks to an upper formation. Even though sorption is evidenced, it does not balance the amount of TE released by the dissolution process. The increase in porosity is clearly evidenced as a linear function of the CO2 pressure imposed for the St-Emilion carbonate. For the Lavoux carbonate, this trend is not confirmed by the 90 bar experiment. A preferential dissolution of the bigger family of pores from the preexisting porosity is observed in one of the samples (Lavoux carbonate while the second one (St-Emilion carbonate presents a newly-formed family of pores. Both reacted samples evidence that the pore network evolves toward a tubular network type.

  5. Scoping Summary Report: Development of Lower Basin Shortage Guidelines and Coordinated Management Strategies for Lake Powell and Lake Mead, Particularly Under Low Reservoir Conditions


    U.S. Department of the Interior, Bureau of Reclamation


    The Bureau of Reclamation (Reclamation) acting on behalf of the Secretary of the Department of the Interior (Secretary) proposes to take action to adopt specific Colorado River Lower Basin shortage guidelines and coordinated reservoir management strategies to address operations of Lake Powell and Lake Mead, particularly under low reservoir conditions. This proposed Action will provide a greater degree of certainty to all water users and managers in the Colorado River Basin by providing more d...

  6. Dynamic stability analysis of fluid-filled cylindrical shells with top end-fixed boundary condition

    International Nuclear Information System (INIS)

    Xu, Y.H.; Tsukimori, K.


    This study is aimed at understanding the dynamic instability mechanism of fluid-filled cylindrical shells with top end-fixed boundary condition under seismic excitation. The fluid-structure interaction problem is formulated using the concept of added mass. The contribution of each individual fluid pressure components are identified. A Galerkin/Finite Element discretization is applied to obtain the governing matrix equations. The model coupling among the various combinations of axial and circumferential modes are identified. For dynamic stability analysis, the matrix equations are cast into a set of coupled Hill's equations by employing an orthogonality transformation. The application of this method and the discussion on dynamic buckling behaviors of different boundary conditions are presented. The following comments are found: (1) Strong effect of added mass to the first beam mode frequency is observed in the top end-fixed case and the effect depends on the level of filled fluid and the ratio of shall radius to height; (2) The static and dynamic pressure acting on the bottom plate increase the axial frequency for n=2... N and the critical instability parameter ε cr in the top end-fixed case, respectively; (3) Strong effect of shell top boundary, open or closed, to axial frequencies for mode (i,n) (n=2... N) and instability behaviors is observed for fluid-filled tanks with bottom-fixed boundary condition. (author)

  7. Dynamic reservoir-condition microtomography of reactive transport in complex carbonates: Effect of initial pore structure and initial brine pH (United States)

    Menke, H. P.; Bijeljic, B.; Blunt, M. J.


    We study the impact of brine acidity and initial pore structure on the dynamics of fluid/solid reaction at high Péclet numbers and low Damköhler numbers. A laboratory μ-CT scanner was used to image the dissolution of Ketton, Estaillades, and Portland limestones in the presence of CO2-acidified brine at reservoir conditions (10 MPa and 50 °C) at two injected acid strengths for a period of 4 h. Each sample was scanned between 6 and 10 times at ∼4 μm resolution and multiple effluent samples were extracted. The images were used as inputs into flow simulations, and analysed for dynamic changes in porosity, permeability, and reaction rate. Additionally, the effluent samples were used to verify the image-measured porosity changes. We find that initial brine acidity and pore structure determine the type of dissolution. Dissolution is either uniform where the porosity increases evenly both spatially and temporally, or occurs as channelling where the porosity increase is concentrated in preferential flow paths. Ketton, which has a relatively homogeneous pore structure, dissolved uniformly at pH = 3.6 but showed more channelized flow at pH = 3.1. In Estaillades and Portland, increasingly complex carbonates, channelized flow was observed at both acidities with the channel forming faster at lower pH. It was found that the effluent pH, which is higher than that injected, is a reasonably good indicator of effective reaction rate during uniform dissolution, but a poor indicator during channelling. The overall effective reaction rate was up to 18 times lower than the batch reaction rate measured on a flat surface at the effluent pH, with the lowest reaction rates in the samples with the most channelized flow, confirming that transport limitations are the dominant mechanism in determining reaction dynamics at the fluid/solid boundary.

  8. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles

    Directory of Open Access Journals (Sweden)

    Flavia Carton


    Full Text Available Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus. We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.

  9. Incubation under fluid dynamic conditions markedly improves the structural preservation in vitro of explanted skeletal muscles. (United States)

    Carton, Flavia; Calderan, Laura; Malatesta, Manuela


    Explanted organs and tissues represent suitable experimental systems mimicking the functional and structural complexity of the living organism, with positive ethical and economic impact on research activities. However, their preservation in culture is generally limited, thus hindering their application as experimental models for biomedical research. In the present study, we investigated the potential of an innovative fluid dynamic culture system to improve the structural preservation in vitro of explanted mouse skeletal muscles (soleus). We used light and transmission electron microscopy to compare the morphological features of muscles maintained either in multiwell plates under conventional conditions or in a bioreactor mimicking the flow of physiological fluids. Our results demonstrate that fluid dynamic conditions markedly slowed the progressive structural deterioration of the muscle tissue occurring during the permanence in the culture medium, prolonging the preservation of some organelles such as mitochondria up to 48 h.

  10. Electromagnetic, heat and fluid flow phenomena in levitated metal droplets both under earthbound and microgravity conditions (United States)

    Szekely, Julian


    The purpose is to develop an improved understanding of the electromagnetic, heat, and fluid flow phenomena in electromagnetically levitated metal droplets, both under earthbound and microgravity conditions. The main motivation for doing this work, together with the past accomplishments, and the plans for future research are discussed.

  11. Modeling of solid/porous wall boundary conditions for the validation of computational fluid dynamics codes (United States)

    Beutner, Thomas J.; Celik, Zeki Z.; Roberts, Leonard


    A computational study has been undertaken to investigate method of modeling solid and porous wall boundary conditions in computational fluid dynamics (CFD) codes. The procedure utilizes experimental measurements at the walls to develop a flow field solution based on the method of singularities. This flow field solution is then imposed as a boundary condition in a CFD simulation of the internal flow field. The effectiveness of this method in describing the boundary conditions at the wind tunnel walls using only sparse experimental measurements has been investigated. Position and refinement of experimental measurement locations required to describe porous wall boundary conditions has also been considered.

  12. Transitiometric investigation of asphaltenic fluids under real conditions of temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, C.; Grolier, J.P.E. [Univ. Blaise Pascal, Lab. de Thermodynamique et Genie Chimique, Aubiere (France); Randzio, S. [Polish Academy of Sciences, Inst. of Physical Chemistry, Warsaw (Poland)


    Flocculation of asphaltenes is a major concern in the petroleum industry in such activities as production, extraction and transport. With the aim of characterising flocculation phenomena and primarily the flocculation threshold, titration calorimetry has already been used to study the effect of solvents on asphaltenic fluids; the precipitation of asphaltenes is in that case induced by the addition of solvent (usually n-alkanes, according to the definition of asphaltenes). We have recently developed a new experimental technique, scanning transitiometry which appears typically suitable to investigate phase changes in asphaltenic fluids. This technique which makes use of a calorimetric detector allows to scan one of the three independent variables p, V or T, while one is maintained constant. From the recording of the variation of the dependent variable and of the associated heat effect, thermomechanical coefficients of the bulk phase can be computed and phase changes detected very accurately. The scanning rates as well as the operating ranges of T and p permit to rigorously monitor the thermodynamic behaviour of the system loaded in the transitiometric cell. Moreover, a full thermodynamic study is possible over an extended p, V, T-surface and fluids under real high T-high p in-well conditions can be treated. This means also that the possible reversibility of phase transitions can be investigated with this technique. We report here a preliminary investigation on real petroleum fluids under in-well conditions of temperature and pressure. Fluids containing asphaltenes have been used to illustrate the advantages of scanning transitiometry to investigate such systems. Of particular importance is the transferring of the fluid system into the measuring cell under isobaric condition. (au)

  13. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions. (United States)

    Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry


    Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.

  14. Accumulation conditions and enrichment patterns of natural gas in the Lower Cambrian Longwangmiao Fm reservoirs of the Leshan-Longnǚsi Palaeohigh, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Xu Chunchun


    Full Text Available As several major new gas discoveries have been made recently in the Lower Cambrian Longwangmiao Fm reservoirs in the Leshan-Longnǚsi Palaeohigh of the Sichuan Basin, a super-huge gas reservoir group with multiple gas pay zones vertically and cluster reservoirs laterally is unfolding in the east segment of the palaeohigh. Study shows that the large-scale enrichment and accumulation of natural gas benefits from the good reservoir-forming conditions, including: (1 multiple sets of source rocks vertically, among which, the high-quality Lower Paleozoic source rocks are widespread, and have a hydrocarbon kitchen at the structural high of the Palaeohigh, providing favorable conditions for gas accumulation near the source; (2 three sets of good-quality reservoirs, namely, the porous-vuggy dolomite reservoirs of mound-shoal facies in the 2nd and 4th members of the Sinian Dengying Fm as well as the porous dolomite reservoirs of arene-shoal facies in the Lower Cambrian Longwangmiao Fm, are thick and wide in distribution; (3 structural, lithological and compound traps developed in the setting of large nose-like uplift provide favorable space for hydrocarbon accumulation. It is concluded that the inheritance development of the Palaeohigh and its favorable timing configuration with source rock evolution are critical factors for the extensive enrichment of gas in the Lower Cambrian Longwangmiao Fm reservoirs. The structural high of the Palaeohigh is the favorable area for gas accumulation. The inherited structural, stratigraphic and lithological traps are the favorable sites for gas enrichment. The areas where present structures and ancient structures overlap are the sweet-spots of gas accumulation.

  15. Analysis of the susceptibility in a fluid system with Neumann – plus boundary conditions

    Directory of Open Access Journals (Sweden)

    Djondjorov Peter


    Full Text Available The behaviour of the local and total susceptibilities of a fluid system bounded by different surfaces is studied in the framework of the Ginsburg-Landau Ising type model. The case of a plain geometry, Neumann-infinity boundary conditions under variations of the temperature and an external ordering field is considered. Exact analytic expressions for the order parameter, local and total susceptibilities in such a system are presented. They are used to analyse the phase behaviour of fluids confined in regions close to the bulk critical point of the respective infinite system.

  16. Population pharmacokinetic modeling of furosemide in patients with hypertension and fluid overload conditions. (United States)

    Kodati, Devender; Yellu, Narsimhareddy


    Furosemide is a loop diuretic drug frequently indicated in hypertension and fluid overload conditions such as congestive heart failure and hepatic cirrhosis. The purpose of the study was to establish a population pharmacokinetic model for furosemide in Indian hypertensive and fluid overload patients, and to evaluate effects of covariates on the volume of distribution (V/F) and oral clearance (CL/F) of furosemide. A total of 188 furosemide plasma sample concentrations from 63 patients with hypertension or fluid overload conditions were collected in this study. The population pharmacokinetic model for furosemide was built using Phoenix NLME 1.3 software. The covariates included age, sex, body surface area, bodyweight, height and creatinine clearance (CRCL). The pharmacokinetic data of furosemide was adequately explained by a two-compartment linear pharmacokinetic model with first-order absorption and an absorption lag-time. The mean values of CL/F and Vd/F of furosemide in the patients were 15.054Lh -1 and 4.419L, respectively. Analysis of covariates showed that CRCL was significantly influencing the clearance of furosemide. The final population pharmacokinetic model was demonstrated to be appropriate and effective and it can be used to assess the pharmacokinetic parameters of furosemide in Indian patients with hypertension and fluid overload conditions. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  17. Status of Wheeler Reservoir

    Energy Technology Data Exchange (ETDEWEB)


    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  18. Influence of the geothermal fluid rheology in the large scale hydro-thermal circulation in Soultz-sous-Forêts reservoir. (United States)

    Vallier, Bérénice; Magnenet, Vincent; Fond, Christophe; Schmittbuhl, Jean


    Many numerical models have been developed in deep geothermal reservoir engineering to interpret field measurements of the natural hydro-thermal circulations or to predict exploitation scenarios. They typically aim at analyzing the Thermo-Hydro-Mechanical and Chemical (THMC) coupling including complex rheologies of the rock matrix like thermo-poro-elasticity. Few approaches address in details the role of the fluid rheology and more specifically the non-linear sensitivity of the brine rheology with temperature and pressure. Here we use the finite element Code_Aster to solve the balance equations of a 2D THM model of the Soultz-sous-Forêts reservoir. The brine properties are assumed to depend on the fluid pressure and the temperature as in Magnenet et al. (2014). A sensitive parameter is the thermal dilatation of the brine that is assumed to depend quadratically with temperature as proposed by the experimental measurements of Rowe and Chou (1970). The rock matrix is homogenized at the scale of the equation resolution assuming to have a representative elementary volume of the fractured medium smaller than the mesh size. We still chose four main geological units to adjust the rock physic parameters at large scale: thermal conductivity, permeability, radioactive source production rate, elastic and Biot parameters. We obtain a three layer solution with a large hydro-thermal convection below the cover-basement transition. Interestingly, the geothermal gradient in the sedimentary layer is controlled by the radioactive production rate in the upper altered granite. The second part of the study deals with an inversion approach of the homogenized solid and fluid parameters at large scale using our direct THM model. The goal is to compare the large scale inverted estimates of the rock and brine properties with direct laboratory measurements on cores and discuss their upscaling in the context of a fractured network hydraulically active. Magnenet V., Fond C., Genter A. and

  19. Understanding physical rock properties and their relation to fluid-rock interactions under supercritical conditions (United States)

    Kummerow, Juliane; Raab, Siegfried; Meyer, Romain


    The electrical conductivity of rocks is, in addition to lithological factors (mineralogy, porosity) and physical parameters (temperature, pressure) sensitive to the nature of pore fluids (phase, salinity), and thus may be an indicative measure for fluid-rock interactions. Especially near the critical point, which is at 374.21° C and 22.12 MPa for pure water, the physico-chemical properties of aqueous fluids change dramatically and mass transfer and diffusion-controlled chemical reactivity are enhanced, which in turn leads to the formation of element depletion/ enrichment patterns or cause mineral dissolution. At the same time, the reduction of the dielectric constant of water promotes ion association and consequently mineral precipitation. All this cause changes in the electrical conductivity of geothermal fluids and may have considerable effects on the porosity and hydraulic properties of the rocks with which they are in contact. In order to study the impact of fluid-rock interactions on the physical properties of fluids and rocks in near- and supercritical geological settings in more detail, in the framework of the EU-funded project "IMAGE" (Integrated Methods for Advanced Geothermal Exploration) hydraulic and electrical properties of rock cores from different active and exhumed geothermal areas on Iceland were measured up to supercritical conditions (Tmax = 380° C, pfluid = 23 MPa) during long-term (2-3 weeks) flow-through experiments in an internally heated gas pressure vessel at a maximum confining pressure of 42 MPa. In a second flow-through facility both the intrinsic T-dependent electrical fluid properties as well as the effect of mineral dissolution/ precipitation on the fluid conductivity were measured for increasing temperatures in a range of 24 - 422° C at a constant fluid pressure of 31 MPa. Petro- and fluid physical measurements were supplemented by a number of additional tests, comprising microstructural investigations as well as the chemical

  20. Minimal thermodynamic conditions in the reservoir to produce steam at the Cerro Prieto geothermal field, BC; Condiciones termodinamicas minimas del yacimiento para producir vapor en el campo geotermico de Cerro Prieto, B.C.

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez; Marco Helio [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail:


    Minimal thermodynamic conditions in the Cerro Prieto geothermal reservoir for steam production are defined, taking into account the minimal acceptable steam production at the surface, considering a rank of mixed-enthalpies for different well-depths, and allowing proper assessments for the impacts of the changes in fluid reservoir pressure and enthalpy. Factors able to influence steam production are discussed. They have to be considered when deciding whether or not to drill or repair a well in a particular area of the reservoir. These evaluations become much more relevant by considering the huge thermodynamic changes that have occurred at the Cerro Prieto geothermal reservoir from its development, starting in 1973, which has lead to abandoning some steam producing areas in the field. [Spanish] Las condiciones termodinamicas minimas del yacimiento geotermico de Cerro Prieto, BC, para producir vapor se determinan tomando en cuenta la minima produccion de vapor aceptable en superficie, considerando un rango de entalpias de la mezcla y para diferentes profundidades de pozos, lo que permite valorar adecuadamente el impacto de la evolucion de la presion y entalpia del fluido en el yacimiento. Se discuten los factores que pueden afectar la produccion de vapor, los cuales se deben tomar en cuenta para determinar la conveniencia o no de perforar o reparar un pozo en determinada zona del yacimiento. Estas evaluaciones adquieren gran relevancia al considerar los enormes cambios termodinamicos que ha presentado el yacimiento geotermico de Cerro Prieto, como resultado de su explotacion iniciada en 1973, lo que ha llevado a abandonar algunas zonas del campo para la produccion de vapor. Palabras Clave: Cerro Prieto, entalpia, evaluacion de yacimientos, politicas de explotacion, presion, produccion de vapor.

  1. Reliably measuring the condition of mineral-based transfer fluids using a permittivity sensor – practical application to thermal fluid heat transfer

    Directory of Open Access Journals (Sweden)

    Christopher Ian Wright


    Full Text Available This article describes a series of experiments to assess the performance and suitability of a permittivity sensor in the area of heat transfer. The permittivity sensor measures condition index and temperature of a fluid. A series of 5 experiments was conducted. They assessed the reproducibility of the sensor using both clean and dirty fluid samples, and showed the sensor had good reproducibility based on calculations of coefficients of variation. The sensor also detected water contamination, assessed from construction of a stimulus-response curve to step-wise increases in water and from real-life samples where water content was reported to be out of specification. Further experiments tested the association between condition index and both water content and fluid cleanliness in a real-life setting. Results demonstrated the sensor that condition index reflected changes in fluid water and cleanliness and was therefore a measure of fluid condition. The implication of these findings is that the sensor can be used to make rapid and reliable assessments of fluid condition using only small samples (i.e., <50 ml. The sensor may be of benefit to customers that need to make a lot of regular samples over a large processing site, such as concentrated solar power plants.

  2. Measurement and modeling of CO2 diffusion coefficient in Saline Aquifer at reservoir conditions (United States)

    Azin, Reza; Mahmoudy, Mohamad; Raad, Seyed; Osfouri, Shahriar


    Storage of CO2 in deep saline aquifers is a promising techniques to mitigate global warming and reduce greenhouse gases (GHG). Correct measurement of diffusivity is essential for predicting rate of transfer and cumulative amount of trapped gas. Little information is available on diffusion of GHG in saline aquifers. In this study, diffusivity of CO2 into a saline aquifer taken from oil field was measured and modeled. Equilibrium concentration of CO2 at gas-liquid interface was determined using Henry's law. Experimental measurements were reported at temperature and pressure ranges of 32-50°C and 5900-6900 kPa, respectively. Results show that diffusivity of CO2 varies between 3.52-5.98×10-9 m2/s for 5900 kPa and 5.33-6.16×10-9 m2/s for 6900 kPa initial pressure. Also, it was found that both pressure and temperature have a positive impact on the measures of diffusion coefficient. Liquid swelling due to gas dissolution and variations in gas compressibility factor as a result of pressure decay was found negligible. Measured diffusivities were used model the physical model and develop concentration profile of dissolved gas in the liquid phase. Results of this study provide unique measures of CO2 diffusion coefficient in saline aquifer at high pressure and temperature conditions, which can be applied in full-field studies of carbon capture and sequestration projects.

  3. Experimental Investigation of Biotite-Rich Schist Reacting with B-Bearing Fluids at Upper Crustal Conditions and Correlated Tourmaline Formation

    Directory of Open Access Journals (Sweden)

    Andrea Orlando


    Full Text Available Fluid–rock interaction experiments between a biotite-rich schist (from Mt. Calamita Formation, Elba Island, Italy and B-bearing aqueous fluids were carried out at 500–600 °C and 100–130 MPa. The experiments have been carried out in order to reproduce the reaction, which would have produced tourmalinisation of the biotite schist, supposedly by circulation of magmatic fluids issued from leucogranitic dykes. The reacting fluids were either NaCl-free or NaCl-bearing (20 wt % aqueous solutions, with variable concentration of H3BO3 (0.01–3.2 M. The experimental results show that tourmaline (belonging to the alkali group crystallise under high-temperature and upper crustal conditions (500–600 °C, 100–130 MPa when H3BO3 concentration in the system is greater than 1.6 M. The composition of tourmaline is either dravitic (Mg-rich or schorlitic (Fe-rich, depending if an NaCl-bearing or NaCl-free aqueous solution is used. In the first case, a significant amount of Fe released from biotite dissolution remains in the Cl-rich solution resulting from the experiment. By contrast, when pure water is used, Na/K exchange in feldspars makes Na available for tourmaline crystallisation. The high concentration of Fe in the residual fluid has an important metallogenic implication because it indicates that the interaction between the saline B-rich fluid of magmatic derivation and biotite-rich schists, besides producing tourmalinisation, is capable of mobilising significant amounts of Fe. This process could have produced, in part or totally, the Fe deposits located close to the quartz–tourmaline veins and metasomatic bodies of the Mt. Calamita Formation. Moreover, the super-hot reservoir that likely occurs in the deepest part of the Larderello–Travale geothermal field would also be the site of an extensive reaction between the B-rich fluid and biotite-bearing rocks producing tourmaline. Thus, tourmaline occurrence can be a useful guide during deep

  4. Western blot analysis of adhesive interactions under fluid shear conditions: the blot rolling assay. (United States)

    Sackstein, Robert; Fuhlbrigge, Robert


    Western blotting has proven to be an important technique in the analysis of receptor-ligand interactions (i.e., by ligand blotting) and for identifying molecules mediating cell attachment (i.e., by cell blotting). Conventional ligand blotting and cell blotting methods employ non-dynamic (static) incubation conditions, whereby molecules or cells of interest are placed in suspension and overlaid on membranes. However, many cell-cell and cell-matrix adhesive interactions occur under fluid shear conditions, and shear stress itself mediates and/or facilitates the engagement of these physiologically appropriate receptors and ligands. Notably, shear forces critically influence the adhesion of circulating cells and platelets to vessel walls in physiologic cell migration and hemostasis, as well as in inflammatory and thrombotic disorders, cancer metastasis, and atherosclerosis. Use of non-dynamic blotting conditions to analyze such interactions can introduce bias, overtly missing relevant effectors and/or exaggerating the relative role(s) of non-physiologic adhesion molecules. To address this shortfall, we have developed a new technique for identifying binding interactions under fluid shear conditions, the "blot rolling assay." Using this method, molecules in a complex mixture are resolved by gel electrophoresis, transferred to a membrane that is rendered semitransparent, and the membrane is then incorporated into a parallel-plate flow chamber apparatus. Under controlled flow conditions, cells or particles bearing adhesion proteins of interest are then introduced into the chamber and interactions with individual immobilized molecules (bands) can be visualized in real time. The substrate molecule(s) supporting adhesion under fluid shear can then be identified by staining with specific antibodies or by excising the relevant band(s) and performing mass spectrometry or microsequencing of the isolated material. This method thus allows for the identification, within a complex

  5. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction]. (United States)

    Dong, Wen-hong; Liu, Ben


    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  6. Measurement and Prediction of Volumetric and Transport Properties of Reservoir Fluids At High Pressure Mesure et prédiction des propriétés volumétriques et des propriétés de transport des fluides de gisement à haute pression

    Directory of Open Access Journals (Sweden)

    De Sant'ana H. B.


    Full Text Available Discoveries of oil and gas fields under severe conditions of temperature (above 150°C or pressure (in excess of 50 MPa have been made in various regions of the world. In the North Sea, production is scheduled from deep reservoirs at 190°C and 110 MPa. This brings with it important challenges for predicting the properties of reservoir fluids, both from an experimental and a theoretical standpoint. In order to perform fluid studies for these reservoir conditions, IFP has developed a specific mercury-free high pressure apparatus with sapphire windows, a phase sampling device and viscosity determination by the capillary tube method. Its application is illustrated here using examples of real fluids and model mixtures. This equipment was first used to measure volumetric properties for gases. It has been shown that very high compressibility factors can be found with HP-HT gas condensates. This has a strong influence on recovery factors during primary depletion. In order to predict more accurately the volumetric properties of mixtures under these conditions, we propose to use a conventional equation of state, such as Peng-Robinson, with two improvements :- a modified temperature-dependent volume translation method, calibrated for high pressure density data; the method is simple, more accurate than other volume translation methods and fully consistent with lumping procedures;- a quadratic mixing rule on the covolume. Specific phase behavior can also be found. At low temperatures, wax crystallization can occur from a fluid which is a gas condensate at reservoir temperature. This feature is due to the simultaneous presence of abundant methane and heavy paraffins. A study of model fluids in a sapphire cell has allowed us to identify the possible types of phase diagrams. Although generally not considered to be an important parameter, gas viscosity may have some importance in the production of HP-HT accumulations, because of high flow rates. Viscosity

  7. Limnological Conditions and Occurrence of Taste-and-Odor Compounds in Lake William C. Bowen and Municipal Reservoir #1, Spartanburg County, South Carolina, 2006-2009 (United States)

    Journey, Celeste A.; Arrington, Jane M.; Beaulieu, Karen M.; Graham, Jennifer L.; Bradley, Paul M.


    Limnological conditions and the occurrence of taste-and-odor compounds were studied in two reservoirs in Spartanburg County, South Carolina, from May 2006 to June 2009. Lake William C. Bowen and Municipal Reservoir #1 are relatively shallow, meso-eutrophic, warm monomictic, cascading impoundments on the South Pacolet River. Overall, water-quality conditions and phytoplankton community assemblages were similar between the two reservoirs but differed seasonally. Median dissolved geosmin concentrations in the reservoirs ranged from 0.004 to 0.006 microgram per liter. Annual maximum dissolved geosmin concentrations tended to occur between March and May. In this study, peak dissolved geosmin production occurred in April and May 2008, ranging from 0.050 to 0.100 microgram per liter at the deeper reservoir sites. Peak dissolved geosmin production was not concurrent with maximum cyanobacterial biovolumes, which tended to occur in the summer (July to August), but was concurrent with a peak in the fraction of genera with known geosmin-producing strains in the cyanobacteria group. Nonetheless, annual maximum cyanobacterial biovolumes rarely resulted in cyanobacteria dominance of the phytoplankton community. In both reservoirs, elevated dissolved geosmin concentrations were correlated to environmental factors indicative of unstratified conditions and reduced algal productivity, but not to nutrient concentrations or ratios. With respect to potential geosmin sources, elevated geosmin concentrations were correlated to greater fractions of genera with known geosmin-producing strains in the cyanobacteria group and to biovolumes of a specific geosmin-producing cyanobacteria genus (Oscillatoria), but not to actinomycetes concentrations. Conversely, environmental factors that correlated with elevated cyanobacterial biovolumes were indicative of stable water columns (stratified conditions), warm water temperatures, reduced nitrogen concentrations, longer residence times, and high

  8. Large reservoirs: Chapter 17 (United States)

    Miranda, Leandro E.; Bettoli, Phillip William


    expressed effects, such as turbidity and water quality, zooplankton density and size composition, or fish growth rates and assemblage composition, are the upshot of large-scale factors operating outside reservoirs and not under the direct control of reservoir managers. Realistically, abiotic and biotic conditions in reservoirs are shaped by factors working inside and outside reservoirs, with the relative importance of external factors differing among reservoirs. With this perspective, large reservoirs are viewed from a habitat standpoint within the framework of a conceptual model in which individual reservoir characteristics are influenced by both local- and landscape-scale factors (Figure 17.1). In the sections that follow, how each element of this hierarchical model influences habitat and fish assemblages in reservoirs is considered. Important in-reservoir habitat issues and reservoirs as part of larger systems, where reservoir management requires looking for real solutions outside individual reservoirs are described.


    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah


    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  10. An Experimental study of Fullerene (C60) Nano-fluids on Pool Boiling Conditions

    International Nuclear Information System (INIS)

    Melani, Ai; Shin, Byoong Su; Chang, Soon Heung


    Critical heat flux (CHF) is directly related to the performance of the system since CHF limits the heat transfer of a heat transfer system. Significant enhancement of CHF allows reliable operation of equipment with more margins to operational limit and more economic cost saving. The previous results show that the nano-fluids significantly enhanced pool boiling CHF compared to pure water. It was supposed that CHF enhancement was due to increased thermal conductivity of fluids, change of bubble shape and behavior, and nano-particle coating of the boiling surface. The previous researches also show that mainly the pool boiling experiment was employed metal particles. Fullerene (C 60 ) is a novel carbon allotrope that was first discovered in 1985 by a winner noble 'Sir Harold W.Kroto, Richard E. Smalley and Robert F.Curl Jr'. In this study we report the first CHF experiment in pool boiling conditions using Fullerene (C 60 ) nanofluids

  11. FULL GPU Implementation of Lattice-Boltzmann Methods with Immersed Boundary Conditions for Fast Fluid Simulations

    Directory of Open Access Journals (Sweden)

    G Boroni


    Full Text Available Lattice Boltzmann Method (LBM has shown great potential in fluid simulations, but performance issues and difficulties to manage complex boundary conditions have hindered a wider application. The upcoming of Graphic Processing Units (GPU Computing offered a possible solution for the performance issue, and methods like the Immersed Boundary (IB algorithm proved to be a flexible solution to boundaries. Unfortunately, the implicit IB algorithm makes the LBM implementation in GPU a non-trivial task. This work presents a fully parallel GPU implementation of LBM in combination with IB. The fluid-boundary interaction is implemented via GPU kernels, using execution configurations and data structures specifically designed to accelerate each code execution. Simulations were validated against experimental and analytical data showing good agreement and improving the computational time. Substantial reductions of calculation rates were achieved, lowering down the required time to execute the same model in a CPU to about two magnitude orders.

  12. Integrating SANS and fluid-invasion methods to characterize pore structure of typical American shale oil reservoirs. (United States)

    Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus


    An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.

  13. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir (United States)

    Toth, Elena


    The Ridracoli reservoir is the main drinking water supply reservoir serving the whole Romagna region, in Northern Italy. Such water supply system has a crucial role in an area where the different characteristics of the communities to be served, their size, the mass tourism and the presence of food industries highlight strong differences in drinking water needs. Its operation allows high quality drinking water supply to a million resident customers, plus a few millions of tourists during the summer of people and it reduces the need for water pumping from underground sources, and this is particularly important since the coastal area is subject also to subsidence and saline ingression into aquifers. The system experienced water shortage conditions thrice in the last decade, in 2002, in 2007 and in autumn-winter 2011-2012, when the reservoir water storage fell below the attention and the pre-emergency thresholds, thus prompting the implementation of a set of mitigation measures, including limitations to the population's water consumption. The reservoir receives water not only from the headwater catchment, closed at the dam, but also from four diversion watersheds, linked to the reservoir through an underground water channel. Such withdrawals are currently undersized, abstracting only a part of the streamflow exceeding the established minimum flows, due to the design of the water intake structures; it is therefore crucial understanding how the reservoir water availability might be increased through a fuller exploitation of the existing diversion catchment area. Since one of the four diversion catchment is currently ungauged (at least at the fine temporal scale needed for keeping into account the minimum flow requirements downstream of the intakes), the study first presents the set up and parameterisation of a continuous rainfall-runoff model at hourly time-step for the three gauged diversion watersheds and for the headwater catchment: a regional parameterisation

  14. Inversion of multicomponent seismic data and rock-physics intepretation for evaluating lithology, fracture and fluid distribution in heterogeneous anisotropic reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ilya Tsvankin; Kenneth L. Larner


    Within the framework of this collaborative project with the Lawrence Livermore National Laboratory (LLNL) and Stanford University, the Colorado School of Mines (CSM) group developed and implemented a new efficient approach to the inversion and processing of multicomponent, multiazimuth seismic data in anisotropic media. To avoid serious difficulties in the processing of mode-converted (PS) waves, we devised a methodology for transforming recorded PP- and PS-wavefields into the corresponding SS-wave reflection data that can be processed by velocity-analysis algorithms designed for pure (unconverted) modes. It should be emphasized that this procedure does not require knowledge of the velocity model and can be applied to data from arbitrarily anisotropic, heterogeneous media. The azimuthally varying reflection moveouts of the PP-waves and constructed SS-waves are then combined in anisotropic stacking-velocity tomography to estimate the velocity field in the depth domain. As illustrated by the case studies discussed in the report, migration of the multicomponent data with the obtained anisotropic velocity model yields a crisp image of the reservoir that is vastly superior to that produced by conventional methods. The scope of this research essentially amounts to building the foundation of 3D multicomponent, anisotropic seismology. We have also worked with the LLNL and Stanford groups on relating the anisotropic parameters obtained from seismic data to stress, lithology, and fluid distribution using a generalized theoretical treatment of fractured, poroelastic rocks.

  15. On Pressure Boundary Conditions for Steady Flows of Incompressible Fluids with Pressure and Shear Rate Dependent Viscosities

    Czech Academy of Sciences Publication Activity Database

    Lanzendörfer, Martin; Stebel, Jan


    Roč. 56, č. 3 (2011), s. 265-285 ISSN 0862-7940 R&D Projects: GA MŠk LC06052 Grant - others:GA ČR(CZ) GA201/06/0352 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10190503 Keywords : existence * weak solutions * incompressible fluids * non-Newtonian fluids * pressure dependent viscosity * shear dependent viscosity * inflow/outflow boundary conditions * pressure boundary conditions * filtration boundary conditions Subject RIV: BK - Fluid Dynamics Impact factor: 0.480, year: 2011

  16. Review on plasmas in extraordinary media: plasmas in cryogenic conditions and plasmas in supercritical fluids (United States)

    Stauss, Sven; Muneoka, Hitoshi; Terashima, Kazuo


    Plasma science and technology has enabled advances in very diverse fields: micro- and nanotechnology, chemical synthesis, materials fabrication and, more recently, biotechnology and medicine. While many of the currently employed plasma tools and technologies are very advanced, the types of plasmas used in micro- and nanofabrication pose certain limits, for example, in treating heat-sensitive materials in plasma biotechnology and plasma medicine. Moreover, many physical properties of plasmas encountered in nature, and especially outer space, i.e. very-low-temperature plasmas or plasmas that occur in high-density media, are not very well understood. The present review gives a short account of laboratory plasmas generated under ’extreme’ conditions: at cryogenic temperatures and in supercritical fluids. The fundamental characteristics of these cryogenic plasmas and cryoplasmas, and plasmas in supercritical fluids, especially supercritical fluid plasmas, are presented with their main applications. The research on such exotic plasmas is expected to lead to further understanding of plasma physics and, at the same time, enable new applications in various technological fields.

  17. A Review of Critical Conditions for the Onset of Nonlinear Fluid Flow in Rock Fractures

    Directory of Open Access Journals (Sweden)

    Liyuan Yu


    Full Text Available Selecting appropriate governing equations for fluid flow in fractured rock masses is of special importance for estimating the permeability of rock fracture networks. When the flow velocity is small, the flow is in the linear regime and obeys the cubic law, whereas when the flow velocity is large, the flow is in the nonlinear regime and should be simulated by solving the complex Navier-Stokes equations. The critical conditions such as critical Reynolds number and critical hydraulic gradient are commonly defined in the previous works to quantify the onset of nonlinear fluid flow. This study reviews the simplifications of governing equations from the Navier-Stokes equations, Stokes equation, and Reynold equation to the cubic law and reviews the evolutions of critical Reynolds number and critical hydraulic gradient for fluid flow in rock fractures and fracture networks, considering the influences of shear displacement, normal stress and/or confining pressure, fracture surface roughness, aperture, and number of intersections. This review provides a reference for the engineers and hydrogeologists especially the beginners to thoroughly understand the nonlinear flow regimes/mechanisms within complex fractured rock masses.

  18. Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, M., E-mail: [School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad 44000 (Pakistan); Khan, Junaid Ahmad [Research Centre for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), Islamabad 44000 (Pakistan); Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Alsaedi, A. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)


    In this paper we address the flow of Maxwell fluid due to constantly moving flat radiative surface with convective condition. The flow is under the influence of non-uniform transverse magnetic field. The velocity and temperature distributions have been evaluated numerically by shooting approach. The solution depends on various interesting parameters including local Deborah number De, magnetic field parameter M, Prandtl number Pr and Biot number Bi. We found that variation in velocity with an increase in local Deborah number De is non-monotonic. However temperature is a decreasing function of local Deborah number De.

  19. Numerical Simulations of Fluid Flow in a Single Fracture under Loading and Unloading Conditions (United States)

    Kling, T.; Huo, D.; Schwarz, J. O.; Enzmann, F.; Blum, P.; Benson, S. M.


    Hydraulic aperture is one of the most important parameters to describe fluid flow in fractured rocks. Hydraulic apertures are typically determined indirectly by fluid flow experiments or hydraulic field tests based on the cubic law. Alternatively, there are different equations approximating an empirical relation between mechanical and hydraulic aperture. However, these methods most widely neglect mechanisms such as stress changes, where increasing stresses decrease the mechanical aperture and, therefore, also the effective hydraulic aperture. Hence, the objective of the present study is to simulate fluid flow in a single fracture under loading/unloading conditions and validate the results with core flooding experiments. Core flooding data and X-ray CT scans (voxel size 0.5 x 0.5 x 1 mm) of a sandstone sample with a single fracture (measured mean aperture of around 0.1 mm) were obtained by laboratory experiments. The fluid flow simulations are performed by solving the incompressible Navier-Stokes equation by using a finite volume method. Input data are given by experimental flow rates, pressures, applied stress levels and CT images of the fracture. In addition, an error analysis is performed to establish confidence in results. Results of the validation exhibit significant effects of stress on aperture distribution such as channeling and stress-dependent fracture permeability. A significant stress sensitivity of hydraulic aperture compared to the mechanical aperture was found, which can be explained by roughness changes resulting from loading. Observations indicate that with increasing stress, changes in mechanical aperture are small, while changes in hydraulic aperture can be very large. Since previous equations for hydraulic aperture do not consider changes in normal stress, a modification of these equations is proposed, including the stress-dependency of mechanical apertures to provide a better approximation to the observed hydraulic apertures.

  20. Assessment of managed aquifer recharge at Sand Hollow Reservoir, Washington County, Utah, updated to conditions through 2007 (United States)

    Heilweil, Victor M.; Ortiz, Gema; Susong, David D.


    Sand Hollow Reservoir in Washington County, Utah, was completed in March 2002 and is operated primarily as an aquifer storage and recovery project by the Washington County Water Conservancy District (WCWCD). Since its inception in 2002 through 2007, surface-water diversions of about 126,000 acre-feet to Sand Hollow Reservoir have resulted in a generally rising reservoir stage and surface area. Large volumes of runoff during spring 2005-06 allowed the WCWCD to fill the reservoir to a total storage capacity of more than 50,000 acre-feet, with a corresponding surface area of about 1,300 acres and reservoir stage of about 3,060 feet during 2006. During 2007, reservoir stage generally decreased to about 3,040 feet with a surface-water storage volume of about 30,000 acre-feet. Water temperature in the reservoir shows large seasonal variation and has ranged from about 3 to 30 deg C from 2003 through 2007. Except for anomalously high recharge rates during the first year when the vadose zone beneath the reservoir was becoming saturated, estimated ground-water recharge rates have ranged from 0.01 to 0.09 feet per day. Estimated recharge volumes have ranged from about 200 to 3,500 acre-feet per month from March 2002 through December 2007. Total ground-water recharge during the same period is estimated to have been about 69,000 acre-feet. Estimated evaporation rates have varied from 0.04 to 0.97 feet per month, resulting in evaporation losses of 20 to 1,200 acre-feet per month. Total evaporation from March 2002 through December 2007 is estimated to have been about 25,000 acre-feet. Results of water-quality sampling at monitoring wells indicate that by 2007, managed aquifer recharge had arrived at sites 37 and 36, located 60 and 160 feet from the reservoir, respectively. However, different peak arrival dates for specific conductance, chloride, chloride/bromide ratios, dissolved oxygen, and total dissolved-gas pressures at each monitoring well indicate the complicated nature of

  1. Quantification of oil recovery efficiency, CO 2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs

    DEFF Research Database (Denmark)

    Seyyedi, Mojtaba; Sohrabi, Mehran; Sisson, Adam


    Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (...... for oil recovery and CO2 storage potential on heterogeneous cores. Since not all the oil reservoirs are homogenous, understanding the potential of CWI as an integrated EOR and CO2 storage scenario in heterogeneous oil reservoirs is essential.......Significant interest exists in improving recovery from oil reservoirs while addressing concerns about increasing CO2 concentrations in the atmosphere. The combination of Enhanced Oil Recovery (EOR) and safe geologic storage of CO2 in oil reservoirs is appealing and can be achieved by carbonated (CO...

  2. Modification of the Riemann problem and the application for the boundary conditions in computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Kyncl Martin


    Full Text Available We work with the system of partial differential equations describing the non-stationary compressible turbulent fluid flow. It is a characteristic feature of the hyperbolic equations, that there is a possible raise of discontinuities in solutions, even in the case when the initial conditions are smooth. The fundamental problem in this area is the solution of the so-called Riemann problem for the split Euler equations. It is the elementary problem of the one-dimensional conservation laws with the given initial conditions (LIC - left-hand side, and RIC - right-hand side. The solution of this problem is required in many numerical methods dealing with the 2D/3D fluid flow. The exact (entropy weak solution of this hyperbolical problem cannot be expressed in a closed form, and has to be computed by an iterative process (to given accuracy, therefore various approximations of this solution are being used. The complicated Riemann problem has to be further modified at the close vicinity of boundary, where the LIC is given, while the RIC is not known. Usually, this boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but these have a huge impact on the solution in the whole studied area, especially for the non-stationary flow. Using the thorough analysis of the Riemann problem we show, that the RIC for the local problem can be partially replaced by the suitable complementary conditions. We suggest such complementary conditions accordingly to the desired preference. This way it is possible to construct the boundary conditions by the preference of total values, by preference of pressure, velocity, mass flow, temperature. Further, using the suitable complementary conditions, it is possible to simulate the flow in the vicinity of the diffusible barrier. On the contrary to the initial-value Riemann problem, the solution of such modified problems can be written in the closed form for some

  3. No measurable adverse effects of Lassa, Morogoro and Gairo arenaviruses on their rodent reservoir host in natural conditions

    Czech Academy of Sciences Publication Activity Database

    Mariën, J.; Borremans, B.; Gryseels, S.; Soropogui, B.; De Bruyn, L.; Ngiala Bongo, G.; Becker-Ziaja, B.; Goüy de Bellocq, Joëlle; Günther, S.; Magassouba, N.; Leirs, H.; Fichet-Calvet, E.


    Roč. 10, č. 1 (2017), č. článku 210. ISSN 1756-3305 Institutional support: RVO:68081766 Keywords : Arenavirus * Lassa virus * Morogoro virus * Gairo virus * Mastomys natalensis * Rodent-borne disease * Host-pathogen interaction * Reservoir host Subject RIV: EG - Zoology OBOR OECD: Parasitology Impact factor: 3.080, year: 2016

  4. Second order bounce back boundary condition for the lattice Boltzmann fluid simulation

    International Nuclear Information System (INIS)

    Kim, In Chan


    A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method

  5. Investigation of oil-pool formation from the homogenization temperatures of fluid inclusions and biomarkers in reservoir rocks: a genetic model for the Deng-2 oil-pool in the Jiyuan Depression

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Weiwei [Geochemical Institute of Chinese Academy, Guizhou (China); University of Petroleum, Shandong (China); Li Zhaoyang [University of Petroleum, Shandong (China); Jin Qiang; Wang Weifeng [Geochemical Institute of Chinese Academy, Guizhou (China)


    The Jiyuan Depression is a frontier area for oil and gas exploration in Henan Province, China. In recent years, oil was discovered in the Deng-2 well in the lower Tertiary, though the tectonics and petroleum geology of the Depression are very complex. A series of experiments on fluid inclusions in the oil-bearing sandstones from the Deng-2 well were made that included measurement of the homogenization temperatures of gas-liquid inclusions and GC-MS analysis of biomarkers either in the sandstone pores or in the fluid inclusions. The Deng-2 oil-reservoir was formed at about 78{sup o}C, corresponding to a burial depth of about 2200 m. The present burial depth is about 700 m because of erosion and fault-block uplift in Oligocene time. Although oil in the sandstone pores is now heavily biodegraded, the biomarkers in the inclusions show slight biodegradation representing a watering and biodegradation process that did not occur before formation of the Deng-2 oil- pool. Having investigated the structural evolution of the Deng-2 trap, it is concluded that the oil discovered in the Tertiary reservoir of Deng-2 well migrated from Mesozoic reservoirs through active faults around the Deng-2 trap. As the oil migrated from the Mesozoic to the Tertiary reservoir, the Deng-2 trap was uplifted close to the depth of active biodegradation (subsurface temperature lower than 80{sup o}C and to a burial depth shallower than 2250 m from the thermal gradient of 3.1{sup o}C/100 m) so that the oil in the inclusions shows a slight biodegradation. Because of the continuous uplift of the Deng-2 trap during the Tertiary and Quaternary, the reservoired oil has been more heavily biodegraded compared to that in the inclusions. (author)

  6. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Yutian Luo


    Full Text Available This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

  7. Measuring Coupled Rock/Pore-Fluid Interaction in Volcanic Rock under Simulated Volcano- Tectonic Conditions (United States)

    Benson, P. M.; Vinciguerra, S.; Meredith, P. G.; Young, R. P.


    suggest that LF events in volcanic areas are likely to be generated through the interaction of hydrothermal fluids moving through a combination of pre-existing microcrack networks and larger faults, such as those we observe in forensic examination; and that volcanic tremor is likely to be enhanced by elevated temperature conditions leading to phase change in magmatic fluids.

  8. Two-phase flow visualization under reservoir conditions for highly heterogeneous conglomerate rock: A core-scale study for geologic carbon storage. (United States)

    Kim, Kue-Young; Oh, Junho; Han, Weon Shik; Park, Kwon Gyu; Shinn, Young Jae; Park, Eungyu


    Geologic storage of carbon dioxide (CO 2 ) is considered a viable strategy for significantly reducing anthropogenic CO 2 emissions into the atmosphere; however, understanding the flow mechanisms in various geological formations is essential for safe storage using this technique. This study presents, for the first time, a two-phase (CO 2 and brine) flow visualization under reservoir conditions (10 MPa, 50 °C) for a highly heterogeneous conglomerate core obtained from a real CO 2 storage site. Rock heterogeneity and the porosity variation characteristics were evaluated using X-ray computed tomography (CT). Multiphase flow tests with an in-situ imaging technology revealed three distinct CO 2 saturation distributions (from homogeneous to non-uniform) dependent on compositional complexity. Dense discontinuity networks within clasts provided well-connected pathways for CO 2 flow, potentially helping to reduce overpressure. Two flow tests, one under capillary-dominated conditions and the other in a transition regime between the capillary and viscous limits, indicated that greater injection rates (potential causes of reservoir overpressure) could be significantly reduced without substantially altering the total stored CO 2 mass. Finally, the capillary storage capacity of the reservoir was calculated. Capacity ranged between 0.5 and 4.5%, depending on the initial CO 2 saturation.


    Energy Technology Data Exchange (ETDEWEB)

    Jack Bergeron; Tom Blasingame; Louis Doublet; Mohan Kelkar; George Freeman; Jeff Callard; David Moore; David Davies; Richard Vessell; Brian Pregger; Bill Dixon; Bryce Bezant


    Reservoir performance and characterization are vital parameters during the development phase of a project. Infill drilling of wells on a uniform spacing, without regard to characterization does not optimize development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, especially carbonate reservoirs. These reservoirs are typically characterized by: (1) large, discontinuous pay intervals; (2) vertical and lateral changes in reservoir properties; (3) low reservoir energy; (4) high residual oil saturation; and (5) low recovery efficiency. The operational problems they encounter in these types of reservoirs include: (1) poor or inadequate completions and stimulations; (2) early water breakthrough; (3) poor reservoir sweep efficiency in contacting oil throughout the reservoir as well as in the nearby well regions; (4) channeling of injected fluids due to preferential fracturing caused by excessive injection rates; and (5) limited data availability and poor data quality. Infill drilling operations only need target areas of the reservoir which will be economically successful. If the most productive areas of a reservoir can be accurately identified by combining the results of geological, petrophysical, reservoir performance, and pressure transient analyses, then this ''integrated'' approach can be used to optimize reservoir performance during secondary and tertiary recovery operations without resorting to ''blanket'' infill drilling methods. New and emerging technologies such as geostatistical modeling, rock typing, and rigorous decline type curve analysis can be used to quantify reservoir quality and the degree of interwell communication. These results can then be used to develop a 3-D simulation model for prediction of infill locations. The application of reservoir surveillance techniques to identify additional reservoir ''pay'' zones

  10. Considerations of blood properties, outlet boundary conditions and energy loss approaches in computational fluid dynamics modeling. (United States)

    Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang


    Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.

  11. The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption (United States)

    Wehrmann, Heidi; Freundt, Armin; Kutterolf, Steffen


    Upper Apoyeque Tephra (UAq) was formed by a rhyodacitic plinian eruption in west-central Nicaragua at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate delimitation of the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lava lithic clasts in San Isidro Tephra together form a differentiation trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque stratovolcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria and fluid inclusions in plagioclase indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ˜24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicates rapid magma ascent to the shallower reservoir at ˜5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ˜830 °C. Water concentrations were ˜5.5 wt.% as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered by injection of a hotter, more primitive melt into a water-supersaturated reservoir.

  12. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. (United States)

    Jansen, I G H; Schneiders, J J; Potters, W V; van Ooij, P; van den Berg, R; van Bavel, E; Marquering, H A; Majoie, C B L M


    Attempts have been made to associate intracranial aneurysmal hemodynamics with aneurysm growth and rupture status. Hemodynamics in aneurysms is traditionally determined with computational fluid dynamics by using generalized inflow boundary conditions in a parent artery. Recently, patient-specific inflow boundary conditions are being implemented more frequently. Our purpose was to compare intracranial aneurysm hemodynamics based on generalized versus patient-specific inflow boundary conditions. For 36 patients, geometric models of aneurysms were determined by using 3D rotational angiography. 2D phase-contrast MR imaging velocity measurements of the parent artery were performed. Computational fluid dynamics simulations were performed twice: once by using patient-specific phase-contrast MR imaging velocity profiles and once by using generalized Womersley profiles as inflow boundary conditions. Resulting mean and maximum wall shear stress and oscillatory shear index values were analyzed, and hemodynamic characteristics were qualitatively compared. Quantitative analysis showed statistically significant differences for mean and maximum wall shear stress values between both inflow boundary conditions (P computational fluid dynamics results in different wall shear stress magnitudes and hemodynamic characteristics. Generalized inflow boundary conditions result in more vortices and inflow jet instabilities. This study emphasizes the necessity of patient-specific inflow boundary conditions for calculation of hemodynamics in cerebral aneurysms by using computational fluid dynamics techniques. © 2014 by American Journal of Neuroradiology.

  13. The effect of antimicrobials on verocytotoxin bacteriophage transduction under bovine rumen fluid and broth conditions

    Directory of Open Access Journals (Sweden)

    Nyambe S.


    Full Text Available The verocytotoxin genes in verocytotoxigenic Escherichia coli (VTEC are carried by bacteriophages, incorporated into the bacterial genome (prophage. Antibiotics may promote phage replication and release to infect other cells (transduction, thus leading to the emergence of new VTEC strains. This study investigated transduction of a verocytotoxin2-encoding bacteriophage (3538(vtx2::cat under laboratory conditions, including the effect of antibiotic treatments. Luria-Bertani Miller broth and rumen fluid (raw and sterilised by irradiation were inoculated with the donor (C600φ3538(Δvtx2::cat and recipient (E. coli C600::kanamycinR strains (4 log10 cfu/mL and incubated at 38°C. Antibiotic treatments (minimal inhibitory and sub-inhibitory concentrations of ampicillin, cefquinome, oxytetracycline and sodium sulfamethazine were applied after 3 h. Samples were tested for donor, recipient, cell-free phage and transductants at times t = 0, 3, 4, 6, 27 (24 h post-antibiotic treatment and 51 h. Free phage was detected in the untreated broth and rumen samples, as were the transductants confirmed by polymerase chain reaction. The antibiotic treatments did not significantly (P > 0.01 increase the concentrations of free phage or transductants detected. It was therefore concluded that, under laboratory conditions, the antibiotics tested did not induce bacteriophage lysis, release and infection of new bacterial cells beyond that constitutively found in the phage population.

  14. Evolution of the Petrophysical and Mineralogical Properties of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth

    International Nuclear Information System (INIS)

    Rimmel, G.; Barlet-Gouedard, V.; Renard, F.


    Injection of carbon dioxide (CO 2 ) underground, for long-term geological storage purposes, is considered as an economically viable option to reduce greenhouse gas emissions in the atmosphere. The chemical interactions between supercritical CO 2 and the potential reservoir rock need to be thoroughly investigated under thermodynamic conditions relevant for geological storage. In the present study, 40 samples of Lavoux limestone and Adamswiller sandstone, both collected from reservoir rocks in the Paris basin, were experimentally exposed to CO 2 in laboratory autoclaves specially built to simulate CO 2 -storage-reservoir conditions. The two types of rock were exposed to wet supercritical CO 2 and CO 2 -saturated water for one month, at 28 MPa and 90 C, corresponding to conditions for a burial depth approximating 3 km. The changes in mineralogy and micro-texture of the samples were measured using X-ray diffraction analyses, Raman spectroscopy, scanning-electron microscopy, and energy-dispersion spectroscopy microanalysis. The petrophysical properties were monitored by measuring the weight, density, mechanical properties, permeability, global porosity, and local porosity gradients through the samples. Both rocks maintained their mechanical and mineralogical properties after CO 2 exposure despite an increase of porosity and permeability. Microscopic zones of calcite dissolution observed in the limestone are more likely to be responsible for such increase. In the sandstone, an alteration of the petro-fabric is assumed to have occurred due to clay minerals reacting with CO 2 . All samples of Lavoux limestone and Adamswiller sandstone showed a measurable alteration when immersed either in wet supercritical CO 2 or in CO 2 -saturated water. These batch experiments were performed using distilled water and thus simulate more severe conditions than using formation water (brine). (authors)

  15. Well testing in gas hydrate reservoirs


    Kome, Melvin Njumbe


    Reservoir testing and analysis are fundamental tools in understanding reservoir hydraulics and hence forecasting reservoir responses. The quality of the analysis is very dependent on the conceptual model used in investigating the responses under different flowing conditions. The use of reservoir testing in the characterization and derivation of reservoir parameters is widely established, especially in conventional oil and gas reservoirs. However, with depleting conventional reserves, the ...

  16. Thermodynamic evolution of the Los Azufres, Mexico, geothermal reservoir from 1982 to 2002

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Victor Manuel; Barragan, Rosa Maria [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Reforma 113, Col. Palmira, 62490 Cuernavaca, Morelos (Mexico); Torres, Marco Antonio [Comision Federal de Electricidad, Residencia Los Azufres, Campamento Agua Fria, Los Azufres, Michoacan (Mexico)


    An investigation has been made of the response of the Los Azufres geothermal reservoir to 20 years of development, beginning in 1982. The simulator WELFLO was used to characterize the thermodynamic conditions of the reservoir fluids. The first response to exploitation consisted of a decrease in pressure and an increase in enthalpy. Small decreases in reservoir pressure associated with large increases in fluid enthalpy characterize the long-term response in the northern production area. In the southern production area, long-term changes include decreases in pressure and mass flow rate, increases in steam production and, in wells affected by injection, increases in both pressure and total mass flow rate. These changes reflect the effects of boiling, cooling and fluid mixing, processes resulting from large-scale fluid production. (author)

  17. Performance analysis and comparison of an Atkinson cycle coupled to variable temperature heat reservoirs under maximum power and maximum power density conditions

    International Nuclear Information System (INIS)

    Wang, P.-Y.; Hou, S.-S.


    In this paper, performance analysis and comparison based on the maximum power and maximum power density conditions have been conducted for an Atkinson cycle coupled to variable temperature heat reservoirs. The Atkinson cycle is internally reversible but externally irreversible, since there is external irreversibility of heat transfer during the processes of constant volume heat addition and constant pressure heat rejection. This study is based purely on classical thermodynamic analysis methodology. It should be especially emphasized that all the results and conclusions are based on classical thermodynamics. The power density, defined as the ratio of power output to maximum specific volume in the cycle, is taken as the optimization objective because it considers the effects of engine size as related to investment cost. The results show that an engine design based on maximum power density with constant effectiveness of the hot and cold side heat exchangers or constant inlet temperature ratio of the heat reservoirs will have smaller size but higher efficiency, compression ratio, expansion ratio and maximum temperature than one based on maximum power. From the view points of engine size and thermal efficiency, an engine design based on maximum power density is better than one based on maximum power conditions. However, due to the higher compression ratio and maximum temperature in the cycle, an engine design based on maximum power density conditions requires tougher materials for engine construction than one based on maximum power conditions

  18. Gas geochemistry for the Los Azufres (Michoacán geothermal reservoir, México

    Directory of Open Access Journals (Sweden)

    N. Segovia


    Full Text Available Gas data of the Los Azufres geothermal field were analyzed using a method based on equilibrium of the Fischer- Tropsch (FT reaction: CH4 + 2H2O = 4H2 +CO2 and on the combined pyrite-hematite-magnetite (HSH2 reactions: 5/4 H2 +3/2 FeS2 +3/4 Fe2O3 + 7/4 H2O = 3 H2S +Fe3O4 in order to estimate reservoir temperature and excess steam. The solution of equilibrium equations produces a grid (FT-HSH2. This method is suitable for reservoirs with relatively high H2S but low H2 and NH3 concentrations in the fluid as is the case of the Los Azufres well discharges. Reservoir temperature and reservoir excess steam values were estimated for initial and present conditions in representative wells of the field to study the evolution of fluids, because of exploitation and waste fluids reinjection. This method was very useful in estimating reservoir temperatures in vapor wells, while in two-phase wells it was found that as the well produces a smaller fraction of water, the reservoir temperature estimation agrees qualitatively with results from cationic or silica geothermometers. For liquid-dominated wells the reservoir temperature estimations agree with temperatures obtained from the well simulator WELFLO. This indicates that FT-HSH2 results provide the temperature of the fluid entering the well where the last equilibrium occurs. Results show a decrease in reservoir temperatures in the southern zone of the field where intensive reinjection takes place. With exploitation, it was also noted that the deep liquid phase in the reservoir is changing to two-phase increasing the reservoir steam fraction and the non-condensable gases in well discharges.

  19. The effect of transient conditions on synovial fluid protein aggregation lubrication. (United States)

    Myant, Connor William; Cann, Philippa


    Little is known about the prevailing lubrication mechanisms in artificial articular joints and the way in which these mechanisms determine implant performance. The authors propose that interfacial film formation is determined by rheological changes local to the contact and is driven by aggregation of synovial fluid proteins within the contact inlet region. A direct relationship between contact film thickness and size of the protein aggregation within the inlet region has been observed. In this paper the latest experimental observations of the protein aggregation mechanism are presented for conditions which more closely mimic joint kinematics and loading. Lubricant films were measured for a series of bovine calf serum solutions for CoCrMo femoral component sliding against a glass disc. An optical interferometric apparatus was employed to study the effects of transient motion on lubricant film formation. Central film thickness was measured as a function of time for a series of transient entrainment conditions; start-up motion, steady-state and non-steady-state uni-directional sliding, and bi-directional sliding. The size of the inlet aggregations was found to be dependent upon the type of transient condition. Thick protective protein films were observed to build up within the main contact region for all uni-directional tests. In contrast the inlet aggregation was not observed for bi-directional tests. Contact film thickness and wear was found to be directly proportional to the presence of the inlet protein phase. The inlet phase and contact films were found to be fragile when disrupted by surface scratches or subjected to reversal of the sliding direction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Transient computational fluid dynamics analysis of emergency core cooling injection at natural circulation conditions

    International Nuclear Information System (INIS)

    Scheuerer, Martina; Weis, Johannes


    Highlights: ► Pressurized thermal shocks are important phenomena for plant life extension and aging. ► The thermal-hydraulics of PTS have been studied experimentally and numerically. ► In the Large Scale Test Facility a loss of coolant accident was investigated. ► CFD software is validated to simulate the buoyancy driven flow after ECC injection. - Abstract: Within the framework of the European Nuclear Reactor Integrated Simulation Project (NURISP), computational fluid dynamics (CFD) software is validated for the simulation of the thermo-hydraulics of pressurized thermal shocks. A proposed validation experiment is the test series performed within the OECD ROSA V project in the Large Scale Test Facility (LSTF). The LSTF is a 1:48 volume-scaled model of a four-loop Westinghouse pressurized water reactor (PWR). ROSA V Test 1-1 investigates temperature stratification under natural circulation conditions. This paper describes calculations which were performed with the ANSYS CFD software for emergency core cooling injection into one loop at single-phase flow conditions. Following the OECD/NEA CFD Best Practice Guidelines (Mahaffy, 2007) the influence of grid resolution, discretisation schemes, and turbulence models (shear stress transport and Reynolds stress model) on the mixing in the cold leg were investigated. A half-model was used for these simulations. The transient calculations were started from a steady-state solution at natural circulation conditions. The final calculations were obtained in a complete model of the downcomer. The results are in good agreement with data.

  1. Successive Bifurcation Conditions of a Lorenz-Type Equation for the Fluid Convection Due to the Transient Thermal Field

    Directory of Open Access Journals (Sweden)

    Xiaoling He


    Full Text Available This paper investigates the convection flow between the two parallel plates in a fluid cell subject to the transient thermal field. We use the modal approximations similar to that of the original Lorenz model to obtain a generalized Lorenz-type model for the flow induced by the transient thermal field at the bottom plate. This study examines the convection flow bifurcation conditions in relation to the transient temperature variations and the flow properties. We formulated successive bifurcation conditions and illustrated the various flow behaviors and their steady-state attractors affected by the thermal field functions and fluid properties.

  2. Reservoir management

    International Nuclear Information System (INIS)

    Satter, A.; Varnon, J.E.; Hoang, M.T.


    A reservoir's life begins with exploration leading to discovery followed by delineation of the reservoir, development of the field, production by primary, secondary and tertiary means, and finally to abandonment. Sound reservoir management is the key to maximizing economic operation of the reservoir throughout its entire life. Technological advances and rapidly increasing computer power are providing tools to better manage reservoirs and are increasing the gap between good and neutral reservoir management. The modern reservoir management process involves goal setting, planning, implementing, monitoring, evaluating, and revising plans. Setting a reservoir management strategy requires knowledge of the reservoir, availability of technology, and knowledge of the business, political, and environmental climate. Formulating a comprehensive management plan involves depletion and development strategies, data acquisition and analyses, geological and numerical model studies, production and reserves forecasts, facilities requirements, economic optimization, and management approval. This paper provides management, engineers geologists, geophysicists, and field operations staff with a better understanding of the practical approach to reservoir management using a multidisciplinary, integrated team approach

  3. Hotwater Geochemistry for Interpreting The Condition of Geothermal Reservoir, Dieng Plateau Case, Banjarnegara-Wonosobo Regency, Central Java

    Directory of Open Access Journals (Sweden)

    Yuris Ramadhan


    Full Text Available DOI: 10.17014/ijog.v8i2.158The researched area, located in the Dieng Plateau, is included into the Holocene Dieng Volcanic Rock Unit. The regional structure in this area is originated from the major caldera with local fault having orientation of SE - NW. Surface manifestations found in the researched area are hot springs located in Bitingan, Sileri, Siglagah, Pulosari, Kaliputih, and Sikidang. Fumaroles occur in Candradimuka and Pagerkandang and mud pools are located in Sileri and Sikidang craters. Temperatures of the hot springs ranges from 43 C to 61 C, pH of 6 - 7, and their conductivity are of 38-78 MeV. The type of hotwater is a mixture of bicarbonate, sulfate, and chloride sulfate deriving from condensation of steam. Based on a relative composition of Cl-Li-B, the hot water is originated from four different reservoirs with different rock associations, while their reservoir temperatures vary from 225 C to 300 C.

  4. Infection of Siberian chipmunks (Tamias sibiricus barberi) with Borrelia sp. reveals a low reservoir competence under experimental conditions. (United States)

    Bonnet, Sarah; Choumet, Valérie; Masseglia, Sébastien; Cote, Martine; Ferquel, Elisabeth; Lilin, Thomas; Marsot, Maud; Chapuis, Jean-Louis; Vourc'h, Gwenaël


    Reservoir competence is a key parameter in understanding the role of host species in the epidemiology of multi-host-especially vector-borne-pathogens. With this aim in view, we studied the reservoir competence of the Siberian chipmunk (Tamias sibiricus barberi) recently introduced into Europe, for the multi-host tick-borne bacteria, Borrelia burgdorferi sl, the agent of Lyme borreliosis. T. sibiricus were experimentally exposed to bites from Ixodes ricinus ticks infected with Borrelia burgdorferi sensu stricto and Borrelia afzelii, with subsequent assessment of bacteremia and antibody responses. Borrelia was detected in chipmunk blood samples, ear biopsies and organ necropsies, and in nymphs used for xenodiagnosis (at one and six months after the initial chipmunk infection) via both serological and molecular methods. In total, eight out of twelve chipmunks showed evidence of infection by Borrelia sp., either by ELISA or PCR. Five chipmunks developed an immune response against the bacteria one month after infection. Borrelia infection in at least one organ was observed in seven animals at 14, 38, 93 or 178 days post-infection. Xenodiagnosis was positive for one chipmunk at 38 days, but no longer at 178 days post-infection. Four chipmunks remained uninfected, despite similar infection pressures to those observed in the field. Taken together, these results suggest that chipmunks can be infected through Borrelia-infected tick bites, and can transmit Borrelia to nymphs, but do not remain persistently infected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  5. Efficient and selective chemical transformations under flow conditions: The combination of supported catalysts and supercritical fluids. (United States)

    Burguete, M Isabel; García-Verdugo, Eduardo; Luis, Santiago V


    This paper reviews the current trends in the combined use of supported catalytic systems, either on solid supports or in liquid phases and supercritical fluids (scFs), to develop selective and enantioselective chemical transformations under continuous and semi-continuous flow conditions. The results presented have been selected to highlight how the combined use of those two elements can contribute to: (i) Significant improvements in productivity as a result of the enhanced diffusion of substrates and reagents through the interfaces favored by the scF phase; (ii) the long term stability of the catalytic systems, which also contributes to the improvement of the final productivity, as the use of an appropriate immobilization strategy facilitates catalyst isolation and reuse; (iii) the development of highly efficient selective or, when applicable, enantioselective chemical transformations. Although the examples reported in the literature and considered in this review are currently confined to a limited number of fields, a significant development in this area can be envisaged for the near future due to the clear advantages of these systems over the conventional ones.

  6. Flow and heat transfer in Sisko fluid with convective boundary condition. (United States)

    Malik, Rabia; Khan, Masood; Munir, Asif; Khan, Waqar Azeem


    In this article, we have studied the flow and heat transfer in Sisko fluid with convective boundary condition over a nonisothermal stretching sheet. The flow is influenced by non-linearly stretching sheet in the presence of a uniform transverse magnetic field. The partial differential equations governing the problem have been reduced by similarity transformations into the ordinary differential equations. The transformed coupled ordinary differential equations are then solved analytically by using the homotopy analysis method (HAM) and numerically by the shooting method. Effects of different parameters like power-law index n, magnetic parameter M, stretching parameter s, generalized Prandtl number Pr and generalized Biot number γ are presented graphically. It is found that temperature profile increases with the increasing value of M and γ whereas it decreases for Pr. Numerical values of the skin-friction coefficient and local Nusselt number are tabulated at various physical situations. In addition, a comparison between the HAM and exact solutions is also made as a special case and excellent agreement between results enhance a confidence in the HAM results.

  7. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions. (United States)

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab


    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  8. Momentum and heat transfer of an upper-convected Maxwell fluid over a moving surface with convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia); Iqbal, Z., E-mail: [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Mustafa, M. [Research Centre for Modeling and Simulation, National University of Sciences and Technology, Sector H-12, Islamabad 44000 (Pakistan); Alsaedi, A. [Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80257, Jeddah 21589 (Saudi Arabia)


    Highlights: Black-Right-Pointing-Pointer Boundary layer flow of an upper-convected Maxwell (UCM) fluid over a moving surface. Black-Right-Pointing-Pointer Convective boundary conditions have been used. Black-Right-Pointing-Pointer Series solutions are obtained by homotopy analysis method (HAM). Black-Right-Pointing-Pointer Graphical results for various interesting parametric values. - Abstract: This study discusses the flow and heat transfer in an upper-convected Maxwell (UCM) fluid over a moving surface in the presence of a free stream velocity. The convective boundary conditions have been handled. Similarly transformations are invoked to convert the partial differential equations governing the steady flow of a Maxwell fluid into an ordinary differential system. This system is solved by a homotopic approach. The effects of influential parameters such as Deborah number ({beta}), Prandtl number (Pr), Eckert number (Ec), suction parameter (S) and ratio ({lambda}) have been thoroughly examined.


    Directory of Open Access Journals (Sweden)

    S. V. Melnikova


    Full Text Available Amylolytic activity indicators of oral liquid of dentists in different conditions of professional activity at outpatient dental care and lectures have been studied. We observed an increase in amylolytic activity of oral liquid of dentists men and women after outpatient dental care, that indicates the activation of the sympathetic-adrenal system in response to the professional stress. We also identified the gender-specific response to the α-amylase load in professional dentists: male amylolytic activity of oral fluid was higher than female. In the group of male and female dentist cadets we registered the decrease of amylolytic activity of oral fluid. The correlation analysis revealed a negative relationship between the level of α-amylase and rigidity in a group of male dentists. We suggested that male dentists reduced their adaptation to the psychosocial conditions under job stress. Keywords: dentist, professional activity, professional stress, outpatient dental care, lectures, amylolytic activity of oral fluid.

  10. Radioimmunoassay of the myelin basic protein in biological fluids, conditions improving sensitivity and specificity

    International Nuclear Information System (INIS)

    Delassalle, A.; Jacque, C.; Raoul, M.; Legrand, J.C.; Cesselin, F.; Drouet, J.


    The radioimmunoassay (RIA) for myelin basic protein (MBP) in biological fluids was reassessed in order to improve its sensitivity and eliminate some interferences. By using the pre-incubation technique and the charcoal-dextram-horse serum mixture for the separation step, the detection limit could be lowered to 200 pg/ml for cerebrospinal fluids (CSF), amniotic fluids (AF) and nervous tissue extracts and 600 pg/ml for sera. The RIA could be used directly on CSF, AF and nervous tissue extracts. Sera, however, had to be heated in citrate buffer at 100 0 C in order to discard interfering material. The present method is 10 to 20 times more sensitive than others previously published. Moreover, it can be applied to amniotic fluid. The biological fluids had to be promptly frozen to avoid degradation of MBP

  11. Hydrological and environmental conditions as key drivers for spatial and seasonal changes in PCDD/PCDF concentrations, transport and deposition along urban cascade reservoirs. (United States)

    Urbaniak, Magdalena; Skowron, Aleksandra; Zieliński, Marek; Zalewski, Maciej


    To investigate the drivers for transport and deposition of 17 2,3,7,8-substituted PCDDs/PCDFs along an urban river, water samples from five reservoirs located along the river course were collected in January and July 2008. The concentrations of 17 congeners of PCDD/PCDF were determined and compared to environmental - physical, chemical and biological - conditions. The obtained data revealed that the concentration of the sum of toxic PCDDs/PCDFs in water samples differ between reservoirs as well as between seasons, ranging from 12.04 pg L(-1) in UP (first in the cascade) to 1327.94 pg L(-1) in PR (last in the cascade) during winter of 2008; and from 34.94 pg L(-1) in UP to 1352.50 pg L(-1) in TR (next to last) in summer 2008. In comparison, water samples collected from the river had a concentration several times lower at the first two sites (sites no. 1 and 4) and no detectable values at the last three stations (sites no. 7, 8, 10). The obtained data demonstrated strong or moderate correlations between the sum of 17 PCDDs/PCDFs and TEQ in reservoir water samples and physical, chemical and biological conditions, such as: Mg(2+) (R=0.82; R=0.80, respectively), SO(4)(2-) (R=0.80; R=0.80, respectively), K(+) (R=0.80; R=0.80, respectively), Ca(2+) (R=0.67, R=0.70, respectively), OSM (R=0.63, R=0.70, respectively). In addition, the positive strong correlation between TEQ concentrations and the water temperature (R=0.63) and chlorophyll a content (R=0.90) was noted. The violent weather conditions occurred during the research season with periods of intensive storm events (up to 32 mm in mid July), and thus the increased river flow velocity (up to 0.45 m(3)s(-1)) could have a direct and indirect influence on PCDDs/PCDFs concentration through changes in the sedimentation/resuspension ratio and consequently in transport, deposition and degradation processes along the river/reservoirs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Fluid discrimination based on rock physics templates

    International Nuclear Information System (INIS)

    Liu, Qian; Yin, Xingyao; Li, Chao


    Reservoir fluid discrimination is an indispensable part of seismic exploration. Reliable fluid discrimination helps to decrease the risk of exploration and to increase the success ratio of drilling. There are many kinds of fluid indicators that are used in fluid discriminations, most of which are single indicators. But single indicators do not always work well under complicated reservoir conditions. Therefore, combined fluid indicators are needed to increase accuracies of discriminations. In this paper, we have proposed an alternative strategy for the combination of fluid indicators. An alternative fluid indicator, the rock physics template-based indicator (RPTI) has been derived to combine the advantages of two single indicators. The RPTI is more sensitive to the contents of fluid than traditional indicators. The combination is implemented based on the characteristic of the fluid trend in the rock physics template, which means few subjective factors are involved. We also propose an inversion method to assure the accuracy of the RPTI input data. The RPTI profile is an intuitionistic interpretation of fluid content. Real data tests demonstrate the applicability and validity. (paper)

  13. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others


    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  14. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation (United States)

    Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan


    This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  15. Numerical analysis of fractional MHD Maxwell fluid with the effects of convection heat transfer condition and viscous dissipation

    Directory of Open Access Journals (Sweden)

    Yu Bai


    Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.

  16. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel


    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  17. Encapsulated microsensors for reservoir interrogation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.


    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  18. Integrated Reacting Fluid Dynamics and Predictive Materials Degradation Models for Propulsion System Conditions, Phase I (United States)

    National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...

  19. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. (United States)

    Li, Yuan; Zhang, Yunlin; Shi, Kun; Zhu, Guangwei; Zhou, Yongqiang; Zhang, Yibo; Guo, Yulong


    Nutrient enrichment is a major cause of water eutrophication, and variations in nutrient enrichment are influenced by environmental changes and anthropogenic activities. Accurately estimating nutrient concentrations and understanding their relationships with environmental factors are vital to develop nutrient management strategies to mitigate eutrophication. Landsat 8 Operational Land Imager (OLI) data is used to estimate nutrient concentrations and analyze their responses to hydrological and meteorological conditions. Two well-accepted empirical models are developed and validated to estimate the total nitrogen (TN) and total phosphorus (TP) concentrations (C TN and C TP ) in the Xin'anjiang Reservoir using Landsat 8 OLI data from 2013 to 2016. Spatially, C TN decreased from the transition zone to the riverine zone and the lacustrine zone. On the other hand, C TP decreased from the riverine zone to the transition zone and the lacustrine zone. Temporally, C TN displayed elevated values during the late fall and winter and had lower values during the summer and early fall, whereas C TP was higher during the spring and lower during the winter. Among the environmental factors, the rainfall and the inflow rate have strong positive correlations with the nutrient concentrations. TN is more sensitive to meteorological factors (wind speed, temperature, sunshine duration), and the spatial driving forces vary among the different sections of the reservoir. However, TP is more easily influenced by human activities, such as fishery and agricultural activities. Current results would improve our understanding of the drivers of nutrients spatiotemporal variability and the approach in this study can be applicable to other similar reservoir to develop related strategies to mitigate eutrophication. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Method and apparatus for determining fluid circulation conditions in well drilling operations

    Energy Technology Data Exchange (ETDEWEB)

    Gehrig, G.F.; Speers, J.M.


    A system is described for monitoring the delta flow-rate of drilling fluid in the course of circulating drilling fluid through a well from a drilling rig, comprising: an inflow flowmeter adapted for establishing a first signal representing the rate at which drilling fluid is injected into the well from the drilling rig; an outflow flowmeter adapted for establishing a second signal representing the rate at which drilling fluid is returned to the drilling rig from the well; and a signal processing system adapted for receiving the first and second signals and calculating a third signal representing the filtered difference between the first and second signals, the signal processing system being adapted to repeatedly update the degree of filtering applied in calculating the third signal in accordance with a relation serving to increase the degree of filtering in response to an increase in the magnitude of the cyclical variations in the rate at which drilling fluid is returned to the drilling rig and to decrease the degree of filtering in response to a decrease in the magnitude of the cyclical variations in the rate at which drilling fluid is returned to the drilling rig.

  1. Gravity Effect on Two-Phase Immiscible Flows in Communicating Layered Reservoirs

    DEFF Research Database (Denmark)

    Zhang, Xuan; Shapiro, Alexander; Stenby, Erling Halfdan


    An upscaling method is developed for two-phase immiscible incompressible flows in layered reservoirs with good communication between the layers. It takes the effect of gravity into consideration. Waterflooding of petroleum reservoirs is used as a basic example for application of this method....... An asymptotic analysis is applied to a system of 2D flow equations for incompressible fluids at high-anisotropy ratios, but low to moderate gravity ratios, which corresponds to the most often found reservoir conditions. The 2D Buckley–Leverett problem is reduced to a system of 1D parabolic equations...

  2. Effects of post-burial siliceous diagenesis deformations on the microthermometric behaviour of fluid inclusions: an example in the Francevillian uraniferous sandstone reservoir (Gabon)

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.; Weber, F.


    New data about fluid inclusions associated to a siliceous diagenesis show that a deformation phase in the first stage of catagenesis disturbed their microthermometric behaviour. Nevertheless, temperature and pressure of fluids associated to the uraniferous paragenesis and contemporary with the Oklo natural reactors are estimated at 140-160 0 C and 250-500 bar [fr

  3. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    International Nuclear Information System (INIS)

    Ebina, Hirotaka; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio


    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  4. Integrase-independent HIV-1 infection is augmented under conditions of DNA damage and produces a viral reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ebina, Hirotaka, E-mail:; Kanemura, Yuka; Suzuki, Yasutsugu; Urata, Kozue; Misawa, Naoko; Koyanagi, Yoshio


    HIV-1 possesses a viral protein, integrase (IN), which is necessary for its efficient integration in target cells. However, it has been reported that an IN-defective HIV strain is still capable of integration. Here, we assessed the ability of wild type (WT) HIV-1 to establish infection in the presence of IN inhibitors. We observed a low, yet clear infection of inhibitor-incubated cells infected with WT HIV which was identical to cells infected with IN-deficient HIV, D64A. Furthermore, the IN-independent integration could be enhanced by the pretreatment of cells with DNA-damaging agents suggesting that integration is mediated by a DNA repair system. Moreover, significantly faster viral replication kinetics with augmented viral DNA integration was observed after infection in irradiated cells treated with IN inhibitor compared to nonirradiated cells. Altogether, our results suggest that HIV DNA has integration potential in the presence of an IN inhibitor and may serve as a virus reservoir.

  5. Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions

    Directory of Open Access Journals (Sweden)

    Sameh E. Ahmed


    Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.

  6. Effective viscosity in Brinkman equation and stress condition at the interface between a porous medium and a pure fluid (United States)

    Hu, Howard


    We examine the flow parallel to the interface between a porous medium and a pure fluid. When Darcy's law is used to describe the momentum transport in the porous layer, the classic Beavers-Joseph condition relates the shear rate and the slip velocity at the interface with a slip parameter that depends on the structure of the porous surface. When the Brinkman equation is used, the averaged velocity is continuous at the interface, however the fluid shear stress across the interface commonly experiences a jump. This shear stress jump can be expressed in terms of the slip velocity at the interface divided by a length characterized by the square root of the permeability, a dimensionless stress jump coefficient, and the effective viscosity introduced in the Brinkman equation. In this work, we explore methods to compute numerically the values of effective viscosity for given porous structures, and study the momentum transfer from the clear fluid onto the solid structure at the interface.

  7. Influence of heat transfer on Poiseuille flow of MHD Jeffrey fluid through porous medium with slip boundary conditions (United States)

    Ramesh, K.


    In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.

  8. Working regime identification for natural circulation loops by comparative thermalhydraulic analyses with three fluids under identical operating conditions

    International Nuclear Information System (INIS)

    Sarkar, Milan K.S.; Basu, Dipankar N.


    Highlights: • Thermalhydraulic analyses of NCL to justify the use of supercritical condition. • Mass flow rate of supercritical loop increases with heater power till a maxima. • Supercritical loop suffer from HTD beyond the maxima with jump in fluid temperature. • HTD is pronounced at higher sink temperatures and pressures just above critical. • Supercritical CO 2 is preferred fluid till the HTD and single-phase water afterwards. - Abstract: Computational investigation for comparative thermalhydraulic analyses of rectangular natural circulation loops is performed to propose a guideline for selecting the working fluid and nature of the loop, subcritical or supercritical, under identical levels of operating parameters like pressure, heating power and coolant temperature. A 3-d uniform-diameter loop geometry is developed with horizontal heating and cooling. Heating is provided in constant heat flux mode, whereas cooling is through a constant temperature sink. Due to favourable thermophysical properties and environmental conformity, water, CO 2 and R134a are selected as possible working fluids. Operational parameters are set so as to have sub- to supercritical condition for CO 2 , supercritical for R134a and single-phase liquid for water. Mass flow rate for supercritical fluid rapidly increases with heater power, when the fluid is allowed to cross the pseudocritical point during its passage through the heater, and exhibits a maxima. Drastic fall in mass flow rate can be observed beyond the maxima, accompanied by a jump in maximum fluid temperature and a rapid decline in sink-side heat transfer coefficient. That can be identified as heat transfer deterioration in supercritical natural circulation loops, a highly undesirable situation from loop safety point of view. Allowable working range of heater power can be enhanced by increasing system pressure and decreasing sink temperature. For any specified set of operating conditions, CO 2 -based supercritical loops

  9. Demulsification of W/O emulsion at petroleum field and reservoir conditions using some demulsifiers based on polyethylene and propylene oxides

    Directory of Open Access Journals (Sweden)

    A.M. Alsabagh


    Full Text Available In this work, polymer molecules of alkene oxides diesters with varying HLB values and molecular weights (ED1, ED2, ED3, PD1, PD2 and PD3 were synthesized, elsewhere (Alsabagh et al., 2016. The demulsification efficiency was evaluated at field and reservoir conditions. At field conditions (60 °C and 1 atm the data revealed that the maximum demulsification efficiency was obtained by ED3 and PD3 at 60 °C, 600 ppm after 55 and 40 min, respectively. At reservoir conditions (85 °C and 5000 psi, the PD3 and ED3 showed also the maximum demulsification efficiency was 76% and 70%, respectively, in spite of the 2% from the blank emulsion (12% BS&W separated after 7 days. The interfacial tension (IFT at the crude oil/water interface was measured for PD3 and ED3. From the results, it was found that the values of IFT were 0.7 and 0.8 mN m−1 respectively. The rheological behavior of the same demulsifiers was investigated. The results showed that the demulsifiers PD3 and ED3 enhance the dynamic viscosities (3.9 and 3.8 mPa s, respectively and the (τB yield values were 0.77 and 1.23 Pa s, respectively at temperature 85 °C, whereas, they were 3.95 mPa s and 1.5 Pa s for the blank emulsion sample.

  10. Asymptotic modeling of transport phenomena at the interface between a fluid and a porous layer: Jump conditions (United States)

    Angot, Philippe; Goyeau, Benoît; Ochoa-Tapia, J. Alberto


    We develop asymptotic modeling for two- or three-dimensional viscous fluid flow and convective transfer at the interface between a fluid and a porous layer. The asymptotic model is based on the fact that the thickness d of the interfacial transition region Ωfp of the one-domain representation is very small compared to the macroscopic length scale L . The analysis leads to an equivalent two-domain representation where transport phenomena in the transition layer of the one-domain approach are represented by algebraic jump boundary conditions at a fictive dividing interface Σ between the homogeneous fluid and porous regions. These jump conditions are thus stated up to first-order in O (d /L ) with d /L ≪1 . The originality and relevance of this asymptotic model lies in its general and multidimensional character. Indeed, it is shown that all the jump interface conditions derived for the commonly used 1D-shear flow are recovered by taking the tangential component of the asymptotic model. In that case, the comparison between the present model and the different models available in the literature gives explicit expressions of the effective jump coefficients and their associated scaling. In addition for multi-dimensional flows, the general asymptotic model yields the different components of the jump conditions including a new specific equation for the cross-flow pressure jump on Σ .

  11. Study of formation and stability conditions of gas hydrates in drilling fluids; Etude des conditions de formation et de stabilite des hydrates de gaz dans les fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, M.


    Drilling fluids are complex media, in which solid particles are in suspension in a water-in-oil emulsion. The formation of gas hydrates in these fluids during off shore drilling operations has been suspected to be the cause of serious accidents. The purpose of this thesis is the study of the formation conditions as well as the stability of gas hydrates in complex fluids containing water-in-oil emulsions. The technique of high-pressure differential scanning calorimetry was used to characterise the conditions of hydrates formation and dissociation. Special attention has first been given to the validation of thermodynamic measurements in homogeneous solutions, in the pressure range 4 to 12 Mpa; the results were found to be in good agreement with literature data, as well as with modelling results. The method was then applied to water-in-oil emulsion, used as a model for real drilling fluids. It was proven that thermodynamics of hydrate stability are not significantly influenced by the state of dispersion of the water phase. On the other hand, the kinetics of formation and the amount of hydrates formed are highly increased by the dispersion. Applying the technique to real drilling fluids confirmed the results obtained in emulsions. Results interpretation allowed giving a representation of the process of hydrate formation in emulsion. Empirical modelling was developed to compute the stability limits of methane hydrate in the presence of various inhibitors, at pressures ranging from ambient to 70 MPa. Isobaric phase diagrams were constructed, that allow predicting the inhibiting efficiency of sodium chloride and calcium chloride at constant pressure, from 0,25 to 70 MPa. (author)

  12. CO{sub 2} interfacial properties: application to multiphase flow at reservoir conditions; Proprietes interfaciales du CO{sub 2}: application aux ecoulements en milieu poreux en pression et temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chalbaud, C


    In this work we deal with the interfacial properties of CO{sub 2} at reservoir conditions with a special interest on deep saline aquifers. Each chapter of this dissertation represents a different physical scale studied with different experimental devices and simulation tools. The results obtained in the first part of this study represent a complete data set of brine-CO{sub 2} interfacial tension at reservoir conditions. A semi-analytical equation is proposed in order to facilitate the work of reservoir engineers. The second deals with the interfacial properties at the pore scale using glass micro-models at different wettability conditions. This part shows the wetting behavior of CO{sub 2} on hydrophobic or oil-wet solid surfaces. A pore network model was used for the interpretation and exploitation of these results. The third part corresponds to two different experimental approaches at the core scale at different wettability conditions associated to a modelling at flue Darcy scale. This part is a significant contribution to the validation of COORES compositional reservoir simulator developed by IFP. It has also allow us to estimate multiphase properties, Pc and kr, for brine-CO{sub 2} systems at reservoir conditions. This study presents the necessary scales to model CO{sub 2} storage in deep saline aquifers. (author)

  13. Modeling reservoir geomechanics using discrete element method : Application to reservoir monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Alassi, Haitham Tayseer


    Understanding reservoir geomechanical behavior is becoming more and more important for the petroleum industry. Reservoir compaction, which may result in surface subsidence and fault reactivation, occurs during reservoir depletion. Stress changes and possible fracture development inside and outside a depleting reservoir can be monitored using time-lapse (so-called '4D') seismic and/or passive seismic, and this can give valuable information about the conditions of a given reservoir during production. In this study we will focus on using the (particle-based) Discrete Element Method (DEM) to model reservoir geomechanical behavior during depletion and fluid injection. We show in this study that DEM can be used in modeling reservoir geomechanical behavior by comparing results obtained from DEM to those obtained from analytical solutions. The match of the displacement field between DEM and the analytical solution is good, however there is mismatch of the stress field which is related to the way stress is measured in DEM. A good match is however obtained by measuring the stress field carefully. We also use DEM to model reservoir geomechanical behavior beyond the elasticity limit where fractures can develop and faults can reactivate. A general technique has been developed to relate DEM parameters to rock properties. This is necessary in order to use correct reservoir geomechanical properties during modeling. For any type of particle packing there is a limitation that the maximum ratio between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for a loose packing is different from the dynamic behavior. Empirical relations are needed for the static behavior based on numerical test observations. The dynamic behavior for both dense and loose packing can be given by analytical relations. Cosserat continuum theory is needed to derive relations for Vp and Vs. It is shown that by constraining the particle rotation, the S-wave velocity can be

  14. Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation. (United States)

    Bain, A R; Lesperance, N C; Jay, O


    To assess whether, under conditions permitting full evaporation, body heat storage during physical activity measured by partitional calorimetry would be lower with warm relative to cold fluid ingestion because of a disproportionate increase in evaporative heat loss potential relative to internal heat transfer with the ingested fluid. Nine males cycled at 50% VO(2max) for 75 min at 23.6 ± 0.6 °C and 23 ± 11% RH while consuming water of either 1.5 °C, 10 °C, 37 °C or 50 °C in four 3.2 mL kg(-1) boluses. The water was administered 5 min before and 15, 30 and 45 min following the onset of exercise. No differences in metabolic heat production, sensible or respiratory heat losses (all P > 0.05) were observed between fluid temperatures. However, while the increased internal heat loss with cold fluid ingestion was paralleled by similar reductions in evaporative heat loss potential at the skin (E(sk) ) with 10 °C (P = 0.08) and 1.5 °C (P = 0.55) fluid, the increased heat load with warm (50 °C) fluid ingestion was accompanied by a significantly greater E(sk) (P = 0.04). The resultant calorimetric heat storage was lower with 50 °C water ingestion in comparison to 1.5 °C, 10 °C and 37 °C (all P heat storage derived conventionally using thermometry yielded higher values following 50 °C fluid ingestion compared to 1.5 °C (P = 0.025). Under conditions permitting full sweat evaporation, body heat storage is lower with warm water ingestion, likely because of disproportionate modulations in sweat output arising from warm-sensitive thermosensors in the esophagus/stomach. Local temperature changes of the rectum following fluid ingestion exacerbate the previously identified error of thermometric heat storage estimations. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  15. Real-time reservoir geological model updating using the hybrid EnKF and geostatistical technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.; Chen, S.; Yang, D. [Regina Univ., SK (Canada). Petroleum Technology Research Centre


    Reservoir simulation plays an important role in modern reservoir management. Multiple geological models are needed in order to analyze the uncertainty of a given reservoir development scenario. Ideally, dynamic data should be incorporated into a reservoir geological model. This can be done by using history matching and tuning the model to match the past performance of reservoir history. This study proposed an assisted history matching technique to accelerate and improve the matching process. The Ensemble Kalman Filter (EnKF) technique, which is an efficient assisted history matching method, was integrated with a conditional geostatistical simulation technique to dynamically update reservoir geological models. The updated models were constrained to dynamic data, such as reservoir pressure and fluid saturations, and approaches geologically realistic at each time step by using the EnKF technique. The new technique was successfully applied in a heterogeneous synthetic reservoir. The uncertainty of the reservoir characterization was significantly reduced. More accurate forecasts were obtained from the updated models. 3 refs., 2 figs.

  16. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire


    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  17. Hall current and Joule heating effects on peristaltic flow of viscous fluid in a rotating channel with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The present article has been arranged to study the Hall current and Joule heating effects on peristaltic flow of viscous fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Convective conditions for heat transfer in the formulation are adopted. Viscous dissipation in energy expression is taken into account. Resulting differential systems after invoking small Reynolds number and long wavelength considerations are numerically solved. Runge-Kutta scheme of order four is implemented for the results of axial and secondary velocities, temperature and heat transfer coefficient. Comparison with previous limiting studies is shown. Outcome of new parameters of interest is analyzed. Keywords: Rotating frame, Hall current, Joule heating, Convective conditions, Wall properties

  18. MHD axisymmetric flow of power-law fluid over an unsteady stretching sheet with convective boundary conditions

    Directory of Open Access Journals (Sweden)

    Jawad Ahmed

    Full Text Available This paper examines the boundary layer flow and heat transfer characteristic in power law fluid model over unsteady radially stretching sheet under the influence of convective boundary conditions. A uniform magnetic field is applied transversely to the direction of the flow. The governing time dependent nonlinear boundary layer equations are reduced into nonlinear ordinary differential equations with the help of similarity transformations. The transformed coupled ordinary differential equations are then solved analytically by homotopy analysis method (HAM and numerically by shooting procedure. Effects of various governing parameters like, power law index n, magnetic parameter M, unsteadiness A, suction/injection S, Biot number γ and generalized Prandtl number Pr on velocity, temperature, local skin friction and the local Nusselt number are studied and discussed. It is found from the analysis that the magnetic parameter diminishes the velocity profile and the corresponding thermal boundary layer thickness. Keywords: Axisymmetric flow, Power law fluid, Unsteady stretching, Convective boundary conditions

  19. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    Energy Technology Data Exchange (ETDEWEB)

    Birkle, Peter, E-mail: [Instituto de Investigaciones Electricas (IIE), Gerencia de Geotermia, Cuernavaca 62490, Morelos (Mexico); Garcia, Bernardo Martinez; Milland Padron, Carlos M. [PEMEX Exploracion y Produccion, Region Sur, Activo Integral Bellota-Jujo, Diseno de Explotacion, Cardenas, Tabasco (Mexico); Eglington, Bruce M. [Saskatchewan Isotope Laboratory, University of Saskatchewan, Saskatoon, Canada SK S7N 5E2 (Canada)


    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by {sup 14}C-concentrations from 2.15 to 31.86 pmC, and by {sup 87}Sr/{sup 86}Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest {delta}{sup 18}O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic {sup 87}Sr/{sup 86}Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of {sup 14}C in all sampled formation water, {sup 87}Sr/{sup 86}Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm{sup 3} (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a

  20. Origin and evolution of formation water at the Jujo-Tecominoacan oil reservoir, Gulf of Mexico. Part 2: Isotopic and field-production evidence for fluid connectivity

    International Nuclear Information System (INIS)

    Birkle, Peter; Garcia, Bernardo Martinez; Milland Padron, Carlos M.; Eglington, Bruce M.


    The chemical and isotopic characterization of formation water from 18 oil production wells, extracted from 5200 to 6100 m b.s.l. at the Jujo-Tecominoacan carbonate reservoir in SE-Mexico, and interpretations of historical production records, were undertaken to determine the origin and hydraulic behavior of deep groundwater systems. The infiltration of surface water during Late Pleistocene to Early Holocene time is suggested by 14 C-concentrations from 2.15 to 31.86 pmC, and by 87 Sr/ 86 Sr-ratios for high-salinity formation water (0.70923-0.70927) that are close to the composition of Holocene to modern seawater. Prior to infiltration, the super-evaporation of seawater reached maximum TDS concentrations of 385 g/L, with lowest δ 18 O values characterizing the most hypersaline samples. Minor deviations of formation water and dolomite host rocks from modern and Jurassic 87 Sr/ 86 Sr-seawater composition, respectively, suggest ongoing water-rock interaction, and partial isotopic equilibration between both phases. The abundance of 14 C in all sampled formation water, 87 Sr/ 86 Sr-ratios for high-salinity water close to Holocene - present seawater composition, a water salinity distribution that is independent of historic water-cut, and a total water extraction volume of 2.037 MMm 3 (1/83-4/07) excludes a connate, oil-leg origin for the produced water of the Jurassic-Cretaceous mudstone-dolomite sequence. Temporal fluctuations of water chemistry in production intervals, the accelerated migration of water fronts from the reservoir flanks, and isotopic mixing trends between sampled wells confirms the existence of free aquifer water below oil horizons. Vertical and lateral hydraulic mobility has probably been accelerated by petroleum extraction. The combination of interpreting historical fluctuations of salinity and water percentage in production wells with chemical-isotopic analysis of formation water resulted in a successful method to distinguish four groundwater bodies

  1. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions

    NARCIS (Netherlands)

    de Waal, Eric E. C.; Rex, Steffen; Kruitwagen, Cas L. J. J.; Kalkman, Cor J.; Buhre, Wolfgang F.

    Objective: Dynamic preload indicators like pulse pressure variation (PPV) and stroke volume variation (SVV) are increasingly being used for optimizing cardiac preload since they have been demonstrated to predict fluid responsiveness in a variety of perioperative settings. However, in open-chest

  2. Bi-orthogonality conditions for power flow analysis in fluid-loaded elastic cylindrical shells

    DEFF Research Database (Denmark)

    Ledet, Lasse; Sorokin, Sergey V.; Larsen, Jan Balle


    The paper addresses the classical problem of time-harmonic forced vibrations of a fluid-loaded cylindrical shell considered as a multi-modal waveguide carrying infinitely many waves. Firstly, a modal method for formulation of Green’s matrix is derived by means of modal decomposition. The method...

  3. Heat transfer in a couple stress fluid over a continuous moving surface with internal hat generation and convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics; Iqbal, Zahid [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; Qasim, Muhammad [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan). Dept. of Mathematics; Aldossary, Omar M. [King Saud Univ., Riyadh (Saudi Arabia). Dept. of Physics


    This investigation reports the boundary layer flow and heat transfer characteristics in a couple stress fluid flow over a continuos moving surface with a parallel free stream. The effects of heat generation in the presence of convective boundary conditions are also investigated. Series solutions for the velocity and temperature distributions are obtained by the homotopy analysis method (HAM). Convergence of obtained series solutions are analyzed. The results are obtained and discussed through graphs for physical parameters of interest. (orig.)

  4. First-principles modeling of fluid and solute exchange in the human during normal and hemodialysis conditions. (United States)

    Fernandez de Canete, J; Del Saz Huang, P


    A first-principles computer model of fluid and solute exchange under both physiological and hemodialysis condition is presented. The whole system has been modeled and simulated under the MODELICA integrated environment, which uses a hierarchical modeling strategy. The model performance has been analyzed by simulation in the light of existing hypothesis and physiological data used here for validation purposes. The results obtained provide a physiological interpretative key to patient's hemodynamic behavior during hemodialysis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Sampling from stochastic reservoir models constrained by production data

    Energy Technology Data Exchange (ETDEWEB)

    Hegstad, Bjoern Kaare


    When a petroleum reservoir is evaluated, it is important to forecast future production of oil and gas and to assess forecast uncertainty. This is done by defining a stochastic model for the reservoir characteristics, generating realizations from this model and applying a fluid flow simulator to the realizations. The reservoir characteristics define the geometry of the reservoir, initial saturation, petrophysical properties etc. This thesis discusses how to generate realizations constrained by production data, that is to say, the realizations should reproduce the observed production history of the petroleum reservoir within the uncertainty of these data. The topics discussed are: (1) Theoretical framework, (2) History matching, forecasting and forecasting uncertainty, (3) A three-dimensional test case, (4) Modelling transmissibility multipliers by Markov random fields, (5) Up scaling, (6) The link between model parameters, well observations and production history in a simple test case, (7) Sampling the posterior using optimization in a hierarchical model, (8) A comparison of Rejection Sampling and Metropolis-Hastings algorithm, (9) Stochastic simulation and conditioning by annealing in reservoir description, and (10) Uncertainty assessment in history matching and forecasting. 139 refs., 85 figs., 1 tab.

  6. Simulation studies to evaluate the effect of fracture closure on the performance of fractured reservoirs; Final report

    Energy Technology Data Exchange (ETDEWEB)

    Howrie, I.; Dauben, D.


    A three-year research program to evaluate the effect of fracture closure on the recovery of oil and gas from naturally fractured reservoirs has been completed. The overall objectives of the study were to: (1) evaluate the reservoir conditions for which fracture closure is significant, and (2) evaluate innovative fluid injection techniques capable of maintaining pressure within the reservoir. The evaluations of reservoir performance were made by a modern dual porosity simulator, TETRAD. This simulator treats both porosity and permeability as functions of pore pressure. The Austin Chalk in the Pearsall Field in of South Texas was selected as the prototype fractured reservoir for this work. During the first year, simulations of vertical and horizontal well performance were made assuming that fracture permeability was insensitive to pressure change. Sensitivity runs indicated that the simulator was predicting the effects of critical reservoir parameters in a logical and consistent manner. The results confirmed that horizontal wells could increase both rate of oil recovery and total oil recovery from naturally fractured reservoirs. In the second year, the performance of the same vertical and horizontal wells was reevaluated with fracture permeability treated as a function of reservoir pressure. To investigate sensitivity to in situ stress, differing loading conditions were assumed. Simulated natural depletions confirm that pressure sensitive fractures degrade well performance. The severity of degradation worsens when the initial reservoir pressure approaches the average stress condition of the reservoir, such as occurs in over pressured reservoirs. Simulations with water injection indicate that degradation of permeability can be counteracted when reservoir pressure is maintained and oil recovery can be increased when reservoir properties are favorable.

  7. Effect of habitat conditions on parasite infection in 0+juvenile perch (Perca fluviatilis L.) in two Czech reservoirs

    Czech Academy of Sciences Publication Activity Database

    Francová, K.; Ondračková, Markéta


    Roč. 721, č. 1 (2014), s. 57-66 ISSN 0018-8158 R&D Projects: GA ČR GBP505/12/G112 Institutional support: RVO:68081766 Keywords : Parasite * Intermediate host * Food availability * Habitat conditions * Lentic * Littoral Subject RIV: EG - Zoology Impact factor: 2.275, year: 2014

  8. Theoretical and practical meaning of ecological morphophysiological research og fish reproduction in the reservoir with ecology changed conditions

    Directory of Open Access Journals (Sweden)

    N. I. Rabazanov


    Full Text Available Fish reproduction research showed that the change of existence conditions changes the character of sexual cell growth changes. Evident changes in the duration of protoplasmatic growth are observed as well as the asynchronism degree of sexual cells and their development rate during annual period.

  9. Calculation of shipboard fire conditions for radioactive materials packages with the methods of computational fluid dynamics

    International Nuclear Information System (INIS)

    Koski, J.A.; Wix, S.D.; Cole, J.K.


    Shipboard fires both in the same ship hold and in an adjacent hold aboard a break-bulk cargo ship are simulated with a commercial finite-volume computational fluid mechanics code. The fire models and modeling techniques are described and discussed. Temperatures and heat fluxes to a simulated materials package are calculated and compared to experimental values. The overall accuracy of the calculations is assessed

  10. Dissolved methane in Indian freshwater reservoirs

    Digital Repository Service at National Institute of Oceanography (India)

    Narvenkar, G.; Naqvi, S.W.A.; Kurian, S.; Shenoy, D.M.; Pratihary, A.K.; Naik, H.; Patil, S.; Sarkar, A.; Gauns, M.

    Emission of methane (CH4), a potent greenhouse gas, from tropical reservoirs is of interest because such reservoirs experience conducive conditions for CH4 production through anaerobic microbial activities. It has been suggested that Indian...

  11. Vertical and temporal variation in phytoplankton assemblages correlated with environmental conditions in the Mundaú reservoir, semi-arid northeastern Brazil

    Directory of Open Access Journals (Sweden)


    Full Text Available The goal of this study was to analyse the vertical structure of the phytoplankton community at the Mundaú reservoir, located in the semi-arid region of northeastern Brazil, and to correlate it to environmental conditions over two distinct seasons, dry and rainy. Samples were collected bimonthly at eight depths in the dry and rainy season for analyses of the physical and chemical variables of the water, as well as density, abundance, dominance, species diversity index and equitability of the community. Analysis of variance (ANOVA-two way was used to analyse the vertical and seasonal differences, and Canonical Correspondence Analysis (CCA was used to assess associations between phytoplankton and environmental variables Cylindrospermopsis raciborskii (Woloszynska Seenaya and Subba Raju was the only dominant species and Geitlerinema amphibium (C. Agardh Anagnostidis, Merismopedia punctata Meyen and Synedra rumpens Kützing. Others six taxa were abundant in at least one of the samples. Distinct vertical distribution patterns were observed for the abundant taxa between depths and seasons. The cyanobacteria, with the exception of C. raciborskii, showed similar seasonal patterns, with higher densities in the dry season. The CCA showed a strong correlation between the density of the phytoplanktonic species and abiotic variables. The vertical changes in abundant taxa revealed distinct patterns regulated by the variation in the environmental factors that were directly linked to seasonality, with the success of one or more species being dependent on their life strategies and ecological needs. The present study restates the importance of environmental and seasonal factors for phytoplankton composition and distribution in a freshwater tropical reservoir through a vertical gradient.

  12. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan


    to condition an EOS model before application in performance evaluation of miscible displacements. However, no clear understanding exists of the impact on the resultant accuracy of the selected characterization procedure when the fluid description is subsequently included in reservoir simulation. In this paper......, we present a detailed analysis of the quality of two different characterization procedures over a broad range of reservoir fluids (13 samples) for which experimental swelling-test and slinitube-displacement data are available. We explore the impact of including swelling-test and slimtube experiments......Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid...

  13. Determination of turbine runner dynamic behaviour under operating condition by a two-way staggered fluid-structureinteraction method

    International Nuclear Information System (INIS)

    Dompierre, F; Sabourin, M


    This paper presents the application of the two-way fluid-structure interaction method introduced by ANSYS to calculate the dynamic behaviour of a Francis turbine runner under operating condition. This time-dependant calculation directly takes into account characteristics of the flow and particularly the pressure fluctuations caused by the rotor-stator interaction. This formulation allows the calculation of the damping forces of the whole system implicitly. Thereafter, the calculated dynamic stress can be used for a fatigue analysis. A verification of the mechanical and fluid simulations used as input for the fluid-structure interaction calculation is first performed. Subsequently, a connection of these two independent simulations is made. A validation according to the hydraulic conditions is made with the measurements from the scale model testing. Afterwards, the static displacement of the runner under the hydraulic load is compared with the results of a classical static analysis for verification purposes. Finally, the natural frequencies deduced by the post-processing of the dynamic portion of the runner displacement with respect to time are compared with the natural frequencies obtained from a classical acoustic modal analysis. All comparisons show a good agreement with experimental data or results obtained with conventional methods.

  14. A comparison of estimation methods for computational fluid dynamics outflow boundary conditions using patient-specific carotid artery. (United States)

    Lee, Chang-Joon; Uemiya, Nahoko; Ishihara, Shoichiro; Zhang, Yu; Qian, Yi


    Computational fluid dynamics simulations can provide important hemodynamic insights for investigating the effectiveness of carotid artery stenting, but its accuracy is dependent on the boundary conditions such as the outflow pressure, which is difficult to obtain by measurements. Many computational fluid dynamics simulations assume that the outflow pressure is constant (P = 0), but this method is likely to produce different results compared to clinical measurements. We have developed an alternative estimation method called the minimum energy loss method based on the concept of energy loss minimization at flow bifurcation. This new method has been tested on computational fluid dynamics simulation of two patients treated with carotid artery stenting, and its flow ratio at internal carotid artery and wall shear stress distribution was compared with the constant zero outlet pressure method. Three different procedure stages (prestent, poststent, and follow-up) were analyzed. The internal carotid artery flow ratio using the minimum energy loss method generally matched well with ultrasound measurements, but the internal carotid artery flow ratio based on zero outlet pressure method showed a large difference. Wall shear stress distributions varied between methods in response to the change in internal carotid artery flow rate. This study demonstrates the importance of accurate outlet boundary condition for assessing the long-term efficacy of carotid artery stenting and the risk of restenosis in treated patients.

  15. CO2 Reaction Induced Wettability Alteration and its Impacts on CO2 Storage: Pore to Core Scale Reservoir Condition Experimental Studies (United States)

    Wan, J.; Tokunaga, T. K.; Kim, Y.; Jung, J.; Kim, T.; Dong, W.


    Wettability of the mineral surfaces plays an important role in subsurface multiphase flow and transport. Wettability affects the capillary pressure-saturation (Pc- S) relations, relative permeability (kr) of each fluid phase, and relative phase occupancy in reservoir pores. Although wettability issues have been studied extensively in other fields, significant knowledge gaps remain when applying the existing understanding to geological carbon sequestration; due largely to the unique physical-chemical properties of supercritical (sc) CO2 relative to other common non-wetting fluids such as air and oil. Here, we report our recent progress on wettability alteration upon reaction with CO2 and the resulting differences in capillary trapping of CO2 versus air. (1) Pore Scale Studies. There are conflict predictions in the literature concerning the effect of wettability on capillary trapping; some find that larger contact angles lead to lower capillary trapping while others have found opposite behavior. We hypothesized that spontaneous imbibition becomes energetically unfavorable with decreased wettability, so that increased residual trapping of scCO2 should occur during the post-injection inbibition stage. We developed a laboratory high-pressure and elevated temperature microscopic-micromodel system that is capable of controlling fine scale capillary pressure of scCO2-brine, and enabled us to conduct imbibition under controlled capillary pressures at the pore scale. We found that the de-wetting enhanced scCO2 capillary trapping is significant. These results suggest that scCO2 reaction induced dewetting can result in higher degrees of CO2 residual trapping in the post-injection stage than previously predicted. (2) Core Scale Studies. Capillary scaling is used routinely to predict Pc(S) relations for scCO2-brine systems at field scale, based on relations measured with air-water or mercury porosimetry. However, scaling-based predictions for CO2-brine systems have not been

  16. Importance of contrast-enhanced fluid-attenuated inversion reconvery magnetic resonance imaging in various intracranial pathologic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Kyoung; Lee, Eun Ja; Kim, Sung Won; Lee, Yong Seok [Dept. of Radiology, Dongguk University Ilsan Hospital, Goyang(Korea, Republic of)


    Intracranial lesions may show contrast enhancement through various mechanisms that are closely associated with the disease process. The preferred magnetic resonance sequence in contrast imaging is T1-weighted imaging (T1WI) at most institutions. However, lesion enhancement is occasionally inconspicuous on T1WI. Although fluid-attenuated inversion recovery (FLAIR) sequences are commonly considered as T2-weighted imaging with dark cerebrospinal fluid, they also show mild T1-weighted contrast, which is responsible for the contrast enhancement. For several years, FLAIR imaging has been successfully incorporated as a routine sequence at our institution for contrast-enhanced (CE) brain imaging in detecting various intracranial diseases. In this pictorial essay, we describe and illustrate the diagnostic importance of CE-FLAIR imaging in various intracranial pathologic conditions.

  17. Multi-fluid MHD study of the solar wind interaction with Venus at Solar max and Solar min conditions. (United States)

    Ma, Y. J.; Nagy, A. F.; Russell, C. T.; Najib, D.; Toth, G.


    We study the solar wind interaction with Venus, using a new advanced multi-fluid MHD model that has been developed recently. The model is similar to the numerical model that was successfully applied to Mars (Najib et al., 2011). Mass densities, velocities and pressures of the protons and three important ionosphere ion species (O+, O2+ and CO2+) are self-consistently calculated by solving the individual coupled continuity, momentum and energy equations. The various chemical reactions and ion-neutral collision processes are considered in the model. The simulation domain covers the region from 100 km altitude above the surface up to 16 RV in the tail. An adaptive spherical grid structure is constructed with radial resolution of about 10 km in the lower ionosphere. The model is applied to both solar-maximum and solar-minimum conditions and model results are compared in detail with multi-species single fluid model results and VEX observations.

  18. Impact factors on water quality in the confluence zone of the Daning River and the Yangtze River at different hydrological conditions in the Three Gorges Reservoir (United States)

    Holbach, A.; Wang, L.; Chen, H.; Hu, W.; Schleicher, N.; Zheng, B.; Norra, S.


    Water quality of the Three Gorges Reservoir (TGR) in the Yangtze River became a major concern since the first closure of the dam in 2003. Increasing eutrophication and algal bloom events, especially in confluence bays and backwater areas are observed. Substance transport, water exchange and interaction between water masses in confluence areas of tributaries and the Yangtze main stream are of special interest and mainly driven by large scale water level fluctuations and temporal discharge variations in the reservoir. The Daning River, one tributary of the TGR also adjoins to Dachang city and Wushan city which are by backwater of the TGR. In the frame of the Sino-German "Yangtze-Project" [1] water quality data and samples were collected in the Daning River and its confluence zone with the Yangtze River during two fieldtrips in August and December, 2011. Remarkable hydrological changes during the sampling time were present in August whereas conditions in December were rather stable. Water quality data was recorded in-situ and on-line in varying depths with a towed underwater sensor system. The monitored data comprise seven important physico-chemical water parameters (temperature, electrical conductivity, turbidity, dissolved oxygen, oxygen saturation, pH, chlorophyll a) coupled with a 3D positioning system. Geostatistical evaluation and interpolation of the physico-chemical water parameter data was conducted to get 3D distribution models for the parameters in the water bodies. Selective water samples for analysis of inorganic components (anions, cations, nutrients) in the dissolved and particulate phases were taken from different depths by a free flow sampler. Results reveal that pollutant plumes in the water above the thermocline surround the urban areas during the stable conditions of December. In August the degree of mixing of Yangtze main stream water with the Daning River water was the main driving force for the water chemistry. Contrarily, water quality was

  19. Novel Applications of Magnetic Fields for Fluid Flow Control and for Simulating Variable Gravity Conditions (United States)

    Ramachandran, N.


    Static and dynamic magnetic fields have been used to control convection in many materials processing applications. In most of the applications, convection control (damping or enhancement) is achieved through the Lorentz force that can be tailored to counteract/assist dominant system flows. This technique has been successfully applied to liquids that are electrically conducting, such as high temperature melts of semiconductors, metals and alloys, etc. In liquids with low electrical conductivity such as ionic solutions of salts in water, the Lorentz force is weak and hence not very effective and alternate ways of flow control are necessary. If the salt in solution is paramagnetic then the variation of magnetic susceptibility with temperature and/or concentration can be used for flow control. For thermal buoyancy driven flows this can be accomplished in a temperature range below the Curie point of the salt. The magnetic force is proportional to the magnetic susceptibility and the product of the magnetic field and its gradient. By suitably positioning the experiment cell in the magnet, system flows can be assisted or countered, as desired. A similar approach can be extended to diamagnetic substances and fluids but the required magnetic force is considerably larger than that required for paramagnetic substances. The presentation will provide an overview of work to date on a NASA fluid physics sponsored project that aims to test the hypothesis of convective flow control using strong magnetic fields in protein crystal growth. The objective is to understand the nature of the various forces that come into play, delineate causative factors for fluid flow and to quantify them through experiments, analysis, and numerical modeling. The seminar will report specifically on the experimental results using paramagnetic salts and solutions in magnetic fields and compare them to analytical predictions. Applications of the concept to protein crystallization studies will be discussed

  20. [Metazoan parasites of Micropterus salmoides (Centrarchidae: Perciformes) from reservoirs of Nuevo León, México and their association with condition factor and gender]. (United States)

    Galaviz S, Lucio; Escobar G, Baldemar; Iruegas B, Francisco Javier; Molina, Zinnia Judith


    The largemouth bass Micropterus salmoides is a very valuable fish species for aquaculture and sport fishing; however, there are no systematic studies on fish metazoan parasites in Mexico. The main objective of the present study was to describe the prevalence, abundance, and intensity of M. salmoides metazoan parasites, and their association with fish condition factor and gender. The sample size was composed by 672 hosts, collected between 2011-2013 from the following reservoirs of Nuevo Leon, México: Rodrigo Gómez dam (“La Boca”, LB), Cuchillo-Solidaridad dam (CS), Salinillas lagoon (LS), Mariano Escobedo dam (“Sombreretillo”, S), and José López Portillo dam (“Cerro Prieto”, CP). Living fish were transported to the laboratory; sizes and weights were then recorded to calculate the Fulton condition factor (k). If possible, gender was also recorded. Parasites were detected under stereoscopy, recollected and preserved by traditional techniques. Statistical analysis of association between parasitic load, gender, and Fulton condition factor were calculated, using the X2 and the Student-t tests. Results showed that 12 different metazoans were identified, two flukes (Posthodiplostomum minimum centrarchi and Phyllodistomum pearsei), one tapeworm (Proteocephalus ambloplitis), three roundworms (Contracaecum sp., Spinitectus carolini and Philometra nodulosa), two acantocephalan (Neoechinorhynchus cylindratus and Arhythmorhynchus sp.), one leech (Myzobdella moorei), and three copepods (Ergasilus versicolor; Ergasilus arthrosis and Ergasilus cerastes). HSD Tukey test showed that infected fish from LB were significantly different than LS, CS, CP, and S (P<0.05). Parasites most commonly collected in all five locations were P. m. centrarchi, Contracaecum sp. and E. versicolor. The frequency of P. m. centrarchi was highly significant (P<0.001) than other parasites; furthermore, this parasite showed the highest prevalence (97.5 %), abundance (10.12-83.6), and

  1. Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions. (United States)

    Ullah, Zakir; Zaman, Gul


    In this paper, we studied MHD two dimensional flow of an incompressible tangent hyperbolic fluid flow and heat transfer towards a stretching sheet with velocity and thermal slip. Lie group analysis is used to develop new similarity transformation, using these similarity transformation the governing nonlinear partial differential equation are reduced into a system of coupled nonlinear ordinary differential equation. The obtained system is solved numerically by applying shooting method. Effects of pertinent parameters on the velocity and temperature profiles, skin friction, local Nusselt number are graphically presented and discussed. Comparison between the present and previous results are shown in special cases.

  2. Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions

    Directory of Open Access Journals (Sweden)

    Zakir Ullah


    Full Text Available In this paper, we studied MHD two dimensional flow of an incompressible tangent hyperbolic fluid flow and heat transfer towards a stretching sheet with velocity and thermal slip. Lie group analysis is used to develop new similarity transformation, using these similarity transformation the governing nonlinear partial differential equation are reduced into a system of coupled nonlinear ordinary differential equation. The obtained system is solved numerically by applying shooting method. Effects of pertinent parameters on the velocity and temperature profiles, skin friction, local Nusselt number are graphically presented and discussed. Comparison between the present and previous results are shown in special cases. Keywords: Applied mathematics, Mechanics

  3. Condition factor and diet of Chrysichthys nigrodigitatus and Chrysichthys auratus (Siluriformes: Bagridae from Aiba Reservoir, Iwo, Nigeria

    Directory of Open Access Journals (Sweden)

    Oluwatosin Ebenezer Atobatele


    Full Text Available Chrysichthys nigrodigitatus and C. auratus are important, highly valued and threatened freshwater species. To contribute with their ecological knowledge, the condition factor and diet of these two congeneric species were studied between April 2005 and April 2006. Food items of fish were evaluated by occurrence and numerical abundance methods, and the possible changes among sexes, seasons and sizes were considered. Results showed that generally C. nigrodigitatus were better conditioned than C. auratus. The males of C. nigrodigitatus and females of C. auratus were in better condition than their respective opposite sex throughout the year, and during the wet season compared to the dry. The food items of C. nigrodigitatus and C. auratus were similar and comprised twelve species belonging to five groups: Insecta (three species, Crustacea (five species, Arachnida (one species, Rotifera (one species and Mollusca (two species. Other food items included fish scales, unidentified green eggs, plant parts, detritus and sand. Insecta and Crustacea dominated the food items in both species. For C. nigrodigitatus, insect consumption increased with fish size, while Crustacea items decreased (from 89.59% for 8.1cm - 12.0cm size class to 1.58% for 20.1cm - 26.0cm size class. However, while C. auratus smaller sized fish preferred Crustacea (98.72% for 8.1cm -12.0cm size class, larger sized fish had both groups in relatively similar amounts. Schoener Overlap Index for both species and between seasons is 1.00. Diet breadth ranged from 0.00-1.47 for C. nigrodigitatus and 0.00-1.32 for C. auratus. Food Richness ranged from 0.00-1.44 for both species. Gut Repletion Index for C. nigrodigitatus and C. auratus are 76.39% and 76.27% respectively. Although, there is considerable similarity and overlap in the utilization of food resource for both coexisting species, condition factor and feeding behavior suggest strategies to reduce intra- and inter-specific competition. Rev

  4. Understanding the Impact of Reservoir Operations on Temperature Hydrodynamics at Shasta Lake through 2D and 3D Modeling (United States)

    Hallnan, R.; Busby, D.; Saito, L.; Daniels, M.; Danner, E.; Tyler, S.


    Stress on California's salmon fisheries as a result of recent drought highlights a need for effective temperature management in the Sacramento River. Cool temperatures are required for Chinook salmon spawning and rearing. At Shasta Dam in northern California, managers use selective reservoir withdrawals to meet downstream temperature thresholds set for Chinook salmon populations. Shasta Dam is equipped with a temperature control device (TCD) that allows for water withdrawals at different reservoir depths. A two-dimensional CE-QUAL-W2 (W2) model of Shasta Reservoir has been used to understand the impacts of TCD operations on reservoir and discharge dynamics at Shasta. W2 models the entire reservoir based on hydrologic and meteorological inputs, and therefore can be used to simulate various hydroclimatic conditions, reservoir operations, and resulting reservoir conditions. A limitation of the W2 model is that it only captures reservoir conditions in two dimensions (length and depth), which may not represent local hydrodynamic effects of TCD operations that could affect simulation of discharge temperatures. Thus, a three-dimensional (3D) model of the TCD and the immediately adjacent upstream reservoir has been constructed using computational fluid dynamics (CFD) in ANSYS Fluent. This 3D model provides additional insight into the mixing effects of different TCD operations, and resulting reservoir outflow temperatures. The drought conditions of 2015 provide a valuable dataset for assessing the efficacy of modeling the temperature profile of Shasta Reservoir under very low inflow volumes, so the W2 and CFD models are compared for model performance in late 2015. To assist with this assessment, data from a distributed temperature sensing (DTS) deployment at Shasta Lake since August 2015 are used. This presentation describes model results from both W2 as well as the CFD model runs during late 2015, and discuss their efficacy for modeling drought conditions.

  5. Stability and economy analysis based on computational fluid dynamics and field testing of hybrid-driven underwater glider with the water quality sensor in Danjiangkou Reservoir

    Directory of Open Access Journals (Sweden)

    Chao Li


    Full Text Available Hybrid-driven underwater glider is a new kind of unmanned platform for water quality monitoring. It has advantages such as high controllability and maneuverability, low cost, easy operation, and ability to carry multiple sensors. This article develops a hybrid-driven underwater glider, PETRELII, and integrates a water quality monitoring sensor. Considering stability and economy, an optimal layout scheme is selected from four candidates by simulation using computational fluid dynamics method. Trials were carried out in Danjiangkou Reservoir—important headwaters of the Middle Route of the South-to-North Water Diversion Project. In the trials, a monitoring strategy with polygonal mixed-motion was adopted to make full use of the advantages of the unmanned platform. The measuring data, including temperature, dissolved oxygen, conductivity, pH, turbidity, chlorophyll, and ammonia nitrogen, are obtained. These data validate the practicability of the theoretical layout obtained using computational fluid dynamics method and the practical performance of PETRELII with sensor.

  6. Dental ceramics coated with bioactive glass: Surface changes after exposure in a simulated body fluid under static and dynamic conditions (United States)

    Papadopoulou, L.; Kontonasaki, E.; Zorba, T.; Chatzistavrou, X.; Pavlidou, E.; Paraskevopoulos, K.; Sklavounos, S.; Koidis, P.


    Bioactive materials develop a strong bond with living tissues through a carbonate-containing hydroxyapatite layer, similar to that of bone. The fabrication of a thin bioactive glass coating on dental ceramics used in metal-ceramic restorations, could provide a bioactive surface, which in combination with a tissue regenerative technique could lead to periodontal tissues attachment. The aim of this study was the in vitro investigation of the surface structure changes of dental ceramics used in metal-ceramic restorations, coated with a bioactive glass heat-treated at 950 °C, after exposure in a simulated body fluid (SBF) under two different soaking conditions. Coating of dental ceramics with a bioactive glass resulted in the formation of a stable and well bonded with the ceramic substrate thin layer. The growth of a well-attached carbonate apatite layer on their surface after immersion in a simulated body fluid is well evidenced under both experimental conditions, although in static environment the rate of apatite growth is constant and the grown layers seem to be more dense and compact compared with the respective layers observed on specimens under dynamic conditions.

  7. Comparison of morphological and rheological conditions between conventional and eversion carotid endarterectomy using computational fluid dynamics--a pilot study. (United States)

    Demirel, S; Chen, D; Mei, Y; Partovi, S; von Tengg-Kobligk, H; Dadrich, M; Böckler, D; Kauczor, H U; Müller-Eschner, M


    To compare postoperative morphological and rheological conditions after eversion carotid endarterectomy versus conventional carotid endarterectomy using computational fluid dynamics. Hemodynamic metrics (velocity, wall shear stress, time-averaged wall shear stress and temporal gradient wall shear stress) in the carotid arteries were simulated in one patient after conventional carotid endarterectomy and one patient after eversion carotid endarterectomy by computational fluid dynamics analysis based on patient specific data. Systolic peak of the eversion carotid endarterectomy model showed a gradually decreased pressure along the stream path, the conventional carotid endarterectomy model revealed high pressure (about 180 Pa) at the carotid bulb. Regions of low wall shear stress in the conventional carotid endarterectomy model were much larger than that in the eversion carotid endarterectomy model and with lower time-averaged wall shear stress values (conventional carotid endarterectomy: 0.03-5.46 Pa vs. eversion carotid endarterectomy: 0.12-5.22 Pa). Computational fluid dynamics after conventional carotid endarterectomy and eversion carotid endarterectomy disclosed differences in hemodynamic patterns. Larger studies are necessary to assess whether these differences are consistent and might explain different rates of restenosis in both techniques. © The Author(s) 2014.

  8. The influence of preanalytical conditions on the DJ-1 concentration in human cerebrospinal fluid

    DEFF Research Database (Denmark)

    Salvesen, Lisette; Tanassi, Julia T; Bech, Sara


    concentration was blood contaminated samples centrifuged at 2000 × g. When a protease inhibitor cocktail was added to the CSF prior to centrifugation, the DJ-1 concentration was significantly higher. CONCLUSION: Preanalytical factors such as centrifugation and protease inhibition must...... be carefully controlled when handling CSF for analysis of DJ-1 and other biomarkers, as DJ-1 was influenced by blood contamination, centrifugation and protease activity.......AIM: The purpose of this study was to establish the influence of centrifugation and protease activity on the cerebrospinal fluid (CSF) concentrations of DJ-1 and hemoglobin. MATERIALS & METHODS: The concentrations of DJ-1 and hemoglobin were determined in 12 (DJ-1) and six (hemoglobin) pairs of CSF...

  9. Computational fluid dynamics modeling of bun baking process under different oven load conditions. (United States)

    Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C


    A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.

  10. Analysis of volatile metabolites in biological fluids as indicators of prodromal disease condition (United States)

    Zlatkis, A.


    The volatile profile cannot be defined as a single class of substances, rather it is a broad spectrum of materials of different polarities characterized by having a boiling-point in the low to medium range (up to approximately 300 C) and the fact that the compounds are suitable for gas chromatography without derivatization. The organic volatile profiles are very complex mixtures of metabolic byproducts, intermediates, and terminal products of enzymatic degradations composed mainly of alcohols, ketones, aldehydes, pyrazines, sulfides, isothiocyanates, pyrroles, and furans. The concentration of organic volatiles in biological fluids covers a wide range with many important components present at trace levels. The complexity of the organic volatile fraction requires the use of capillary columns for their separation.

  11. Serum amyloid A isoforms in serum and synovial fluid from spontaneously diseased dogs with joint diseases or other conditions

    DEFF Research Database (Denmark)

    Kjelgaard-Hansen, Mads Jens; Christensen, Michelle B.; Lee, Marcel Huisung


    Serum amyloid A (SAA) is a major acute phase protein in dogs. However, knowledge of qualitative properties of canine SAA and extent of its synthesis in extrahepatic tissues is limited. The aim of the study was to investigate expression of different SAA isoforms in serum and synovial fluid...... in samples obtained from dogs (n = 16) suffering from different inflammatory or non-inflammatory conditions, which were either related or unrelated to joints. Expression of SAA isoforms was visualized by denaturing isoelectric focusing and Western blotting. Serum amyloid A was present in serum from all dogs...

  12. Modelling by the SPH method of the impact of a shell containing a fluid; Modelisation par la methode SPH de l'impact d'un reservoir rempli de fluide

    Energy Technology Data Exchange (ETDEWEB)

    Maurel, B


    The aim of this work was to develop a numerical simulation tool using a mesh-less approach, able to simulate the deformation and the rupture of thin structures under the impact of a fluid. A model of thick mesh-less shell (Mindlin-Reissner) based on the SPH method has then been carried out. A contact algorithm has moreover been perfected for the interactions between the structure and the fluid, it is modelled too by the SPH method. These studies have been carried out and been included in the CEA Europlexus fast dynamics software. (O.M.)

  13. Fundamental Understanding of Methane-Carbon Dioxide-Water (CH4-CO2-H2O) Interactions in Shale Nanopores under Reservoir Conditions. Quarterly Report.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This project focuses on the systematic study of CH4-CO2-H2O interactions in shale nanopores under high-pressure and high temperature reservoir conditions. The proposed work will help to develop new stimulation strategies to enable efficient resource recovery from fewer and less environmentally impactful wells.

  14. Application of MRIL-WD (Magnetic Resonance Imaging Logging While Drilling) for irreducible water saturation, total reservoir, free-fluid, bound-fluid porosity measurements and its value for the petrophysical analysis of RT/RM data from the Shah Deniz well (United States)

    Amirov, Elnur


    Sperry-Sun (Sperry Drilling Services) is the leader in MWD/LWD reliability, has developed the industry's first LWD NMR/MRIL-WD (nuclear magnetic resonance) tool. The MRIL-WD (magnetic resonance imaging logging-while-drilling) service directly measures the T1 component of hydrogen in subsurface rock units while drilling to obtain total reservoir porosity and to dissect the observed total porosity into its respective components of free fluid and bound fluid porosity. These T1 data are used to secure accurate total, free-fluid, capillary-bound water, and clay-bound water porosity of the reservoir sections which can be drilled in the several Runs. Over the last decade, results from Magnetic Resonance Imaging logs (NMR) have added significant value to petrophysical analysis and understanding by providing total, free-fluid and bound-fluid porosities, combined with fluid typing capabilities. With MRIL-WD very valuable Real-Time or Recorded Memory data/information is now available during or shortly after the drilling operation (formation properties measurement can be taken right after a drill bit penetration), while trip in and trip out as well. A key point in utilizing MRIL in an LWD environment is motion-tolerant measurements. Recent MRIL-WD logging runs from the Shah Deniz wells located in the Khazarian-Caspian Sea of the Azerbaijan Republic helped to delineate and assess hydrocarbon bearing zones. Acquired results demonstrate how MRIL data can be acquired while-drilling and provide reliable/high quality measurements. Magnetic Resonance Imaging logs at some developments wells have become a cornerstone in formation evaluation and petrophysical understanding. By providing total, free-fluid, and bound-fluid porosities together with fluid typing, MRIL results have significantly added to the assessment of reservoirs. In order to reduce NPT (Non-Productive Time) and save the rig operations time, there is always the desire to obtain logging results as soon as possible

  15. An experimental study of tracers for labelling of injection gas in oil reservoirs

    International Nuclear Information System (INIS)

    Dugstad, Oe.


    This work demonstrates the feasibility of the PMCP and PMCH as tracers in field experiments. These compounds have properties which make them as well suited for well to well studies as the more common tracers CH 3 T and 85 Kr. In an injection project carried out at the Gullfaks field in the North Sea the two PFCs verified communication between wells. This implies communication between different geological layers in the reservoir and also communication across faults within the same layers. Laboratory studies carried out have focused on the retention of the tracers in dynamic flooding experiments under conditions comparable with those in the petroleum reservoirs. Simultaneous injection of a variety of tracers has shown individual variations in tracer retention which are caused by important reservoir parameters as fluid saturation and rock properties. By proper design of field injection programs the tracers response may therefore be used to estimate fluid saturation if actual rock properties are known. 45 refs., 20 figs., 13 tabs

  16. Acoustic and mechanical response of reservoir rocks under variable saturation and effective pressure. (United States)

    Ravazzoli, C L; Santos, J E; Carcione, J M


    We investigate the acoustic and mechanical properties of a reservoir sandstone saturated by two immiscible hydrocarbon fluids, under different saturations and pressure conditions. The modeling of static and dynamic deformation processes in porous rocks saturated by immiscible fluids depends on many parameters such as, for instance, porosity, permeability, pore fluid, fluid saturation, fluid pressures, capillary pressure, and effective stress. We use a formulation based on an extension of Biot's theory, which allows us to compute the coefficients of the stress-strain relations and the equations of motion in terms of the properties of the single phases at the in situ conditions. The dry-rock moduli are obtained from laboratory measurements for variable confining pressures. We obtain the bulk compressibilities, the effective pressure, and the ultrasonic phase velocities and quality factors for different saturations and pore-fluid pressures ranging from normal to abnormally high values. The objective is to relate the seismic and ultrasonic velocity and attenuation to the microstructural properties and pressure conditions of the reservoir. The problem has an application in the field of seismic exploration for predicting pore-fluid pressures and saturation regimes.

  17. Thyroglobulin assay in fluids from lymph node fine needle-aspiration washout: influence of pre-analytical conditions. (United States)

    Casson, Florence Boux de; Moal, Valérie; Gauchez, Anne-Sophie; Moineau, Marie-Pierre; Sault, Corinne; Schlageter, Marie-Hélène; Massart, Catherine


    The aim of this study was to evaluate the pre-analytical factors contributing to uncertainty in thyroglobulin measurement in fluids from fine-needle aspiration (FNA) washout of cervical lymph nodes. We studied pre-analytical stability, in different conditions, of 41 samples prepared with concentrated solutions of thyroglobulin (FNA washout or certified standard) diluted in physiological saline solution or buffer containing 6% albumin. In this buffer, over time, no changes in thyroglobulin concentrations were observed in all storage conditions tested. In albumin free saline solution, thyroglobulin recovery rates depended on initial sample concentrations and on modalities of their conservation (in conventional storage tubes, recovery mean was 56% after 3 hours-storage at room temperature and 19% after 24 hours-storage for concentrations ranged from 2 to 183 μg/L; recovery was 95%, after 3 hours or 24 hours-storage at room temperature, for a concentration of 5,656 μg/L). We show here that these results are due to non-specific adsorption of thyroglobulin in storage tubes, which depends on sample protein concentrations. We also show that possible contamination of fluids from FNA washout by plasma proteins do not always adequately prevent this adsorption. In conclusion, non-specific adsorption in storage tubes strongly contributes to uncertainty in thyroglobulin measurement in physiological saline solution. It is therefore recommended, for FNA washout, to use a buffer containing proteins provided by the laboratory.

  18. Effect of cutting fluids and cutting conditions on surface integrity and tool wear in turning of Inconel 713C (United States)

    Hikiji, R.


    The trend toward downsizing of engines helps to increase the number of turbochargers around Europe. As for the turbocharger, the temperature of the exhaust gas is so high that the parts made of nickel base super alloy Inconel 713C are used as high temperature strength metals. External turning of Inconel 713C which is used as the actual automotive parts was carried out. The effect of the cutting fluids and cutting conditions on the surface integrity and tool wear was investigated, considering global environment and cost performance. As a result, in the range of the cutting conditions used this time, when the depth of cut was small, the good surface integrity and tool life were obtained. However, in the case of the large corner radius, it was found that the more the cutting length increased, the more the tool wear increased. When the cutting length is so large, the surface integrity and tool life got worse. As for the cutting fluids, it was found that the synthetic type showed better performance in the surface integrity and tool life than the conventional emulsion. However, it was clear that the large corner radius made the surface roughness and tool life good, but it affected the size error etc. in machining the workpiece held in a cantilever style.

  19. Direct hydrocarbon exploration and gas reservoir development technology

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Young Hoon; Oh, Jae Ho; Jeong, Tae Jin [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)] [and others


    In order to enhance the capability of petroleum exploration and development techniques, three year project (1994 - 1997) was initiated on the research of direct hydrocarbon exploration and gas reservoir development. This project consists of four sub-projects. (1) Oil(Gas) - source rock correlation technique: The overview of bio-marker parameters which are applicable to hydrocarbon exploration has been illustrated. Experimental analysis of saturated hydrocarbon and bio-markers of the Pohang E and F core samples has been carried out. (2) Study on surface geochemistry and microbiology for hydrocarbon exploration: the test results of the experimental device for extraction of dissolved gases from water show that the device can be utilized for the gas geochemistry of water. (3) Development of gas and gas condensate reservoirs: There are two types of reservoir characterization. For the reservoir formation characterization, calculation of conditional simulation was compared with that of unconditional simulation. In the reservoir fluid characterization, phase behavior calculations revealed that the component grouping is more important than the increase of number of components. (4) Numerical modeling of seismic wave propagation and full waveform inversion: Three individual sections are presented. The first one is devoted to the inversion theory in general sense. The second and the third sections deal with the frequency domain pseudo waveform inversion of seismic reflection data and refraction data respectively. (author). 180 refs., 91 figs., 60 tabs.

  20. Understanding and Mitigating Reservoir Compaction: an Experimental Study on Sand Aggregates (United States)

    Schimmel, M.; Hangx, S.; Spiers, C. J.


    Fossil fuels continue to provide a source for energy, fuels for transport and chemicals for everyday items. However, adverse effects of decades of hydrocarbons production are increasingly impacting society and the environment. Production-driven reduction in reservoir pore pressure leads to a poro-elastic response of the reservoir, and in many occasions to time-dependent compaction (creep) of the reservoir. In turn, reservoir compaction may lead to surface subsidence and could potentially result in induced (micro)seismicity. To predict and mitigate the impact of fluid extraction, we need to understand production-driven reservoir compaction in highly porous siliciclastic rocks and explore potential mitigation strategies, for example, by using compaction-inhibiting injection fluids. As a first step, we investigate the effect of chemical environment on the compaction behaviour of sand aggregates, comparable to poorly consolidated, highly porous sandstones. The sand samples consist of loose aggregates of Beaujean quartz sand, sieved into a grainsize fraction of 180-212 µm. Uniaxial compaction experiments are performed at an axial stress of 35 MPa and temperature of 80°C, mimicking conditions of reservoirs buried at three kilometres depth. The chemical environment during creep is either vacuum-dry or CO2-dry, or fluid-saturated, with fluids consisting of distilled water, acid solution (CO2-saturated water), alkaline solution (pH 9), aluminium solution (pH 3) and solution with surfactants (i.e., AMP). Preliminary results show that compaction of quartz sand aggregates is promoted in a wet environment compared to a dry environment. It is inferred that deformation is controlled by subcritical crack growth when dry and stress corrosion cracking when wet, both resulting in grain failure and subsequent grain rearrangement. Fluids inhibiting these processes, have the potential to inhibit aggregate compaction.

  1. Effects of supercritical fluid chromatography conditions on enantioselectivity and performance of polyproline-derived chiral stationary phases. (United States)

    Novell, Arnau; Méndez, Alberto; Minguillón, Cristina


    The chromatographic behaviour and performance of four polyproline-derived chiral stationary phases (CSPs) were tested using supercritical fluid chromatography (SFC). A series of structurally related racemic compounds, whose enantioseparation was proved to be sensitive to the type of mobile phase used in NP-HPLC, were chosen to be tested in the SFC conditions. Good enantioselection ability was shown by the CSPs for the analytes tested in the new conditions. Resolution, efficiency and analysis time, were considerably improved with respect to NP-HPLC when CO2/alcohol mobile phases were used. Monolithic columns clearly show enhanced chromatographic parameters and improved performance respect to their bead-based counterparts. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach. (United States)

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara


    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  3. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati


    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  4. Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, J K; Chan, S T


    The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy

  5. Fluid-flow, diagenesis and generation of secondary porosity-permeability in the Cretaceous Jandaira Formation, Brazil - an analogue of karstified carbonate reservoirs (United States)

    Bezerra, F. H.; Cazarin, C. L.; Srivastava, N. K.


    This study investigates the diagenetic processes that generated secondary porosity-permeability in carbonates. Our study area is the Jandaira Formation, a post-rift unit, 50-700 m thick, which occurs over an area of 70 x 260 km in the Potiguar Basin, Equatorial margin of Brazil. The Jandaira Formation formed in the Turonian-Campanian and is the major exposed Cretaceous carbonate platform in the eastern continental margin of South America. Little folding and nearly flat-lying layers characterize this unit. We used a multidisciplinary approach, which included drone imagery, petrographic, petrophysical, petrological, and structural studies. Our results indicate that several levels of dissolution occurred in mudstone, grainstone, and wackestone facies along faults, fractures, and bedding planes. Fracture and faults provided vertical leaching pathways and sedimentary bedding provided horizontal pathways of increased secondary porosity and permeability. Dissolution resulted in a multi-scale karst system that could reach voids 5 m wide and 1 km long. Dissolution mostly affect the dolomitized sedimentary facies in the form of vugular, moldic, interparticular, and intercrystalline porosity. It also generated a new modified facies that we defined as karstified facies. Dissolution increased permeability in carbonate rocks from primary values of 0.0-0.94 mD to as much as 1370.11 mD. Micritization, lixiviation of evaporites, meteoric water infiltration and dolomitization during late diagenesis could have triggered dissolution processes. The Jandaira Formation serves as an analog of fractured and karstified carbonate reservoirs, where faults, joints, and bedding acted as pathways of high permeability.

  6. Research on fluids adapted to air conditioning by three-thermal ejector-compressor machine

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, R.; Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)


    A model has been developed in order to optimize the ejector performances for air conditioning systems, which operate with refrigerants substitutes. Many refrigerants have been considered: R11, R114, R22, R133a, R142b, R134a, R318c, R152a, R123 and R141b. The interest of using non azeotropic mixtures, like the R141b-R318c, has been studied in such systems. (Authors). 5 refs., 10 figs.

  7. Effects of periodic boundary conditions on equilibrium properties of computer simulated fluids. I. Theory

    International Nuclear Information System (INIS)

    Pratt, L.R.; Haan, S.W.


    An exact formal theory for the effects of periodic boundary conditions on the equilibrium properties of computer simulated classical many-body systems is developed. This is done by observing that use of the usual periodic conditions is equivalent to the study of a certain supermolecular liquid, in which a supermolecule is a polyatomic molecule of infinite extent composed of one of the physical particles in the system plus all its periodic images. For this supermolecular system in the grand ensemble, all the cluster expansion techniques used in the study of real molecular liquids are directly applicable. As expected, particle correlations are translationally uniform, but explicitly anisotropic. When the intermolecular potential energy functions are of short enough range, or cut off, so that the minimum image method is used, evaluation of the cluster integrals is dramatically simplified. In this circumstance, a large and important class of cluster expansion contributions can be summed exactly, and expressed in terms of the correlation functions which result when the system size is allowed to increase without bound. This result yields a simple and useful approximation to the corrections to the particle correlations due to the use of periodic boundary conditions with finite systems. Numerical application of these results are reported in the following paper

  8. Apparatus and Methods for Fluid Storage and Delivery (United States)

    Parazynski, Scott E. (Inventor); Bue, Grant C. (Inventor); Schaefbauer, Mark E. (Inventor); Urban, Kase C. (Inventor)


    An apparatus and method for storing and delivering fluid to a person comprises, in at least one specific embodiment, a fluid reservoir having an internal volume therein with an opening disposed through a first wall or a second wall of the fluid reservoir and located toward a first end of the fluid reservoir. A first portion of a tube can be exterior to the fluid reservoir and a second portion of the tube can be disposed through the opening and within the internal volume. At least one insulation layer can be disposed about the exterior of the first wall of the fluid reservoir. The second wall of the fluid reservoir can be configured for transferring heat from or to the internal volume or from the person. At least one baffle is disposed within the internal volume and connected to the first wall and the second wall of the fluid reservoir.

  9. Changes in apolipoprotein B and oxidized low-density lipoprotein levels in gingival crevicular fluids as a result of periodontal tissue conditions. (United States)

    Ishizuka, M; Kato, R; Moriya, Y; Noguchi, E; Koide, Y; Inoue, S; Itabe, H; Yamamoto, M


    Periodontal disease is a chronic inflammatory disease caused by bacterial infection that can lead to tooth loss. Gingival crevicular fluid can be collected easily and noninvasively. We previously discovered the presence of apolipoprotein B (apoB), the main constituent of low-density lipoprotein, and oxidized low-density lipoprotein (oxLDL) in the gingival crevicular fluid of healthy subjects. In this study, we investigated whether periodontal conditions affect the levels of apoB and oxLDL in gingival crevicular fluid. The study population comprised 11 patients with chronic periodontitis. A pair of gingival crevicular fluid samples was collected from each patient at a healthy site and at a site with periodontitis (baseline samples). Thereafter, gingival crevicular fluid samples were collected from the same patients again at 4 and 8 wk after scaling and root planing (SRP). The levels of apoB, oxLDL, protein and cytokines in gingival crevicular fluid, in addition to gingival crevicular fluid volume, were measured. At baseline, the levels of apoB and oxLDL in gingival crevicular fluid were higher at the sites with periodontitis than at the healthy sites. The levels of apoB and oxLDL at periodontal sites decreased after SRP. The level of oxLDL in gingival crevicular fluid correlated well with the probing pocket depth. The oxLDL : apoB ratio in gingival crevicular fluid was significantly higher than that in plasma. The levels of apoB and oxLDL in gingival crevicular fluid change according to the periodontal tissue conditions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions

    Directory of Open Access Journals (Sweden)

    Ramia Z. Al Bakain


    Full Text Available Retention mechanisms involved in supercritical fluid chromatography (SFC are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase, a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition. Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns’ function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components.

  11. Supercritical Fluid Chromatography of Drugs: Parallel Factor Analysis for Column Testing in a Wide Range of Operational Conditions (United States)

    Al-Degs, Yahya; Andri, Bertyl; Thiébaut, Didier; Vial, Jérôme


    Retention mechanisms involved in supercritical fluid chromatography (SFC) are influenced by interdependent parameters (temperature, pressure, chemistry of the mobile phase, and nature of the stationary phase), a complexity which makes the selection of a proper stationary phase for a given separation a challenging step. For the first time in SFC studies, Parallel Factor Analysis (PARAFAC) was employed to evaluate the chromatographic behavior of eight different stationary phases in a wide range of chromatographic conditions (temperature, pressure, and gradient elution composition). Design of Experiment was used to optimize experiments involving 14 pharmaceutical compounds present in biological and/or environmental samples and with dissimilar physicochemical properties. The results showed the superiority of PARAFAC for the analysis of the three-way (column × drug × condition) data array over unfolding the multiway array to matrices and performing several classical principal component analyses. Thanks to the PARAFAC components, similarity in columns' function, chromatographic trend of drugs, and correlation between separation conditions could be simply depicted: columns were grouped according to their H-bonding forces, while gradient composition was dominating for condition classification. Also, the number of drugs could be efficiently reduced for columns classification as some of them exhibited a similar behavior, as shown by hierarchical clustering based on PARAFAC components. PMID:28695040

  12. Geothermal reservoir management

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, C.R.; Golabi, K.


    The optimal management of a hot water geothermal reservoir was considered. The physical system investigated includes a three-dimensional aquifer from which hot water is pumped and circulated through a heat exchanger. Heat removed from the geothermal fluid is transferred to a building complex or other facility for space heating. After passing through the heat exchanger, the (now cooled) geothermal fluid is reinjected into the aquifer. This cools the reservoir at a rate predicted by an expression relating pumping rate, time, and production hole temperature. The economic model proposed in the study maximizes discounted value of energy transferred across the heat exchanger minus the discounted cost of wells, equipment, and pumping energy. The real value of energy is assumed to increase at r percent per year. A major decision variable is the production or pumping rate (which is constant over the project life). Other decision variables in this optimization are production timing, reinjection temperature, and the economic life of the reservoir at the selected pumping rate. Results show that waiting time to production and production life increases as r increases and decreases as the discount rate increases. Production rate decreases as r increases and increases as the discount rate increases. The optimal injection temperature is very close to the temperature of the steam produced on the other side of the heat exchanger, and is virtually independent of r and the discount rate. Sensitivity of the decision variables to geohydrological parameters was also investigated. Initial aquifer temperature and permeability have a major influence on these variables, although aquifer porosity is of less importance. A penalty was considered for production delay after the lease is granted.

  13. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Frauk; Hughes, Richard G.


    Research continues on characterizing and modeling the behavior of naturally fractured reservoir systems. Work has progressed on developing techniques for estimating fracture properties from seismic and well log data, developing naturally fractured wellbore models, and developing a model to characterize the transfer of fluid from the matrix to the fracture system for use in the naturally fractured reservoir simulator.

  14. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media (United States)

    Xu, H.


    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  15. A Conditionally Stable Scheme for a Transient Flow of a Non-Newtonian Fluid Saturating a Porous Medium

    KAUST Repository

    El-Amin, Mohamed


    The problem of thermal dispersion effects on unsteady free convection from an isothermal horizontal circular cylinder to a non-Newtonian fluid saturating a porous medium is examined numerically. The Darcy-Brinkman-Forchheimer model is employed to describe the flow field. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The simultaneous development of the momentum and thermal boundary layers are obtained by using finite difference method. The stability conditions are determined for each difference equation. Using an explicit finite difference scheme, solutions at each time-step have been found and then stepped forward in time until reaching steady state solution. Velocity and temperature profiles are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach the steady state values.

  16. Effects of viscous dissipation on MHD tangent hyperbolic fluid over a nonlinear stretching sheet with convective boundary conditions (United States)

    Hussain, Arif; Malik, M. Y.; Salahuddin, T.; Rubab, A.; Khan, Mair

    Present analysis is concentrating on the thermo-physical aspects of MHD tangent hyperbolic fluid flow over a non-linear stretching sheet with viscous dissipation and convective boundary conditions. Mathematical modelling yields non-linear partial differential equations. The governing equations are transformed into corresponding coupled ordinary differential equations via using local similarity variables. The accomplished boundary layer ordinary differential equations are solved with the aid of both homotopy analysis method and shooting method. The effects of flow govern parameters are visualized on velocity and temperature in both qualitative and quantitative manners. The computations of wall friction factor and local Nusselt number are performed to analyze the behavior in the vicinity of stretching sheet. The contrast between analytically and numerically computed values of wall friction factor and local Nusselt number is presented. It is worth mentioning that the both results are in excellent agreement, this favorable comparison led to confidence on computed results.

  17. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions (United States)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.


    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.


    Energy Technology Data Exchange (ETDEWEB)

    Lam, P.S.; Morgan, M.J


    The burst test is used to assess the material performance of tritium reservoirs in the surveillance program in which reservoirs have been in service for extended periods of time. A materials system model and finite element procedure were developed under a Savannah River Site Plant-Directed Research and Development (PDRD) program to predict the structural response under a full range of loading and aged material conditions of the reservoir. The results show that the predicted burst pressure and volume ductility are in good agreement with the actual burst test results for the unexposed units. The material tensile properties used in the calculations were obtained from a curved tensile specimen harvested from a companion reservoir by Electric Discharge Machining (EDM). In the absence of exposed and aged material tensile data, literature data were used for demonstrating the methodology in terms of the helium-3 concentration in the metal and the depth of penetration in the reservoir sidewall. It can be shown that the volume ductility decreases significantly with the presence of tritium and its decay product, helium-3, in the metal, as was observed in the laboratory-controlled burst tests. The model and analytical procedure provides a predictive tool for reservoir structural integrity under aging conditions. It is recommended that benchmark tests and analysis for aged materials be performed. The methodology can be augmented to predict performance for reservoir with flaws.

  19. Carbon dioxide sequestration induced mineral precipitation healing of fractured reservoir seals (United States)

    Welch, N.; Crawshaw, J.


    Initial experiments and the thermodynaic basis for carbon dioxide sequestration induced mineral precipitation healing of fractures through reservoir seals will be presented. The basis of this work is the potential exists for the dissolution of reservoir host rock formation carbonate minerals in the acidified injection front of CO2 during sequestration or EOR. This enriched brine and the bulk CO2 phase will then flow through the reservoir until contact with the reservoir seal. At this point any fractures present in the reservoir seal will be the preferential flow path for the bulk CO2 phase as well as the acidified brine front. These fractures would currently be filled with non-acidified brine saturated in seal formation brine. When the acidifeid brine from the host formation and the cap rock brine mix there is the potential for minerals to fall out of solution, and for these precipitated minerals to decrease or entirely cut off the fluid flow through the fractures present in a reservoir seal. Initial equilibrium simulations performed using the PHREEQC1 database drived from the PHREEQE2 database are used to show the favorable conditions under which this mineral precipitation can occurs. Bench scale fluid mixing experiments were then performed to determine the kinetics of the mineral precipitation process, and determine the progress of future experiemnts involving fluid flow within fractured anhydrite reservoir seal samples. 1Parkhurst, D.L., and Appelo, C.A.J., 2013, Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, book 6, chap. A43, 497 p., available only at 2Parkhurst, David L., Donald C. Thorstenson, and L. Niel Plummer. PHREEQE: a computer program for geochemical calculations. No. 80-96. US Geological Survey, Water Resources Division,, 1980.

  20. Formation conditions of leucogranite dykes and aplite-pegmatite dykes in the eastern Mt. Capanne plutonic complex (Elba, Italy): fluid inclusion studies in quartz, tourmaline, andalusite and plagioclase (United States)

    Bakker, Ronald J.; Schilli, Sebastian E.


    Leucogranite and aplite-pegmatite dykes are associated with the Mt. Capanne pluton (Elba) and partly occur in the thermally metamorphosed host rock (serpentinites). Crystallization conditions of these dykes in the late magmatic-hydrothermal stage are estimated from fluid inclusion studies and mineralogical characterisation, obtained from detailed microthermometry, Raman spectroscopy, and electron microprobe analyses. Fluid inclusion assemblages are analysed in andalusite, quartz, and plagioclase from the leucogranite dykes, and in tourmaline and quartz from the aplite-pegmatite dykes. The fluid inclusion assemblages record multiple pulses of low salinity H2O-rich magmatic and reduced metamorphic fluid stages. Magmatic fluids are characterized by the presence of minor amounts of CO2 and H3BO3, whereas the metamorphic fluids contain CH4 and H2. The highly reduced conditions are also inferred from the presence of native arsenic in some fluid inclusions. Several fluid inclusion assemblages reveal fluid compositions that must have resulted from mixing of both fluid sources. In leucogranite dykes, magmatic andalusite contains a low-density magmatic CO2-rich gas mixture with minor amounts of CH4 and H2. Accidentally trapped crystals (mica) and step-daughters (quartz and diaspore) are detected in some inclusions in andalusite. The first generation of inclusions in quartz that crystallized after andalusite contains a highly reduced H2O-H2 mixture and micas. The second type of inclusions in quartz from the leucogranite is similar to the primary inclusion assemblage in tourmaline from the aplite-pegmatite, and contains up to 4.2 mass% H3BO3, present as a sassolite daughter crystal or dissolved ions, in addition to a CO2-CH4 gas mixture, with traces of H2, N2, H2S, and C2H6. H2O is the main component of all these fluids ( x = 0.91 to 0.96) with maximally 7 mass% NaCl. Some accidentally trapped arsenolite and native arsenic are also detected. These fluids were trapped in the

  1. Influence of heat source/sink on a Maxwell fluid over a stretching surface with convective boundary condition in the presence of nanoparticles

    Directory of Open Access Journals (Sweden)

    G.K. Ramesh


    Full Text Available In this article, heat source/sink effects on the steady boundary layer flow of a Maxwell fluid over a stretching sheet with convective boundary condition in the presence of nanoparticles are reported. An appropriate similarity transformation is employed to transform the governing equations in partial differential equations form to similarity equations in ordinary differential equations form. The resulting equations are then solved numerically using shooting technique. Results for the velocity, temperature and concentration distributions are presented graphically for different values of the pertinent parameters. It is found that the local Nusselt number is smaller and local Sherwood number is higher for Maxwell fluids compared to Newtonian fluids.

  2. Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chen Shihwei [Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Taiwan (China); Chiang Chenli [Department of Chemical Engineering, Southern Taiwan University of Technology, Taiwan (China); Hsieh Shuchen, E-mail: [Department of Chemistry and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Taiwan (China)


    Magnetite nanoparticles with high self-heating capacity and low toxicity characteristics are a promising candidate for cancer hyperthermia treatment. In order to achieve minimum dosage to a patient, magnetic nanoparticles with high heating capacity are needed. In addition, the influence of physiological factors on the heat capacity of a material should be investigated in order to determine the feasibility. In this study, magnetite nanoparticles coated with lauric acid were prepared by co-precipitation of Fe{sup 3+}:Fe{sup 2+} in a ratio of 2:1, 5:3, 3:2, and 4:3, and the pH was controlled using NaOH. Structural and magnetization characterization by means of X-ray diffractometry (XRD) and a superconducting quantum interference device (SQUID) revealed that the main species was Fe{sub 3}O{sub 4} and further showed that most of the nanoparticles exhibited superparamagnetic properties. All of the magnetic nanoparticles showed a specific absorption rate (SAR) increase that was linear with the magnetic field strength and frequency of the alternating magnetic field. Among all, the magnetic nanoparticles prepared in a 3:2 ratio showed the highest SAR. To further test the influence of physiological factors on the 3:2 ratio magnetic nanoparticles, we simulated the environment with protein (bovine serum albumin, BSA), blood sugar (dextrose), electrolytes (commercial norm-saline) and viscosity (glycerol) to examine the heating capacity under these conditions. Our results showed that the SAR value was unaffected by the protein and blood sugar environments. On the other hand, the SAR value was significantly reduced in the electrolyte environment, due to precipitation and aggregation with sodium ions. For the simulated viscous environment with glycerol, the result showed that the SAR values reduced with increasing glycerol concentration. We have further tested the heating capacity contribution from the Neel mechanism by trapping the magnetic nanoparticles in a solid form of

  3. Simulating physiological conditions to evaluate nanoparticles for magnetic fluid hyperthermia (MFH) therapy applications (United States)

    Chen, Shihwei; Chiang, Chen-li; Hsieh, Shuchen


    Magnetite nanoparticles with high self-heating capacity and low toxicity characteristics are a promising candidate for cancer hyperthermia treatment. In order to achieve minimum dosage to a patient, magnetic nanoparticles with high heating capacity are needed. In addition, the influence of physiological factors on the heat capacity of a material should be investigated in order to determine the feasibility. In this study, magnetite nanoparticles coated with lauric acid were prepared by co-precipitation of Fe 3+:Fe 2+ in a ratio of 2:1, 5:3, 3:2, and 4:3, and the pH was controlled using NaOH. Structural and magnetization characterization by means of X-ray diffractometry (XRD) and a superconducting quantum interference device (SQUID) revealed that the main species was Fe 3O 4 and further showed that most of the nanoparticles exhibited superparamagnetic properties. All of the magnetic nanoparticles showed a specific absorption rate (SAR) increase that was linear with the magnetic field strength and frequency of the alternating magnetic field. Among all, the magnetic nanoparticles prepared in a 3:2 ratio showed the highest SAR. To further test the influence of physiological factors on the 3:2 ratio magnetic nanoparticles, we simulated the environment with protein (bovine serum albumin, BSA), blood sugar (dextrose), electrolytes (commercial norm-saline) and viscosity (glycerol) to examine the heating capacity under these conditions. Our results showed that the SAR value was unaffected by the protein and blood sugar environments. On the other hand, the SAR value was significantly reduced in the electrolyte environment, due to precipitation and aggregation with sodium ions. For the simulated viscous environment with glycerol, the result showed that the SAR values reduced with increasing glycerol concentration. We have further tested the heating capacity contribution from the Néel mechanism by trapping the magnetic nanoparticles in a solid form of polydimethylsiloxane

  4. Water coning in porous media reservoirs for compressed air energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.


    The general purpose of this work is to define the hydrodynamic and thermodynamic response of a CAES porous media reservoir subjected to simulated air mass cycling. This research will assist in providing design guidelines for the efficient and stable operation of the air storage reservoir. This report presents the analysis and results for the two-phase (air-water), two-dimensional, numerical modeling of CAES porous media reservoirs. The effects of capillary pressure and relative permeability were included. The fluids were considered to be immisicible; there was no phase change; and the system was isothermal. The specific purpose of this analysis was to evaluate the reservoir parameters that were believed to be important to water coning. This phenomenon may occur in reservoirs in which water underlies the air storage zone. It involves the possible intrusion of water into the wellbore or near-wellbore region. The water movement is in response to pressure gradients created during a reservoir discharge cycle. Potential adverse effects due to this water movement are associated with the pressure response of the reservoir and the geochemical stability of the near-wellbore region. The results obtained for the simulated operation of a CAES reservoir suggest that water coning should not be a severe problem, due to the slow response of the water to the pressure gradients and the relatively short duration in which those gradients exist. However, water coning will depend on site-specific conditions, particularly the fluid distributions following bubble development, and, therefore, a water coning analysis should be included as part of site evaluation.

  5. Physical Aspects in Upscaling of Fractured Reservoirs and Improved Oil Recovery Prediction

    NARCIS (Netherlands)

    Salimi, H.


    This thesis is concerned with upscaled models for waterflooded naturally fractured reservoirs (NFRs). Naturally fractured petroleum reservoirs provide over 20% of the world’s oil reserves and production. From the fluid-flow point of view, a fractured reservoir is defined as a reservoir in which a

  6. The regimes of twin-fluid jet-in-crossflow at atmospheric and jet-engine operating conditions (United States)

    Tan, Zu Puayen; Bibik, Oleksandr; Shcherbik, Dmitriy; Zinn, Ben T.; Patel, Nayan


    The "Twin-Fluid Jet-in-Crossflow (TF-JICF)" is a nascent variation of the classical JICF, in which a liquid jet is co-injected with an annular sleeve of gas into a gaseous crossflow. Jet-engine designers are interested in using TF-JICF for liquid-fuel injection and atomization in the next-generation combustors because it is expected to minimize combustor-damaging auto-ignition and fuel-coking tendencies. However, experimental data of TF-JICF are sparse. Furthermore, a widely accepted TF-JICF model that correlates the spray's penetration to the combined liquid-gas momentum-flux ratio (Jeff) is increasingly showing discrepancy with emerging results, suggesting a gap in the current understanding of TF-JICF. This paper describes an investigation that addressed the gap by experimentally characterizing the TF-JICF produced by a single injector across wide ranges of operating conditions (i.e., jet-A injectant, crossflow of air, crossflow Weber number = 175-1050, crossflow pressure Pcf = 1.8-9.5 atm, momentum-flux ratio J = 5-40, and air-nozzle dP = 0%-150% of Pcf). These covered the conditions previously used to develop the Jeff model, recently reported conditions that produced Jeff discrepancies, and high-pressure conditions found in jet-engines. Dye-based shadowgraph was used to acquire high-resolution (13.52 μm/pixel) images of the TF-JICF, which revealed wide-ranging characteristics such as the disrupted Rayleigh-Taylor jet instabilities, air-induced jet corrugations, spray-bifurcations, and prompt-atomization. Analyses of the data showed that contrary to the literature, the TF-JICF's penetration is not monotonically related to Jeff. A new conceptual framework for TF-JICF is proposed, where the flow configuration is composed of four regimes, each having different penetration trends, spray structures, and underlying mechanisms.

  7. On the choice of outlet boundary conditions for patient-specific analysis of aortic flow using computational fluid dynamics. (United States)

    Pirola, S; Cheng, Z; Jarral, O A; O'Regan, D P; Pepper, J R; Athanasiou, T; Xu, X Y


    Boundary conditions (BCs) are an essential part in computational fluid dynamics (CFD) simulations of blood flow in large arteries. Although several studies have investigated the influence of BCs on predicted flow patterns and hemodynamic wall parameters in various arterial models, there is a lack of comprehensive assessment of outlet BCs for patient-specific analysis of aortic flow. In this study, five different sets of outlet BCs were tested and compared using a subject-specific model of a normal aorta. Phase-contrast magnetic resonance imaging (PC-MRI) was performed on the same subject and velocity profiles extracted from the in vivo measurements were used as the inlet boundary condition. Computational results obtained with different outlet BCs were assessed in terms of their agreement with the PC-MRI velocity data and key hemodynamic parameters, such as pressure and flow waveforms and wall shear stress related indices. Our results showed that the best overall performance was achieved by using a well-tuned three-element Windkessel model at all model outlets, which not only gave a good agreement with in vivo flow data, but also produced physiological pressure waveforms and values. On the other hand, opening outlet BCs with zero pressure at multiple outlets failed to reproduce any physiologically relevant flow and pressure features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions. (United States)

    Itabe, Hiroyuki; Kato, Rina; Sasabe, Naoko; Obama, Takashi; Yamamoto, Matsuo


    Oxidatively modified low-density lipoprotein (oxLDL) is known to be involved in various diseases, including cardiovascular diseases. The presence of oxLDL in the human circulatory system and in atherosclerotic lesions has been demonstrated using monoclonal antibodies. Studies have shown the significance of circulating oxLDL in various systemic diseases, including acute myocardial infarction and diabetic mellitus. Several different enzyme-linked immunosorbent assay (ELISA) procedures to measure oxLDL were utilized. Evidence has been accumulating that reveals changes in oxLDL levels under certain pathological conditions. Since oxLDL concentration tends to correlate with low-density lipoprotein (LDL)-cholesterol, the ratio of oxLDL and LDL rather than oxLDL concentration alone has been focused attention. In addition to circulating plasma, LDL and oxLDL are found in gingival crevicular fluid (GCF), where the ratio of oxLDL to LDL in GCF is much higher than in plasma. LDL and oxLDL levels in GCF show an increase in diabetic patients and periodontal patients, suggesting that GCF might be useful in examining systemic conditions. GCF oxLDL increased when the teeth were affected by periodontitis. It is likely that oxLDL levels in plasma and GCF could reflect oxidative stress and transfer efficacy in circulatory system. Copyright© Bentham Science Publishers; For any queries, please email at

  9. Chickamauga reservoir embayment study - 1990

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.


    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  10. Geology, mineralization, mineral chemistry, and ore-fluid conditions of Irankuh Pb-Zn mining district, south of Isfahan

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Karimpour


    Full Text Available Introduction The Irankuh mining district area located at the southern part of the Malayer-Isfahan metallogenic belt, south of Isfahan, consists of several Zn-Pb deposits and occurrences such as Tappehsorkh, Rowmarmar 5, Kolahdarvazeh, Blind ore, and Gushfil deposits as well as Rowmarmar 1-4 and Gushfil 1 prospects. Based on geology, alteration, form and texture of mineralization, and paragenesis assemblages, Pb-Zn mineralization is Mississippi-type deposit (Rastad, 1981; Ghazban et al., 1994; Ghasemi, 1995; Reichert, 2007; Timoori-Asl (2010; Ayati et al., 2013; Hosseini-Dinani et al., 2015. Geology of the area consists of Jurassic siltstone and shale and different types of Cretaceous dolostone and limestone. The aim of this research is new geological studies such as revision of old geologic map, study of different types of textures and mineral assemblages within carbonate and clastic host rocks, and chemistry of galena, sphalerite, and dolomite. Finally, we combined these results with isotopic and fluid inclusion data and discussed on ore-fluid conditions. Materials and Methods In order to achieve the aims of this work, at first field surveying and sampling were done. Then, 200 thin and 70 polished thin sections were prepared. Some of the samples were selected for microprobe analysis and galena and sphalerite minerals were analyzed by using JEOL- JAX-8230 analyzer at Colorado University, USA. The chemistry of dolomite and fluid inclusion data are used after Boveiri Konari and Rastad (2016 and stable isotope is used after Ghazban et al. (1994. Discussion The Irankuh mineralization is hosted by carbonate rocks (dolostone and limestone and minor clastic rocks as epigenetic. Mineralization has occurred as breccia, veinlet, open space filling, spoted, dessiminated, and replacement (carbonate hosted rock. The mineral assemblages are Fe-rich sphalerite, galena, minor pyrite, Fe- and Mn-rich dolomite, bituminous, ankrite, calcite ± quartz ± barite

  11. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.


    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  12. Measuring fluid pressure

    International Nuclear Information System (INIS)

    Lee, A.S.


    A method and apparatus are described for measuring the pressure of a fluid having characteristics that make it unsuitable for connection directly to a pressure gauge. The method is particularly suitable for the periodic measurement of the pressure of a supply of liquid Na to Na-lubricated bearings of pumps for pumping Na from a reservoir to the bearing via a filter, the reservoir being contained in a closed vessel containing an inert blanket gas, such as Ar, above the Na. (UK)

  13. Interactions between fluids and natural clay rich sediments: experimental study in conditions simulating radioactive wastes underground storage; Interactions entre fluides et sediments argileux naturels: etude experimentale dans des conditions simulant un stockage souterrain de dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Roubeuf, V


    The behaviour of clay rich sediments, especially an argilite from Oxfordian of Haute-Marne, a siltite from Albian series of Marcoule (Gard) and a bentonite from Wyoming, were experimentally studied under physical-chemical conditions close of those of an underground radioactive waste storage. The several steps of the creation of the storage in deep formation were simulated experimentally, in particular: - the effect due to oxidation at ambient temperature and moisture degree related to the arrival of air in the gallery, was tested, especially the interaction between acid fluids generated at the micron-scale of the altered pyrite micro-site and the surrounding minerals of the sediment, - the alteration due to weathering (damping/drying cycles) to simulate the effect of a surface storage of the sediments, - and finally, water-rock interactions at 80 and 200 deg C, which reproduce the thermic stress induced by the deposit of type C radioactive containers (stage of re-hydration under thermic stress). The various simulations lead to rather similar behaviour of minerals in the sediment and solutions. Mineralogical, geochemical and crystallographic analyses show that most minerals in sediments are preserved with no evidence of mineral neo-formation. Nevertheless, the study by X-ray diffraction shows variations in the interlayer spacing in relation with modifications of the hydration states. Changes in the interlayer occupancy of the clays are due to cationic exchange of the sodium of the interlayer by the calcium issued from the dissolution of carbonate and gypsum dissolution. I/S like minerals crystal-chemistry generally display little changes in the tetrahedral and octahedral occupancy and a rather good stability of crystal structure. The cationic exchange capacity (CEC) of the clay sediment display un-significant variations: after the damping/drying cycles, the argilite of Haute-Marne has lost about 15 % of their bulk CEC and the effect of acid micro-environment at

  14. Electrochemical characterization of AISI 316L stainless steel in contact with simulated body fluid under infection conditions. (United States)

    López, Danián Alejandro; Durán, Alicia; Ceré, Silvia Marcela


    Titanium and cobalt alloys, as well as some stainless steels, are among the most frequently used materials in orthopaedic surgery. In industrialized countries, stainless steel devices are used only for temporary implants due to their lower corrosion resistance in physiologic media when compared to other alloys. However, due to economical reasons, the use of stainless steel alloys for permanent implants is very common in developing countries. The implantation of foreign bodies is sometimes necessary in the modern medical practice. However, the complex interactions between the host and the can implant weaken the local immune system, increasing the risk of infections. Therefore, it is necessary to further study these materials as well as the characteristics of the superficial film formed in physiologic media in infection conditions in order to control their potential toxicity due to the release of metallic ions in the human body. This work presents a study of the superficial composition and the corrosion resistance of AISI 316L stainless steel and the influence of its main alloying elements when they are exposed to an acidic solution that simulates the change of pH that occurs when an infection develops. Aerated simulated body fluid (SBF) was employed as working solution at 37 degrees C. The pH was adjusted to 7.25 and 4 in order to reproduce normal body and disease state respectively. Corrosion resistance was measured by means of electrochemical impedance spectroscopy (EIS) and anodic polarization curves.

  15. Fluid dynamic characterization of a polymeric heart valve prototype (Poli-Valve) tested under continuous and pulsatile flow conditions. (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura


    Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.

  16. Mixed convective heat transfer to Sisko fluid over a radially stretching sheet in the presence of convective boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Masood; Malik, Rabia, E-mail:; Munir, Asif [Department of Mathematics, Quaid-i-Azam University, Islamabad 44000 (Pakistan)


    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case.

  17. Mixed convective heat transfer to Sisko fluid over a radially stretching sheet in the presence of convective boundary conditions

    International Nuclear Information System (INIS)

    Khan, Masood; Malik, Rabia; Munir, Asif


    In this article, the mixed convective heat transfer to Sisko fluid over a radially stretching surface in the presence of convective boundary conditions is investigated. The viscous dissipation and thermal radiation effects are also taken into account. The suitable transformations are applied to convert the governing partial differential equations into a set of nonlinear coupled ordinary differential equations. The analytical solution of the governing problem is obtained by using the homotopy analysis method (HAM). Additionally, these analytical results are compared with the numerical results obtained by the shooting technique. The obtained results for the velocity and temperature are analyzed graphically for several physical parameters for the assisting and opposing flows. It is found that the effect of buoyancy parameter is more prominent in case of the assisting flow as compared to the opposing flow. Further, in tabular form the numerical values are given for the local skin friction coefficient and local Nusselt number. A remarkable agreement is noticed by comparing the present results with the results reported in the literature as a special case

  18. Fluid Dynamic Characterization of a Polymeric Heart Valve Prototype (Poli-Valve) tested under Continuous and Pulsatile Flow Conditions (United States)

    De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura


    Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146

  19. Modelling of tetracycline resistance gene transfer by commensal Escherichia coli food isolates that survived in gastric fluid conditions. (United States)

    Hwang, Daekeun; Kim, Seung Min; Kim, Hyun Jung


    Antimicrobial resistance (AR) is a major public health concern and a food safety issue worldwide. Escherichia coli strains, indicators of antibiotic resistance, are a source of horizontal gene transfer to other bacteria in the human intestinal system. A probabilistic exposure model was used to estimate the transfer of the AR gene tet(A). The acid resistance and kinetic behaviour of E. coli was analysed as a function of pH to describe the inactivation of E. coli in simulated gastric fluid (SGF), the major host barrier against exogenous micro-organisms. The kinetic parameters of microbial inactivation in SGF were estimated using GInaFiT, and log-linear + tail and Weibull models were found to be suitable for commensal and enterohaemorrhagic E. coli (EHEC), respectively. A probabilistic exposure model was developed to estimate E. coli survival in gastric pH conditions as well as gene transfer from resistant to susceptible cells in humans. E. coli-contaminated retail foods for consumption without further cooking and gastric pH data in South Korea were considered as an example. The model predicts that 22-33% of commensal E. coli can survive under gastric pH conditions of Koreans. The estimated total mean tet(A) transfer level by commensal E. coli was 1.68 × 10 -4 -8.15 × 10 -4 log CFU/mL/h. The inactivation kinetic parameters of E. coli in SGF and the quantitative exposure model can provide useful information regarding risk management options to control the spread of AR. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Geothermal energy production with supercritical fluids (United States)

    Brown, Donald W.


    There has been invented a method for producing geothermal energy using supercritical fluids for creation of the underground reservoir, production of the geothermal energy, and for heat transport. Underground reservoirs are created by pumping a supercritical fluid such as carbon dioxide into a formation to fracture the rock. Once the reservoir is formed, the same supercritical fluid is allowed to heat up and expand, then is pumped out of the reservoir to transfer the heat to a surface power generating plant or other application.

  1. Enhanced oil recovery using improved aqueous fluid-injection methods: an annotated bibliography. [328 citations

    Energy Technology Data Exchange (ETDEWEB)

    Meister, M.J.; Kettenbrink, G.K.; Collins, A.G.


    This annotated bibliography contains abstracts, prepared by the authors, of articles published between 1968 and early 1976 on tests of improved aqueous fluid injection methods (i.e., polymer and surfactant floods). The abstracts have been written and organized to facilitate studies of the oil recovery potential of polymer and surfactant floods under known reservoir conditions. 328 citations.

  2. Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Mella, Michael [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst.


    The objective of this project was to develop and demonstrate an approach for tracking the evolution of circulation immediately following a hydraulic stimulation in an EGS reservoir. Series of high-resolution tracer tests using conservative and thermally reactive tracers were designed at recently created EGS reservoirs in order to track changes in fluid flow parameters such as reservoir pore volume, flow capacity, and effective reservoir temperature over time. Data obtained from the project would be available for the calibration of reservoir models that could serve to predict EGS performance following a hydraulic stimulation.

  3. Joint distributions for interacting fluid queues

    NARCIS (Netherlands)

    Kroese, Dirk; Scheinhardt, Willem R.W.

    Motivated by recent traffic control models in ATM systems, we analyse three closely related systems of fluid queues, each consisting of two consecutive reservoirs, in which the first reservoir is fed by a two-state (on and off) Markov source. The first system is an ordinary two-node fluid tandem

  4. 14 CFR 125.153 - Flammable fluids. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 125.153 Section 125.153....153 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in designated fire zones, except where the fluid contained, the design of...

  5. Analysis of production data and fluid thermodynamic conditions in wells of Los Humeros, Pue; Analisis de datos de produccion y condiciones termodinamicas del fluido de alimentacion de pozos de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Arellano Gomez, Victor Manuel; Aragon Aguilar, Alfonso; Barragan Reyes, Rosa Maria [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Cuernavaca, Morelos (Mexico); Flores Armenta, Magaly; Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico); Tovar Aguado, Rigoberto [Comision Federal de Electricidad (Mexico)]. E-mail:


    Production data from 22 wells of the Los Humeros geothermal field in Puebla, Mexico, were analyzed to estimate the thermodynamic conditions (pressure and enthalpy) of the bottom-hole fluids entering the wells and the changes to the fluids after exploitation. The bottom-well conditions were obtained by simulating the production histories of the wells, using the WELLSIM numerical simulator. The reservoir temperature was estimated by the FT-HSH2 gas-equilibrium method, which provided values matching very well the measured-well temperatures under static conditions. To estimate the rates of change of the well-bottom thermodynamic variables-pressure and enthalpy-the linear and the harmonic methods were used. According to these models, overall results indicated pressure-decline rates of between 0.92 (linear method) and 1.03 bar/year (harmonic method), average enthalpy increases of between 9.4 (linear) and 10.3 (harmonic) kJ/kg/year, and a temperature increase of about 1.2 degrees Celsius/year (linear method). These rates of parameter change were considered moderate, likely due to recharge from the deeper reservoir. The wells showing higher-pressure declines were H-35, H-1, and H-1D; and the wells showing higher-enthalpy increases were H-1D, H-3D, and H-19D. Most wells showed temperature increases, although a temperature decrease was noticed in wells H-16R and H-36, probably due to mechanical damage in the wells or weak communication with the deeper reservoir. [Spanish] Se realizo un analisis de los datos de produccion de 22 pozos del campo geotermico de Los Humeros, Pue., Mexico, con objeto de estimar las condiciones termodinamicas (presion y entalpia) de sus fluidos de alimentacion y su evolucion en el tiempo como respuesta a la explotacion. Las condiciones a fondo de pozo se obtuvieron al simular las historias de produccion de los pozos mediante el simulador numerico WELLSIM. La temperatura de fondo se estimo mediante el metodo de equilibrio gaseoso FT-HSH2 ya que fue

  6. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions (United States)

    Bravo-Berguño, D.; Mereu, R.; Cavalcante, P.; Carlini, M.; Ianni, A.; Goretti, A.; Gabriele, F.; Wright, T.; Yokley, Z.; Vogelaar, R. B.; Calaprice, F.; Inzoli, F.


    A comprehensive monitoring system for the thermal environment inside the Borexino neutrino detector was developed and installed in order to reduce uncertainties in determining temperatures throughout the detector. A complementary thermal management system limits undesirable thermal couplings between the environment and Borexino's active sections. This strategy is bringing improved radioactive background conditions to the region of interest for the physics signal thanks to reduced fluid mixing induced in the liquid scintillator. Although fluid-dynamical equilibrium has not yet been fully reached, and thermal fine-tuning is possible, the system has proven extremely effective at stabilizing the detector's thermal conditions while offering precise insights into its mechanisms of internal thermal transport. Furthermore, a Computational Fluid-Dynamics analysis has been performed, based on the empirical measurements provided by the thermal monitoring system, and providing information into present and future thermal trends. A two-dimensional modeling approach was implemented in order to achieve a proper understanding of the thermal and fluid-dynamics in Borexino. It was optimized for different regions and periods of interest, focusing on the most critical effects that were identified as influencing background concentrations. Literature experimental case studies were reproduced to benchmark the method and settings, and a Borexino-specific benchmark was implemented in order to validate the modeling approach for thermal transport. Finally, fully-convective models were applied to understand general and specific fluid motions impacting the detector's Active Volume.

  7. Producing Gas-Oil Ratio Performance of Conventional and Unconventional Reservoirs


    Lei, Guowen


    This study presents a detailed analysis of producing gas-oil ratio performance characteristics from conventional reservoir to unconventional reservoir. Numerical simulations of various reservoir fluid systems are included for comparison. In a wide sense of the word, the term of unconventional reservoir is including tight gas sand, coal bed methane, gas hydrate deposits, heavy oil gas shale and etc. In this study we specify the unconventional reservoir to only mean the low and ultra low permea...

  8. Development of a compositional model fully coupled with geomechanics and its application to tight oil reservoir simulation (United States)

    Xiong, Yi

    solutions and results of a commercial simulator before conducting numerical studies. The numerical studies demonstrate the effect of capillary pressure on VLE, and further on production performance. The significant effect of capillary pressure on VLE leads to the suppression of bubble-point pressure and more light components dissolved in the oil phase. Consequently it is observed that there is smaller gas saturation, larger mole fractions of light components, and faster pressure decreasing at reservoir conditions; meanwhile less gas and more oil are produced at surface. The substantial decrease in reservoir pore pressure results in a large increase of effective stress, which induces the changes of rock properties and influences the production performance. The stress-induced degradation of permeability undermines the production performance, and the geomechanical effect on the permeability of natural fractures is mainly responsible for the undermined production performance. The reduction of pore size due to the geomechanical effect could increase the capillary pressure, which enlarges the influence of capillarity on VLE and further suppresses bubble-point pressure. On the other hand, the effect of capillary pressure on VLE influences the fluid flow and therefore influences the effective stress through the flow-stress coupling process. Thus the interaction between pore confinement and rock compaction can be modeled with MSFLOW_COM, and illustrated through numerical studies. This research provides a three-dimensional numerical tool for accurately modeling porous and fractured tight oil reservoirs. The developed simulator is able to assist scientists and engineers to study and understand the complex multiphase, multi-component fluid flow behaviors in tight oil reservoirs.

  9. Heat Extraction Project, geothermal reservoir engineering research at Stanford

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, P.


    The main objective of the SGP Heat Extraction Project is to provide a means for estimating the thermal behavior of geothermal fluids produced from fractured hydrothermal resources. The methods are based on estimated thermal properties of the reservoir components, reservoir management planning of production and reinjection, and the mixing of reservoir fluids: geothermal, resource fluid cooled by drawdown and infiltrating groundwater, and reinjected recharge heated by sweep flow through the reservoir formation. Several reports and publications, listed in Appendix A, describe the development of the analytical methods which were part of five Engineer and PhD dissertations, and the results from many applications of the methods to achieve the project objectives. The Heat Extraction Project is to evaluate the thermal properties of fractured geothermal resource and forecasted effects of reinjection recharge into operating reservoirs.


    Energy Technology Data Exchange (ETDEWEB)

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin


    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  11. Improving reservoir history matching of EM heated heavy oil reservoirs via cross-well seismic tomography

    KAUST Repository

    Katterbauer, Klemens


    Enhanced recovery methods have become significant in the industry\\'s drive to increase recovery rates from oil and gas reservoirs. For heavy oil reservoirs, the immobility of the oil at reservoir temperatures, caused by its high viscosity, limits the recovery rates and strains the economic viability of these fields. While thermal recovery methods, such as steam injection or THAI, have extensively been applied in the field, their success has so far been limited due to prohibitive heat losses and the difficulty in controlling the combustion process. Electromagnetic (EM) heating via high-frequency EM radiation has attracted attention due to its wide applicability in different environments, its efficiency, and the improved controllability of the heating process. While becoming a promising technology for heavy oil recovery, its effect on overall reservoir production and fluid displacements are poorly understood. Reservoir history matching has become a vital tool for the oil & gas industry to increase recovery rates. Limited research has been undertaken so far to capture the nonlinear reservoir dynamics and significantly varying flow rates for thermally heated heavy oil reservoir that may notably change production rates and render conventional history matching frameworks more challenging. We present a new history matching framework for EM heated heavy oil reservoirs incorporating cross-well seismic imaging. Interfacing an EM heating solver to a reservoir simulator via Andrade’s equation, we couple the system to an ensemble Kalman filter based history matching framework incorporating a cross-well seismic survey module. With increasing power levels and heating applied to the heavy oil reservoirs, reservoir dynamics change considerably and may lead to widely differing production forecasts and increased uncertainty. We have shown that the incorporation of seismic observations into the EnKF framework can significantly enhance reservoir simulations, decrease forecasting

  12. Numerical simulation of hydraulic fracture propagation in heterogeneous unconventional reservoir (United States)

    Liu, Chunting; Li, Mingzhong; Hao, Lihua; Hu, Hang


    The distribution of the unconventional reservoir fracture network is influenced by many factors. For the natural fracture undeveloped reservoir, the reservoir heterogeneity, construction factors (fracturing fluid flow rate, fluid viscosity, perforation clusters spacing), horizontal stress difference and stress different coefficient are the main factors that affect the fracture propagation. In the study, first, calculate the reservoir physics mechanics parameters that affect the fracture propagation on the base of the logging date from one actual horizontal well. Set the formation parameters according to the calculation that used to simulate the reservoir heterogeneity. Then, using damage mechanics method, the 2D fracture propagation model with seepage-stress-damage coupling of multi-fracture tight sand reservoir was established. Study the influences of different fracturing ways (open whole fracturing and oriented perforation fracturing) and the position of the perforation clusters to the fracture propagation for heterogeneity reservoir. Analyze the effects of flow rate, fracturing fluid viscosity, perforation clusters spacing, horizontal stress difference and stress different coefficient to fracture morphology for the heterogeneity reservoir and contrast with the homogeneous reservoir. The simulation results show that: the fracture morphology is more complexity formed by oriented perforation crack than open whole crack; For natural fracture undeveloped reservoir, as the flow rate or the fracturing fluid viscosity increases within a certain range, the fracture network tends to be more complexity and the effect is more obvious to heterogeneous reservoir than homogeneous reservoir; As the perforation clusters spacing decreases, the interaction of each fracture will increase, it tends to form more complexity fracture network but with short major fracture; If the horizontal stress difference and stress different coefficient is large (The stress different coefficient >0

  13. Multi-solid model modified to predict paraffin in petroleum fluids at high temperatures and pressures

    International Nuclear Information System (INIS)

    Escobar Remolina, Juan Carlos M; Barrios Ortiz, Wilson; Santoyo Ramirez Gildardo


    A thermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

  14. Percolation experiments to determine fluid-matrix interaction (with particular regard to pretreatment of the drill core); Kerndurchstroemungsversuche zur Ermittlung von Fluid-Matrix-Wechselwirkungen (unter besonderer Beruecksichtigung der Kernvorbehandlung)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.; Seibt, A. [TU Bergakademie Freiberg (Germany). Inst. fuer Bohrtechnik und Fluidbergbau; Hoth, P. [GeoForschungsZentrum Potsdam (Germany)


    The injection of fluids into sandstone reservoirs leads to interactions between these waters, the reservoir rocks, and the formation fluids. Estimations about possible permeability reducing processes caused by these interactions are therefore of great importance for the exploitation of sandstone aquifers as geothermal reservoirs. Percolation experiments under in situ conditions with core samples from North German geothermal boreholes were done in order to investigate these fluid-rock interactions. (orig./AKF) [Deutsch] Die Injektion von Fluiden in Aquiferspeicher fuehrt zu Wechselwirkungen zwischen dem Speichergestein, den Formationsfluiden und den injizierten Loesungen. Fuer die Bewirtschaftung der Speicher sind insbesondere Kenntnisse ueber moegliche Permeabilitaetsreduzierungen durch diese Wechselwirkungen von Bedeutung. Mit Hilfe von Kern-Durchstroemungsexperimenten, durchgefuehrt unter lagerstaettenaehnlichen Bedingungen mit Original- bzw. modifizierten Fluiden, wurde daher das Durchstroemungsverhalten von unterschiedlich ausgebildeten Reservoirsandsteinen aus norddeutschen Geothermiebohrungen untersucht. (orig./AKF)

  15. Plant cover, soil temperature, freeze, water stress, and evapotranspiration conditions. [Lower Rio Grande Valley Test Site: Weslaco, Texas; Falco Reservoir and the Gulf of Mexico (United States)

    Wiegand, C. L.; Nixon, P. R.; Gausman, H. W.; Namken, L. N.; Leamer, R. W.; Richardson, A. J. (Principal Investigator)


    The author has identified the following significant results. HCMM day/night coverage 12 hours apart cannot be obtained at 26 deg N latitude; nor have any pairs 36 hours apart been obtained. A day-IR scene and a night scene for two different dates were analyzed. A profile across the test site for the same latitude shows that the two profiles are near mirror images of each other over land surfaces and that the temperature of two large water bodies, Falcon Reservoir and the Gulf of Mexico, are nearly identical on two dates. During the time interval between overpasses, the vegetative cover remained static due to winter dormancy. The data suggest that day/night temperature differences measured weeks apart may yield meaningful information about the contrast between daytime maximum and nighttime minimum temperatures for a given site.

  16. A mediation model to explain decision making under conditions of risk among adolescents: the role of fluid intelligence and probabilistic reasoning. (United States)

    Donati, Maria Anna; Panno, Angelo; Chiesi, Francesca; Primi, Caterina


    This study tested the mediating role of probabilistic reasoning ability in the relationship between fluid intelligence and advantageous decision making among adolescents in explicit situations of risk--that is, in contexts in which information on the choice options (gains, losses, and probabilities) were explicitly presented at the beginning of the task. Participants were 282 adolescents attending high school (77% males, mean age = 17.3 years). We first measured fluid intelligence and probabilistic reasoning ability. Then, to measure decision making under explicit conditions of risk, participants performed the Game of Dice Task, in which they have to decide among different alternatives that are explicitly linked to a specific amount of gain or loss and have obvious winning probabilities that are stable over time. Analyses showed a significant positive indirect effect of fluid intelligence on advantageous decision making through probabilistic reasoning ability that acted as a mediator. Specifically, fluid intelligence may enhance ability to reason in probabilistic terms, which in turn increases the likelihood of advantageous choices when adolescents are confronted with an explicit decisional context. Findings show that in experimental paradigm settings, adolescents are able to make advantageous decisions using cognitive abilities when faced with decisions under explicit risky conditions. This study suggests that interventions designed to promote probabilistic reasoning, for example by incrementing the mathematical prerequisites necessary to reason in probabilistic terms, may have a positive effect on adolescents' decision-making abilities.

  17. Entropy generation analysis and effects of slip conditions on micropolar fluid flow due to a rotating disk (United States)

    Khan, Najeeb Alam; Naz, Farah; Sultan, Faqiha


    This article deals with the investigation of three-dimensional axisymmetric steady flow of micropolar fluid over a rotating disk in a slip-flow regime. Further, the generation of entropy due to heat transfer and fluid friction is identified. It is noticed that the entropy generation can be decreased and controlled in the presence of slip. The anisotropic slip has vital characteristics and it has a great influence on the flow field and heat transfer. The von Kármán similarity transformation is used to establish the equations governing the flow and heat transfer characteristics of the fluid. The impact of some important parameters on velocity profiles, angular velocity (microrotation) and energy distribution is discussed and illustrated through graphs and tables. The effects of physical parameters on the entropy generation and Bejan numbers are also presented graphically. In addition, the most favorable agreement is observed among the results of the present study and those of the earlier studies.

  18. Upper Hiwassee River Basin reservoirs 1989 water quality assessment

    International Nuclear Information System (INIS)

    Fehring, J.P.


    The water in the Upper Hiwassee River Basin is slightly acidic and low in conductivity. The four major reservoirs in the Upper Hiwassee River Basin (Apalachia, Hiwassee, Chatuge, and Nottely) are not threatened by acidity, although Nottely Reservoir has more sulfates than the other reservoirs. Nottely also has the highest organic and nutrient concentrations of the four reservoirs. This results in Nottely having the poorest water clarity and the most algal productivity, although clarity as measured by color and secchi depths does not indicate any problem with most water use. However, chlorophyll concentrations indicate taste and odor problems would be likely if the upstream end of Nottely Reservoir were used for domestic water supply. Hiwassee Reservoir is clearer and has less organic and nutrient loading than either of the two upstream reservoirs. All four reservoirs have sufficient algal activity to produce supersaturated dissolved oxygen conditions and relatively high pH values at the surface. All four reservoirs are thermally stratified during the summer, and all but Apalachia have bottom waters depleted in oxygen. The very short residence time of Apalachia Reservoir, less than ten days as compared to over 100 days for the other three reservoirs, results in it being more riverine than the other three reservoirs. Hiwassee Reservoir actually develops three distinct water temperature strata due to the location of the turbine intake. The water quality of all of the reservoirs supports designated uses, but water quality complaints are being received regarding both Chatuge and Nottely Reservoirs and their tailwaters

  19. Antivortex Device for Multi-Outlet Liquid Reservoir (United States)

    Grayson, Gary David (Inventor); Addison, Stephen Michael (Inventor)


    A liquid reservoir with a sump includes at least two outlet ports in fluid communication with a fluid conduit. An anti-vortex device includes a first plate extending across the at least two outlet ports and a second plate coupled to the first plate and extending substantially perpendicular to the first plate. The anti-vortex device is configured to disrupt formation of a vortex formed by liquid passing from the reservoir through said outlet ports.

  20. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.


    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  1. Numerical investigation on thermal striping conditions for a tee junction of LMFBRE coolant pipes. 7. Effect of the 'Turbulence promoter' on the fluid mixing

    International Nuclear Information System (INIS)

    Tanaka, Masa-aki; Muramatsu, Toshiharu


    It is important to evaluate thermal-striping phenomena, which is the thermal fatigue issue in the structure generated by the temperature fluctuation due to the fluid mixing. Especially, the high amplitude and the high number of repetitions of the temperature fluctuation are needed to take into consideration. Moreover, it is necessary to consider the comparatively low frequency components of fluid temperature fluctuation, since the influence to structure material is large. Therefore, it is required to know the generating mechanism and conditions of the high amplitude and the low frequency component of fluid temperature fluctuation. In Japan Nuclear Cycle Development Institute, basic research on the promote system for fluid mixing is conducted, which system ('Turbulence promoter') is expected to reduce the large amplitude and low frequency components of fluid temperature fluctuation in T junction pipe. In this investigation, it is aimed to validate the effect and to generalize the mixing characteristics of 'Turbulence promoter' on the fluid mixing in T-junction pipe, and to contribute the knowledge to the rational design of LMFBR. In this report, numerical simulation for the existing experiment was conducted using a quasi-direct simulation code (DINUS-3). From the numerical simulation, the following results are obtained. (1) Numerical calculations could simulate well the flow patterns observed in the visualization experiment, in impinging jet case (Pattern-C) and deflecting jet cases (Pattern-B1 and Pattern-B). (2) By installing Turbulence promoter', cross-section area of main pipe after the mixing point is narrowed, and the fluid of main pipe is accelerated and flows along the slope of the promoter on the opposite side of branch pipe. this accelerated flow acts to prevent the collision of the branch pipe flow to the promoter. Therefore, the branch pipe flow conditions in deflecting jet category are extended. (3) At the throat of the main pipe, the flow was separated

  2. Borehole radar modeling for reservoir monitoring applications

    NARCIS (Netherlands)

    Miorali, M.; Slob, E.C.; Arts, R.J.


    The use of down-hole sensors and remotely controlled valves in wells provide enormous benefits to reservoir management and oil production. We suggest borehole radar measurements as a promising technique capable of monitoring the arrival of undesired fluids in the proximity of production wells. The

  3. Monitoring gas reservoirs by seismic interferometry (United States)

    Grigoli, Francesco; Cesca, Simone; Sens-Schoenfelder, Christoph; Priolo, Enrico


    Ambient seismic noise can be used to image spatial anomalies in the subsurface, without the need of recordings from seismic sources, such as earthquakes or explosions. Furthermore, the temporal variation of ambient seismic noise's can be used to infer temporal changes of the seismic velocities in the investigated medium. Such temporal variations can reflect changes of several physical properties/conditions in the medium. For example, they may be consequence of stress changes, variation of hydrogeological parameters, pore pressure and saturation changes due to fluid injection or extraction. Passive image interferometry allows to continuously monitor small temporal changes of seismic velocities in the subsurface, making it a suitable tool to monitor time-variant systems such as oil and gas reservoirs or volcanic environments. The technique does not require recordings from seismic sources in the classical sense, but is based on the processing of noise records. Moreover, it requires only data from one or two seismic stations, their locations constraining the sampled target area. Here we apply passive image interferometry to monitor a gas storage reservoir in northern Italy. The Collalto field (Northern Italy) is a depleted gas reservoir located at 1500 m depth, now used as a gas storage facility. The reservoir experience a significant temporal variation in the amount of stored gas: the injection phases mainly occur in the summer, while the extraction take place mostly in winter. In order to monitor induced seismicity related to gas storage operations, a seismic network (the Collalto Seismic Network) has been deployed in 2011. The Collalto Seismic Network is composed by 10 broadband stations, deployed within an area of about 20 km x 20 km, and provides high-quality continuous data since January 1st, 2012. In this work we present preliminary results from ambient noise interferometry using a two-months sample of continuous seismic data, i.e. from October 1st, 2012, to the

  4. Water resources review: Wheeler Reservoir, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Wallus, R.; Cox, J.P.


    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  5. Reservoir fisheries of Asia

    International Nuclear Information System (INIS)

    Silva, S.S. De.


    At a workshop on reservoir fisheries research, papers were presented on the limnology of reservoirs, the changes that follow impoundment, fisheries management and modelling, and fish culture techniques. Separate abstracts have been prepared for three papers from this workshop

  6. High-pressure behavior and crystal–fluid interaction under extreme conditions in paulingite [PAU-topology

    Czech Academy of Sciences Publication Activity Database

    Gatta, G. D.; Scheidl, K. S.; Pippinger, T.; Skála, Roman; Lee, J.; Miletich, R.


    Roč. 206, April (2015), s. 34-41 ISSN 1387-1811 Institutional support: RVO:67985831 Keywords : paulingite * high pressure * X-ray diffraction * compressibility * crystal–fluid interaction Subject RIV: DB - Geology ; Mineralogy Impact factor: 3.349, year: 2015

  7. Calcium isotope systematics at hydrothermal conditions: Mid-ocean ridge vent fluids and experiments in the CaSO4-NaCl-H2O system (United States)

    Scheuermann, Peter P.; Syverson, Drew D.; Higgins, John A.; Pester, Nicholas J.; Seyfried, William E.


    Two sets of hydrothermal experiments were performed to explore Ca isotope fractionation and exchange rates at hydrothermal conditions (410-450 °C, 31.0-50.0 MPa). The first set of experiments determined the magnitude of vapor-liquid Ca isotope fractionation and anhydrite solubility in the CaSO4-NaCl-H2O system. The data indicate no statistical difference between the Ca isotopic composition of coexisting vapor and liquid. The second set of experiments utilized an anomalous 43Ca spike to determine the rate of Ca exchange between fluid and anhydrite as a function of total dissolved Ca concentration. Results show that the rate of exchange increases with dissolved Ca concentrations (12-23 mM/kg), but no change in exchange rate is observed when the Ca concentration increases from 23 to 44 mM/kg Ca. 74-142 days are required to achieve 90% anhydrite-fluid Ca isotope exchange at the conditions investigated, while only several hours are necessary for vapor-liquid isotopic equilibrium. The lack of vapor-liquid Ca isotope fractionation in our experiments is consistent with δ44Ca of mid-ocean ridge hydrothermal vent fluids that remain constant, regardless of chlorinity. Moreover, the narrow range of end member fluid δ44Ca, -0.98 to -1.13‰ (SW), is largely indistinguishable from MORB δ44Ca, suggesting that neither phase separation nor fluid-rock interactions at depth significantly fractionate Ca isotopes in modern high-temperature mid-ocean ridge hydrothermal systems.

  8. Reservoir simulation with imposed flux continuity conditions on heterogeneous and anisotropic media for general geometries, and the inclusion of hysteresis in forward modeling

    Energy Technology Data Exchange (ETDEWEB)

    Eigestad, Geir Terje


    The thesis is divided into two main parts. Part I gives an overview and summary of the theory that lies behind the flow equations and the discretization principles used in the work. Part II is a collection of research papers that have been written by the candidate (in collaboration with others). The main objective of this thesis is the discretization of an elliptic PDE which describes the pressure in a porous medium. The porous medium will in general be described by permeability tensors which are heterogeneous and anisotropic. In addition, the geometry is often complex for practical applications. This requires discretization approaches that are suited for the problems in mind. The discretization approaches used here are based on imposed flux and potential continuity, and will be discussed in detail in Chapter 3 of Part I. These methods are called Multi Point Flux Approximation Methods, and the acronym MPFA will be used for them. Issues related to these methods will be the main issue of this thesis. The rest of this thesis is organised as follows: Part I: Chapter 1 gives a brief overview of the physics and mathematics behind reservoir simulation. The standard mass balance equations are presented, and we try to explain what reservoir simulation is. Some standard discretization s methods are briefly discussed in Chapter 2. The main focus in Part I is on the MPFA discretization approach for various geometries, and is given in Chapter 3. Some details may have been left out in the papers of Part II, and the section serves both as a summary of the discretization method(s), as well as a more detailed description than what is found in the papers. In Chapter 4, extensions to handle time dependent and nonlinear problems are discussed. Some of the numerical examples presented in Part II deal with two phase flow, and are based on the extension given in this chapter. Chapter 5 discusses numerical results that have been obtained for the MPFA methods for elliptic problems, and

  9. 2D X-ray scanner and its uses in laboratory reservoir characterization measurements

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, D.; Doggett, K.


    X-ray techniques are used in petroleum laboratories for a variety of reservoir characterization measurements. This paper describes the configuration of a 2D X-ray scanner and many of the ways in which it simplifies and improves accuracy`s of laboratory measurements. Linear X-ray scanners are most often used to provide descriptions of fluid saturations within core plugs during flow tests. We configured our linear scanner for both horizontal and vertical movement. Samples can be scanned horizontally, vertically, or according to horizontal and vertical grids. X-ray measurements are fast, allowing measurements of two- and three-phase fluid saturations during both steady- and unsteady-state flow processes. Rock samples can be scanned while they are subjected to stress, pore pressure, and temperature conditions simulating those of a petroleum reservoir. Many types of measurements are possible by selecting appropriate X-ray power settings, dopes, filters, and collimator configurations. The scanner has been used for a variety of applications besides fluid saturation measurements. It is useful for measuring porosity distributions in rocks, concentrations of X-ray dopes within flow streams during tracer tests, gap widths in fracture flow cells, fluid interface levels in PVT cells and fluid separators, and other features and phenomena.

  10. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    Energy Technology Data Exchange (ETDEWEB)

    Locke, C.D.; Salamy, S.P.


    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  11. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Locke, C.D.; Salamy, S.P.


    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  12. Stream, Lake, and Reservoir Management. (United States)

    Dai, Jingjing; Mei, Ying; Chang, Chein-Chi


    This review on stream, lake, and reservoir management covers selected 2016 publications on the focus of the following sections: Stream, lake, and reservoir management • Water quality of stream, lake, and reservoirReservoir operations • Models of stream, lake, and reservoir • Remediation and restoration of stream, lake, and reservoir • Biota of stream, lake, and reservoir • Climate effect of stream, lake, and reservoir.

  13. Reservoir evaluation of “T-X” field (Onshore, Niger delta) from well ...

    African Journals Online (AJOL)

    Wireline log analysis was employed in the characterization of the reservoirs in the well studied; the hydrocarbon sands were delineated by the use of gamma ray, resistivity and density/neutron from which the reservoir quality were determined. Fluid types defined in the reservoirs on the basis of neutron/density log ...

  14. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja


    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  15. Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.; Collier, H.; Angstman, B.


    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

  16. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))


    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  17. Integration of rock typing methods for carbonate reservoir characterization

    International Nuclear Information System (INIS)

    Aliakbardoust, E; Rahimpour-Bonab, H


    Reservoir rock typing is the most important part of all reservoir modelling. For integrated reservoir rock typing, static and dynamic properties need to be combined, but sometimes these two are incompatible. The failure is due to the misunderstanding of the crucial parameters that control the dynamic behaviour of the reservoir rock and thus selecting inappropriate methods for defining static rock types. In this study, rock types were defined by combining the SCAL data with the rock properties, particularly rock fabric and pore types. First, air-displacing-water capillary pressure curues were classified because they are representative of fluid saturation and behaviour under capillary forces. Next the most important rock properties which control the fluid flow and saturation behaviour (rock fabric and pore types) were combined with defined classes. Corresponding petrophysical properties were also attributed to reservoir rock types and eventually, defined rock types were compared with relative permeability curves. This study focused on representing the importance of the pore system, specifically pore types in fluid saturation and entrapment in the reservoir rock. The most common tests in static rock typing, such as electrofacies analysis and porosity–permeability correlation, were carried out and the results indicate that these are not appropriate approaches for reservoir rock typing in carbonate reservoirs with a complicated pore system. (paper)

  18. Multi Data Reservoir History Matching using the Ensemble Kalman Filter

    KAUST Repository

    Katterbauer, Klemens


    Reservoir history matching is becoming increasingly important with the growing demand for higher quality formation characterization and forecasting and the increased complexity and expenses for modern hydrocarbon exploration projects. History matching has long been dominated by adjusting reservoir parameters based solely on well data whose spatial sparse sampling has been a challenge for characterizing the flow properties in areas away from the wells. Geophysical data are widely collected nowadays for reservoir monitoring purposes, but has not yet been fully integrated into history matching and forecasting fluid flow. In this thesis, I present a pioneering approach towards incorporating different time-lapse geophysical data together for enhancing reservoir history matching and uncertainty quantification. The thesis provides several approaches to efficiently integrate multiple geophysical data, analyze the sensitivity of the history matches to observation noise, and examine the framework’s performance in several settings, such as the Norne field in Norway. The results demonstrate the significant improvements in reservoir forecasting and characterization and the synergy effects encountered between the different geophysical data. In particular, the joint use of electromagnetic and seismic data improves the accuracy of forecasting fluid properties, and the usage of electromagnetic data has led to considerably better estimates of hydrocarbon fluid components. For volatile oil and gas reservoirs the joint integration of gravimetric and InSAR data has shown to be beneficial in detecting the influx of water and thereby improving the recovery rate. Summarizing, this thesis makes an important contribution towards integrated reservoir management and multiphysics integration for reservoir history matching.

  19. Pacifiers: a microbial reservoir. (United States)

    Comina, Elodie; Marion, Karine; Renaud, François N R; Dore, Jeanne; Bergeron, Emmanuelle; Freney, Jean


    The permanent contact between the nipple part of pacifiers and the oral microflora offers ideal conditions for the development of biofilms. This study assessed the microbial contamination on the surface of 25 used pacifier nipples provided by day-care centers. Nine were made of silicone and 16 were made of latex. The biofilm was quantified using direct staining and microscopic observations followed by scraping and microorganism counting. The presence of a biofilm was confirmed on 80% of the pacifier nipples studied. This biofilm was mature for 36% of them. Latex pacifier nipples were more contaminated than silicone ones. The two main genera isolated were Staphylococcus and Candida. Our results confirm that nipples can be seen as potential reservoirs of infections. However, pacifiers do have some advantages; in particular, the potential protection they afford against sudden infant death syndrome. Strict rules of hygiene and an efficient antibiofilm cleaning protocol should be established to answer the worries of parents concerning the safety of pacifiers.

  20. 14 CFR 29.1185 - Flammable fluids. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flammable fluids. 29.1185 Section 29.1185... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Fire Protection § 29.1185 Flammable fluids. (a) No tank or reservoir that is part of a system containing flammable fluids or gases may be in a...

  1. 14 CFR 121.255 - Flammable fluids. (United States)


    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flammable fluids. 121.255 Section 121.255..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.255 Flammable fluids. (a) No tanks or reservoirs that are a part of a system containing flammable fluids or gases may be located in...

  2. Markov-modulated and feedback fluid queues

    NARCIS (Netherlands)

    Scheinhardt, Willem R.W.


    In the last twenty years the field of Markov-modulated fluid queues has received considerable attention. In these models a fluid reservoir receives and/or releases fluid at rates which depend on the actual state of a background Markov chain. In the first chapter of this thesis we give a short

  3. Comparison of Different Analytic Solutions to Axisymmetric Squeezing Fluid Flow between Two Infinite Parallel Plates with Slip Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Hamid Khan


    Full Text Available We investigate squeezing flow between two large parallel plates by transforming the basic governing equations of the first grade fluid to an ordinary nonlinear differential equation using the stream functions ur(r,z,t=(1/r(∂ψ/∂z and uz(r,z,t=−(1/r(∂ψ/∂r and a transformation ψ(r,z=r2F(z. The velocity profiles are investigated through various analytical techniques like Adomian decomposition method, new iterative method, homotopy perturbation, optimal homotopy asymptotic method, and differential transform method.

  4. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi


    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  5. Exploitation of subsea gas hydrate reservoirs (United States)

    Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge


    Natural gas hydrates are considered to be a potential energy resource in the future. They occur in permafrost areas as well as in subsea sediments and are stable at high pressure and low temperature conditions. According to estimations the amount of carbon bonded in natural gas hydrates worldwide is two times larger than in all known conventional fossil fuels. Besides technical challenges that have to be overcome climate and safety issues have to be considered before a commercial exploitation of such unconventional reservoirs. The potential of producing natural gas from subsea gas hydrate deposits by various means (e.g. depressurization and/or injection of carbon dioxide) is numerically studied in the frame of the German research project »SUGAR«. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into a numerical model. The physics of the process leads to strong non-linear couplings between hydraulic fluid flow, hydrate dissociation and formation, hydraulic properties of the sediment, partial pressures and seawater solution of components and the thermal budget of the system described by the heat equation. This paper is intended to provide an overview of the recent development regarding the production of natural gas from subsea gas hydrate reservoirs. It aims at giving a broad insight into natural gas hydrates and covering relevant aspects of the exploitation process. It is focused on the thermodynamic principles and technological approaches for the exploitation. The effects occurring during natural gas production within hydrate filled sediment layers are identified and discussed by means of numerical simulation results. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is described and compared for different strategies. The simulations are complemented by calculations for different safety relevant problems.

  6. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system. (United States)

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H


    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A "sweet-spot" for fluid-induced oscillations in the conditioning of stem cell-based engineered heart valve tissues. (United States)

    Williams, Alexander; Nasim, Sana; Salinas, Manuel; Moshkforoush, Arash; Tsoukias, Nikolaos; Ramaswamy, Sharan


    Fluid-induced shear stresses are involved in the development of cardiovascular tissues. In a tissue engineering framework, this stimulus has also been considered as a mechanical regulator of stem cell differentiation. We recently demonstrated that the fluid-oscillating effect in combination with a physiologically-relevant shear stress magnitude contributes to the formation of stem cell-derived de novo heart valve tissues. However, the range of oscillations necessary to induce favorable gene expression and engineered tissue formation is unknown. In this study, we took a computational approach to establish a range of oscillatory shear stresses that may optimize in vitro valvular tissue growth. Taking a biomimetic approach, three physiologically-relevant flow waveforms from the human: (i) aorta, (ii) pulmonary artery and (iii) superior vena cava were utilized to simulate pulsatile flow conditions within a bioreactor that housed 3 tissue specimens. Results were compared to non-physiological pulsatile flow (NPPF) and cyclic flexure-steady flow (Flex-Flow) conditions. The oscillatory shear index (OSI) was used to quantify the fluid-induced oscillations occurring on the specimen surfaces. The range of mean OSI under the physiological conditions investigated was found to be 0.18 ≤ OSI ≤ 0.23. On the other hand, NPPF and Flex-Flow environments yielded a mean OSI of 0.37 and 0.11 respectively, which were 46% higher and 45% lower than physiological conditions. Moreover, we subsequently conducted OSI-based human bone marrow stem cell (HBMSC) culture experiments which resulted in preferential valvular gene expression and phenotype (significant upregulation of BMP, KLF2A, CD31 and α-SMA using an OSI of 0.23 in comparison to a lower OSI of 0.10 or a higher OSI of 0.38; p OSI exists in the mechanical conditioning of tissue engineered heart valves grown from stem cell sources. We conclude that in vitro heart valve matrix development could be further enhanced by simultaneous

  8. Conditions for veining in the Barrandian Basin (Lower Palaeozoic), Czech Republic: evidence from fluid inclusion and apatite fission track analysis (United States)

    Suchy, V.; Dobes, P.; Filip, J.; Stejskal, M.; Zeman, A.


    The interplay between fracture propagation and fluid composition and circulation has been examined by deciphering vein sequences in Silurian and Devonian limestones and shales at Kosov quarry in the Barrandian Basin. Three successive vein generations were recognised that can be attributed to different stages of a basinal cycle. Almost all generations of fracture cements host abundant liquid hydrocarbon inclusions that indicate repeated episodes of petroleum migration through the strata during burial, tectonic compression and uplift. The earliest veins that propagated prior to folding were displacive fibrous "beef" calcite veins occurring parallel to the bedding of some shale beds. Hydrocarbon inclusions within calcite possess homogenisation temperatures between 58 and 68 °C and show that the "beef" calcites originated in the deeper burial environment, during early petroleum migration from overpressured shales. E-W-striking extension veins that postdate "beef" calcite formed in response to Variscan orogenic deformations. Based on apatite fission track analysis (AFTA) data and other geological evidence, the veins probably formed 380-315 Ma ago, roughly coinciding with peak burial heating of the strata, folding and the intrusion of Variscan synorogenic granites. The veins that crosscut diagenetic cements and low-amplitude stylolites in host limestones are oriented semi-vertically to the bedding plane and are filled with cloudy, twinned calcite, idiomorphic smoky quartz and residues of hardened bitumen. Calcite and quartz cements contain abundant blue and blue-green-fluorescing primary inclusions of liquid hydrocarbons that homogenise between 50 and 110 °C. Geochemical characteristics of the fluids as revealed by gas chromatography-mass spectrometry, particularly the presence of olefins and parent aromatic hydrocarbons (phenonthrene), suggest that the oil entrapped in the inclusions experienced intense but geologically fast heating that resulted in thermal pyrolysis

  9. Top-Down, Intelligent Reservoir Model (United States)

    Mohaghegh, Shahab


    Conventional reservoir simulation and modeling is a bottom-up approach. It starts with building a geological model of the reservoir that is populated with the best available petrophysical and geophysical information at the time of development. Engineering fluid flow principles are added and solved numerically so as to arrive at a dynamic reservoir model. The dynamic reservoir model is calibrated using the production history of multiple wells and the history matched model is used to strategize field development in order to improve recovery. Top-Down, Intelligent Reservoir Modeling approaches the reservoir simulation and modeling from an opposite angle by attempting to build a realization of the reservoir starting with the measured well production behavior (history). The production history is augmented by core, log, well test and seismic data in order to increase the accuracy of the Top-Down modeling technique. Although not intended as a substitute for the conventional reservoir simulation of large, complex fields, this novel approach to reservoir modeling can be used as an alternative (at a fraction of the cost) to conventional reservoir simulation and modeling in cases where performing conventional modeling is cost (and man-power) prohibitive. In cases where a conventional model of a reservoir already exists, Top-Down modeling should be considered as a compliment to, rather than a competition for the conventional technique, to provide an independent look at the data coming from the reservoir/wells for optimum development strategy and recovery enhancement. Top-Down, Intelligent Reservoir Modeling starts with well-known reservoir engineering techniques such as Decline Curve Analysis, Type Curve Matching, History Matching using single well numerical reservoir simulation, Volumetric Reserve Estimation and calculation of Recovery Factors for all the wells (individually) in the field. Using statistical techniques multiple Production Indicators (3, 6, and 9 months cum


    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes


    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  11. Hydromagnetic dynamos in rotating spherical fluid shells in dependence on the Prandtl number, density stratification and electromagnetic boundary conditions

    Czech Academy of Sciences Publication Activity Database

    Šoltis, T.; Šimkanin, Ján


    Roč. 44, č. 4 (2014), s. 293-312 ISSN 1335-2806 Institutional support: RVO:67985530 Keywords : hydromagnetic dynamo * non-uniform stratification * Prandtl number * penetrative convection * electromagnetic boundary conditions Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  12. Analysis of birth-death fluid queues

    NARCIS (Netherlands)

    van Doorn, Erik A.; Scheinhardt, Willem R.W.


    We present a survey of techniques for analysing the performance of a reservoir which receives and releases fluid at rates which are determined by the state of a background birth-death process. The reservoir is assumed to be infinitely large, but the state space of the modulating birth-death process

  13. Destratification of an impounding reservoir using compressed air??case of Mudi reservoir, Blantyre, Malawi (United States)

    Chipofya, V. H.; Matapa, E. J.

    This paper reviews the operational and cost effectiveness of a compressed air destratification system that was installed in the Mudi reservoir for destratifying the reservoir. Mudi reservoir is a raw water source for the Blantyre Water Board. It has a capacity of 1,400,000 cubic metres. The reservoir is 15.3 m deep at top water level. In the absence of any artificial circulation of air, the reservoir stratifies into two layers. There is a warm epilimnion in the top 3 m of the reservoir, with temperatures ranging from 23 to 26 °C. There is prolific algal growth in this layer. The bottom layer has much lower temperatures, and is oxygen deficient. Under such anaerobic conditions, ammonia, sulphides, iron and manganese are released from the sediments of the reservoir. As a result of nutrient inflow from the catchments, coupled with tropical ambient temperatures, the reservoir is most times infested with blue-green algae. This results into water treatment problems in respect of taste and odour and iron and manganese soluble salts. To abate such problems, air is artificially circulated in the reservoir, near the intake tower, through a perforated pipe that is connected to an electrically driven compressor. This causes artificial circulation of water in the hypolimnion region of the reservoir. As a result of this circulation, a hostile environment that inhibits the propagation of algae is created. Dissolved oxygen and temperature profiles are practically uniform from top to bottom of reservoir. Concentrations of iron and manganese soluble salts are much reduced at any of the draw-off points available for the water treatment process. The paper concludes by highlighting the significant cost savings in water treatment that are accrued from the use of compressed air destratification in impounding water storage reservoirs for the control of algae and other chemical pollutants.

  14. Reservoir characterization and enhanced oil recovery research

    Energy Technology Data Exchange (ETDEWEB)

    Lake, L.W.; Pope, G.A.; Schechter, R.S.


    The research in this annual report falls into three tasks each dealing with a different aspect of enhanced oil recovery. The first task strives to develop procedures for accurately modeling reservoirs for use as input to numerical simulation flow models. This action describes how we have used a detail characterization of an outcrop to provide insights into what features are important to fluid flow modeling. The second task deals with scaling-up and modeling chemical and solvent EOR processes. In a sense this task is the natural extension of task 1 and, in fact, one of the subtasks uses many of the same statistical procedures for insight into the effects of viscous fingering and heterogeneity. The final task involves surfactants and their interactions with carbon dioxide and reservoir minerals. This research deals primarily with phenomena observed when aqueous surfactant solutions are injected into oil reservoirs.

  15. Systems and methods for multi-fluid geothermal energy systems (United States)

    Buscheck, Thomas A.


    A method for extracting geothermal energy from a geothermal reservoir formation. A production well is used to extract brine from the reservoir formation. At least one of nitrogen (N.sub.2) and carbon dioxide (CO.sub.2) may be used to form a supplemental working fluid which may be injected into a supplemental working fluid injection well. The supplemental working fluid may be used to augment a pressure of the reservoir formation, to thus drive a flow of the brine out from the reservoir formation.

  16. Application d'une équation d'état à la simulation du comportement thermodynamique des fluides dans les gisements et dans les installations de surface Application of an Equation of State to Simulating the Thermodynamic Behaviour of Fluids in Reservoirs and Surface Installations

    Directory of Open Access Journals (Sweden)

    Jain C.


    Full Text Available La connaissance des propriétés thermodynamiques des fluides pétroliers, en particulier des masses volumiques et des coefficients d'équilibre liquide-vapeur, intervient à divers stades de la production : primaire, secondaire par in-jection de gaz (C02 ou hydrocarbures miscibles, vapeur d'eau, séparation, réseau de collecte et de transport. L'ampleur du domaine de pression et de température à l'intérieur duquel on a besoin de connaître les propriétés des huiles et des gaz à condensat, et le fait que la compo-sition d'ensemble des mélanges diphasiques ne cesse de varier au cours de leur déplacement soit dans les gisements, soit dans les installations d'exploitation, rendent mani-feste l'intérêt de pouvoir calculer ces propriétés, en évi-tant d'avoir recours à des travaux de laboratoire beaucoup trop importants. Pour résoudre ces problèmes, une nouvelle équation d'état appelée Redlich-Kwong Développée (RKD a été mise au point. Au cours de cet exposé, nous verrons que cette équation restitue les enveloppes diphasiques de l'équilibre liquide-vapeur avec une qualité au moins égale à celles des méthodes de Soave et de Peng-Robinson qui jouissent actuellement d'une grande notoriété. L'avantage de ce modèle sur ces dernières méthodes est l'évaluation simultanée des propriétés volumétriques des phases en présence avec une bonne précision, ce qui est d'une grande utilité pour l'application de ce modèle aux problèmes industriels. Knowing the thermodynamic properties of petroleum fluids, and in particular the density and liquid-vapor equilibrium coefficients, is important at different stages of production, i. e. primary production, secondary production by gas flooding (CO2 or miscible hydrocarbons, steam, separation, gathering network and transportation. The pressure and temperature range within which the oil and gas-condensate properties must be known coupled with the fact that the overall composition of

  17. Transport of reservoir fines

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan

    Modeling transport of reservoir fines is of great importance for evaluating the damage of production wells and infectivity decline. The conventional methodology accounts for neither the formation heterogeneity around the wells nor the reservoir fines’ heterogeneity. We have developed an integral...


    African Journals Online (AJOL)

    Calls have been made to the government through various media to assist its populace in combating this nagging problem. It was concluded that sediment maximum accumulation is experienced in reservoir during the periods of maximum flow. Keywords: reservoir model, siltation, sediment, catchment, sediment transport. 1.

  19. Dynamic reservoir well interaction

    NARCIS (Netherlands)

    Sturm, W.L.; Belfroid, S.P.C.; Wolfswinkel, O. van; Peters, M.C.A.M.; Verhelst, F.J.P.C.M.


    In order to develop smart well control systems for unstable oil wells, realistic modeling of the dynamics of the well is essential. Most dynamic well models use a semi-steady state inflow model to describe the inflow of oil and gas from the reservoir. On the other hand, reservoir models use steady

  20. Reservoir Engineering Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Howard, J.H.; Schwarz, W.J.


    The Reservoir Engineering Management Program being conducted at Lawrence Berkeley Laboratory includes two major tasks: 1) the continuation of support to geothermal reservoir engineering related work, started under the NSF-RANN program and transferred to ERDA at the time of its formation; 2) the development and subsequent implementation of a broad plan for support of research in topics related to the exploitation of geothermal reservoirs. This plan is now known as the GREMP plan. Both the NSF-RANN legacies and GREMP are in direct support of the DOE/DGE mission in general and the goals of the Resource and Technology/Resource Exploitation and Assessment Branch in particular. These goals are to determine the magnitude and distribution of geothermal resources and reduce risk in their exploitation through improved understanding of generically different reservoir types. These goals are to be accomplished by: 1) the creation of a large data base about geothermal reservoirs, 2) improved tools and methods for gathering data on geothermal reservoirs, and 3) modeling of reservoirs and utilization options. The NSF legacies are more research and training oriented, and the GREMP is geared primarily to the practical development of the geothermal reservoirs. 2 tabs., 3 figs.

  1. Mathematical and field analysis of longitudinal reservoir infill (United States)

    Ke, W. T.; Capart, H.


    In reservoirs, severe problems are caused by infilled sediment deposits. In long term, the sediment accumulation reduces the capacity of reservoir storage and flood control benefits. In the short term, the sediment deposits influence the intakes of water-supply and hydroelectricity generation. For the management of reservoir, it is important to understand the deposition process and then to predict the sedimentation in reservoir. To investigate the behaviors of sediment deposits, we propose a one-dimensional simplified theory derived by the Exner equation to predict the longitudinal sedimentation distribution in idealized reservoirs. The theory models the reservoir infill geomorphic actions for three scenarios: delta progradation, near-dam bottom deposition, and final infill. These yield three kinds of self-similar analytical solutions for the reservoir bed profiles, under different boundary conditions. Three analytical solutions are composed by error function, complementary error function, and imaginary error function, respectively. The theory is also computed by finite volume method to test the analytical solutions. The theoretical and numerical predictions are in good agreement with one-dimensional small-scale laboratory experiment. As the theory is simple to apply with analytical solutions and numerical computation, we propose some applications to simulate the long-profile evolution of field reservoirs and focus on the infill sediment deposit volume resulting the uplift of near-dam bottom elevation. These field reservoirs introduced here are Wushe Reservoir, Tsengwen Reservoir, Mudan Reservoir in Taiwan, Lago Dos Bocas in Puerto Rico, and Sakuma Dam in Japan.

  2. Magnetohydrodynamics (MHD flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    Full Text Available This article presents the effect of thermal radiation on magnetohydrodynamic flow of tangent hyperbolic fluid with nanoparticle past an enlarging sheet with second order slip and convective boundary condition. Condition of zero normal flux of nanoparticles at the wall is used for the concentration boundary condition, which is the current topic that have yet to be studied extensively. The solution for the velocity, temperature and nanoparticle concentration is governed by parameters viz. power-law index (n, Weissenberg number We, Biot number Bi, Prandtl number Pr, velocity slip parameters δ and γ, Lewis number Le, Brownian motion parameter Nb and the thermophoresis parameter Nt. Similarity transformation is used to metamorphosed the governing non-linear boundary-value problem into coupled higher order non-linear ordinary differential equation. The succeeding equations were numerically solved using the function bvp4c from the matlab for different values of emerging parameters. Numerical results are deliberated through graphs and tables for velocity, temperature, concentration, the skin friction coefficient and local Nusselt number. The results designate that the skin friction coefficient Cf deplete as the values of Weissenberg number We, slip parameters γ and δ upturn and it rises as the values of power-law index n increase. The local Nusselt number -θ′(0 decreases as slip parameters γ and δ, radiation parameter Nr, Weissenberg number We, thermophoresis parameter Nt and power-law index n increase. However, the local Nusselt number increases as the Biot number Bi increase. Keywords: Tangent hyperbolic fluid, Second order slip flow, MHD, Convective boundary condition, Radiation effect, Passive control of nanoparticles

  3. conditions

    Directory of Open Access Journals (Sweden)

    M. Venkatesulu


    Full Text Available Solutions of initial value problems associated with a pair of ordinary differential systems (L1,L2 defined on two adjacent intervals I1 and I2 and satisfying certain interface-spatial conditions at the common end (interface point are studied.

  4. Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    John Rogers


    developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.

  5. Risk Analysis of Extreme Rainfall Effects on the Shihmen Reservoir (United States)

    Ho, Y.; Lien, W.; Tung, C.


    Typhoon Morakot intruded Taiwan during 7th and 8th of August 2009, brought about 2,700 mm of total rainfall which caused serious flood and debris to the southern region of Taiwan. One of the serious flooded areas is in the downstream of Zengwen reservoir. People believed that the large amount of floodwater released from Zengwen reservoir led to the severe inundation. Therefore, the Shihmen reservoir is one of the important reservoirs in northern Taiwan. The Taipei metropolis, which is in downstream of Shihmen reservoir, is the political and economical center of Taiwan. If heavy rainfall as those brought by Typhoon Marakot falls in the Shihmen reservoir watershed, it may create a bigger disaster. This study focused on the impacts of a typhoon, like Morakot, in Shihmen reservoir. The hydrological model is used to simulate the reservoir inflows under different rainfall conditions. The reservoir water balance model is developed to calculate reservoir’s storage and outflows under the inflows and operational rules. The ability of flood mitigation is also evaluated. Besides, the released floodwater from reservoir and the inflows from different tributaries are used to determine whether or not the river stage will overtop levee. Also, the maximum released floodwater and other inflows which could lead to damages will be stated. Lastly, the criteria of rainfall conditions and initial stages of reservoir will be analyzed in this study.

  6. Closed-loop feedback control for microfluidic systems through automated capacitive fluid height sensing. (United States)

    Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L


    Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.

  7. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    Kia Saeed


    Full Text Available Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane’s elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar’s weight, a 20% decrease in the concrete’s weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  8. Modeling mineral alterations in shale reservoirs in contact with CO2 (United States)

    Maier, Uli; Tatomir, Alexandru; Sauter, Martin


    Hydraulic fracturing as well as CO2 storage, if in contact with cap rocks, can lead to alterations of the mineral phase of shale reservoirs driven by the changes in fluid composition and pressure. Underlying concepts describing the shifts in geochemical equilibria are discussed for typical shale gas mineral compositions using the geochemical codes Phreeqc and MIN3P, which have recently been upgraded to cope with the conditions of pressure and temperature in deep reservoirs. Models using field data from Heletz oil field (Israel) and the North-west-German sedimentary basins are presented. Alterations of the mineral phase over time are elucidated and their consequences on flow and transport properties of the shale gas formation.

  9. Effects of periodic boundary conditions on equilibrium properties of computer simulated fluids. II. Application to simple liquids

    International Nuclear Information System (INIS)

    Pratt, L.R.; Haan, S.W.


    The theory of the previous paper is used to predict anomalous size effects observed for computer simulated liquid Ar. The theoretical results for the boundary condition induced anisotropy of two-particle correlations are found to be large, and in excellent agreement with the computer experimental data of Mandell for densities near the Ar triple point density. The agreement is less good at higher densities

  10. Are Geotehrmal Reservoirs Stressed Out? (United States)

    Davatzes, N. C.; Laboso, R. C.; Layland-Bachmann, C. E.; Feigl, K. L.; Foxall, W.; Tabrez, A. R.; Mellors, R. J.; Templeton, D. C.; Akerley, J.


    Crustal permeability can be strongly influenced by developing connected networks of open fractures. However, the detailed evolution of a fracture network, its extent, and the persistence of fracture porosity are difficult to analyze. Even in fault-hosted geothermal systems, where heat is brought to the surface from depth along a fault, hydrothermal flow is heterogeneously distributed. This is presumably due to variations in fracture density, connectivity, and attitude, as well as variations in fracture permeability caused by sealing of fractures by precipitated cements or compaction. At the Brady Geothermal field in Nevada, we test the relationship between the modeled local stress state perturbed by dislocations representing fault slip or volume changes in the geothermal reservoir inferred from surface deformation measured by InSAR and the location of successful geothermal wells, hydrothermal activity, and seismicity. We postulate that permeability is favored in volumes that experience positive Coulomb stress changes and reduced compression, which together promote high densities of dilatant fractures. Conversely, permeability can be inhibited in locations where Coulomb stress is reduced, compression promotes compaction, or where the faults are poorly oriented in the stress field and consequently slip infrequently. Over geologic time scales spanning the development of the fault system, these local stress states are strongly influenced by the geometry of the fault network relative to the remote stress driving slip. At shorter time scales, changes in fluid pressure within the fracture network constituting the reservoir cause elastic dilations and contractions. We integrate: (1) direct observations of stress state and fractures in boreholes and the mapped geometry of the fault network; (2) evidence of permeability from surface hydrothermal features, production/injection wells and surface deformations related to pumping history; and (3) seismicity to test the

  11. A multiscale fixed stress split iterative scheme for coupled flow and poromechanics in deep subsurface reservoirs (United States)

    Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.


    In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.

  12. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.


    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  13. Radon in unconventional natural gas from gulf coast geopressured-geothermal reservoirs (United States)

    Kraemer, T.F.


    Radon-222 has been measured in natural gas produced from experimental geopressured-geothermal test wells. Comparison with published data suggests that while radon activity of this unconventional natural gas resource is higher than conventional gas produced in the gulf coast, it is within the range found for conventional gas produced throughout the U.S. A method of predicting the likely radon activity of this unconventional gas is described on the basis of the data presented, methane solubility, and known or assumed reservoir conditions of temperature, fluid pressure, and formation water salinity.

  14. Sediment management for reservoir

    International Nuclear Information System (INIS)

    Rahman, A.


    All natural lakes and reservoirs whether on rivers, tributaries or off channel storages are doomed to be sited up. Pakistan has two major reservoirs of Tarbela and Managla and shallow lake created by Chashma Barrage. Tarbela and Mangla Lakes are losing their capacities ever since first impounding, Tarbela since 1974 and Mangla since 1967. Tarbela Reservoir receives average annual flow of about 62 MAF and sediment deposits of 0.11 MAF whereas Mangla gets about 23 MAF of average annual flows and is losing its storage at the rate of average 34,000 MAF annually. The loss of storage is a great concern and studies for Tarbela were carried out by TAMS and Wallingford to sustain its capacity whereas no study has been done for Mangla as yet except as part of study for Raised Mangla, which is only desk work. Delta of Tarbala reservoir has advanced to about 6.59 miles (Pivot Point) from power intakes. In case of liquefaction of delta by tremor as low as 0.12g peak ground acceleration the power tunnels I, 2 and 3 will be blocked. Minimum Pool of reservoir is being raised so as to check the advance of delta. Mangla delta will follow the trend of Tarbela. Tarbela has vast amount of data as reservoir is surveyed every year, whereas Mangla Reservoir survey was done at five-year interval, which has now been proposed .to be reduced to three-year interval. In addition suspended sediment sampling of inflow streams is being done by Surface Water Hydrology Project of WAPDA as also some bed load sampling. The problem of Chasma Reservoir has also been highlighted, as it is being indiscriminately being filled up and drawdown several times a year without regard to its reaction to this treatment. The Sediment Management of these reservoirs is essential and the paper discusses pros and cons of various alternatives. (author)

  15. Comparison of particle-wall interaction boundary conditions in the prediction of cyclone collection efficiency in computational fluid dynamics (CFD) modeling

    International Nuclear Information System (INIS)

    Valverde Ramirez, M.; Coury, J.R.; Goncalves, J.A.S.


    In recent years, many computational fluid dynamics (CFD) studies have appeared attempting to predict cyclone pressure drop and collection efficiency. While these studies have been able to predict pressure drop well, they have been only moderately successful in predicting collection efficiency. Part of the reason for this failure has been attributed to the relatively simple wall boundary conditions implemented in the commercially available CFD software, which are not capable of accurately describing the complex particle-wall interaction present in a cyclone. According, researches have proposed a number of different boundary conditions in order to improve the model performance. This work implemented the critical velocity boundary condition through a user defined function (UDF) in the Fluent software and compared its predictions both with experimental data and with the predictions obtained when using Fluent's built-in boundary conditions. Experimental data was obtained from eight laboratory scale cyclones with varying geometric ratios. The CFD simulations were made using the software Fluent 6.3.26. (author)

  16. Numerical modeling of shear stimulation in naturally fractured geothermal reservoirs


    Ucar, Eren


    Shear-dilation-based hydraulic stimulations are conducted to create enhanced geothermal systems (EGS) from low permeable geothermal reservoirs, which are initially not amenable to energy production. Reservoir stimulations are done by injecting low-pressurized fluid into the naturally fractured formations. The injection aims to activate critically stressed fractures by decreasing frictional strength and ultimately cause a shear failure. The shear failure leads to a permanent ...

  17. Hydraulic Fracturing and Production Optimization in Eagle Ford Shale Using Coupled Geomechanics and Fluid Flow Model (United States)

    Suppachoknirun, Theerapat; Tutuncu, Azra N.


    With increasing production from shale gas and tight oil reservoirs, horizontal drilling and multistage hydraulic fracturing processes have become a routine procedure in unconventional field development efforts. Natural fractures play a critical role in hydraulic fracture growth, subsequently affecting stimulated reservoir volume and the production efficiency. Moreover, the existing fractures can also contribute to the pressure-dependent fluid leak-off during the operations. Hence, a reliable identification of the discrete fracture network covering the zone of interest prior to the hydraulic fracturing design needs to be incorporated into the hydraulic fracturing and reservoir simulations for realistic representation of the in situ reservoir conditions. In this research study, an integrated 3-D fracture and fluid flow model have been developed using a new approach to simulate the fluid flow and deliver reliable production forecasting in naturally fractured and hydraulically stimulated tight reservoirs. The model was created with three key modules. A complex 3-D discrete fracture network model introduces realistic natural fracture geometry with the associated fractured reservoir characteristics. A hydraulic fracturing model is created utilizing the discrete fracture network for simulation of the hydraulic fracture and flow in the complex discrete fracture network. Finally, a reservoir model with the production grid system is used allowing the user to efficiently perform the fluid flow simulation in tight formations with complex fracture networks. The complex discrete natural fracture model, the integrated discrete fracture model for the hydraulic fracturing, the fluid flow model, and the input dataset have been validated against microseismic fracture mapping and commingled production data obtained from a well pad with three horizontal production wells located in the Eagle Ford oil window in south Texas. Two other fracturing geometries were also evaluated to optimize

  18. Soret and Dufour effects in stretching flow of Jeffrey fluid subject to Newtonian heat and mass conditions (United States)

    Khan, Muhammad Ijaz; Waqas, Muhammad; Hayat, Tasawar; Alsaedi, Ahmed

    Main emphasis of present research is to introduce the novel concept of Newtonian flux condition in MHD stretching flow of Jeffrey liquid. Flow is generated due to stretching of a permeable cylinder. Phenomena of heat and mass transfer is based through involvement of thermal-diffusion and diffusion-thermo aspects. Suitable variables are employed for conversion of partial differential frameworks into a sets of ordinary differential expressions. Analytic solutions are constructed through homotopic procedure. Salient impacts of distinct variables are reported graphically. Temperature and concentration are improved within frame of thermal/solutal conjugate variables.

  19. Surface functionalization of tissue culture polystyrene plates with hydroxyapatite under body fluid conditions and its effect on differentiation behaviors of mesenchymal stem cells. (United States)

    Iijima, Kazutoshi; Suzuki, Ryo; Iizuka, Ayako; Ueno-Yokohata, Hitomi; Kiyokawa, Nobutaka; Hashizume, Mineo


    The surfaces of polystyrene (PS) cell culture plates were functionalized with hydroxyapatite (HAp) under body fluid conditions utilizing protein adsorption layers and a pretreatment with an alternate soaking process (ASP) using solutions containing calcium and phosphate ions. Adsorption layers of human serum albumin (HSA) formed on the surface of each well of commercial 24-well PS plates by solution processes. CaCl2 and K2HPO4 solutions were alternately added to the wells, the plates were incubated to form the precursors, and this was followed by the addition of simulated body fluid (SBF) and a further incubation for 24h. These treatments resulted in the surfaces of the PS cell culture plates being completely covered with bone-like HAp. The coating of PS plates with HAp promoted the adhesion of mesenchymal stem cells (MSCs) and maintained cell growth that was as fast as that on tissue culture-treated PS (TCPS) plates. Osteogenic differentiation was greater, whereas adipogenic and chondrogenic differentiation was less in the culture on HAp-coated PS plates than in that on TCPS plates. The present method is useful for preparing HAp-coated PS plates at clean benches without the need for any expensive apparatus. HAp coated on PS plates by this method was a bone-like apatite with high bioactivity; therefore, the present HAp-coated PS plates are promising materials for assays of bone-related cells in the bone remodeling process. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. MHD Heat and Mass Transfer of Chemical Reaction Fluid Flow over a Moving Vertical Plate in Presence of Heat Source with Convective Surface Boundary Condition

    Directory of Open Access Journals (Sweden)

    B. R. Rout


    Full Text Available This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.

  1. Effect of slip on heat transfer and entropy generation characteristics of simplified Phan-Thien–Tanner fluids with viscous dissipation under uniform heat flux boundary conditions: Exponential formulation

    International Nuclear Information System (INIS)

    Anand, Vishal


    Highlights: • Exponential formulation of s-PTT model used. • Heat transfer and entropy generation characteristics studied. • Effects of three slip laws examined. • Exponential formulation more accurate than linear formulation. - Abstract: This study concerns the heat transfer and entropy generation characteristics of viscoelastic fluid flow modeled by the exponential formulation of simplified Phan-Thien–Tanner (s-PTT) model. This is the first such study in literature of thermal behavior of viscoelastic fluids modeled by the exponential formulation of s-PTT model. The flow between two parallel plates is laminar, hydrodynamically and thermally fully developed, viscous dissipative and subject to uniform heat flux on the walls. The slip velocity boundary condition is imposed on the fluid–solid interface and the slip is captured by three slip laws, namely, Navier's non-linear slip law, Hatzikiriakos slip law, and asymptotic slip law. The governing equations have been solved analytically. Closed form solutions for the velocity distribution have been derived while the temperature distribution is presented in terms of an infinite but convergent series. The results pertaining to the three slip laws have been presented in detail. Finally, a comparison has been made between the results for exponential formulation and those for the linear formulation of the s-PTT model. The comparison shows that results for linear formulation deviate significantly from those for exponential formulation and thus the accuracy of the exponential formulation justifies the extra mathematical complexity which it entails.

  2. Tribological and corrosion behaviors of warm-and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions. (United States)

    Lee, Taekyung; Mathew, Eshaan; Rajaraman, Santhosh; Manivasagam, Geetha; Singh, Ashok Kumar; Lee, Chong Soo


    Development of submicrocrystalline structure in biomedical alloy such as Ti-13Nb-13Zr (in wt%) through warm-rolling process has been found to enhance mechanical properties compared to conventional thermomechanical processing routes including hot-rolling process. The present study investigated the tribological and corrosion behaviors of warm-rolled (WR) and hot-rolled Ti-13Nb-13Zr alloys which have not been studied to date. Both tribological and corrosion experiments were carried out in simulated body fluid conditions (Hank's solution at 37°C) based on the fact that the investigated alloys would be used in a human body as orthopedic implants. The WR Ti-13Nb-13Zr demonstrated a submicrocrystalline structure that provided a significant enhancement in hardness, strength, and corrosion resistance. Meanwhile, there was no notable difference in wear resistance between the WR and hot-rolled samples despite the different microstructure and hardness. The present study confirmed the enormous potential of WR Ti-13Nb-13Zr with not only great mechanical properties but also high corrosion resistance in the simulated body fluid.

  3. Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Parra, J.O.; Collier, H.A.; Owen, T.E. [and others


    In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

  4. Application of principal component analysis enables to effectively find important physical variables for optimization of fluid bed granulator conditions. (United States)

    Otsuka, Tomoko; Iwao, Yasunori; Miyagishima, Atsuo; Itai, Shigeru


    Principal component analysis was applied to effectively optimize the operational conditions of a fluidized bed granulator for preparing granules with excellent compaction and tablet physical properties. The crucial variables that affect the properties of the granules, their compactability and the resulting tablet properties were determined through analysis of a series of granulation and tabletting experiments. Granulation was performed while the flow rate and concentration of the binder were changed as independent operational variables, according to a two-factor central composite design. Thirteen physicochemical properties of granules and tablets were examined: powder properties (particle size, size distribution width, Carr's index, Hausner ratio and aspect ratio), compactability properties (pressure transmission ratio, die wall force and ejection force) and tablet properties (tensile strength, friability, disintegration time, weight variation and drug content uniformity). Principal component analysis showed that the pressure transmission ratio, die wall force and Carr's index were the most important variables in granule preparation. Multiple regression analysis also confirmed these results. Furthermore, optimized operational conditions obtained from the multiple regression analysis enabled the production of granules with desirable properties for tabletting. This study presents the first use of principle component analysis for identifying and successfully predicting the most important variables in the process of granulation and tabletting. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. A Computational Fluid Dynamics Study of Transitional Flows in Low-Pressure Turbines under a Wide Range of Operating Conditions (United States)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.; Volino, R. J.; Corke, T. C.; Thomas, F. O.; Huang, J.; Lake, J. P.; King, P. I.


    A transport equation for the intermittency factor is employed to predict the transitional flows in low-pressure turbines. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub p) with the intermittency factor, gamma. Turbulent quantities are predicted using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model which can produce both the experimentally observed streamwise variation of intermittency and a realistic profile in the cross stream direction. The model had been previously validated against low-pressure turbine experiments with success. In this paper, the model is applied to predictions of three sets of recent low-pressure turbine experiments on the Pack B blade to further validate its predicting capabilities under various flow conditions. Comparisons of computational results with experimental data are provided. Overall, good agreement between the experimental data and computational results is obtained. The new model has been shown to have the capability of accurately predicting transitional flows under a wide range of low-pressure turbine conditions.

  6. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities (United States)

    Krueger, Martin; Jimenez, Nuria


    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperature, high pressure) were conducted using groundwater samples from three different locations. Series of microcosms containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides or frac fluids. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride were used as substrates, while others like triethanolamine or light oil distillate hydrogenated prevented microbial growth in

  7. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai


    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems. In this framework, a parallel reservoir simulator, reservoir-simulation toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, whereas the MD simulations are performed to provide the required physical parameters. Technologies from several different fields are used to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large-scale CO2 sequestration for long-term storage in subsurface geological formations, such as depleted oil and gas reservoirs and deep saline aquifers, which has been proposed as one of the few attractive and practical solutions to reduce CO2 emissions and address the global-warming threat. Fine grids and accurate prediction of the properties of fluid mixtures under geological conditions are essential for accurate simulations. In this work, CO2 sequestration is presented as a first example for coupling reservoir simulation and MD, although the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical processes in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability is observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well-demonstrated with several experiments with hundreds of millions to one billion cells. To the best of our knowledge, the present work represents the first attempt to couple reservoir simulation and molecular simulation for large-scale modeling. Because of the complexity of

  8. Anomalous fluid emission of a deep borehole in a seismically active area of Northern Apennines (Italy)

    International Nuclear Information System (INIS)

    Heinicke, J.; Italiano, F.; Koch, U.; Martinelli, G.; Telesca, L.


    The Miano borehole, 1047 m deep, is located close to the river Parma in the Northern Apennines, Italy. A measuring station has been installed to observe the discharge of fluids continuously since November 2004. The upwelling fluid of this artesian well is a mixture of thermal water and CH 4 as main components. In non-seismogenic areas, a relatively constant fluid emission would be expected, perhaps overlaid with long term variations from that kind of deep reservoir over time. However, the continuous record of the fluid emission, in particular the water discharge, the gas flow rate and the water temperature, show periods of stable values interrupted by anomalous periods of fluctuations in the recorded parameters. The anomalous variations of these parameters are of low amplitude in comparison to the total values but significant in their long-term trend. Meteorological effects due to rain and barometric pressure were not detected in recorded data probably due to reservoir depth and relatively high reservoir overpressure. Influences due to the ambient temperature after the discharge were evaluated by statistical analysis. Our results suggest that recorded changes in fluid emission parameters can be interpreted as a mixing process of different fluid components at depth by variations in pore pressure as a result of seismogenic stress variation. Local seismicity was analyzed in comparison to the fluid physico-chemical data. The analysis supports the idea that an influence on fluid transport conditions due to geodynamic processes exists. Water temperature data show frequent anomalies probably connected with possible precursory phenomena of local seismic events.

  9. Lithofacies and associated reservoir properties co-simulations constraint by seismic data; Cosimulations de lithofacies et de proprietes reservoirs associees contraintes par les donnees sismiques

    Energy Technology Data Exchange (ETDEWEB)

    Fichtl, P.


    Integration of data different sources and nature leads to more accurate reservoir models, useful for controlling fluid and assessing final uncertainties. In this frame, this thesis presents a new technique for co-simulating in 3D two high resolution properties - one categorical, one continuous - conditionally to well information and under the constraint of seismic data. This technique could be applied to simulate lithofacies and related reservoir properties like acoustic impedances or porosities. The proposed algorithm combines a non-parametric approach for the categorical variable and a parametric approach for the continuous variable through a sequential co-simulation. The co-simulation process is divided in two steps: in the first step, the lithofacies is co-simulated with the seismic information by a sequential indicator co-simulation with co-kriging and, in the second step, the reservoir property of interest is simulated from the previously co-simulated lithofacies using sequential Gaussian (co- )simulation or P-field simulation. A validation study on a synthetic but realistic model shows that this technique provides alternative models of lithofacies and associated high resolution acoustic impedances consistent with the seismic data. The seismic information constraining the co-simulations contributes to reduce the uncertainties for the lithofacies distribution at the reservoir level. In some case, a Markov co-regionalization model can be used for simplifying the inference and modelling of the cross-covariances; finally, the co-simulation algorithm was applied to a 3D real case study with objective the joint numerical modelling of lithofacies and porosity in a fluvial channel reservoir. (author) 88 refs.

  10. Understanding creep in sandstone reservoirs - theoretical deformation mechanism maps for pressure solution in granular materials (United States)

    Hangx, Suzanne; Spiers, Christopher


    Subsurface exploitation of the Earth's natural resources removes the natural system from its chemical and physical equilibrium. As such, groundwater extraction and hydrocarbon production from subsurface reservoirs frequently causes surface subsidence and induces (micro)seismicity. These effects are not only a problem in onshore (e.g. Groningen, the Netherlands) and offshore hydrocarbon fields (e.g. Ekofisk, Norway), but also in urban areas with extensive groundwater pumping (e.g. Venice, Italy). It is known that fluid extraction inevitably leads to (poro)elastic compaction of reservoirs, hence subsidence and occasional fault reactivation, and causes significant technical, economic and ecological impact. However, such effects often exceed what is expected from purely elastic reservoir behaviour and may continue long after exploitation has ceased. This is most likely due to time-dependent compaction, or 'creep deformation', of such reservoirs, driven by the reduction in pore fluid pressure compared with the rock overburden. Given the societal and ecological impact of surface subsidence, as well as the current interest in developing geothermal energy and unconventional gas resources in densely populated areas, there is much need for obtaining better quantitative understanding of creep in sediments to improve the predictability of the impact of geo-energy and groundwater production. The key problem in developing a reliable, quantitative description of the creep behaviour of sediments, such as sands and sandstones, is that the operative deformation mechanisms are poorly known and poorly quantified. While grain-scale brittle fracturing plus intergranular sliding play an important role in the early stages of compaction, these time-independent, brittle-frictional processes give way to compaction creep on longer time-scales. Thermally-activated mass transfer processes, like pressure solution, can cause creep via dissolution of material at stressed grain contacts, grain

  11. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, M.


    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  12. A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions

    International Nuclear Information System (INIS)

    Collings, Peter; Yu, Zhibin; Wang, Enhua


    Highlights: • A dynamic ORC using a zeotropic mixture with composition tuning is proposed. • The working principle is verified theoretically, based on a thermodynamic model. • Improvements in the resultant power plant’s annual power production are analysed. • The economic benefits have been demonstrated by an economic analysis. - Abstract: Air-cooled condensers are widely used for Organic Rankine Cycle (ORC) power plants where cooling water is unavailable or too costly, but they are then vulnerable to changing ambient air temperatures especially in continental climates, where the air temperature difference between winter and summer can be over 40 °C. A conventional ORC system using a single component working fluid has to be designed according to the maximum air temperature in summer and thus operates far from optimal design conditions for most of the year, leading to low annual average efficiencies. This research proposes a novel dynamic ORC that uses a binary zeotropic mixture as the working fluid, with mechanisms in place to adjust the mixture composition dynamically during operation in response to changing heat sink conditions, significantly improving the overall efficiency of the plant. The working principle of the dynamic ORC concept is analysed. The case study results show that the annual average thermal efficiency can be improved by up to 23% over a conventional ORC when the heat source is 100 °C, while the evaluated increase of the capital cost is less than 7%. The dynamic ORC power plants are particularly attractive for low temperature applications, delivering shorter payback periods compared to conventional ORC systems.

  13. Fluid Shifts (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; hide


    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  14. Axial-Flow Turbine Rotor Discharge-Flow Overexpansion and Limit-Loading Condition, Part I: Computational Fluid Dynamics (CFD) Investigation (United States)

    Chen, Shu-Cheng S.


    A Computational Fluid Dynamic (CFD) investigation is conducted over a two-dimensional axial-flow turbine rotor blade row to study the phenomena of turbine rotor discharge flow overexpansion at subcritical, critical, and supercritical conditions. Quantitative data of the mean-flow Mach numbers, mean-flow angles, the tangential blade pressure forces, the mean-flow mass flux, and the flow-path total pressure loss coefficients, averaged or integrated across the two-dimensional computational domain encompassing two blade-passages, are obtained over a series of 14 inlet-total to exit-static pressure ratios, from 1.5 (un-choked; subcritical condition) to 10.0 (supercritical with excessively high pressure ratio.) Detailed flow features over the full domain-of-computation, such as the streamline patterns, Mach contours, pressure contours, blade surface pressure distributions, etc. are collected and displayed in this paper. A formal, quantitative definition of the limit loading condition based on the channel flow theory is proposed and explained. Contrary to the comments made in the historical works performed on this subject, about the deficiency of the theoretical methods applied in analyzing this phenomena, using modern CFD method for the study of this subject appears to be quite adequate and successful. This paper describes the CFD work and its findings.

  15. Formation of chlorite during thrust fault reactivation. Record of fluid origin and P-T conditions in the Monte Perdido thrust fault (southern Pyrenees) (United States)

    Lacroix, B.; Charpentier, D.; Buatier, M.; Vennemann, T.; Labaume, P.; Adatte, T.; Travé, A.; Dubois, M.


    The chemical and isotopic compositions of clay minerals such as illite and chlorite are commonly used to quantify diagenetic and low-grade metamorphic conditions, an approach that is also used in the present study of the Monte Perdido thrust fault from the South Pyrenean fold-and-thrust belt. The Monte Perdido thrust fault is a shallow thrust juxtaposing upper Cretaceous-Paleocene platform carbonates and Lower Eocene marls and turbidites from the Jaca basin. The core zone of the fault, about 6 m thick, consists of intensely deformed clay-bearing rocks bounded by major shear surfaces. Illite and chlorite are the main hydrous minerals in the fault zone. Illite is oriented along cleavage planes while chlorite formed along shear veins (oxygen isotope fractionation between cogenetic chlorite and quartz. Burial depth conditions of 7 km are determined for the Monte Perdido thrust reactivation, coupling calculated temperature and fluid inclusion isochores. The present study demonstrates that both isotopic and thermodynamic methods applied to clay minerals formed in thrust fault are useful to help constrain diagenetic and low-grade metamorphic conditions.

  16. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method. (United States)

    Lee, Jong Ho; Kwon, Cheong Hoon; Kang, Jeong Won; Park, Chulhwan; Tae, Bumseok; Kim, Seung Wook


    In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 degrees C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.

  17. Geometry Effect Investigation on a Conical Chamber with Porous Media Boundary Condition Using Computational Fluid Dynamic (CFD Technique

    Directory of Open Access Journals (Sweden)

    Yazid Bindar


    Full Text Available The present study is an attempt to introduce the method for optimizing the geometry of the unit process. The comprehensive unit process performances are generated by a CFD engine. The CFD engine can simulate the unit process performances at what ever conditions. Both design geometry and operating variables weree used on the CFD simulation. The burden on a simplified process was taken out from CFD simulation. A complex geometry of a unit process is represented by a secondary reformer. A secondary reformer has a conical volume as a space to undergo the combustion reaction before entering the catalyst bed. This complexity is added by the boundary of the porous solid surface as the top surface of catalyst bed. The spread angle affect the flow pattern in side the conical volume having a porous solid surface as a base. The spread angle above 65o results the disappearing of the recirculation flow. The inlet distance from the porous solid surface also can exhibit different characteristics of recirculation flow. The closer the distance to the porous solid surface, the stronger the recirculation is. The inlet velocity values have no significant effect on the flow pattern. The introduction of a solid volume inside the geometry creates the distortion of the flow pattern. In the application, the inserted solid volume is equivalent to a burner. It means that the use of the burner inherently produces some problems of the flow distribution


    Directory of Open Access Journals (Sweden)

    M. A. Salmanov


    Full Text Available Aim. It is hardly possible to predict the continued stability of the watercourse ecosystems without the study of biological characteristics and composition of organisms inhabiting them. In the last 35-40 years, environmental conditions of the Mingachevir reservoir are determined by the stationary anthropogenic pressure. It was found that such components of plankton as algae, bacteria and fungi play a leading role in the transformation and migration of pollutants. The role of the three groups of organisms is very important in maintaining the water quality by elimination of pollutants. Among the organisms inhabiting the Mingachevir Reservoir, micromycetes have not yet been studied. Therefore, the study of the species composition and seasonal dynamics, peculiarities of their growth and development in the environment with the presence of some of the pollutants should be considered to date.Methods. In order to determine the role of micromycetes-migrants in the mineralization of organic substrates, as an active participant of self-purification process, we used water samples from the bottom sediments as well as decaying and skeletonized stalks of cane, reeds, algae, macrophytes, exuvia of insects and fish remains submerged in water.Findings. For the first time, we obtained the data on the quality and quantity of microscopic mycelial fungi in freshwater bodies on the example of the Mingachevir water reservoir; we also studied the possibilities for oxygenating the autochthonous organic matter of allochthonous origin with micromycetes-migrants.Conclusions. It was found that the seasonal development of micromycetes-migrants within the Mingachevir reservoir is characterized by an increase in the number of species in the summer and a gradual reduction in species diversity in the fall. 


    Energy Technology Data Exchange (ETDEWEB)

    Matthias G. Imhof; James W. Castle


    The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.


    African Journals Online (AJOL)

    As pressure data was not acquired in the water leg of the reservoir, pressure gradient analysis was done with the field-wide hydrostatic profile for contact and fluid prediction. Also, an evaluation of the possibility of having an oil rim within the region of fluid-type uncertainty was carried out. The predicted results revealed that ...

  1. Fast intraslab fluid-flow events linked to pulses of high pore fluid pressure at the subducted plate interface (United States)

    Taetz, Stephan; John, Timm; Bröcker, Michael; Spandler, Carl; Stracke, Andreas


    A better understanding of the subduction zone fluid cycle and its chemical-mechanical feedback requires in-depth knowledge about how fluids flow within and out of descending slabs. Relicts of fluid-flow systems in exhumed rocks of fossil subduction zones allow for identification of the general relationships between dehydration reactions, fluid pathway formation, the dimensions and timescales of distinct fluid flow events; all of which are required for quantitative models for fluid-induced subduction zone processes. Two types of garnet-quartz-phengite veins can be distinguished in an eclogite-facies mélange block from the Pouébo Eclogite Mélange, New Caledonia. These veins record synmetamorphic internal fluid release by mineral breakdown reactions (type I veins), and infiltration of an external fluid (type II veins) with the associated formation of a reaction selvage. The dehydration and fluid migration documented by the type I veins likely occurred on a timescale of 105-106 years, based on average subduction rates and metamorphic conditions required for mineral dehydration and fluid flow. The timeframe of fluid-rock interaction between the external fluid and the wall-rock of the type II veins is quantified using a continuous bulk-rock Li-diffusion profile perpendicular to a vein and its metasomatic selvage. Differences in Li concentration between the internal and external fluid reservoirs resulted in a distinct diffusion profile (decreasing Li concentration and increasing δ7 Li) as the reaction front propagated into the host rock. Li-chronometric constraints indicate that the timescales of fluid-rock interaction associated with type II vein formation are on the order of 1 to 4 months (0.150-0.08+0.14 years). The short-lived, pulse-like character of this process is consistent with the notion that fluid flow caused by oceanic crust dehydration at the blueschist-to-eclogite transition contributes to or even dominates episodic pore fluid pressure increases at the

  2. Modeling Self-Potential Effects During Reservoir Stimulation in Enhanced Geothermal Systems. (United States)

    Troiano, Antonio; Giulia Di Giuseppe, Maria; Monetti, Alessio; Patella, Domenico; Troise, Claudia; De Natale, Giuseppe


    Geothermal systems represent a large resource that can provide, with a reasonable investment, a very high and cost-effective power generating capacity. Considering also the very low environmental impact, their development represents, in the next decades, an enormous perspective. Despite its unquestionable potential, geothermal exploitation has long been perceived as limited, mainly because of the dependence from strict site-related conditions, mainly related to the reservoir rock's permeability and to the high thermal gradient, implying the presence of large amounts of hot fluids at reasonable depth. Many of such limitations can be overcome using Enhanced Geothermal Systems technology (EGS), where massive fluid injection is performed to increase the rock permeability by fracturing. This is a powerful method to exploit hot rocks with low natural permeability, otherwise not exploitable. Numerical procedures have already been presented in literature reproducing thermodynamic evolution and stress changes of systems where fluids are injected. However, stimulated fluid flow in geothermal reservoirs can produce also surface Self-Potential (SP) anomalies of several mV. A commonly accepted interpretation involves the activation of electrokinetic processes. Since the induced seismicity risk is generally correlated to fluid circulation stimulated in an area exceeding the well of several hundreds of meters, the wellbore pressure values can be totally uncorrelated to seismic hazard. However, SP anomalies, being generated from pressure gradients in the whole area where fluids flow, has an interesting potential as induced earthquake precursor. In this work, SP anomalies observed above the Soultz-sous-Forets (Alsace, France) geothermal reservoir while injecting cold water have been modeled, considering a source related to the fluid flow induced by the well stimulation process. In particular, the retrieved changes of pressure due to well stimulation in the EGS system have been used

  3. Water in chalk reservoirs: 'friend or foe?'

    International Nuclear Information System (INIS)

    Hjuler, Morten Leth


    Most of the petroleum fields in the Norwegian sector of the North Sea are sandstone reservoirs; the oil and gas are trapped in different species of sandstone. But the Ekofisk Field is a chalk reservoir, which really challenges the operator companies. When oil is produced from chalk reservoirs, water usually gets in and the reservoir subsides. The subsidence may be expensive for the oil companies or be used to advantage by increasing the recovery rate. Since 60 per cent of the world's petroleum reserves are located in carbonate reservoirs, it is important to understand what happens as oil and gas are pumped out. Comprehensive studies at the Department of Petroleum Technology and Applied Geophysics at Stavanger University College in Norway show that the mechanical properties of chalk are considerably altered when the pores in the rock become saturated with oil/gas or water under different stress conditions. The processes are extremely complex. The article also maintains that the effects of injecting carbon dioxide from gas power plants into petroleum reservoirs should be carefully studied before this is done extensively

  4. High-performance modeling of CO2 sequestration by coupling reservoir simulation and molecular dynamics

    KAUST Repository

    Bao, Kai


    The present work describes a parallel computational framework for CO2 sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel HPC systems. In this framework, a parallel reservoir simulator, Reservoir Simulation Toolbox (RST), solves the flow and transport equations that describe the subsurface flow behavior, while the molecular dynamics simulations are performed to provide the required physical parameters. Numerous technologies from different fields are employed to make this novel coupled system work efficiently. One of the major applications of the framework is the modeling of large scale CO2 sequestration for long-term storage in the subsurface geological formations, such as depleted reservoirs and deep saline aquifers, which has been proposed as one of the most attractive and practical solutions to reduce the CO2 emission problem to address the global-warming threat. To effectively solve such problems, fine grids and accurate prediction of the properties of fluid mixtures are essential for accuracy. In this work, the CO2 sequestration is presented as our first example to couple the reservoir simulation and molecular dynamics, while the framework can be extended naturally to the full multiphase multicomponent compositional flow simulation to handle more complicated physical process in the future. Accuracy and scalability analysis are performed on an IBM BlueGene/P and on an IBM BlueGene/Q, the latest IBM supercomputer. Results show good accuracy of our MD simulations compared with published data, and good scalability are observed with the massively parallel HPC systems. The performance and capacity of the proposed framework are well demonstrated with several experiments with hundreds of millions to a billion cells. To our best knowledge, the work represents the first attempt to couple the reservoir simulation and molecular simulation for large scale modeling. Due to the complexity of the subsurface systems

  5. Mrica Reservoir Sedimentation: Current Situation and Future Necessary Management

    Directory of Open Access Journals (Sweden)

    Puji Utomo


    Full Text Available Mrica Reservoir is one of many reservoirs located in Central Java that experienced a considerably high sedimentation during the last ten years. This condition has caused a rapid decrease in reservoir capacity. Various countermeasures have been introduced to reduce the rate of the reservoir sedimentation through catchment management and reservoir operation by means of flushing and/or dredging. However, the sedimentation remains intensive so that the fulfillment of water demand for electrical power generation was seriously affected. This paper presents the results of evaluation on the dynamics of the purpose of this research is to evaluate the sediment balance of the Mrica Reservoir based on two different scenarios, i.e. the existing condition and another certain type of reservoir management. The study on sediment balance was carried out by estimating the sediment inflow applying sheet erosion method in combination with the analysis of sediment rating curve. The measurement of the deposited sediment rate in the reservoir was conducted through the periodic echo sounding, whereas identification of the number of sediment that has been released from the reservoir was carried out through the observation on both flushing and dredging activities. The results show that during the last decade, the rate of the sediment inflow was approximately 5.869 MCM/year, whereas the released sediment from the reservoir was 4.097 MCM/year. In order to maintain the reservoir capacity, therefore, at least 1.772 MCM/year should be released from the reservoir by means of either flushing or dredging. Sedimentation management may prolong the reservoir’s service life to exceed the design life. Without sediment management, the lifetime of the reservoir would have finished by 2016, whereas with the proper management the lifetime may be extended to 2025.

  6. Crosswell electromagnetic imaging for geothermal reservoir characterization - a feasibility study (United States)

    Samrock, Friedemann; Saar, Martin O.


    Most regions in the world do not have ready access to natural convective hydrothermal resources. To use deep geothermal heat as a viable energy resource in low-permeability formations, permeable fracture networks have to be created artificially to enable deep fluid circulation for advective heat transport to a production well. Such generation of enhanced geothermal systems (EGS) is studied in the "Deep Underground Geothermal (DUG)" laboratory at the Grimsel pass, Switzerland. Here, an underground experiment is conducted by hydraulically stimulating a pre-existing shear zone within crystalline rock. The objectives of this project are to better describe and understand the processes acting during reservoir generation. We perform a feasibility study to evaluate the capability of low-frequency crosswell electromagnetic (EM) tomography for mapping of stimulation-induced changes in electrical conductivity. First numerical results show that crosswell EM data are generally sensitive to the inter-well conductivity distribution, which is affected by properties such as interconnected porosity, permeability and the presence of fluids. It thereby provides important information for characterization of potential EGS reservoirs. We present a 3-D forward modeling and inversion study using synthetic data and under realistic conditions, these include the true borehole spacing and the observed electromagnetic noise level in the DUG laboratory. Based on these results we discuss the system requirements and the capability of crosswell EM to recover the inter-well structure and stimulation-induced changes. Besides the numerical study we report on the current status of instrumentation and realization of crosswell EM measurements at the DUG laboratory.

  7. Storage and Release of Spermatozoa from the Pre-Uterine Tube Reservoir (United States)

    Freeman, Sarah L.; England, Gary C.W.


    In mammals, after coitus a small number of spermatozoa enter the uterine tube and following attachment to uterine tube epithelium are arrested in a non-capacitated state until peri-ovulatory signalling induces their detachment. Whilst awaiting release low numbers of spermatozoa continually detach from the epithelium and the uterine tube reservoir risks depletion. There is evidence of attachment of spermatozoa to uterine epithelium in several species which might form a potential pre-uterine tube reservoir. In this study we demonstrate that: (1) dog spermatozoa attach to uterine epithelium and maintain flagellar activity, (2) in non-capacitating conditions spermatozoa progressively detach with a variety of motility characteristics, (3) attachment is not influenced by epithelial changes occurring around ovulation, (4) attachment to uterine epithelium slows capacitation, (5) capacitated spermatozoa have reduced ability to attach to uterine epithelium, (6) under capacitating conditions increased numbers of spermatozoa detach and exhibit transitional and hyperactive motility which differ to those seen in non-capacitating conditions, (7) detachment of spermatozoa and motility changes can be induced by post-ovulation but not pre-ovulation uterine tube flush fluid and by components of follicular fluid and solubilised zona pellucida, (8) prolonged culture does not change the nature of the progressive detachment seen in non-capacitating conditions nor the potential for increased detachment in capacitating conditions. We postulate that in some species binding of spermatozoa to uterine epithelium is an important component of the transport of spermatozoa. Before ovulation low numbers of spermatozoa continually detach, including those which are non-capacitated with fast forward progressive motility allowing the re-population of the uterine tube, whilst around the time of ovulation, signalling from as-yet unknown factors associated with follicular fluid, oocytes and uterine tube

  8. Validating predictions of evolving porosity and permeability in carbonate reservoir rocks exposed to CO2-brine (United States)

    Smith, M. M.; Hao, Y.; Carroll, S.


    Improving our ability to better forecast the extent and impact of changes in porosity and permeability due to CO2-brine-carbonate reservoir interactions should lower uncertainty in long-term geologic CO2 storage capacity estimates. We have developed a continuum-scale reactive transport model that simulates spatial and temporal changes to porosity, permeability, mineralogy, and fluid composition within carbonate rocks exposed to CO2 and brine at storage reservoir conditions. The model relies on two primary parameters to simulate brine-CO2-carbonate mineral reaction: kinetic rate constant(s), kmineral, for carbonate dissolution; and an exponential parameter, n, relating porosity change to resulting permeability. Experimental data collected from fifteen core-flooding experiments conducted on samples from the Weyburn (Saskatchewan, Canada) and Arbuckle (Kansas, USA) carbonate reservoirs were used to calibrate the reactive-transport model and constrain the useful range of k and n values. Here we present the results of our current efforts to validate this model and the use of these parameter values, by comparing predictions of extent and location of dissolution and the evolution of fluid permeability against our results from new core-flood experiments conducted on samples from the Duperow Formation (Montana, USA). Agreement between model predictions and experimental data increase our confidence that these parameter ranges need not be considered site-specific but may be applied (within reason) at various locations and reservoirs. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  9. Effect of the FSH receptor single nucleotide polymorphisms (FSHR 307/680) on the follicular fluid hormone profile and the granulosa cell gene expression in human small antral follicles

    DEFF Research Database (Denmark)

    Borgbo, T; Jeppesen, J V; Lindgren, I


    The most pronounced effects of FSH signalling are potentially displayed in the follicle fluid, which acts as a reservoir for FSH-induced granulosa cell (GC) secreted hormones. This study investigates the effects of two common polymorphisms of FSHR, FSHR 307 (rs6165) and FSHR 680 (rs6166...... small antral follicles collected under physiological FSH conditions....

  10. Generation of reservoir models on flexible meshes; Generation de modeles de reservoir sur maillage flexible

    Energy Technology Data Exchange (ETDEWEB)

    Ricard, L.


    The high level geo-statistic description of the subsurface are often far too detailed for use in routine flow simulators. To make flow simulations tractable, the number of grid blocks has to be reduced: an approximation, still relevant with flow description, is necessary. In this work, we place the emphasis on the scaling procedure from the fine scale model to the multi-scale reservoir model. Two main problems appear: Near wells, faults and channels, the volume of flexible cells may be less than fine ones, so we need to solve a down-scaling problem; Far from these regions, the volume of cells are bigger than fine ones so we need to solve an up-scaling problem. In this work, research has been done on each of these three areas: down-scaling, up-scaling and fluid flow simulation. For each of these subjects, a review, some news improvements and comparative study are proposed. The proposed down-scaling method is build to be compatible with existing data integration methods. The comparative study shows that empirical methods are not enough accurate to solve the problem. Concerning the up-scaling step, the proposed approach is based on an existing method: the perturbed boundary conditions. An extension to unstructured mesh is developed for the inter-cell permeability tensor. The comparative study shows that numerical methods are not always as accurate as expected and the empirical model can be sufficient in lot of cases. A new approach to single-phase fluid flow simulation is developed. This approach can handle with full tensorial permeability fields with source or sink terms.(author)

  11. Fracture characterization in a deep geothermal reservoir (United States)

    Rühaak, Wolfram; Hehn, Vera; Hassanzadegan, Alireza; Tischner, Torsten


    At the geothermal research drilling Horstberg in North West Germany studies for the characterization of a vertical fracture are performed. The fracture was created by a massive hydraulic stimulation in 2003 in approx. 3700 m depth within rocks of the middle Buntsandstein. The fracture surface is in the order of 100,000 m2, depending on the flow rate at which water is injected. Besides hydraulic characterization, multiple tracer tests are planned. At the depth of interest the reservoir temperature is around 150 °C, pressure is around 600 bar (60 MPa) and due to salinity the water density is around 1200 kg/m3. Knowledge of tracer stability and behavior at these reservoir conditions is limited. Additionally, the planned tracer tests will be performed within one single borehole. In a closed cycle water is injected into the inner pipe of the well (tubing), which is separated by a permanent packer from the outer pipe (annulus). The water is produced back from the annulus approximately 150 m above the injection point. Thus, the circulation of thermal water between two sandstone layers via an artificial fracture can be achieved. Tests will be carried out with different flow rates and accordingly with different pressures, resulting in different fracture areas. Due to this test setup tracer signals will be stacked and will remain for a longer time in the fracture - which is the reason why different tracers are required. For an optimal characterization both conservative and reactive tracers will be used and different injection methods (continuous, instantaneous and pulsed) will be applied. For a proper setup of the tracer test numerical modelling studies are performed in advance. The relevant thermal, hydraulic and chemical processes (mainly adsorption and degredation) are coupled, resulting in a THC model; additionally the dependence of fracture aperture and area on fluid pressure has to be considered. Instead of applying a mechanically coupled model (THMC) a simplified

  12. Reservoir structure and geological setting of the shallow PEON gas reservoir


    Mikalsen, Håkon


    In recent years, the petroleum industry started to look for new, unconventional energy resources. Peon, a shallow gas discovery in the northern North Sea, are being assessed as a possible energy resource. However, there are challenges related to reservoir pressure, sealing mechanism, and fluid migration. In this regard, geophysical and well log analyses is figured out to get a better understanding of the depositional regime and stratigraphy in the Peon area, as well as the structure of Peon a...

  13. Detecting subsurface fluid leaks in real-time using injection and production rates (United States)

    Singh, Harpreet; Huerta, Nicolas J.


    CO2 injection into geologic formations for either enhanced oil recovery or carbon storage introduces a risk for undesired fluid leakage into overlying groundwater or to the surface. Despite decades of subsurface CO2 production and injection, the technologies and methods for detecting CO2 leaks are still costly and prone to large uncertainties. This is especially true for pressure-based monitoring methods, which require the use of simplified geological and reservoir flow models to simulate the pressure behavior as well as background noise affecting pressure measurements. In this study, we propose a method to detect the time and volume of fluid leakage based on real-time measurements of well injection and production rates. The approach utilizes analogies between fluid flow and capacitance-resistance modeling. Unlike other leak detection methods (e.g. pressure-based), the proposed method does not require geological and reservoir flow models to simulate the behavior that often carry significant sources of uncertainty; therefore, with our approach the leak can be detected with greater certainty. The method can be applied to detect when a leak begins by tracking a departure in fluid production rate from the expected pattern. The method has been tuned to detect the effect of boundary conditions and fluid compressibility on leakage. To highlight the utility of this approach we use our method to detect leaks for two scenarios. The first scenario simulates a fluid leak from the storage formation into an above-zone monitoring interval. The second scenario simulates intra-reservoir migration between two compartments. We illustrate this method to detect fluid leakage in three different reservoirs with varying levels of geological and structural complexity. The proposed leakage detection method has three novelties: i) requires only readily-available data (injection and production rates), ii) accounts for fluid compressibility and boundary effects, and iii) in addition to

  14. Risk Associated With The Decompression Of High Pressure High Temperature Fluids - Study On Black Oil

    DEFF Research Database (Denmark)

    Figueroa, D. C.; Fosbøl, P. L.; Thomsen, K.


    Fluids produced from deep underground reservoirs may result in exponential increase in temperature. It is a consequence of adiabatic fluid decompression from the inverse Joule Thomson Effect (JTE). The phenomenon requires analysis in order to avoid any operational risks. This study evaluates...... the JTE upon decompression of black oil in high pressure-high temperature reservoirs. Also the effect caused by the presence of water and brine on the black oil is studied. The final temperature is calculated from the corresponding energy balance at isenthalpic and non-isenthalpic conditions. It is found...... as well, but the increase is less. The effect of water is studied at different water fractions; it results in lower increase of the final temperature than observed for black oil. The presence of brine in black oil is also studied at different brine fractions. The addition of brine increases the final...

  15. Climate variability and sedimentation of a hydropower reservoir

    International Nuclear Information System (INIS)

    Riedel, M.


    As part of the relicensing of a large Hydroelectric Project in the central Appalachians, large scale watershed and reservoir sedimentation models were developed to forecast potential sedimentation scenarios. The GIS based watershed model was spatially explicit and calibrated to long term observed data. Potential socio/economic development scenarios were used to construct future watershed land cover scenarios. Climatic variability and potential change analysis were used to identify future climate regimes and shifts in precipitation and temperature patterns. Permutations of these development and climate changes were forecasted over 50 years and used to develop sediment yield regimes to the project reservoir. Extensive field work and reservoir survey, including current and wave instrumentation, were used to characterize the project watershed, rivers and reservoir hydrodynamics. A fully 3 dimensional hydrodynamic reservoir sedimentation model was developed for the project and calibrated to observed data. Hydrologic and sedimentation results from watershed forecasting provided boundary conditions for reservoir inputs. The calibrated reservoir model was then used to forecast changes in reservoir sedimentation and storage capacity under different future climate scenarios. Results indicated unique zones of advancing sediment deltas and temporary storage areas. Forecasted changes in reservoir bathymetry and sedimentation patterns were also developed for the various climate change scenarios. The warmer and wetter scenario produced sedimentation impacts similar to extensive development under no climate change. The results of these analyses are being used to develop collaborative watershed and soil conservation partnerships to reduce future soil losses and reservoir sedimentation from projected development. (author)

  16. Functional age as an indicator of reservoir senescence (United States)

    Miranda, Leandro E.; Krogman, R. M.


    It has been conjectured that reservoirs differ in the rate at which they manifest senescence, but no attempt has been made to find an indicator of senescence that performs better than chronological age. We assembled an indicator of functional age by creating a multimetric scale consisting of 10 metrics descriptive of reservoir environments that were expected to change directionally with reservoir senescence. In a sample of 1,022 U.S. reservoirs, chronological age was not correlated with functional age. Functional age was directly related to percentage of cultivated land in the catchment and inversely related to reservoir depth. Moreover, aspects of reservoir fishing quality and fish population characteristics were related to functional age. A multimetric scale to indicate reservoir functional age presents the possibility for management intervention from multiple angles. If a reservoir is functionally aging at an accelerated rate, action may be taken to remedy the conditions contributing most to functional age. Intervention to reduce scores of selected metrics in the scale can potentially reduce the rate of senescence and increase the life expectancy of the reservoir. This leads to the intriguing implication that steps can be taken to reduce functional age and actually make the reservoir grow younger.

  17. Integrating gravimetric and interferometric synthetic aperture radar data for enhancing reservoir history matching of carbonate gas and volatile oil reservoirs

    KAUST Repository

    Katterbauer, Klemens


    Reservoir history matching is assuming a critical role in understanding reservoir characteristics, tracking water fronts, and forecasting production. While production data have been incorporated for matching reservoir production levels and estimating critical reservoir parameters, the sparse spatial nature of this dataset limits the efficiency of the history matching process. Recently, gravimetry techniques have significantly advanced to the point of providing measurement accuracy in the microgal range and consequently can be used for the tracking of gas displacement caused by water influx. While gravity measurements provide information on subsurface density changes, i.e., the composition of the reservoir, these data do only yield marginal information about temporal displacements of oil and inflowing water. We propose to complement gravimetric data with interferometric synthetic aperture radar surface deformation data to exploit the strong pressure deformation relationship for enhancing fluid flow direction forecasts. We have developed an ensemble Kalman-filter-based history matching framework for gas, gas condensate, and volatile oil reservoirs, which synergizes time-lapse gravity and interferometric synthetic aperture radar data for improved reservoir management and reservoir forecasts. Based on a dual state-parameter estimation algorithm separating the estimation of static reservoir parameters from the dynamic reservoir parameters, our numerical experiments demonstrate that history matching gravity measurements allow monitoring the density changes caused by oil-gas phase transition and water influx to determine the saturation levels, whereas the interferometric synthetic aperture radar measurements help to improve the forecasts of hydrocarbon production and water displacement directions. The reservoir estimates resulting from the dual filtering scheme are on average 20%-40% better than those from the joint estimation scheme, but require about a 30% increase in

  18. Fluid extraction across pumping and permeable walls in the viscous limit (United States)

    Herschlag, G.; Liu, J.-G.; Layton, A. T.


    In biological transport mechanisms such as insect respiration and renal filtration, fluid travels along a leaky channel allowing material exchange with systems exterior to the channel. The channels in these systems may undergo peristaltic pumping which is thought to enhance the material exchange. To date, little analytic work has been done to study the effect of pumping on material extraction across the channel walls. In this paper, we examine a fluid extraction model in which fluid flowing through a leaky channel is exchanged with fluid in a reservoir. The channel walls are allowed to contract and expand uniformly, simulating a pumping mechanism. In order to efficiently determine solutions of the model, we derive a formal power series solution for the Stokes equations in a finite channel with uniformly contracting/expanding permeable walls. This flow has been well studied in the case in which the normal velocity at the channel walls is proportional to the wall velocity. In contrast we do not assume flow that is proportional to the wall velocity, but flow that is driven by hydrostatic pressure, and we use Darcy's law to close our system for normal wall velocity. We incorporate our flow solution into a model that tracks the material pressure exterior to the channel. We use this model to examine flux across the channel-reservoir barrier and demonstrate that pumping can either enhance or impede fluid extraction across channel walls. We find that associated with each set of physical flow and pumping parameters, there are optimal reservoir conditions that maximize the amount of material flowing from the channel into the reservoir.

  19. Optimising reservoir operation

    DEFF Research Database (Denmark)

    Ngo, Long le

    Anvendelse af optimeringsteknik til drift af reservoirer er blevet et væsentligt element i vandressource-planlægning og -forvaltning. Traditionelt har reservoirer været styret af heuristiske procedurer for udtag af vand, suppleret i en vis udstrækning af subjektive beslutninger. Udnyttelse af...... reservoirer involverer en lang række interessenter med meget forskellige formål (f.eks. kunstig vanding, vandkraft, vandforsyning mv.), og optimeringsteknik kan langt bedre lede frem til afbalancerede løsninger af de ofte modstridende interesser. Afhandlingen foreslår en række tiltag, hvormed traditionelle...... driftsstrategier kan erstattes af optimale strategier baseret på den nyeste udvikling indenfor computer-baserede beregninger. Hovedbidraget i afhandlingen er udviklingen af et beregningssystem, hvori en simuleringsmodel er koblet til en model for optimering af nogle udvalgte beslutningsvariable, der i særlig grad...

  20. Geophysical and transport properties of reservoir rocks. Final report for task 4: Measurements and analysis of seismic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cook, N.G.W.


    The principal objective of research on the seismic properties of reservoir rocks is to develop a basic understanding of the effects of rock microstructure and its contained pore fluids on seismic velocities and attenuation. Ultimately, this knowledge would be used to extract reservoir properties information such as the porosity, permeability, clay content, fluid saturation, and fluid type from borehole, cross-borehole, and surface seismic measurements to improve the planning and control of oil and gas recovery. This thesis presents laboratory ultrasonic measurements for three granular materials and attempts to relate the microstructural properties and the properties of the pore fluids to P- and S-wave velocities and attenuation. These experimental results show that artificial porous materials with sintered grains and a sandstone with partially cemented grains exhibit complexities in P- and S-wave attenuation that cannot be adequately explained by existing micromechanical theories. It is likely that some of the complexity observed in the seismic attenuation is controlled by details of the rock microstructure, such as the grain contact area and grain shape, and by the arrangement of the grain packing. To examine these effects, a numerical method was developed for analyzing wave propagation in a grain packing. The method is based on a dynamic boundary integral equation and incorporates generalized stiffness boundary conditions between individual grains to account for viscous losses and grain contact scattering.

  1. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions.

    Directory of Open Access Journals (Sweden)

    Imran Ullah

    Full Text Available Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  2. Unsteady MHD Mixed Convection Slip Flow of Casson Fluid over Nonlinearly Stretching Sheet Embedded in a Porous Medium with Chemical Reaction, Thermal Radiation, Heat Generation/Absorption and Convective Boundary Conditions. (United States)

    Ullah, Imran; Bhattacharyya, Krishnendu; Shafie, Sharidan; Khan, Ilyas


    Numerical results are presented for the effect of first order chemical reaction and thermal radiation on mixed convection flow of Casson fluid in the presence of magnetic field. The flow is generated due to unsteady nonlinearly stretching sheet placed inside a porous medium. Convective conditions on wall temperature and wall concentration are also employed in the investigation. The governing partial differential equations are converted to ordinary differential equations using suitable transformations and then solved numerically via Keller-box method. It is noticed that fluid velocity rises with increase in radiation parameter in the case of assisting flow and is opposite in the case of opposing fluid while radiation parameter has no effect on fluid velocity in the forced convection. It is also seen that fluid velocity and concentration enhances in the case of generative chemical reaction whereas both profiles reduces in the case of destructive chemical reaction. Further, increase in local unsteadiness parameter reduces fluid velocity, temperature and concentration. Over all the effects of physical parameters on fluid velocity, temperature and concentration distribution as well as on the wall shear stress, heat and mass transfer rates are discussed in detail.

  3. Production Decline Analysis for Two-Phase Flow in Multifractured Horizontal Well in Shale Gas Reservoirs


    Xie, Wei-Yang; Li, Xiao-Ping; Zhang, Lie-Hui; Tan, Xiao-Hua; Wang, Jun-Chao; Wang, Hai-Tao


    After multistage fracturing, the flowback of fracturing fluid will cause two-phase flow through hydraulic fractures in shale gas reservoirs. With the consideration of two-phase flow and desorbed gas transient diffusion in shale gas reservoirs, a two-phase transient flow model of multistage fractured horizontal well in shale gas reservoirs was created. Accurate solution to this flow model is obtained by the use of source function theory, Laplace transform, three-dimensional eigenvalue method, ...

  4. An Integrated Model for Computer Aided Reservoir Description : from Outcrop Study to Fluid Flow Simulations Un logiciel intégré pour une description des gisements assistée par ordinateur : de l'étude d'un affleurement aux simulations de l'écoulement des fluides

    Directory of Open Access Journals (Sweden)

    Guerillot D.


    Full Text Available An accurate understanding of the internal architecture of a reservoir is required to improve reservoir management for oil recovery. Geostatistical methods give an image of this architecture. The purpose of this paper is to show how this lithological description could be used for reservoir simulation. For this purpose, scale averaging problems must be solved for non-additive variables. A method giving a full effective permeability matrix is proposed. The integrated software described here starts from core analysis and lithologic logs to provide data for reservoir simulators. Each of the steps of this interactive and graphic system is explained here. Pour faire de bonnes prévisions de production pour un gisement pétrolifère, il est nécessaire de connaître précisément son architecture interne. Les méthodes géostatistiques donnent une représentation de cette architecture. L'objectif de cet article est de montrer une façon d'utiliser cette description lithologique pour la simulation des réservoirs. Il faut alors résoudre des problèmes de changement d'échelle pour les variables qui ne sont pas additives. On propose une méthode d'estimation de la perméabilité effective sous la forme d'une matrice