WorldWideScience

Sample records for researchers solve fuel-cell

  1. Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Peter M. [Brown University

    2014-03-30

    Executive Summary In conjunction with the Brown Energy Initiative, research Projects selected for the fuel cell research grant were selected on the following criteria: They should be fundamental research that has the potential to significantly impact the nation’s energy infrastructure. They should be scientifically exciting and sound. They should synthesize new materials, lead to greater insights, explore new phenomena, or design new devices or processes that are of relevance to solving the energy problems. They involve top-caliper senior scientists with a record of accomplishment, or junior faculty with outstanding promise of achievement. They should promise to yield at least preliminary results within the given funding period, which would warrant further research development. They should fit into the overall mission of the Brown Energy Initiative, and the investigators should contribute as partners to an intellectually stimulating environment focused on energy science. Based on these criteria, fourteen faculty across three disciplines (Chemistry, Physics and Engineering) and the Charles Stark Draper Laboratory were selected to participate in this effort.1 In total, there were 30 people supported, at some level, on these projects. This report highlights the findings and research outcomes of the participating researchers.

  2. Proceedings of the Queen's-RMC Fuel Cell Research Centre fuel cell technology day

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Queen's-RMC Fuel Cell Research Centre was formed to conduct research on polymer electrolyte membrane (PEM) and solid oxide (SOFC) fuel cells as well as fuel processing and hydrogen production and storage technologies. The centre focuses on the development of manufacturing methods, mathematical modelling, catalysis and reaction engineering, and computational thermodynamics. The fuel cell technology day provided a forum for research leaders from various institutions to discuss recent studies related to PEM and SOFC fuel cells. Issues related to materials and system degradation in fuel cells were discussed along with recent developments in the micro-engineering of SOFC cathodes. Commercialization plans for megawatt fuel cells were also discussed, and recent spectroscopy and voltammetry studies of PEM fuel cells were presented. A panel discussion was also held to determine research directions for the future. The technology day featured 7 presentations, of which 2 have been catalogued separately for inclusion in this database. tabs., figs.

  3. SULFUR DIOXIDE - SULFUR TRIOXIDE REGENERATIVE FUEL CELL RESEARCH

    Science.gov (United States)

    The thermodynamics and electrolytic characteristics are discussed of an SO2-SO3 regenerative, closed-cycle fuel cell , and summarizes the electrolytic...electrochemical, and phase separation research conducted during a study program to determine the practicability of such a fuel cell . The...experimental results obtained were at such wide variance with the theoretical concept that it became apparent that a fuel cell of this type is not feasible. (Author)

  4. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  5. Fuel Cell Research at the University of Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguang G; Advani, Suresh G

    2006-01-27

    The grant initiated nine basic and applied research projects to improve fundamental understanding and performance of the proton exchange membrane (PEM) fuel cells, to explore innovative methods for hydrogen production and storage, and to address the critical issues and barriers to commercialization. The focus was on catalysis, hydrogen production and storage, membrane durability and flow modeling and characterization of Gas Diffusion Media. Three different types of equipment were purchase with this grant to provide testing and characterization infrastructure for fuel cell research and to provide undergraduate and graduate students with the opportunity to study fuel cell membrane design and operation. They are (i) Arbin Hydrogen cell testing station, (ii) MTS Alliance RT/5 material testing system with an ESPEC custom-designed environmental chamber for membrane Durability Testing and (iii) Chemisorption for surface area measurements of electrocatalysts. The research team included ten faculty members who addressed various issues that pertain to Fuel Cells, Hydrogen Production and Storage, Fuel Cell transport mechanisms. Nine research tasks were conducted to address the critical issues and various barriers to commercialization of Fuel Cells. These research tasks are subdivided in the general areas of (i) Alternative electrocatalysis (ii) Fuel Processing and Hydrogen Storage and (iii) Modeling and Characterization of Membranes as applied to Fuel Cells research.. The summary of accomplishments and approaches for each of the tasks is presented below

  6. Assessment of Research Needs for Advanced Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1985-11-01

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  7. Biorefinery and Hydrogen Fuel Cell Research

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  8. Physical Chemistry Research Toward Proton Exchange Membrane Fuel Cell Advancement.

    Science.gov (United States)

    Swider-Lyons, Karen E; Campbell, Stephen A

    2013-02-07

    Hydrogen fuel cells, the most common type of which are proton exchange membrane fuel cells (PEMFCs), are on a rapid path to commercialization. We credit physical chemistry research in oxygen reduction electrocatalysis and theory with significant breakthroughs, enabling more cost-effective fuel cells. However, most of the physical chemistry has been restricted to studies of platinum and related alloys. More work is needed to better understand electrocatalysts generally in terms of properties and characterization. While the advent of such highly active catalysts will enable smaller, less expensive, and more powerful stacks, they will require better understanding and a complete restructuring of the diffusion media in PEMFCs to facilitate faster transport of the reactants (O2) and products (H2O). Even Ohmic losses between materials become more important at high power. Such lessons from PEMFC research are relevant to other electrochemical conversion systems, including Li-air batteries and flow batteries.

  9. Polymer electrolyte fuel cell stack research and development

    Energy Technology Data Exchange (ETDEWEB)

    Squadrito, G.; Barbera, O.; Giacoppo, G.; Urbani, F.; Passalacqua, E. [Istituto di Tecnologie Avanzate per l' Energia ' ' Nicola Giordano' ' del CNR (CNR, ITAE), via Salita per, Santa Lucia sopra Contesse 5, Messina (Italy)

    2008-04-15

    The research activity in polymer electrolyte fuel cell (PEFC) is oriented to the evolution of components and devices for the temperature range from 20 to 130{sup o}C, and covers all the aspects of this matter: membranes and electrodes, fuel cell stack engineering (design and manufacturing) and characterization, computational modelling and small demonstration systems prototyping. Particular attention is devoted to portable and automotive application. Membranes research is focused on thermostable polymers (polyetheretherketone, polysulphone, etc.) and composite membranes able to operate at higher temperature (>100{sup o}C) and lower humidification than the commercial Nafion {sup registered}, while Pt load reduction and gas diffusion layer improvement are the main goals for the electrode development. PEFC stack engineering and characterization activity involve different aspects such as the investigation of new materials for stack components, fuel cell modelling and performance optimization by computational techniques, single cell and stack electrochemical characterization, development of investigation tools for stack monitoring and data acquisition. A lot of work has been focused to the fuel cell stack architecture, assembling, gas leakage and cross-over reduction (gasketing), flow field and manifold design. Computational fluid dynamics studies have been performed to investigate and improve reactants distribution inside the cell. A flow field design methodology, developed in this framework and related to serpentine like flow field, is actually under investigation. All of these aspects of PEFC stack research are realized in the framework of National and European research projects, or in collaboration with industries and other research centres. In the present work our stack research activity is reported and the most important results are also considered. (author)

  10. Microbial fuel cells as pollutant treatment units: Research updates.

    Science.gov (United States)

    Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong

    2016-10-01

    Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit.

  11. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  12. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  13. Hydrogen Research for Spaceport and Space-Based Applications: Fuel Cell Projects

    Science.gov (United States)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Fuel cell research focused on proton exchange membranes (PEM), solid oxide fuel cells (SOFC). Specific technologies included aircraft fuel cell reformers, new and improved electrodes, electrolytes, interconnect, and seals, modeling of fuel cells including CFD coupled with impedance spectroscopy. Research was conducted on new materials and designs for fuel cells, along with using embedded sensors with power management electronics to improve the power density delivered by fuel cells. Fuel cell applications considered were in-space operations, aviation, and ground-based fuel cells such as; powering auxiliary power units (APUs) in aircraft; high power density, long duration power supplies for interplanetary missions (space science probes and planetary rovers); regenerative capabilities for high altitude aircraft; and power supplies for reusable launch vehicles.

  14. Electrocatalysis and electrocatalysts for low temperature fuel cells: fundamentals, state of the art, research and development

    Directory of Open Access Journals (Sweden)

    Wendt Hartmut

    2005-01-01

    Full Text Available This article deals with electrocatalysis and electrocatalysts for low temperature fuel cells and also with established means and methods in electrocatalyst research, development and characterization. The intention is to inform about the fundamentals, state of the art, research and development of noble metal electrocatalysts for fuel cells operating at low temperatures.

  15. Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells.

    Science.gov (United States)

    Wang, Wei; Wang, Feng; Chen, Yubo; Qu, Jifa; Tadé, Moses O; Shao, Zongping

    2015-09-07

    For practical solid oxide fuel cells (SOFCs) operated on hydrocarbon fuels, the facile coke formation over Ni-based anodes has become a key factor that limits their widespread application. Modification of the anodes with basic elements may effectively improve their coking resistance in the short term; however, the easy loss of basic elements by thermal evaporation at high temperatures is a new emerging problem. Herein, we propose a new design to develop coking-resistant and stable SOFCs using Li(+) -conducting Li0.33 La0.56 TiO3 (LLTO) as an anode component. In the Ni/LLTO composite, any loss of surface lithium can be efficiently compensated by lithium diffused from the LLTO bulk under operation. Therefore, the SOFC with the Ni/LLTO anode catalyst layer yields excellent power outputs and operational stability. Our results suggest that the simple adoption of a Li(+) conductor as a modifier for Ni-based anodes is a practical and easy way to solve the coking problem of SOFCs that operate on hydrocarbons.

  16. Fuel cells research in Canada and in other leading countries: a bibliometric study

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, E. [Science Metrix, Montreal, QC (Canada)], e-mail: eric.archambault@science-metrix.com; Cote, G.

    2008-07-01

    This document is a study on fuel cells (FC) research in Canada and other leading countries, performed by Science Metrix for the National Research Council of Canada (NRC), Natural Resources Canada (NRCan) and the Natural Sciences and Engineering Research Council (NSERC). Fuel cells research started growing rapidly around 1999 and paused in 2005. In 1996, 519 papers were published in the field of fuel cells. In 2007, more than 3000 documents were presented. Most of the papers that mention a fuel cell type deal with solid oxide (SO) or proton exchange membrane (PEM) fuel cells. Canada occupies the most advantageous position for both SOFCs and PEMFCs and ranks first in the multicriteria ranking of scientific research on fuel cells. Among the leading companies at the world level, Ballard ranks 5th for fuel cell papers and presents an excellent scientific impact and scientific impact. Among the leading universities, Penn State is the leading one in FC research regarding the number of fuel cell papers and the scientific impact. Scientific collaboration in this field is fragmented and appears to be mostly regional around the world. 8 tabs., 17 figs.

  17. Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Perry, Michael L. [Univ. of California, Berkeley, CA (United States)

    1996-12-01

    A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

  18. Program for fundamental and applied research of fuel cells in VNIIEF

    Energy Technology Data Exchange (ETDEWEB)

    Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.; Potyomckin, G.A.

    1996-04-01

    According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.

  19. Research and development issues for molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    1996-04-01

    This paper describes issues pertaining to the development of molten carbonate fuel cells. In particular, the corrosion resistance and service life of nickel oxide cathodes is described. The resistivity of lithium oxide/iron oxides and improvement with doping is addressed.

  20. Perspectives on research and development of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ortega-Martinez, A.; Vazquez Larios, A.L.; Solorza-Feria, O.; Poggi Varaldo, H.M. [Centro de Investigacion y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: hectorpoggi2001@gmail.com; rareli@hotmail.com

    2009-09-15

    Microbial fuel cells (MFC), is an anoxic electrochemical bioreactor where bacteria grow in the absence of oxygen in a chamber containing an anode which it may be covered by a biofilm. Microorganisms anoxically oxidize the organic substrate and electrons generated are released to the anode. Released protons are transferred to the cathode. Natural or forced aeration of the cathode supplies the oxygen for the final reaction 2H{sup +} + 2e{sup -} + (1/2) O{sub 2} = H{sub 2}O. In this work, we present a critical review on MFC focused on subjects that are receiving a growing interest from the research and technological communities: (i) types of MFC, their relative advantages and disadvantages and ranges of application; (ii) development of biocathodes; (iii) enrichment procedures of microbial communities in MFC. Recent research shows that one-chamber fitted with cathode aerated by natural aeration, and other special types of high performance MFC, have displaced the historical two-chamber MFC. Recent studies showed that electrochemically active bacteria (EAB) can be successfully enriched in MFC. The cost and eventual poisoning of the platinum catalyst used at the cathode is a major limitation to MFC application and economic viability. Researchers have started working on the concept of biocathodes that would use bacteria instead of platinum as a biocatalyst. Microbial enrichment of inocula seeded to MFC may provide a way to enrich the consortium with EAB, thus substantially increasing the transfer of electrons to the anode. Bioaugmentation of consortia in MFC with strains EAB, could contribute to the same goal. [Spanish] Las celdas de combustible microbianas (CCM) son un biorrector anoxico donde las bacterias crecen en ausencia de oxigeno en una camara que contiene un anodo que puede cubrirse con una biopelicula. Los microorganismos oxidan onoxicamente el sustrato organico y los electrones generados se liberan al anodo. Los protones liberados se transfieren al catodo. La

  1. Catalyst and electrode research for phosphoric acid fuel cells

    Science.gov (United States)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  2. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  3. Experimental research on water management in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Li-jun; Chen, Wen-can; Qin, Ming-jun [Institute of Thermal Energy Engineering, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Ren, Geng-po [Shanghai Energy Conservation Supervision Center, Shanghai 200011 (China)

    2009-04-15

    A simulated cathode flow channel experiment system was set up based on the gas flow rate and water flow rate in the PEM fuel cell. With the assistance of the visualization system, high-sensitivity double parallel conductance probes flow regime inspecting technique was adopted successfully in the experiment system to inspect the flow regime of the gas-liquid two-phase flow in the PEM fuel cell. The research results show that the double parallel conductance probes inspecting system and the flow regime image system for the gas-liquid two-phase flow in the PEM fuel cell simulated channel both can judge the slug flow and annular flow in it, and the double parallel conductance probes flow regime inspecting system can divide the annular flow into three subtypes. The main probes inspecting system and the assistant image system validate reciprocally, which enhances the experimental veracity. The typical flow regimes of the PEM fuel cell simulated channel include slug flow, annular flow with big water film wave, annular flow with small water film wave and annular flow without water film wave. With the increase of the liquid superficial velocity, the frequencies of liquid slug and wave of liquid film increase. The flow regime map in the flow channel of the PEM fuel cell was developed. The flow regime of the gas-liquid two-phase flow in a PEM fuel cell in different operating conditions can be forecasted with this map. With the PEM fuel cell operating condition in this study, the flow regimes of gas-liquid two-phase flow for different cases are all annular flow with small water film wave, and the liquid film waves more with bigger current density. With the location closer to the channel outlet, the liquid film waves are more for the same current density. (author)

  4. Experimental research on water management in proton exchange membrane fuel cells

    Science.gov (United States)

    Yu, Li-jun; Chen, Wen-can; Qin, Ming-jun; Ren, Geng-po

    A simulated cathode flow channel experiment system was set up based on the gas flow rate and water flow rate in the PEM fuel cell. With the assistance of the visualization system, high-sensitivity double parallel conductance probes flow regime inspecting technique was adopted successfully in the experiment system to inspect the flow regime of the gas-liquid two-phase flow in the PEM fuel cell. The research results show that the double parallel conductance probes inspecting system and the flow regime image system for the gas-liquid two-phase flow in the PEM fuel cell simulated channel both can judge the slug flow and annular flow in it, and the double parallel conductance probes flow regime inspecting system can divide the annular flow into three subtypes. The main probes inspecting system and the assistant image system validate reciprocally, which enhances the experimental veracity. The typical flow regimes of the PEM fuel cell simulated channel include slug flow, annular flow with big water film wave, annular flow with small water film wave and annular flow without water film wave. With the increase of the liquid superficial velocity, the frequencies of liquid slug and wave of liquid film increase. The flow regime map in the flow channel of the PEM fuel cell was developed. The flow regime of the gas-liquid two-phase flow in a PEM fuel cell in different operating conditions can be forecasted with this map. With the PEM fuel cell operating condition in this study, the flow regimes of gas-liquid two-phase flow for different cases are all annular flow with small water film wave, and the liquid film waves more with bigger current density. With the location closer to the channel outlet, the liquid film waves are more for the same current density.

  5. High-temperature fuel cell research and development. Final technical status report, June 1977-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-10-15

    An initial survey of the literature produced a list of ceramic materials with properties which made them potential candidates for use in molten-carbonate fuel cell tiles or electrodes. Seven of the materials in the original list were dropped from consideration because of unfavorable thermodynamic properties; four materials were set aside because of high cost, lack of availability, or fabrication difficulties. Thirteen compositions were tested statically at 1000 K in a Li/sub 2/CO/sub 3/-K/sub 2/CO/sub 3/ bath under a dry CO/sub 2/ atmosphere. Only four of the materials tested showed severe degradation reactions in the molten carbonate. A low-temperature process for forming small diameter, high-aspect ratio ceramic fibers for fuel cell use has been developed. A short-term program to initiate a computer study on the thermodynamic analysis of fuel cell materials was initiated at Montana State University. The report on this program is included as Appendix B. The MHD and high-temperature fuel cell literature was surveyed, and material properties were evaluated to identify MHD materials with potential use for fuel cell applications. A technology transfer report of these findings was prepared. This report is included as Appendix A. Laboratory facilities were established to conduct research on interfacial diffusion processes which could be detrimental to successful long-term operation of the solid-electrolyte fuel cell. A variety of physical and chemical techniques were examined for the preparation of high-density substituted LaCrO/sub 3/ which was to be one component of a diffusion couple with Y/sub 2/O/sub 3/-stabilized ZrO/sub 2/. Hydrolysis of a mixed metal-nitrate solution with urea produced the most reactive powder. A final theoretical density of almost 98% was attained in cold-pressed sintered discs of this material. (Extensive list of references)

  6. Fundamental research in the area of high temperature fuel cells in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Dyomin, A.K.

    1996-04-01

    Research in the area of molten carbonate and solid oxide fuel cells has been conducted in Russia since the late 60`s. Institute of High Temperature Electrochemistry is the lead organisation in this area. Research in the area of materials used in fuel cells has allowed us to identify compositions of electrolytes, electrodes, current paths and transmitting, sealing and structural materials appropriate for long-term fuel cell applications. Studies of electrode processes resulted in better understanding of basic patterns of electrode reactions and in the development of a foundation for electrode structure optimization. We have developed methods to increase electrode activity levels that allowed us to reach current density levels of up to 1 amper/cm{sup 2}. Development of mathematical models of processes in high temperature fuel cells has allowed us to optimize their structure. The results of fundamental studies have been tested on laboratory mockups. MCFC mockups with up to 100 W capacity and SOFC mockups with up to 1 kW capacity have been manufactured and tested at IHTE. There are three SOFC structural options: tube, plate and modular.

  7. Seventh Edition Fuel Cell Handbook

    Energy Technology Data Exchange (ETDEWEB)

    NETL

    2004-11-01

    Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

  8. Hydrogen-Oxygen PEM Regenerative Fuel Cell at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.

    2004-01-01

    The NASA Glenn Research Center has constructed a closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) to explore its potential use as an energy storage device for a high altitude solar electric aircraft. Built up over the last 2 years from specialized hardware and off the shelf components the Glenn RFC is a complete "brassboard" energy storage system which includes all the equipment required to (1) absorb electrical power from an outside source and store it as pressurized hydrogen and oxygen and (2) make electrical power from the stored gases, saving the product water for re-use during the next cycle. It consists of a dedicated hydrogen-oxygen fuel cell stack and an electrolyzer stack, the interconnecting plumbing and valves, cooling pumps, water transfer pumps, gas recirculation pumps, phase separators, storage tanks for oxygen (O2) and hydrogen (H2), heat exchangers, isolation valves, pressure regulators, nitrogen purge provisions, instrumentation, and other components. It specific developmental functions include: (1) Test fuel cells and fuel cell components under repeated closed-cycle operation (nothing escapes; everything is used over and over again). (2) Simulate diurnal charge-discharge cycles (3) Observe long-term system performance and identify degradation and loss mechanisms. (4) Develop safe and convenient operation and control strategies leading to the successful development of mission-capable, flight-weight RFC's.

  9. Test of Hydrogen-Oxygen PEM Fuel Cell Stack at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2003-01-01

    This paper describes performance characterization tests of a 64 cell hydrogen oxygen PEM fuel cell stack at NASA Glenn Research Center in February 2003. The tests were part of NASA's ongoing effort to develop a regenerative fuel cell for aerospace energy storage applications. The purpose of the tests was to verify capability of this stack to operate within a regenerative fuel cell, and to compare performance with earlier test results recorded by the stack developer. Test results obtained include polarization performance of the stack at 50 and 100 psig system pressure, and a steady state endurance run at 100 psig. A maximum power output of 4.8 kWe was observed during polarization runs, and the stack sustained a steady power output of 4.0 kWe during the endurance run. The performance data obtained from these tests compare reasonably close to the stack developer's results although some additional spread between best to worst performing cell voltages was observed. Throughout the tests, the stack demonstrated the consistent performance and repeatable behavior required for regenerative fuel cell operation.

  10. Center for Fuel Cell Research and Applications development phase. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    The deployment and operation of clean power generation is becoming critical as the energy and transportation sectors seek ways to comply with clean air standards and the national deregulation of the utility industry. However, for strategic business decisions, considerable analysis is required over the next few years to evaluate the appropriate application and value added from this emerging technology. To this end the Houston Advanced Research Center (HARC) is proposing a three-year industry-driven project that centers on the creation of ``The Center for Fuel Cell Research and Applications.`` A collaborative laboratory housed at and managed by HARC, the Center will enable a core group of six diverse participating companies--industry participants--to investigate the economic and operational feasibility of proton-exchange-membrane (PEM) fuel cells in a variety of applications (the core project). This document describes the unique benefits of a collaborative approach to PEM applied research, among them a shared laboratory concept leading to cost savings and shared risks as well as access to outstanding research talent and lab facilities. It also describes the benefits provided by implementing the project at HARC, with particular emphasis on HARC`s history of managing successful long-term research projects as well as its experience in dealing with industry consortia projects. The Center is also unique in that it will not duplicate the traditional university role of basic research or that of the fuel cell industry in developing commercial products. Instead, the Center will focus on applications, testing, and demonstration of fuel cell technology.

  11. Technical problems to be solved before the solid oxide fuel cell will be commercialized

    Energy Technology Data Exchange (ETDEWEB)

    Bagger, C.; Hendriksen, P.V.; Mogensen, M. [Riso National Lab., Roskilde (Denmark)

    1996-12-31

    The problems which must be solved before SOFC-systems are competitive with todays power production technology are of both technical and economical nature. The cost of SOFC stacks at the 25 kW level of today is about 30,000 ECU/kW and it is bound to come down to about 500 ECU/kW. The allowable cost of a SOFC system is anticipated to be around 1500 ECU/kW. As part of the Danish SOFC program (DK-SOFC) a 0.5 kW stack was built and tested during the second half of 1995. Based upon the experience gained, an economic analysis has been made. The tools required to approach an economically acceptable solution are outlined below.

  12. Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices (Invited paper)

    Institute of Scientific and Technical Information of China (English)

    Wei-Dong He; Lu-Han Ye; Ke-Chun Wen; Ya-Chun Liang; Wei-Qiang Lv; Gao-Long Zhu; Kelvin H. L. Zhang

    2016-01-01

    The world has entered an era featured with fast transportations, instant communications, and prompt technological revolutions, the further advancement of which all relies fundamentally, yet, on the development of cost-effective energy resources allowing for durable and high-rate energy supply. Current battery and fuel cell systems are challenged by a few issues characterized either by insufficient energy capacity or by operation instability and, thus, are not ideal for such highly-demanded applications as electrical vehicles and portable electronic devices. In this mini-review, we present, from materials perspectives, a few selected important breakthroughs in energy resources employed in these applications. Prospectives are then given to look towards future research activities for seeking viable materials solutions for addressing the capacity, durability, and cost shortcomings associated with current battery/fuel cell devices.

  13. Fueling dreams of grandeur: Fuel cell research and development and the pursuit of the technological panacea, 1940--2005

    Science.gov (United States)

    Eisler, Matthew Nicholas

    The record of fuel cell research and development is one of the great enigmas in the history of science and technology. For years, this electrochemical power source, which combines hydrogen and oxygen to produce electricity and waste water, excited the imaginations of researchers in many countries. Because fuel cells directly convert chemical into electrical energy, people have long believed them exempt from the so-called Carnot cycle limitation on heat engines, which dictates that such devices must operate at less than 100 per cent efficiency owing to the randomization of energy as heat. Fuel cells have thus struck some scientists and engineers as the "magic bullet" of energy technologies. This dissertation explores why people have not been able to develop a cheap, durable commercial fuel cell despite more than 50 years of concerted effort since the end of Second World War. I argue this is so mainly because expectations have always been higher than the knowledge base. I investigate fuel cell research and development communities as central nodes of expectation generation. They have functioned as a nexus where the physical realities of fuel cell technology meet external factors, those political, economic and cultural pressures that create a "need" for a "miracle" power source. The unique economic exigencies of these communities have shaped distinct material practices that have done much to inform popular ideas of the capabilities of fuel cell technology. After the Second World War, the fuel cell was relatively unknown in industrial and governmental science and technology circles. Researchers in most leading industrialized countries, above all the United States, sought to raise the technology's profile through dramatic demonstrations in reductive circumstances, employing notional fuel cells using pure hydrogen and oxygen. Researchers paid less attention to cost and durability, concentrating on increasing power output, a criterion that could be met relatively easily in

  14. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, B. J.; Johnson, Donald W.; Garcia, Christopher P.; Jakupca, Ian J.

    2006-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at NASA Glenn Research Center has demonstrated multiple back to back contiguous cycles at rated power, and round trip efficiencies up to 52 percent. It is the first fully closed cycle regenerative fuel cell ever demonstrated (entire system is sealed: nothing enters or escapes the system other than electrical power and heat). During FY2006 the system has undergone numerous modifications and internal improvements aimed at reducing parasitic power, heat loss and noise signature, increasing its functionality as an unattended automated energy storage device, and in-service reliability. It also serves as testbed towards development of a 600 W-hr/kg flight configuration, through the successful demonstration of lightweight fuel cell and electrolyser stacks and supporting components. The RFC has demonstrated its potential as an energy storage device for aerospace solar power systems such as solar electric aircraft, lunar and planetary surface installations; any airless environment where minimum system weight is critical. Its development process continues on a path of risk reduction for the flight system NASA will eventually need for the manned lunar outpost.

  15. Fuel Cells: Reshaping the Future

    Science.gov (United States)

    Toay, Leo

    2004-01-01

    In conjunction with the FreedomCAR (Cooperative Automotive Research) and Fuel Initiative, President George W. Bush has pledged nearly two billion dollars for fuel cell research. Chrysler, Ford, and General Motors have unveiled fuel cell demonstration vehicles, and all three of these companies have invested heavily in fuel cell research. Fuel cell…

  16. Fuel Cell Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  17. A hybrid approach to solving the problem of design of nuclear fuel cells; Un enfoque hibrido para la solucion del problema del diseno de celdas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Perusquia del C, R.; Ortiz S, J. J.; Castillo, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    An approach to solving the problem of fuel cell design for BWR power reactor is presented. For this purpose the hybridization of a method based in heuristic knowledge rules called S15 and the advantages of a meta-heuristic method is proposed. The synergy of potentialities of both techniques allows finding solutions of more quality. The quality of each solution is obtained through a multi-objective function formed from the main cell parameters that are provided or obtained during the simulation with the CASMO-4 code. To evaluate this alternative of solution nuclear fuel cells of reference of nuclear power plant of Laguna Verde were used. The results show that in a systematic way the results improve when both methods are coupled. As a result of the hybridization process of the mentioned techniques an improvement is achieved in a range of 2% with regard to the achieved results in an independent way by the S15 method. (Author)

  18. Fuel cells

    Directory of Open Access Journals (Sweden)

    D. N. Srivastava

    1962-05-01

    Full Text Available The current state of development of fuel cells as potential power sources is reviewed. Applications in special fields with particular reference to military requirements are pointed out.

  19. Status of Research on Application of High Purity Rare Earth Oxides in Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Ma Zhihong; Qiu Jufeng

    2004-01-01

    The solid oxide fuel cell (SOFC) is a high-efficient and environmentally friendly power generation system.The rare earth oxide materials are used extensively in the manufacturing of SOFC components.In particular, the CeO2doped with Gd2O3 or Sm2O3, lanthanide perovskite oxides are indispensable and key materials for developing the intermediate temperature SOFC.The research and development status of application of high purity rare earth oxides in SOFC was overviewed.The rare earth oxide-based and -doped materials were discussed for the SOFC components.Concerning the rare earth oxides applicable to SOFC, several topics were also pointed out for further researching and developing.

  20. Development of PEM fuel cell technology at international fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.J.

    1996-04-01

    The PEM technology has not developed to the level of phosphoric acid fuel cells. Several factors have held the technology development back such as high membrane cost, sensitivity of PEM fuel cells to low level of carbon monoxide impurities, the requirement to maintain full humidification of the cell, and the need to pressurize the fuel cell in order to achieve the performance targets. International Fuel Cells has identified a hydrogen fueled PEM fuel cell concept that leverages recent research advances to overcome major economic and technical obstacles.

  1. Hydrogen-Oxygen PEM Regenerative Fuel Cell Development at the NASA Glenn Research Center

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christoher P.; Jakupca, Ian J.

    2005-01-01

    The closed-cycle hydrogen-oxygen PEM regenerative fuel cell (RFC) at the NASA Glenn Research Center has successfully demonstrated closed cycle operation at rated power for multiple charge-discharge cycles. During charge cycle the RFC has absorbed input electrical power simulating a solar day cycle ranging from zero to 15 kWe peak, and delivered steady 5 kWe output power for periods exceeding 8 hr. Orderly transitions from charge to discharge mode, and return to charging after full discharge, have been accomplished without incident. Continuing test operations focus on: (1) Increasing the number of contiguous uninterrupted charge discharge cycles; (2) Increasing the performance envelope boundaries; (3) Operating the RFC as an energy storage device on a regular basis; (4) Gaining operational experience leading to development of fully automated operation; and (5) Developing instrumentation and in situ fluid sampling strategies to monitor health and anticipate breakdowns.

  2. NASA Glenn Research Center Electrochemistry Branch Battery and Fuel Cell Development Overview

    Science.gov (United States)

    Manzo, Michelle A.

    2011-01-01

    This presentation covers an overview of NASA Glenn s history and heritage in the development of electrochemical systems for aerospace applications. Current developments related to batteries and fuel cells are addressed. Specific areas of focus are Li-ion batteries and Polymer Electrolyte Membrane Fuel cells systems and their development for future Exploration missions.

  3. Research and development of proton-exchange membrane (PEM) fuel cell system for transportation applications. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    Objective during Phase I was to develop a methanol-fueled 10-kW fuel cell power source and evaluate its feasibility for transportation applications. This report documents research on component (fuel cell stack, fuel processor, power source ancillaries and system sensors) development and the 10-kW power source system integration and test. The conceptual design study for a PEM fuel cell powered vehicle was documented in an earlier report (DOE/CH/10435-01) and is summarized herein. Major achievements in the program include development of advanced membrane and thin-film low Pt-loaded electrode assemblies that in reference cell testing with reformate-air reactants yielded performance exceeding the program target (0.7 V at 1000 amps/ft{sup 2}); identification of oxidation catalysts and operating conditions that routinely result in very low CO levels ({le} 10 ppm) in the fuel processor reformate, thus avoiding degradation of the fuel cell stack performance; and successful integrated operation of a 10-kW fuel cell stack on reformate from the fuel processor.

  4. Opinion research with end-users and insurance providers on hydrogen and fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-09-18

    The hydrogen and fuel cell (HFC) technologies industry is an emerging market with several barriers to overcome. This paper provided details of a research project undertaken to better understand the needs of hydrogen end-users and suppliers with regard to insurance for their projects. A total of 14 interviews were conducted with end-users and insurance industry representatives. Results indicated that HFC industry respondents did not have enough knowledge or experience of the insurance industry to answer the questions asked of them, in any detail or at all. Insurance industry respondents were aware of the HFC industry's lack of understanding of the insurance industry. It was noted that both groups wish to resolve communication gaps between the 2 industries, and that the development of a mechanism for appropriate communications may resolve misunderstandings. It was suggested that the HFC industry needs to develop a general knowledge of insurance issues as they relate to their industry and a comprehensive understanding of the insurance industry's procedural needs. The HFC industry must also work to educate insurance providers about hydrogen and its safety record. It was suggested that the Canadian Transportation Fuel Cell Alliance (CTFCA) should take a role in educating the insurance industry about hydrogen. It was concluded that despite the lack of understanding and knowledge on the part of the HFC respondents, the study was useful in identifying the nature and depth of the problem, and had validated the input received from the insurance industry respondents. An appendix of study materials was included.

  5. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  6. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  7. Summary of Fuel Cell Programs at the NASA Glenn Research Center

    Science.gov (United States)

    Perez-Davis, Marla

    2000-01-01

    The objective of this program is to develop passive ancillary component technology to be teamed with a hydrogen-oxygen unitized regenerative fuel cell (URFC) stack to form a revolutionary new regenerative fuel cell energy (RFC) storage system for aerospace applications. Replacement of active RFC ancillary components with passive components minimizes parasitic power losses and allows the RFC to operate as a H2/O2 battery. The goal of this program is to demonstrate an integrated passive lkW URFC system.

  8. Research development and demonstration of a fuel cell/battery powered bus system. Interim report, August 1, 1991--April 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Romano, S.; Wimmer, R.

    1992-04-30

    This report describes the progress in the Georgetown University research, development and demonstration project of a fuel cell/battery powered bus system. The topics addressed in the report include vehicle design and application analysis, technology transfer activities, coordination and monitoring of system design and integration contractor, application of fuel cells to other vehicles, current problems, work planned, and manpower, cost and schedule reports.

  9. Development and Experimental Research of kW-scale Molten Carbonate Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A kW-scale molten carbonate fuel cells stack was developed and 800-hours' operating test and performance experimental research had been done. Utilizing domestic materials completely, we developed NiO cathode and Ni-Al anode with the active area of 336cm2 and Υ-LiAlO2 electrolyte tile and bipolar plate with the area of 900cm2. The stack was composed of thirty cells, with 62%Li2CO3+38%K2CO3 as its electrolyte. During the 800 hours' continuous operating, the performance of the stack was stable. With 99.7%(mole fraction) H2 as fuel and O2 from air as oxidant, the average operating voltage of a cell was about 0.72 V. The maximal current density attained to 165mA/cm2, and the maximal output power attained to 1080 Watt. The whole performance of the stack approached to the international level in the early 90's. This paper gives the main works and experiments results.

  10. Fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, G. [Technische Univ., Berlin (Germany); Hoehlein, B. [Research Center Juelich (Germany)

    1996-12-01

    A promising new power source for electric drive systems is the fuel cell technology with hydrogen as energy input. The worldwide fuel cell development concentrates on basic research efforts aiming at improving this new technology and at developing applications that might reach market maturity in the very near future. Due to the progress achieved, the interest is now steadily turning to the development of overall systems such as demonstration plants for different purposes: electricity generation, drive systems for road vehicles, ships and railroads. This paper does not present results concerning the market potential of fuel cells in transportation but rather addresses some questions and reflections that are subject to further research of both engineers and economists. Some joint effort of this research will be conducted under the umbrella of the IEA Implementing Agreement 026 - Annex X, but there is a lot more to be done in this challenging but also promising fields. (EG) 18 refs.

  11. Fuel cells problems and solutions

    CERN Document Server

    Bagotsky, Vladimir S

    2012-01-01

    The comprehensive, accessible introduction to fuel cells, their applications, and the challenges they pose Fuel cells-electrochemical energy devices that produce electricity and heat-present a significant opportunity for cleaner, easier, and more practical energy. However, the excitement over fuel cells within the research community has led to such rapid innovation and development that it can be difficult for those not intimately familiar with the science involved to figure out exactly how this new technology can be used. Fuel Cells: Problems and Solutions, Second Edition addresses this i

  12. European opportunities for fuel cell commercialisation

    Science.gov (United States)

    Gibbs, C. E.; Steel, M. C. F.

    1992-01-01

    when demand for power exceeds supply. The SWB solar hydrogen project in Germany is testing PAFC and AFC stacks in this application. Several problems remain before fuel cell technology can fulfil its maximum potential market. For PAFC there is a need to reduce plant capital costs and to verify lifetimes and reliability. KTI's 25 kW demonstration at Delft and the Milan 1 MW plant will increase European knowledge and experience of PAFC plant operation. For MCFC there are materials problems to be solved and work needs to be carried out on the best way to scale up plants. Projects underway in the Netherlands, Germany, Italy and elsewhere should bring Europe to the forefront of MCFC technology. SOFC requires further study in the area of design configurations and fabrication techniques. Research on these aspects is underway in Denmark, Switzerland, Germany, the Netherlands and the UK. For PEM technology work on reducing precious metal loadings and selecting the best polymer membrane is required — an area in which Johnson Matthey is involved. For all fuel cell technologies there needs to be a greater awareness among power suppliers, consumers, legislators and environmentalists of the advantages that fuel cells can offer. The increase in activity among European organisations in developing, demonstrating, testing and optimising fuel cell systems will encourage a greater awareness of the technology and bring commercialisation closer to reality.

  13. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  14. State of the art: Multi-fuel reformers for automotive fuel cell applications. Problem identification and research needs

    Energy Technology Data Exchange (ETDEWEB)

    Westerholm, R. [Stockholm Univ. (Sweden). Dept. of Analytical Chemistry; Pettersson, L.J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1999-12-01

    On an assignment from the Transport and Communications Research Board (KFB) a literature study and a study trip to the USA and Great Britain have been performed. The literature study and the study trip was made during late spring and autumn 1999.The purpose of the project was to collect available information about the chemical composition of the product gas from a multi-fuel reformer for a fuel cell vehicle. It was furthermore to identify problems and research needs. The report recommends directions for future major research efforts. The results of the literature study and the study trip led to the following general conclusions: With the technology available today it does not seem feasible to develop a highly efficient and reliable multi-fuel reformer for automotive applications, i. e. for applications where all types of fuels ranging from natural gas to heavy diesel fuels can be used. The potential for developing a durable and reliable system is considerably higher if dedicated fuel reformers are used.The authors propose that petroleum-derived fuels should be designed for potential use in mobile fuel cell applications. In the present literature survey and the site visit discussions we found that there are relatively low emissions from fuel cell engines compared to internal combustion engines. However, the major research work on reformers/fuel cells have been performed during steady-state operation. Emissions during start-up, shutdown and transient operation are basically unknown and must be investigated in more detail. The conclusions and findings in this report are based on open/available information, such as discussions at site visits, reports, scientific publications and symposium proceedings.

  15. World wide IFC phosphoric acid fuel cell implementation

    Energy Technology Data Exchange (ETDEWEB)

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  16. Les piles à combustible. Bilan des travaux de recherches. Perspectives Fuel Cells. Review of Research. Outlook

    Directory of Open Access Journals (Sweden)

    Breelle Y.

    2006-11-01

    Full Text Available Cet article fait le point, sous forme résumée, des travaux de recherches et de développement menés par l'Institut Français du Pétrole (IFP depuis vingt ans dans le domaine des piles à combustible : sélection des filières directes conduisant au choix de la pile hydrogène-air basse température à électrolyte basique, mise au point des générateurs à hydrogène alimentés en méthanol. On présente les résultats obtenus et les conclusions des enquêtes effectués dans le domaine des groupes électrogènes et des applications spéciales, dans celui de la traction automobile et dans celui de la production massive d'électricité. This article reviews and sums up the research and development done by Institut Français du Pétrole (IFP in the last 20 years in the field of fuel cells, including the selection of direct methods leading to the choice of low-temperature basic-electrolyte hydrogen/air cells and the development of methanol-powered hydrogen generators. The results obtained are desceibed along with the conclusions of surveys made in the field of electric generators and special applications in the fields of automotive traction and massive electricity production.

  17. Fuel cell engineering

    CERN Document Server

    Sundmacher

    2012-01-01

    Fuel cells are attractive electrochemical energy converters featuring potentially very high thermodynamic efficiency factors. The focus of this volume of Advances in Chemical Engineering is on quantitative approaches, particularly based on chemical engineering principles, to analyze, control and optimize the steady state and dynamic behavior of low and high temperature fuel cells (PEMFC, DMFC, SOFC) to be applied in mobile and stationary systems. * Updates and informs the reader on the latest research findings using original reviews * Written by leading industry experts and scholars * Review

  18. Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

    2011-03-28

    Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low

  19. Experimental research on short-term feeding of dust contaminated gas to a molten carbonate fuel cell cathode

    Science.gov (United States)

    Bernat, Rafał; Milewski, Jarosław; Wejrzanowski, Tomasz

    2017-07-01

    The paper presents initial research on processes present on the cathode side of Molten Carbonate Fuel Cells (MCFC), when the supplied gas is an aerosol containing solid particulate matter. The research is based on experiments conducted at the Institute of Heat Engineering of Warsaw University of Technology. The main task is to determine whether and to what extent solid particles disable or hinder the operation of a molten carbonate fuel cell. It is thought that they might change the penetrability of porous layers by clogging their void volumes. Under investigation are the sizes and amount of solid particles required to significantly affect the processes occurring on the triple phase. Experimental investigation was conducted that determined the change in operational parameters due to dust contamination. Surprisingly, there is no sudden drop in the electric parameters of the fuel cell subject to dust poisoning. Supposedly, the dust creates a porous, permeable to gases, structure on the electrode. The only varying parameter was the pressure difference between the inlet and the outlet to the cathode.

  20. Solid Oxide Fuel Cell Experimental Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NETL’s Solid Oxide Fuel Cell Experimental Laboratory in Morgantown, WV, gives researchers access to models and simulations that predict how solid oxide fuel cells...

  1. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  2. Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility

    Energy Technology Data Exchange (ETDEWEB)

    Edward F. Kiczek

    2007-08-31

    Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

  3. Fuel Cell Stacks

    Science.gov (United States)

    1975-04-01

    AD-A009 587 FUEL CELL STACKS Bernard S. Baker Energy Research Corporation Prepared for: Army Mobility Equipment Research and Development Center April... Mobility Equipment Research and Development Center Unclassified For- Belvoir, Virginia 22060 [15. DE.CLASSIFICATION/L.TWNOGRADING SCREOUJLE 16...the majority of effort has been directed at translating technoilogy for small comn- ponent manufacture on a laboratory scale into large size components

  4. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  5. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL) Provides testing for technology readiness of fuel cell systems The FCL investigates, tests and verifies the performance of fuel-cell systems...

  6. Fuel cells: A survey

    Science.gov (United States)

    Crowe, B. J.

    1973-01-01

    A survey of fuel cell technology and applications is presented. The operating principles, performance capabilities, and limitations of fuel cells are discussed. Diagrams of fuel cell construction and operating characteristics are provided. Photographs of typical installations are included.

  7. Closed-Cycle Hydrogen-Oxygen Regenerative Fuel Cell at the NASA Glenn Research Center-An Update

    Science.gov (United States)

    Bents, David J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2008-01-01

    The closed cycle hydrogen-oxygen proton exchange membrane (PEM) regenerative fuel cell (RFC) at the NASA Glenn Research Center has demonstrated multiple back-to-back contiguous cycles at rated power and round-trip efficiencies up to 52 percent. It is the first fully closed cycle RFC ever demonstrated. (The entire system is sealed; nothing enters or escapes the system other than electrical power and heat.) During fiscal year fiscal year (FY) FY06 to FY07, the system s numerous modifications and internal improvements focused on reducing parasitic power, heat loss, and noise signature; increasing its functionality as an unattended automated energy storage device; and in-service reliability.

  8. PROPULSION AND POWER RAPID RESPONSE RESEARCH AND DEVELOPMENT (R&D) SUPPORT. Deliver Order 0002: Power-Dense, Solid Oxide Fuel Cell Systems: High-Performance, High-Power-Density Solid Oxide Fuel Cells - Materials and Load Control

    Science.gov (United States)

    2010-04-01

    fuel cell . This controller could be readily adapted to current fuel cell powered vehicles. 15. SUBJECT TERMS solid oxide fuel cell , SOFC , solid...oxide fuel cell electrodes, SOFC systems, hybrid power systems 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF...which is exasperated by excessive coarsening at the high temperatures of Solid Oxide Fuel Cell ( SOFC ) operation. While ceramic

  9. Research on proton exchange membrane fuel cell%质子交换膜燃料电池研究

    Institute of Scientific and Technical Information of China (English)

    章晖

    2015-01-01

    Proton exchange membrane fuel cell(PEMFC) has an extensive application respective in EV, portable electronic device, stationary power plant and special power with the advantages of high energy conversion efficiency and quick startup at ambient temperature. The technology and mechanism of PEMFC was researched, and its structure defects were analyzed. It is concluded that to research novel catalysts with high activity and excellent stability is very important for the future fuel cell.%质子交换膜燃料电池(PEMFC)因无电解质腐蚀问题,能量转换效率高,可室温快速启动,在电动车、便携式电子设备、固定电站和军用特种电源等方面都有广阔的应用前景。研究了质子交换膜燃料电池实用化的技术及机理,对其结构缺陷进行了分析,认为开拓新的催化剂体系,合成出活性更高、稳定性更好的催化剂对于燃料电池来说意义重大。

  10. Research on a Scroll Expander Used for Recovering Work in a Fuel Cell

    Directory of Open Access Journals (Sweden)

    Jiang Shen

    2004-03-01

    Full Text Available The energy of the exhausted high-pressure air from a proton exchange membrane (PEM fuel cell can still be recovered. The performance of the scroll expander used for recovering this energy is studied in this paper. A numerical simulation of the expander is presented, and then the simulated results are compared with that of the experiment results gleaned from the prototype of the expander. The matching of the flows and pressure characteristics between the compressor-expander (C-E is also discussed. Finally, this paper points out that leakage has a significant effect on the volumetric efficiency, the quantity of recovered work, and other performance indicators of the scroll expander. The matching of the C-E is a key factor in the practical application of this system.

  11. Fuel-Cell Water Separator

    Science.gov (United States)

    Burke, Kenneth Alan; Fisher, Caleb; Newman, Paul

    2010-01-01

    The main product of a typical fuel cell is water, and many fuel-cell configurations use the flow of excess gases (i.e., gases not consumed by the reaction) to drive the resultant water out of the cell. This two-phase mixture then exits through an exhaust port where the two fluids must again be separated to prevent the fuel cell from flooding and to facilitate the reutilization of both fluids. The Glenn Research Center (GRC) has designed, built, and tested an innovative fuel-cell water separator that not only removes liquid water from a fuel cell s exhaust ports, but does so with no moving parts or other power-consuming components. Instead it employs the potential and kinetic energies already present in the moving exhaust flow. In addition, the geometry of the separator is explicitly intended to be integrated into a fuel-cell stack, providing a direct mate with the fuel cell s existing flow ports. The separator is also fully scalable, allowing it to accommodate a wide range of water removal requirements. Multiple separators can simply be "stacked" in series or parallel to adapt to the water production/removal rate. GRC s separator accomplishes the task of water removal by coupling a high aspect- ratio flow chamber with a highly hydrophilic, polyethersulfone membrane. The hydrophilic membrane readily absorbs and transports the liquid water away from the mixture while simultaneously resisting gas penetration. The expansive flow path maximizes the interaction of the water particles with the membrane while minimizing the overall gas flow restriction. In essence, each fluid takes its corresponding path of least resistance, and the two fluids are effectively separated. The GRC fuel-cell water separator has a broad range of applications, including commercial hydrogen-air fuel cells currently being considered for power generation in automobiles.

  12. Understanding the Vancouver hydrogen and fuel cells cluster : a case study of public laboratories and private research

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, A. [Simon Fraser Univ., Burnaby, BC (Canada). Centre for Policy Research on Science and Technology; Arthurs, D. [Hickling Arthurs Low Corp., Ottawa, ON (Canada); Cassidy, E. [National Research Council of Canada, Ottawa, ON (Canada)

    2007-07-01

    A technology cluster is a geographically proximate group of interconnected companies and associated institutions that compete but also cooperate. Studies have shown that firms who cluster achieve greater competitive advantages over those who do not. This paper discussed the development of a hydrogen and fuel cells cluster in the city of Vancouver. A structured approach was used to evaluate the cluster against indicators of current conditions in the city. The results of a survey conducted with industry representatives and business leaders suggested that the cluster will contain 2 major components: (1) a hydrogen-based industry; and (2) a fuel cell-based industry. Developments in both technologies were discussed in relation to stationary and mobile applications in the future. Markets for the new technologies were also outlined. The role of the National Research Council (NRC) in the cluster's evolution was discussed. Details of the cluster's business characteristics and plans for the future were also provided. 16 refs., 7 tabs., 7 figs.

  13. Research Progress on Microbial Fuel Cells%微生物燃料电池研究进展

    Institute of Scientific and Technical Information of China (English)

    杨颖; 江和龙

    2013-01-01

    微生物燃料电池能够在处理有机污染物的同时回收电能,这种变废为宝的优势使其成为研究的热点.文章回顾了微生物燃料电池的发展历程,着重从反应器构型与材料、运行条件及电子传递机制等方面,系统地阐述了近年来研究的动向与进展,总结了微生物燃料电池可应用的领域,并针对当前研究的不足与面临的问题,提出了今后微生物燃料电池的发展方向与应用前景.%Microbial fuel cells which can recover electricity energy through degradation of organic pollutants have received great attentions.The course of development of microbial fuel cells was reviewed, and research progress was systematically expounded, focusing on reactor configuration and material, operational conditions and mechanism of electron transfer.Based on deficiency and problems faced, the trend of development was also proposed.

  14. Review of the micro-tubular solid oxide fuel cell. Part I. Stack design issues and research activities

    Science.gov (United States)

    Lawlor, V.; Griesser, S.; Buchinger, G.; Olabi, A. G.; Cordiner, S.; Meissner, D.

    Fuel cells are devices that convert chemical energy in hydrogen enriched fuels into electricity electrochemically. Micro-tubular solid oxide fuel cells (MT-SOFCs), the type pioneered by K. Kendall in the early 1990s, are a variety of SOFCs that are on the scale of millimetres compared to their much larger SOFC relatives that are typically on the scale of tens of centimetres. The main advantage of the MT-SOFC, over its larger predecessor, is that it is smaller in size and is more suitable for rapid start up. This may allow the SOFC to be used in devices such as auxiliary power units, automotive power supplies, mobile electricity generators and battery re-chargers. The following paper is Part I of a two part series. Part I will introduce the reader to the MT-SOFC stack and its applications, indicating who is researching what in this field and also specifically investigate the design issues related to multi-cell reactor systems called stacks. Part II will review in detail the combinations of materials and methods used to produce the electrodes and electrolytes of MT-SOFC's. Also the role of modelling and validation techniques used in the design and improvement of the electrodes and electrolytes will be investigated. A broad range of scientific and engineering disciplines are involved in a stack design. Scientific and engineering content has been discussed in the areas of thermal-self-sustainability and efficiency, sealing technologies, manifold design, electrical connections and cell performance optimisation.

  15. Direct-fuelled fuel cells

    Science.gov (United States)

    Waidhas, M.; Drenckhahn, W.; Preidel, W.; Landes, H.

    Fuel supply is one important problem to be solved for commercial application of fuel cell technology. Conventional fuel-cell types require hydrogen as the fuel, which has to be free from impurities when operated at temperatures below 100 °C. The storage and distribution of this explosive and extremely fugitive gas is one of the open questions in the context of a customer-oriented broad commercial market. The direct-fuelled fuel cells (DMFCs) overcome the hydrogen specific restrictions. They are capable of directly using natural gas or fuels which are liquid under ambient conditions. In this paper the different options from direct-fuelled systems are described and their general aspects discussed. The state-of-the-art at Siemens in this field, and also the remaining technical questions are outlined as a basis for assessing future applications.

  16. FUEL CELL ELECTRODE MATERIALS

    Science.gov (United States)

    FUEL CELL ELECTRODE MATERIALS. RAW MATERIAL SELECTION INFLUENCES POLARIZATION BUT IS NOT A SINGLE CONTROLLING FACTOR. AVAILABLE...DATA INDICATES THAT AN INTERRELATIONSHIP OF POROSITY, AVERAGE PORE VOLUME, AND PERMEABILITY CONTRIBUTES TO ELECTRODE FUEL CELL BEHAVIOR.

  17. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...

  18. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  19. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  20. Commercialization of fuel cells: myth or reality?

    CERN Document Server

    Wang, Junye

    2014-01-01

    Despite huge investment and efforts in the last decades, fuel cells are still known as a fledgling industry after 170 years of the first fuel cell. It becomes clear that these investment and efforts did not address the critical questions. Why upscaling of fuel cells failed often when many researchers stated their successes in small scale? Why the fuel cells with simpler structure still lag far from the internal combustion (IC) engines and gas turbines? Could the current investment of the hydrogen infrastructure reduce substantially the fuel cell cost and make a breakthrough to the key issues of durability, reliability and robustness? In this paper, we study these fundamental questions and point out a must-way possible to reduce cost of fuel cells and to substantially improve durability and reliability.

  1. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  2. PEM fuel cell testing and diagnosis

    CERN Document Server

    Wu, Jifeng; Zhang, Jiujun

    2013-01-01

    PEM Fuel Cell Testing and Diagnosis covers the recent advances in PEM (proton exchange membrane) fuel cell systems, focusing on instruments and techniques for testing and diagnosis, and the application of diagnostic techniques in practical tests and operation. This book is a unique source of electrochemical techniques for researchers, scientists and engineers working in the area of fuel cells. Proton exchange membrane fuel cells are currently considered the most promising clean energy-converting devices for stationary, transportation, and micro-power applications due to their

  3. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  4. 生物气固体氧化物燃料电池研究进展%Research Process in Solid Oxide Fuel Cell Feeding With Biogas

    Institute of Scientific and Technical Information of China (English)

    王静晖; 田禹; 吴晓燕

    2013-01-01

    对近年来国内外生物气固体氧化物燃料电池发电领域的研究进行了归纳分析。在介绍生物气产生和氧离子型固体氧化物燃料电池产电原理的基础上,总结了固体氧化物燃料电池以生物质产出的生物气为燃料发电所涉及的电化学反应;介绍了国外研究者对该类发电过程进行的试验和模拟研究;同时,对生物气结合固体氧化物燃料电池的研究进展进行了分析。得出的结论为,生物气结合固体氧化物燃料电池进行产电具有重大的实际和环保意义。%Research in the field of power generation by solid oxide fuel cell feeding with biogas in recent years at home and abroad is summarized and analyzed in this paper. First, based on the principle of biogas production and electricity generation by oxygen ions-solid oxide fuel cell, it has summarized electrochemical reactions of power generation by solid oxide fuel cell feeding with biogas produced from biomass as a fuel. Second, it has introduced details on test and simulation conducted by researchers from different countries. Third, it has analyzed the research process of biogas combined with the solid oxide fuel cell. Finally, as a conclusion, the combination biogas with solid oxide fuel cell for electricity production has veryimportant practical and environmental significance.

  5. Direct hydrocarbon fuel cells

    Science.gov (United States)

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  6. FCTESTNET - Testing fuel cells for transportation

    NARCIS (Netherlands)

    Winkel, R.G.; Foster, D.L.; Smokers, R.T.M.

    2006-01-01

    FCTESTNET (Fuel Cell Testing and Standardization Network) is an ongoing European network project within Framework Program 5. It is a three-year project that commenced January 2003, with 55 partners from European research centers, universities, and industry, working in the field of fuel cell R and D.

  7. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  8. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  9. Energy research programmes on hydrogen and fuel cells for the period 2008 - 2011; Energieforschungsprogramme Wasserstoff und Brennstoffzellen fuer die Jahre 2008-2011

    Energy Technology Data Exchange (ETDEWEB)

    Gut, A.; Luzzi, A.; Spirig, M.

    2007-12-15

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) reports on the concept for research in Switzerland in the area of hydrogen and fuel cells for the period 2008 - 2011. The starting position is noted with a short review of the vision of a 'hydrogen economy'. The present-day production of hydrogen for non-energetic purposes is noted and the current state-of-the-art is discussed. The potential in Switzerland for the production of hydrogen and the use of fuel cells is discussed, as are research efforts and pilot projects in these areas. Private and public expenditure in the area is reviewed. The aims and the focal points of research during the period 2008 - 2011 are discussed, as are potentials both in Switzerland as well as world-wide. Further topics dealt with include system integration and hydrogen storage, service life, reliability and cost factors.

  10. Fuel Cell Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Brun

    2006-09-15

    In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance

  11. Modeling: driving fuel cells

    Directory of Open Access Journals (Sweden)

    Michael Francis

    2002-05-01

    Fuel cells were invented in 1839 by Sir William Grove, a Welsh judge and gentleman scientist, as a result of his experiments on the electrolysis of water. To put it simply, fuel cells are electrochemical devices that take hydrogen gas from fuel, combine it with oxygen from the air, and generate electricity and heat, with water as the only by-product.

  12. Toward sustainable fuel cells

    DEFF Research Database (Denmark)

    Stephens, Ifan; Rossmeisl, Jan; Chorkendorff, Ib

    2016-01-01

    to a regular gasoline car. However, current fuel cells require 0.25 g of platinum (Pt) per kilowatt of power (2) as catalysts to drive the electrode reactions. If the entire global annual production of Pt were devoted to fuel cell vehicles, fewer than 10 million vehicles could be produced each year, a mere 10...

  13. MICROBIAL FUEL CELL

    DEFF Research Database (Denmark)

    2008-01-01

    A novel microbial fuel cell construction for the generation of electrical energy. The microbial fuel cell comprises: (i) an anode electrode, (ii) a cathode chamber, said cathode chamber comprising an in let through which an influent enters the cathode chamber, an outlet through which an effluent...

  14. Nanofluidic fuel cell

    Science.gov (United States)

    Lee, Jin Wook; Kjeang, Erik

    2013-11-01

    Fuel cells are gaining momentum as a critical component in the renewable energy mix for stationary, transportation, and portable power applications. State-of-the-art fuel cell technology benefits greatly from nanotechnology applied to nanostructured membranes, catalysts, and electrodes. However, the potential of utilizing nanofluidics for fuel cells has not yet been explored, despite the significant opportunity of harnessing rapid nanoscale reactant transport in close proximity to the reactive sites. In the present article, a nanofluidic fuel cell that utilizes fluid flow through nanoporous media is conceptualized and demonstrated for the first time. This transformative concept captures the advantages of recently developed membraneless and catalyst-free fuel cell architectures paired with the enhanced interfacial contact area enabled by nanofluidics. When compared to previously reported microfluidic fuel cells, the prototype nanofluidic fuel cell demonstrates increased surface area, reduced activation overpotential, superior kinetic characteristics, and moderately enhanced fuel cell performance in the high cell voltage regime with up to 14% higher power density. However, the expected mass transport benefits in the high current density regime were constrained by high ohmic cell resistance, which could likely be resolved through future optimization studies.

  15. Fuel cells: Operating flexibly

    Science.gov (United States)

    Lee, Young Moo

    2016-09-01

    Fuel cells typically function well only in rather limited temperature and humidity ranges. Now, a proton exchange membrane consisting of ion pair complexes is shown to enable improved fuel cell performance under a wide range of conditions that are unattainable with conventional approaches.

  16. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  17. HTPEM Fuel Cell Impedance

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg

    As part of the process to create a fossil free Denmark by 2050, there is a need for the development of new energy technologies with higher efficiencies than the current technologies. Fuel cells, that can generate electricity at higher efficiencies than conventional combustion engines, can...... potentially play an important role in the energy system of the future. One of the fuel cell technologies, that receives much attention from the Danish scientific community is high temperature proton exchange membrane (HTPEM) fuel cells based on polybenzimidazole (PBI) with phosphoric acid as proton conductor....... This type of fuel cell operates at higher temperature than comparable fuel cell types and they distinguish themselves by high CO tolerance. Platinum based catalysts have their efficiency reduced by CO and the effect is more pronounced at low temperature. This Ph.D. Thesis investigates this type of fuel...

  18. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). August 8, 2002 update, no. 7; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 8 aout 2002, no. 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-08-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, hydrogen production and hydrogen storage: characteristics of a PEM fuel cell submitted to a transient increase of CO concentration; perspectives of the different fuel cell technologies in transport applications; development of a portable fuel cell system for the soldier's equipment; direct 2-propanol low temperature fuel cell; a fuel cell system quasi-directly supplied with methanol and based on a mixture of electrolytic polymers; catalysis in low temperature fuel cells (part.1: the cathode stakes); manufacturing and performance of the new multi-layer cathodes for SOFCs; patent about intermediate plates for the limitation of the movement of the bolts used for the fastening of a fuel cell core; the Paul Sherrer institute is testing a zinc and synthetic gas production process that use solar energy, natural gas and zinc oxide; experimental evaluation of a combined plasma/catalyst system for the production of hydrogen from the partial oxidation of hydrocarbons; hydrogen production using a new chemo-organo-trophic bacteria: Citrobacter sp. Y19; hydrogen as energy vector: competition or complementarity with fossil fuels; hydrogen storage in general and in light monocrystalline metal hydrides in particular; the nuclear option for the production of hydrogen as energy of the future. (J.S.)

  19. The fuel cell yesterday, today and tomorrow

    Directory of Open Access Journals (Sweden)

    Stanojević Dušan D.

    2005-01-01

    Full Text Available The fuel cell has some characteristics of a battery carrying out direct chemical conversion into electric energy. In relation to classical systems used for chemical energy conversion into electric power, through heat energy and mechanical operation, the fuel cell has considerably higher efficiency. The thermo-mechanical conversion of chemical into electric energy, in thermal power plants is carried out with 30% efficiency, while the efficiency of chemical conversion into electric energy, using a fuel cell is up to 60%. With the exception of the space programme, the commercial usage of the fuel cell did not exist up to 1990, when the most developed countries started extensive financial support of this source of energy. By 1995, more than a hundred fuel cells were installed in the process of electricity generation in Europe, USA and Japan, while nowadays there are thousands of installations, of efficient energetic capacity. Because of its superior characteristics, the fuel cell compared to other commercial electric energy producers, fulfills the most important condition - it does not pollute or if it does, the level is minimal. With such characteristics the fuel cell can help solve the growing conflict between the further economic development of mankind and the preservation of a clean and healthy natural environment.

  20. Micro solid oxide fuel cell at ARC

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, P.; Rho, H. [Alberta Research Council, Edmonton, AB (Canada)

    2003-07-01

    A fuel cell generates electricity by electrochemically converting chemical energy to electrical energy. The basic components of a fuel cell are the electrolyte, anode, cathode and current collectors. The Alberta Research Council has developed a design and manufacturing process for a high volumetric density Micro Solid Oxide Tubular fuel cell with a diameter of less than 5 mm. The advantage of this newly developed fuel cell is that the power per unit volume is increased significantly because the power of a fuel cell is directly proportional to the electrolyte surface area. The fuel cell also has quick start up. Calculations show that a decrease in tube diameter from 22 mm to 2 mm will increase the electrolyte surface area in a stack by approximately 8 times. The thin wall of the Micro Solid Oxide Fuel Cell has a very high thermal shock resistance and low thermal mass. These are 2 basic characteristics needed to reduce start up and turn off time for the solid oxide fuel cell system (SOFC). The added advantage of high volumetric power is that smaller devices can be fabricated for portable applications. Samples were manufactured using a sequential electrophoretic deposition (EPD) method used to fabricate complex shapes and microstructures. Single cell SOFCs were made using EPD with an electrolyte thickness of less than 10 {mu}m. The cell power was found to be comparable to standard tubular SOFC but with a lower production cost. 3 refs., 1 tab., 7 figs.

  1. 船用燃料电池技术初探%Research on Fuel Cell Technology for Marine Applications

    Institute of Scientific and Technical Information of China (English)

    叶伟强; 宋艳琼

    2015-01-01

    总结了各种燃料电池及其潜在的船舶应用,并将燃料电池的特点和性质在效率、功率密度、排放等方面与传统的能源系统进行比较,例如,柴油发动机和燃气涡轮机。同时指出燃料电池应用于船舶的主要问题,并指导选择适当的燃料与氢能。案例研究表明。燃料电池堆可应用于船舶推进系统,燃料电池优良的排放性能有利于新技术在环境敏感的区域使用,同时要特别关注可用燃料的适用性、瞬时响应和安全可靠性。%A brief summary is presented for various fuel cells and their potential for marine applica‐tions .And the characteristics and properties of fuel cells are compared with conventional energy sys‐tems ,such as diesel engines and gas turbines ,based on efficiency ,power density ,emissions ,etc .The significant barriers to implement fuel cell technology into marine applications are identified as well in this study .Fuel and the choice of suitable hydrogen supply are addressed .By a case study ,the results show that a fuel cell stack can be applied to a ship propulsion system ,and meanw hile ,excellent emis‐sion performance of fuel cells benefits the application of new technology in the environmentally sensi‐tive areas .But the most significant problems to adopt the new technology are the suitability of availa‐ble fuels ,transient response and reliability/safety concerns .

  2. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  3. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    Science.gov (United States)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  4. Swiss fuel cell passenger and pleasure boats

    Energy Technology Data Exchange (ETDEWEB)

    Affolter, J.-F.

    2000-07-01

    This paper published by the University of Applied Science in Yverdon-les-Bains, Switzerland, looks at the development of electrically driven small boats that are powered by fuel cells. The various implementations of the test boats are described. Starting with a 100-watt PEM fuel cell built by the Paul Scherrer Institute (PSI) and the University of Applied Science in Solothurn, Switzerland, for educational purposes, a small pedal-boat was electrified. The paper describes the development of four further prototypes and introduces a new project for a 6-passenger leisure boat powered by a 2 kW PEFC fuel cell. Apart from the fuel cells, various other components such as propellers and control electronics are discussed as are the remaining problems still to be solved before the cells and boats can be marketed. Since they were carried out at a technical university, these projects are said to have provided an excellent way of teaching new technologies to students.

  5. Recent Advances in Enzymatic Fuel Cells: Experiments and Modeling

    Directory of Open Access Journals (Sweden)

    Ivan Ivanov

    2010-04-01

    Full Text Available Enzymatic fuel cells convert the chemical energy of biofuels into electrical energy. Unlike traditional fuel cell types, which are mainly based on metal catalysts, the enzymatic fuel cells employ enzymes as catalysts. This fuel cell type can be used as an implantable power source for a variety of medical devices used in modern medicine to administer drugs, treat ailments and monitor bodily functions. Some advantages in comparison to conventional fuel cells include a simple fuel cell design and lower cost of the main fuel cell components, however they suffer from severe kinetic limitations mainly due to inefficiency in electron transfer between the enzyme and the electrode surface. In this review article, the major research activities concerned with the enzymatic fuel cells (anode and cathode development, system design, modeling by highlighting the current problems (low cell voltage, low current density, stability will be presented.

  6. Materials for fuel cells

    Directory of Open Access Journals (Sweden)

    Sossina M Haile

    2003-03-01

    Full Text Available Because of their potential to reduce the environmental impact and geopolitical consequences of the use of fossil fuels, fuel cells have emerged as tantalizing alternatives to combustion engines. Like a combustion engine, a fuel cell uses some sort of chemical fuel as its energy source but, like a battery, the chemical energy is directly converted to electrical energy, without an often messy and relatively inefficient combustion step. In addition to high efficiency and low emissions, fuel cells are attractive for their modular and distributed nature, and zero noise pollution. They will also play an essential role in any future hydrogen fuel economy.

  7. Solid electrolytic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Masayasu; Yamauchi, Yasuhiro; Kamisaka, Mitsuo; Notomi, Kei.

    1989-04-21

    Concerning a solid electrolytic fuel cell with a gas permeable substrate pipe, a fuel electrode installed on this substrate pipe and an air electrode which is laminated on this fuel electrode with the electrolyte in between, the existing fuel cell of this kind uses crystals of CaMnO3, etc. for the material of the air electrode, but its electric resistance is big and in order to avert this, it is necessary to make the film thickness of the air electrode big. However, in such a case, the entry of the air into its inside worsens and the cell performance cannot develop satisfactorily. In view of the above, in order to obtain a high performance solid electrolytic fuel cell which can improve electric conductivity without damaging diffusion rate of the air, this invention proposes with regard to the aforementioned solid electrolytic fuel cell to install a heat resistant and conductive member inside the above air electrode. 6 figs.

  8. Research, development and demonstration of a fuel cell/battery powered bus system. Phase 1, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-02-28

    Purpose of the Phase I effort was to demonstrate feasibility of the fuel cell/battery system for powering a small bus (under 30 ft or 9 m) on an urban bus route. A brassboard powerplant was specified, designed, fabricated, and tested to demonstrate feasibility in the laboratory. The proof-of-concept bus, with a powerplant scaled up from the brassboard, will be demonstrated under Phase II.

  9. Technology status: Batteries and fuel cells

    Science.gov (United States)

    Fordyce, J. S.

    1978-01-01

    The current status of research and development programs on batteries and fuel cells and the technology goals being pursued are discussed. Emphasis is placed upon those technologies relevant to earth orbital electric energy storage applications.

  10. Liquid fuel cells.

    Science.gov (United States)

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  11. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). January 31, 2002 update, no. 5; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 31 janvier 2002, no. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, hydrogen production and hydrogen storage: fuel cells and fuel cell systems with a non-aqueous electrolyte; the co-development of a fuel cell electrode by Mitsubishi Materials, Kansai Electric Power and Fine Ceramics; a tubular fuel cell under development at the Japan national institute of advanced industrial sciences and technologies (AIST); a patent for an essential component (electro-catalyst) of Medis Technologies' fuel cells; a SOFC with good performances; influence of CO concentration and gas pressure on the performances of a PAFC-type cell; analysis of the life cycle of hydrogen fuel: a methodology for a strategic approach of decision; R and D of a clean hydrogen-based energy system; Teledyne Energy Systems proposes a new hydrogen production system; green alga: still more hydrogen; thermodynamic study and optimization of the hydrogen production by Enterobacter aerogenes; large-scale hydrogen production from hydrocarbons; comparative study of fuels for the production of hydrogen on-board of fuel cell powered vehicles; hydrogen storage in carbon nano-structures; fundamental aspects of the Ti-H system: theoretical and experimental behaviour. (J.S.)

  12. Thematic outlook: the technical survey for the fuel cell research network PACO. March 14, 2005 update no. 29; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 14 mars 2005, no. 29

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells and hydrogen production. Their different titles are given below: 1)thermodynamic analysis of a SOFC fed with ethanol and running in internal reforming mode 2)effect of the methanol and ethanol permeation on the efficiencies of a direct alcohol fuel cell with a PtRu/C anode 3)analysis of an hybrid SOFC micro-turbine micro-generation system 4)dynamic modelling and simulation of a small hybrid wind-fuel cell system 5)simulation of a system combining SOFC and PEMFC 6)assessment of the impacts and of the economical aspects of the fuel cell APU part 1: modelling of the cost and the efficiencies of the system part 2)impacts on the health and on the environment, analysis of the life cycle and optimization 7)efficiencies of vehicles equipped with direct hydrogen or reformed methanol PEMFC 8)methods for supplying fuel cell devices 9)auxiliary fuel cell system 10)analysis of life cycle of maritime applications of fuel cells 11)critical analysis of different hydrogen production and uses ways 12)comparison of the hydrogen and natural gas production processes in a thermodynamical and environmental point of view 13)research and development on the hydrogen production by high temperature electrolysis. The references of these articles are detailed. (O.M.)

  13. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  14. Micro & nano-engineering of fuel cells

    CERN Document Server

    Leung, Dennis YC

    2015-01-01

    Fuel cells are clean and efficient energy conversion devices expected to be the next generation power source. During more than 17 decades of research and development, various types of fuel cells have been developed with a view to meet the different energy demands and application requirements. Scientists have devoted a great deal of time and effort to the development and commercialization of fuel cells important for our daily lives. However, abundant issues, ranging from mechanistic study to system integration, still need to be figured out before massive applications can be used. Miniaturizatio

  15. Conference on researches and industrial outlooks on fuel cell and hydrogen; Recherches et perspectives industrielles sur la pile a combustible et l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This conference aimed at presenting a panorama concerning the research and development of fuel cells and hydrogen and the associated regulation landscape. The first sessions concerned the industrial offer: the strategic advantages as a vehicle fuel, the equipment and the technology, the micro-cell. The second part of the conference concerned the society demand, the difficulties and the research and development programs: the parliamentary offer for the scientific and technological choices evaluation, the energy vector choice, the experiments in particular in Germany, the regulations. (A.L.B.)

  16. Position of fuel cells in Italy; Situation des piles a combustible en Italie

    Energy Technology Data Exchange (ETDEWEB)

    Janot-Giorgetti, M.; Mottini, N.

    2000-02-01

    The main researches concerning the fuel cells in Italy are the PEFC (Polymer Electrolyte Fuel Cell) and the MCFC (Molten Carbonate Fuel Cell). This reports takes stock of these two techniques in Italy, explaining the running of these two types of cells and relating the Italian situation (development and research program, development programs of fuel cells vehicles). (O.M.)

  17. An Overview of Stationary Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    DR Brown; R Jones

    1999-03-23

    Technology developments occurring in the past few years have resulted in the initial commercialization of phosphoric acid (PA) fuel cells. Ongoing research and development (R and D) promises further improvement in PA fuel cell technology, as well as the development of proton exchange membrane (PEM), molten carbonate (MC), and solid oxide (SO) fuel cell technologies. In the long run, this collection of fuel cell options will be able to serve a wide range of electric power and cogeneration applications. A fuel cell converts the chemical energy of a fuel into electrical energy without the use of a thermal cycle or rotating equipment. In contrast, most electrical generating devices (e.g., steam and gas turbine cycles, reciprocating engines) first convert chemical energy into thermal energy and then mechanical energy before finally generating electricity. Like a battery, a fuel cell is an electrochemical device, but there are important differences. Batteries store chemical energy and convert it into electrical energy on demand, until the chemical energy has been depleted. Depleted secondary batteries may be recharged by applying an external power source, while depleted primary batteries must be replaced. Fuel cells, on the other hand, will operate continuously, as long as they are externally supplied with a fuel and an oxidant.

  18. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  19. Alkaline fuel cells applications

    Science.gov (United States)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  20. Research of special carbon nanobeads supported Pt catalyst for fuel cell through high temperature pyrolysis and deposition from novel phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    GUO Yanchuan; YUE Jun; PAN Zhongxiao; XU Haitao; ZHANG Bing; HAN Fengmei; CHEN Lijuan; PENG Bixian; XIE Wenwei; QIAN Haisheng; YAN Tiantang

    2004-01-01

    The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthaiocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst was produced. The Pt/C catalyst was characterized by SEM,TEM, Raman spectrum, EDS and XRD methods. Combining the carbonaceous paper spreaded up with the catalyst with Nafion membrane, we made MEA electrode. The discharge curves indicated that this carbon nanobeads supported Pt is a good fuel cell catalyst with excellent performance, high activity and sign of a long-time life.

  1. Research and Development of Proton-Exchange Membrane (PEM) Fuel Cell System for Transportation Applications: Initial Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-30

    This report addresses Task 1.1, model development and application, and Task 1.2, vehicle mission definition. Overall intent is to produce a methanol-fueled 10-kW power source, and to evaluate electrochemical engine (ECE) use in transportation. Major achievements include development of an ECE power source model and its integration into a comprehensive power source/electric vehicle propulsion model, establishment of candidate FCV (fuel cell powered electric vehicle) mission requirements, initial FCV studies, and a candidate FCV recommendation for further study.

  2. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  3. 2009 Fuel Cell Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, Bill [Breakthrough Technologies Inst., Washington, DC (United States); Gangi, Jennifer [Breakthrough Technologies Inst., Washington, DC (United States); Curtin, Sandra [Breakthrough Technologies Inst., Washington, DC (United States); Delmont, Elizabeth [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  4. Molten carbonate fuel cell

    Science.gov (United States)

    Kaun, T.D.; Smith, J.L.

    1986-07-08

    A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

  5. Research and development of hydrogen and fuel cells technology at the IIE; Investigacion y desarrollo de tecnologia de hidrogeno y celdas de combustible en el IIE

    Energy Technology Data Exchange (ETDEWEB)

    Cano C, Ulises; Arriaga H, Gerardo; Romero C, T; Medrano V, M. Consolacion; Gonzalez, A. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2005-07-01

    In April, 2001, a fuel cells project was initiated at the Instituto de Investigaciones Electricas (IIE) as a part of the interest of this institution for such a technology. Towards end of that same year, a group dedicated to research and development (R and D) activities was implemented and efforts were initiated for the assembly of a laboratory with specialized infrastructure that would support these activities. Thus, in the last two years, the hydrogen and fuel cells group has taken under its responsibility the task of renewing and conditioning a space to receive specialized instrumentation and to initiate its operation, as well as to develop its own knowledge on the technology of fuel cells. The R and D work related to fuel cells was initiated from basic electrochemical studies of platinum electrodes on vitreous coal in acid solutions, to determine kinetic parameters and structural properties. Since the main components of PEM cells to a great extent define the cost of the technology, other additional efforts related to basic studies for the development of components as bipolar plates, are described by the same author in 2001. Other work on basic research is bound to the response of fuel monocells under different operation conditions, and that also will be reviewed in this article. [Spanish] En abril del 2001, se inicio un proyecto de celdas de combustible en el IIE como parte del interes de esta institucion por tal tecnologia. Hacia finales de ese mismo ano, se conformo un grupo dedicado a actividades de investigacion y desarrollo (I y D) y se iniciaron esfuerzos para el montaje de un laboratorio con infraestructura especializada que apoyara estas actividades. Asi, en los ultimos dos anos, el grupo de hidrogeno y celdas de combustible se ha dado a la tarea de renovar y acondicionar un espacio para recibir instrumentacion especializada e iniciar su operacion, asi como a desarrollar su propio conocimiento de tecnologia de celdas de combustible. Los trabajos de I y

  6. Thematic outlook: the technical outlook for the fuel cell research network (PACO). September 23, 2003 update no. 16; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 23 septembre 2003, no. 16

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of several recent articles and patents are gathered here. They deal with fuel cells and hydrogen production and storage. Their different titles are given below: 1)the behaviour of the electrode potential in direct hydrazine fuels 2)a device of desalination fed with a fuel cell 3)experiment in the field of residential fuel cell systems at ECN (Energy Research Center) 4)'design of a divided feeding' for SOFC with an internal reforming system 5)water management and thermal management in a fuel cell vehicle fed with hydrogen extracted from sodium borohydride (NaBH{sub 4}) 6)a mathematical model of propulsion systems by PEMFC for mobile applications 7)assessment of the feasibility of a DMFC containing an alkaline membrane 8)semi-empirical assessment model of the performance of a DMFC, first part: development of the model and validation 9)PEMFC and the challenge of CO 10)materials for SOFC 11)natural gas and LPG desulfurization for fuel cells reformers 12)heat exchangers for reforming techniques 13)desulfurization of a fuel for fuel cell system 14)hydrogen production from solar thermal reactor 15)hydrogen physico-chemical storage: nano-structured storage materials having modified covalent bonds sp2. The references of these articles and patents are detailed. (O.M.)

  7. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). June 15, 2001 update, no. 0; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 15 juin 2001, no. 0

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, hydrogen production and hydrogen storage: effect of hydrogen on the magnetic properties of iron nano-crystalline particulates; smaller fuel cells; development of a 1 kW PEMFC; materials for low temperature SOFCs; development and operation of a 150 W DMFC; materials science and engineering: a key-technology for the commercialization of fuel cells; chemical and electrochemical behaviour of Ni-Ti in cathodic conditions as used in a MCFC; patent for stainless steel bipolar plates; development of proton conductive membranes for PEMFCs and DMFCs; development and characterization of acid-doped polymer mixtures (poly-benzimidazole/sulfonated poly-sulfone) used as fuel cell electrolyte; modification of a proton conductive membrane for the reduction of methanol diffusion in a DMFC; DMFC based on a new low cost nano-porous membrane; method for controlling the connexion between a fuel cell and a power grid; steam reforming of biomass-derived ethanol for hydrogen production devoted to fuel cells; hydrogen production by catalytic decomposition of methane; hydrogen storage. (J.S.)

  8. Research Development of Generation Performance on Sediment Microbial Fuel Cell%沉积物微生物电池产电性能的研究进展

    Institute of Scientific and Technical Information of China (English)

    梁会会; 杨菁; 杨亲正

    2015-01-01

    Sediment microbial fuel cells as a typical membrane-less microbial fuel cell has attracted widespread attention by many researchers mainly due to its simple structure and lower cost. But the low generation is the factor to limit its development and application. This paper describes the operational principle on SMFC and application,and focusing on its generation electrical influencing factors such as the microbial,anode materials,electrode spacing,external resistance and pre-treatment and mass transfer. The future development and research was prospected too.%沉积物微生物电池( SMFC)因其结构简单,成本较低等优点,作为典型的无膜微生物燃料电池受到广泛关注。但是产电能力低下仍是制约其发展应用的因素,本文简单介绍了SMFC的工作原理及应用,对影响SMFC的产电性能的微生物、阳极材料、电极间距、外电阻、底物前处理和传质等因素进行了综述,同时对SMFC发展和研究方向做了展望。

  9. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  10. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  11. Fuel Cell Electrodes for Hydrogen-Air Fuel Cell Assemblies.

    Science.gov (United States)

    The report describes the design and evaluation of a hydrogen-air fuel cell module for use in a portable hydrid fuel cell -battery system. The fuel ... cell module consists of a stack of 20 single assemblies. Each assembly contains 2 electrically independent cells with a common electrolyte compartment

  12. Mass transfer in fuel cells

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Developments in the following areas are reported: surface area and pore size distribution in electrolyte matrices, electron microscopy of electrolyte matrices, surface tension of KOH solutions, water transport in fuel cells, and effectiveness factors for fuel cell components.

  13. Design and Test of a Carbon-Tolerant Alkaline Fuel Cell

    CERN Document Server

    Urquidi-Macdonald, M; Grimes, P; Tewari, A; Sambhy, V; Urquidi-Macdonald, Mirna; Sen, Ayusman; Grimes, Patrick; Tewari, Ashutosh; Sambhy, Varun

    2005-01-01

    This paper presents new results which may constitute a breakthrough in the effort to develop fuel cells truly suitable for use in cars and trucks. For decades, researchers have known that the alkaline fuel cell (AFC) is much cheaper to make, more efficient and more durable than the more popular PEM fuel cell; however, "carbon poisoning" (either from CO2 in air or from contaminants in reformed methanol) causes big problems in the kind of oxygen-hydrogen AFC commonly used in space. This paper reports successful tests of a technique for coating the electrodes with polystyrene which, in conjunction with older common-sense techniques, appears to solve the problem. This kind of design is applicable to cars run on hydrogen fuel, on reformed methanol or even direct methanol. Developing a test methodology was a major part of the work. A foreword by one of the sponsors at NSF discusses the larger importance of this work for energy security and the environment.

  14. Advanced proton-exchange materials for energy efficient fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

    2005-12-01

    The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

  15. Fuel cell report to congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2003-02-28

    This report describes the status of fuel cells for Congressional committees. It focuses on the technical and economic barriers to the use of fuel cells in transportation, portable power, stationary, and distributed power generation applications, and describes the need for public-private cooperative programs to demonstrate the use of fuel cells in commercial-scale applications by 2012. (Department of Energy, February 2003).

  16. Commercialization of fuel-cells

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O' Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

    1995-03-01

    This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

  17. Fuel cell sub-assembly

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

  18. Fuel Cell Handbook, Fourth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

    1998-11-01

    Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

  19. Direct Methanol Fuel Cell, DMFC

    Directory of Open Access Journals (Sweden)

    Amornpitoksuk, P.

    2003-09-01

    Full Text Available Direct Methanol Fuel Cell, DMFC is a kind of fuel cell using methanol as a fuel for electric producing. Methanol is low cost chemical substance and it is less harmful than that of hydrogen fuel. From these reasons it can be commercial product. The electrocatalytic reaction of methanol fuel uses Pt-Ru metals as the most efficient catalyst. In addition, the property of membrane and system designation are also effect to the fuel cell efficient. Because of low power of methanol fuel cell therefore, direct methanol fuel cell is proper to use for the energy source of small electrical devices and vehicles etc.

  20. Proton exchange membrane fuel cells

    CERN Document Server

    Qi, Zhigang

    2013-01-01

    Preface Proton Exchange Membrane Fuel CellsFuel CellsTypes of Fuel CellsAdvantages of Fuel CellsProton Exchange Membrane Fuel CellsMembraneCatalystCatalyst LayerGas Diffusion MediumMicroporous LayerMembrane Electrode AssemblyPlateSingle CellStackSystemCell Voltage Monitoring Module (CVM)Fuel Supply Module (FSM)Air Supply Module (ASM)Exhaust Management Module (EMM)Heat Management Module (HMM)Water Management Module (WMM)Internal Power Supply Module (IPM)Power Conditioning Module (PCM)Communications Module (COM)Controls Module (CM)SummaryThermodynamics and KineticsTheoretical EfficiencyVoltagePo

  1. Study of fuel cell and gas turbine hybrid power systems

    OpenAIRE

    Basurto, M. T.

    2002-01-01

    Environmental awareness and the interest in distributed generation caused by electricity market de-regulation are factors that promote research on renewable energies. Fuel cells transform the chemical energy stored in fuel into electricity by means of electrochemical reactions. Among the different fuel cell types, high temperature fuel cells (HTFCS) have many advantages: high efficiency, low emissions, fuel flexibility, modularity and high quality waste heat. The main disadvant...

  2. Fuel Cell Handbook, Fifth Edition

    Energy Technology Data Exchange (ETDEWEB)

    Energy and Environmental Solutions

    2000-10-31

    Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed

  3. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Douglas [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  4. Proceedings of the fuel cells 1994 contractors review meeting

    Science.gov (United States)

    Carpenter, C. P., II; Mayfield, M. J.

    1994-08-01

    METC annually sponsors this conference to provide a forum for energy executives, engineers, etc. to discuss advances in fuel cell research and development projects, to exchange ideas with private sector attendees, and to review relevant results in fuel cell technology programs. Two hundred and three people from industry, academia, and Government attended. The conference attempts to showcase the partnerships with the Government and with industry, by seeking activity participation and involvement from the Office of Energy Efficiency and Renewable Energy, EPRI, GRI, and APRA. In addition to sessions on fuel cells (solid oxide, molten carbonate, etc.) for stationary electric power generation, sessions on US DOE's Fuel Cell Transportation Program and on DOD/APRA's fuel cell logistic fuel program were presented. In addition to the 29 technical papers, an abstract of an overview of international fuel cell development and commercialization plans in Europe and Japan is included. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  5. Dynamic simulation of a direct carbonate fuel cell power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ernest, J.B. [Fluor Daniel, Inc., Irvine, CA (United States); Ghezel-Ayagh, H.; Kush, A.K. [Fuel Cell Engineering, Danbury, CT (United States)

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  6. Operando fuel cell spectroscopy

    Science.gov (United States)

    Kendrick, Ian Michael

    The active state of a catalyst only exists during catalysis (1) provided the motivation for developing operando spectroscopic techniques. A polymer electrolyte membrane fuel cell (PEMFC) was designed to interface with commercially available instruments for acquisition of infrared spectra of the catalytic surface of the membrane electrode assembly (MEA) during normal operation. This technique has provided insight of the complex processes occurring at the electrode surface. Nafion, the solid electrolyte used in most modern-day polymer electrolyte membrane fuel cells (PEMFC), serves many purposes in fuel cell operation. However, there is little known of the interface between Nafion and the electrode surface. Previous studies of complex Stark tuning curves of carbon monoxide on the surface of a platinum electrode were attributed the co-adsorption of bisulfite ions originating from the 0.5M H2SO4 electrolyte used in the study(2). Similar tuning curves obtained on a fuel cell MEA despite the absence of supplemental electrolytes suggest the adsorption of Nafion onto platinum (3). The correlation of spectra obtained using attenuated total reflectance spectroscopy (ATR) and polarization modulated IR reflection-absorption spectroscopy (PM-IRRAS) to a theoretical spectrum generated using density functional theory (DFT) lead to development of a model of Nafion and platinum interaction which identified participation of the SO3- and CF3 groups in Nafion adsorption. The use of ethanol as a fuel stream in proton exchange membrane fuel cells provides a promising alternative to methanol. Relative to methanol, ethanol has a greater energy density, lower toxicity and can be made from the fermentation of biomass(4). Operando IR spectroscopy was used to study the oxidation pathway of ethanol and Stark tuning behavior of carbon monoxide on Pt, Ru, and PtRu electrodes. Potential dependent products such as acetaldehyde, acetic acid and carbon monoxide are identified as well as previously

  7. Research of platinum catalysts used in PEM fuel cell%质子交换膜燃料电池含Pt催化剂的研究

    Institute of Scientific and Technical Information of China (English)

    雷一杰; 李彤; 顾军; 于涛; 邹志刚

    2011-01-01

    作为质子交换膜燃料电池的主要用催化剂,Pt的研究对质子交换膜燃料电池运用和普及起着至关重要的作用.为此,近年来一系列大量的基于Pt催化剂的不同形貌、不同成分、不同载体的研究大大地推进了Pt催化剂技术的发展.%As the main catalyst used in proton exchange membrane fuel cell(PEMFC), the platinum research plays a vital role on the application and popularization of PEMFC. In this respect, a great deal of effort has been put into the morphologies, ingredients, supporters based on the platinum catalysts in recent years, which has promoted the catalyst technology.

  8. New matrix organisation to make fuel cells a reality

    DEFF Research Database (Denmark)

    Ryde, Marianne Vang

    2006-01-01

    A new matrix organisation provides the framework for a clearly defi ned project: creating a research foundation for the manufacture of effi cient and inexpensive fuel cells.......A new matrix organisation provides the framework for a clearly defi ned project: creating a research foundation for the manufacture of effi cient and inexpensive fuel cells....

  9. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). October 23, 2001 update, no. 2; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 23 octobre 2001, no. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-10-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, transportation systems, hydrogen production and energy in general: Japan foresees 10 million of clean vehicles from now to 2010; the fuel cell: a new clean and efficient energy source; development of biogas production units for fuel cells; thermodynamic analysis of an hydrogen-supplied proton conductive SOFC; materials for the high temperature reduction of oxygen in a SOFC; stability of of SOFC components; LaSrMnO metal interface for SOFCs; oxygen ion transport in SOFCs; test of a fuel cell-powered bus in 2002; comparative study of fuels for the on-board hydrogen production; electricity and hydrogen cogeneration from natural gas without emission; solar thermal decarbonization of natural gas; IFC patent: self-thermal reformer of gas fuel for a fuel cell system; some considerations about water electrolysis from a solution of sodium hydroxide; hydrogen production from high temperature water; a more compact and efficient wind turbine. (J.S.)

  10. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  11. Microbial Fuel Cells: Methodology and Technology

    NARCIS (Netherlands)

    Logan, B.E.; Hamelers, H.V.M.; Rozendal, R.A.; Schröder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K.

    2006-01-01

    Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of differe

  12. SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Motyka, T

    2008-11-11

    A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

  13. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  14. 葡萄糖在微生物燃料电池中的应用研究进展%Progress of Application Research for Glucose in Microbial Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    徐金球; 梁波; 王利军; 白建峰; 黄思超; 汤志涛

    2012-01-01

      The characteristics, development history and working principle of microbial fuel cells is briefly introduced. The progress of application research of glucose as the most common organic substrate in wastewater on production of electricity in microbial fuel cells in recent years is mainly summarized. Finally, it looks forward to the application prospect of microbial fuel cells.%  简要介绍了微生物燃料电池的特点、发展历史与工作原理,重点概括了近年来葡萄糖作为最常用的有机底物在MFC利用废水产电应用中的研究进展,最后展望了微生物燃料电池的应用前景。

  15. High power density carbonate fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  16. Direct formate fuel cells: A review

    Science.gov (United States)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  17. Progress in Electrolyte-Free Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yuzheng eLu

    2016-05-01

    Full Text Available Solid Oxide Fuel Cell (SOFC represents a clean electrochemical energy conversion technology with characteristics of high conversion efficiency and low emissions. It is one of the most important new energy technologies in the future. However, the manufacture of SOFCs based on the structure of anode/electrolyte/cathode is complicated and time-consuming. Thus, the cost for the entire fabrication and technology is too high to be affordable and challenges still hinder commercialization. Recently, a novel type of Electrolyte -free fuel cell (EFFC with single component was invented which could be the potential candidate for the next generation of advanced fuel cells. This paper briefly introduces the EFFC, working principle, performance and advantages with updated research progress. A number of key R&D issues about EFFCs have been addressed and future opportunities and challenges are discussed.

  18. Hybrid Fuel Cell Technology Overview

    Energy Technology Data Exchange (ETDEWEB)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  19. Proceedings of the 5th International workshop on hydrogen and fuel cells WICaC 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The 5th International Workshop on Hydrogen and Fuel Cells - WICaC 2010 aims to bring the most recent advances on fuel cell and hydrogen technologies. The conference will address the trends on hydrogen production, distribution, delivery, storage and infrastructure as well as fuel cell research, development, demonstration and commercialization. Some of the issues addressed at WICaC 2010 are: the official Brazilian hydrogen and fuel cell programs and its participation in the international programs and partnerships such as the IPHE (The International Partnership for Hydrogen and Fuel Cells in the Economy); the integration of renewable energy sources with hydrogen and fuel cell systems; the challenges to deploy the commercialization and use of fuel cells and hydrogen; distributed generation of energy; fuel cell uses in portable devices and in vehicles; life-cycle assessment of fuel cells and hydrogen technologies; environmental aspects; energy efficiency.

  20. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  1. SOME ASPECTS OF FUEL CELLS

    OpenAIRE

    2012-01-01

    This work provides literature data to improve solid oxide fuel cells by a direct methane fuel cell and electrode settings of uninterrupted space. The possibility of electrochemical generators SOFC as synthesis gas from natural gas. We describe progress in the creation of new nanomaterials for components SOFC and modern technologies for their manufacture. Briefly described features of the operation and use molten carbonate fuel cells and their accessories and SOFC in cogeneration system (three...

  2. On direct and indirect methanol fuel cells for transportation applications

    Energy Technology Data Exchange (ETDEWEB)

    Gottesfield, S.

    1996-04-01

    Research on direct oxidation methanol fuel cells (DMFCs) and polymer electrolyte fuel cells (PEFCs) is discussed. Systems considered for transportation applications are addressed. The use of platinum/ruthenium anode electrocatalysts and platinum cathode electrocatalysts in polymer electrolyte DMFCs has resulted in significant performance enhancements.

  3. Proceedings of the third annual fuel cells contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Huber, W.J. (ed.)

    1991-06-01

    The overall objective of this program is to develop the essential technology for private sector characterization of the various fuel cell electrical generation systems. These systems promise high fuel to electricity efficiencies (40 to 60 percent), distinct possibilities for cogeneration applications, modularity of design, possibilities of urban siting, and environmentally benign emissions. The purpose of this meeting was to provide the research and development (R D) participants in the DOE/Fossil Energy-sponsored Fuel Cells Program with the opportunity to present key results of their research and to establish closer business contacts. Major emphasis was on phosphoric acid, molten carbonate, and solid oxide technology efforts. Research results of the coal gasification and gas stream cleanup R D activities pertinent to the Fuel Cells Program were also highlighted. Two hundred seventeen attendees from industry, utilities, academia, and Government participated in this 2-day meeting. Twenty-three papers were given in three formal sessions: molten carbonate fuel cells R D (9 papers), solid oxide fuel cells (8 papers), phosphoric acid fuel cells R D (6 papers). In addition to the papers and presentations, these proceedings also include comments on the Fuel Cells Program from the viewpoint of DOE/METC Fuel Cell Overview by Rita A. Bajura, DOE/METC Perspective by Manville J. Mayfield, Electric Power Research Institute by Daniel M. Rastler, Natural Gas by Hugh D. Guthrie, and Transportation Applications by Pandit G. Patil.

  4. Problem Solving: Polya's Heuristic Applied to Psychological Research.

    Science.gov (United States)

    Damarin, Suzanne K.

    Using the "How to Solve It" list developed by Polya as a vehicle of comparison, research findings and key concepts from the psychological study of problem solving are applied to mathematical problem solving. Hypotheses concerning the interpretation of psychological phenomena for mathematical problem situations are explored. Several areas…

  5. Plant microbial fuel cell applied in wetlands

    NARCIS (Netherlands)

    Wetser, Koen; Liu, Jia; Buisman, Cees; Strik, David

    2015-01-01

    The plant microbial fuel cell (PMFC) has to be applied in wetlands to be able to generate electricity on a large scale. The objective of this PMFC application research is to clarify the differences in electricity generation between a Spartina anglica salt marsh and Phragmites australis peat soil

  6. Past, present and future of fuel cells

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Though the fuel cell was invented by Grove in 1839,there are no commercially viable products at present.The development of fuel cells can be conveniently divided into three phases-exploratory phase(1839-1967).The main emphasis of the work is to increase the area of the three-phase interface at the electrode.The problem was solved by Bacon who invented the dual porosity,biporous nickel electrode.He demonstrated the first H2/O2 fuel cell(180℃,20atm).This cell was later improved and scaled up to power the Apollo lunar mission.However,the cost is too high for civilian applications and we come to the development phase (1967-2001).The main emphasis has been on the use of Teflon bonded electrodes and novel catalysts(PtRu,Pt/WO3 and Pt-Ru/WO3 anode catalyst for the anodic oxidation of impure H2 and methanol.In addition,the recent discovery of gadolinium doped ceria has reduced the operating temperature of solid oxide electrolytes to ~500℃ instead of 1 000℃.From 2001 onwards,we may be entering the breakthrough phase where the most favourable candidates are direct methanol vapor fuel cells and solid oxide electrolyte fuel cells.In the former case,there is a need to reduce the cross-over of methanol to the cathode compartment and the development of air cathode catalyst which are less affected by methanol and in the latter case,there is a need to improve the activity of the anode and cathode catalysts.

  7. Materials for high-temperature fuel cells

    CERN Document Server

    Jiang, San Ping; Lu, Max

    2013-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in High-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in high-temperature fuel cells with emphasis on the most important solid oxide fuel cells. A related book will cover key mater

  8. Materials for low-temperature fuel cells

    CERN Document Server

    Ladewig, Bradley; Yan, Yushan; Lu, Max

    2014-01-01

    There are a large number of books available on fuel cells; however, the majority are on specific types of fuel cells such as solid oxide fuel cells, proton exchange membrane fuel cells, or on specific technical aspects of fuel cells, e.g., the system or stack engineering. Thus, there is a need for a book focused on materials requirements in fuel cells. Key Materials in Low-Temperature Fuel Cells is a concise source of the most important and key materials and catalysts in low-temperature fuel cells. A related book will cover key materials in high-temperature fuel cells. The two books form part

  9. PEM fuel cell degradation

    Energy Technology Data Exchange (ETDEWEB)

    Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

    2010-01-01

    The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. While significant progress has been made in understanding degradation mechanisms and improving materials, further improvements in durability are required to meet commercialization targets. Catalyst and electrode durability remains a primary degradation mode, with much work reported on understanding how the catalyst and electrode structure degrades. Accelerated Stress Tests (ASTs) are used to rapidly evaluate component degradation, however the results are sometimes easy, and other times difficult to correlate. Tests that were developed to accelerate degradation of single components are shown to also affect other component's degradation modes. Non-ideal examples of this include ASTs examining catalyst degradation performances losses due to catalyst degradation do not always well correlate with catalyst surface area and also lead to losses in mass transport.

  10. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  11. ELECTROCHEMISTRY OF FUEL CELL ELECTRODES.

    Science.gov (United States)

    optimization of fuel cell electrodes. Hydrogen oxidation and reduction, the reduction of oxygen, and the oxidation of formic acid, a soluble organic...substance, were selected for these studiees because of their relevance to fuel cell systems and because of their relative simplicity. The electrodes

  12. FUEL CELL MANPACK POWER SOURCE.

    Science.gov (United States)

    battery provides required power density and instantly available power while the fuel cell efficiently converts a primary fuel to electrical power at a...field supply, afford an extremely high energy density making the hybrid fuel cell system competitive on cost per kilowatt hour with standard military zinc-carbon primary batteries. (Author)

  13. Proceedings of the 1999 Review Conference on Fuel Cell Technology

    Energy Technology Data Exchange (ETDEWEB)

    None Available

    2000-06-05

    The 1999 Review Conference on Fuel Cell Technology was jointly sponsored by the U.S. Department of Energy, Federal Energy Technology Center (FETC), the Gas Research Institute (GRI), and the Electric Power Research Institute (EPRI). It was held August 3 to 5 in Chicago, Illinois. The goal of this conference was to provide a forum for reviewing fuel cell research and development (R&D) programs, assist in strategic R&D planning, promote awareness of sponsor activities, and enhance interactions between manufacturers, researchers, and stakeholders. This conference was attended by over 250 representatives from industry, academia, national laboratories, gas and electric utilities, DOE, and other Government agencies. The conference agenda included a keynote session, five presentation sessions, a poster presentation reception, and three breakout sessions. The presentation session topics were DOD Fuel Cell Applications, Low-Temperature Fuel Cell Manufacturers, Low-Temperature Component Research, High-Temperature Fuel Cell Manufacturers, and High-Temperature Component Research; the breakout session topics were Future R&D Directions for Low-Temperature Fuel Cells, Future R&D Directions for High-Temperature Fuel Cells, and a plenary summary session. All sessions were well attended.

  14. Thematic outlook: the technical survey for the fuel cell research network PACO. November 15, 2004 update no. 28; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 15 novembre 2004, no. 28

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells, hydrogen production and storage. Their different titles are given below: 1)commercialization of fuel cells: technical and economical difficulties to the development of a hydrogen basic equipment 2)public directives to promote the acceptance of fuel cells for automotive industry 3)direct alcohol SOFC: current - voltage characteristics and composition of the fuel gas 4)control by the fuzzy logic method of an autonomous or connected to the electric system SOFC 5)determination of the energetic yield of a DMFC by a fuel circulation system 6)an hybrid system SOFC-Stirling motor of 5 kW 7)control system of PEM type APU feed with gasoline 8)development of a DMFC generator of 2W 8)analysis of the life cycle of the hydrogen production processes 9)hydrogen production for fuel cells by ethanol catalytic steam reforming 10)methanol production from coal: what are the aims of the research? 11)application of a membrane electrochemical reactor to the hydrogen production process by iodine-sulfur thermochemical cycles 12)hydrogen storage in carbonated nano-materials: possibilities and challenges. The references of these articles are detailed. (O.M.)

  15. Thematic outlook: the technical outlook for the fuel cell research network (PACO). December 22, 2003 update no. 19; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 22 decembre 2003, no. 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of several recent articles and patents are gathered here. They deal with fuel cells, the means of transport, the hydrogen production and with the different new other energies. Their different titles are given below : 1)gas turbine/fuel cell arrangement 2)design and fabrication of a SOFC by CERAMIC FUEL CELLS 3)a 'microbial' fuel cell able of converting glucose in electricity with high yields and velocity 4)a hybrid system: combined cycle gas turbine - multi-stage SOFC 5)a SOFC as auxiliary generator of electricity in an aircraft 6)recent development results of fuel in the Juelich research center 7)state of development of the SOFC at Haldor Topsoe/Risoe 8)a cost/advantage analysis of 'clean cars': methodology and applications to the electric cars 9)the generation of current and heat in a aerostat 10)hydrogen free from CO, produced from bio-ethanol steam reforming on cobalt catalysts supported on ZnO. Effect of the metallic precursor 11)device and method based on the cyclic auto-thermal reforming 12)the ammonia, source of hydrogen for a hybrid system: alkaline fuel/battery 13)effect of the Nafion on the activity of Pt-Ru electrocatalysts for the methanol electro-oxidation 14)'VISION 21': an integration of systems based on coal. The references of these articles and patents are detailed. (O.M.)

  16. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  17. A CFD analysis of transport phenomena and electrochemical reactions in a tubular-shaped PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Al-Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    A fuel cell is most interesting new power source because it solves not only the environment problem but also natural resource exhaustion problem. CFD modeling and simulation for heat and mass transport in PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a tubular-shaped proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a tubular-shaped PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  18. PEM fuel cells thermal and water management fundamentals

    CERN Document Server

    Wang, Yun; Cho, Sung Chan

    2014-01-01

    Polymer Electrolyte Membrane (PEM) fuel cells convert chemical energy in hydrogen into electrical energy with water as the only by-product. Thus, PEM fuel cells hold great promise to reduce both pollutant emissions and dependency on fossil fuels, especially for transportation-passenger cars, utility vehicles, and buses-and small-scale stationary and portable power generators. But one of the greatest challenges to realizing the high efficiency and zero emissions potential of PEM fuel cells technology is heat and water management. This book provides an introduction to the essential concepts for effective thermal and water management in PEM fuel cells and an assessment on the current status of fundamental research in this field. The book offers you: An overview of current energy and environmental challenges and their imperatives for the development of renewable energy resources, including discussion of the role of PEM fuel cells in addressing these issues; Reviews of basic principles pertaining to PEM fuel cel...

  19. Proceedings -- US Russian workshop on fuel cell technologies

    Energy Technology Data Exchange (ETDEWEB)

    Baker, B.; Sylwester, A. [comps.

    1996-04-01

    On September 26--28, 1995, Sandia National Laboratories sponsored the first Joint US/Russian Workshop on Fuel Cell Technology at the Marriott Hotel in Albuquerque, New Mexico. This workshop brought together the US and Russian fuel cell communities as represented by users, producers, R and D establishments and government agencies. Customer needs and potential markets in both countries were discussed to establish a customer focus for the workshop. Parallel technical sessions defined research needs and opportunities for collaboration to advance fuel cell technology. A desired outcome of the workshop was the formation of a Russian/American Fuel Cell Consortium to advance fuel cell technology for application in emerging markets in both countries. This consortium is envisioned to involve industry and national labs in both countries. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  20. 1986 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  1. PEM Fuel Cells - Fundamentals, Modeling and Applications

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2013-01-01

    Full Text Available Part I: Fundamentals Chapter 1: Introduction. Chapter 2: PEM fuel cell thermodynamics, electrochemistry, and performance. Chapter 3: PEM fuel cell components. Chapter 4: PEM fuel cell failure modes. Part II: Modeling and Simulation Chapter 5: PEM fuel cell models based on semi-empirical simulation. Chapter 6: PEM fuel cell models based on computational fluid dynamics. Part III: Applications Chapter 7: PEM fuel cell system design and applications.

  2. Research and development of molten carbonate fuel cell power generation system. ; Supporting studies. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Support kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This paper presents a report on supporting studies as part of researches on a molten carbonate fuel cell power generation system, as a NEDO fiscal 1988-1992 report. With respect to developing the material technologies, iron-based and nickel-based cathodes have been fabricated on a trial basis to compare and discuss their polarization characteristics; optimal conditions for hydrogen reduction when Ni-Al anodes are manufactured have been elucidated; Ni-Cr alloy thin separators have been fabricated on a trial basis; and prototype ceramics materials (cathodes and electrolyte plates) have been manufactured and evaluated. These activities have provided a large number of useful findings. In addition, developments have been progressed in respective areas of coal gas handling technologies, capacity increasing technologies, and high-performance gas separation and purification technologies. In the coal gas handling technologies, for example, influences of HCl and NH3 on desulfurization using TiO2-ZnO have been investigated to have elucidated that NH3 has no influence whatsoever. The capacity increasing technology development has discussed a system configuration of coal gas MCFC power generation of 500-MW class, and device sizes. 3 figs.

  3. Research Progress of Plant Type Microbial Fuel Cell%植物型微生物燃料电池研究进展

    Institute of Scientific and Technical Information of China (English)

    许鹏; 许丹; 张义; 夏世斌; 吴振斌

    2014-01-01

    The combination of the microbial fuel cell with aquatic plants(PMFC)is a new low -carbon environmental pro-tection technology ,it is an important innovation in the field of water pollution control and has raised widespread concern in the world .This paper reviews the current research situation about PMFC ,summarizes the principles of different types of PMF ,analyzes the factors influencing the power production of the PMFC and finally prospects the future application ,as well as working directions of this system .%微生物燃料电池(MFC )与水生植物相耦合,构成植物型微生物燃料电池(PMFC )系统是一项全新的低碳环保产能技术,是水污染控制领域的一项重要技术创新,已在国内外引起广泛关注。对植物型MFC的研究现状进行了综述,总结了不同类型PMFC的工作原理并分析了影响其产电的因素,最后对该系统未来的应用及研究方向进行了展望。

  4. Fuel cell operation. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The bibliography contains citations concerning operation and use of fuel cells. Operation and control of solid oxide and molten carbonate fuel cells are described. Research issues governing alternate types of fuel cells are discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Climate Change Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  6. Thermally regenerative fuel cells

    Science.gov (United States)

    Ludwig, F. A.; Kindler, A.; McHardy, J.

    1991-10-01

    The three phase project was undertaken to investigate solventless ionic liquids as possible working fluids for a new type of thermally regenerative fuel cell (TRFC). The heart of the new device, invented at Hughes Aircraft Company in 1983, is an electrochemical concentration cell where acid and base streams react to produce electrical energy. Thermal energy is then used to decompose the resulting salts and regenerate the cell reactants. In principle, a TRFC can be matched to any source of thermal energy simply by selecting working fluids with the appropriate regeneration temperature. However, aqueous working fluids (the focus of previous studies) impose limitations on both the operating temperatures and the achievable energy densities. It was the need to overcome these limitations that prompted the present investigation. Specific aims were to identify possible working fluids for TRFC systems with both low and high regeneration temperatures. A major advantage of our aqueous-fluid TRFC systems has been the ability to use hydrogen electrodes. The low activation and mass transfer losses of these electrodes contribute substantially to overall system efficiency.

  7. Organic fuel cells and fuel cell conducting sheets

    Science.gov (United States)

    Masel, Richard I.; Ha, Su; Adams, Brian

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  8. Polymer electrolyte fuel cells physical principles of materials and operation

    CERN Document Server

    Eikerling, Michael

    2014-01-01

    The book provides a systematic and profound account of scientific challenges in fuel cell research. The introductory chapters bring readers up to date on the urgency and implications of the global energy challenge, the prospects of electrochemical energy conversion technologies, and the thermodynamic and electrochemical principles underlying the operation of polymer electrolyte fuel cells. The book then presents the scientific challenges in fuel cell research as a systematic account of distinct components, length scales, physicochemical processes, and scientific disciplines. The main part of t

  9. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  10. The promise of fuel cell-based automobiles

    Indian Academy of Sciences (India)

    A K Shukla; C L Jackson; K Scott

    2003-02-01

    Fuel cell-based automobiles have gained attention in the last few years due to growing public concern about urban air pollution and consequent environmental problems. From an analysis of the power and energy requirements of a modern car, it is estimated that a base sustainable power of $ca$. 50 kW supplemented with short bursts up to 80 kW will suffice in most driving requirements. The energy demand depends greatly on driving characteristics but under normal usage is expected to be 200 Wh/km. The advantages and disadvantages of candidate fuel-cell systems and various fuels are considered together with the issue of whether the fuel should be converted directly in the fuel cell or should be reformed to hydrogen onboard the vehicle. For fuel cell vehicles to compete successfully with conventional internal-combustion engine vehicles, it appears that direct conversion fuel cells using probably hydrogen, but possibly methanol, are the only realistic contenders for road transportation applications. Among the available fuel cell technologies, polymer–electrolyte fuel cells directly fueled with hydrogen appear to be the best option for powering fuel cell vehicles as there is every prospect that these will exceed the performance of the internal-combustion engine vehicles but for their first cost. A target cost of $ 50/kW would be mandatory to make polymer–electrolyte fuel cells competitive with the internal combustion engines and can only be achieved with design changes that would substantially reduce the quantity of materials used. At present, prominent car manufacturers are deploying important research and development efforts to develop fuel cell vehicles and are projecting to start production by 2005.

  11. Proceedings of the Fuel Cells `97 Review Meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-01-01

    The Federal Energy Technology Center (FETC) sponsored the Fuel Cells '97 Review Meeting on August 26-28, 1997, in Morgantown, West Virginia. The purpose of the meeting was to provide an annual forum for the exchange of ideas and discussion of results and plans related to the research on fuel cell power systems. The total of almost 250 conference participants included engineers and scientists representing utilities, academia, and government from the U.S. and eleven other countries: Canada, China, India, Iran, Italy, Japan, Korea, Netherlands, Russia, Taiwan, and the United Kingdom. On first day, the conference covered the perspectives of sponsors and end users, and the progress reports of fuel-cell developers. Papers covered phosphoric, carbonate, and solid oxide fuel cells for stationary power applications. On the second day, the conference covered advanced research in solid oxide and other fuel cell developments. On the third day, the conference sponsored a workshop on advanced research and technology development. A panel presentation was given on fuel cell opportunities. Breakout sessions with group discussions followed this with fuel cell developers, gas turbine vendors, and consultants.

  12. Fuel cell with internal flow control

    Science.gov (United States)

    Haltiner, Jr., Karl J.; Venkiteswaran, Arun [Karnataka, IN

    2012-06-12

    A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

  13. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  14. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  15. Metrology for Fuel Cell Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Stocker, Michael [National Inst. of Standards and Technology, Gaithersburg, MD (United States); Stanfield, Eric [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    2015-02-04

    The project was divided into three subprojects. The first subproject is Fuel Cell Manufacturing Variability and Its Impact on Performance. The objective was to determine if flow field channel dimensional variability has an impact on fuel cell performance. The second subproject is Non-contact Sensor Evaluation for Bipolar Plate Manufacturing Process Control and Smart Assembly of Fuel Cell Stacks. The objective was to enable cost reduction in the manufacture of fuel cell plates by providing a rapid non-contact measurement system for in-line process control. The third subproject is Optical Scatterfield Metrology for Online Catalyst Coating Inspection of PEM Soft Goods. The objective was to evaluate the suitability of Optical Scatterfield Microscopy as a viable measurement tool for in situ process control of catalyst coatings.

  16. Less-expensive & Environment-friendly Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ The research and develop ment of electrochemical energy conversion and storage devices, including primary and secondary batteries, supercapacitors, fuel cells and dye-sensitized solar cells (DSSC), are of significance for easing the energy crisis and raising living standards.

  17. Self Regulating Fiber Fuel Cell

    Science.gov (United States)

    2010-08-16

    energy numbers are 2.3X and 5.7X the theoretical values for lithium thionyl chloride respectively (1100 Whr/liter and 590 Whr/kg), which has the...REPORT Self Regulating Fiber Fuel Cell 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Advances in lithium primary battery technology, which serves as the...Prescribed by ANSI Std. Z39.18 - 16-Aug-2010 Self Regulating Fiber Fuel Cell Report Title ABSTRACT Advances in lithium primary battery technology

  18. Micro fuel cell fabrication technologies

    OpenAIRE

    Scotti, Gianmario

    2014-01-01

    Fuel cells are established devices for high efficiency conversion of chemical into electrical energy. Microfabricated fuel cells (MFC) promise higher energy density compared to rechargeable batteries currently used in portable applications (mobile phones, tablets, laptops etc.). In this work new fabrication technologies have been developed to make MFCs more viable alternatives to batteries. Like other microfluidic devices, MFCs can be fabricated using a number of different techniques, each...

  19. The Configuration Research of the Battery and Fuel Cell in Hybrid Power Generation System of Photovoltaic and Fuel Cell%太阳能光伏-燃料电池联合发电系统蓄电池和燃料电池的配置研究

    Institute of Scientific and Technical Information of China (English)

    王侃宏; 侯佳松; 肖静静; 戚高启; 胡翠华; 白华夏; 刘少亮

    2011-01-01

    建立了联合系统的太阳能光伏阵列、燃料电池、电解槽、蓄电池等模块的数学模型,并对每个模块进行matlab/simulink仿真模拟,重点模拟了在1 kW光伏条件下,蓄电池、燃料电池以不同功率(0 W/1000 W,200 W/800W,500 W/500 W,800 W/200 W,1000 W/0 W)分配时,输出功率特性以及各个情况下的费用问题,并通过实验进行验证,可知蓄电池、燃料电池按照200 W/800 W功率分配时,其效率、费用总体优于其他方案.%This paper established the mathematical model of a hybrid system, which includes solar photovoltaic array, fuel cells, electrolytic cell, batteries. Each module was simulated through matlab/simulink, and the output power characteristics, as well as the expense problem were simulated under the conditions that the photovoltaic power was lkw, and battery, fuel cell with different power allocation, namely, 0 W/1000 W, 200 W/800 W, 500 W/500 W, 800 W/200 W, 1000 W/0 W. Finally, through experimental research , a conclusion can be drawn that when battery was 200 W, and fuel cells was 800 W, the whole efficiency and the cost were superior to other schemes.

  20. PEM fuel cell modeling and simulation using Matlab

    CERN Document Server

    Spiegel, Colleen

    2011-01-01

    Although, the basic concept of a fuel cell is quite simple, creating new designs and optimizing their performance takes serious work and a mastery of several technical areas. PEM Fuel Cell Modeling and Simulation Using Matlab, provides design engineers and researchers with a valuable tool for understanding and overcoming barriers to designing and building the next generation of PEM Fuel Cells. With this book, engineers can test components and verify designs in the development phase, saving both time and money.Easy to read and understand, this book provides design and modelling tips for

  1. 14 CFR 31.45 - Fuel cells.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel cells. 31.45 Section 31.45 Aeronautics... STANDARDS: MANNED FREE BALLOONS Design Construction § 31.45 Fuel cells. If fuel cells are used, the fuel cells, their attachments, and related supporting structure must be shown by tests to be capable of...

  2. Results of 200 KW fuel cell evaluation programs

    Energy Technology Data Exchange (ETDEWEB)

    Torrey, J.M.; Merten, G.P. [SAIC, San Diego, CA (United States); Binder, M.J. [Army Construction Engineering Research Labs., Champaign, IL (United States)] [and others

    1996-12-31

    Science Applications International Corporation (SAIC) has installed six monitoring systems on ONSI Corporation 200 kW phosphoric acid fuel cells. Three of the systems were installed for the U.S. Army Construction Engineering Research Laboratories (USACERL) which is coordinating the Department of Defense (DoD) fuel cell Demonstration Program and three were installed under a contract with the New York State Energy Research and Development Authority (NYSERDA). Monitoring of the three NYSERDA sites has been completed. Monitoring systems for the DoD fuel cells were installed in August, 1996 and thus no operating data was available at the time of this writing, but will be presented at the Fuel Cell Seminar. This paper will present the monitoring configuration and research approach for each program. Additionally, summary performance data is presented for the completed NYSERDA program.

  3. FUEL CELL SEBAGAI PENGGANTI MOTOR BAKAR PADA KENDARAAN

    Directory of Open Access Journals (Sweden)

    Hendrata Suhada

    2001-01-01

    Full Text Available Cars powered by engine is one of transport vehicle used in developed countries, which caused ecological problem to the environment, the effect of this problem is faced nowadays especially in big cities. Since medio of 20th century many researches and developments have been done, to cope with that problem, to have less emission in the environment. One of the equipment to replace engines, have been developed since the last decade of 20th century, give a lot of advantages called fuel cell, which can produce energy by electric-chemically process. Due to the differences of fuel cell compare with conventional engine, vehicles using fuel cell has to be redesign, some components have to be changed radically, like the fuel system, drive train and control system. The result of researches and developments which have been done, promise a lot of advantages, which conventional engines can not give, therefore it is probable that fuel cell will replace conventional engine. Abstract in Bahasa Indonesia : Kendaraan bermotor yang merupakan alat transportasi yang sangat dibutuhkan oleh masyarakat di negara-negara modern, menimbulkan masalah besar terhadap lingkungan dan akibat polusinya sudah sangat terasa, terutama di kota-kota besar. Untuk menanggulangi masalah ini, maka sejak pertengahan abad 20 telah banyak dilakukan tindakan-tindakan yang bertujuan mengurangi atau melenyapkan pengaruh gas yang ditimbulkan oleh motor bakar. Sejak akhir abad 20 telah mulai dikembangkan alat untuk menggantikan motor bakar yang ternyata mempunyai beberapa keuntungan yang sangat menonjol, yaitu fuel cell yang dapat menghasilkan energi melalui proses elektro kimiawi. Berhubung fuel cell sangat berbeda dari motor bakar, maka kendaraan yang menggunakannya mengalami perubahan komponen yang cukup radikal diantaranya sistem bahan bakar, sistem penerus energi dan sistem kontrol. Dari hasil pengembangan dan penelitian yang telah dilakukan ternyata jenis fuel cell ini sangat menjanjikan

  4. Multiply manifolded molten carbonate fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.; Roche, M.F.; Geyer, H.K.; Johnson, S.A.

    1994-08-01

    This study consists of research and development activities related to the concept of a molten carbonate fuel cell (MCFC) with multiple manifolds. Objective is to develop an MCFC having a higher power density and a longer life than other MCFC designs. The higher power density will result from thinner gas flow channels; the extended life will result from reduced temperature gradients. Simplification of the gas flow channels and current collectors may also significantly reduce cost for the multiply manifolded MCFC.

  5. Development of internal reforming carbonate fuel cell stack technology

    Energy Technology Data Exchange (ETDEWEB)

    Farooque, M.

    1990-10-01

    Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

  6. Manufacturing technologies for direct methanol fuel cells (DMFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Gluesen, Andreas; Mueller, Martin; Kimiaie, Nicola; Konradi, Irene; Mergel, Juergen; Stolten, Detlef [Forschungszentrum Juelich (Germany). Inst. of Energy Research - IEF-3: Fuel Cells

    2010-07-01

    Fuel cell research is focussing on increasing power density and lifetime and reducing costs of the whole fuel cell system. In order to reach these aims, it is necessary to develop appropriately designed components outgoing from high quality materials, a suitable manufacturing process and a well balanced system. To make use of the advantages that can be obtained by developing production technology, we are mainly improving the coating and assembling techniques for polymer electrolyte fuel cells, especially Direct Methanol Fuel Cells (DMFCs). Coating is used for making fuel cell electrodes as well as highly conductive contacts. Assembling is used to join larger components like membrane electrode assemblies (MEAs) and bipolar units consisting of flow fields and the separator plate, as well as entire stacks. On the one hand a reproducible manufacturing process is required to study fine differences in fuel cell performance affected by new materials or new designs. On the other hand a change in each parameter of the manufacturing process itself can change product properties and therefore affect fuel cell performance. As a result, gas diffusion electrodes (GDEs) are now produced automatically in square-meter batches, the hot-pressing of MEAs is a fully automated process and by pre-assembling the number of parts that have to be assembled in a stack was reduced by a factor of 10. These achievements make DMFC manufacturing more reproducible and less error-prone. All these and further developments of manufacturing technology are necessary to make DMFCs ready for the market. (orig.)

  7. Design and performance of a prototype fuel cell powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.A.; Chamberlin, C.E. [Humboldt State Univ., Arcata, CA (United States)

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  8. Estimation of fuel cell operating time for predictive maintenance strategies

    Energy Technology Data Exchange (ETDEWEB)

    Onanena, R. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); FEMTO-ST (UMR CNRS 6174), ENISYS department, University of Franche-Comte (France); INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); Oukhellou, L. [INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); CERTES Universite Paris 12, 61 avenue du Gal. de Gaulle, 94100 Creteil (France); Candusso, D. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); Same, A.; Aknin, P. [INRETS - LTN, ' ' Le Descartes 2' ' , 2 rue de la butte verte, 93166 Noisy-le-Grand Cedex (France); Hissel, D. [FC LAB, Techn' Hom, rue Thierry Mieg, 90010 Belfort Cedex (France); FEMTO-ST (UMR CNRS 6174), ENISYS department, University of Franche-Comte (France)

    2010-08-15

    Durability is one of the limiting factors for spreading and commercialization of fuel cell technology. That is why research to extend fuel cell durability is being conducted world wide. A pattern-recognition approach aiming to estimate fuel cell operating time based on electrochemical impedance spectroscopy measurements is presented here. It is based on extracting the features from the impedance spectra. For that purpose, two approaches have been investigated. In the first one, particular points of the spectrum are empirically extracted as features. In the second approach, a parametric modeling is performed to extract features from both the real and the imaginary parts of the impedance spectrum. In particular, a latent regression model is used to automatically split the spectrum into several segments that are approximated by polynomials. The number of segments is adjusted taking into account the a priori knowledge about the physical behavior of the fuel cell components. Then, a linear regression model using different subsets of extracted features is employed for an estimate of the fuel cell operating time. The effectiveness of the proposed approach is evaluated on an experimental dataset. Allowing the estimation of the fuel cell operating time, and consequently its remaining duration life, these results could lead to interesting perspectives for predictive fuel cells maintenance policy. (author)

  9. Environmental benefits of transport and stationary fuel cells

    Science.gov (United States)

    Hart, David; Hörmandinger, Günter

    The potential environmental benefits of using fuel cells in cars, buses and stationary combined heat and power (CHP) plants of different sizes have not been well-researched. This environmental analysis was conducted for the UK on a `full fuel cycle' basis, encompassing all greenhouse gas and regulated pollutant emissions for the supply chain and end-use technology under consideration. Solid polymer fuel cells (SPFCs) with methanol or natural gas reformers were analysed for cars, SPFCs and phosphoric acid fuel cells (PAFCs) with on-board hydrogen for buses. CHP plants were PAFCs or solid oxide fuel cells (SOFCs). Each option was compared with one or more conventional technologies. In all cases fuel cell technologies have substantially reduced emissions in comparison with conventional technologies. Regulated emissions are lowest, by up to two orders of magnitude, and those that do occur are primarily in the fuel supply chain. The fuel cell technologies are more efficient in all cases, and carbon dioxide (CO2) emissions are reduced broadly in line with energy savings. Methane emissions increase due to fuel switching, e.g. from petrol to natural gas powered buses, but from a very low base. The study pinpoints some areas in which alternative approaches could be made - the methods for generating and transporting hydrogen have a significant bearing on energy consumption and emissions. However, it is clear that from an overall emissions perspective the use of fuel cells in transport and power generation is highly beneficial.

  10. Design and performance of a prototype fuel cell powered vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, P.A.; Chamberlin, C.E. [Humboldt State Univ., Arcata, CA (United States)

    1996-12-31

    The Schatz Energy Research Center (SERC) is now engaged in the Palm Desert Renewable Hydrogen Transportation System Project. The Project involves a consortium which includes the City of Palm Desert, SERC, the U.S. Department of Energy, the South Coast Air Quality Management District, and Sandia and Lawrence Livermore National Laboratories. Its goal to develop a clean and sustainable transportation system for a community will be accomplished by producing a fleet of fuel cell vehicles, installing a refueling infrastructure utilizing hydrogen generated from solar and wind power, and developing and staffing a fuel cell service and diagnostic center. We will describe details of the project and performance goals for the fuel cell vehicles and associated peripheral systems. In the past year during the first stage in the project, SERC has designed and built a prototype fuel cell powered personal utility vehicle (PUV). These steps included: (1) Designing, building, and testing a 4.0 kW proton exchange membrane (PEM) fuel cell as a power plant for the PUV. (2) Designing, building and testing peripherals including the air delivery, fuel storage/delivery, refueling, water circulation, cooling, and electrical systems. (3) Devising a control algorithm for the fuel cell power plant in the PUV. (4) Designing and building a test bench in which running conditions in the PUV could be simulated and the fuel cell and its peripheral systems tested. (5) Installing an onboard computer and associated electronics into the PUV (6) Assembling and road testing the PUV.

  11. Fuel cell and hydrogen network North Rhine-Westphalia

    Energy Technology Data Exchange (ETDEWEB)

    Ziolek, A.; Koch, F. [Energy Agency NRW, Dusseldorf (Germany). Fuel Cell and Hydrogen Network

    2007-07-01

    The Fuel Cell and Hydrogen Network North-Rhine-Westphalia (FCHN NRW) is a non-profit regional technology platform whose mandate is to commercialize fuel cell technologies and establish a sustainable hydrogen economy. The FCHN NRW aims to position the North Rhine-Westphalia region as international centre for fuel cell and hydrogen technology. The network consists of more 300 members from research institutes, government agencies, and private businesses who are encouraged to adapt their products to the special needs of fuel cell systems. The FCHN NRW also aids in the procurement of project partners and provides advice on funding. The region currently has a 240 km hydrogen pipeline connecting several chemical plants and producers and consumers of hydrogen. Approximately 1250 GWh of hydrogen are produced in the region, the majority of which is consumed. The network is also involved in a European-wide project to deploy fuel cell vehicles and create a hydrogen infrastructure. Other projects in the past have included the development of 10 kW fuel cell midi buses; fuel cell cargo-bikes; mobile filling stations; and outdoor terminals. The network is now involved in a national 10 year program in Germany which aims to prepare the country for a hydrogen economy. 7 figs.

  12. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). December 7, 2001 update, no. 3; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 7 decembre 2001, no. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, hydrogen production and hydrogen storage, and of renewable energies in general: studies of the humidification of PEMFCs; chemical engineering in the automotive industry; environmental impact of the manufacturing of tubular and planar SOFCs; fullerenes for portable fuel cells; hydrogen fuel produced from the gasification of solid municipal fuels; required electric power for a large-scale production of hydrogen for vehicles; hydrogen produced from methane decomposition: an application for the decarbonization of fossil fuels; production of synthesis gas from ethanol vapo-reforming; electrochemical characterization of the hydrogen adsorption capacity of carbon nano-tubes prepared by chemical vapor deposition (CVD), electric arc and laser ablation techniques; hydrogen storage in ultrasound wave processed carbonized materials; hydrogen storage in fuel cell-powered vehicles; year 2000 status of renewable energies in France; renewable energy sources: too insufficient efforts made in the UK; wind turbine in the country of wind mills (Netherlands); a research institute for wind energy in the Netherlands; feasibility study of underwater CO{sub 2} storage. (J.S.)

  13. Thematic outlook. Technical outlook for the fuel-cell research network (PACo). December 7, 2001 update, no. 3; Veille thematique. La veille technique pour le reseau PACo. Actualisation du 7 decembre 2001, no. 3

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    This report brings together a compilation of abstracts of articles about some recent research works carried out in the domain of fuel cells, hydrogen production and hydrogen storage, and of renewable energies in general: studies of the humidification of PEMFCs; chemical engineering in the automotive industry; environmental impact of the manufacturing of tubular and planar SOFCs; fullerenes for portable fuel cells; hydrogen fuel produced from the gasification of solid municipal fuels; required electric power for a large-scale production of hydrogen for vehicles; hydrogen produced from methane decomposition: an application for the decarbonization of fossil fuels; production of synthesis gas from ethanol vapo-reforming; electrochemical characterization of the hydrogen adsorption capacity of carbon nano-tubes prepared by chemical vapor deposition (CVD), electric arc and laser ablation techniques; hydrogen storage in ultrasound wave processed carbonized materials; hydrogen storage in fuel cell-powered vehicles; year 2000 status of renewable energies in France; renewable energy sources: too insufficient efforts made in the UK; wind turbine in the country of wind mills (Netherlands); a research institute for wind energy in the Netherlands; feasibility study of underwater CO{sub 2} storage. (J.S.)

  14. 1990 fuel cell seminar: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  15. High temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    This book is a comprehensive review of high-temperature polymer electrolyte membrane fuel cells (PEMFCs). PEMFCs are the preferred fuel cells for a variety of applications such as automobiles, cogeneration of heat and power units, emergency power and portable electronics. The first 5 chapters...... of the book describe rationalization and illustration of approaches to high temperature PEM systems. Chapters 6 - 13 are devoted to fabrication, optimization and characterization of phosphoric acid-doped polybenzimidazole membranes, the very first electrolyte system that has demonstrated the concept...... of and motivated extensive research activity in the field. The last 11 chapters summarize the state-of-the-art of technological development of high temperature-PEMFCs based on acid doped PBI membranes including catalysts, electrodes, MEAs, bipolar plates, modelling, stacking, diagnostics and applications....

  16. From fuel cells to batteries: Synergies, scales and simulation methods

    OpenAIRE

    Bessler, Wolfgang G.

    2011-01-01

    The recent years have shown a dynamic growth of battery research and development activities both in academia and industry, supported by large governmental funding initiatives throughout the world. A particular focus is being put on lithium-based battery technologies. This situation provides a stimulating environment for the fuel cell modeling community, as there are considerable synergies in the modeling and simulation methods for fuel cells and batteries. At the same time, batter...

  17. Design & development of innovative proton exchange membrane fuel cells

    OpenAIRE

    Carton, James

    2011-01-01

    The research undertaken in this thesis is concerned with the design and development of Proton Exchange Membrane (PEM) fuel cells and provides a body of information for continued PEM fuel cell development, which will ideally aid in the future commercialisation of these electrochemical devices. Through a combination of numerical analysis, computational fluid dynamic modelling and experimental work, effective flow plate designs, flow field configurations and materials are analysed and new inn...

  18. Microalgae-microbial fuel cell: A mini review.

    Science.gov (United States)

    Lee, Duu-Jong; Chang, Jo-Shu; Lai, Juin-Yih

    2015-12-01

    Microalgae-microbial fuel cells (mMFCs) are a device that can convert solar energy to electrical energy via biological pathways. This mini-review lists new research and development works on microalgae processes, microbial fuel cell (MFC) processes, and their combined version, mMFC. The substantial improvement and technological advancement are highlighted, with a discussion on the challenges and prospects for possible commercialization of mMFC technologies.

  19. Materials Challenges for Automotive PEM Fuel Cells

    Science.gov (United States)

    Gasteiger, Hubert

    2004-03-01

    Over the past few years, significant R efforts aimed at meeting the challenging cost and performance targets required for the use of Polymer Electrolyte Membrane (PEM) fuel cells in automotive applications. Besides engineering advances in bipolar plate materials and design, the optimization of membrane-electrode assemblies (MEAs) was an important enabler in reducing the cost and performance gaps towards commercial viability for the automotive market. On the one hand, platinum loadings were reduced from several mgPt/cm2MEA [1] to values of 0.5-0.6 mgPt/cm2MEA in current applications and loadings as low as 0.25 mgPt/cm2MEA have been demonstrated on the research level [2]. On the other hand, implementation of thin membranes (20-30 micrometer) [3, 4] as well as improvements in diffusion medium materials, essentially doubled the achievable power density of MEAs to ca. 0.9 W/cm2MEA (at 0.65 V) [5], thereby not only reducing the size of a PEMFC fuel cell system, but also reducing its overall materials cost (controlled to a large extent by membrane and Pt-catalyst cost). While this demonstrated a clear path towards automotive applications, a renewed focus of R efforts is now required to develop materials and fundamental materials understanding to assure long-term durability of PEM fuel cells. This presentation therefore will discuss the state-of-the-art knowledge of catalyst, catalyst-support, and membrane degradation mechanisms. In the area of Pt-catalysts, experience with phosphoric acid fuel cells (PAFCs) has shown that platinum sintering leads to long-term performance losses [6]. While this is less critical at the lower PEMFC operating temperatures (200C), very little is known about the dependence of Pt-sintering on temperature, cell voltage, and catalyst type (i.e., Pt versus Pt-alloys) and will be discussed here. Similarly, carbon-support corrosion can contribute significantly to voltage degradation in PAFCs [7], and even in the PEMFC environment more corrosion

  20. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  1. Cornell Fuel Cell Institute: Materials Discovery to Enable Fuel Cell Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Abruna, H.D.; DiSalvo, Francis J.

    2012-06-29

    The discovery and understanding of new, improved materials to advance fuel cell technology are the objectives of the Cornell Fuel Cell Institute (CFCI) research program. CFCI was initially formed in 2003. This report highlights the accomplishments from 2006-2009. Many of the grand challenges in energy science and technology are based on the need for materials with greatly improved or even revolutionary properties and performance. This is certainly true for fuel cells, which have the promise of being highly efficient in the conversion of chemical energy to electrical energy. Fuel cells offer the possibility of efficiencies perhaps up to 90 % based on the free energy of reaction. Here, the challenges are clearly in the materials used to construct the heart of the fuel cell: the membrane electrode assembly (MEA). The MEA consists of two electrodes separated by an ionically conducting membrane. Each electrode is a nanocomposite of electronically conducting catalyst support, ionic conductor and open porosity, that together form three percolation networks that must connect to each catalyst nanoparticle; otherwise the catalyst is inactive. This report highlights the findings of the three years completing the CFCI funding, and incudes developments in materials for electrocatalyts, catalyst supports, materials with structured and functional porosity for electrodes, and novel electrolyte membranes. The report also discusses developments at understanding electrocatalytic mechanisms, especially on novel catalyst surfaces, plus in situ characterization techniques and contributions from theory. Much of the research of the CFCI continues within the Energy Materials Center at Cornell (emc2), a DOE funded, Office of Science Energy Frontier Research Center (EFRC).

  2. Fuel cell vehicles: Status 2007

    Science.gov (United States)

    von Helmolt, Rittmar; Eberle, Ulrich

    Within the framework of this paper, a short motivation for hydrogen as a fuel is provided and recent developments in the field of fuel cell vehicles are described. In particular, the propulsion system and its efficiency, as well as the integration of the hydrogen storage system are discussed. A fuel cell drivetrain poses certain requirements (concerning thermodynamic and engineering issues) on the operating conditions of the tank system. These limitations and their consequences are described. For this purpose, conventional and novel storage concepts will be shortly introduced and evaluated for their automotive viability and their potential impact. Eventually, GM's third generation vehicles (i.e. the HydroGen3) are presented, as well as the recent 4th generation Chevrolet Equinox Fuel Cell SUV. An outlook is given that addresses cost targets and infrastructure needs.

  3. The Substitute Energy of 21st Century, Fuel Cell RPG

    Energy Technology Data Exchange (ETDEWEB)

    Editor [Korea Energy Management Corporation, Yongin (Korea)

    2001-08-01

    If there were any generating method that yields more electricity with less fossil fuel, it would be the most required generating system in poor-resources nation. It is a fuel cell that is developed from such requirement. A fuel cell started to be researched in 1839 in UK at the first time. A domestic venture company has researched various types of fuel cells such as battery type and the applied type to a movable fuel as well as residential fuel cell (Rg), all of which are just before for sale. This company is Ce ti, Co., Ltd. that is located in Dedk Research Complex of Teijin. Ce ti, Co.,Ltd. is organized with two parts, R and D and a marketing and business section. The headquarters of Taejin takes charge of R and D, and the Seoul Office, which is located in Seocho-gu, Seoul, intensively undertakes a marketing and business. The headquarters of Taejon is under construction to enlarge 500 pyung scale of R and D office for the full-scale of R and D. CETI (Clean Energy Technologies Inc.) is jointly established by LG-Caltex that leads the domestic fuel cell, DAC of USA, and ABL that is the domestic professional company of incubation. In this venture company, which is constituted of young able men, all employees including the president, Kim Gun Taek, 22 persons, devote themselves to R7D of fuel cell. They have been studying the various applied types based on the principle of fuel cell, of which the residential fuel cell (RPG) will be sold at markets in the end of this year or the beginning of next year. 1 fig.

  4. Bio-batteries and bio-fuel cells: leveraging on electronic charge transfer proteins.

    Science.gov (United States)

    Kannan, A M; Renugopalakrishnan, V; Filipek, S; Li, P; Audette, G F; Munukutla, L

    2009-03-01

    Bio-fuel cells are alternative energy devises based on bio-electrocatalysis of natural substrates by enzymes or microorganisms. Here we review bio-fuel cells and bio-batteries based on the recent literature. In general, the bio-fuel cells are classified based on the type of electron transfer; mediated electron transfer and direct electron transfer or electronic charge transfer (ECT). The ECT of the bio-fuel cells is critically reviewed and a variety of possible applications are considered. The technical challenges of the bio-fuel cells, like bioelectrocatalysis, immobilization of bioelectrocatalysts, protein denaturation etc. are highlighted and future research directions are discussed leveraging on the use of electron charge transfer proteins. In addition, the packaging aspects of the bio-fuel cells are also analyzed and the found that relatively little work has been done in the engineering development of bio-fuel cells.

  5. 2009 Fuel Cell Market Report, November 2010

    Energy Technology Data Exchange (ETDEWEB)

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  6. Research and Development for Off-Road Fuel Cell Applications U.S. Department of Energy Grant DE-FG36-04GO14303 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, Michael [H2PowerTech (formerly known as IdaTech); Erickson, Paul [Univeristy of California at Davis; Lawrence, Richard [Retired (formerly employed by IdaTech); Tejaswi, Arun [Univeristy of California at Davis; Brum, Magdalena [Univeristy of California at Davis

    2013-04-30

    Off-road concerns are related to the effects of shock and vibration and air quality on fuel cell power requirements. Mechanical stresses on differing material makeup and mass distribution within the system may render some components susceptible to impulse trauma while others may show adverse effects from harmonic disturbances or broad band mechanical agitation. One of the recognized challenges in fuel cell systems air purification is in providing a highly efficient particulate and chemical filter with minimal pressure drop. PEM integrators do not want additional parasitic loads added to the system as compensation for a highly efficient yet highly restrictive filter. Additionally, there is challenge in integrating multiple functions into a single air intake module tasked with effectively filtering high dust loads, diesel soot, pesticides, ammonias, and other anticipated off-road contaminants. This project has investigated both off-road associated issues cumulating in the prototype build and testing of two light duty off-road vehicles with integrated fuel cell power plant systems.

  7. 用于产电纯菌研究的MFC反应器的开发%Development of Microbial Fuel Cell Reactor for Pure Electricigen Research

    Institute of Scientific and Technical Information of China (English)

    曹效鑫; 梁鹏; 范明志; 黄霞

    2012-01-01

    Further improvement of the microbial fuel cell (MFC) power output urges to better understand the interaction mechanism between the electricigen and the electrode. In order to accomplish this goal, pure culture study is a better approach. However, strict sterile and anaerobic requirements make such experiments difficult to carry out. Therefore, a sterile two bottle MFC was developed. The modules were compared, and the electricity generation performance of MFC inoculated with Geobacter sul-furreducens was investigated. It was shown that sterilized condition could be achieved in the two bottle MFC during operation. Using potassium ferricyanide could effectively reduce cathode polarization and maintain anaerobic condition in the anode chamber. Further applications of this MFC system should provide a fundament for pure electricigen research.%以纯菌为对象进行产电机理研究是微生物燃料电池( MFC)技术进一步提高输出功率、走向实用的重要基础之一,然而由于产电纯菌研究要求的无菌性、厌氧性较为苛刻,给此类反应器的搭建、运行造成诸多困难.基于此,设计搭建了一种可灭菌的组件式两瓶型MFC,对其各组件进行了比较研究,并考察了接种Geobacter sulfurreducens后MFC的运行情况.研究结果表明,该反应器在运行周期内可保持良好的灭菌状态;使用铁氰化钾可有效地降低阴极极化,并保持阳极室的厌氧状态;该反应器可以较好地满足MFC对纯菌研究的要求.

  8. Fuel Cell Seminar, 1992: Program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

  9. Ballard: leading the fuel cell charge

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-10-01

    This article outlines the role of Ballard Power Systems in the development of fuel cells, and their strategy in concentrating on fuel cells for cars, buses, trucks, and stationary and portable power plants. Market drivers; costs; the concept of a fuel cell as a component of a power plant, and customers and competition are discussed. California's fuel cell partnership for testing fuel cell vehicles, the shrinking of fuel cell sizes and weights, aspects of piracy and copyright, and fuel types and sources are examined. (UK)

  10. Fiscal 1998 research report. Survey on data collection for development of new energy technology (fuel cell); 1998 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (nenryo denchi)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report is composed of Part 1: the development trend of fuel cells in fiscal 1998, and Part 2: the collected data and appendices. Part 1 includes 4 chapters, (1) The outline of the development trend, (2) Stationary fuel cell, (3) The development trend of fuel cell vehicles, and (4) The development trend of small transportable fuel cells. The report newly includes the development trend of small-capacity fuel cells and the report on 1998 Fuel Cell Seminar notable as an international conference on fuel cell summarizing the trend of fuel cells in fiscal 1998, as compared with the fiscal 1997 report. Part 2 is the collected data on domestic and foreign demonstration operation results of fuel cells, and technical development of every fuel cell. In addition to various collected data on the whole of fuel cells and their use techniques, Part 2 includes the principle, features, system configuration, performance simulation technique, application and market analysis of fuel cells, and the national policy and concerned laws on a subsidy system for introduction of fuel cells, for example. (NEDO)

  11. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, T.F.

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25{degrees}C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich's solution and analysis.

  12. Solid-polymer-electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Thomas F. [Univ. of California, Berkeley, CA (United States)

    1992-07-01

    A transport model for polymer electrolytes is presented, based on concentrated solution theory and irreversible thermodynamics. Thermodynamic driving forces are developed, transport properties are identified and experiments devised. Transport number of water in Nafion 117 membrane is determined using a concentration cell. It is 1.4 for a membrane equilibrated with saturated water vapor at 25°C, decreases slowly as the membrane is dehydrated, and falls sharply toward zero as the water content approaches zero. The relation between transference number, transport number, and electroosmotic drag coefficient is presented, and their relevance to water-management is discussed. A mathematical model of transport in a solid-polymer-electrolyte fuel cell is presented. A two-dimensional membrane-electrode assembly is considered. Water management, thermal management, and utilization of fuel are examined in detail. The membrane separators of these fuel cells require sorbed water to maintain conductivity; therefore it is necessary to manage the water content in membranes to ensure efficient operation. Water and thermal management are interrelated. Rate of heat removal is shown to be a critical parameter in the operation of these fuel cells. Current-voltage curves are presented for operation on air and reformed methanol. Equations for convective diffusion to a rotating disk are solved numerically for a consolute point between the bulk concentration and the surface. A singular-perturbation expansion is presented for the condition where the bulk concentration is nearly equal to the consolute-point composition. Results are compared to Levich`s solution and analysis.

  13. Fuel-Cell Drivers Wanted

    Science.gov (United States)

    Clark, Todd; Jones, Rick

    2004-01-01

    While the political climate seems favorable for the development of fuel-cell vehicles for personal transportation, the market's demand may not be so favorable. Nonetheless, middle level students will be the next generation of drivers and voters, and they need to be able to make informed decisions regarding the nation's energy and transportation…

  14. Nanostructured Electrocatalysts for Fuel Cells

    Science.gov (United States)

    2011-01-26

    and adsorbents. Ordered mesoporous carbon ( OMC ) has the advantages of high surface area, tunable pore size, interconnected pore network, and...tailorable surface properties. Recently, OMC as support for metal nanocatalysts for electrode materials in low-temperature fuel cells has been attracting much

  15. Nanomaterials for fuel cell catalysis

    CSIR Research Space (South Africa)

    Ozoemena, KI

    2016-01-01

    Full Text Available Global experts provide an authoritative source of information on the use of electrochemical fuel cells, and in particular discuss the use of nanomaterials to enhance the performance of existing energy systems. The book covers the state of the art...

  16. Carbon-based Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Steven S. C. Chuang

    2005-08-31

    The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

  17. HDS for fuel cell applications

    NARCIS (Netherlands)

    Alsolami, B.H.

    2012-01-01

    The objective of this chapter is to investigate the feasibility of developing a catalytic hydrodesulfurization (HDS) process operating under low pressure and high temperature conditions to produce a near-zero sulfur content diesel suitable for fuel cell applications. As expected, it was found that d

  18. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various thermopl......A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  19. The Fuel Cells Are Coming

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    By the middle of next year, three hydrogen-powered buses will be roving the streets of Washington,D. C.,Los Angeles,and Chicago as part of a government-sponsored test of the effectiveness of fuel cells and alternative fuels in reducing vehicle emissions.

  20. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...

  1. Corrosion resistant PEM fuel cell

    Science.gov (United States)

    Fronk, Matthew Howard; Borup, Rodney Lynn; Hulett, Jay S.; Brady, Brian K.; Cunningham, Kevin M.

    2002-01-01

    A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

  2. Proceedings of the fuel cells `94 contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, C.P. II; Mayfield, M.J. [eds.] [USDOE Morgantown Energy Technology Center, WV (United States)

    1994-08-01

    METC annually sponsors this conference to provide a forum for energy executives, engineers, etc. to discuss advances in fuel cell research and development projects, to exchange ideas with private sector attendees, and to review relevant results in fuel cell technology programs. Two hundred and three people from industry, academia, and Government attended. The conference attempts to showcase the partnerships with the Government and with industry, by seeking activity participation and involvement from the Office of Energy Efficiency and Renewable Energy, EPRI, GRI, and APRA. In addition to sessions on fuel cells (solid oxide, molten carbonate, etc.) for stationary electric power generation, sessions on US DOE`s Fuel Cell Transporation Program and on DOD/APRA`s fuel cell logistic fuel program were presented. In addition to the 29 technical papers, an abstract of an overview of international fuel cell development and commercialization plans in Europe and Japan is included. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  3. Passive direct methanol fuel cells in silicon technology

    Energy Technology Data Exchange (ETDEWEB)

    Sabate, N.; Esquivel, J.P.; Santander, J.; Torres, N.; Gracia, I.; Ivanov, P.; Fonseca, L.; Figueras, E.; Cane, C. [Inst. de Microelectronica de Barcelona-CNM (CSIC), Barcelona (Spain)

    2008-04-15

    The increased demand for light and efficient power sources in the past decade can be attributed to the increasing presence of sensing and actuating microelectromechanical systems (MEMS) used different application fields such as the automotive and food industry. The integration of these power sources presents an opportunity for the future advancement of MEMS based devices. Much research has been conducted in the field of active methanol fuel cells, in which the liquid fuel and the oxidant are generally pumped externally. However, the application of these types of cells as portable power sources has led to simpler approaches that give up ancillary devices such as pumps or gas compressors and the parasitic power losses associated with them. This passive fuel cell approach offers the advantage of a simpler and compact design. This article presented the main features of a passive silicon direct methanol fuel cell. The microdevice was based on a hybrid approach composed of a commercial membrane electrode assembly (MEA). It was concluded that methanol concentration has little impact on the fuel cell's maximum power density, and is comparable to values reported in the literature for larger passive and stainless-steel fuel cells. Temperature measurements revealed that the fuel cell temperature did not change significantly and is independent of the methanol crossover rate. 12 refs., 1 tab., 5 figs.

  4. Start-up analysis for automotive PEM fuel cell systems

    Science.gov (United States)

    De Francesco, M.; Arato, E.

    The development of fuel cell cars can play an important role in resolving transport problems, due to the high environmental compatibility and high efficiency of this kind of vehicle. Among the different types of fuel cells, proton-exchange membrane fuel cells (PEMFCs) are considered the best solution for automotive applications at the moment. In this work, constructive criteria are discussed with the aim of obtaining a power generation module adaptable to a wide range of cars. A particular problem in accomplishing the overall project is represented by the definition of the compressor system for air feeding. In this work, the design approach to the problem will be delineated: some options are reviewed and the best solution is analysed. The transient response of the system (fuel cell and compressor) is investigated in order to optimise the start-up running through a model of a fuel cell stack and a compressor simulation. The model and its results are proposed as a work procedure to solve the problem, by varying external conditions: in fact, to perform the system start-up under stable conditions, the air relative humidity and temperature must be maintained in a proper range of values. The approach here presented has been utilised for the definition of the characteristics of the power module and layout of a middle-size hybrid city bus in the framework of a project promoted by the European Union.

  5. Fuel cells in Japan; Les piles a combustible au Japon

    Energy Technology Data Exchange (ETDEWEB)

    Nataf, J.M.

    2000-06-01

    The government R and D effort for the development of fuel cells in Japan reaches 7 billions of yen for the year 2000. R and D on molted carbonate fuel cells (MCFC) has reached its maturity with real scale tests performed on plants with a power of about 1 MW, but some problems remain to be solved. R and D on polymer electrolyte fuel cells (PEFC) is very active, motivated by applications for transportation systems but also for stationary power generation units. The budget devoted to PEFC R and D has been multiplied by five for the year 2000. The R and D on solid oxide fuel cells (SOFC) is still active but encounters problems and remains a long term program. R and D on PEFC is achieved and the cells are at the marketing stage and represent the essential part of the installed units. NEDO is the organization responsible for the fuel cell R and D program and the active members are the gas and power companies. The main goal is to reach a 2 GW capacity in 2010. (J.S.)

  6. Corrugated Membrane Fuel Cell Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grot, Stephen [President, Ion Power Inc.

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  7. Cognitive variables in science problem solving: a review of research

    OpenAIRE

    Solaz Portolés, Joan Josep; Vicente SANJOSÉ LÓPEZ

    2007-01-01

    This paper provides an overview of research into cognitive variables that are involved in problem solving and how these variables affect the performance of problem solvers. The variables discussed are grouped together in: prior knowledge, formal reasoning ability and neo-Piagetian variables, long-term memory and working memory, knowledge base, and metacognitive variables.

  8. Innovative Fuel Cell Health Monitoring IC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energy storage devices, including fuel cells, are needed to enable future robotic and human exploration missions. Historically, the reliability of the fuel cells has...

  9. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  10. The main directions in technology investigation of soid oxide fuel cell in Russian Federal Research Center Institute of Physics & Power Engineering (IPPE)

    Energy Technology Data Exchange (ETDEWEB)

    Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S. [and others

    1996-04-01

    The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.

  11. Research on the Anode Materials for Microbial Fuel Cells%微生物燃料电池阳极材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    贺光华; 张萍

    2015-01-01

    微生物燃料电池(Microbial Fuel Cells,MFCs)是近些年发展起来的具有去污和产能双重功能的生物电化学系统.本文简要介绍MFCs的工作原理,主要概述微生物燃料电池阳极材料的研究进展,最后对微生物燃料电池阳极材料的发展和微生物燃料电池的应用前景进行展望.

  12. 微生物燃料电池阳极材料及结构研究现状%Research progress of anode materials in microbial fuel cells

    Institute of Scientific and Technical Information of China (English)

    刘春梅; 刘磊

    2015-01-01

    微生物燃料电池(Microbial Fuel Cell,MFC)阳极是细菌附着、电子传递、底物和产物传输的场所,是影响电池性能的关键因素之一.综述了应用于MFC中阳极材料,如不同结构碳材料的优劣、金属及金属氧化物的性能,也对阳极材料的表面改性方法进行了汇总.

  13. Research progress in microbial fuel cell for wastewater treatment%微生物燃料电池在污水处理中的研究进展

    Institute of Scientific and Technical Information of China (English)

    付宁; 黄丽萍; 葛林科; 陈景文

    2006-01-01

    微生物燃料电池(microbial fuel cell,MFC)利用微生物催化剂将其代谢能直接转化为电能,具有原料广泛、反应条件温和、清洁高效等优点.简述了MFC的工作原理及分类,总结了用于污水处理的MFC的性能及其影响因素.探讨了MFC在实际应用中的瓶颈,并展望其在污水处理中的应用前景.

  14. Fuel Cells for Portable Power: 1. Introduction to DMFCs; 2. Advanced Materials and Concepts for Portable Power Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zelenay, Piotr [Los Alamos National Laboratory

    2012-07-16

    Thanks to generally less stringent cost constraints, portable power fuel cells, the direct methanol fuel cell (DMFC) in particular, promise earlier market penetration than higher power polymer electrolyte fuel cells (PEFCs) for the automotive and stationary applications. However, a large-scale commercialization of DMFC-based power systems beyond niche applications already targeted by developers will depend on improvements to fuel cell performance and performance durability as well as on the reduction in cost, especially of the portable systems on the higher end of the power spectrum (100-250 W). In this part of the webinar, we will focus on the development of advanced materials (catalysts, membranes, electrode structures, and membrane electrode assemblies) and fuel cell operating concepts capable of fulfilling two key targets for portable power systems: the system cost of $5/W and overall fuel conversion efficiency of 2.0-2.5 kWh/L. Presented research will concentrate on the development of new methanol oxidation catalysts, hydrocarbon membranes with reduced methanol crossover, and improvements to component durability. Time permitted, we will also present a few highlights from the development of electrocatalysts for the oxidation of two alternative fuels for the direct-feed fuel cells: ethanol and dimethyl ether.

  15. 2007 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    McMurphy, K.

    2009-07-01

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  16. FUEL CELL ENERGY RECOVERY FROM LANDFILL GAS

    Science.gov (United States)

    International Fuel Cells Corporation is conducting a US Environmental Protection Agency (EPA) sponsored program to demonstrate energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The US EPA is interested in fuel cells for this application b...

  17. Fuel cells for electrochemical energy conversion

    Science.gov (United States)

    O'Hayre, Ryan P.

    2017-07-01

    This short article provides an overview of fuel cell science and technology. This article is intended to act as a "primer" on fuel cells that one can use to begin a deeper investigation into this fascinating and promising technology. You will learn what fuel cell are, how they work, and what significant advantages and disadvantages they present.

  18. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  19. Low cost, lightweight fuel cell elements

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    2001-01-01

    New fuel cell elements for use in liquid feed fuel cells are provided. The elements including biplates and endplates are low in cost, light in weight, and allow high efficiency operation. Electrically conductive elements are also a part of the fuel cell elements.

  20. Fuel Cell Equivalent Electric Circuit Parameter Mapping

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Zhou, Fan; Andreasen, Søren Juhl

    In this work a simple model for a fuel cell is investigated for diagnostic purpose. The fuel cell is characterized, with respect to the electrical impedance of the fuel cell at non-faulty conditions and under variations in load current. Based on this the equivalent electrical circuit parameters c...

  1. Survey on commercial use of fuel cells; Nenryo denchi ni kansuru jitsuyoka no tame no chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The basic survey was carried out for the future approach to R & D of fuel cells. Phosphoric acid fuel cell (PAFC) is in the stage of demonstration research and field test supported by subsidy after the end of Sunshine project. Its reliability and durability problems are being solved, and its cost reduction is only one problem for practical use. Distributed systems or on-site systems will be used utilizing its excellent environmental characteristics. Molten carbonate fuel cell (MCFC), solid oxide one (SOFC) and polymer electrolyte one (PEFC) under development were thus surveyed. The following are surveyed: (1) Contribution to a human society such as improvement of energy demand/supply structure and environmental protection, (2) Technological items such as outlook for R & D, validity of developmental issues, comparison between various R & D and significance in industrial promotion, (3) Economic items such as profitability and feasible period, and (4) Social items such as sociability, compatibility to needs, possibility of locations, international meaning, market scale and promotion scenario. 90 refs., 67 figs., 96 tabs.

  2. 微生物燃料电池的研究应用进展%Research and application advances in microbial fuel cell

    Institute of Scientific and Technical Information of China (English)

    王维大; 李浩然; 冯雅丽; 唐新华; 杜竹玮; 杜云龙

    2014-01-01

    微生物燃料电池是利用微生物作为催化剂,氧化分解生物质同时输出电能的一种新装置,因其可将生物质中化学能直接转化为电能,可获得更高的能量转化效率,是未来缓解能源和环境问题的有效途径,引起了科研工作者的广泛关注。本文结合近几年微生物燃料电池的发展,综述了产电微生物种类、电池材料及其改性、反应器的放大以及微生物燃料电池应用方面的研究进展,分析了该领域未来发展的主要方向及面临的问题,指出筛选和诱导产电菌对不同有机底物的耐受性,开发高效价廉的电极材料以及构建易于放大的电池模式,是微生物燃料电池未来研究的重点。在此基础上,应该着重于反应器放大,深入研究其在废水处理、产氢、微生物电化学合成以及传感器方面的应用,确定其实际应用的相关参数和模型,为微生物燃料电池早日实际应用打下坚实基础。%Microbial fuel cell (MFC) was a tool for generating electrical currents via oxidizing organic compounds by using microorganisms as a biocatalyst. It was an effective approach to alleviate energy and environmental problems in the future,because it can convert chemical energy directly to electrical energy with biomass reactions,with higher energy conversion efficiency. This paper reviewed the new advances of electrogenesis microorganism species application , electrode materials and their modifications in MFC. The main developing directions and problems in this field were analyzed. The screening and mutagenesis of electrogenesis microorganisms to the tolerance of different organic substrates,the development of high efficiency and low price electrode materials and the construction of easy scale-up model of MFC were the focuses of research. The development of MFC should be focused on the scale-up of reactor in wastewater treatment,hydrogen production

  3. Hydrogen and Fuel Cells for IT Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Jennifer

    2016-03-09

    With the increased push for carbon-free and sustainable data centers, data center operators are increasingly looking to renewable energy as a means to approach carbon-free status and be more sustainable. The National Renewable Energy Laboratory (NREL) is a world leader in hydrogen research and already has an elaborate hydrogen infrastructure in place at the Golden, Colorado, state-of-the-art data center and facility. This presentation will discuss hydrogen generation, storage considerations, and safety issues as they relate to hydrogen delivery to fuel cells powering IT equipment.

  4. A Two-Dimensional PEM Fuel Cell Model

    Science.gov (United States)

    Shi, Zhongying; Wang, Xia; Zhang, Zhuqian

    2006-11-01

    Proton Exchange Membrane (PEM) fuel cell is a typical low temperature cell, where hydrogen and air are fed into the porous anodic electrode and cathodic electrode though the gas distributors on the bipolar plates, respectively. Activated by the catalyst on anode side, hydrogen will spilt into protons and electrons. Since only protons will be allowed to pass through the membrane, electrons must go through an external circuit. Electrons and protons meet air on cathode side to produce water and heat catalyzed by the catalyst on the cathode side. Numerical simulations are useful tools to describe the basic transport and electrochemical phenomena of PEM fuel cells. The goal of the present work is to develop 2-D computational models of PEM fuel cells, which take into account fluid flow, multi- species transport, current distribution and electrical potential. The velocity field in free channel described by Navier-Stokes equation and the velocity field in porous media described by Darcy’s Law are coupled along the channel-MEA interface. The governing differential equations are solved over a single computational domain, which consists of two gas channel layers, two gas diffusion layers, two catalyst layers as well as a membrane. The model is solved with commercial software COMSOL Multiphysics 3.2b. Parametric study will be conducted to analyze the effects of various parameters on the performance of PEM fuel cells. The results, including the mass concentration, the polarization curve and the velocity distribution, will be presented.

  5. Thematic outlook: the technical outlook for the fuel cell research network (PACO). July 21, 2003 update no. 14; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 21 juillet 2003, no. 14

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of several recent articles and patents are gathered here. They deal with fuel cells and hydrogen production and storage. Their different titles are given below: 1)fuel cells fed with wood in different buildings 2)use of CO{sub 2} produced in a SOFC in a reactor in which algae are produced 3)PEMFC systems: the requirement of using polymers running at higher temperatures to better manage the heat and water 4)a technical and economical assessment of a fuel cell system decoupled of the electric network to feed buildings located in Sweden 5)use of ammonia as fuel in SOFC 6)direct oxidation fuel cells running with pure propanol-2 6)fuel cells at protonic ceramics for a running at a higher yield with methane 7)future role of gold in fuel cell systems 8)a heat management system in a fuel cell 9)tests in real conditions of the running of a fuel cell hybrid bus 10)a hydrogen production unit from hydrocarbons without releases for fuel cells used for mobile and portable applications 11)development of a methanol reformer for fuel cells 12)the reforming of liquid hydrocarbons for fuel cells used in transport applications 13)the properties of hydrogen storage in metallic hydrides with vanadium having a centred cubic structure. The references of these articles and patents are detailed. (O.M.)

  6. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  7. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes....... With the thermally resistant polymer, e.g., polybenzimidazole or a mixture of polybenzimidazole and other thermoplastics as binder, the carbon-supported noble metal catalyst is tape-cast onto a hydrophobic supporting substrate. When doped with an acid mixture, electrodes are assembled with an acid doped solid...

  8. DIGESTER GAS - FUEL CELL - PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  9. Proceedings of the NETL Workshop on Fuel Cell Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Randall S. Gemmen; J. R. Selman

    2000-04-18

    This workshop was the first U.S. DOE sponsored meeting devoted to fuel cell modeling. The workshop was attended by over 45 people from industry, universities, and the government. The goals of the meeting were to assess the status of fuel cell modeling, and determine how new developments in fuel cell modeling can improve cell design, stack design, and power system design. The primary focus was on cell and stack modeling. Following a review of DOE/NETL fuel cell related programs and activities, Professor Robert Selman (Illinois Institute of Technology) kicked off the technical portion of the workshop by presenting an overview of fuel cell phenomena and the status of fuel cell modeling. This overview provided the necessary background for establishing a common framework for discussing fuel cell modeling. A distinction was made between micro modeling, electrode modeling, cell modeling, stack modeling, and system modeling. It was proposed that all modeling levels be supported for further development. In addition, due to significant advances being made outside the U.S., it was proposed that dialog/exchange with other international researchers be established. Following the Overview Session, eight leading researchers in modeling gave individual presentations. These presentations provided additional information on the status and present direction of model developments. All these presentations can be found in Attachment A. Before the workshop, a survey was sent out requesting comments from the attendees. Results from this survey can be found in Attachment B. This survey was then used as initial talking points at the individual breakout sessions on the afternoon of the workshop. Breakouts were organized by microfundamental modeling, cell modeling, stack modeling, and systems modeling.

  10. Polymer Materials for Fuel Cell Membranes :Sulfonated Poly(ether sulfone) for Universal Fuel Cell Operations

    Institute of Scientific and Technical Information of China (English)

    Hyoung-Juhn Kim

    2005-01-01

    @@ 1Introduction Polymer electrolyte fuel cells (PEFCs) have been spotlighted because they are clean and highly efficient power generation system. Proton exchange membrane fuel cells (PEMFCs), which use reformate gases or pure H2 for a fuel, have been employed for automotives and residential usages. Also, liquid-feed fuel cells such as direct methanol fuel cell (DMFC) and direct formic acid fuel cell (DFAFC) were studied for portable power generation.

  11. 氢燃料电池在电力系统后备电源的应用研究%Research on Application of H2 Fuel Cell Backup Power System at Transformer Stations for Electric Power System

    Institute of Scientific and Technical Information of China (English)

    张富刚; 樊越甫; 刘方; 刘海东

    2012-01-01

    笔者针对变电站直流系统,应用新型氢燃料后备电源替代蓄电池组作为后备电源产品.旨在将氢燃料电源作为直流系统整体后备电源,氢燃料应急移动直流电源,直流技改中氢燃料后备电源的可行性和解决方案进行测试研究,提出新型后备电源设计、采取措施以及提出一整套系统的解决方案.结果显示,将氢燃料电池供电系统代替铅酸蓄电池组作为停电期间的后备电源,只保留少量的铅酸蓄电池作为系统启动过程中的支撑,停电时自动启动、市电恢复时自动进入待机状态,铅酸电池随即进入浮充状态.大量减少铅酸蓄电池的使用,能减少对环境的污染.氢燃料电池供电系统若包含DC/AC逆变设备,即可为通信站的交流负载供电,替代汽柴油机,降低噪音和振动,减少二氧化碳等气体排放.%This article is aiming to illustrate the replacement of traditional lead-acid battery stacks with Hydrogen fuel cell products as backup power products to provide electricity for substation DC system. The article researches how to use H2 fuel cell power system as a integrated backup energy for DC system, as a removable DC power supply for emergency use, and tests the feasibility of using H2 fuel cell as backup power system during DC technological transformation. The author also proposes new backup power supply design and new solutions for the whole power system. According to such research and analysis, using H2 fuel cell to replace lead acid batteries as backup power system during blackout period can largely reduce CO2 pollution to the environment.

  12. Fuel cells principles, design, and analysis

    CERN Document Server

    Revankar, Shripad T

    2014-01-01

    ""This book covers all essential themes of fuel cells ranging from fundamentals to applications. It includes key advanced topics important for understanding correctly the underlying multi-science phenomena of fuel cell processes. The book does not only cope with traditional fuel cells but also discusses the future concepts of fuel cells. The book is rich on examples and solutions important for applying the theory into practical use.""-Peter Lund, Aalto University, Helsinki""A good introduction to the range of disciplines needed to design, build and test fuel cells.""-Nigel Brandon, Imperial Co

  13. The birth of the fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Prohaska, Don

    2001-12-01

    Everyone knows that Thomas Alva Edison invented the light bulb, Alexander Graham Bell the telephone and that the Otto and Diesel engines were invented by two Germans bearing those names. But who invented the fuel cell? Fuel cells generate electricity with virtually zero pollution by combining gaseous fuels and air. There are different types generally described as high temperature or low temperature fuel cells. Here, Don Prohaska delves into a recently published book: The Birth of the Fuel Cell, by a descendant of one of the fathers of the fuel cell, and sheds new light on the early days of this technology. (Author)

  14. Molten carbonate fuel cell matrices

    Science.gov (United States)

    Vogel, Wolfgang M.; Smith, Stanley W.

    1985-04-16

    A molten carbonate fuel cell including a cathode electrode of electrically conducting or semiconducting lanthanum containing material and an electrolyte containing matrix of an electrically insulating lanthanum perovskite. In addition, in an embodiment where the cathode electrode is LaMnO.sub.3, the matrix may include LaAlO.sub.3 or a lithium containing material such as LiAlO.sub.2 or Li.sub.2 TiO.sub.3.

  15. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  16. Fuel Cell System for Transportation -- 2005 Cost Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of

  17. Hydrogen energy and fuel cells. A vision of our future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Hydrogen and fuel cells are seen by many as key solutions for the 21 century, enabling clean efficient production of power and heat from a range of primary energy sources. The High Level Group for Hydrogen and Fuel Cells Technologies was initiated in October 2002 by the Vice President of the European Commission, Loyola de Palacio, Commissioner for Energy and Transport, and Mr Philippe Busquin, Commissioner for Research. The group was invited to formulate a collective vision on the contribution that hydrogen and fuel cells could make to the realisation of sustainable energy systems in future. The report highlights the need for strategic planning and increased effort on research, development and deployment of hydrogen and fuel cell technologies. It also makes wide-ranging recommendations for a more structured approach to European Energy policy and research, for education and training, and for developing political and public awareness. Foremost amongst its recommendations is the establishment of a European Hydrogen and Fuel Cell Technology Partnership and Advisory Council to guide the process. (author)

  18. BARRIERS TO COMMERCIALIZATION OF PASSIVE DIRECT METHANOL FUEL CELLS: A REVEIW

    Directory of Open Access Journals (Sweden)

    N. K. SHRIVASTAVA

    2011-07-01

    Full Text Available Fuel cells are electro-chemical reactors which realize the direct conversion of the chemical energy of reactants to electrical energy, with high efficiency and high environmental compatibility. This article is concerned with one of the most advance fuel cells- direct methanol fuel cells (DMFCs. We present a comprehensive review on the commercialization barriers of passive DMFCs. The paper also summarizes past research efforts and possible future directions towards these problems.

  19. Strongly correlated perovskite fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-05-16

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines1, 2, 3, 4. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number5. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes6. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  20. Strongly correlated perovskite fuel cells

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D.; Ramanathan, Shriram

    2016-06-01

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  1. Maritime Fuel Cell Generator Project.

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, Joseph William [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-07-01

    Fuel costs and emissions in maritime ports are an opportunity for transportation energy efficiency improvement and emissions reduction efforts. Ocean-going vessels, harbor craft, and cargo handling equipment are still major contributors to air pollution in and around ports. Diesel engine costs continually increase as tighter criteria pollutant regulations come into effect and will continue to do so with expected introduction of carbon emission regulations. Diesel fuel costs will also continue to rise as requirements for cleaner fuels are imposed. Both aspects will increase the cost of diesel-based power generation on the vessel and on shore. Although fuel cells have been used in many successful applications, they have not been technically or commercially validated in the port environment. One opportunity to do so was identified in Honolulu Harbor at the Young Brothers Ltd. wharf. At this facility, barges sail regularly to and from neighbor islands and containerized diesel generators provide power for the reefers while on the dock and on the barge during transport, nearly always at part load. Due to inherent efficiency characteristics of fuel cells and diesel generators, switching to a hydrogen fuel cell power generator was found to have potential emissions and cost savings.

  2. Development of portable fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakatou, K.; Sumi, S.; Nishizawa, N. [Sanyo Electric Co., Ltd., Osaka (Japan)

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  3. Strongly correlated perovskite fuel cells.

    Science.gov (United States)

    Zhou, You; Guan, Xiaofei; Zhou, Hua; Ramadoss, Koushik; Adam, Suhare; Liu, Huajun; Lee, Sungsik; Shi, Jian; Tsuchiya, Masaru; Fong, Dillon D; Ramanathan, Shriram

    2016-06-09

    Fuel cells convert chemical energy directly into electrical energy with high efficiencies and environmental benefits, as compared with traditional heat engines. Yttria-stabilized zirconia is perhaps the material with the most potential as an electrolyte in solid oxide fuel cells (SOFCs), owing to its stability and near-unity ionic transference number. Although there exist materials with superior ionic conductivity, they are often limited by their ability to suppress electronic leakage when exposed to the reducing environment at the fuel interface. Such electronic leakage reduces fuel cell power output and the associated chemo-mechanical stresses can also lead to catastrophic fracture of electrolyte membranes. Here we depart from traditional electrolyte design that relies on cation substitution to sustain ionic conduction. Instead, we use a perovskite nickelate as an electrolyte with high initial ionic and electronic conductivity. Since many such oxides are also correlated electron systems, we can suppress the electronic conduction through a filling-controlled Mott transition induced by spontaneous hydrogen incorporation. Using such a nickelate as the electrolyte in free-standing membrane geometry, we demonstrate a low-temperature micro-fabricated SOFC with high performance. The ionic conductivity of the nickelate perovskite is comparable to the best-performing solid electrolytes in the same temperature range, with a very low activation energy. The results present a design strategy for high-performance materials exhibiting emergent properties arising from strong electron correlations.

  4. Ansaldo programs on fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Marcenaro, B.G.; Federici, F. [Ansaldo Ricerche Srl, Genova (Italy)

    1996-12-31

    The growth in traffic and the importance of maintaining a stable ecology at the global scale, particularly with regard to atmospheric pollution, raises the necessity to realize a new generation of vehicles which are more efficient, more economical and compatible with the environment. At European level, the Car of Tomorrow task force has identified fuel cells as a promising alternative propulsion system. Ansaldo Ricerche has been involved in the development of fuel cell vehicles since the early nineties. Current ongoing programs relates to: (1) Fuel cell bus demonstrator (EQHEPP BUS) Test in 1996 (2) Fuel cell boat demonstrator (EQHHPP BOAT) Test in 1997 (3) Fuel cell passenger car prototype (FEVER) Test in 1997 (4) 2nd generation Fuel cell bus (FCBUS) 1996-1999 (5) 2nd generation Fuel cell passenger car (HYDRO-GEN) 1996-1999.

  5. STAGING OF FUEL CELLS - PHASE II

    Energy Technology Data Exchange (ETDEWEB)

    Per Onnerud; Suresh Sriramulu

    2002-08-29

    TIAX has executed a laboratory-based development program aiming at the improvement of stationary fuel cell systems. The two-year long development program resulted in an improved understanding of staged fuel cells and inorganic proton conductors through evaluation of results from a number of laboratory tasks: (1) Development of a fuel cell modeling tool--Multi-scale model was developed, capable of analyzing the effects of materials and operating conditions; and this model allowed studying various ''what-if'' conditions for hypothetically staged fuel cells; (2) Study of new high temperature proton conductor--TIAX discovery of a new class of sulfonated inorganics capable of conducting protons when exposed to water; and study involved synthesis and conductivity measurements of novel compounds up to 140 C; (3) Electrochemical fuel cell measurements--the feasibility of staged fuel cells was tested in TIAX's fuel cell laboratories experimental design was based on results from modeling.

  6. Issues in fuel cell commercialization

    Science.gov (United States)

    Appleby, A. J.

    After 25 years of effort, the phosphoric acid fuel cell (PAFC) is approaching commercialization as cell stack assemblies (CAS) show convincingly low degradation and its balance-of-plant (BOP) achieves mature reliability. A high present capital cost resulting from limited cumulative production remains an issue. The primary PAFC developer in the USA (International Fuel Cells, IFC) has only manufactured 40 MW of PAFC components to date, the equivalent of a single large gas turbine aero-engine or 500 compact car engines. The system is therefore still far up the production learning curve. Even so, the next generation of on-site 40% electrical efficiency (LHV) combined heat-and-power (CHP) PAFC system was available for order from IFC in 1995 at US 3000/kW (1995). To effectively compete in the marketplace with diesel generators, the dispersed cogeneration PAFC must cost approximately US 1550/kW (1995) in the USA and Europe. At somewhat lower costs than this, dispersed cogeneration PAFCs will compete with large combined-cycle generators. However, in Japan, costs greater than US 2000/kW will be competitive, based on the late-1995 trade exchange rate of 100-105 Yen/US ). The perceived advantages of fuel cell technologies over developments of more conventional generators (e.g., ultra-low emissions, siting) are not strong selling points in the marketplace. The ultimate criterion is cost. Cost reduction is now the key to market penetration. This must include reduced installation costs, for which the present goal is US$ 385/kW (1995). How further capital cost reductions can be achieved by the year 2000 is discussed. Progress to date is reviewed, and the potential for pressurized electric utility PAFC units is determined. Markets for high-temperature fuel cell system (molten carbonate, MCFC, and solid oxide, SOFC), which many consider to be 20 and 30 years, respectively, behind the PAFC, are discussed. Their high efficiency and high-quality waste heat should make them attractive

  7. RESEARCH PROGRESS OF ELECTROLYTE MATERIALS FOR SOLID OXIDE FUEL CELLS%固体氧化物燃料电池电解质材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    田长安; 曾燕伟; 尹奇异; 邵国泉; 张全争; 程继海

    2009-01-01

    固体氧化物燃料电池(solid oxide fuel cells,SOFCs)因具有能量转换率高,燃料适应性强,环境友好和操作方便等优点,受到了人们的普遍关注.发展中低温SOFCs是其商业化必然趋势.电解质材料是SOFCs的关键材料.对用于中低温SOFCs电解质材料的研究现状和进展进行了论述,并着重介绍了近年来受人们广泛关注的磷灰石型电解质材料.阐述了SOFCs电解质材料的研究趋势.%Solid oxide fuel cells (SOFCs) as power generation systems have attracted much attention due to their many advantages in terms of high efficiency, fuel adaptability, low pollution and expedient operation. Developing intermediate-low temperature SOFCs is the inevitable next step for the large-scale commercialization of SOFCs. The electrolyte material is the key factor to determine its progress. In this paper the latest research advances and development trends in solid electrolytes for intermediate-low temperature SOFCs have been analytically reviewed, with special emphasis on apatite-type electrolytes, which have attracted increasing research interest in recent years. Future trends about electrolyte materials have also been discussed.

  8. Research Progress on Generation Performance of Sediment Microbial Fuel Cell%沉积物微生物电池应用及性能的研究进展

    Institute of Scientific and Technical Information of China (English)

    梁会会; 杨亲正

    2015-01-01

    沉积物微生物电池( SMFC)因其结构简单,成本较低等优点,作为典型的无膜微生物燃料电池受到广泛关注。主要介绍了SMFC的工作原理及在原位修复和生物传感器等方面的应用,对影响SMFC的产电性能的电极材料、电极间距、外电阻、底物前处理和传质以及微生物等因素进行了综述。对SMFC发展和研究方向做了一定的展望。%Sediment microbial fuel cells, as a typical membrane-less microbial fuel cell, have attracted widespread attention by many researcher which mainly due to its simple structure and lower cost. The operational principle on SMFC and application in situ repair and biosensor were described, its generation electrical influencing factors were focused on such as electrode materials, electrode spacing, external resistance, pre-treatment and mass transfer and the microbial. The future development and research were also prospected.

  9. Fatigue and Mechanical Damage Propagation in Automotive PEM Fuel Cells

    Science.gov (United States)

    Banan, Roshanak

    Polymer electrolyte membrane (PEM) fuel cells are generally exposed to high magnitude road-induced vibrations and impact loads, frequent humidity-temperature loading cycles, and freeze/thaw stresses when employed in automotive applications. The resultant mechanical stresses can play a significant role in the evolution of mechanical defects in the membrane electrode assembly (MEA). The focus of this research is to investigate fatigue challenges due to humidity-temperature (hygrothermal) cycles and vibrations and their effects on damage evolution in PEM fuel cells. To achieve this goal, this thesis is divided into three parts that provide insight into damage propagation in the MEA under i) hygrothermal cycles, ii) external applied vibrations, and iii) a combination of both to simulate realistic automotive conditions. A finite element damage model based on cohesive zone theory was developed to simulate the propagation of micro-scale defects (cracks and delaminations) in the MEA under fuel cell operating conditions. It was found that the micro-defects can propagate to critical states under start-up and shut-down cycles, prior to reaching the desired lifespan of the fuel cell. The simultaneous presence of hygrothermal cycles and vibrations severely intensified damage propagation and resulted in considerably large defects within 75% of the fuel cell life expectancy. However, the order of generated damage was found to be larger under hygrothermal cycles than vibrations. Under hygrothermal cycles, membrane crack propagation was more severe compared to delamination propagation. Conversely, the degrading influence of vibrations was more significant on delaminations. The presence of an anode/cathode channel offset under the combined loadings lead to a 2.5-fold increase in the delamination length compared to the aligned-channel case. The developed model can be used to investigate the damage behaviour of current materials employed in fuel cells as well as to evaluate the

  10. Energy management strategy based on fuzzy logic for a fuel cell hybrid bus

    Science.gov (United States)

    Gao, Dawei; Jin, Zhenhua; Lu, Qingchun

    Fuel cell vehicles, as a substitute for internal-combustion-engine vehicles, have become a research hotspot for most automobile manufacturers all over the world. Fuel cell systems have disadvantages, such as high cost, slow response and no regenerative energy recovery during braking; hybridization can be a solution to these drawbacks. This paper presents a fuel cell hybrid bus which is equipped with a fuel cell system and two energy storage devices, i.e., a battery and an ultracapacitor. An energy management strategy based on fuzzy logic, which is employed to control the power flow of the vehicular power train, is described. This strategy is capable of determining the desired output power of the fuel cell system, battery and ultracapacitor according to the propulsion power and recuperated braking power. Some tests to verify the strategy were developed, and the results of the tests show the effectiveness of the proposed energy management strategy and the good performance of the fuel cell hybrid bus.

  11. 微生物燃料电池阳极材料的研究进展%Research Progress on Anode Materials for Microbial Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    谢丽; 程佳; 马玉龙

    2011-01-01

    微生物细胞向阳极转移电子的能力是微生物燃料电池(microbial fuel cell,简称MFC)功率密度低的重要影响因素之一,高性能的MFC阳极要易于产电微生物细胞附着生长,易于电子从微生物细胞向阳极传递,同时要求阳极内部电阻小、导电性强、阳极电势稳定.文章综述了MFC阳极材料的研究进展.

  12. 微型直接甲醇燃料电池的研究进展%Research progress in micro direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    王一拓; 刘桂成; 王萌; 王新东

    2012-01-01

    The special modification for micro direct methanol fuel cell (μDMFC) used membrane electrode assembly (MEA) was introduced to overcome the unique problem as the low liquidity of fuel and oxide, as well as the cathode structural flooding. The progress in fuel storage and supply, collector progressing along with stack design was introduced. The development and improvement of μDMFC were prospected.%介绍了微型直接甲醇燃料电池(μDMFC)用膜电极组件(MEA)的特殊改性,以克服燃料和氧化物低流通性及阴极结构性水淹的问题;介绍了μDMFC的原料储存供应、集电板加工和堆体设计的进展;对μDMFC的发展和改进进行了展望.

  13. Hydrogen and fuel cell activities at UNIDO-ICHET

    Energy Technology Data Exchange (ETDEWEB)

    Suha Yazici, M. [UNIDO International Center for Hydrogen Energy Technologies, Sabri Ulker Sk, 38/4, Cevizlibag-Zeytinburnu, 34015 Istanbul (Turkey)

    2010-04-15

    To place hydrogen energy usage into proper perspective, International Center for Hydrogen Energy Technologies (ICHET) has been implementing measures to demonstrate potential benefits of the ''hydrogen and fuel cell systems'' in developing countries. Demonstration of technologies is the most important aspect of ICHET vision for the formation of an industry in the developing world. ICHET has embarked on a series of educational and laboratory activities designed to increase the knowledge and awareness of students and advanced researchers concerning hydrogen energy technologies. The state of the art fuel cell laboratory is available for joint technology development and demonstration activities. Internship activities facilitate knowledge transfer, exchange of information at regional, national and international levels and involve academics, researchers, experts and service providers. Collaboration is a key part of the organizational strategy for joint projects, funding and trainings in the field of hydrogen and fuel cells. (author)

  14. Fuel cell technology for cogeneration systems. Symposium. Proceedings; Brennstoffzellen - Technologie fuer Blockheizkraftwerke. Symposium. Dokumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This proceedings volume contains 11 papers on the following subject: Competence network 'Fuel Cells' in Nordrhein-Westfalen (D. Stolten, Juelich Research Center); Fuel cells in stationary applications (B. Hoehlein, Juelich Research Center); Functional principles of energy conversion in fuel cells (W. Schnurnberger, DLR); Low-temperature fuel cells AFC, PEMFC, PAFC (M. Waidhas, Siemens); High-temperature fuel cells - SOFC, MCFC (D. Stolten); Power plant options - natural gas, hydrogen, etc. (R. Wurster, Ludwig-Boelkow-Systemtechnik); Fuel cell supply (A. Heizel, ISE); Hydrogen-fuelled cogeneration units (G. Gummert Hamburg Gas Consult); SOFC high-temperature fuel cells for domestic power supply (R. Diethelm, Sulzer-Hexis); PEFC low-temperature fuel cells for domestic power supply (K. Klinder, Vaillant); Fuel cells, a chance for local utilities (B. Vogel, WINGAS). [German] Dieser Tagungsband enthaelt 11 Beitraege zu folgenden Themen: Kompetenznetzwerk Brennstoffzelle in NRW (D. Stolten, Forschungszentrum Juelich); Brennstoffzellen in der stationaeren Anwendung (B. Hoehlein, Forschungszentrum Juelich); Funktionsprinzipien der Energieumwandlung in Brennstoffzellen (W. Schnurnberger, DLR); Niedertemperaturbrennstoffzellen - AFC, PEMFC, PAFC (M. Waidhas, Siemens); Hochtemperaturbrennstoffzellen - SOFC, MCFC (D. Stolten); Kraftstoffoptionen- Erdgas, Wasserstoff u.a. (R. Wurster, Ludwig-Boelkow-Systemtechnik); Brennstoffbereitstellung (A. Heinzel, ISE); Wasserstoffbetriebene BHKW (G. Gummert Hamburg Gas Consult); Hochtemperaturbrennstoffzelle SOFC fuer die Hausenergieversorgung (R. Diethelm, Sulzer-Hexis); Niedertemperaturbrennstoffzelle PEFC fuer die Hausenergieversorgung (K. Klinder, Vaillant); Brennstoffzelle als Chance fuer lokale EVUs (B. Vogel, WINGAS).

  15. Technology channel fuel cells; Reseau technologique piles a combustible

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This document presents the PACo channel, its research and development program and the calendar of the first year. The PACo channel aims at stimulate the technology innovation in the domain of the fuel cells and organize collaborations between enterprises and research laboratories. (A.L.B.)

  16. 阴离子膜燃料电池碳基氧还原催化剂研究进展%Research progress of carbon-based catalysts for oxygen reduction in anion exchange membrane fuel cells

    Institute of Scientific and Technical Information of China (English)

    孙天航; 王晓晔; 黄乃宝; 梁成浩

    2016-01-01

    对阴离子膜燃料电池中碳基氧还原催化剂的研究进展进行详细评述,分析杂原子掺杂碳基催化剂在阴离子膜燃料电池上应用的可行性.在此基础上,提出杂原子掺杂的多孔纳米碳材料是阴离子膜燃料电池阴极催化剂今后的重要发展方向.%The research progresses of carbon-based catalysts for oxygen reduction in anion exchange membrane fuel cell (AMFC) were reviewed in detail.The application feasibility of heteroatom doped carbon-based catalysts in AMFC was also analyzed.On this basis,heteroatom doped porous nano-carbon materials should be the potential materials of cathodic catalysts for anion exchange membrane fuel cells.

  17. 沉积型微生物燃料电池治理黑臭底泥的研究%Research on sedimentary microbial fuel cell treatment of black smelly sediment

    Institute of Scientific and Technical Information of China (English)

    吴卓阳; 范功端; 林茹晶; 辛怀佳; 王爱兵; 陈舒函; 潘增志

    2015-01-01

    叙述了沉积型微生物燃料电池的工作原理,分析了影响有机物降解能力与产电性能的主要影响因素,并阐述了有关反应器结构、阳极和阴极材料及底物传质的研究进展,最后对沉积型微生物燃料电池用于治理内河黑臭底泥进行了展望。%This paper described the working principle of sediment microbial fuel cell,this paper analyzed the main influence factors influence of the organic degradation ability and power generation performance,and elaborated related reactor structure,the research progress of anode and cathode material and substrate mass transfer,finally prospected applying the sedimentary microbial fuel cell to treatment of inland river black smelly sediment.

  18. Research status of direct methanol fuel cell and current key problems%直接甲醇燃料电池研究现状及主要问题

    Institute of Scientific and Technical Information of China (English)

    李建玲; 毛宗强

    2001-01-01

    直接甲醇燃料电池(DMFC)具有燃料易运输与存储、重量轻、体积小、结构简单、能量效率高等优点,以固体聚合物作为电解质的直接甲醇燃料电池是理想的车用动力电源,具有广阔的发展前景。从DMFC性能研究、甲醇穿过Nafion膜渗透的影响、膜研究及电催化剂研究等四个方面描述了直接甲醇燃料电池的研究现状及存在的主要问题,结合当前的最新研究成果,给出DMFC研究中需要解决的几个关键问题。%Direct methanol fuel cells (DMFC) had several advantagesincluding ease transportation and storage of the fuel,reduced system weight,size and complexity,high energy efficiency.Polymer electrolyte membrane direct methanol fuel cells (PEMDMFC) were ideal power source for vehicles with bright prospects to be expected.The state-of-art and problems in the fields of DMFC performance,the impact of methanol crossover across the Nafion membrane,membrane and eletrocatalysts were described.Several key problems needed to be solved in the study of DMFC were suggested according to recent advances.

  19. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  20. Fuel economy and range estimates for fuel cell powered automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Steinbugler, M.; Ogden, J. [Princeton Univ., NJ (United States)

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  1. Development of Passive Fuel Cell Thermal Management Heat Exchanger

    Science.gov (United States)

    Burke, Kenneth A.; Jakupca, Ian J.; Colozza, Anthony J.

    2010-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates that could conduct the heat, provide a sufficiently uniform temperature heat sink for each cell of the fuel cell stack, and be substantially lighter than the conventional thermal management approach. Tests were run with different materials to evaluate the design approach to a heat exchanger that could interface with the edges of the passive cooling plates. Measurements were made during fuel cell operation to determine the temperature of individual cooling plates and also to determine the temperature uniformity from one cooling plate to another.

  2. State participation in the creation of fuel-cell-based power plants to meet civilian demand in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Pekhota, F.N.

    1996-04-01

    At present, up to 70% of Russian territory is not covered by central electrical distribution systems. In the field of fuel cell power plants, Russia is at parity with the leading foreign countries with respect to both technical and economic performance and the level of research being conducted. Civilian use of these generating systems on a broad scale, however, demands that a number of problems be solved, particularly those relating to the need for longer plant service life, lower unit cost of electricity, etc. The Ministry of Science and technical Policy of the Russian Federation issued a decree creating a new are of concentration, `Fuel Cell Based Power Plants for Civilian Needs,` in the GNTPR `Environmentally Clean Power Industry,` which will form the basis for financial support in this area out of the federal budget.

  3. Bipolar plate materials in molten carbonate fuel cells. Final CRADA report.

    Energy Technology Data Exchange (ETDEWEB)

    Krumpelt, M.

    2004-06-01

    Advantages of implementation of power plants based on electrochemical reactions are successfully demonstrated in the USA and Japan. One of the msot promising types of fuel cells (FC) is a type of high temperature fuel cells. At present, thanks to the efforts of the leading countries that develop fuel cell technologies power plants on the basis of molten carbonate fuel cells (MCFC) and solid oxide fuel cells (SOFC) are really close to commercialization. One of the problems that are to be solved for practical implementation of MCFC and SOFC is a problem of corrosion of metal components of stacks that are assembled of a number of fuel cells. One of the major components of MCFC and SOFC stacks is a bipolar separator plate (BSP) that performs several functions - it is separation of reactant gas flows sealing of the joints between fuel cells, and current collection from the surface of electrodes. The goal of Task 1 of the project is to develop new cost-effective nickel coatings for the Russian 20X23H18 steel for an MCFC bipolar separator plate using technological processes usually implemented to apply corrosion stable coatings onto the metal parts for products in the defense. There was planned the research on production of nickel coatings using different methods, first of all the galvanic one and the explosion cladding one. As a result of the works, 0.4 x 712 x 1296 mm plates coated with nickel on one side were to be made and passed to ANL. A line of 4 galvanic baths 600 liters was to be built for the galvanic coating applications. The goal of Task 2 of the project is the development of a new material of an MCFC bipolar separator plate with an upgraded corrosion stability, and development of a technology to produce cold roll sheets of this material the sizes of which will be 0.8 x 712x 1296 mm. As a result of these works, a pilot batch of the rolled material in sheets 0.8 x 712 x 1296 mm in size is to be made (in accordance with the norms and standards of the Russian

  4. HIGH TEMPERATURE POLYMER FUEL CELLS

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Qingfeng, Li; He, Ronghuan

    2003-01-01

    This paper will report recent results from our group on polymer fuel cells (PEMFC) based on the temperature resistant polymer polybenzimidazole (PBI), which allow working temperatures up to 200°C. The membrane has a water drag number near zero and need no water management at all. The high working...... temperature allows for utilization of the excess heat for fuel processing. Moreover, it provides an excellent CO tolerance of several percent, and the system needs no purification of hydrogen from a reformer. Continuous service for over 6 months at 150°C has been demonstrated....

  5. Nanocomposites for advanced fuel cell technology.

    Science.gov (United States)

    Zhu, Bin

    2011-10-01

    NANOCOFC (Nanocomposites for advanced fuel cell technology) is a research platform/network established based on the FP6 EC-China project www.nanocofc.org. This paper reviews major achievements on two-phase nanocomposites for advanced low temperature (300-600 degrees C) solid oxide fuel cells (SOFCs), where the ceria-salt and ceria-oxide composites are common. A typical functional nanocomposite structure is a core-shell type, in which the ceria forms a core and the salt or another oxide form the shell layer. Both of them are in the nano-scale and the functional components. The high resolution TEM analysis has proven a clear interface in the ceria-based two-phase nanocomposites. Such interface and interfacial function has resulted in superionic conductivity, above 0.1 S/cm at around 300 degrees C, being comparable to that of conventional SOFC YSZ at 1000 degrees C. Against conventional material design from the structure the advanced nanocomposites are designed by non-structure factors, i.e., the interfaces, and by creating interfacial functionalities between the two constituent phases. These new functional materials show indeed a breakthrough in the SOFC materials with great potential.

  6. Microbial fuel cells: Their application and microbiology

    Science.gov (United States)

    He, Zhen

    The energy crisis is an urgent global issue due to the increased consumption of the finite amount of fossil fuel. As a result, looking for alternative energy sources is of critical importance. Microbial fuel cell (MFC) technology can extract electric energy from wastewater, and thus is a sustainable approach to supply energy to our electricity-based society. My research focuses on the development of a suitable MFC reactor for wastewater treatment and the understanding of the microbial function in the MFC process. First, together with colleagues, I have developed a novel MFC reactor, named upflow microbial fuel cell (UMFC), by combining upflow and MFC technologies. The power output from the UMFC was improved by 10-fold after it was modified with a U-shape cathode. The UMFC appears to be a practical reactor for continuous operation, though the output of electric power requires further improvement. In addition, a sediment MFC with a rotating cathode was also developed and its performance was examined. Second, I have adopted a human distal gut anaerobe, Bacteroides thetaiotaomicron, as the model organism to study the role of fermentative bacterium in electricity generation. When B. thetaiotaomicron grew under an applied electric potential, an electric current was generated. GeneChip data indicated that this bacterium did not alter its metabolism during this process. Although B. thetaiotaomicron may not be capable of respiration with an electrode as the electron acceptor, the experiment has demonstrated that fermentative bacteria may play an important role in electricity generation.

  7. CHP Fuel Cell Durability Demonstration - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrecky, James; Ashley, Christopher J

    2014-07-21

    Plug Power has managed a demonstration project that has tested multiple units of its high-temperature, PEM fuel cell system in micro-combined heat and power (μ-CHP) applications in California. The specific objective of the demonstration project was to substantiate the durability of GenSys Blue, and, thereby, verify its technology and commercial readiness for the marketplace. In the demonstration project, Plug Power, in partnership with the National Fuel Cell Research Center (NFCRC) at the University of California, Irvine (UCI), and Sempra, will execute two major tasks: • Task 1: Internal durability/reliability fleet testing. Six GenSys Blue units will be built and will undergo an internal test regimen to estimate failure rates. This task was modified to include 3 GenSys Blue units installed in a lab at UCI. • Task 2: External customer testing. Combined heat and power units will be installed and tested in real-world residential and/or light commercial end user locations in California.

  8. Micro-Fuel Cells{sup TM} for portable electronics

    Energy Technology Data Exchange (ETDEWEB)

    Hockaday, R.G.; DeJohn, M.; Navas, C.; Turner, P.S.; Vaz, H.L.; Vazul, L.L. [Energy Related Devices Inc., Los Alamos, NM (United States)

    2000-05-01

    The Micro-Fuel Cell{sup TM} is a new power supply which provides a superior alternative compared to rechargeable batteries. A prototype has been developed by Manhattan Scientifics Inc. in collaboration with Energy Related Devices Inc. This mass-producible high-energy power supply can be used for cellular telephones, portable computers and other portable devices. Instead of being recharged, it can be easily refueled with methanol. The approach taken in designing this product was to develop a competitive product with definite advantages over existing products. The Micro-Fuel Cell{sup TM} is based on the idea that a fuel cell can be built onto an engineered microplastic substrate. In this case, the integrated design makes use of thin film vacuum deposition techniques to coat patterned, etched-nuclear-particle-track plastic membranes. This process forms catalytically active surface area electrodes on either side of a single structured proton-exchange-membrane electrolyte. Methanol was the choice fuel for this system because compared to hydrogen and metal hydrides, it was considered to be safer and more compact. In addition, the theoretical specific energy of methanol is significantly higher than for lithium-ion batteries. The problem of crossover, whereby methanol fuel diffuses across the fuel cell from the anode to the cathode, has also been solved by using a selectively permeable membrane. 5 refs., 4 figs.

  9. Thematic outlook: the technical survey for the fuel cell research network PACO. May 18, 2004 update no. 24; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 18 mai 2004, no. 24

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage. Their different titles are given below: 1)comparison of the costs between the electric-powered vehicles and the fuel cell vehicles 2)fuel savings of hydrogen fuel cell vehicles 3)direct formic acid fuel cells producing high current density 4)use of biogas in a SOFC 5)test unit for the determination of the seasonal performance of fuel cell residential systems 6)new management technique of fuel cells for optimizing the output power and the fuel use yield 7)SOFC/micro-turbines systems: current progress achieved and future development 8)advances in the field of the PEMFC 9)advances in the field of new materials for PEMFC 10)hybridization of fuel cell vehicles: an accessible solution for efficient traction systems 11)exergy life cycle analysis of systems of production and storage of hydrogen for mobile application 12)hydrogen and electric power production from coal with CO{sub 2} sequestration 13)H{sub 2}S low temperature removal with ZnO in gas mixtures containing vapor for applications in fuel cells 1-ZnO particles and extruded compounds 14)catalytic nano-composite membranes for CO abatement in fuel cell applications 15)activity and stability of Cu-CeO catalysts in the water-gas conversion for fuel cell applications 16)hydrogen production for fuel cell by ethanol partial oxidation on a nickel based catalyst 17)micro-reactor for hydrogen production in micro-fuel cell applications 18)hydrogen storage capacity and electrochemical properties of the electrode material La{sub 0.7}Mg{sub 0.3}Ni{sub 3.825}Co{sub 0.675}Mn{sub x}(A) 19)hydrogen storage and desorption capacity of carbon nano-tubes. The references of these articles are detailed. (O.M.)

  10. Batteries and fuel cells: Design, employment, chemistry

    Science.gov (United States)

    Euler, K.-J.

    The history of electrochemical current sources is considered along with primary cells, standard cells, high-energy primary cells, high-energy storage batteries, and fuel cells. Aspects of battery research and development are also discussed, taking into account general considerations related to technological development projects, the introduction of mathematical methods into battery research, resistance measurements, autoradiography and other radiochemical methods, color photography as an aid in research, electron microscopy, X-ray and electron diffraction, spin resonance methods, and electrical measurements involving powders. Attention is given to zinc/manganese dioxide cells, zinc/mercury cells, zinc/silver oxide primary cells, cells utilizing atmospheric oxygen, lead-acid batteries, nickel-iron and nickel-cadmium storage batteries, zinc/silver storage batteries, dry cells with organic depolarizers, dry cells with solid electrolyte, and storage batteries utilizing hydrogen.

  11. Portable fuel cell systems for America's army: technology transition to the field

    Science.gov (United States)

    Patil, Ashok S.; Dubois, Terry G.; Sifer, Nicholas; Bostic, Elizabeth; Gardner, Kristopher; Quah, Michael; Bolton, Christopher

    The US Army Communications, Electronics Research Development and Engineering Center (CERDEC) envisions three thrust areas for portable fuel cell systems for military applications. These areas include soldier power (500 W), it is imperative that the fuel cell power units be able to operate on fuels within the military logistics chain [DOD 4140.25-M, DOD Directive 4140.25 (1993)]. CERDEC is currently conducting research on catalysts and microchannel fuel reformers that offer great promise for the reforming of diesel and JP-8 fuels into hydrogen. In addition to research work on PEM fuel cells and enabling technologies, the Army is also conducting research on direct methanol and solid oxide fuel cells, and combined heat and power applications utilizing new high temperature fuel cells.

  12. An updated assessment of the prospects for fuel cell-powered cars. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in the car market. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. The report provides an assessment of the status of technology development for different types of fuel cells in terms of applications to cars and offers estimates of market potential. Some fuel-cell powered cars are now available for demonstration purposes but the report concludes that truly commercial sales are unlikely to start before 2010 and widespread deployment is expected to take a further ten years after that. The issue of fuel choice is considered largely resolved with most car manufacturers currently focussing on hydrogen as a fuel. A discussion of the prospects and barriers for fuel cell cars concludes that cost reduction is now the major barrier to the successful commercialisation of fuel cells in cars. More demonstration prototypes and field trials are required to provide information on energy, environmental and economic performance of fuel cell cars. Field trials could also provide information to assist the development of refuelling systems, fuel storage systems, stacks and other system components and to gain experience of building integrated fuel cell systems within the constraints imposed by cars.

  13. Thematic outlook: the technical survey for the fuel cell research network (PACO). January 28, 2004 update no. 20; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 15 janvier 2004, no. 20

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage. Their different titles are given below: 1)the characteristics of PEMFC running at negative exterior temperatures 2)the effects of CO poisoning on PEMFC at temperatures until 200 C 3)the mechanical properties of tubular SOFC 4)fuel cells fed with coal 5)analysis of cogeneration system: planar SOFC/gas turbine 6)modelling of fuel cells for transport, according to the neuronal networks method 7)design of hybrid fuel cell systems 8)a comparative study of direct methanol fuel cells for vehicles 9)desulfurization by adsorption and catalytic steam reforming of gas oil for applications in fuel cells 10)feasibility study of hydrogen production for fuel cell vehicles by naphtha on-board steam reforming 11)reforming catalyst of kerosene for fuel cell, kinetics and modelling of steam reforming 12)reforming by partial oxidation of low lubricant power gas oil, of dimethyl ether and methane for SOFC 13)conversion of solar heat in fuels by solar thermochemistry 14)hydrogen purification for fuel cells: selective oxidation of CO on Pt-Fe / zeolite catalysts 15)hydrogen photo-production from cellulose derived compound, with a system: chlorophyll / platinum nano-particles 16)hydrogen storage in commercial activated carbon. The references of these articles are detailed. (O.M.)

  14. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  15. Regulation of Power Conversion in Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SHEN Mu-zhong; ZHANG J.; K. Scott

    2004-01-01

    Here we report a regulation about power conversion in fuel cells. This regulation is expressed as that total power produced by fuel cells is always proportional to the square of the potential difference between the equilibrium potential and work potential. With this regulation we deduced fuel cell performance equation which can describe the potential vs. the current performance curves, namely, polarization curves of fuel cells with three power source parameters: equilibrium potential E0; internal resistance R; and power conversion coefficient K. The concept of the power conversion coefficient is a new criterion to evaluate and compare the characteristics and capacity of different fuel cells. The calculated values obtained with this equation agree with practical performance of different types of fuel cells.

  16. Development of a lightweight fuel cell vehicle

    Science.gov (United States)

    Hwang, J. J.; Wang, D. Y.; Shih, N. C.

    This paper described the development of a fuel cell system and its integration into the lightweight vehicle known as the Mingdao hydrogen vehicle (MHV). The fuel cell system consists of a 5-kW proton exchange membrane fuel cell (PEMFC), a microcontroller and other supported components like a compressed hydrogen cylinder, blower, solenoid valve, pressure regulator, water pump, heat exchanger and sensors. The fuel cell not only propels the vehicle but also powers the supporting components. The MHV performs satisfactorily over a hundred-kilometer drive thus validating the concept of a fuel cell powered zero-emission vehicle. Measurements further show that the fuel cell system has an efficiency of over 30% at the power consumption for vehicle cruise, which is higher than that of a typical internal combustion engine. Tests to improve performance such as speed enhancement, acceleration and fuel efficiency will be conducted in the future work. Such tests will consist of hybridizing with a battery pack.

  17. Fuel cells - Fundamentals and types: Unique features

    Science.gov (United States)

    Selman, J. R.

    An overview of the working principles, thermodynamic efficiencies, types, and engineering aspects of fuel cells is presented. It is noted that fuel cells are distinguished from other direct energy conversion devices by the existence of charge separation at the electrodes involving ions in an electrolyte. The electrical energy produced by a fuel cell is shown to be equal to the change in the free energy of the reactants, and thermodynamic balances of reactions in different fuel cells are provided. The production of electricity in the discharge mode involves a spontaneous reaction of overproduction of electrons at the anode and consumption of the electrons at the cathode, with the total ionic current being equal to the electronic current in the external circuit. Attention is given to the operations and problems of acid, alkaline, molten carbonate, and solid oxide fuel cells, in addition to applications of electro-organic fuel cells.

  18. High Efficiency Reversible Fuel Cell Power Converter

    DEFF Research Database (Denmark)

    Pittini, Riccardo

    The large scale integration of renewable energy sources requires suitable energy storage systems to balance energy production and demand in the electrical grid. Bidirectional fuel cells are an attractive technology for energy storage systems due to the high energy density of fuel. Compared...... entitled "High Efficiency Reversible Fuel Cell Power Converter" and it presents the design of a high efficiency dc-dc converter developed and optimized for bidirectional fuel cell applications. First, a brief overview of fuel cell and energy storage technologies is presented. Different system topologies...... to traditional unidirectional fuel cell, bidirectional fuel cells have increased operating voltage and current ranges. These characteristics increase the stresses on dc-dc and dc-ac converters in the electrical system, which require proper design and advanced optimization. This work is part of the PhD project...

  19. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  20. Modeling of Diffusive Convective and Electromechanical Processes in PEM fuel cells

    DEFF Research Database (Denmark)

    Bang, Mads

    and chemical species. Since analytical solutions to these three dimensional convections diffusion problems can rarely be obtained, the CFX code makes use of a finite volume discretization and numerical techniques, in order to obtain a solution. The model developed solves the convective and diffusive transport...... the fuel cells polarization curve and efficiency under operation. It is shown that the conductivity and the effective porosity of the catalyst layer, may strongly affect the performance of the fuel cell, and that it therefore should be considered when fuel cell models are made....

  1. DESIGNING A PID CONTROLLER TO CONTROL A FUEL CELL VOLTAGE USING THE IMPERIALIST COMPETITIVE ALGORITHM

    Directory of Open Access Journals (Sweden)

    Mohammad Marefati

    2016-06-01

    Full Text Available In this article, an optimized PID controller for a fuel cell is introduced. It should be noted that we did not compute the PID controller’s coefficients based on trial-and-error method; instead, imperialist competitive algorithms have been considered. At first, the problem will be formulated as an optimization problem and solved by the mentioned algorithm, and optimized results will be obtained for PID coefficients. Then one of the important kinds of fuel cells, called proton exchange membrane fuel cell, is introduced. In order to control the voltage of this fuel cell during the changes in the charges, an optimal controller is introduced, based on the imperialist competitive algorithm. In order to apply this algorithm, the problem is written as an optimization problem which includes objectives and constraints. To achieve the most desirable controller, this algorithm is used for problem solving. Simulations confirm the better performance of proposed PID controller.

  2. General Motors automotive fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Fronk, M.H.

    1995-08-01

    The objectives of the second phase of the GM/DOE fuel cell program is to develop and test a 30 kW fuel cell powerplant. This powerplant will be based on a methanol fuel processor and a proton exchange membrane PM fuel cell stack. In addition, the 10 kW system developed during phase I will be used as a {open_quotes}mule{close_quotes} to test automotive components and other ancillaries, needed for transient operation.

  3. Microfabrication of Microchannels for Fuel Cell Plates

    OpenAIRE

    Ho Su Jang; Dong Sam Park

    2009-01-01

    Portable electronic devices such as notebook computers, PDAs, cellular phones, etc., are being widely used, and they increasingly need cheap, efficient, and lightweight power sources. Fuel cells have been proposed as possible power sources to address issues that involve energy production and the environment. In particular, a small type of fuel-cell system is known to be suitable for portable electronic devices. The development of micro fuel cell systems can be achieved by the application of m...

  4. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  5. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power...

  6. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  7. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, B. [Breakthrough Technologies Inst., Washington, DC (United States)

    2010-06-30

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  8. 2008 Fuel Cell Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    DOE

    2010-06-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  9. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  10. DLA’s Hydrogen Fuel Cell Pilots

    Science.gov (United States)

    2009-05-07

    DLA’s Hydrogen Fuel Cell Pilots E2S2 Conference May 7, 2009 Rob Hardison LMI rhardison@lmi.org Report Documentation Page Form ApprovedOMB No. 0704...2009 to 00-00-2009 4. TITLE AND SUBTITLE DLA’s Hydrogen Fuel Cell Pilots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...and fuel cells offer potential „green‟ solutions •DLA‟s efforts to measure and improve viability of fuel cells DoD is supporting long term solutions

  11. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  12. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  13. Research and development of molten carbonate fuel cell power generation system. ; Supporting studies. Yoyu tansan'engata nenryo denchi hatsuden system no kenkyu kaihatsu. ; Support kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    With an objective to develop a molten carbonate fuel cell (MCFC) power generation system, this paper discusses such supporting technologies as material and coal gas handling technologies, capacity increasing technologies, and CO2 separating technologies. Performance of generating a voltage of 0.825V has been obtained from a single cell using iron-based alloy powder materials when anode porosity is 70% and current density is 150 mA/cm[sup 2]. A separator material with aluminum electrolytically plated, and nickel dispersed showed superb corrosion resistance. Crack generation has been reduced in a ZrO2 fiber reinforced electrolyte plate. High-performance corrosion resistant electrolyte plates have been fabricated in the ceramic system by using the electrode microstructure controlling technology and alumina-based fiber reinforcement. Desulfurizing catalyst, TiO2-ZnO, for coal gas dry refining has been studied. Zinc ferrite, a regenerative desulfurizing agent, has been improved for the inorganic salt type gas refining. Discussions have been given on increasing capacity of a 500-MW class coal gasification MCFC power generation system. A CO2 separation testing equipment of a PSA system has been opened for inspection, but no anomalies such as corrosion, damages, and sludge generation have been discovered. 4 figs.

  14. 植物微生物燃料电池技术的研究进展%Advances in Research of Plant-Microbial Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    劳慧敏; 李金页; 贾玉平

    2016-01-01

    植物微生物燃料电池(plant-microbial fuel cell,P-MFC)是一项新型的能源技术,该技术利用植物的光合作用,为具备产电能力的微生物持续提供基质,由此源源不断的输出电能,实现太阳能至电能的转化。植物微生物燃料电池能够与多项现有环境治理技术和能源工程技术相结合,对环境友好,具有良好的应用前景。%The plant-microbial fuel cell (P-MFC) is an innovative technology for solar energy utilization, the plant can supply sufficient substrates to the microorganisms who can generate electricity through photosynthesis, and the solar energy is converted to electricity in this way. P-MFC can be applied with many present technologies to gain extra benefits, and is environmental friendly as well, which has a good prospect to the applications.

  15. Current legal and institutional issues in the commercialization of phosphoric acid fuel cells

    Science.gov (United States)

    Nimmons, J. T.; Sheehy, K. D.; Singer, J. R.; Gardner, T. C.

    1982-01-01

    Legal and institutional factors affecting the development and commercial diffusion of phosphoric acid fuel cells are assessed. Issues for future research and action are suggested. Perceived barriers and potential opportunities for fuel cells in central and dispersed utility operations and on-site applications are reviewed, as well as the general concept of commercialization as applied to emerging energy technologies.

  16. Microbial Fuel Cells, A Current Review

    Directory of Open Access Journals (Sweden)

    Kelly P. Nevin

    2010-04-01

    Full Text Available Microbial fuel cells (MFCs are devices that can use bacterial metabolism to produce an electrical current from a wide range organic substrates. Due to the promise of sustainable energy production from organic wastes, research has intensified in this field in the last few years. While holding great promise only a few marine sediment MFCs have been used practically, providing current for low power devices. To further improve MFC technology an understanding of the limitations and microbiology of these systems is required. Some researchers are uncovering that the greatest value of MFC technology may not be the production of electricity but the ability of electrode associated microbes to degrade wastes and toxic chemicals. We conclude that for further development of MFC applications, a greater focus on understanding the microbial processes in MFC systems is required.

  17. Fuel Cell/Reformers Technology Development

    Science.gov (United States)

    2004-01-01

    NASA Glenn Research Center is interested in developing Solid Oxide Fuel Cell for use in aerospace applications. Solid oxide fuel cell requires hydrogen rich feed stream by converting commercial aviation jet fuel in a fuel processing process. The grantee's primary research activities center on designing and constructing a test facility for evaluating injector concepts to provide optimum feeds to fuel processor; collecting and analyzing literature information on fuel processing and desulfurization technologies; establishing industry and academic contacts in related areas; providing technical support to in-house SOFC-based system studies. Fuel processing is a chemical reaction process that requires efficient delivery of reactants to reactor beds for optimum performance, i.e., high conversion efficiency and maximum hydrogen production, and reliable continuous operation. Feed delivery and vaporization quality can be improved by applying NASA's expertise in combustor injector design. A 10 KWe injector rig has been designed, procured, and constructed to provide a tool to employ laser diagnostic capability to evaluate various injector concepts for fuel processing reactor feed delivery application. This injector rig facility is now undergoing mechanical and system check-out with an anticipated actual operation in July 2004. Multiple injector concepts including impinging jet, venturi mixing, discrete jet, will be tested and evaluated with actual fuel mixture compatible with reforming catalyst requirement. Research activities from September 2002 to the closing of this collaborative agreement have been in the following areas: compiling literature information on jet fuel reforming; conducting autothermal reforming catalyst screening; establishing contacts with other government agencies for collaborative research in jet fuel reforming and desulfurization; providing process design basis for the build-up of injector rig facility and individual injector design.

  18. Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-05-01

    This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

  19. Polymers application in proton exchange membranes for fuel cells (PEMFCs)

    Science.gov (United States)

    Walkowiak-Kulikowska, Justyna; Wolska, Joanna; Koroniak, Henryk

    2017-07-01

    This review presents the most important research on alternative polymer membranes with ionic groups attached, provides examples of materials with a well-defined chemical structure that are described in the literature. Furthermore, it elaborates on the synthetic methods used for preparing PEMs, the current status of fuel cell technology and its application. It also briefly discusses the development of the PEMFC market.

  20. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  1. Effects of Humidity on Solid Oxide Fuel Cell Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States); Mahapatra, Manoj K. [Univ. of Connecticut, Storrs, CT (United States); Wachsman, E. D. [Univ. of Maryland, College Park, MD (United States); Liu, Meilin [Georgia Inst. of Technology, Atlanta, GA (United States); Gerdes, Kirk R. [National Energy Technology Lab. (NETL), Morgantown, WV (United States)

    2015-03-17

    This report summarizes results from experimental studies performed by a team of researchers assembled on behalf of the Solid-state Energy Conversion Alliance (SECA) Core Technology Program. Team participants employed a variety of techniques to evaluate and mitigate the effects of humidity in solid oxide fuel cell (SOFC) cathode air streams on cathode chemistry, microstructure, and electrochemical performance.

  2. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  3. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Sadiq Al-Baghdadi, Maher A.R. [Fuel Cell Research Center, International Energy and Environment Foundation, Najaf, P.O.Box 39 (Iraq)

    2013-07-01

    Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS) technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM) fuel cell has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally. Three-dimensional results of the species profiles, temperature distribution, potential distribution, and local current density distribution are presented and analysed, with the focus on the physical insight and fundamental understanding.

  4. Fuel cell commercialization: The key to a hydrogen economy

    Science.gov (United States)

    Zegers, P.

    With the current level of global oil production, oil reserves will be sufficient for 40 years. However, due to the fact that the global GDP will have increased by a factor seven in 2050, oil reserves are likely to be exhausted in a much shorter time period. The EU and car industry aim at a reduction of the consumption of oil, at energy savings (with a key role for fuel cells) and an increased use of hydrogen from natural gas and, possibly, coal, in the medium term. The discovery of huge methane resources as methane hydrates (20 times those of oil, gas and coal together) in oceans at 1000-3000 m depth could be of major importance. In the long term, the EU aims at a renewable energy-based energy supply. The European Hydrogen and Fuel Cell Technology Platform is expected to play a major role in bringing about a hydrogen economy. The availability of commercial fuel cells is here a prerequisite. However, after many years of research, fuel cells have not yet been commercialized. If they will not succeed to enter the market within 5 years there is a real danger that activities aiming at a hydrogen society will peter out. In a hydrogen strategy, high priority should therefore be given to actions which will bring about fuel cell commercialization within 5 years. They should include the identification of fuel cell types and (niche) markets which are most favorable for a rapid market introduction. These actions should include focused short-term RTD aiming at cost reduction and increased reliability.

  5. Spanish R and D programs on hydrogen and fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Garcia-Conde, A.; Ben Pendones, R. [Instituto Nacional de Tecnica Aeroespacial (INTA), Departamento de Aerodinamica y Propulsion, Madrid (Spain)

    2003-09-01

    Since 1988 INTA (the National Institute for Aerospace Technology in Spain) has been running hydrogen and fuel cells activities supported by own funds. Up to 1996, subsidies from the regional government of Andalucia (south of Spain), were provided for building a solar hydrogen production pilot plant based on photovoltaic powered water electrolysis. At present there is not a specific programme devoted to hydrogen energy and fuel cells in Spain, however, the Spanish Plan for Scientific Research, Technological Development and Innovation (2004-2007) in the energy area, will consider these topics as separate items included in the priority devoted to renewable energies and emerging technologies. This means that part of the R and D budget will be allocated for hydrogen and fuel cells projects but competing with the rest of renewable energies projects. Nevertheless the possibilities to approve projects for national funding are considered in a very wide and detailed way in the rationale of the national R and D programme, as mentioned in the following paragraphs: Hydrogen, by means of fuel cells technological evolution, presents a potential to become in the long term an energy carrier that changes the energetic sector configuration, making it safer, more efficient and more respectful with environment. For achieving this goal, a number of technological barriers must be overcome within production, storage, distribution and final supply, both for its utilization in transport and stationary applications. Fuel Cells are gaining in Spain increasing importance both for stationary and transport utilization, as a consequence of its different types, modular characteristics and the possibility for utilization in different applications, as domestic use, distributed and centralized generation. Due to its wide variety of possibilities and its characteristics of low environmental impact and reduced noise production, fuel cells become themselves a energetic objective. (O.M.)

  6. Final Report - Stationary and Emerging Market Fuel Cell System Cost Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Contini, Vince [Battelle Memorial Inst., Columbus, OH (United States); Heinrichs, Mike [Battelle Memorial Inst., Columbus, OH (United States); George, Paul [Battelle Memorial Inst., Columbus, OH (United States); Eubanks, Fritz [Battelle Memorial Inst., Columbus, OH (United States); Jansen, Mike [Battelle Memorial Inst., Columbus, OH (United States); Valluri, Manoj [Battelle Memorial Inst., Columbus, OH (United States); Mansouri, Mahan [Battelle Memorial Inst., Columbus, OH (United States); Swickrath, Mike [Battelle Memorial Inst., Columbus, OH (United States)

    2017-04-30

    The U.S. Department of Energy (DOE) is focused on providing a portfolio of technology solutions to meet energy security challenges of the future. Fuel cells are a part of this portfolio of technology offerings. To help meet these challenges and supplement the understanding of the current research, Battelle has executed a five-year program that evaluated the total system costs and total ownership costs of two technologies: (1) an ~80 °C polymer electrolyte membrane fuel cell (PEMFC) technology and (2) a solid oxide fuel cell (SOFC) technology, operating with hydrogen or reformate for different applications. Previous research conducted by Battelle, and more recently by other research institutes, suggests that fuel cells can offer customers significant fuel and emission savings along with other benefits compared to incumbent alternatives. For this project, Battelle has applied a proven cost assessment approach to assist the DOE Fuel Cell Technologies Program in making decisions regarding research and development, scale-up, and deployment of fuel cell technology. The cost studies and subsequent reports provide accurate projections of current system costs and the cost impact of state-of-the-art technologies in manufacturing, increases in production volume, and changes to system design on system cost and life cycle cost for several near-term and emerging fuel cell markets. The studies also provide information on types of manufacturing processes that must be developed to commercialize fuel cells and also provide insights into the optimization needed for use of off-the-shelf components in fuel cell systems. Battelle’s analysis is intended to help DOE prioritize investments in research and development of components to reduce the costs of fuel cell systems while considering systems optimization.

  7. 碳材料的掺杂改性及其用于燃料电池催化剂的研究%Research Progresses on the Doping Modification of Carbon Materials and Their Application as Catalysts in Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    郑锐萍; 廖世军

    2015-01-01

    开发掺杂改性的碳材料用作燃料电池的非贵金属氧还原催化剂已成为燃料电池领域的重要研究课题,相关研究对于降低燃料电池成本、促进燃料电池的商业化具有十分重要的意义。大量研究工作表明,对碳材料进行掺杂改性可以实现其形貌、微观结构、组成及其他表面物理化学性质的优化,从而得到具有较高催化活性、选择性和稳定性的氧还原催化剂。人们在这类催化剂的制备方法、性能优化和催化机理等方面进行了大量研究工作。综述了对碳纳米管、石墨烯、介孔碳、大孔碳、碳微球等碳材料进行掺杂改性的最新进展。并基于目前的研究结果,展望了掺杂碳材料作为燃料电池非贵金属氧还原催化剂的应用前景和未来的发展趋势。%ABSTRACT:It is becoming one of the most important topics in the fuel cell field to develop doped/modified carbon materials as non-precious-metal catalysts for oxygen reduction, which will effectively reduce the cost of fuel cell and promote the commercializa-tion of the fuel cells. It has been demonstrated by a lot of researches that the microstructures, compositions and other superficial physicochemical properties can be improved and optimized through the doping modification of carbon materials, thus resulting in ox-ygen reduction catalysts with excellent catalytic activity, selectivity and stability. A considerable amount of researches have been done in the preparation methods, performance optimization and catalytic mechanism of this type of catalysts. In this paper, the lat-est research progresses in the doping modification of carbon materials, such as carbon nanotube, graphene, mesoporous carbons, macroporous carbons and carbon microspheres, were reviewed. Based on the results achieved, we proposed their application pros-pects as catalysts in fuel cell, as well as the developing trend of the doped carbon catalyst in the future.

  8. Fuel cell and membrane therefore

    Energy Technology Data Exchange (ETDEWEB)

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  9. Microbial fuel cell as new technol

    Directory of Open Access Journals (Sweden)

    Mostafa Rahimnejad

    2015-09-01

    Full Text Available Recently, great attentions have been paid to microbial fuel cells (MFCs due to their mild operating conditions and using variety of biodegradable substrates as fuel. The traditional MFC consisted of anode and cathode compartments but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are generated. MFCs could be utilized as power generator in small devices such as biosensor. Besides the advantages of this technology, it still faces practical barriers such as low power and current density. In the present article different parts of MFC such as anode, cathode and membrane have been reviewed and to overcome the practical challenges in this field some practical options have been suggested. Also, this research review demonstrates the improvement of MFCs with summarization of their advantageous and possible applications in future application. Also, Different key factors affecting bioelectricity generation on MFCs were investigated and these key parameters are fully discussed.

  10. Microbial fuel cells for biosensor applications.

    Science.gov (United States)

    Yang, Huijia; Zhou, Minghua; Liu, Mengmeng; Yang, Weilu; Gu, Tingyue

    2015-12-01

    Microbial fuel cells (MFCs) face major hurdles for real-world applications as power generators with the exception of powering small sensor devices. Despite tremendous improvements made in the last two decades, MFCs are still too expensive to build and operate and their power output is still too small. In view of this, in recently years, intensive researches have been carried out to expand the applications into other areas such as acid and alkali production, bioremediation of aquatic sediments, desalination and biosensors. Unlike power applications, MFC sensors have the immediate prospect to be practical. This review covers the latest developments in various proposed biosensor applications using MFCs including monitoring microbial activity, testing biochemical oxygen demand, detection of toxicants and detection of microbial biofilms that cause biocorrosion.

  11. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  12. Managing probe applications effectively? The process of pre-commercial fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, H.L. [Delft Univ. of Technology, Delft (Netherlands)

    2007-07-01

    There has been a high degree of uncertainty regarding market adoption of proton exchange membrane (PEM) fuel cell technologies, making it challenging for fuel cell firms to determine which markets to pursue at which point in time. Probes, such as prototypes, demonstrations and field trials, are market experiments conducted by fuel cell firms and industry that are central to the commercialization of fuel cell technology. However, demonstration projects are extremely resource and time intensive, and outcomes are uncertain. This paper reviewed innovation management literature on the characteristics of the technology application process. Case study research of four fuel cell firms were discussed in terms of probe objectives and outcomes. An analysis of probe application patterns over time was also presented. Several fuel cell projects were also analyzed in terms of motivations and lessons learned. The paper focused on young independent fuel cell developers that had limited resources to allocate and waste resources on ineffective probe applications. The findings complement prior research that have found probe applications a valuable tool for learning, stimulating market demand and network formation. The paper made several recommendations regarding the main objectives of the fuel cell project, to set realistic goals and align expectations between consortia members. In addition, it was found that a short term demonstration project may appear to be an attractive application, but a project with a longer term vision and a commercial value proposition was more likely to attract stakeholders. 16 refs., 3 figs.

  13. Optimal design of a hybridization scheme with a fuel cell using genetic optimization

    Science.gov (United States)

    Rodriguez, Marco A.

    Fuel cell is one of the most dependable "green power" technologies, readily available for immediate application. It enables direct conversion of hydrogen and other gases into electric energy without any pollution of the environment. However, the efficient power generation is strictly stationary process that cannot operate under dynamic environment. Consequently, fuel cell becomes practical only within a specially designed hybridization scheme, capable of power storage and power management functions. The resultant technology could be utilized to its full potential only when both the fuel cell element and the entire hybridization scheme are optimally designed. The design optimization in engineering is among the most complex computational tasks due to its multidimensionality, nonlinearity, discontinuity and presence of constraints in the underlying optimization problem. this research aims at the optimal utilization of the fuel cell technology through the use of genetic optimization, and advance computing. This study implements genetic optimization in the definition of optimum hybridization rules for a PEM fuel cell/supercapacitor power system. PEM fuel cells exhibit high energy density but they are not intended for pulsating power draw applications. They work better in steady state operation and thus, are often hybridized. In a hybrid system, the fuel cell provides power during steady state operation while capacitors or batteries augment the power of the fuel cell during power surges. Capacitors and batteries can also be recharged when the motor is acting as a generator. Making analogies to driving cycles, three hybrid system operating modes are investigated: 'Flat' mode, 'Uphill' mode, and 'Downhill' mode. In the process of discovering the switching rules for these three modes, we also generate a model of a 30W PEM fuel cell. This study also proposes the optimum design of a 30W PEM fuel cell. The PEM fuel cell model and hybridization's switching rules are postulated

  14. An updated assessment of the prospects for fuel cell-powered buses. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in buses. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs in buses, the report examines those for alkaline fuel cells (AFCs) and phosphoric acid fuel cells (PAFCs) in buses. The report provides an assessment of the status of technology development for different types of fuel cells in terms of applications to buses and offers estimates of market potential. Some fuel-cell powered buses are now available for demonstration purposes but the report concludes that truly commercial sales are unlikely to start before 2010 and widespread deployment is expected to take a further ten years after that. Buses have now slipped behind cars in terms of worldwide deployment. The issue of fuel choice is considered largely resolved with most fleet vehicle/bus manufacturers currently focussing on hydrogen as a fuel. A discussion of the prospects and barriers for fuel cell buses concludes that cost reduction is now the major barrier to the successful commercialisation of fuel cells in buses. More demonstration prototypes and field trials are required to provide information on energy, environmental and economic performance of fuel cell buses. Field trials could also provide information to assist the development of refuelling systems, fuel storage systems, stacks and other system components and to gain experience of building integrated fuel cell systems.

  15. LANDFILL GAS PRETREATMENT FOR FUEL CELL APPLICATIONS

    Science.gov (United States)

    The paper discusses the U.S. EPA's program, underway at International Fuel Cells Corporation, to demonstrate landfill methane control and the fuel cell energy recovery concept. In this program, two critical issues are being addressed: (1) a landfill gas cleanup method that would ...

  16. A Method of Operating a Fuel Cell

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method of determining the net water drag coefficient (rd) in a fuel cell. By measuring the velocity of the fluid stream at the outlet of the anode, rd can be determined. Real time monitoring and adjustments of the water balance of a fuel cell may be therefore...

  17. A Method of Operating a Fuel Cell

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method of determining the net water drag coefficient (rd) in a fuel cell. By measuring the velocity of the fluid stream at the outlet of the anode, rd can be determined. Real time monitoring and adjustments of the water balance of a fuel cell may be therefore...

  18. Cost targets for domestic fuel cell CHP

    Science.gov (United States)

    Staffell, I.; Green, R.; Kendall, K.

    Fuel cells have the potential to reduce domestic energy bills by providing both heat and power at the point of use, generating high value electricity from a low cost fuel. However, the cost of installing the fuel cell must be sufficiently low to be recovered by the savings made over its lifetime. A computer simulation is used to estimate the savings and cost targets for fuel cell CHP systems. Two pitfalls of this kind of simulation are addressed: the selection of representative performance figures for fuel cells, and the range of houses from which energy demand data was taken. A meta-study of the current state of the art is presented, and used with 102 house-years of demand to simulate the range of economic performance expected from four fuel cell technologies within the UK domestic CHP market. Annual savings relative to a condensing boiler are estimated at €170-300 for a 1 kWe fuel cell, giving a target cost of €350-625 kW -1 for any fuel cell technology that can demonstrate a 2.5-year lifetime. Increasing lifetime and reducing fuel cell capacity are identified as routes to accelerated market entry. The importance of energy demand is seen to outweigh both economic and technical performance assumptions, while manufacture cost and system lifetime are highlighted as the only significant differences between the technologies considered. SOFC are considered to have the greatest potential, but uncertainty in the assumptions used precludes any clear-cut judgement.

  19. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a

  20. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  1. The fuel cell; La pile a combustible

    Energy Technology Data Exchange (ETDEWEB)

    Boursin, P.

    2005-07-01

    This document is an exhaustive review of the history of fuel cells from 1802 to 2004. It focusses mainly on the automotive applications and supplies many technical details about each prototype of fuel cell and/or vehicle. (J.S.)

  2. Durability study of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F.; Yuan, X.Z.; Martin, J.J.; Wang, H.J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation; Bi, X.T. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Pei, P.C.; Huang, H.Y. [Tsinghua Univ., Beijing (China). Dept. of Automotive Engineering

    2007-07-01

    Technical challenges limit the commercialization of polymer electrolyte membrane fuel cells (PEM) for use in stationary applications and transport. These include: on-board storage and infrastructure for hydrogen fuel as well as the fuel cell system itself; high costs; and, durability under a wide range of operational conditions. Durability is defined as the maximum service life of a fuel cell system with no more than 10 per cent loss in efficiency at the end of life. This paper presented a literature review and analysis in order to provide a unified definition of PEM fuel cell service life when operated at either steady state or dynamic load conditions. The paper presented an analysis of different operating conditions and the dependence of PEM fuel cell durability on the operating condition. The paper also reviewed durability studies of the different components of a PEM fuel cell, and also examined various degradation mechanisms. These included: load or thermal cycles; fuel or oxidant starvation; high or low humidification levels; and, reformate or simulated reformed gases as fuels. A relationship between the accelerated service life of a PEM fuel cell and the real service life was then developed. To obtain real service life under normal testing conditions, statistical models based on accelerated service life data were illustrated. It was concluded that the service life of a fuel cell and its components is a function of more than one or two variables. 46 refs., 4 tabs., 3 figs.

  3. What are batteries, fuel cells, and supercapacitors?

    Science.gov (United States)

    Winter, Martin; Brodd, Ralph J

    2004-10-01

    Electrochemical energy conversion devices are pervasive in our daily lives. Batteries, fuel cells and supercapacitors belong to the same family of energy conversion devices. They are all based on the fundamentals of electrochemical thermodynamics and kinetics. All three are needed to service the wide energy requirements of various devices and systems. Neither batteries, fuel cells nor electrochemical capacitors, by themselves, can serve all applications.

  4. Hydrogen Fuel Cells: Part of the Solution

    Science.gov (United States)

    Busby, Joe R.; Altork, Linh Nguyen

    2010-01-01

    With the decreasing availability of oil and the perpetual dependence on foreign-controlled resources, many people around the world are beginning to insist on alternative fuel sources. Hydrogen fuel cell technology is one answer to this demand. Although modern fuel cell technology has existed for over a century, the technology is only now becoming…

  5. Fuel cell hybrid drive train test facility

    NARCIS (Netherlands)

    J. Bruinsma; Edwin Tazelaar; Bram Veenhuizen; I. Zafina; H. Bosma

    2009-01-01

    Fuel cells are expected to play an important role in the near future as prime energy source on board of road-going vehicles. In order to be able to test all important functional aspects of a fuel cell hybrid drive train, the Automotive Institute of the HAN University has decided to realize a station

  6. Stationary power fuel cell commercialization status worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  7. Canada's hydrogen and fuel cell industry : clean power for the 21. century

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Natural Resources Canada has been involved in the research and development of hydrogen and fuel cells and has worked closely with industry for more than 15 years to bring world-leading technologies to market. This brochure presented some of Canada's key players in the area of hydrogen and fuel cell technology and described their respective projects. The players included Agile Systems Inc., Armstrong Monitoring Corp., Ballard Power Systems, Bureau de normalisation du Quebec, Cellex Power Products Inc., the Canadian Hydrogen Association, the Centre for Hydrogen and Electrochemical Studies, Dynetek Industries Ltd., Fuel Cell Technologies Corp., FuelMaker Corporation, GFI Control Systems Inc., Global Thermoelectric, H Power Enterprises of Canada Inc., Hydrogen Systems Inc., Hydrogenics Corporation, Hydro-Quebec, Institute for Integrated Energy Systems, the Institut de recherche sur l'hydrogene, Kinectrics Inc., Kraus Group Inc., McGill University, Powertech Labs Inc., QuestAir Technologies Inc., Stuart Energy Systems, TISEC Inc., Xantrex Technology Inc., and XCELLSIS Fuel Cell Engines Inc. The brochure included a map depicting the Canadian locations where hydrogen and fuel cell activities are taking place. Alternative fuels in the transportation sector is the most prominent opportunity for hydrogen and fuel cell technology, with a zero emission fuel cycle as the goal. Remote and portable power are other opportunities for this technology, along with residential and stationary power generation. It was noted that with fuel cell powered vehicles are close to becoming a commercial reality, but a proper infrastructure must be put in place to receive these vehicles. The brochure also discussed initiatives such as the new National Fuel Cell Research and Innovation Initiative, a $30 million commitment toward the development of a Fuel Cell Testing and Demonstration Facility at the Innovation Centre in Vancouver, a Research and Development deployment program, and a fund

  8. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  9. Prospects for UK fuel cells component suppliers

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, C.; Tunnicliffe, M.

    2002-07-01

    This report examines the capabilities of the UK fuel cell industry in meeting the expected increase in demand, and aims to identify all UK suppliers of fuel cell components, evaluate their products and match them to fuel cell markets, and identify components where the UK is in a competitive position. Component areas are addressed along with the need to reduce costs and ensure efficient production. The well established supplier base in the UK is noted, and the car engine manufacturing base and fuel supply companies are considered. The different strengths of UK suppliers of the various types of fuel cells are listed. The future industry structure, the opportunities and dangers for business posed by fuel cells, the investment in cleaner technologies by the large fuel companies, opportunities for catalyst suppliers, and the residential combined heat and power and portable electronics battery markets are discussed.

  10. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  11. Electrolytes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-11-08

    The high operating temperature of solid oxide fuel cells (SOFCs), as compared to polymer electrolyte membrane fuel cells (PEMFCs), improves tolerance to impurities in the fuel, but also creates challenges in the development of suitable materials for the various fuel cell components. In response to these challenges, intermediate temperature solid oxide fuel cells (IT-SOFCs) are being developed to reduce high-temperature material requirements, which will extend useful lifetime, improve durability and reduce cost, while maintaining good fuel flexibility. A major challenge in reducing the operating temperature of SOFCs is the development of solid electrolyte materials with sufficient conductivity to maintain acceptably low ohmic losses during operation. In this paper, solid electrolytes being developed for solid oxide fuel cells, including zirconia-, ceria- and lanthanum gallate-based materials, are reviewed and compared. The focus is on the conductivity, but other issues, such as compatibility with electrode materials, are also discussed. (author)

  12. Polymer electrolyte membrane assembly for fuel cells

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  13. Portable power applications of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Weston, M.; Matcham, J.

    2002-07-01

    This report describes the state-of-the-art of fuel cell technology for portable power applications. The study involved a comprehensive literature review. Proton exchange membrane fuel cells (PEMFCs) have attracted much more interest than either direct methanol fuel cells (DMFCs) or solid oxide fuel cells (SOFCs). However, issues relating to fuel choice and catalyst design remain with PEMFCs; DMFCs have excellent potential provided issues relating to the conducting membrane can be resolved but the current high temperature of operation and low power density currently makes SOFCs less applicable to portable applications. Available products are listed and the obstacles to market penetration are discussed. The main barriers are cost and the size/weight of fuel cells compared with batteries. Another key problem is the lack of a suitable fuel infrastructure.

  14. Self-sustained cabinet based on fuel cell technology and solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Correa, Rafael Augusto de Oliveira; Valentim, Rafael Bertier; Glir, Joao Raphael Zanlorensi; Stall, Alexandre; Sommer, Elise Meister; Sanches, Luciana Schimidilin; Dias, Fernando Gallego; Korndorfer, Heitor Medeiros de Albuquerque; Vargas, Jose Viriato Coelho [Universidade Federal do Parana (DEMEC/UFPR), Curitiba, PR (Brazil). Dept. de Engenharia Mecanica], Email: rafaelcorrea123@hotmail.com; Ordonez, Juan Carlos [Florida State University, Tallahasse, Florida (United States). Dept. of Mechanical Engineering. Center for Advanced Power Systems

    2010-07-01

    Along the past few years, there has been intensive research on clean and renewable energy production. Two main reasons have been pointed out: pollution caused by oil based fuels consumption and their availability diminution, which increases their production costs. Fuel Cells have shown to be a clean and renewable energy source, which reveals them as a promising solution, although their technology needs further development. Fuel Cells produce electricity, water and heat consuming hydrogen and oxygen, this provided pure or from a natural air source. Present research has combined different equipment to compose a self-sustaining fuel cells technology based cabinet for energy production, which is a Regenerative Fuel Cell System (RFC). This system contains: fuel cells stack, electrolyzer, photovoltaic panel, batteries, current inverter and a charge controller. Photovoltaic panel charges the batteries, while charge controller controls the batteries loading. Batteries are connected to an inverter which converts direct current into alternating current. Inverter is connected to an electrolyzer (Hogen GC 600) which splits the water molecule into hydrogen and oxygen molecules. Produced hydrogen supplies the fuel cell stack and the oxygen is released directly to the atmosphere. Fuel cell stacks power production is transformed into mechanical energy by a fan. Electrical power generated by Ballard stack is 5.124 W, with a voltage of 36.6 V and current of 0.14 A. The system proved to have a great efficiency and to be capable to assemble two renewable energy sources (solar and fuel cell technology) in a self-sustainable cabinet. It has also been shown that equipment such as Electrolyzer, Fuel Cell Stack and Photovoltaic panel can be fit together in the order to produce energy. Therefore, research on Fuel Cells Regenerative System reveals great importance for developing a new, clean, renewable and regenerative energy production system. (author)

  15. Recent advances and challenges of fuel cell based power system architectures and control – A review

    DEFF Research Database (Denmark)

    Das, Vipin; Sanjeevikumar, Padmanaban; Venkitusamy, Karthikeyan

    2017-01-01

    Renewable energy generation is rapidly growing in the power sector industry and widely used for two categories: grid connected and standalone system. This paper gives the insights about fuel cell operation and application of various power electronics systems. The fuel cell voltage decreases bit...... of utilization. In order to improve the reliability of fuel cell based power system, the integration of energy storage system and advanced research methods are focused in this paper. The control algorithms of power architecture for the couple of well-known applications are discussed. Additionally, the paper...... addresses the suitable processor utilized as a part of the energy unit application on the premise of fuel cell characteristics. In this paper, the challenges to improve the dynamics of controller in fuel cell based applications are mentioned....

  16. Non-Inverting Buck-Boost Converter for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Schaltz, Erik; Rasmussen, Peter Omand; Khaligh, Alireza

    2008-01-01

    Fuel cell DC/DC converters often have to be able to both step-up and step-down the input voltage, and provide a high efficiency in the whole range of output power. Conventional negative output buck-boost and non-inverting buck-boost converters provide both step-up and step-down characteristics....... In this paper the non-inverting buck-boost with either diodes or synchronous rectifiers is investigated for fuel cell applications. Most of previous research does not consider  the parasitic in the evaluation of the converters. In this study, detailed analytical expressions of the efficiencies for the system...... composed of fuel cell system and interfacing converter, considering the parasitics, are presented. It is concluded that the implementation with synchronous rectifiers provides the highest efficiency in the whole range of the fuel cell power, and its efficiency characteristic is more suitable for fuel cell...

  17. 车载燃料电池用铂基催化剂的研究进展%Research Progress of Pt-Based Electro-catalyst for Automotive Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    顾永万; 马宝华; 栗云彦; 杨冬霞; 赵云昆; 卢军; 刘锋

    2014-01-01

    Energy crisis and environmental pollution are the main driving forces for the development of automotive fuel cell. However, the performance and cost of electrocatalyst become one of the key factors, which limit the large scale commercial application of fuel cells. So far, Pt-based catalysts have been mainly used for fuel cell. Three kinds of automotive fuel cell electrocatalysts for proton exchange membrane fuel cell, direct methanol fuel cell and formic acid fuel cell are discussed in detail, and their problems and solutions are analyzed.%能源危机和环境污染是车载燃料电池发展的主要驱动力。电催化剂的性能和成本是制约其实现商业化的关键因素之一。目前,车载燃料电池用催化剂主要是铂(Pt)基催化剂,文章对质子交换膜燃料电池、直接甲醇燃料电池和甲酸燃料电池三种车载燃料电池用铂基催化剂的研究进行综述,并对其存在的问题进行了分析和讨论。

  18. Alternative membranes for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, A.K.; Pitchumani, S.; Sridhar, P.; Shukla, A.K. [Central Electrochemical Research Inst., Karaikudi (India)

    2009-07-01

    Nafion, a perfluoro-sulfonated membrane, is utilized as a membrane electrolyte in polymer electrolyte fuel cells (PEFCs). However, to realize optimum PEFC performance, the Nafion membrane needs to be fully humidified, making the system quite costly. Therefore, in order to solve this problem, alternative membrane electrolytes that could operate under low humidity conditions are needed. This paper reported on composite Nafion membranes with ceramic/inorganic fillers such as silica and mesoporous zirconium phosphate (MZP). Silica was impregnated to the Nafion matrix by a unique water hydrolysis sol-gel route and casted as a composite membrane while MZP, a solid-super-acid-proton-conducting medium as well as water absorbing material was synthesized by a co-assembly technique and impregnated to the Nafion matrix to form a composite membrane. The performance of the PEFCs with Nafion membrane and composite membranes was tested with hydrogen/oxygen gas and hydrogen/air feeds at varying relative humidity (RH) values under ambient conditions. It was concluded that under RH value as low as 18 per cent, the PEFC with Nafion membrane delivers a peak-power density of only 130 mW/square centimeter.

  19. Engineering microbial fuels cells: recent patents and new directions.

    Science.gov (United States)

    Biffinger, Justin C; Ringeisen, Bradley R

    2008-01-01

    Fundamental research into how microbes generate electricity within microbial fuel cells (MFCs) has far outweighed the practical application and large scale development of microbial energy harvesting devices. MFCs are considered alternatives to standard commercial polymer electrolyte membrane (PEM) fuel cell technology because the fuel supply does not need to be purified, ambient operating temperatures are maintained with biologically compatible materials, and the biological catalyst is self-regenerating. The generation of electricity during wastewater treatment using MFCs may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment as a result of developing this energy harvesting technology. However, the materials and engineering designs for MFCs were identical to commercial fuel cells until 2003. Compared to commercial fuel cells, MFCs will remain underdeveloped as long as low power densities are generated from the best systems. The variety of designs for MFCs has expanded rapidly in the last five years in the literature, but the patent protection has lagged behind. This review will cover recent and important patents relating to MFC designs and progress.

  20. Fuel cell cathode air filters: Methodologies for design and optimization

    Science.gov (United States)

    Kennedy, Daniel M.; Cahela, Donald R.; Zhu, Wenhua H.; Westrom, Kenneth C.; Nelms, R. Mark; Tatarchuk, Bruce J.

    Proton exchange membrane (PEM) fuel cells experience performance degradation, such as reduction in efficiency and life, as a result of poisoning of platinum catalysts by airborne contaminants. Research on these contaminant effects suggests that the best possible solution to allowing fuel cells to operate in contaminated environments is by filtration of the harmful contaminants from the cathode air. A cathode air filter design methodology was created that connects properties of cathode air stream, filter design options, and filter footprint, to a set of adsorptive filter parameters that must be optimized to efficiently operate the fuel cell. Filter optimization requires a study of the trade off between two causal factors of power loss: first, a reduction in power production due to poisoning of the platinum catalyst by chemical contaminants and second, an increase in power requirements to operate the air compressor with a larger pressure drop from additional contaminant filtration. The design methodology was successfully applied to a 1.2 kW fuel cell using a programmable algorithm and predictions were made about the relationships between inlet concentration, breakthrough time, filter design, pressure drop, and compressor power requirements.

  1. Measurement and estimation of species distribution in a direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Selahattin; Mat, Mahmut D. [Nigde University, Mechanical Engineering Department, 51100 Nigde (Turkey)

    2010-03-15

    Determination of methanol concentration in a direct methanol fuel cell is crucial for design improvement and performance enhancement. Methanol and water concentrations in a direct methanol fuel cell are experimentally and numerically investigated. In the experimental program, a single cell direct methanol fuel cell is developed and an experimental setup is devised to measure methanol and water concentrations and performance of the cell depending on operating conditions. In theoretical program a mathematical model which includes fluid flow, species distribution, electric field and electrochemistry is adapted and numerically solved. The results showed that the performance of a Direct Methanol Fuel Cell (DMFC) is mainly influenced by operating temperature. A large drop in methanol concentration methanol is measured at the inlet section of cell. The mathematical model is found to satisfactorily capture main physics involved in a DMFC. (author)

  2. Energy harvesting by implantable abiotically catalyzed glucose fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kerzenmacher, S.; von Stetten, F. [Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 106, D-79110 Freiburg (Germany); Ducree, J. [HSG-IMIT, Wilhelm-Schickard-Str. 10, D-78052 Villingen-Schwenningen (Germany); Zengerle, R. [Laboratory for MEMS Applications, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 106, D-79110 Freiburg (Germany); HSG-IMIT, Wilhelm-Schickard-Str. 10, D-78052 Villingen-Schwenningen (Germany)

    2008-07-15

    Implantable glucose fuel cells are a promising approach to realize an autonomous energy supply for medical implants that solely relies on the electrochemical reaction of oxygen and glucose. Key advantage over conventional batteries is the abundant availability of both reactants in body fluids, rendering the need for regular replacement or external recharging mechanisms obsolete. Implantable glucose fuel cells, based on abiotic catalysts such as noble metals and activated carbon, have already been developed as power supply for cardiac pacemakers in the late-1960s. Whereas, in vitro and preliminary in vivo studies demonstrated their long-term stability, the performance of these fuel cells is limited to the {mu}W-range. Consequently, no further developments have been reported since high-capacity lithium iodine batteries for cardiac pacemakers became available in the mid-1970s. In recent years research has been focused on enzymatically catalyzed glucose fuel cells. They offer higher power densities than their abiotically catalyzed counterparts, but the limited enzyme stability impedes long-term application. In this context, the trend towards increasingly energy-efficient low power MEMS (micro-electro-mechanical systems) implants has revived the interest in abiotic catalysts as a long-term stable alternative. This review covers the state-of-the-art in implantable abiotically catalyzed glucose fuel cells and their development since the 1960s. Different embodiment concepts are presented and the historical achievements of academic and industrial research groups are critically reviewed. Special regard is given to the applicability of the concept as sustainable micro-power generator for implantable devices. (author)

  3. Fuel processors for fuel cell APU applications

    Science.gov (United States)

    Aicher, T.; Lenz, B.; Gschnell, F.; Groos, U.; Federici, F.; Caprile, L.; Parodi, L.

    The conversion of liquid hydrocarbons to a hydrogen rich product gas is a central process step in fuel processors for auxiliary power units (APUs) for vehicles of all kinds. The selection of the reforming process depends on the fuel and the type of the fuel cell. For vehicle power trains, liquid hydrocarbons like gasoline, kerosene, and diesel are utilized and, therefore, they will also be the fuel for the respective APU systems. The fuel cells commonly envisioned for mobile APU applications are molten carbonate fuel cells (MCFC), solid oxide fuel cells (SOFC), and proton exchange membrane fuel cells (PEMFC). Since high-temperature fuel cells, e.g. MCFCs or SOFCs, can be supplied with a feed gas that contains carbon monoxide (CO) their fuel processor does not require reactors for CO reduction and removal. For PEMFCs on the other hand, CO concentrations in the feed gas must not exceed 50 ppm, better 20 ppm, which requires additional reactors downstream of the reforming reactor. This paper gives an overview of the current state of the fuel processor development for APU applications and APU system developments. Furthermore, it will present the latest developments at Fraunhofer ISE regarding fuel processors for high-temperature fuel cell APU systems on board of ships and aircrafts.

  4. DIRECT FUEL/CELL/TURBINE POWER PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  5. Integrated regenerative fuel cell experimental evaluation

    Science.gov (United States)

    Martin, Ronald E.

    1990-01-01

    An experimental test program was conducted to investigate the performance characteristics of an integrated regenerative fuel cell (IRFC) concept. The IRFC consists of a separate fuel cell unit and electrolysis cell unit in the same structure, with internal storage of fuel cell product water and external storage of electrolysis cell produced hydrogen and oxygen. The fuel cell unit incorporates an enhanced Orbiter-type cell capable of improved performance at reduced weight. The electrolysis cell features a NiCo2O4 catalyst oxygen evolution eletrode with a porous Teflon cover to retard electrolyte loss. Six complete IRFC assemblies were assembled and performance tested at an operating temperature of 200 F (93.3 C) and reactant pressures up to 170 psia (117.2 n/cu cm) on IRFC No. 4. Anomalous pressure charge/discharge characteristics were encountered during performance evaluation. A reversible fuel cell incorporating a proprietary bi-functional oxygen electrode operated satisfactory at 200 F (93.3 C) at reactant pressures up to 50 psia (41.4 n/cu cm) as a regenerative fuel cell for one cycle, before developing an electrical short in the fuel cell mode. Electrolysis cell 300-hour endurance tests demonstrated the electrolyte retention capability of the electrode Teflon cover and the performance stability of the bi-functional oxygen electrode at high potential.

  6. Fuel cell collaboration in the United States. A report to the Danish Partnership for Hydrogen and Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-15

    The purpose of this report is to provide members of the Danish Partnership for Hydrogen and Fuel Cells with information regarding collaborative opportunities in the United States. The report is designed to provide an overview of key issues and activities and to provide guidance on strategies for finding U.S. research and commercial partners and gaining access to the U.S. market. Section 1 of this report provides an overview of the key drivers of policy at the federal and state government levels regarding hydrogen and fuel cell technologies and provides a perspective of the U.S. industry and key players. It also suggests three general pathways for accessing U.S. opportunities: enhancing visibility; developing vendor relationships; and establishing a formal presence in the U.S. The next sections summarize focus areas for commercial and research activity that currently are of the greatest interest in the U.S. Section 2 describes major programs within the federal government and national laboratories, and discusses various methods for identifying R and D funding opportunities, with an overview of federal acquisition regulations. Section 3 reviews the efforts of several state governments engaging the fuel cell industry as an economic driver and presents an overview of acquisition at the state level. Section 4 discusses university research and development (R and D) and university-industry partnerships. There are 12 appendices attached to the report. These appendices provide more detailed information regarding the key federal government agencies involved in fuel cells and hydrogen, state-specific policies and activities, national laboratories and universities, and other information regarding the fuel cell and hydrogen industry in the U.S. (Author)

  7. Alternate Fuel Cell Membranes for Energy Independence

    Energy Technology Data Exchange (ETDEWEB)

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic

  8. Nanocrystalline cerium oxide materials for solid fuel cell systems

    Science.gov (United States)

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  9. DOE perspective on fuel cells in transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kost, R.

    1996-04-01

    Fuel cells are one of the most promising technologies for meeting the rapidly growing demand for transportation services while minimizing adverse energy and environmental impacts. This paper reviews the benefits of introducing fuel cells into the transportation sector; in addition to dramatically reduced vehicle emissions, fuel cells offer the flexibility than use petroleum-based or alternative fuels, have significantly greater energy efficiency than internal combustion engines, and greatly reduce noise levels during operation. The rationale leading to the emphasis on proton-exchange-membrane fuel cells for transportation applications is reviewed as are the development issues requiring resolution to achieve adequate performance, packaging, and cost for use in automobiles. Technical targets for power density, specific power, platinum loading on the electrodes, cost, and other factors that become increasingly more demanding over time have been established. Fuel choice issues and pathways to reduced costs and to a renewable energy future are explored. One such path initially introduces fuel cell vehicles using reformed gasoline while-on-board hydrogen storage technology is developed to the point of allowing adequate range (350 miles) and refueling convenience. This scenario also allows time for renewable hydrogen production technologies and the required supply infrastructure to develop. Finally, the DOE Fuel Cells in Transportation program is described. The program, whose goal is to establish the technology for fuel cell vehicles as rapidly as possible, is being implemented by means of the United States Fuel Cell Alliance, a Government-industry alliance that includes Detroit`s Big Three automakers, fuel cell and other component suppliers, the national laboratories, and universities.

  10. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Steven S. C. [Univ. of Akron, OH (United States)

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels

  11. Micro-fuel cell power sources

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Jeffrey D. [Center for Meso, Micro, and Nano Technology, Lawrence Livermore National Laboratory, 7000 East Avenue, L-222, Livermore, CA 94550, (United States)

    2007-01-19

    This paper presents a review and discussion of micro-fuel cell technologies, providing insight into the innovations that have been made to date. Discussion of concepts and results leading towards increased levels of integration and performance for micro-fuel cell systems will elucidate the potential of thin film and microfabrication methods in meeting the challenges and requirements necessary for consumer applications. While the amount of literature in this area is substantial, a representative sampling of key developments will be presented in this paper, in order to gain a sense of the design methodologies being implemented for micro-fuel cell power sources. (Author)

  12. Business Case for Fuel Cells 2016

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Gangi, Jennifer [Fuel Cell and Hydrogen Energy Association, Washington, DC (United States); Benjamin, Thomas G. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The report provides an overview of recent private sector fuel cell installations at U.S. businesses as of December 31, 2016. This list is by no means exhaustive. Over the past few decades, hundreds of thousands of fuel cells have been installed around the world, for primary or backup power, as well as in various other applications including portable and emergency backup power. Fuel cells have also been deployed in other applications such as heat and electricity for homes and apartments, material handling, passenger vehicles, buses, and remote, off-grid sites.

  13. Proton exchange membrane fuel cells modeling

    CERN Document Server

    Gao, Fengge; Miraoui, Abdellatif

    2013-01-01

    The fuel cell is a potential candidate for energy storage and conversion in our future energy mix. It is able to directly convert the chemical energy stored in fuel (e.g. hydrogen) into electricity, without undergoing different intermediary conversion steps. In the field of mobile and stationary applications, it is considered to be one of the future energy solutions.Among the different fuel cell types, the proton exchange membrane (PEM) fuel cell has shown great potential in mobile applications, due to its low operating temperature, solid-state electrolyte and compactness.This book pre

  14. In-membrane micro fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  15. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  16. Report on technological development of fuel cell power generation 1998. Research and development on polymer electrolyte fuel cell (technological development of generating system, development of atmospheric operation home power system of several kW class); 1998 nendo seika hokokusho. Nenryo denchi hatsuden gijutsu kaihatsu, kotai kobunshigata nenryo denchi no kenkyu kaihatsu, hatsuden system gijutsu kaihatsu, joatsu sadogata su kW kyu kateiyo dengen system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper explains the results of the research and development of polymer electrolyte fuel cells in fiscal 1998. For the purpose of developing a power source suitable for household use, a cell unit was developed in which performance was improved by reducing the thickness of a catalyst layer and increasing its ion-exchange capacity in the fuel cell body. There were prospects that low cost carbon materials and resin materials were usable in a carbon/resin composite plate. In the fuel supply technology, a serial two step type remover was developed concerning CO in a fuel using a selective oxidation process, which confirmed that the exit concentration was reducible to 10ppm or below even under a low S/C condition. With a reform ratio of 95% achieved with a 1kW class natural gas reformer, a thermal efficiency of 85% was attained by efficiently using combustion exhaust gas/reform gas sensible heat. In order to achieve a power generating efficiency of 35%, it is essential to improve reformer heat efficiency and cell performance, and also to produce steam for reforming by effectively utilizing reform gas/burner exhaust gas. The 1kW class module was verified in its stable operation and performance. (NEDO)

  17. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  18. Thin films for micro solid oxide fuel cells

    Science.gov (United States)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  19. Development of the work on fuel cells in the Ministry for Atomic Energy of Russian Federation

    Energy Technology Data Exchange (ETDEWEB)

    Lubovin, B.Y.; Novitski, E.Z.

    1996-04-01

    This paper describes research on fuel cells in the Russian Federation. The beginning of the practical work on fuel cells in Russia dates back to the 50`s and 60`s when the Ural Electrochemical Plant and the Ural Electromechanical Plant of the Ministry of Medium Machine-Building of the USSR, all Russian Research Institute of the power sources and many other institutes of the Ministry of Electrotechnical Industry of the USSR got to the development of the alkaline fuel cells for the spaceships according to the tasks of the SPC `Energy` and for the submarines on the tasks of the Ministry of Defense.

  20. Transport Studies and Modeling in PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Mittelsteadt, Cortney K. [Giner, Inc., Auburndale, MA (United States); Xu, Hui [Giner, Inc., Auburndale, MA (United States); Brawn, Shelly [Giner, Inc., Auburndale, MA (United States)

    2014-07-30

    This project’s aim was to develop fuel cell components (i.e. membranes, gas-diffusion media (GDM), bipolar plates and flow fields) that possess specific properties (i.e. water transport and conductivity). A computational fluid dynamics model was developed to elucidate the effect of certain parameters on these specific properties. Ultimately, the model will be used to determine sensitivity of fuel cell performance to component properties to determine limiting components and to guide research. We have successfully reached our objectives and achieved most of the milestones of this project. We have designed and synthesized a variety of hydrocarbon block polymer membranes with lower equivalent weight, structure, chemistry, phase separation and process conditions. These membranes provide a broad selection with optimized water transport properties. We have also designed and constructed a variety of devices that are capable of accurately measuring the water transport properties (water uptake, water diffusivity and electro-osmatic drag) of these membranes. These transport properties are correlated to the membranes’ structures derived from X-ray and microscopy techniques to determine the structure-property relationship. We successfully integrated hydrocarbon membrane MEAs with a current distribution board (CBD) to study the impact of hydrocarbon membrane on water transport in fuel cells. We have designed and fabricated various GDM with varying substrate, diffusivity and micro-porous layers (MPL) and characterized their pore structure, tortuosity and hydrophobicity. We have derived a universal chart (MacMullin number as function of wet proofing and porosity) that can be used to characterize various GDM. The abovementioned GDMs have been evaluated in operating fuel cells; their performance is correlated to various pore structure, tortuosity and hydrophobicity of the GDM. Unfortunately, determining a universal relationship between the MacMullin number and these properties

  1. Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer

    Energy Technology Data Exchange (ETDEWEB)

    Dennis Witmer; Thomas Johnson

    2008-12-31

    Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

  2. State activities that promote fuel cell and hydrogen infrastructure development

    Energy Technology Data Exchange (ETDEWEB)

    Gangi, J. [Fuel Cells 2000, Washington, DC (United States). Breakthrough Technologies Inst.

    2007-07-01

    The fuel cell and hydrogen industry provide environmental benefits in addition to economic benefits in the form of jobs and business. This presentation outlined the initiatives, policy and partnerships that individual states are initiating to promote the commercialization of fuel cells and hydrogen fuels. Multi-state partnerships and regional organizations and initiatives were highlighted along with state programs, regulations, demonstrations and incentives that include hydrogen, fuel cells and zero emission vehicles. It was shown that 47 states and the District of Columbia (DC) are involved in the promotion of fuel cell or hydrogen legislation and funding. Breakthrough Technologies Institute, the parent organization of Fuel Cells 2000, and the U.S. Department of Energy's Hydrogen Program has launched a searchable database that catalogues all stationary installations, hydrogen fueling stations and vehicle demonstration programs in the United States, including cars, buses and specialty vehicles. The database is intended to be a guide for local, state and federal lawmakers to implement similar legislation and initiatives in their jurisdictions. The database includes regulations such as interconnection standards, renewable portfolio standards and net metering as well as legislation such as tax credits, grants, and loans. Roadmaps and funding/support for business incubators and relocation are included. The database is also an important tool for the general public who are trying to learn more about the technology. Although federal research money has mainly focused on transportation and related fuel technologies, individual states are targeting other applications and areas such as materials and components, stationary power and fuel storage.

  3. Thematic outlook: the technical survey for the fuel cell research network PACO. March 22, 2004 update no. 22; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 22 mars 2004, no. 22

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage and renewable energies. Their different titles are given below: 1)recent developments in the field of polymer electrolyte fuel cells membranes running above 100 C 2)a new study method of a two-phase flow in a direct methanol fuel cell 3)fuel cell system 4)direct polymer electrolyte fuel cells running with dimethyl ether for portable applications 5)new fuel cells developments for aerospace equipment 6)anode materials for SOFC 7)application of the fuel cell technology to the rail transport 8)hydrogen production by hydrocarbons steam reforming on Ni or Fe based catalysts which are modified by an alkaline earth metal 9)thermochemical hydrogen production from Pacinum virgatum plant 10)development of a catalyst for biomass gasification, in a double-bed gasifier 11)the role of hydrogen in the development of wind power electric systems: the case of Ireland 12)feasibility study of a hydrogen distribution basic equipment for fuel cells vehicles, based on the use of electric power produced in off-peak hours in Japan 13)'bio-hydrogen' production: future developments and limits to a practical application 14)improvement of the hydrogen production from a biomass gasification process, indirectly heated. Removal of carbon dioxide releases with a new biological reformer 15)storage of hydrogen cooled with liquid nitrogen 16)ten years of running of a renewable energy production system based on hydrogen. The references of these articles are detailed. (O.M.)

  4. Thematic outlook: the technical survey for the fuel cell research network PACO. April 16, 2004 update no. 23; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 16 avril 2004, no. 23

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage. Their different titles are given below: 1)the importance of the fuel choice in the efficiency of the SOFC 2)assessment model of a centralized electric power system: SOFC/gas turbine 3)a direct borohydride fuel cell 4)thermodynamic optimization of the internal structure of a fuel cell 5)a SOFC/gas turbine cogeneration system 6)micro-fuel cells for portable applications 7)comparison of performances of direct alcohol fuel cells using different anode catalysts 8)materials and designs for SOFC used in stationary and mobile applications 9)development of measurement techniques for two-phase hydrogen weight flow 10)semi-conductors potentiometric probe for the hydrogen detection in air 11)integration of a fuel cell in an electric system, using a regulator based on the theory of regulation by disturbances accommodation 12)'greening London's black cabs': a study of the use potential of fuel cells cabs in London 13)gasification of leather residues - part 1 - experimental study in a pilot gasifier with a descending current 14)use of composite conducting membranes to produce hydrogen by water dissociation 15)molybdenum carbide based catalyst for the water gas reaction used in fuel cells vehicles applications 16)hydrogen production process from methane hydrates with carbon dioxide hydrates sequestration 17)comparative study between the hydrogen adsorption on super activated carbon and on carbon nano-tubes. The references of these articles are detailed. (O.M.)

  5. Thematic outlook: the technical survey for the fuel cell research network PACO. August 13, 2004 update no. 26; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 13 aout 2004, no. 26

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Summaries of several recent articles are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage. Their different titles are given below: 1)fuel cells, hydrogen and energy supply in Australia 2)fuel cell system 3)exergy analysis of a SOFC fed with ethanol or methane 4)a SOFC fed with H{sub 2}S 5)challenges to take up in the control of fuel cells systems: role of dynamic models 6)hydrogen as energetic vector for autonomous applications based on renewable energy sources 7)passive feed system for DMFC 8)heterogeneous poly-acids membrane for DMFC 8)ferritic stainless steel assessment as interconnections material for SOFC 9)an approach of super-capacitors integration in fuel cell electric-powered vehicles and emulation of the electric characteristics of the cell using an automatic converter 10)catalytic activity correlations: the difficult case of the hydrogen production from ammonia 11)desulfurization of natural gas and LPG, for reformers, in fuel cells systems 12)Cu/ZnO and Cu/ZnO/Al{sub 2}O{sub 3} catalysts prepared by an homogeneous precipitation method, and used for methanol steam reforming 13)renewable energy production: role of gas and electric power networks to cope with the intermittence problem, with the hydrogen production and storage 14)comparison of the hydrogen adsorption on carbon nano-structures 15)hydrogen detector based on an optical and an electric switching. The references of these articles are detailed. (O.M.)

  6. Thematic outlook: the technical outlook for the fuel cell research network (PACO). December 8, 2003 update no. 18; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 8 decembre 2003, no. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of different recent articles and patents are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage and with the different other energies. Their different titles are given below: 1)fuel cells or internal combustion engine, will it be really a 'or'? 2)fuel cell systems with a high yield using heat generated by the fuel for producing an addition of electricity 3)the design of DFC (Direct Fuel Cell) 4)electricity production by glucose oxidation in bacterial fuels without intermediary 5)simulation of a photovoltaic/micro-hydraulic/hydrogen system for feeding a house in the Alpes area. Part 2: the integrated system 6)recent advances in the field of materials for fuel cells 7)new materials for hydrogen production in PEMFC 8)modelling of the performances of lithium-ion batteries for fuel cells vehicles 9)hydrogen production at low temperature from oxygenated hydrocarbons 10)an alternative system for stationary hydrogen production: the iron sponge reforming cycle 11)a steam reformer for abating the releases of an internal combustion engine 12)hydrogen separation and purification: hydrogen recycling for SOFC 13)hydrogen physico-chemical storage: are carbon nano-tubes good means of hydrogen storage? 14)energetic scenarios until 2050 15)the use of wind energy on the electric network. The references of these articles and patents are detailed. (O.M.)

  7. Thematic outlook: the technical outlook for the fuel cell research network (PACO). December 8, 2003 update no. 18; Veille thematique. La veille technique pour le reseau PACO. Actualisation du 8 decembre 2003, no. 18

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    Summaries of different recent articles and patents are gathered here. They deal with fuel cells, means of transport, hydrogen production and storage and with the different other energies. Their different titles are given below: 1)fuel cells or internal combustion engine, will it be really a 'or'? 2)fuel cell systems with a high yield using heat generated by the fuel for producing an addition of electricity 3)the design of DFC (Direct Fuel Cell) 4)electricity production by glucose oxidation in bacterial fuels without intermediary 5)simulation of a photovoltaic/micro-hydraulic/hydrogen system for feeding a house in the Alpes area. Part 2: the integrated system 6)recent advances in the field of materials for fuel cells 7)new materials for hydrogen production in PEMFC 8)modelling of the performances of lithium-ion batteries for fuel cells vehicles 9)hydrogen production at low temperature from oxygenated hydrocarbons 10)an alternative system for stationary hydrogen production: the iron sponge reforming cycle 11)a steam reformer for abating the releases of an internal combustion engine 12)hydrogen separation and purification: hydrogen recycling for SOFC 13)hydrogen physico-chemical storage: are carbon nano-tubes good means of hydrogen storage? 14)energetic scenarios until 2050 15)the use of wind energy on the electric network. The references of these articles and patents are detailed. (O.M.)

  8. Hydrogen storage and integrated fuel cell assembly

    Science.gov (United States)

    Gross, Karl J.

    2010-08-24

    Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

  9. Fuel Cell Hydroge Manifold for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    Reducing CO2 emissions are getting more attention because of global warming. The transport sector which is responsible for a significant amount of emissions is going to reduce them due to new and upcoming regulations. Using fuel cells may be one way to help to reduce the emissions from this sector....... Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention....... The most common type of fuel cell used for automotive applications is PEM fuel cell. They are known for their high efficiency, low emissions and high reliability. However, lack of a hydrogen infrastructure, cost and durability of the stack is considered the biggest obstacles to the introduction of fuel...

  10. Environmental Impact of Fuel Cell Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hart, N.T.; Day, M.J. [Rolls-Royce Strategic Research Centre, PO Box 31, Derby, DE24 8BJ (United Kingdom); Brandon, N.P. [T.H.Huxley School of Environment, Earth Sciences and Engineering, Imperial College of Science Technology and Medicine, London, SW7 2BP (United Kingdom); Shemilt, J.E. [Dept. of Materials Engineering, Brunel University, Uxbridge, UB8 3PH (United Kingdom)

    2000-07-01

    Fuel Cells potentially offer environmental benefits when compared to conventional technology but it is important to consider the full environmental impact including the manufacturing and disposal steps. This paper describes a case study that compares the energy requirements for Solid Oxide Fuel Cell fabrication routes. The results show that that, when compared to the benefits during use, the associated environmental impact is relatively small. Therefore the choice of manufacturing routes will have little effect on the overall advantage of implementing Fuel Cell systems. The total environmental impact of fuel cell fabrication will also include the production of materials. This could contribute a large share of the total environmental burden, however it could be minimised by adopting a design that allows the materials to be recycled in an efficient manner. (author)

  11. A fuel cell driven aircraft baggage tractor

    Energy Technology Data Exchange (ETDEWEB)

    Sterkenburg, Stefan van [HAN Univ. of Applied Sciences (Netherlands); Rijs, Aart van; Hupkens, Huib [Silent Motor Company, Arnhem (Netherlands)

    2010-07-01

    Silent Motor Company and the HAN University of Applied Science collaborate in the development of an aircraft baggage tractor. The baggage tractor is equipped with an 8kW fuel cell stack connected to a 26kWh battery-pack. The control system implemented minimizes the start-up time of the fuel cell system, protects the fuel cell against overload and underload and controls the State of Charge (SOC) of the battery to its optimum value. A practical SOC-determination method is implemented which does not need detailed knowledge about the batteries applied. This paper presents a description of the fuel cell system, its energy management system and SOC-determination method and the results of first test measurements. (orig.)

  12. Fuel Cell and Battery Powered Forklifts

    DEFF Research Database (Denmark)

    Zhang, Zhe; Mortensen, Henrik H.; Jensen, Jes Vestervang

    2013-01-01

    A hydrogen-powered materials handling vehicle with a fuel cell combines the advantages of diesel/LPG and battery powered vehicles. Hydrogen provides the same consistent power and fast refueling capability as diesel and LPG, whilst fuel cells provide energy efficient and zero emission Electric...... propulsion similar to batteries. In this paper, the performance of a forklift powered by PEM fuel cells and lead acid batteries as auxiliary energy source is introduced and investigated. In this electromechanical propulsion system with hybrid energy/power sources, fuel cells will deliver average power......, whilst batteries will handle all the load dynamics, such as acceleration, lifting, climbing and so on. The electrical part of the whole propulsion system for forklift has been investigated in details. The energy management strategy is explained and verified through simulation. Finally, experimental...

  13. Operating a fuel cell using landfill gas

    Energy Technology Data Exchange (ETDEWEB)

    Trippel, C.E.; Preston, J.L. Jr.; Trocciola, J.; Spiegel, R.

    1996-12-31

    An ONSI PC25{trademark}, 200 kW (nominal capacity) phosphoric acid fuel cell operating on landfill gas is installed at the Town of Groton Flanders Road landfill in Groton, Connecticut. This joint project by the Connecticut Light & Power Company (CL&P) which is an operating company of Northeast Utilities, the Town of Groton, International Fuel Cells (IFC), and the US EPA is intended to demonstrate the viability of installing, operating and maintaining a fuel cell operating on landfill gas at a landfill site. The goals of the project are to evaluate the fuel cell and gas pretreatment unit operation, test modifications to simplify the GPU design and demonstrate reliability of the entire system.

  14. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    Science.gov (United States)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  15. Photoactivated Fuel Cells (PhotoFuelCells. An alternative source of renewable energy with environmental benefits

    Directory of Open Access Journals (Sweden)

    Stavroula Sfaelou

    2016-03-01

    Full Text Available This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation.

  16. Technological aspects in synthesis and characterization of proton conducting polyetheretherketone (PEEK) membranes for fuel cell applications.

    CSIR Research Space (South Africa)

    Vaivars, G

    2009-08-01

    Full Text Available in various industrial fields: medicine, analytical chemistry, electro- and diffusion dialysis, sensors, both separator and solid polymer electrolyte in electrolysis, batteries, fuel cells, etc [1]. The research on ion-exchange membranes has grown...

  17. Microcontroller-driven hydrogen fuel cell car

    OpenAIRE

    Queirós, Hugo; Lafuente, António; Sepúlveda, João; Esteves, João Sena

    2010-01-01

    This paper presents a fuel cell car with 8 minutes autonomy, capable of following a white line on a black track, using infrared sensors that detect white and black colors. A servomotor controls its direction. Guidelines to the servomotor are given by a system based on an 8051 microcontroller, according to the information it receives from the infrared sensors. The hydrogen needed by the fuel cell is produced by electrolysis, which requires an external power supply. The gas is retained on an is...

  18. Opportunities for portable Ballard Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, H.H.; Huff, J.R. [Ballard Power Systems Inc., Burnaby, British Columbia (Canada)

    1996-12-31

    With the increasing proliferation and sophistication of portable electronic devices in both commercial and military markets, the need has arisen for small, lightweight power supplies that can provide increased operating life over those presently available. A solution to this power problem is the development of portable Ballard Fuel Cell power systems that operate with a hydrogen fuel source and air. Ballard has developed PEM fuel cell stacks and power systems in the 25 to 100 watt range for both of these markets. For military use, Ballard has teamed with Ball Corporation and Hydrogen Consultants, Inc. and has provided the Ballard Fuel Cell stack for an ambient PEM fuel cell power system for the DoD. The system provides power from idle to I 00 watts and has the capability of delivering overloads of 125 watts for short periods of time. The system is designed to operate over a wide range of temperature, relative humidity and altitude. Hydrogen is supplied as a compressed gas, metal hydride or chemical hydride packaged in a unit that is mated to the power/control unit. The hydrogen sources provide 1.5, 5 and 15 kWh of operation, respectively. The design of the fuel cell power system enables the unit to operate at 12 volts or 24 volts depending upon the equipment being used. For commercial applications, as with the military, fuel cell power sources in the 25 to 500 watt range will be competing with advanced batteries. Ambient PEM fuel cell designs and demonstrators are being developed at 25 watts and other low power levels. Goals are minimum stack volume and weight and greatly enhanced operating life with reasonable system weight and volume. This paper will discuss ambient PEM fuel cell designs and performance and operating parameters for a number of power levels in the multiwatt range.

  19. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  20. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  1. 16th Polymer Electrolyte Fuel Cell Symposium

    Science.gov (United States)

    2016-11-29

    Electrolyte Fuel Cell Catalyst Y. Nanba, D. S. Rivera Rocabado, T. Ishimoto, M. Koyama 717 Mo- doped Shaped Nanoparticles based on PtNi-alloys – A...Degradation of Nafion Ionomer to Functionalize Graphene as a Support for Core-Shell Palladium-Ruthenium Alloy @ Platinum Electrocatalysts C. C. Kuo...Layers B. Fu, Y. Minamida, Z. Noda, K. Sasaki, A. Hayashi 827 Porous Graphene Layers on Pt Catalyst for Long-Term Stability of Fuel Cell

  2. Reversible (unitized) PEM fuel cell devices

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

    1999-06-01

    Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are

  3. Micro PEM Fuel Cells and Stacks

    Institute of Scientific and Technical Information of China (English)

    Shou-shing; Hsieh

    2007-01-01

    1 Results The effects of different operating parameters on micro proton exchange membrane (PEM) fuel cell performance were experimentally studied for three different flow field configurations (interdigitated,mesh,and serpentine).Experiments with different cell operating temperatures and different backpressures on the H2 flow channels,as well as various combinations of these parameters,have been conducted for three different flow geometries.The micro PEM fuel cells were designed and fabricated in-house t...

  4. Phosphoric Acid Fuel Cell Technology Status

    Science.gov (United States)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  5. Problem Solving

    Science.gov (United States)

    Kinsella, John J.

    1970-01-01

    Discussed are the nature of a mathematical problem, problem solving in the traditional and modern mathematics programs, problem solving and psychology, research related to problem solving, and teaching problem solving in algebra and geometry. (CT)

  6. General strategy for development of fuel cell technology in Denmark; Overordnet strategi for udvikling af braendselscelleteknologi i Danmark

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    This strategy memo on fuel cell technology R and D is prepared by the Danish Energy Authority, Elkraft System and Eltra. The objective of the strategy process is to ensure that publicly funded research is efficient and coordinated with commercial development efforts, and, furthermore, in line with societal objectives for energy related R and D. The first strategy phase focused on establishing an updated overview of Danish R and D regarding fuel cells and evaluation of the perspectives for future use. In the second phase the strategy for fuel cell technology presented in this memo was prepared. The strategy is general and includes two tracks, 'Solid Oxide Fuel Cells' (SOFC) and 'Proton Exchange Membrane Fuel Cells' (PEMFC). A general strategy for publicly funded fuel cell projects should contribute to establish overview and targeting throughout the programme in order to ensure the best possible coordination and efficient use of R and D investments. (BA)

  7. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.

    Science.gov (United States)

    Brett, Daniel J L; Kucernak, Anthony R; Aguiar, Patricia; Atkins, Stephen C; Brandon, Nigel P; Clague, Ralph; Cohen, Lesley F; Hinds, Gareth; Kalyvas, Christos; Offer, Gregory J; Ladewig, Bradley; Maher, Robert; Marquis, Andrew; Shearing, Paul; Vasileiadis, Nikos; Vesovic, Velisa

    2010-09-10

    Fuel cell performance is determined by the complex interplay of mass transport, energy transfer and electrochemical processes. The convolution of these processes leads to spatial heterogeneity in the way that fuel cells perform, particularly due to reactant consumption, water management and the design of fluid-flow plates. It is therefore unlikely that any bulk measurement made on a fuel cell will accurately represent performance at all parts of the cell. The ability to make spatially resolved measurements in a fuel cell provides one of the most useful ways in which to monitor and optimise performance. This Minireview explores a range of in situ techniques being used to study fuel cells and describes the use of novel experimental techniques that the authors have used to develop an 'experimental functional map' of fuel cell performance. These techniques include the mapping of current density, electrochemical impedance, electrolyte conductivity, contact resistance and CO poisoning distribution within working PEFCs, as well as mapping the flow of reactant in gas channels using laser Doppler anemometry (LDA). For the high-temperature solid oxide fuel cell (SOFC), temperature mapping, reference electrode placement and the use of Raman spectroscopy are described along with methods to map the microstructural features of electrodes. The combination of these techniques, applied across a range of fuel cell operating conditions, allows a unique picture of the internal workings of fuel cells to be obtained and have been used to validate both numerical and analytical models.

  8. Solid polymer MEMS-based fuel cells

    Science.gov (United States)

    Jankowski, Alan F.; Morse, Jeffrey D.

    2008-04-22

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  9. Solid oxide MEMS-based fuel cells

    Science.gov (United States)

    Jankowksi, Alan F.; Morse, Jeffrey D.

    2007-03-13

    A micro-electro-mechanical systems (MEMS) based thin-film fuel cells for electrical power applications. The MEMS-based fuel cell may be of a solid oxide type (SOFC), a solid polymer type (SPFC), or a proton exchange membrane type (PEMFC), and each fuel cell basically consists of an anode and a cathode separated by an electrolyte layer. The electrolyte layer can consist of either a solid oxide or solid polymer material, or proton exchange membrane electrolyte materials may be used. Additionally catalyst layers can also separate the electrodes (cathode and anode) from the electrolyte. Gas manifolds are utilized to transport the fuel and oxidant to each cell and provide a path for exhaust gases. The electrical current generated from each cell is drawn away with an interconnect and support structure integrated with the gas manifold. The fuel cells utilize integrated resistive heaters for efficient heating of the materials. By combining MEMS technology with thin-film deposition technology, thin-film fuel cells having microflow channels and full-integrated circuitry can be produced that will lower the operating temperature an will yield an order of magnitude greater power density than the currently known fuel cells.

  10. Mathematical modeling of polymer electrolyte fuel cells

    Science.gov (United States)

    Sousa, Ruy; Gonzalez, Ernesto R.

    Fuel cells with a polymer electrolyte membrane have been receiving more and more attention. Modeling plays an important role in the development of fuel cells. In this paper, the state-of-the-art regarding modeling of fuel cells with a polymer electrolyte membrane is reviewed. Modeling has allowed detailed studies concerning the development of these cells, e.g. in discussing the electrocatalysis of the reactions and the design of water-management schemes to cope with membrane dehydration. Two-dimensional models have been used to represent reality, but three-dimensional models can cope with some important additional aspects. Consideration of two-phase transport in the air cathode of a proton exchange membrane fuel cell seems to be very appropriate. Most fuel cells use hydrogen as a fuel. Besides safety concerns, there are problems associated with production, storage and distribution of this fuel. Methanol, as a liquid fuel, can be the solution to these problems and direct methanol fuel cells (DMFCs) are attractive for several applications. Mass transport is a factor that may limit the performance of the cell. Adsorption steps may be coupled to Tafel kinetics to describe methanol oxidation and methanol crossover must also be taken into account. Extending the two-phase approach to the DMFC modeling is a recent, important point.

  11. High Temperature Polymers for use in Fuel Cells

    Science.gov (United States)

    Peplowski, Katherine M.

    2004-01-01

    NASA Glenn Research Center (GRC) is currently working on polymers for fuel cell and lithium battery applications. The desire for more efficient, higher power density, and a lower environmental impact power sources has led to interest in proton exchanges membrane fuels cells (PEMFC) and lithium batteries. A PEMFC has many advantages as a power source. The fuel cell uses oxygen and hydrogen as reactants. The resulting products are electricity, heat, and water. The PEMFC consists of electrodes with a catalyst, and an electrolyte. The electrolyte is an ion-conducting polymer that transports protons from the anode to the cathode. Typically, a PEMFC is operated at a temperature of about 80 C. There is intense interest in developing a fuel cell membrane that can operate at higher temperatures in the range of 80 C- 120 C. Operating the he1 cell at higher temperatures increases the kinetics of the fuel cell reaction as well as decreasing the susceptibility of the catalyst to be poisoned by impurities. Currently, Nafion made by Dupont is the most widely used polymer membrane in PEMFC. Nafion does not function well above 80 C due to a significant decrease in the conductivity of the membrane from a loss of hydration. In addition to the loss of conductivity at high temperatures, the long term stability and relatively high cost of Nafion have stimulated many researches to find a substitute for Nafion. Lithium ion batteries are popular for use in portable electronic devices, such as laptop computers and mobile phones. The high power density of lithium batteries makes them ideal for the high power demand of today s advanced electronics. NASA is developing a solid polymer electrolyte that can be used for lithium batteries. Solid polymer electrolytes have many advantages over the current gel or liquid based systems that are used currently. Among these advantages are the potential for increased power density and design flexibility. Automobiles, computers, and cell phones require

  12. European hydrogen and fuel cell technology platform. Strategic overview

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th

    2005-07-01

    In January 2004, following the recommendation of the High Level Group, the European Commission set up the European Hydrogen and Fuel Cell Technology Platform (HFP) a partnership of over 300 stakeholders. Its brief? To prepare and direct an effective strategy for bringing hydrogen and fuel cells to market in order to exploit their outstanding environmental and economic potential. An Advisory Council of 35 representatives from a broad range of industry, EC, public authority, academic and NGO stakeholders was set up to guide the activity, together with a number of subsidiary bodies. Two steering panels were then charged with defining a Strategic Research Agenda (SRA) and Deployment Strategy (DS) respectively in order to drive the transition forward. This report gives a work in progress strategic overview, with further details provided in the Executive Summaries of the Strategic Research Agenda and Deployment Strategy foundation documents. (authors)

  13. DOE Hydrogen and Fuel Cells Program Plan (September 2011)

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities within the EERE Fuel Cell Technologies Program and the DOE offices of Nuclear Energy, Fossil Energy, and Science.

  14. Carbon monoxide oxidation on Pt single crystal electrodes: understanding the catalysis for low temperature fuel cells.

    Science.gov (United States)

    García, Gonzalo; Koper, Marc T M

    2011-08-01

    Herein the general concepts of fuel cells are discussed, with special attention to low temperature fuel cells working in alkaline media. Alkaline low temperature fuel cells could well be one of the energy sources in the next future. This technology has the potential to provide power to portable devices, transportation and stationary sectors. With the aim to solve the principal catalytic problems at the anode of low temperature fuel cells, a fundamental study of the mechanism and kinetics of carbon monoxide as well as water dissociation on stepped platinum surfaces in alkaline medium is discussed and compared with those in acidic media. Furthermore, cations involved as promoters for catalytic surface reactions are also considered. Therefore, the aim of the present work is not only to provide the new fundamental advances in the electrocatalysis field, but also to understand the reactions occurring at fuel cell catalysts, which may help to improve the fabrication of novel electrodes in order to enhance the performance and to decrease the cost of low temperature fuel cells.

  15. 外加直流电场对微生物燃料电池阳极微生物的影响研究%Research on the anode bacterials of Microbial Fuel Cell Effcted by DC electric field

    Institute of Scientific and Technical Information of China (English)

    李金洋; 陈涛; 胡艳清; 刘庆玉

    2012-01-01

    为考察外加直流电场作用对微生物燃料电池阳极微生物的影响,采用双室型MFC反应器,在启动开始时分别加以-5,-3,-1,0,+1,+3,+5 V的直流电场,作用时间依次取2min,30 min,1h,24h.结果表明,外加直流电场能够对微生物燃料电池阳极室内微生物的生长产生影响,作用时间为30 min时效果较为明显,提高作用时间后效果变化不大;±1 V的电场强度作用促进微生物的生长;较低的直流电场(±1 V)作用能够促进微生物燃料电池的阳极生物挂膜,且负电场促进效果更好,而较高的直流电场(+3 V和±5 V)作用不利于甚至损害阳极生物挂膜.%To study the effction of anode microorganisms of microbial fuel cell by impressed DC electric field, two-chamber MFCs reactor were installed in the research. The MFCs were effected by DC electric field of -5,-3,-1,0,+1 ,+3,+5 V respectively after they were started and effective time were 2 min,30 min,l h and 24 h. The results showed that impressed DC electric field effect the anode microorganisms of microbial fuel cell, 30 min had remarkable effects.Delayed the effective time can not change the result obviously.DC electric field of ±1 V can accelerate the growth of microorganisms. Microorganisms growing on the anode were accelerated by lower DC electric field (±1 V) and negative electric field much better. Higher DC electric field (+3 V and ±5 V) was not advantageous to growth of microorganisms, even killed it.

  16. National fuel cell seminar. Program and abstracts. [Abstracts of 40 papers

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Abstracts of 40 papers are presented. Topics include fuel cell systems, phosphoric acid fuel cells, molten carbonate fuel cells, solid fuel and solid electrolyte fuel cells, low temperature fuel cells, and fuel utilization. (WHK)

  17. Hydrogen-Oxygen PEM Regenerative Fuel Cell Energy Storage System

    Science.gov (United States)

    Bents, David J.; Scullin, Vincent J.; Chang, Bei-Jiann; Johnson, Donald W.; Garcia, Christopher P.

    2005-01-01

    An introduction to the closed cycle hydrogen-oxygen polymer electrolyte membrane (PEM) regenerative fuel cell (RFC), recently constructed at NASA Glenn Research Center, is presented. Illustrated with explanatory graphics and figures, this report outlines the engineering motivations for the RFC as a solar energy storage device, the system requirements, layout and hardware detail of the RFC unit at NASA Glenn, the construction history, and test experience accumulated to date with this unit.

  18. Testing of a Buran flight-model fuel cell

    Science.gov (United States)

    Schautz, M.; Dudley, G.; Baron, F.; Popov, V.; Pospelov, B.

    A demonstration test program has been performed at European Space Research & Technology Center (ESTEC) on a flight-model Russian 'Photon' fuel cell. The tests, conducted at various power levels up to 23 kW, included current/voltage characteristics, transient behavior, autothermal startup, and impedance measurements. In addition, the product water and the purge gas were analyzed. All test goals were met and no electrochemical limitations were apparent.

  19. Fuel cells : a viable fossil fuel alternative

    Energy Technology Data Exchange (ETDEWEB)

    Paduada, M.

    2007-02-15

    This article presented a program initiated by Natural Resources Canada (NRCan) to develop proof-of-concept of underground mining vehicles powered by fuel cells in order to eliminate emissions. Recent studies on American and Canadian underground mines provided the basis for estimating the operational cost savings of switching from diesel to fuel cells. For the Canadian mines evaluated, the estimated ventilation system operating cost reductions ranged from 29 per cent to 75 per cent. In order to demonstrate the viability of a fuel cell-powered vehicle, NRCan has designed a modified Caterpillar R1300 loader with a 160 kW hybrid power plant in which 3 stacks of fuel cells deliver up to 90 kW continuously, and a nickel-metal hydride battery provides up to 70 kW. The battery subsystem transiently boosts output to meet peak power requirements and also accommodates regenerative braking. Traction for the loader is provided by a brushless permanent magnet traction motor. The hydraulic pump motor is capable of a 55 kW load continuously. The loader's hydraulic and traction systems are operated independently. Future fuel cell-powered vehicles designed by the program may include a locomotive and a utility vehicle. Future mines running their operations with hydrogen-fueled equipment may also gain advantages by employing fuel cells in the operation of handheld equipment such as radios, flashlights, and headlamps. However, the proton exchange membrane (PEM) fuel cells used in the project are prohibitively expensive. The catalytic content of a fuel cell can add hundreds of dollars per kW of electric output. Production of catalytic precious metals will be strongly connected to the scale of use and acceptance of fuel cells in vehicles. In addition, the efficiency of hydrogen production and delivery is significantly lower than the well-to-tank efficiency of many conventional fuels. It was concluded that an adequate hydrogen infrastructure will be required for the mining industry

  20. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation

    Science.gov (United States)

    Cheng, Xuan; Shi, Zheng; Glass, Nancy; Zhang, Lu; Zhang, Jiujun; Song, Datong; Liu, Zhong-Sheng; Wang, Haijiang; Shen, Jun

    This paper reviewed over 150 articles on the subject of the effect of contamination on PEM fuel cell. The contaminants included were fuel impurities (CO, CO 2, H 2S, and NH 3); air pollutants (NO x, SO x, CO, and CO 2); and cationic ions Fe 3+ and Cu 2+ resulting from the corrosion of fuel cell stack system components. It was found that even trace amounts of impurities present in either fuel or air streams or fuel cell system components could severely poison the anode, membrane, and cathode, particularly at low-temperature operation, which resulted in dramatic performance drop. Significant progress has been made in identifying fuel cell contamination sources and understanding the effect of contaminants on performance through experimental, theoretical/modeling, and methodological approaches. Contamination affects three major elements of fuel cell performance: electrode kinetics, conductivity, and mass transfer. This review was focused on three areas: (1) contamination impacts on the fuel cell performance, (2) mechanism approaches dominated by modeling studies, and (3) mitigation development. Some future work on fuel cell contamination research is suggested in order to facilitate the move toward commercialization.

  1. Three dimensional CFD modeling and experimental validation of a single chamber solid oxide fuel cell fed by methane

    Science.gov (United States)

    Nguyen, H. T.; Le, M. V.; Nguyen, T. A.; Nguyen, T. A. N.

    2017-06-01

    The solid oxide fuel cell is one of the promising technologies for future energy demand. Solid oxide fuel cell operated in the single-chamber mode exhibits several advantages over conventional single oxide fuel cell due to the simplified, compact, sealing-free cell structure. There are some studies on simulating the behavior of this type of fuel cell but they mainly focus on the 2D model. In the present study, a three-dimensional numerical model of a single chamber solid oxide fuel cell (SOFC) is reported and solved using COMSOL Multiphysics software. Experiments of a planar button solid oxide fuel cell were used to verify the simulation results. The system is fed by methane and oxygen and operated at 700°C. The cathode is LSCF6482, the anode is GDC-Ni, the electrolyte is LDM and the operating pressure is 1 atm. There was a good agreement between the cell temperature and current voltage estimated from the model and measured from the experiment. The results indicate that the model is applicable for the single chamber solid oxide fuel cell and it can provide a basic for the design, scale up of single chamber solid oxide fuel cell system.

  2. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    Science.gov (United States)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the

  3. 微生物燃料电池阳极材料的最新研究进展%Latest research progress of anode materials in microbial fuel cells

    Institute of Scientific and Technical Information of China (English)

    陈妹琼; 程发良; 郭文显; 张敏; 柳鹏

    2015-01-01

    Microbial fuel cells (MFCs) with microbe as catalysts is promising novel technology with the potential to degrade organic sewage and produce electricity. The novel research progress of anode materials in MFCs was reviewed, especial y the influence of treatment of carbon basic materials and their functional modifications on the performance of electricity prodution. The existing problems of large scale application of anode electrode materials in current MFCs were analyzed. The application future of MFCs was prospected.%微生物燃料电池以微生物为催化剂,既可以处理废水又可以产生电能,是一种具有很好应用前景的新兴技术。综述了近年来用于微生物燃料电池阳极材料的最新研究进展,着重综述了炭材料的处理、炭材料的修饰对微生物燃料电池产电性能影响的研究进展。分析了微生物燃料电池阳极材料大规模应用主要存在的问题,并对微生物燃料电池的应用前景做出展望。

  4. Research progress of power system for hydrogen-electric hybrid fuel cell vehicles%氢电混合燃料电池汽车动力系统研究进展

    Institute of Scientific and Technical Information of China (English)

    倪红军; 吕帅帅; 陈青青; 裴一

    2015-01-01

    Fuel cellhybrid vehicle (FCV) with zero emission and high efficiency is the ideal solution for sustainable mobility in the future. A new type of hydrogen fuel cells-lithium-ion battery hybrid power system was introduced; the energy efficiency factors as wel as improvement methods of fuel cellhybrid system were discussed. The research progress of hydrogen fuel cellvehicles power system at home and abroad was summarized.%零排放和高效率的燃料电池混合动力汽车是人类“可持续移动”的最理想解决方案。介绍了一种氢燃料电池-锂离子电池混合动力系统;讨论了车用燃料电池动力系统能源效率的影响因素及提高动力系统效率的途径,总结了氢燃料电池汽车动力系统的国内外研究进展。

  5. Center for Intelligent Fuel Cell Materials Design

    Energy Technology Data Exchange (ETDEWEB)

    Santurri, P.R., (Chemsultants International); Hartmann-Thompson, C.; Keinath, S.E. (Michigan Molecular Inst.)

    2008-08-26

    The goal of this work was to develop a composite proton exchange membrane utilizing 1) readily available, low cost materials 2) readily modified and 3) easily processed to meet the chemical, mechanical and electrical requirements of high temperature PEM fuel cells. One of the primary goals was to produce a conducting polymer that met the criteria for strength, binding capability for additives, chemical stability, dimensional stability and good conductivity. In addition compatible, specialty nanoparticles were synthesized to provide water management and enhanced conductivity. The combination of these components in a multilayered, composite PEM has demonstrated improved conductivity at high temperatures and low humidity over commercially available polymers. The research reported in this final document has greatly increased the knowledge base related to post sulfonation of chemically and mechanically stable engineered polymers (Radel). Both electrical and strength factors for the degree of post sulfonation far exceed previous data, indicating the potential use of these materials in suitable proton exchange membrane architectures for the development of fuel cells. In addition compatible, hydrophilic, conductive nano-structures have been synthesized and incorporated into unique proton exchange membrane architectures. The use of post sulfonation for the engineered polymer and nano-particle provide cost effective techniques to produce the required components of a proton exchange membrane. The development of a multilayer proton exchange membrane as described in our work has produced a highly stable membrane at 170°C with conductivities exceeding commercially available proton exchange membranes at high temperatures and low humidity. The components and architecture of the proton exchange membrane discussed will provide low cost components for the portable market and potentially the transportation market. The development of unique components and membrane architecture

  6. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    Science.gov (United States)

    Ulusoy, Sehribani

    results showed that the fuel performance can be improved by using flow field designs alleviating the reactant depletion along the channels and supplying more uniform reactant distribution. Stepped flow field was found to show better performance when compared to straight and tapered ones. ANSYS FLUENT model is evaluated in terms of predicting the two phase flow in the fuel cell components. It is proposed that it is not capable of predicting the entire fuel cell polarization due to the lack of agglomerate catalyst layer modeling and well-established two-phase flow modeling. Along with the comprehensive modeling efforts, also an analytical model has been computed by using MathCAD and it is found that this simpler model is able to predict the performance in a general trend according to the experimental data obtained for a new novel membrane. Therefore, it can be used for robust prediction of the cell performance at different operating conditions such as temperature and pressure, and the electrochemical properties such as the catalyst loading, the exchange current density and the diffusion coefficients of the reactants. In addition to the modeling efforts, this thesis also presents a very comprehensive literature review on the models developed in the literature so far, the modeling efforts in fuel cell sandwich including membrane, catalyst layer and gas diffusion layer and fuel cell model properties. Moreover, a summary of possible directions of research in fuel cell analysis and computational modeling has been presented.

  7. Market penetration scenarios for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  8. Near-ambient solid polymer fuel cell

    Science.gov (United States)

    Holleck, G. L.

    1993-01-01

    Fuel cells are extremely attractive for extraterrestrial and terrestrial applications because of their high energy conversion efficiency without noise or environmental pollution. Among the various fuel cell systems the advanced polymer electrolyte membrane fuel cells based on sulfonated fluoropolymers (e.g., Nafion) are particularly attractive because they are fairly rugged, solid state, quite conductive, of good chemical and thermal stability and show good oxygen reduction kinetics due to the low specific adsorption of the electrolyte on the platinum catalyst. The objective of this program is to develop a solid polymer fuel cell which can efficiently operate at near ambient temperatures without ancillary components for humidification and/or pressurization of the fuel or oxidant gases. During the Phase 1 effort we fabricated novel integral electrode-membrane structures where the dispersed platinum catalyst is precipitated within the Nafion ionomer. This resulted in electrode-membrane units without interfacial barriers permitting unhindered water diffusion from cathode to anode. The integral electrode-membrane structures were tested as fuel cells operating on H2 and O2 or air at 1 to 2 atm and 10 to 50 C without gas humidification. We demonstrated that cells with completely dry membranes could be self started at room temperature and subsequently operated on dry gas for extended time. Typical room temperature low pressure operation with unoptimized electrodes yielded 100 mA/cm(exp 2) at 0.5V and maximum currents over 300 mA/cm(exp 2) with low platinum loadings. Our results clearly demonstrate that operation of proton exchange membrane fuel cells at ambient conditions is feasible. Optimization of the electrode-membrane structure is necessary to assess the full performance potential but we expect significant gains in weight and volume power density for the system. The reduced complexity will make fuel cells also attractive for smaller and portable power supplies and as

  9. State of the States: Fuel Cells in America, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Curtin, Sandra; Delmont, Elizabeth; Gangi, Jennifer

    2010-04-01

    This report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia. It features the top five fuel cell states (in alphabetical order): California, Connecticut, New York, Ohio, and South Carolina. State activities reported include supportive fuel cell and hydrogen policies, installations and demonstrations, road maps, and level of activism.

  10. Fuel cell power systems for remote applications. Phase 1 final report and business plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-01

    The goal of the Fuel Cell Power Systems for Remote Applications project is to commercialize a 0.1--5 kW integrated fuel cell power system (FCPS). The project targets high value niche markets, including natural gas and oil pipelines, off-grid homes, yachts, telecommunication stations and recreational vehicles. Phase 1 includes the market research, technical and financial analysis of the fuel cell power system, technical and financial requirements to establish manufacturing capability, the business plan, and teaming arrangements. Phase 1 also includes project planning, scope of work, and budgets for Phases 2--4. The project is a cooperative effort of Teledyne Brown Engineering--Energy Systems, Schatz Energy Research Center, Hydrogen Burner Technology, and the City of Palm Desert. Phases 2 through 4 are designed to utilize the results of Phase 1, to further the commercial potential of the fuel cell power system. Phase 2 focuses on research and development of the reformer and fuel cell and is divided into three related, but potentially separate tasks. Budgets and timelines for Phase 2 can be found in section 4 of this report. Phase 2 includes: Task A--Develop a reformate tolerant fuel cell stack and 5 kW reformer; Task B--Assemble and deliver a fuel cell that operates on pure hydrogen to the University of Alaska or another site in Alaska; Task C--Provide support and training to the University of Alaska in the setting up and operating a fuel cell test lab. The Phase 1 research examined the market for power systems for off-grid homes, yachts, telecommunication stations and recreational vehicles. Also included in this report are summaries of the previously conducted market reports that examined power needs for remote locations along natural gas and oil pipelines. A list of highlights from the research can be found in the executive summary of the business plan.

  11. A transient fuel cell model to simulate HTPEM fuel cell impedance spectra

    DEFF Research Database (Denmark)

    Vang, Jakob Rabjerg; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2011-01-01

    This paper presents a spatially resolved transient fuel cell model applied to the simulation of high temperature PEM fuel cell impedance spectra. The model is developed using a 2D finite volume method approach. The model is resolved along the channel and across the membrane. The model considers d...

  12. Electricity generation from the mud by using microbial fuel cell

    Directory of Open Access Journals (Sweden)

    Idris Sitinoor Adeib

    2016-01-01

    conclude, microbial fuel cell essentially is a solution for a renewable energy emitted by bacteria activity that need to be take a further attention , research and development

  13. Characterization and optimization of polymer electrolyte fuel cell electrodes

    Science.gov (United States)

    Boyer, Christopher Carter

    Experimental characterization and modeling were combined to find a procedure for optimizing the design of polymer electrolyte membrane fuel cell (PEMFC) electrodes. The mass transfer and kinetic properties of the active layer used in electrodes fabricated at the Center for Electrochemical Systems and Hydrogen Research (CESHR) were characterized as a function of electrolyte polymer content NafionRTM, DuPont, Fayetteville, NC) and catalyst loading for different types of platinum catalysts (E-Tek, Natick, MA). Expressions from limiting cases of the fuel cell model showed the combination of electrode materials for maximum current density at maximum catalyst utilization. Models describing the fuel cell behavior were selected and used to explain how different operating pressures affect the system power density and efficiency. An "inert layer" method was developed to determine the effective proton conductivity of the active layer. A "buffer layer" method was developed to determine the oxygen diffusivity in the gas pores. A review of the literature and experiments at CESHR was used to determine the oxygen reduction activity of the active layer. Finally, a fitting method was developed to measure the agglomerate diffusivity from cell tests. A PEMFC model demonstrated that operating the fuel cell pressurized can improve the power density at high currents because of oxygen mass transport. limitations in the substrate. However. as better electrode designs improve oxygen mass transfer, pressurized operation will lose this advantage. In addition, the model confirmed that oxygen enrichment systems require too much energy to separate oxygen from air to improve the net performance of a fuel cell. From limiting approximations of the solutions of the differential material balances in the fuel cell model, a simple set of analytical expressions were derived that predict the optimum active layer thickness and maximum current density based on the materials of construction and operating

  14. Porous matrix structures for alkaline electrolyte fuel cells

    Science.gov (United States)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  15. Proceedings of hydrogen and fuel cells 2007 international conference and trade show : international partnerships for global energy solutions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This conference discussed all aspects of hydrogen and fuel cells, with particular focus on environmental issues; policy and economics; hydrogen investment; trading pollution credits; international partnerships; and, climate change. The session on hydrogen fuels addressed hydrogen production from wind, solar, clean coal, nuclear and biomass through electrolysis and reforming thermochemical processes. Hydrogen distribution and transportation was also discussed with reference to pipelines, ships, trains and portable micro power. Storage of liquid hydrogen, carbon, compressed gas and hydrides was reviewed along with integrated systems, codes, standards and computerized simulation. Innovative technologies that have emerged from recent fuel cell research and development activities were also highlighted with particular reference to fuel cell components, fuel cell stacks, fuel cell systems, fuel cell materials, fuel cell design and fuel cell manufacturing. The current use of monitoring and sensor technologies was also reviewed. The conference highlighted fuel cell applications in residential and commercial installations, portable applications, transportation applications, distributed power generation and combined heat and power. All 54 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  16. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  17. UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, Paul

    2012-05-31

    This is the final report of the UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence which spanned from 2005-2012. The U.S. Department of Energy (DOE) established the Graduate Automotive Technology Education (GATE) Program, to provide a new generation of engineers and scientists with knowledge and skills to create advanced automotive technologies. The UC Davis Fuel Cell, Hydrogen, and Hybrid Vehicle (FCH2V) GATE Center of Excellence established in 2005 is focused on research, education, industrial collaboration and outreach within automotive technology. UC Davis has had two independent GATE centers with separate well-defined objectives and research programs from 1998. The Fuel Cell Center, administered by ITS-Davis, has focused on fuel cell technology. The Hybrid-Electric Vehicle Design Center (HEV Center), administered by the Department of Mechanical and Aeronautical Engineering, has focused on the development of plug-in hybrid technology using internal combustion engines. The merger of these two centers in 2005 has broadened the scope of research and lead to higher visibility of the activity. UC Davis's existing GATE centers have become the campus's research focal points on fuel cells and hybrid-electric vehicles, and the home for graduate students who are studying advanced automotive technologies. The centers have been highly successful in attracting, training, and placing top-notch students into fuel cell and hybrid programs in both industry and government.

  18. Experimental Evaluation of a Pt-based Heat Exchanger Methanol Reformer for a HTPEM Fuel Cell Stack

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2008-01-01

    and automotive applications. Using a liquid hydrocarbon as e.g. methanol as the hydrogen carrier and reforming it to a hydrogen rich gas can solve some of these storage issues. The work presented here examines the use of a heat exchanger methanol reformer for use with a HTPEM fuel cell stack. Initial......Fuel cell systems running on pure hydrogen can efficiently produce electricity and heat for various applications, stationary and mobile. Storage volume can be problematic for stationary fuel cell systems with high run-time demands, but it is especially a challenge when dealing with mobile...

  19. Fuel cells: A handbook (Revision 3)

    Energy Technology Data Exchange (ETDEWEB)

    Hirschenhofer, J.H.; Stauffer, D.B.; Engleman, R.R.

    1994-01-01

    Fuel cells are electrochemical devices that convert the chemical energy of reaction directly into electrical energy. In a typical fuel cell, gaseous fuels are fed continuously to the anode (negative electrode) compartment and an oxidant (i.e., oxygen from air) is fed continuously to the cathode (positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. A fuel cell, although having similar components and several characteristics, differs from a typical battery in several respects. The battery is an energy storage device, that is, the maximum energy that is available is determined by the amount of chemical reactant stored within the battery itself. Thus, the battery will cease to produce electrical energy when the chemical reactants are consumed (i.e., discharged). In a secondary battery, the reactants are regenerated by recharging, which involves putting energy into the battery from an external source. The fuel cell, on the other hand, is an energy conversion device which theoretically has the capability of producing electrical energy for as long as the fuel and oxidant are supplied to the electrodes. In reality, degradation or malfunction of components limits the practical operating life of fuel cells.

  20. Development and optimization of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Davila, D.; Vigues, N.; Sanchez, O.; Garrido, L.; Tomas, N.; Mas, J. [Univ. Autonoma de Barcelona, Barcelona (Spain). Dept. de Genetica y Microbiologia; Esquivel, J.P.; Sabate, N.; Del Campo, F.J.; Munoz, F.J. [Inst. de Microelectronica de Barcelona-CNM (CSIC), Barcelona (Spain)

    2008-04-15

    While global energy demand increases daily, fossil fuel sources are being depleted at an unsustainable pace. Fuel cells represent a solution as they are more efficient than other energy sources. A microbial fuel cell is an electrochemical device capable of continuously converting chemical energy into electrical energy for as long as adequate fuel and oxidant are available. A microbial fuel cell (MFC) adds the benefit of converting chemical energy from organic compounds, such as simple carbohydrates or organic waste matter, into electricity by using bacteria as biocatalysts. This article described the effect of several parameters that affect the operation of a microbial fuel cell (MFC). The study is based on a methodology utilized in previous studies which employed escherichia coli as biocatalyst and neutral red as the electron mediator in a mediated electron transfer (MET) microbial fuel cell. The study analysed the influence of the bacterial concentration, the effective area of electrode and the volume of the cell. It was concluded that there is a proportional energy production to the bacterial concentration present in the anode compartment. It was demonstrated that an increase in the volume of the cell negatively affects the power produced by the cells. 8 refs., 1 tab., 5 figs.

  1. Organic fuel cell methods and apparatus

    Science.gov (United States)

    Vamos, Eugene (Inventor); Surampudi, Subbarao (Inventor); Narayanan, Sekharipuram R. (Inventor); Frank, Harvey A. (Inventor); Halpert, Gerald (Inventor); Olah, George A. (Inventor); Prakash, G. K. Surya (Inventor)

    2008-01-01

    A liquid organic, fuel cell is provided which employs a solid electrolyte membrane. An organic fuel, such as a methanol/water mixture, is circulated past an anode of a cell while oxygen or air is circulated past a cathode of the cell. The cell solid electrolyte membrane is preferably fabricated from Nafion.TM.. Additionally, a method for improving the performance of carbon electrode structures for use in organic fuel cells is provided wherein a high surface-area carbon particle/Teflon.TM.-binder structure is immersed within a Nafion.TM./methanol bath to impregnate the electrode with Nafion.TM.. A method for fabricating an anode for use in a organic fuel cell is described wherein metal alloys are deposited onto the electrode in an electro-deposition solution containing perfluorooctanesulfonic acid. A fuel additive containing perfluorooctanesulfonic acid for use with fuel cells employing a sulfuric acid electrolyte is also disclosed. New organic fuels, namely, trimethoxymethane, dimethoxymethane, and trioxane are also described for use with either conventional or improved fuel cells.

  2. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  3. FUEL CELL/MICRO-TURBINE COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Larry J. Chaney; Mike R. Tharp; Tom W. Wolf; Tim A. Fuller; Joe J. Hartvigson

    1999-12-01

    A wide variety of conceptual design studies have been conducted that describe ultra-high efficiency fossil power plant cycles. The most promising of these ultra-high efficiency cycles incorporate high temperature fuel cells with a gas turbine. Combining fuel cells with a gas turbine increases overall cycle efficiency while reducing per kilowatt emissions. This study has demonstrated that the unique approach taken to combining a fuel cell and gas turbine has both technical and economic merit. The approach used in this study eliminates most of the gas turbine integration problems associated with hybrid fuel cell turbine systems. By using a micro-turbine, and a non-pressurized fuel cell the total system size (kW) and complexity has been reduced substantially from those presented in other studies, while maintaining over 70% efficiency. The reduced system size can be particularly attractive in the deregulated electrical generation/distribution environment where the market may not demand multi-megawatt central stations systems. The small size also opens up the niche markets to this high efficiency, low emission electrical generation option.

  4. Fuel Cell Backup Power Unit Configuration and Electricity Market Participation: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eichman, Josh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kurtz, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-03-13

    This National Renewable Energy Laboratory industry-inspired Laboratory Directed Research and Development project evaluates the feasibility and economics of using fuel cell backup power systems in cell towers to provide grid services (e.g., balancing, ancillary services, demand response). The work is intended to evaluate the integration of thousands of under-utilized, clean, efficient, and reliable fuel cell systems that are already installed in cell towers for potential grid and ancillary services.

  5. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf; Savinell, Robert F;

    2009-01-01

    in recent years motivated extensive research activities with great progress. This treatise is devoted to updating the development, covering polymer synthesis, membrane casting, physicochemical characterizations and fuel cell technologies. To optimize the membrane properties, high molecular weight polymers...... havebeenmadeincluding spectroscopy,wateruptake and acid doping, thermal and oxidative stability, conductivity, electro-osmoticwater drag, methanol crossover, solubility and permeability of gases, and oxygen reduction kinetics. Related fuel cell technologies such as electrode and MEA fabrication have been developed...

  6. Treatment of Oil Wastewater and Electricity Generation by Integrating Constructed Wetland with Microbial Fuel Cell

    OpenAIRE

    Qiao Yang; Zhenxing Wu; Lifen Liu; Fengxiang Zhang; Shengna Liang

    2016-01-01

    Conventional oil sewage treatment methods can achieve satisfactory removal efficiency, but energy consumption problems during the process of oil sewage treatment are worth attention. The integration of a constructed wetland reactor and a microbial fuel cell reactor (CW-MFC) to treat oil-contaminated wastewater, compared with a microbial fuel cell reactor (MFC) alone and a constructed wetland reactor (CW) alone, was explored in this research. Performances of the three reactors including chemic...

  7. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Bram Veenhuizen; J.C.N. Bosma

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this

  8. Simulation of the PEM fuel cell hybrid power train of an automated guided vehicle and comparison with experimental results

    NARCIS (Netherlands)

    Veenhuizen, Bram; Bosma, J.C.N.

    2009-01-01

    At HAN University research has been started into the development of a PEM fuel cell hybrid power train to be used in an automated guided vehicle. For this purpose a test facility is used with the possibility to test all important functional aspects of a PEM fuel cell hybrid power train. In this pape

  9. Fuel cell, an asset for the energy diversification; Pile a combustible, un atout pour la diversification energetique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-18

    The fuel cell will provide in the future, the electric power of vehicles, houses or the portable phones. It presents many advantages as the environmental respect, the cost, the great autonomy. This paper deals with the CEA researches in the domain of the fuel cells development. (A.L.B.)

  10. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2002-02-01

    The carbonate fuel cell promises highly efficient, cost-effective and environmentally superior power generation from pipeline natural gas, coal gas, biogas, and other gaseous and liquid fuels. FuelCell Energy, Inc. has been engaged in the development of this unique technology, focusing on the development of the Direct Fuel Cell (DFC{reg_sign}). The DFC{reg_sign} design incorporates the unique internal reforming feature which allows utilization of a hydrocarbon fuel directly in the fuel cell without requiring any external reforming reactor and associated heat exchange equipment. This approach upgrades waste heat to chemical energy and thereby contributes to a higher overall conversion efficiency of fuel energy to electricity with low levels of environmental emissions. Among the internal reforming options, FuelCell Energy has selected the Indirect Internal Reforming (IIR)--Direct Internal Reforming (DIR) combination as its baseline design. The IIR-DIR combination allows reforming control (and thus cooling) over the entire cell area. This results in uniform cell temperature. In the IIR-DIR stack, a reforming unit (RU) is placed in between a group of fuel cells. The hydrocarbon fuel is first fed into the RU where it is reformed partially to hydrogen and carbon monoxide fuel using heat produced by the fuel cell electrochemical reactions. The reformed gases are then fed to the DIR chamber, where the residual fuel is reformed simultaneously with the electrochemical fuel cell reactions. FuelCell Energy plans to offer commercial DFC power plants in various sizes, focusing on the subMW as well as the MW-scale units. The plan is to offer standardized, packaged DFC power plants operating on natural gas or other hydrocarbon-containing fuels for commercial sale. The power plant design will include a diesel fuel processing option to allow dual fuel applications. These power plants, which can be shop-fabricated and sited near the user, are ideally suited for distributed power

  11. Method for Making a Fuel Cell

    Science.gov (United States)

    Cable, Thomas L. (Inventor); Setlock, John A. (Inventor); Farmer, Serene C. (Inventor)

    2014-01-01

    The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.

  12. Solid Polymer Electrolyte Fuel Cell Technology Program

    Science.gov (United States)

    1980-01-01

    Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.

  13. Advanced composite polymer electrolyte fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, T.A.; Gottesfeld, S.; Kolde, J.A.; Bahar, B.

    1995-09-01

    A new type of reinforced composite perfluorinated polymer electrolyte membrane, GORE-SELECT{trademark} (W.L. Gore & Assoc.), is characterized and tested for fuel cell applications. Very thin membranes (5-20 {mu}m thick) are available. The combination of reinforcement and thinness provides high membrane, conductances (80 S/cm{sup 2} for a 12 {mu}m thick membrane at 25{degrees}C) and improved water distribution in the operating fuel cell without sacrificing longevity or durability. In contrast to nonreinforced perfluorinated membranes, the x-y dimensions of the GORE-SELECT membranes are relatively unaffected by the hydration state. This feature may be important from the viewpoints of membrane/electrode interface stability and fuel cell manufacturability.

  14. Research progress of anode-supported micro-tubular solid oxide fuel cells%阳极支撑微管式固体氧化物燃料电池的研究进展

    Institute of Scientific and Technical Information of China (English)

    孙旺; 毛雅春; 张乃庆; 孙克宁

    2013-01-01

    Micro-tubular solid oxide fuel cells (MT-SOFCs) have been research focus in recent years, with the advantages of simple sealing, high volume energy density, good thermal shock resistance and rapid set-up. This paper introduces the advantages of MT-SOFCs and overviews the progress of anode-supported MT-SOFC, focusing on fabrication methods, research status and future development directions. The progress of anode-supported MT-SOFCs prepared by plastic extrusion and phase-inversion is reviewed. Besides, the design concepts of anode-supported MT-SOFC stack are introduced, and the future development directions of MT-SOFCs are also presented.%近些年来,微管式固体氧化物燃料电池(SOFC)由于其具有密封简单、体积能量密度高、抗热震性好、启动时间快等优点备受关注.本文主要介绍了微管式SOFC的优势,并重点概述了阳极支撑型微管式SOFC的制备方法、研究现状和未来的发展方向.分别对采用塑性挤出法和相转化法制备的阳极支撑微管式SOFC的技术进展进行了综述.介绍了阳极支撑微管式SOFC电池堆的设计理念,并对未来微管式SOFC的发展方向进行了展望.

  15. PREPARATION AND CHARACTERIZATION OF SOLID ELECTROLYTES: FUEL CELL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu Bobba; Josef Hormes; T. Wang; Jaymes A. Baker; Donald G. Prier; Tommy Rockwood; Dinesha Hawkins; Saleem Hasan; V. Rayanki

    1997-12-31

    The intent of this project with Federal Energy Technology Center (FETC)/Morgantown Energy Technology Center (METC) is to develop research infrastructure conductive to Fuel Cell research at Southern University and A and M College, Baton Route. A state of the art research laboratory (James Hall No.123 and No.114) for energy conversion and storage devices was developed during this project duration. The Solid State Ionics laboratory is now fully equipped with materials research instruments: Arbin Battery Cycling and testing (8 channel) unit, Electrochemical Analyzer (EG and G PAR Model 273 and Solartron AC impedance analyzer), Fuel Cell test station (Globe Tech), Differential Scanning Calorimeter (DSC-10), Thermogravimetric Analyzer (TGA), Scanning Tunneling Microscope (STM), UV-VIS-NIR Absorption Spectrometer, Fluorescence Spectrometer, FT-IR Spectrometer, Extended X-ray Absorption Fine Structure (EXAFS) measurement capability at Center for Advanced Microstructure and Devices (CAMD- a multimillion dollar DOE facility), Glove Box, gas hood chamber, high temperature furnaces, hydraulic press and several high performance computers. IN particular, a high temperature furnace (Thermodyne 6000 furnace) and a high temperature oven were acquired through this project funds. The PI Dr. R Bobba has acquired additional funds from federal agencies include NSF-Academic Research Infrastructure program and other DOE sites. They have extensively used the multimillion dollar DOE facility ''Center'' for Advanced Microstructures and Devices (CAMD) for electrochemical research. The students were heavily involved in the experimental EXAFS measurements and made use of their DCM beamline for EXAFS research. The primary objective was to provide hands on experience to the selected African American undergraduate and graduate students in experimental energy research.The goal was to develop research skills and involve them in the Preparation and Characterization of Solid

  16. High temperature polymer electrolyte membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    K.Scott; M. Mamlouk

    2006-01-01

    One of the major issues limiting the introduction of polymer electrolyte membrane fuel cells (PEMFCs) is the low temperature of operation which makes platinum-based anode catalysts susceptible to poisoning by the trace amount of CO, inevitably present in reformed fuel. In order to alleviate the problem of CO poisoning and improve the power density of the cell, operating at temperature above 100 ℃ is preferred. Nafion(R) -type perfluorosulfonated polymers have been typically used for PEMFC. However, the conductivity of Nafion(R) -type polymers is not high enough to be used for fuel cell operations at higher temperature ( > 90 ℃) and atmospheric pressure because they dehydrate under these condition.An additional problem which faces the introduction of PEMFC technology is that of supplying or storing hydrogen for cell operation,especially for vehicular applications. Consequently the use of alternative fuels such as methanol and ethanol is of interest, especially if this can be used directly in the fuel cell, without reformation to hydrogen. A limitation of the direct use of alcohol is the lower activity of oxidation in comparison to hydrogen, which means that power densities are considerably lower. Hence to improve activity and power output higher temperatures of operation are preferable. To achieve this goal, requires a new polymer electrolyte membrane which exhibits stability and high conductivity in the absence of liquid water.Experimental data on a polybenzimidazole based PEMFC were presented. A simple steady-state isothermal model of the fuel cell is also used to aid in fuel cell performance optimisation. The governing equations involve the coupling of kinetic, ohmic and mass transport. This paper also considers the advances made in the performance of direct methanol and solid polymer electrolyte fuel cells and considers their limitations in relation to the source and type of fuels to be used.

  17. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  18. City of Chula Vista hydrogen fuel cell bus demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Gustafson, B.; Bamberger, B.

    1996-10-01

    Hydrogen as an energy carrier and fuel has potential for various uses including electricity, commercial, residential, transportation, and industrial. It is an energy carrier that can be produced from a variety of primary sources and potentially can accomplish these various uses while significantly reducing pollution by substituting for or reducing the use of fossil fuels. One of the most immediate and potentially viable roles for hydrogen as an energy carrier will be its use as a transportation fuel, especially in densely populated urban areas where automotive emissions contribute significantly to air pollution. The Department of Energy`s commitment to research and development of hydrogen as an alternative fuel, and California`s Zero Emission Vehicle (ZEV) requirements, both provide the impetus and favorable circumstance for demonstrating hydrogen as a transportation fuel on an urban bus system. The purpose of this project is to demonstrate the feasibility of using solid polymer fuel cells in a hydrogen-powered electric drive system for an urban transit bus application. Fuel cell buses use hydrogen fuel and oxygen from the air to produce electrical power with the only byproduct being pure water. Proton Exchange Membrane (PEM) fuel cells are proposed for this project. Current evidence suggests that fuel cells, which rely on hydrogen and a process known as proton exchange to generate their power, appear to have an infinite life span. All exhaust pollution is completely eliminated, resulting in a Zero Emission Vehicle (ZEV). An urban bus system offers the potential for developing a market for the production of hydrogen propulsion technology due to extensive vehicular use in densely populated areas experiencing pollution from numerous sources, and because the central garaging facilities or the bus system facilitates fueling and maintenance functions.

  19. The Hardware Implementation of Demonstrator Air Independent Electric Supply System Based on Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Grzeczka G.

    2016-12-01

    Full Text Available The paper presents results of the research project whose the main goal was to build a technology demonstrator of an electric supply system based on the PEM fuel cell. The electric supply system is dedicated to operation on a board of a submarine during emergency situations. The underwater conditions influence on a specific architecture of supply subsystems of the PEM fuel cell system. In this case the fuel cell stack is supplied by both clean hydrogen and clean oxygen stored in pressurized tanks. The hydrogen has to be delivered in a closed loop, while the oxygen can be delivered in a closed or an open loop. In the technology demonstrator, the supply of the fuel cell stack by the hydrogen in the closed loop and the oxygen in the open loop with a precise control of its flow were used.

  20. NASA's Planned Fuel Cell Development Activities for 2009 and Beyond in Support of the Exploration Vision

    Science.gov (United States)

    Hoberecht, Mark A.

    2010-01-01

    NASA s Energy Storage Project is one of many technology development efforts being implemented as part of the Exploration Technology Development Program (ETDP), under the auspices of the Exploration Systems Mission Directorate (ESMD). The Energy Storage Project is a focused technology development effort to advance lithium-ion battery and proton-exchange-membrane fuel cell (PEMFC) technologies to meet the specific power and energy storage needs of NASA Exploration missions. The fuel cell portion of the project has as its focus the development of both primary fuel cell power systems and regenerative fuel cell (RFC) energy storage systems, and is led by the NASA Glenn Research Center (GRC) in partnership with the Johnson Space Center (JSC), the Jet Propulsion Laboratory (JPL), the Kennedy Space Center (KSC), academia, and industrial partners. The development goals are to improve stack electrical performance, reduce system mass and parasitic power requirements, and increase system life and reliability.

  1. 11. Fuel cell drive and infrastructure; 11. Brennstoffzelle Antriebsstrang und Infrastruktur

    Energy Technology Data Exchange (ETDEWEB)

    Noreikat, Karl E.

    2013-04-15

    Approximately in the year 1990, the automotive industry started to spend time on fuel cell based vehicle drive motors. Beside the large and heavy fuel cell stacks, the 300-bar hydrogen tanks, the air supply, the electric drive as well as the monitoring electronics do not meet the requirements in regard to a mobile drive. Specification sheets, instructions, qualification descriptions, technical regulations, standards and norms were forwarded in parallel with the technical developments. Universities, research institutes and technology companies increasingly spend time on fuel cells for the mobile sector. In the business cooperation, activities were bundled, and cooperation projects support the automotive industry. Here the California Fuel Cell Partnership and the Clean Energy Partnership are to be mentioned. The standardization was driven by organizations such as SAE and ISO.

  2. Round Trip Energy Efficiency of NASA Glenn Regenerative Fuel Cell System

    Science.gov (United States)

    Garcia, Christopher P.; Chang, Bei-jiann; Johnson, Donald W.; Bents, David J.; Scullin, Vincent J.; Jakupca, Ian J.; Scullin, Vincent J.; Jakupca, Ian J.

    2006-01-01

    NASA Glenn Research Center (GRC) has recently demonstrated a Polymer Electrolyte Membrane (PEM) based hydrogen/oxygen regenerative fuel cell system (RFCS) that operated for a charge/discharge cycle with round trip efficiency (RTE) greater than 50 percent. The regenerative fuel cell system (RFCS) demonstrated closed loop energy storage over a pressure range of 90 to 190 psig. In charge mode, a constant electrical power profile of 7.1 kWe was absorbed by the RFCS and stored as pressurized hydrogen and oxygen gas. In discharge mode, the system delivered 3 to 4 kWe of electrical power along with product water. Fuel cell and electrolyzer power profiles and polarization performance are documented in this paper. Individual cell performance and the variation of cell voltages within the electrochemical stacks are also reported. Fuel cell efficiency, electrolyzer efficiency, and the system RTE were calculated from the test data and are included below.

  3. Optimisation of air supply to mobile fuel cell systems; Optimierung von Luftversorgungseinheiten fuer Brennstoffzellensysteme in Fahrzeugantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, S. [RWTH Aachen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA); Ogrzewalla, J.; Schoenfelder, C. [FEV Motorentechnik, Aachen (Germany)

    2006-07-01

    Fuel cells will help to reduce fuel consumption and lessen our dependence on petroleum imports. The investigation focused on optimised design, construction and operation of air supply systemes for PEFC fuel cell systems in vehicle drives. Appropriate supercharging systems were selected and investigated, and the interaction of air supply with the overall system was researched. The use of mechanical expanders may improve the performance as compression energy is recovered by expansion of the cathode off-gas. Further, the influence of wetting concepts on fuel cell operation is investigated. Numeric simulations were made, and optimisation criteria were developed. Optimum charge pressure was found to be in the range of about 2 bar (absolute), depending on the moisturizing concept and of the moisture dependence of the fuel cell. Further, the system performance can be improved by 3-5 percent by installing an expander for energy recovery. (orig.)

  4. Metal Phosphates as Proton Conducting Materials for Intermediate Temperature Fuel Cell and Electrolyser Applications

    DEFF Research Database (Denmark)

    Anfimova, Tatiana

    The present thesis presents the results achieved during my ph.d. project on a subject of intermediate temperature proton conducting metal phosphates as electrolyte materials for fuel cells and electrolysers. Fuel cells and electrolysers are electrochemical devices with high energy conversion...... with a proton conductivity of above 10-2S cm-1. Chapter 1 of the thesis is an introduction to basics of fuel cell and electrolyser technologies as well as proton conducting materials. Extended discussion on the proton conducting materials, a particularly phosphates is made in Chapter 2. Three major types...... of phosphates were systematically reviewed including solid acids or alkali hydrogen phosphates, pyrophosphates, and rare earth metal phosphates. Demonstration of the fuel cell technology based on solid acid proton conductor CsH2PO4 has inspired the active research in the area. Based on the literature survey...

  5. A comparative study of approaches to direct methanol fuel cells modelling

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, V.B.; Falcao, D.S.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Eng. Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Rangel, C.M. [Instituto Nacional de Engenharia, Tecnologia e Inovacao, Paco do Lumiar, 22,1649-038 (Portugal)

    2007-03-15

    Fuel cell modelling has received much attention over the past decade in an attempt to better understand the phenomena occurring within the cell. Mathematical models and simulation are needed as tools for design optimization of fuel cells, stacks and fuel cell power systems. Analytical, semi-empirical and mechanistic models for direct methanol fuel cells (DMFC) are reviewed. Effective models were until now developed describing the fundamental electrochemical and transport phenomena taking place in the cell. More research is required to develop models that can account for the two-phase flows occurring in the anode and cathode of the DMFC. The merits and demerits of the models are presented. Selected models of different categories are implemented and discussed. Finally, one of the selected simplified models is proposed as a computer-aided tool for real-time system level DMFC calculations. (author)

  6. Strategies for Lowering Solid Oxide Fuel Cells Operating Temperature

    Directory of Open Access Journals (Sweden)

    Albert Tarancón

    2009-11-01

    Full Text Available Lowering the operating temperature of solid oxide fuel cells (SOFCs to the intermediate range (500–700 ºC has become one of the main SOFC research goals. High operating temperatures put numerous requirements on materials selection and on secondary units, limiting the commercial development of SOFCs. The present review first focuses on the main effects of reducing the operating temperature in terms of materials stability, thermo-mechanical mismatch, thermal management and efficiency. After a brief survey of the state-of-the-art materials for SOFCs, attention is focused on emerging oxide-ionic conductors with high conductivity in the intermediate range of temperatures with an introductory section on materials technology for reducing the electrolyte thickness. Finally, recent advances in cathode materials based on layered mixed ionic-electronic conductors are highlighted because the decreasing temperature converts the cathode into the major source of electrical losses for the whole SOFC system. It is concluded that the introduction of alternative materials that would enable solid oxide fuel cells to operate in the intermediate range of temperatures would have a major impact on the commercialization of fuel cell technology.

  7. Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoxing; Quan, Wenying; Xiao, Jing; Peduzzi, Emanuela; Fujii, Mamoru; Sun, Funxia; Shalaby, Cigdem; Li, Yan; Xie, Chao; Ma, Xiaoliang; Johnson, David; Lee, Jeong; Fedkin, Mark; LaBarbera, Mark; Das, Debanjan; Thompson, David; Lvov, Serguei; Song, Chunshan

    2014-09-30

    This DOE project at the Pennsylvania State University (Penn State) initially involved Siemens Energy, Inc. to (1) develop new fuel processing approaches for using selected alternative and renewable fuels – anaerobic digester gas (ADG) and commercial diesel fuel (with 15 ppm sulfur) – in solid oxide fuel cell (SOFC) power generation systems; and (2) conduct integrated fuel processor – SOFC system tests to evaluate the performance of the fuel processors and overall systems. Siemens Energy Inc. was to provide SOFC system to Penn State for testing. The Siemens work was carried out at Siemens Energy Inc. in Pittsburgh, PA. The unexpected restructuring in Siemens organization, however, led to the elimination of the Siemens Stationary Fuel Cell Division within the company. Unfortunately, this led to the Siemens subcontract with Penn State ending on September 23rd, 2010. SOFC system was never delivered to Penn State. With the assistance of NETL project manager, the Penn State team has since developed a collaborative research with Delphi as the new subcontractor and this work involved the testing of a stack of planar solid oxide fuel cells from Delphi.

  8. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  9. Materials and system degradation in PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, D. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering, Green Energy and Fuel Cell Group

    2007-07-01

    Various degradation processes in fuel cell anodes and cathodes can cause the release of fluoride ions that thin the ionomer membrane and allow more gases to permeate the cell. This presentation provided an overview of reliability modelling techniques used to identify the failure modes of material degradation in fuel cells. A reliability model of a fuel cell stack and hydrogen power system was presented in addition to solution methods for Nafion degradation of the main polymer chain. Changes in the molecular weight of Nafion were discussed. A case study of a model was used to demonstrate that reaction slowed as the ionomer on the cathode degraded. Equations were developed for hydrogen crossover, peroxide production; peroxide destruction; F-ion production; thickness change; diffusion through the gas diffusion layer (GDL); and open circuit voltage (OCV). It was concluded that the OCV durability experiments generated a mechanism for degradation of commercial membranes. The modelling study showed that degradation was related to the permeability of hydrogen to the cathode, and oxygen to the anode. It was concluded that at lower oxygen pressures anode degradation was limited, while at higher pressures anode degradation was more significant. A power point presentation of the University of Waterloo's alternative fuel team provided details of the team's recent research activities. tabs., figs.

  10. Alkaline polymer electrolyte fuel cells: Principle, challenges, and recent progress

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymer electrolyte membrane fuel cells (PEMFC) have been recognized as a significant power source in future energy systems based on hydrogen. The current PEMFC technology features the employment of acidic polymer electrolytes which, albeit superior to electrolyte solutions, have intrinsically limited the catalysts to noble metals, fundamentally preventing PEMFC from widespread deployment. An effective solution to this problem is to develop fuel cells based on alkaline polymer electrolytes (APEFC), which not only enable the use of non-precious metal catalysts but also avoid the carbonate-precipitate issue which has been troubling the conventional alkaline fuel cells (AFC). This feature article introduces the principle of APEFC, the challenges, and our research progress, and focuses on strategies for developing key materials, including high-performance alkaline polyelectrolytes and stable non-precious metal catalysts. For alkaline polymer electrolytes, high ionic conductivity and satisfactory mechanical property are difficult to be balanced, therefore polymer cross-linking is an ultimate strategy. For non-precious metal catalysts, it is urgent to improve the catalytic activity and stability. New materials, such as transition-metal complexes, nitrogen-doped carbon nanotubes, and metal carbides, would become applicable in APEFC.

  11. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  12. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with serpentine gas flow channels

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2014-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with serpentine gas flow channels has been developed. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  13. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  14. Thermal energy recycling fuel cell arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, Paul R.

    2017-04-11

    An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.

  15. Microfluidic fuel cells for energy generation.

    Science.gov (United States)

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-07

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation.

  16. DIRECT AMMONIA-AIR FUEL CELL.

    Science.gov (United States)

    fuel cell was investigated. This cell is based on the use of a non-aqueous fused hydroxide electrolyte matrix, and operates in the intermediate temperature range of 180-300 C. Studies have been carried out to determine the nature of the ratecontrolling step in the kinetics of the anodic oxidation of ammonia. A new type of Ni/NiOOH reference electrode was developed for the measurement of single electrode potentials in experimental galvanic fuel cells employing this type of matrix electrolyte. In addition to various exploratory studies, two statistical analysis

  17. Fuel cells: a survey of current developments

    Science.gov (United States)

    Cropper, Mark A. J.; Geiger, Stefan; Jollie, David M.

    Since the first practical uses of fuel cells were developed, it has become clear that they could find use in many products over a wide power range of milliwatts to tens of megawatts. Throughout the 1990s, and later, there has been significant work carried out on adapting the various different fuel cell technologies for use in targetted consumer and industrial applications. This paper discusses these developments and gives details on the specific market segments for providing power to vehicles, portable devices and large- and small-scale stationary power generation.

  18. Thermal energy recycling fuel cell arrangement

    Science.gov (United States)

    Hanrahan, Paul R.

    2017-04-11

    An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.

  19. Control of Fuel Cell Power System

    OpenAIRE

    KOCALMIŞ BİLHAN, Ayşe; Wang, Caisheng

    2017-01-01

    In recent years, it is gettingattention for renewable energy sources such as Fuel Cell (FC), batteries,ultracapacitors or photovoltaic panels (PV) for distributed power generationsystems (DG) or electrical vehicles. This paper proposes a DC/DC converter andDC/AC inverter scheme to combine the Fuel Cell Stack (FC). The power systemconsist of a FC stack, a DC/DC converter, inverter and load. A FC mostly couldnot produce necessary output voltage, the DC/DC boost converter is used forobtaining th...

  20. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F [Oakland, CA

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.