WorldWideScience

Sample records for research service scientists

  1. Intra-professional dynamics in translational health research: the perspective of social scientists.

    Science.gov (United States)

    Currie, Graeme; El Enany, Nellie; Lockett, Andy

    2014-08-01

    In contrast to previous studies, which focus upon the professional dynamics of translational health research between clinician scientists and social scientists (inter-professional contestation), we focus upon contestation within social science (intra-professional contestation). Drawing on the empirical context of Collaborations for Leadership in Applied Health Research and Care (CLAHRCs) in England, we highlight that although social scientists accept subordination to clinician scientists, health services researchers attempt to enhance their position in translational health research vis-à-vis organisation scientists, whom they perceive as relative newcomers to the research domain. Health services researchers do so through privileging the practical impact of their research, compared to organisation scientists' orientation towards development of theory, which health services researchers argue is decoupled from any concern with healthcare improvement. The concern of health services researchers lies with maintaining existing patterns of resource allocation to support their research endeavours, working alongside clinician scientists, in translational health research. The response of organisation scientists is one that might be considered ambivalent, since, unlike health services researchers, they do not rely upon a close relationship with clinician scientists to carry out research, or more generally, garner resource. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Redefining Scientist-Educator Partnerships: Science in Service at Stanford

    Science.gov (United States)

    Beck, K.

    2005-05-01

    The Stanford Solar Observatories Group and Haas Center for Public Service have created an innovative model for scientist-educator partnerships in which science students are trained and mentored by public service education professionals to create outreach events for local communities. The program, Science in Service, is part of the EPO plan for the Solar Group's participation in NASA's Solar Dynamics Observatory mission. Based on the principles of service learning, the Science in Service Program mentors college science students in best practices for communicating science and engages these students in public service projects that center on teaching solar science. The program goals are to - Enhance and expand the learning experiences that pre-college students, from underserved and underrepresented groups in particular, have in science and technology. - Promote leadership in community service in the area of science and engineering among the next generation of scientists and engineers, today's undergraduate students. - Encourage science and engineering faculty to think creatively about their outreach requirements and to create a community of faculty committed to quality outreach programs. This talk will describe the unique advantages and challenges of a research-public service partnership, explain the structure of Stanford's Science in Service Program, and present the experiences of the undergraduates and the outreach communities that have been involved in the program.

  3. Radiation Technician Scientist service

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique; Barrera Gonzalez, Gisela; Guerra Torres, Mercedes; Mora Lopez, Leonor; Altanes Valentin, Sonia; Rapado Paneque, Manuel; Plasencia Gutierrez, Manuel

    2003-01-01

    The irradiation service is part of the specialized technician scientist services of the Center of Technological Applications and Nuclear Development it belonging to the Radiobiological Department it provides a self shielded laboratory irradiator, PX y 30 type with Cobalt 60 sources, it destined for searches studies, so much basic as applying, in several branches of the science, like the radiobiology, the radiation chemistry, the solid state physics, the medicine, the agriculture and the Pharmaceutical- Medical Industry and besides offering the irradiation service properly with the which have been gotten significant economical outputs. The radiation processing is controlled by means of the dosimetric systems of Freckle, ceric cerous sulfate, Perspex (red, clear and Amber) and dose indicators

  4. Cognitive styles of Forest Service scientists and managers in the Pacific Northwest.

    Science.gov (United States)

    Andrew B. Carey

    1997-01-01

    Preferences of executives, foresters, and biologists of the Pacific Northwest Research Station and executives, District Rangers, foresters, engineers, and biologists of the Pacific Northwest Region, National Forest System (USDA Forest Service), were compared for various thinking styles. Herrmann brain dominance profiles from 230 scientists and managers were drawn from...

  5. Media resource service: Getting scientists and the media together

    International Nuclear Information System (INIS)

    Jerome, F.

    1990-01-01

    The Three Mile Island nuclear plant accident in 1979 led to the establishment of the Media Resource Service (MRS), which puts journalists in touch with scientists by telephone to help the press meet the public's need to understand science and technology. The Chernobyl nuclear power accident in 1986 underscored that need. The MRS is run by the Scientists' Institute for Public Information (SIPI), a non-profit group in the USA. Similar services have since been set up in Canada and the United Kingdom, and interest has been shown in many other countries

  6. “I LIGHT MY CANDLE FROM YOURS…”: ANTHROPOLOGICAL ASPECTS OF MODERN LIBRARY SERVICES FOR SCIENTISTS

    Directory of Open Access Journals (Sweden)

    T. О. Kolesnykova

    2017-06-01

    Full Text Available Introduction. Integration of knowledge and communications, the movement for open access to knowledge lead to the emergence of factors that update the philosophy of functioning and development of university libraries. There is a need to comprehend the ongoing innovations in the activities of university libraries in the world. Purpose. The study assumes understanding of the substantial changes in the library services for scientists related to Open Access and the new role of university libraries – a partner in the production, preservation and spread of knowledge. Methodology. On the basis of empirical and theoretical methods, the features of modern university libraries are considered. They include shift of the priority vector towards the services for an author-scientist and support of the philosophy of open access to knowledge. The study identifies and analyzes the anthropological aspects of communicative and informational awareness of reality by university researchers and librarians. The realities of modern services for scientists of Ukraine are examined based on the experience of the Scientific and Technical Library of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The observations and surveys of scientists, librarians, publishers of scientific periodicals allow analyzing the anthropological aspects concerning new digital library services. The aspects affect: 1 relationship between communicants; 2 explanations of why it is the authors-researchers who have been at the center of the attention of libraries, why they are provided with exactly these services and exactly in this way; 3 levels of impact of new services on both scientists and librarians. Originality. It is established that in the process of communicative and informational awareness of reality, there are changes in the dimension of scientists and university librarians, namely, the ways of their behaviour and the communicative features

  7. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  8. Impact of information on research and development activities of nuclear scientists in Ghana

    International Nuclear Information System (INIS)

    Agyeman, E.A.; Timpo, S.E.; Kisiedu, C.; Boye, M.

    2004-01-01

    This paper considers the relationship between nuclear information use and the professional development of nuclear scientists in Ghana with reference to some identified productivity and achievement indicators. The assumption is that, frequent use of library and information services results in higher productivity and achievement. A national survey of nuclear scientists was conducted resulting in a response rate of 92 percent. The analytical framework proposed by the International Development Research Centre (IDRC) for impact studies served as an appropriate guide for the study. The results indicate that information use leads to increase in the volume and quality of work output of nuclear scientists. Evidence is also found to support the claim that information use enhances contributions of scientists to their organisations. The study concludes with recommendations aimed at improving information delivery to nuclear scientists. (author)

  9. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  10. The images of scientists and science among Hebrew- and Arabic-speaking pre-service teachers in Israel

    Science.gov (United States)

    Rubin, Edna; Cohen, Ariel

    2003-07-01

    This study investigated the image of scientists held by Israeli pre-service teachers, the majority of whom were female. The population consisted of students belonging to two cultures, Hebrew-speaking and Arabic-speaking. The DAST ('Draw-a-Scientist-Test') tool and other tools, some of which were developed specifically for this research, tested the image of the scientist as perceived by the participants. It was found that the image of the scientist is perceived as predominantly male, a physicist or a chemist, working in a laboratory typical of the eighteenth, nineteenth or the early-twentieth century. Students did not differentiate between scientists and inventors. Different images were held in the two cultures. Most of the Arabic-speaking students put Classical Islamic scientists near the top of their lists and thought of the scientist as an Arab male, while the Hebrew-speaking students' was as a typical Western male. Recommendations, resulting from the findings, for developing a new learning unit for the purpose of altering stereotypes are suggested.

  11. Challenges in translational research: the views of addiction scientists.

    Science.gov (United States)

    Ostergren, Jenny E; Hammer, Rachel R; Dingel, Molly J; Koenig, Barbara A; McCormick, Jennifer B

    2014-01-01

    To explore scientists' perspectives on the challenges and pressures of translating research findings into clinical practice and public health policy. We conducted semi-structured interviews with a purposive sample of 20 leading scientists engaged in genetic research on addiction. We asked participants for their views on how their own research translates, how genetic research addresses addiction as a public health problem and how it may affect the public's view of addiction. Most scientists described a direct translational route for their research, positing that their research will have significant societal benefits, leading to advances in treatment and novel prevention strategies. However, scientists also pointed to the inherent pressures they feel to quickly translate their research findings into actual clinical or public health use. They stressed the importance of allowing the scientific process to play out, voicing ambivalence about the recent push to speed translation. High expectations have been raised that biomedical science will lead to new prevention and treatment modalities, exerting pressure on scientists. Our data suggest that scientists feel caught in the push for immediate applications. This overemphasis on rapid translation can lead to technologies and applications being rushed into use without critical evaluation of ethical, policy, and social implications, and without balancing their value compared to public health policies and interventions currently in place.

  12. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  13. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  14. Bridging the Research-to-Practice Gap: The Role of the Nurse Scientist.

    Science.gov (United States)

    Brant, Jeannine M

    2015-11-01

    To describe the emerging role of the nurse scientist in health care organizations. Historical perspectives of the role are explored along with the roles of the nurse scientist, facilitators, barriers, and future implications. Relevant literature on evidence-based practice and research in health care organizations; nurse scientist role; interview with University of Colorado nurse scientist. The nurse scientist role is integral for expanding evidence-based decisions and nursing research. A research mentor is considered the most important facilitator for a successful nursing research program. Organizations should consider including the nurse scientist role to facilitate evidence-based practice and expand opportunities for nursing research. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Cybercafés Use By The Research Scientists In Agricultural ...

    African Journals Online (AJOL)

    This study examined the use of internet by the research scientists in Agricultural research institutes in Ibadan. A descriptive survey design was adapted for the study. A purposeful sampling technique was also used to select the sample and the method produced 180 Research Scientists. A total of 162 cases were finally ...

  16. A Guide for Scientists Interested in Researching Student Outcomes

    Science.gov (United States)

    Buxner, Sanlyn R.; Anbar, Ariel; Semken, Steve; Mead, Chris; Horodyskyj, Lev; Perera, Viranga; Bruce, Geoffrey; Schönstein, David

    2015-11-01

    Scientists spend years training in their scientific discipline and are well versed the literature, methods, and innovations in their own field. Many scientists also take on teaching responsibilities with little formal training in how to implement their courses or assess their students. There is a growing body of literature of what students know in space science courses and the types of innovations that can work to increase student learning but scientists rarely have exposure to this body of literature. For scientists who are interested in more effectively understanding what their students know or investigating the impact their courses have on students, there is little guidance. Undertaking a more formal study of students poses more complexities including finding robust instruments and employing appropriate data analysis. Additionally, formal research with students involves issues of privacy and human subjects concerns, both regulated by federal laws.This poster details the important decisions and issues to consider for both course evaluation and more formal research using a course developed, facilitated, evaluated and researched by a hybrid team of scientists and science education researchers. HabWorlds, designed and implemented by a team of scientists and faculty at Arizona State University, has been using student data to continually improve the course as well as conduct formal research on students’ knowledge and attitudes in science. This ongoing project has had external funding sources to allow robust assessment not available to most instructors. This is a case study for discussing issues that are applicable to designing and assessing all science courses. Over the course of several years, instructors have refined course outcomes and learning objectives that are shared with students as a roadmap of instruction. The team has searched for appropriate tools for assessing student learning and attitudes, tested them and decided which have worked, or not, for

  17. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  18. Scientist, Single Cell Analysis Facility | Center for Cancer Research

    Science.gov (United States)

    The Cancer Research Technology Program (CRTP) develops and implements emerging technology, cancer biology expertise and research capabilities to accomplish NCI research objectives.  The CRTP is an outward-facing, multi-disciplinary hub purposed to enable the external cancer research community and provides dedicated support to NCI’s intramural Center for Cancer Research (CCR).  The dedicated units provide electron microscopy, protein characterization, protein expression, optical microscopy and nextGen sequencing. These research efforts are an integral part of CCR at the Frederick National Laboratory for Cancer Research (FNLCR).  CRTP scientists also work collaboratively with intramural NCI investigators to provide research technologies and expertise. KEY ROLES AND RESPONSIBILITIES We are seeking a highly motivated Scientist II to join the newly established Single Cell Analysis Facility (SCAF) of the Center for Cancer Research (CCR) at NCI. The SCAF will house state of the art single cell sequencing technologies including 10xGenomics Chromium, BD Genomics Rhapsody, DEPPArray, and other emerging single cell technologies. The Scientist: Will interact with close to 200 laboratories within the CCR to design and carry out single cell experiments for cancer research Will work on single cell isolation/preparation from various tissues and cells and related NexGen sequencing library preparation Is expected to author publications in peer reviewed scientific journals

  19. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  20. A guide to understanding social science research for natural scientists.

    Science.gov (United States)

    Moon, Katie; Blackman, Deborah

    2014-10-01

    Natural scientists are increasingly interested in social research because they recognize that conservation problems are commonly social problems. Interpreting social research, however, requires at least a basic understanding of the philosophical principles and theoretical assumptions of the discipline, which are embedded in the design of social research. Natural scientists who engage in social science but are unfamiliar with these principles and assumptions can misinterpret their results. We developed a guide to assist natural scientists in understanding the philosophical basis of social science to support the meaningful interpretation of social research outcomes. The 3 fundamental elements of research are ontology, what exists in the human world that researchers can acquire knowledge about; epistemology, how knowledge is created; and philosophical perspective, the philosophical orientation of the researcher that guides her or his action. Many elements of the guide also apply to the natural sciences. Natural scientists can use the guide to assist them in interpreting social science research to determine how the ontological position of the researcher can influence the nature of the research; how the epistemological position can be used to support the legitimacy of different types of knowledge; and how philosophical perspective can shape the researcher's choice of methods and affect interpretation, communication, and application of results. The use of this guide can also support and promote the effective integration of the natural and social sciences to generate more insightful and relevant conservation research outcomes. © 2014 Society for Conservation Biology.

  1. The Voice of Women Scientists in EU Research Policy (abstract)

    Science.gov (United States)

    Šatkovskienė, Dalia

    2009-04-01

    The European Platform of Women Scientists (www.epws.org) is an umbrella organization bringing together networks of women scientists and organisations committed to gender equality in research in all disciplines all over Europe and the countries associated to the European Union's Framework Programmes for Research and Technological Development. The goals of EPWS and its activities are presented.

  2. Values in environmental research: Citizens’ views of scientists who acknowledge values

    Science.gov (United States)

    McCright, Aaron M.; Allen, Summer; Dietz, Thomas

    2017-01-01

    Scientists who perform environmental research on policy-relevant topics face challenges when communicating about how values may have influenced their research. This study examines how citizens view scientists who publicly acknowledge values. Specifically, we investigate whether it matters: if citizens share or oppose a scientist’s values, if a scientist’s conclusions seem contrary to or consistent with the scientist’s values, and if a scientist is assessing the state of the science or making a policy recommendation. We conducted two 3x2 factorial design online experiments. Experiment 1 featured a hypothetical scientist assessing the state of the science on the public-health effects of exposure to Bisphenol A (BPA), and Experiment 2 featured a scientist making a policy recommendation on use of BPA. We manipulated whether or not the scientist expressed values and whether the scientist’s conclusion appeared contrary to or consistent with the scientist’s values, and we accounted for whether or not subjects’ values aligned with the scientist’s values. We analyzed our data with ordinary least squares (OLS) regression techniques. Our results provide at least preliminary evidence that acknowledging values may reduce the perceived credibility of scientists within the general public, but this effect differs depending on whether scientists and citizens share values, whether scientists draw conclusions that run contrary to their values, and whether scientists make policy recommendations. PMID:29069087

  3. Geoscience Education Research: The Role of Collaborations with Education Researchers and Cognitive Scientists

    Science.gov (United States)

    Manduca, C. A.; Mogk, D. W.; Kastens, K. A.; Tikoff, B.; Shipley, T. F.; Ormand, C. J.; Mcconnell, D. A.

    2011-12-01

    Geoscience Education Research aims to improve geoscience teaching and learning by understanding clearly the characteristics of geoscience expertise, the path from novice to expert, and the educational practices that can speed students along this path. In addition to expertise in geoscience and education, this research requires an understanding of learning -the domain of cognitive scientists. Beginning in 2002, a series of workshops and events focused on bringing together geoscientists, education researchers, and cognitive scientists to facilitate productive geoscience education research collaborations. These activities produced reports, papers, books, websites and a blog developing a research agenda for geoscience education research at a variety of scales: articulating the nature of geoscience expertise, and the overall importance of observation and a systems approach; focusing attention on geologic time, spatial skills, field work, and complex systems; and identifying key research questions in areas where new technology is changing methods in geoscience research and education. Cognitive scientists and education researchers played critical roles in developing this agenda. Where geoscientists ask questions that spring from their rich understanding of the discipline, cognitive scientists and education researchers ask questions from their experience with teaching and learning in a wide variety of disciplines and settings. These interactions tend to crystallize the questions of highest importance in addressing challenges of geoscience learning and to identify productive targets for collaborative research. Further, they serve as effective mechanisms for bringing research techniques and results from other fields into geoscience education. Working productively at the intersection of these fields requires teams of cognitive scientists, geoscientists, and education reserachers who share enough knowledge of all three domains to have a common articulation of the research

  4. Scientists' perspectives on consent in the context of biobanking research.

    Science.gov (United States)

    Master, Zubin; Campo-Engelstein, Lisa; Caulfield, Timothy

    2015-05-01

    Most bioethics studies have focused on capturing the views of patients and the general public on research ethics issues related to informed consent for biobanking and only a handful of studies have examined the perceptions of scientists. Capturing the opinions of scientists is important because they are intimately involved with biobanks as collectors and users of samples and health information. In this study, we performed interviews with scientists followed by qualitative analysis to capture the diversity of perspectives on informed consent. We found that the majority of scientists in our study reported their preference for a general consent approach although they do not believe there to be a consensus on consent type. Despite their overall desire for a general consent model, many reported several concerns including donors needing some form of assurance that nothing unethical will be done with their samples and information. Finally, scientists reported mixed opinions about incorporating exclusion clauses in informed consent as a means of limiting some types of contentious research as a mechanism to assure donors that their samples and information are being handled appropriately. This study is one of the first to capture the views of scientists on informed consent in biobanking. Future studies should attempt to generalize findings on the perspectives of different scientists on informed consent for biobanking.

  5. Researcher-library collaborations: Data repositories as a service for researchers.

    Science.gov (United States)

    Gordon, Andrew S; Millman, David S; Steiger, Lisa; Adolph, Karen E; Gilmore, Rick O

    New interest has arisen in organizing, preserving, and sharing the raw materials-the data and metadata-that undergird the published products of research. Library and information scientists have valuable expertise to bring to bear in the effort to create larger, more diverse, and more widely used data repositories. However, for libraries to be maximally successful in providing the research data management and preservation services required of a successful data repository, librarians must work closely with researchers and learn about their data management workflows. Databrary is a data repository that is closely linked to the needs of a specific scholarly community-researchers who use video as a main source of data to study child development and learning. The project's success to date is a result of its focus on community outreach and providing services for scholarly communication, engaging institutional partners, offering services for data curation with the guidance of closely involved information professionals, and the creation of a strong technical infrastructure. Databrary plans to improve its curation tools that allow researchers to deposit their own data, enhance the user-facing feature set, increase integration with library systems, and implement strategies for long-term sustainability.

  6. ICTR-PHE: scientists engage with multidisciplinary research

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In 2016, the next edition of the unique conference that gathers scientists from a variety of fields will focus on many topics particularly dear to the heart of physicists, clinicians, biologists, and computer specialists. The call for abstracts is open until 16 October.   When detector physicists, radiochemists, nuclear-medicine physicians and other physicists, biologists, software developers, accelerator experts and oncologists think outside the box and get involved in multidisciplinary research, they create innovative healthcare. ICTR-PHE is a biennial event, co-organised by CERN, whose main aim is to foster multidisciplinary research by positioning itself at the crossing of physics, medicine and biology. At the ICTR-PHE conference, physicists, engineers, and computer scientists share their knowledge and technologies while doctors and biologists present their needs and vision for the medical tools of the future, thus triggering breakthrough ideas and technological developments in speci...

  7. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  8. Physician scientist research pathway leading to certification by the American Board of Pathology.

    Science.gov (United States)

    Weiss, Sharon W; Johnson, Rebecca L

    2016-06-01

    In 2014, the American Board of Pathology, in response to the pathology community, approved a physician scientist research pathway (PSRP). This brief report summarizes the history of and objectives for creating the physician scientist research pathway and the requirements of the American Board of Pathology for the certification of physician scientist research pathway trainees. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Ecosystem services in European protected areas: Ambiguity in the views of scientists and managers?

    Directory of Open Access Journals (Sweden)

    Christiaan Hummel

    Full Text Available Protected Areas are a key component of nature conservation. They can play an important role in counterbalancing the impacts of ecosystem degradation. For an optimal protection of a Protected Area it is essential to account for the variables underlying the major Ecosystem Services an area delivers, and the threats upon them. Here we show that the perception of these important variables differs markedly between scientists and managers of Protected Areas in mountains and transitional waters. Scientists emphasise variables of abiotic and biotic nature, whereas managers highlight socio-economic, cultural and anthropogenic variables. This indicates fundamental differences in perception. To be able to better protect an area it would be advisable to bring the perception of scientists and managers closer together. Intensified and harmonised communication across disciplinary and professional boundaries will be needed to implement and improve Ecosystem Service oriented management strategies in current and future Protected Areas.

  10. Ecosystem services in European protected areas: Ambiguity in the views of scientists and managers?

    Science.gov (United States)

    Provenzale, Antonello; van der Meer, Jaap; Wijnhoven, Sander; Nolte, Arno; Poursanidis, Dimitris; Janss, Guyonne; Jurek, Matthias; Andresen, Magnus; Poulin, Brigitte; Kobler, Johannes; Beierkuhnlein, Carl; Honrado, João; Razinkovas, Arturas; Stritih, Ana; Bargmann, Tessa; Ziemba, Alex; Bonet-García, Francisco; Adamescu, Mihai Cristian; Janssen, Gerard; Hummel, Herman

    2017-01-01

    Protected Areas are a key component of nature conservation. They can play an important role in counterbalancing the impacts of ecosystem degradation. For an optimal protection of a Protected Area it is essential to account for the variables underlying the major Ecosystem Services an area delivers, and the threats upon them. Here we show that the perception of these important variables differs markedly between scientists and managers of Protected Areas in mountains and transitional waters. Scientists emphasise variables of abiotic and biotic nature, whereas managers highlight socio-economic, cultural and anthropogenic variables. This indicates fundamental differences in perception. To be able to better protect an area it would be advisable to bring the perception of scientists and managers closer together. Intensified and harmonised communication across disciplinary and professional boundaries will be needed to implement and improve Ecosystem Service oriented management strategies in current and future Protected Areas. PMID:29140983

  11. Ecosystem services in European protected areas: Ambiguity in the views of scientists and managers?

    Science.gov (United States)

    Hummel, Christiaan; Provenzale, Antonello; van der Meer, Jaap; Wijnhoven, Sander; Nolte, Arno; Poursanidis, Dimitris; Janss, Guyonne; Jurek, Matthias; Andresen, Magnus; Poulin, Brigitte; Kobler, Johannes; Beierkuhnlein, Carl; Honrado, João; Razinkovas, Arturas; Stritih, Ana; Bargmann, Tessa; Ziemba, Alex; Bonet-García, Francisco; Adamescu, Mihai Cristian; Janssen, Gerard; Hummel, Herman

    2017-01-01

    Protected Areas are a key component of nature conservation. They can play an important role in counterbalancing the impacts of ecosystem degradation. For an optimal protection of a Protected Area it is essential to account for the variables underlying the major Ecosystem Services an area delivers, and the threats upon them. Here we show that the perception of these important variables differs markedly between scientists and managers of Protected Areas in mountains and transitional waters. Scientists emphasise variables of abiotic and biotic nature, whereas managers highlight socio-economic, cultural and anthropogenic variables. This indicates fundamental differences in perception. To be able to better protect an area it would be advisable to bring the perception of scientists and managers closer together. Intensified and harmonised communication across disciplinary and professional boundaries will be needed to implement and improve Ecosystem Service oriented management strategies in current and future Protected Areas.

  12. NATO Advanced Research Institute on Health Services Systems

    CERN Document Server

    Werff, Albert; Hirsch, Gary; Barnard, Keith

    1984-01-01

    The Advanced Research Institute on "Health Services Systems" was held under the auspices of the NATO Special Programme Panel on Systems Science as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international cooperation. A special word is said in this respect supra by Pro­ fessor Checkland, Chairman of the Systems Science Panel. The Advanced Research Institute (ARI) was organized for the purpose of bringing together senior scientists to seek a consensus on the assessment of the present state of knowledge on the specific topic of "health services systems" and to present views and recom­ mendations for future health services research directions, which should be of value to both the scientific community and the people in charge of reorienting health services. The conference was structured so as to permit the assembly of a variety of complementary viewpoints through intensive group discussions to be the basis of this final report. Invitees were selected fr...

  13. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Science.gov (United States)

    Byrnes, Jarrett E K; Ranganathan, Jai; Walker, Barbara L E; Faulkes, Zen

    2014-01-01

    As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  14. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    Science.gov (United States)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  15. The NASA Climate Change Research Initiative - A Scientist's Perspective

    Science.gov (United States)

    LeGrande, A. N.; Pearce, M. D.; Dulaney, N.; Kelly, S. M.

    2017-12-01

    For the last four years, I have been a lead mentor in the NASA GISS Climate Change Research Initiative (CCRI) program, a component in the NASA GSFC Office of Education portfolio. It creates a multidisciplinary; vertical research team including a NYC metropolitan teacher, graduate student, undergraduate student, and high school student. While the college and high school members of this research team function like a more traditional internship component, the teacher component provides a powerful, direct way to connect state-of-the art research with students in the classroom. Because the teacher internship lasts a full year, it affords a similar relationship with a teacher that normally only exists between a PhD student and scientist. It also provides an opportunity to train the teacher in using the extensive data archives and other information maintained on NASA's publicly available websites. This time and access provide PhD-level training in the techniques and tools used in my climate research to the high school teacher. The teacher then uses his/her own pedagogical expertise to translate these techniques into age/level appropriate lesson plans for the classroom aligned with current STEM education trends and expectations. Throughout the process, there is an exchange of knowledge between the teacher and scientist that is very similar to the training given to PhD level graduate students. The teacher's understanding of the topic and implementation of the tools is done under a very close collaboration with the scientist supervisor and the NASA Education Program Specialist. This vertical team model encourages collegial communication between teachers and learners from many different educational levels and capitalizes on the efficacy of near peer mentoring strategies. This relationship is important in building trust through the difficult, iterative process that results in the development of highly accurate and quality (continuously discussed and vetted) curriculum composed

  16. Staff Scientist - RNA Bioinformatics | Center for Cancer Research

    Science.gov (United States)

    The newly established RNA Biology Laboratory (RBL) at the Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH) in Frederick, Maryland is recruiting a Staff Scientist with strong expertise in RNA bioinformatics to join the Intramural Research Program’s mission of high impact, high reward science. The RBL is the equivalent of an

  17. To Crowdfund Research, Scientists Must Build an Audience for Their Work.

    Directory of Open Access Journals (Sweden)

    Jarrett E K Byrnes

    Full Text Available As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one's work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist's abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or "fanbase" and actively engaging with that audience as well as seeking to broaden the reach of one's audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist's project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.

  18. Original Research Challenges facing young African scientists in ...

    African Journals Online (AJOL)

    This study aimed at identifying the challenges that young African scientists face in their career development. Methods ... The research profile of Africans is relatively new, and the .... outside the country because it will support my original ideas.”.

  19. EPOS data and service provision to scientists and other stakeholders

    Science.gov (United States)

    Cocco, Massimo; EPOS Team

    2017-04-01

    EPOS brings together European nations and combines solid Earth science infrastructures and their associated data and services together with the scientific expertise into one integrated delivery system for solid Earth science. By improving and facilitating the integration, access, use, and re-use of solid Earth science data, data products, services and facilities EPOS is developing a holistic, sustainable, multidisciplinary research platform to provide coordinated access to harmonized and quality controlled data from diverse Earth science disciplines, together with tools for their use in analysis and modelling. EPOS has been designed with the vision of creating a single distributed pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS is presently in its implementation phase, which consists of the EPOS IP project and the legal establishment of EPOS-ERIC. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project. The EPOS implementation phase will last from 2015 to 2019. The key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core Services (ICS) to provide a novel research platform to different stakeholders; designing the access to distributed computational resources (ICS-D); ensuring sustainability and governance of TCS and EPOS-ERIC. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will present and discuss the data and service provision focusing on the data, data

  20. The experiences of health services research and health services research training in Korea.

    Science.gov (United States)

    Moon, O R

    1984-12-01

    Early in the 1970s the Korean government recognized the necessity of Health Services Research (HSR). The law of the Korea Health Development Institute was promulgated in 1975, and a contribution from the Republic was combined with an Agency for International Development loan to field test low-cost health service strategies. A program to deploy Community Health Practitioners (CHPs), similar to family nurse practitioners or Medex has been demonstrated to be effective. The CHP training program grew from 9 in 1980 to 1343 in 1984. CHP's main functions are curative, preventive, educative, and administrative. They are selected registered nurses and/or midwives, where possible from serviced communities. They are trained in 24 weeks, including 12 weeks of clinical practice, in an anticipated recruiting post. CHPs help train village health volunteers (VHVs), who are literate women chosen by their communities. They work closely with the CHPs as a liaison with the village and in information gathering. An HSR orientation workshop held in Chuncheon in 1980, discussed role, policy, status, finance components, information systems, behavioral and manpower components, staff training, protocols for project development, HSR in the future and evaluation of the conference. In 1980, a National Workshop on Biomedical Research Methodology was also held, with World Health Organization and Korean consultants. Training of junior scientists would include introduction to scientific method, statement of problems, quantitative study technics, research proposals, and interpretation of results. The Korean Institute of Public Health sponsored a 1982 experts forum on the health care system, medical facilities, organizational management, financing and medical security, and health behavioral aspects. Training of trainers and lower level field workers, orientation of program managers, researchers, and communities themselves should all be training priorities. In future, CHPs should be refresher

  1. Opportunities for Scientists to Engage the Public & Inspire Students in Science

    Science.gov (United States)

    Vaughan, R. G.; Worssam, J.; Vaughan, A. F.

    2014-12-01

    Increasingly, research scientists are learning that communicating science to broad, non-specialist audiences, particularly students, is just as important as communicating science to their peers via peer-reviewed scientific publications. This presentation highlights opportunities that scientists in Flagstaff, AZ have to foster public support of science & inspire students to study STEM disciplines. The goal here is to share ideas, personal experiences, & the rewards, for both students & research professionals, of engaging in science education & public outreach. Flagstaff, AZ, "America's First STEM Community," has a uniquely rich community of organizations engaged in science & engineering research & innovation, including the Flagstaff Arboretum, Coconino Community College, Gore Industries, Lowell Observatory, Museum of Northern Arizona, National Weather Service, National Park Service, National Forest Service, Northern Arizona University, Northern Arizona Center for Entrepreneurship & Technology, US Geological Survey, US Naval Observatory, & Willow Bend Environmental Education Center. These organizations connect with the Northern Arizona community during the yearly Flagstaff Festival of Science - the third oldest science festival in the world - a 10 day long, free, science festival featuring daily public lectures, open houses, interactive science & technology exhibits, field trips, & in-school speaker programs. Many research scientists from these organizations participate in these activities, e.g., public lectures, open houses, & in-school speaker programs, & also volunteer as mentors for science & engineering themed clubs in local schools. An example of a novel, innovative program, developed by a local K-12 science teacher, is the "Scientists-in-the-Classroom" mentor program, which pairs all 7th & 8th grade students with a working research scientist for the entire school year. Led by the student & guided by the mentor, they develop a variety of science / technology

  2. Disparate foundations of scientists' policy positions on contentious biomedical research.

    Science.gov (United States)

    Edelmann, Achim; Moody, James; Light, Ryan

    2017-06-13

    What drives scientists' position taking on matters where empirical answers are unavailable or contradictory? We examined the contentious debate on whether to limit experiments involving the creation of potentially pandemic pathogens. Hundreds of scientists, including Nobel laureates, have signed petitions on the debate, providing unique insights into how scientists take a public stand on important scientific policies. Using 19,257 papers published by participants, we reconstructed their collaboration networks and research specializations. Although we found significant peer associations overall, those opposing "gain-of-function" research are more sensitive to peers than are proponents. Conversely, specializing in fields directly related to gain-of-function research (immunology, virology) predicts public support better than specializing in fields related to potential pathogenic risks (such as public health) predicts opposition. These findings suggest that different social processes might drive support compared with opposition. Supporters are embedded in a tight-knit scholarly community that is likely both more familiar with and trusting of the relevant risk mitigation practices. Opponents, on the other hand, are embedded in a looser federation of widely varying academic specializations with cognate knowledge of disease and epidemics that seems to draw more heavily on peers. Understanding how scientists' social embeddedness shapes the policy actions they take is important for helping sides interpret each other's position accurately, avoiding echo-chamber effects, and protecting the role of scientific expertise in social policy.

  3. Hidden concerns of sharing research data by low/middle-income country scientists.

    Science.gov (United States)

    Bezuidenhout, Louise; Chakauya, Ereck

    2018-01-01

    There has considerable interest in bringing low/middle-income countries (LMIC) scientists into discussions on Open Data - both as contributors and users. The establishment of in situ data sharing practices within LMIC research institutions is vital for the development of an Open Data landscape in the Global South. Nonetheless, many LMICs have significant challenges - resource provision, research support and extra-laboratory infrastructures. These low-resourced environments shape data sharing activities, but are rarely examined within Open Data discourse. In particular, little attention is given to how these research environments shape scientists' perceptions of data sharing (dis)incentives. This paper expands on these issues of incentivizing data sharing, using data from a quantitative survey disseminated to life scientists in 13 countries in sub-Saharan Africa. This interrogated not only perceptions of data sharing amongst LMIC scientists, but also how these are connected to the research environments and daily challenges experienced by them. The paper offers a series of analysis around commonly cited (dis)incentives such as data sharing as a means of improving research visibility; sharing and funding; and online connectivity. It identifies key areas that the Open Data community need to consider if true openness in research is to be established in the Global South.

  4. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    Science.gov (United States)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  5. Exploring intentions of physician-scientist trainees: factors influencing MD and MD/PhD interest in research careers.

    Science.gov (United States)

    Kwan, Jennifer M; Daye, Dania; Schmidt, Mary Lou; Conlon, Claudia Morrissey; Kim, Hajwa; Gaonkar, Bilwaj; Payne, Aimee S; Riddle, Megan; Madera, Sharline; Adami, Alexander J; Winter, Kate Quinn

    2017-07-11

    Prior studies have described the career paths of physician-scientist candidates after graduation, but the factors that influence career choices at the candidate stage remain unclear. Additionally, previous work has focused on MD/PhDs, despite many physician-scientists being MDs. This study sought to identify career sector intentions, important factors in career selection, and experienced and predicted obstacles to career success that influence the career choices of MD candidates, MD candidates with research-intense career intentions (MD-RI), and MD/PhD candidates. A 70-question survey was administered to students at 5 academic medical centers with Medical Scientist Training Programs (MSTPs) and Clinical and Translational Science Awards (CTSA) from the NIH. Data were analyzed using bivariate or multivariate analyses. More MD/PhD and MD-RI candidates anticipated or had experienced obstacles related to balancing academic and family responsibilities and to balancing clinical, research, and education responsibilities, whereas more MD candidates indicated experienced and predicted obstacles related to loan repayment. MD/PhD candidates expressed higher interest in basic and translational research compared to MD-RI candidates, who indicated more interest in clinical research. Overall, MD-RI candidates displayed a profile distinct from both MD/PhD and MD candidates. MD/PhD and MD-RI candidates experience obstacles that influence their intentions to pursue academic medical careers from the earliest training stage, obstacles which differ from those of their MD peers. The differences between the aspirations of and challenges facing MD, MD-RI and MD/PhD candidates present opportunities for training programs to target curricula and support services to ensure the career development of successful physician-scientists.

  6. Expedition Earth and Beyond: Student Scientist Guidebook. Model Research Investigation

    Science.gov (United States)

    Graff, Paige Valderrama

    2009-01-01

    The Expedition Earth and Beyond Student Scientist Guidebook is designed to help student researchers model the process of science and conduct a research investigation. The Table of Contents listed outlines the steps included in this guidebook

  7. Scientist-Teacher Partnerships as Professional Development: An Action Research Study

    Energy Technology Data Exchange (ETDEWEB)

    Willcuts, Meredith H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-04-01

    The overall purpose of this action research study was to explore the experiences of ten middle school science teachers involved in a three-year partnership program between scientists and teachers at a Department of Energy national laboratory, including the impact of the program on their professional development, and to improve the partnership program by developing a set of recommendations based on the study’s findings. This action research study relied on qualitative data including field notes recorded at the summer academies and data from two focus groups with teachers and scientists. Additionally, the participating teachers submitted written reflections in science notebooks, participated in open-ended telephone interviews that were transcribed verbatim, and wrote journal summaries to the Department of Energy at the end of the summer academy. The analysis of the data, collaboratively examined by the teachers, the scientists, and the science education specialist acting as co-researchers on the project, revealed five elements critical to the success of the professional development of science teachers. First, scientist-teacher partnerships are a unique contribution to the professional development of teachers of science that is not replicated in other forms of teacher training. Second, the role of the science education specialist as a bridge between the scientists and teachers is a unique and vital one, impacting all aspects of the professional development. Third, there is a paradox for classroom teachers as they view the professional development experience from two different lenses – that of learner and that of teacher. Fourth, learning for science teachers must be designed to be constructivist in nature. Fifth, the principles of the nature of science must be explicitly showcased to be seen and understood by the classroom teacher.

  8. Research Natural Areas on National Forest System lands in Idaho, Montana, Nevada, Utah, and Western Wyoming: A guidebook for scientists, managers, and educators

    Science.gov (United States)

    Angela G. Evenden; Melinda Moeur; J. Stephen Shelly; Shannon F. Kimball; Charles A. Wellner

    2001-01-01

    This guidebook is intended to familiarize land resource managers, scientists, educators, and others with Research Natural Areas (RNAs) managed by the USDA Forest Service in the Northern Rocky Mountains and Intermountain West. This guidebook facilitates broader recognition and use of these valuable natural areas by describing the RNA network, past and current research...

  9. Symbiosis on Campus: Collaborations of Scientists and Science Educators.

    Science.gov (United States)

    Duggan-Haas, Don; Moscovici, Hedy; McNulty, Brendan; Gilmer, Penny J.; Eick, Charles J.; Wilson, John

    This symposium will provide insights into collaborations among scientists and science educators in a variety of contexts-large research universities, small state and private institutions, and collaborations involving both pre- service and in-service programs. The session will begin with a brief framing of these collaborations as management of the…

  10. What scientists want from their research ethics committee.

    Science.gov (United States)

    Keith-Spiegel, Patricia; Tabachnick, Barbara

    2006-03-01

    Whereas investigators have directed considerable criticism against Institutional Review Boards (IRBs), the desirable characteristics of IRBs have not previously been empirically determined. A sample of 886 experienced biomedical and social and behavioral scientists rated 45 descriptors of IRB actions and functions as to their importance. Predictions derived from organizational justice research findings in other work settings were generally borne out. Investigators place high value on the fairness and respectful consideration of their IRBs. Expected differences between biomedical and social behavioral researchers and other variables were unfounded. Recommendations are offered for educating IRBs to accord researchers greater respect and fair treatment.

  11. The life-cycle research productivity of mathematicians and scientists.

    Science.gov (United States)

    Diamond, A M

    1986-07-01

    Declining research productivity with age is implied by economic models of life-cycle human capital investment but is denied by some recent empirical studies. The purpose of the present study is to provide new evidence on whether a scientist's output generally declines with advancing age. A longitudinal data set has been compiled for scientists and mathematicians at six major departments, including data on age, salaries, annual citations (stock of human capital), citations to current output (flow of human capital), and quantity of current output measured both in number of articles and in number of pages. Analysis of the data indicates that salaries peak from the early to mid-60s, whereas annual citations appear to peak from age 39 to 89 for different departments with a mean age of 59 for the 6 departments. The quantity and quality of current research output appear to decline continuously with age.

  12. The Internet: A productive research environment for social scientists

    Directory of Open Access Journals (Sweden)

    Tulbure, B.T.

    2011-01-01

    Full Text Available Since the first web-studies in 1995, scientists have investigated the major issues regarding the new Internet based research methods, study designs and on-line data collection techniques. New software programs and manuals make it easy for newcomers to implement simple experimental procedures in cyberspace. Despite their limits, most researchers consider the advantages of Internet research as greater comparing with their disadvantages. The Internet has changed the major aspects of social sciences – from how researchers communicate to how they publish their studies.

  13. Leading US nano-scientists' perceptions about media coverage and the public communication of scientific research findings

    Science.gov (United States)

    Corley, Elizabeth A.; Kim, Youngjae; Scheufele, Dietram A.

    2011-12-01

    Despite the significant increase in the use of nanotechnology in academic research and commercial products over the past decade, there have been few studies that have explored scientists' perceptions and attitudes about the technology. In this article, we use survey data from the leading U.S. nano-scientists to explore their perceptions about two issues: the public communication of research findings and media coverage of nanotechnology, which serves as one relatively rapid outlet for public communication. We find that leading U.S. nano-scientists do see an important connection between the public communication of research findings and public attitudes about science. Also, there is a connection between the scientists' perceptions about media coverage and their views on the timing of public communication; scientists with positive attitudes about the media are more likely to support immediate public communication of research findings, while others believe that communication should take place only after research findings have been published through a peer-review process. We also demonstrate that journalists might have a more challenging time getting scientists to talk with them about nanotechnology news stories because nano-scientists tend to view media coverage of nanotechnology as less credible and less accurate than general science media coverage. We conclude that leading U.S. nano-scientists do feel a sense of responsibility for communicating their research findings to the public, but attitudes about the timing and the pathway of that communication vary across the group.

  14. Developmental Scientist | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION Within the Leidos Biomedical Research Inc.’s Clinical Research Directorate, the Clinical Monitoring Research Program (CMRP) provides high-quality comprehensive and strategic operational support to the high-profile domestic and international clinical research initiatives of the National Cancer Institute (NCI), National Institute of Allergy and Infectious Diseases (NIAID), Clinical Center (CC), National Institute of Heart, Lung and Blood Institute (NHLBI), National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Center for Advancing Translational Sciences (NCATS), National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH). Since its inception in 2001, CMRP’s ability to provide rapid responses, high-quality solutions, and to recruit and retain experts with a variety of backgrounds to meet the growing research portfolios of NCI, NIAID, CC, NHLBI, NIAMS, NCATS, NINDS, and NIMH has led to the considerable expansion of the program and its repertoire of support services. CMRP’s support services are strategically aligned with the program’s mission to provide comprehensive, dedicated support to assist National Institutes of Health researchers in providing the highest quality of clinical research in compliance with applicable regulations and guidelines, maintaining data integrity, and protecting human subjects. For the scientific advancement of clinical research, CMRP services include comprehensive clinical trials, regulatory, pharmacovigilance, protocol navigation and development, and programmatic and project management support for facilitating the conduct of 400+ Phase I, II, and III domestic and international trials on a yearly basis. These trials investigate the prevention, diagnosis, treatment of, and therapies for cancer, influenza, HIV, and other infectious diseases and viruses such as hepatitis C, tuberculosis, malaria, and Ebola virus; heart, lung, and

  15. Ethical Justification of Moral Norms in Scientific Research: Scientists' External Responsibilities

    Directory of Open Access Journals (Sweden)

    Mehmet AKÖZER

    2015-09-01

    Full Text Available Scientists' moral responsibilities have become a focus for the scientific community over the postwar decades. International and regional networks of leading academic bodies have responded to a widely perceived increase in scientific fraud and the ensued loss of public trust in science during the 1980s, and initiated a discussion with a view to codifying good practice in research. While scientists' “external” responsibilities towards society and the humankind have been variously addressed, codes drafted since then mainly dwell on problems of misconduct concerning scientists' “internal” responsibilities towards science and to the scientific community. They also reflect an ethical pluralism, which declines justifying moral standards in research with reference to universal ethical principles. However, the need for such justification has been first recognized decades ago, during the Doctor's Trial in Nuremberg, where the shortcomings of the established ethos of science and the inadequacy of the Hippocratic ethics in safeguarding human rights in research had become flagrant, with the resultant Nuremberg Code of 1947 introducing a human rights perspective into Hippocratic ethics. This paper argues for the necessity of an integral ethical justification of scientists' both external and inner responsibilities, as put down or assumed by internationally acclaimed codes of conduct. Such necessity is validated by the evidence that a historical current to monopolize ethical thinking in the name of science and nullify philosophical ethics lies at the root of an anti–morality that relativized human worth and virtually legitimized human rights violations in scientific practice. Kantian ethics based on humans' absolute inner worth, and Popperian epistemology rooted in respect for truth and for humans as rational beings, pledge an ethical justification of moral norms in science so as to reinforce the latter against intrusions of anti–morality. The paper

  16. Data and Data Products for Climate Research: Web Services at the Asia-Pacific Data-Research Center (APDRC)

    Science.gov (United States)

    DeCarlo, S.; Potemra, J. T.; Wang, K.

    2012-12-01

    The International Pacific Research Center (IPRC) at the University of Hawaii maintains a data center for climate studies called the Asia-Pacific Data-Research Center (APDRC). This data center was designed within a center of excellence in climate research with the intention of serving the needs of the research scientist. The APDRC provides easy access to a wide collection of climate data and data products for a wide variety of users. The data center maintains an archive of approximately 100 data sets including in-situ and remote data, as well as a range of model-based output. All data are available via on-line browsing tools such as a Live Access Server (LAS) and DChart, and direct binary access is available through OPeNDAP services. On-line tutorials on how to use these services are now available. Users can keep up-to-date with new data and product announcements via the APDRC facebook page. The main focus of the APDRC has been climate scientists, and the services are therefore streamlined to such users, both in the number and types of data served, but also in the way data are served. In addition, due to the integration of the APDRC within the IPRC, several value-added data products (see figure for an example using Argo floats) have been developed via a variety of research activities. The APDRC, therefore, has three main foci: 1. acquisition of climate-related data, 2. maintenance of integrated data servers, and 3. development and distribution of data products The APDRC can be found at http://apdrc.soest.hawaii.edu. The presentation will provide an overview along with specific examples of the data, data products and data services available at the APDRC.; APDRC product example: gridded field from Argo profiling floats

  17. Assessing the Job Satisfaction of Research Scientists: A Comparative Analysis.

    Science.gov (United States)

    Tuttle, Waneta C.; And Others

    1987-01-01

    The variables and management strategies influencing the job satisfaction of research scientists are examined. Emphasis is on defining satisfaction within the job context and the implications for managing the context to enhance satisfaction. (MSE)

  18. Challenges facing young African scientists in their research careers ...

    African Journals Online (AJOL)

    Background: Africa accounts for 14% of world's population, and the economies of most African countries are considered to be growing, but this is not reflected in the amount of research published by Africans. This study aimed at identifying the challenges that young African scientists face in their career development.

  19. Research fellowship programs as a pathway for training independent clinical pharmacy scientists.

    Science.gov (United States)

    Mueller, Eric W; Bishop, Jeffrey R; Kanaan, Abir O; Kiser, Tyree H; Phan, Hanna; Yang, Katherine Y

    2015-03-01

    The American College of Clinical Pharmacy (ACCP) Research Affairs Committee published a commentary in 2013 on training clinical pharmacy scientists in the context of changes in economic, professional, political, and research environments. The commentary centered on the opportunities for pharmacists in clinical/translational research including strategies for ACCP, colleges of pharmacy, and the profession to increase the number and impact of clinical pharmacy scientists. A postdoctoral fellowship is cited as a current training pathway, capable of producing independent and productive pharmacy researchers. However, a decline in the number of programs, decreased funding availability, and variability in fellowship program activities and research focus have brought into question the relevance of this research training pathway to meet demand and opportunities. In response to these points, this commentary examines the state of research fellowship training including the current ACCP research fellowship review process, the need for standardization of research fellowship programs, and strategies to strengthen and promote research fellowships as relevant researcher training pathways. © 2015 Pharmacotherapy Publications, Inc.

  20. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist...

  1. Gender differentials in ICT uptake rating among research scientists ...

    African Journals Online (AJOL)

    The study examined the challenge to ICT uptake rating among research scientists in the Nigerian Universities of Agriculture through gender inequality. Primary data were used for the study which was generated through the use of questionnaire. The study took a sample of 240 respondents from a population of 1758 from the ...

  2. Proceedings of the young scientist research awardee's meet: pre-proceedings volume

    International Nuclear Information System (INIS)

    2012-01-01

    Youth is the life line for the progress of any nation, be it science, academics, industry or enterpreneurship. In scientific research, it is always interesting to enumerate the ideas that are created by young minds. It is important to identify bright ideas and nurture the young scientists so that the promise shown through bright ideas will be directed towards logical execution. It is crucial for the funding agencies to be proactive to convert potential into performance. Board of Research in Nuclear Sciences (BRNS), Department of Atomic Energy (DAE), India supports extra mural research in nuclear and allied sciences, engineering and technology. With an aim to accomplish this objective, BRNS has been continuously encouraging and supporting scientists and engineers to pursue excellence in R and D programmes of interest and relevance to DAE. Papers relevant to INIS are indexed separately

  3. Perspective: Transforming science into medicine: how clinician-scientists can build bridges across research's "valley of death".

    Science.gov (United States)

    Roberts, Scott F; Fischhoff, Martin A; Sakowski, Stacey A; Feldman, Eva L

    2012-03-01

    Significant increases in National Institutes of Health (NIH) spending on medical research have not produced corresponding increases in new treatments and cures. Instead, laboratory discoveries remain in what has been termed the "valley of death," the gap between bench research and clinical application. Recently, there has been considerable discussion in the literature and scientific community about the causes of this phenomenon and how to bridge the abyss. In this article, the authors examine one possible explanation: Clinician-scientists' declining role in the medical research enterprise has had a dilatory effect on the successful translation of laboratory breakthroughs into new clinical applications. In recent decades, the percentage of MDs receiving NIH funding has drastically decreased compared with PhDs. The growing gap between the research and clinical enterprises has resulted in fewer scientists with a true understanding of clinical problems as well as scientists who are unable to or uninterested in gleaning new basic research hypotheses from failed clinical trials. The NIH and many U.S. medical schools have recognized the decline of the clinician-scientist as a major problem and adopted innovative programs to reverse the trend. However, more radical action may be required, including major changes to the NIH peer-review process, greater funding for translational research, and significantly more resources for the training, debt relief, and early career support of potential clinician-scientists. Such improvements are required for clinician-scientists to conduct translational research that bridges the valley of death and transforms biomedical research discoveries into tangible clinical treatments and technologies.

  4. Astroserver - Research Services in the Stellar Webshop

    Science.gov (United States)

    Németh, Péter

    2017-12-01

    A quick look at research and development in astronomy shows that we live in exciting times. Exoplanetary systems, supernovae, and merging binary black holes were far out of reach for observers two decades ago and now such phenomena are recorded routinely. This quick development would not have been possible without the ability for researchers to be connected, to think globally and to be mobile. Classical short-term positions are not always suitable to support these conditions and freelancing may be a viable alternative.We introduce the Astroserver framework, which is a new freelancing platform for scientists, and demonstrate through examples how it contributed to some recent projects related to hot subdwarf stars and binaries. These contributions, which included spectroscopic data mining, computing services and observing services, as well as artwork, allowed a deeper look into the investigated systems. The work on composite spectra binaries provided new details for the hypervelocity wide subdwarf binary PB 3877 and found diverse and rare systems with sub-giant companions in high-resolution spectroscopic surveys. The models for the peculiar abundance pattern of the evolved compact star LP 40-365 showed it to be a bound hypervelocity remnant of a supernova Iax event. Some of these works also included data visualizations to help presenting the new results. Such services may be of interest for many researchers.

  5. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  6. Indigenous Research and Academic Freedom: A View from Political Scientists

    Directory of Open Access Journals (Sweden)

    Christopher Alcantara

    2017-04-01

    Full Text Available Over the last several decades, scholars working on Indigenous topics have faced increasing pressure to engage in research that promotes social justice and results in formal partnerships with Indigenous communities. In this article, we argue that non-community-based research, in which the researcher exercises academic autonomy over the project, still has a role to play in Indigenous-focused research, depending on the research question, topic, and situation at hand. We explore this argument from the perspective of political scientists who study Indigenous–settler political relations in Canada.

  7. From Research Scientist to Public Outreach: A Personal Journey

    Science.gov (United States)

    Stewart, R.

    2004-12-01

    Over the past six years I have made the transition from research oceanographer to an educator and public outreach specialist. The transition has been rewarding but difficult. On the way I had to learn the vocabulary and concepts of education (e.g. authentic assessment), effective web-page styles, and the difference between science and education--they are very different. I also met many enthusiastic and caring teachers who greatly eased my transition to educator. Some lessons learned. First, partner with experts. Successful outreach is a team effort. I was luck to have the opportunity to work closely with a great professor of education, Robert James, a wonderful middle-school teacher and Presidential Awardee, Margaret Hammer, and talented students, Jon Reisch and Don Johnson, from our School of ArchitectureAƒAøAøâ_sA¬Aøâ_zAøs Visualization Laboratory, who combined art and technology. Second, if you are a scientist, realize that scientists are too critical. We look for the one right answer, and for the flaws in data and theory. Educators look for the many ways to present ideas, all equally valid, and they value the worth of all students. AƒAøAøâ_sA¬A.â_oSo radical are the differences between the worlds of science and human affairs that their demands are sometimes in conflict.AƒAøAøâ_sA¬A_A¿A 1/2 -Philander: Our Affair With El Nino, p.5. Second, the web is a very efficient way of reaching many people. Thus, web skills are essential. Third, I am learning to be humble. There is much I need to learn. The skills necessary to be a successful research scientist are not sufficient for being a successful educator. Fourth, assess, assess, and assess. DonAƒAøAøâ_sA¬Aøâ_zAøt assume that what you create serves its purpose. Get feedback from educators, students, and scientists of all levels of experience.

  8. Should We All be Scientists? Re-thinking Laboratory Research as a Calling.

    Science.gov (United States)

    Bezuidenhout, Louise; Warne, Nathaniel A

    2017-07-19

    In recent years there have been major shifts in how the role of science-and scientists-are understood. The critical examination of scientific expertise within the field of Science and Technology Studies (STS) are increasingly eroding notions of the "otherness" of scientists. It would seem to suggest that anyone can be a scientist-when provided with the appropriate training and access to data. In contrast, however, ethnographic evidence from the scientific community tells a different story. Scientists are quick to recognize that not everyone can-or should-be a scientist. Appealing to notions such as "good hands" or "gut feelings", scientists narrate a distinction between good and bad scientists that cannot be reduced to education, access, or opportunity. The key to good science requires scientists to express an intuitive feeling for their discipline, but also that individuals derive considerable personal satisfaction from their work. Discussing this personal joy in-and "fittingness" of-scientific occupations using the fields of STS, ethics and science policy is highly problematic. In this paper we turn to theology discourse to analyze the notion of "callings" as a means of understanding this issue. Callings highlight the identification and examination of individual talents to determine fit occupations for specific persons. Framing science as a calling represents a novel view of research that places the talents and dispositions of individuals and their relationship to the community at the center of flourishing practices.

  9. Bridging the practitioner-scientist gap in group psychotherapy research.

    Science.gov (United States)

    Lau, Mark A; Ogrodniczuk, John; Joyce, Anthony S; Sochting, Ingrid

    2010-04-01

    Bridging the practitioner-scientist gap requires a different clinical research paradigm: participatory research that encourages community agency-academic partnerships. In this context, clinicians help define priorities, determine the type of evidence that will have an impact on their practice (affecting the methods that are used to produce the evidence), and develop strategies for translating, implementing, and disseminating their findings into evidence-based practice. Within this paradigm, different roles are assumed by the partners, and sometimes these roles are blended. This paper will consider the perspectives of people who assume these different roles (clinician, researcher, and clinician-researcher) with group psychotherapy as the specific focus. Finally, the establishment of a practice-research network will be discussed as a potentially promising way to better engage group therapists in research.

  10. Bridging the Gender Gap: The demographics of scientists in the USDA Forest Service and academia

    Science.gov (United States)

    Christel C. Kern; Laura S. Kenefic; Susan L. Stout

    2015-01-01

    Past research has established that diverse scientific communities foster innovation and problem solving more effectively than communities with a narrow range of knowledge, skills, and experience. However, gender diversity among scientists is limited, particularly in natural-resource fields. We compared data on scientist gender and rank from the US Department of...

  11. Is there a glass ceiling for highly cited scientists at the top of research universities?

    Science.gov (United States)

    Ioannidis, John P A

    2010-12-01

    University leaders aim to protect, shape, and promote the missions of their institutions. I evaluated whether top highly cited scientists are likely to occupy these positions. Of the current leaders of 96 U.S. high research activity universities, only 6 presidents or chancellors were found among the 4009 U.S. scientists listed in the ISIHighlyCited.com database. Of the current leaders of 77 UK universities, only 2 vice-chancellors were found among the 483 UK scientists listed in the same database. In a sample of 100 top-cited clinical medicine scientists and 100 top-cited biology and biochemistry scientists, only 1 and 1, respectively, had served at any time as president of a university. Among the leaders of 25 U.S. universities with the highest citation volumes, only 12 had doctoral degrees in life, natural, physical or computer sciences, and 5 of these 12 had a Hirsch citation index m < 1.0. The participation of highly cited scientists in the top leadership of universities is limited. This could have consequences for the research and overall mission of universities.

  12. At the service of cutting-edge research

    CERN Multimedia

    ISS Magazine

    2012-01-01

    Many external companies work for CERN, including ISS, a market leader in the area of service provision. In an article, republished in full below, due to appear in the next edition of the ISS Magazine, the company puts CERN in the spotlight. Take a moment to discover how an external company sees CERN.   CERN is a world-renowned research facility. ISS, with its 100-strong workforce ensures that the scientists can concentrate 100% on science. Since 1954, scientists from all corners of the globe have been seeking out the origins of the Universe at CERN, the European Laboratory for Particle Physics. CERN has been responsible for ground-breaking discoveries and inventions, such as the Worldwide Web in 1989. The task entrusted to ISS by CERN is as unusual as the laboratory is extraordinary. What started as a simple window-cleaning contract in 1967 has now evolved into a complex logistics operation. Keeping storage costs low For the past 25 years, ISS have been organising CERN's stores management...

  13. Development of Teachers as Scientists in Research Experiences for Teachers Programs

    Science.gov (United States)

    Faber, Courtney; Hardin, Emily; Klein-Gardner, Stacy; Benson, Lisa

    2014-11-01

    This study examined the teachers' development as scientists for participants in three National Science Foundation Research Experiences for Teachers. Participants included secondary science and math teachers with varying levels of education and experience who were immersed in research environments related to engineering and science topics. Teachers' functionality as scientists was assessed in terms of independence, focus, relationships with mentors, structure, and ability to create new concepts. Hierarchies developed within these constructs allowed tracking of changes in functionality throughout the 6-week programs. Themes were further identified in teachers' weekly journal entries and exit interviews through inductive coding. Increases in functionality as scientists were observed for all teachers who completed both the program and exit interview ( n = 27). Seven of the 27 teachers reached high science functionality; however, three of the teachers did not reach high functionality in any of the constructs during the program. No differences were observed in demographics or teaching experience between those who did and did not reach high functionality levels. Inductive coding revealed themes such as teachers' interactions with mentors and connections made between research and teaching, which allowed for descriptions of experiences for teachers at high and low levels of functionality. Teachers at high functionality levels adjusted to open-ended environments, transitioned from a guided experience to freedom, felt useful in the laboratory, and were self-motivated. In contrast, teachers at low functionality levels did not have a true research project, primarily focused on teaching aspects of the program, and did not display a transition of responsibilities.

  14. More appropriate information systems and services for the social scientist: time to put our findings to work

    OpenAIRE

    Hunsucker, R.L.

    2007-01-01

    A review of: Line, Maurice B. "The Information Uses and Needs of Social Scientists: An Overview of INFROSS." Aslib Proceedings 23.8 (1971): 412-34. Rpt. in Lines of Thought: Selected Papers. Ed. L.J. Anthony. London: Bingley, 1988. 45-66. Objective - The study reported in this article was conceived in order to answer a question of very large scope: What are the information systems and services requirements of social scientists? Inherent in this question was the correlative question: How do so...

  15. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  16. How do scientists perceive the current publication culture? A qualitative focus group interview study among Dutch biomedical researchers.

    Science.gov (United States)

    Tijdink, J K; Schipper, K; Bouter, L M; Maclaine Pont, P; de Jonge, J; Smulders, Y M

    2016-02-17

    To investigate the biomedical scientist's perception of the prevailing publication culture. Qualitative focus group interview study. Four university medical centres in the Netherlands. Three randomly selected groups of biomedical scientists (PhD, postdoctoral staff members and full professors). Main themes for discussion were selected by participants. Frequently perceived detrimental effects of contemporary publication culture were the strong focus on citation measures (like the Journal Impact Factor and the H-index), gift and ghost authorships and the order of authors, the peer review process, competition, the funding system and publication bias. These themes were generally associated with detrimental and undesirable effects on publication practices and on the validity of reported results. Furthermore, senior scientists tended to display a more cynical perception of the publication culture than their junior colleagues. However, even among the PhD students and the postdoctoral fellows, the sentiment was quite negative. Positive perceptions of specific features of contemporary scientific and publication culture were rare. Our findings suggest that the current publication culture leads to negative sentiments, counterproductive stress levels and, most importantly, to questionable research practices among junior and senior biomedical scientists. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    Science.gov (United States)

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  18. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  19. Connecting long-tail scientists with big data centers using SaaS

    Science.gov (United States)

    Percivall, G. S.; Bermudez, L. E.

    2012-12-01

    Big data centers and long tail scientists represent two extremes in the geoscience research community. Interoperability and inter-use based on software-as-a-service (SaaS) increases access to big data holdings by this underserved community of scientists. Large, institutional data centers have long been recognized as vital resources in the geoscience community. Permanent data archiving and dissemination centers provide "access to the data and (are) a critical source of people who have experience in the use of the data and can provide advice and counsel for new applications." [NRC] The "long-tail of science" is the geoscience researchers that work separate from institutional data centers [Heidorn]. Long-tail scientists need to be efficient consumers of data from large, institutional data centers. Discussions in NSF EarthCube capture the challenges: "Like the vast majority of NSF-funded researchers, Alice (a long-tail scientist) works with limited resources. In the absence of suitable expertise and infrastructure, the apparently simple task that she assigns to her graduate student becomes an information discovery and management nightmare. Downloading and transforming datasets takes weeks." [Foster, et.al.] The long-tail metaphor points to methods to bridge the gap, i.e., the Web. A decade ago, OGC began building a geospatial information space using open, web standards for geoprocessing [ORM]. Recently, [Foster, et.al.] accurately observed that "by adopting, adapting, and applying semantic web and SaaS technologies, we can make the use of geoscience data as easy and convenient as consumption of online media." SaaS places web services into Cloud Computing. SaaS for geospatial is emerging rapidly building on the first-generation geospatial web, e.g., OGC Web Coverage Service [WCS] and the Data Access Protocol [DAP]. Several recent examples show progress in applying SaaS to geosciences: - NASA's Earth Data Coherent Web has a goal to improve science user experience using

  20. PROBLEM OF TRAINING LIBRARIANS AND SCIENTISTS TO WORK WITH DIGITAL LIBRARIES

    OpenAIRE

    Svitlana M. Ivanova; Oleksandr V. Novytskyi

    2011-01-01

    The article deals with the problem of librarians and scientists training for working with digital libraries based on the software Eprints. It is proposed the "Teaching experimental program for librarians and researchers training for working with the electronic library" which will help to librarians and scientists to acquire skills for working with digital libraries based on the software tool EPrints, teach methods of modernization of information and library services on the basis of technologi...

  1. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  2. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  3. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  4. The U.S. Minerals Management Service - oil spill response research program

    International Nuclear Information System (INIS)

    Mullin, J.V.

    1998-01-01

    The Minerals Management Service (MMS), is the principal U.S. Government agency funding offshore oil spill response research. The MMS, a bureau of the Department of the lnterior, maintains a comprehensive Oil Spill Response Research program in support of oil spill prevention and response. Through funding provided by MMS, scientists and engineers from the public and private sectors worldwide are working to address outstanding gaps in information and technology concerning the cleanup of oil spills. A large portion of the program is executed through cooperation with major research centers to leverage funds and maximize sharing of research results. This paper outlines the program, its goals, results from recently funded projects and future research directions. (author)

  5. Astroserver – Research Services in the Stellar Webshop

    Directory of Open Access Journals (Sweden)

    Németh Péter

    2017-12-01

    Full Text Available A quick look at research and development in astronomy shows that we live in exciting times. Exoplanetary systems, supernovae, and merging binary black holes were far out of reach for observers two decades ago and now such phenomena are recorded routinely. This quick development would not have been possible without the ability for researchers to be connected, to think globally and to be mobile. Classical short-term positions are not always suitable to support these conditions and freelancing may be a viable alternative.We introduce the Astroserver framework, which is a new freelancing platform for scientists, and demonstrate through examples how it contributed to some recent projects related to hot subdwarf stars and binaries. These contributions, which included spectroscopic data mining, computing services and observing services, as well as artwork, allowed a deeper look into the investigated systems. The work on composite spectra binaries provided new details for the hypervelocity wide subdwarf binary PB 3877 and found diverse and rare systems with sub-giant companions in high-resolution spectroscopic surveys. The models for the peculiar abundance pattern of the evolved compact star LP 40-365 showed it to be a bound hypervelocity remnant of a supernova Iax event. Some of these works also included data visualizations to help presenting the new results. Such services may be of interest for many researchers.

  6. Learning with Teachers; A Scientist's Perspective

    Science.gov (United States)

    Czajkowski, K. P.

    2004-12-01

    Over the past six years, as an Assistant Professor and now as an Associate Professor, I have engaged in educational outreach activities with K-12 teachers and their students. In this presentation I will talk about the successes and failures that I have had as a scientist engaged in K-12 educational outreach, including teaching the Earth System Science Education Alliance (ESSEA) distance learning course, teaching inquiry-based science to pre-service teachers through the NASA Opportunities for Visionary Academics (NOVA) program, GLOBE, school visits, and research projects with teachers and students. I will reflect on the potential impact this has had on my career, negative and positive. I will present ways that I have been able to engage in educational outreach while remaining a productive scientist, publishing research papers, etc. Obtaining grant funding to support a team of educational experts to assist me perform outreach has been critical to my groups success. However, reporting for small educational grants from state agencies can often be overwhelming. The bottom line is that I find working with teachers and students rewarding and believe that it is a critical part of me being a scientist. Through the process of working with teachers I have learned pedagogy that has helped me be a better teacher in the university classroom.

  7. Continuous professional training of medical laboratory scientists in ...

    African Journals Online (AJOL)

    Background. Training and re-training of healthcare workers is pivotal to improved service delivery. Objective. To determine the proportion of practising medical laboratory scientists with in-service training in Benin City, Nigeria and areas covered by these programmes. Methods. Medical laboratory scientists from Benin City ...

  8. Communication among scientists, decision makers and society: Developing policy-relevant global climate change research

    International Nuclear Information System (INIS)

    Bernabo, J.C.

    1995-01-01

    Defining the research most relevant to policy is not simply a technical task that can be answered by scientists. Decision makers need and value information differently than curiosity-driven scientists. In order to link science more effectively to policy, the two communities must gain a greater mutual understanding. Decision makers must define their needs so that scientists can determine how, and by when, research can address these needs. This vital dialogue between communities typically has been more ad hoc than systematic. The complexity and urgency of the global climate change issue necessitate ongoing communication between scientists and decision makers on the information needed for policy development and what research can provide The results of relevant science policy dialogues are discussed herein. Effective communication between researchers and decision makers is a crucial ingredient for successfully addressing society's pressing environmental concerns. The increase in policy makers' demands for research that is relevant to solving societal issues highlights the communication gap between the technical and policy communities. The gap, largely caused by lack of mutual understanding, results in flawed and inadequate communication that hinders decision making and confuses the public. This paper examines the cause of this communication gap and describes the significance of recent efforts to develop more fruitful science-policy dialogues on the issue of global climate change. First, the post-Cold War shift in government priorities for research funding is described; then the underlying relationship between science and policy is explored to identify key sources of ongoing mis-communication. The paper then explains the importance of defining policy-relevant science questions that research can address. Finally, three projects are described involving the elicitation of decision makers' information needs in The United States, The Netherlands, and internationally

  9. Tribute to a frontline scientist in marine pollution research

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A

    frontline scientist in marine pollution research Anupam Sarkar Accepted: 1 February 2006 / Published online: 4 May 2006 C211 Springer Science+Business Media, LLC 2006 Dr. Simao Nascimento de Sousa This special issue of Ecotoxicology is dedicated to a... stream_size 2562 stream_content_type text/plain stream_name Ecotoxicology_15_329.pdf.txt stream_source_info Ecotoxicology_15_329.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8 Tribute to a...

  10. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  11. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  12. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  13. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  14. Elementary School Children Contribute to Environmental Research as Citizen Scientists

    OpenAIRE

    Miczajka, Victoria L.; Klein, Alexandra-Maria; Pufal, Gesine

    2015-01-01

    Research benefits increasingly from valuable contributions by citizen scientists. Mostly, participating adults investigate specific species, ecosystems or phenology to address conservation issues, but ecosystem functions supporting ecosystem health are rarely addressed and other demographic groups rarely involved. As part of a project investigating seed predation and dispersal as ecosystem functions along an urban-rural gradient, we tested whether elementary school children can contribute to ...

  15. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    CERN Document Server

    Boukhanovsky, Alexander V; Krzhizhanovskaya, Valeria V; Athanassoulis, Gerassimos A; Klimentov, Alexei A; Sloot, Peter M A

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The first YSC event was organized in 2012 by the University of Amsterdam, the Netherlands and ITMO University, Russia with the goal of opening a dialogue on the present and the future of computational science and its applications. We believe that the YSC conferences will strengthen the ties between young scientists in different countries, thus promoting future collaboration. In this paper we briefly introduce the challenges the millennial generation is facing; describe the YSC conference history and topics; and list the keynote speakers and program committee members. This volume of Procedia Computer Science presents selected papers from the 4th International Young Scientists Conference on Computational Science held on 25 ...

  16. Crocodile years: the traditional image of science and physical scientists' participation in weapons research

    Energy Technology Data Exchange (ETDEWEB)

    Crews, R.J.

    1985-01-01

    This thesis examines one dimension of the relationship between science and the arms race. More specifically, it develops and empirically examines a theoretical model of the relationship between the social demand for defense-related and weapons research, traditional scientific values related to the worldview of classical physics, and differential participation by physical scientists in such research. The theoretical model suggests that an antiquated traditional image of science exists, and that it may explain, in part, participation by physical scientists in defense-related or weapons research. Two major hypotheses are suggested by the model: first, that a constellation of values representing a traditional image of science obtains today among young physical scientists; and second, that those who currently engage (or are willing to engage) in defense-related or weapons research are more likely to agree with the values implicit in the traditional image of science than those who do not (or would not) engage in such research. The theoretical model is located within the sociologies of knowledge and science. This study includes chapters that provide an overview of the literature of these subdisciplines. This investigation concludes with an empirical examination of the model and hypotheses.

  17. National Database for Autism Research (NDAR): Big Data Opportunities for Health Services Research and Health Technology Assessment.

    Science.gov (United States)

    Payakachat, Nalin; Tilford, J Mick; Ungar, Wendy J

    2016-02-01

    The National Database for Autism Research (NDAR) is a US National Institutes of Health (NIH)-funded research data repository created by integrating heterogeneous datasets through data sharing agreements between autism researchers and the NIH. To date, NDAR is considered the largest neuroscience and genomic data repository for autism research. In addition to biomedical data, NDAR contains a large collection of clinical and behavioral assessments and health outcomes from novel interventions. Importantly, NDAR has a global unique patient identifier that can be linked to aggregated individual-level data for hypothesis generation and testing, and for replicating research findings. As such, NDAR promotes collaboration and maximizes public investment in the original data collection. As screening and diagnostic technologies as well as interventions for children with autism are expensive, health services research (HSR) and health technology assessment (HTA) are needed to generate more evidence to facilitate implementation when warranted. This article describes NDAR and explains its value to health services researchers and decision scientists interested in autism and other mental health conditions. We provide a description of the scope and structure of NDAR and illustrate how data are likely to grow over time and become available for HSR and HTA.

  18. Young Researchers Advancing Computational Science: Perspectives of the Young Scientists Conference 2015

    NARCIS (Netherlands)

    Boukhanovsky, A.V.; Ilyin, V.A; Krzhizhanovskaya, V.V.; Athanassoulis, G.A.; Klimentov, A.A.; Sloot, P.M.A.

    2015-01-01

    We present an annual international Young Scientists Conference (YSC) on computational science http://ysc.escience.ifmo.ru/, which brings together renowned experts and young researchers working in high-performance computing, data-driven modeling, and simulation of large-scale complex systems. The

  19. Earth2Class Overview: An Innovative Program Linking Classroom Educators and Research Scientists

    Science.gov (United States)

    Passow, M.; Iturrino, G. J.; Baggio, F. D.; Assumpcao, C. M.

    2005-12-01

    The Earth2Class (E2C) workshops, held at the Lamont-Doherty Earth Observatory (LDEO), provide an effective model for improving knowledge, teaching, and technology skills of middle and high school science educators through ongoing interactions with research scientists and educational technology. With support from an NSF GeoEd grant, E2C has developed monthly workshops, web-based resources, and summer institutes in which classroom teachers and research scientists have produced exemplar curriculum materials about a wide variety of cutting-edge geoscience investigations suitable for dissemination to teachers and students. Some of the goals of this program are focused to address questions such as: (1) What aspects of the E2C format and educational technology most effectively connect research discoveries with classroom teachers and their students? (2) What benefits result through interactions among teachers from highly diverse districts and backgrounds with research scientists, and what benefits do the scientists gain from participation? (3) How can the E2C format serve as a model for other research institution-school district partnerships as a mechanism for broader dissemination of scientific discoveries? E2C workshops have linked LDEO scientists from diverse research specialties-seismology, marine geology, paleoclimatology, ocean drilling, dendrochronology, remote sensing, impact craters, and others-with teachers from schools in the New York metropolitan area. Through the workshops, we have trained teachers to enhance content knowledge in the Earth Sciences and develop skills to incorporate new technologies. We have made a special effort to increase the teaching competency of K-12 Earth Sciences educators serving in schools with high numbers of students from underrepresented groups, thereby providing greater role models to attract students into science and math careers. E2C sponsored Earth Science Teachers Conferences, bringing together educators from New York and New

  20. Literature search strategies for interdisciplinary research a sourcebook for scientists and engineers

    CERN Document Server

    Ackerson, Linda G

    2006-01-01

    The amount of published literature can be overwhelming for scientists and researchers moving from a broad disciplinary research area to a more specialized one, particularly in fields that use information from more than one discipline. Without a focused inquiry, the researcher may find too little information or may be overcome by too much. Striking the correct balance of information is the focus of Literature Search Strategies for Interdisciplinary Research. This useful reference tool studies diverse interdisciplinary areas revealing the general and individual qualities that dictate the strateg

  1. Young Engineers and Scientists (YES) 2010 - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2010-12-01

    During the past 18 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 239 students have completed YES or are currently enrolled. Of these students, 38% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 21 students and 9 secondary school teachers enrolled in the YES 2010/2011 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was ESA's Rosetta Mission) and high school STEM teachers develop space-related lessons for classroom presentation. Teachers participate in an in-service workshop to share their developed classroom materials and spread awareness of space-related research. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real

  2. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  3. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. How Work Positions Affect the Research Activity and Information Behaviour of Laboratory Scientists in the Research Lifecycle: Applying Activity Theory

    Science.gov (United States)

    Kwon, Nahyun

    2017-01-01

    Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…

  5. CosmoQuest - Scientist Engagement with the Public and Schools via a Virtual Research Facility

    Science.gov (United States)

    Noel-Storr, Jacob; Buxner, Sanlyn; Gay, Pamela L.; Grier, Jennifer A.; Lehan, Cory; CosmoQuest Team

    2016-06-01

    CosmoQuest is a virtual research facility where science data can be analyzed by teams of interested citizen scientists from across the world. Scientists can apply to have their data analyzed through crowdsourcing in our online observatory, which generates validated and publishable results (Robbins et al 2014). Scientists have the opportunity to provide connections to teachers in classrooms so that students can analyze original data and understand the process that astronomers go through from image to result. Scientists can also teach online classes for different audiences including formal classroom teachers, informal educators, and lifelong learners to further the broader impacts of their work and increase engagement in their scientific endeavors. We provide training, through online and in-person workshops, on how to incorporate your datasets into the observatory and how to deliver online classes through our CosmoAcademy. This work is funded in part by NASA Cooperative Agreement Notice number NNX16AC68A. For more information, visit http://cosmoquest.org/.

  6. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  7. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  8. A gender gap in the next generation of physician-scientists: medical student interest and participation in research.

    Science.gov (United States)

    Guelich, Jill M; Singer, Burton H; Castro, Marcia C; Rosenberg, Leon E

    2002-11-01

    For 2 decades, the number of physician-scientists has not kept pace with the overall growth of the medical research community. Concomitantly, the number of women entering medical schools has increased markedly. We have explored the effect of the changing gender composition of medical schools on the present and future pipeline of young physician-scientists. We analyzed data obtained from the Association of American Medical Colleges, the National Institutes of Health, and the Howard Hughes Medical Institute pertaining to the expressed research intentions or research participation of male and female medical students in the United States. A statistically significant decline in the percentage of matriculating and graduating medical students--both men and women-who expressed strong research career intentions occurred during the decade between 1987 and 1997. Moreover, matriculating and graduating women were significantly less likely than men to indicate strong research career intentions. Each of these trends has been observed for medical schools overall and for research-intensive ones. Cohort data obtained by tracking individuals from matriculation to graduation revealed that women who expressed strong research career intentions upon matriculation were more likely than men to decrease their research career intentions during medical school. Medical student participation in research supported the gender gap identified by assessing research intentions. Female medical student participation in the Medical Scientist Training Program and the Howard Hughes Medical Institute/National Institutes of Health-sponsored Cloisters Program has increased but lags far behind the growth in the female population in medical schools. Three worrisome trends in the research career intentions and participation of the nation's medical students (a decade-long decline for both men and women, a large and persistent gender gap, and a negative effect of the medical school experience for women) presage a

  9. Message from the ISCB: 2015 ISCB Accomplishment by a Senior Scientist Award: Cyrus Chothia.

    Science.gov (United States)

    Fogg, Christiana N; Kovats, Diane E

    2015-07-01

    The International Society for Computational Biology (ISCB; http://www.iscb.org) honors a senior scientist annually for his or her outstanding achievements with the ISCB Accomplishment by a Senior Scientist Award. This award recognizes a leader in the field of computational biology for his or her significant contributions to the community through research, service and education. Cyrus Chothia, an emeritus scientist at the Medical Research Council Laboratory of Molecular Biology and emeritus fellow of Wolfson College at Cambridge University, England, is the 2015 ISCB Accomplishment by a Senior Scientist Award winner.Chothia was selected by the Awards Committee, which is chaired by Dr Bonnie Berger of the Massachusetts Institute of Technology. He will receive his award and deliver a keynote presentation at 2015 Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Dublin, Ireland, in July 2015. dkovats@iscb.org. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. [Qualitative research in health services research - discussion paper, Part 2: Qualitative research in health services research in Germany - an overview].

    Science.gov (United States)

    Karbach, U; Stamer, M; Holmberg, C; Güthlin, C; Patzelt, C; Meyer, T

    2012-08-01

    This is the second part of a 3-part discussion paper by the working group on "Qualitative Methods" in the German network of health services research (DNVF) that shall contribute to the development of a memorandum concerning qualitative health services research. It aims to depict the different types of qualitative research that are conducted in health services research in Germany. In addition, the authors present a specific set of qualitative data collection and analysis tools to demonstrate the potential of qualitative research for health services research. QUALITATIVE RESEARCH IN HEALTH SERVICES RESEARCH - AN OVERVIEW: To give an overview of the types of qualitative research conducted in German health services research, the abstracts of the 8th German Conference on Health Services Research were filtered to identify qualitative or mixed-methods studies. These were then analysed by looking at the context which was studied, who was studied, the aims of the studies, and what type of methods were used. Those methods that were mentioned most often for data collection and analysis are described in detail. QUALITATIVE RESEARCH AT THE CONFERENCE FOR HEALTH SERVICES RESEARCH 2009: Approximately a fifth of all abstracts (n=74) had a qualitative (n=47) or a mixed-methods approach combining quantitative and qualitative methods (n=27). Research aims included needs assessment (41%), survey development (36%), evaluation (22%), and theorizing (1%). Data collection mostly consisted of one-on-one interviews (n=45) and group discussions (n=29). Qualitative content analysis was named in 35 abstracts, 30 abstracts did not reference their method of analysis. In addition to a quantitative summary of the abstract findings, the diversity of fields addressed by qualitative methods is highlighted. Although drawing conclusions on the use of qualitative methods in German health services research from the analysis of conference abstracts is not possible, the overview we present demonstrates the

  11. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  12. Facebook for scientists: requirements and services for optimizing how scientific collaborations are established.

    Science.gov (United States)

    Schleyer, Titus; Spallek, Heiko; Butler, Brian S; Subramanian, Sushmita; Weiss, Daniel; Poythress, M Louisa; Rattanathikun, Phijarana; Mueller, Gregory

    2008-08-13

    fine-grained control over access to information by different audiences (information quality and access); (5) keeping online profiles up-to-date should require little or no effort and be integrated into the scientist's existing workflow (motivation). Based on the requirements, 16 design ideas underwent formal validation with end users. Of those, three were chosen to be implemented and evaluated in a system prototype, "Digital|Vita": maintaining, formatting, and semi-automated updating of biographical information; searching for experts; and building and maintaining the social network and managing document flow. In addition to quantitative and factual information about potential collaborators, social connectedness, personal and professional compatibility, and power differentials also influence whether collaborations are formed. Current systems only partially model these requirements. Services in Digital|Vita combine an existing workflow, maintaining and formatting biographical information, with collaboration-searching functions in a novel way. Several barriers to the adoption of systems such as Digital|Vita exist, such as potential adoption asymmetries between junior and senior researchers and the tension between public and private information. Developers and researchers may consider one or more of the services described in this paper for implementation in their own expertise locating systems.

  13. STRATEGIES OF COPING WITH DIFFICULTIES DURING RESEARCH PERFORMED BY YOUNG SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Tatiana G. Bokhan

    2017-03-01

    Full Text Available Introduction: young scientists engaged in creative activities face difficulties during scientific research, implementation and commercialisation of the results. The impossibility of coping with obstacles leads to the impairment of motivational and creative activity. The problem of studying the main semantic contents of difficult situations and strategies to cope with them becomes relevant as it is conducive to the process of personal development of young scientists. Materials and Methods: the authors used a questionnaire with open-ended questions for revealing the main difficulties and coping strategies in the process of research activity; COPE questionnaire adapted by E. Rasskazova, T. Gordeyeva, E. Osin; Style of Self-Regulation of Behaviour technique by V. I. Morosanova. Statistical data processing was carried out with descriptive statistics methods, analysis of frequencies, factor analysis (Varimax rotation with Kaiser normalisation, cluster analysis (furthest neighbour method and Ward’s method. Results: eight main semantic categories related to difficulties experienced in the process of performing the research work have been detected. The main ways of coping with arising difficulties have been identified. Types of respondents different in terms of coping strategies and regulatory-behavioural characteristics have been distinguished. Discussion and Conclusions: difficulties of self-organisation in time for realisation of new meanings, difficulties in structuring the research work and search for information act as psychological barriers provoking mental stress. The most efficient coping strategies in respondents are strategies Active coping and search for positive meaning and personal development. The inefficient coping strategy with difficulties complicating the process of self-development is Avoiding problems strategies.

  14. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The human fallibility of scientists : Dealing with error and bias in academic research

    NARCIS (Netherlands)

    Veldkamp, Coosje

    2017-01-01

    THE HUMAN FALLIBILITY OF SCIENTISTS Dealing with error and bias in academic research Recent studies have highlighted that not all published findings in the scientific lit¬erature are trustworthy, suggesting that currently implemented control mechanisms such as high standards for the reporting of

  16. An investment in AGU—A comment from a federal scientist

    Science.gov (United States)

    Ostenso, Ned A.

    In our country, progress in the geophysical sciences has been closely interwoven with progress of the many geophysical activities within the federal government. Substantial numbers of geophysicists traditionally have found their life's work in the ranks of the federal service, where they pursue scientific advancement in their field of work, in laboratory research, and in the management of geophysical science programs.To this large body of scientists the American Geophysical Union has always been a helpful and needed scientific organization. Access to high-quality journals is undoubtedly 1985 the most useful and cherished AGU benefit provided to the federal employees. Next in importance may be the many, many benefits that come by participation in the AGU scientific meetings. This is followed by opportunities afforded federal scientists to serve in policy and administrative roles on the committees and council of the Union. These AGU benefits, and many more not enumerated here, can bring an abundance of national recognition, intellectual maturity, and self-esteem to federal scientists, thus encouraging us to become better scientists and more proficient employees.

  17. Rocky Mountain Research Station Part 2 [U.S. Forest Service scientists continue work with the Lincoln National Forest

    Science.gov (United States)

    Todd A. Rawlinson

    2010-01-01

    The Rocky Mountain Research Station (RMRS) is studying the effects of fuels reduction treatments on Mexican Spotted Owls and their prey in the Sacramento Mountains of New Mexico. One challenge facing Forest Service managers is that much of the landscape is dominated by overstocked stands resulting from years of fire suppression.

  18. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  19. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  20. Technical Service Agreement (TSA) | FNLCR Staging

    Science.gov (United States)

    Frederick National Lab for Cancer Research (FNLCR)scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than200 collaborations with more than 80 partners such as t

  1. Towards a next generation of climate services scientists : The EUPORIAS Masterclass experience

    Science.gov (United States)

    Dell'Aquila, Alessandro; Buontempo, Carlo; Liggins, Felicity; Soares, Marta Bruno; De Felice, Matteo

    2017-04-01

    Climate service development require a new framework for the interaction between users and provider of climate information subverting the standard top down approach from academia to application. In the framework of EUPORIAS project two summer schools have been organized with the ambition to be a first step in the direction of co-production where new prototypes could be developed but, more importantly , where new protocol for interactions could be explain and presented in a hands-on fashion In this perspective, in May 2015 and May 2016 two climate service masterclass of EUPORIAS took place at EURAC's headquarters in Bolzano, Italy. The schools , aimed at professional and early career climate scientists, hosted students from 15 different countries. This first masterclass of the project focused on three key sectors: agriculture, tourism and energy, while the second one focused on health, water and food security. Alongside lectures delivered by speakers on disciplines as diverse as climate modelling, data visualisation and psychology from across Europe, Africa and Australia, the students were tasked with creating prototype climate services, in answer to real-life end-user requirements. The teams worked on case-studies from real end-users who were also at the school. It was tough going for some of the groups but we feel there is nothing more instructive than real end-user interactions to fully understand the complexity of climate service development. The quality of the students and by the insightful questions they asked has been really impressive. Whilst some mirrored discussions already active within the climate service community others were novel and revealed an interesting junior perspective to the field. Such a hands-on a formula worked well and suggests some possible new methodologies potentially transportable to other similar events.

  2. Lessons and Perspectives on Balancing Research and Diversity-Oriented Service

    Science.gov (United States)

    Emanuel, R. E.

    2012-12-01

    Diversity among scientists is necessary to bring together the range of personal and professional perspectives required to address many grand challenges of research in the earth and environmental sciences. Despite gains in recent decades, African Americans and American Indians remain severely under-represented at the graduate level in the environmental sciences, posing an impediment to ethnic diversity in the ranks of professional scientists. For example, the US National Science Foundation reported that in one recent year African Americans received 1,041 (3%) and American Indians received 120 (0.4%) of the 33,284 science and engineering doctoral degrees granted in the US. These fractions are smaller than African American and American Indian representation among bachelor's degree recipients, and they are smaller than representation in the general US population. Lessons from multiple disciplines (chemistry, medicine and geoscience) suggest that group learning, longitudinal mentoring and networking opportunities are critical elements in the retention of under-represented minority students and their conversion to professionals in scientific fields. With this in mind, I have worked to incorporate these elements into my own research program, which moved recently from a predominantly undergraduate institution to a research extensive university. I discuss the outcomes, successes and challenges of a recent project engaging 14 students and 5 faculty mentors from 6 institutions, including 2 HBCUs, in a yearlong study of secondary ecosystem succession in North Carolina. I frame this discussion in the general context of my own experience, as an American Indian academic, balancing diversity-related service and more traditionally recognized forms of scholarship (i.e. teaching and research) at both predominantly undergraduate and research extensive universities.

  3. Invertebrates, ecosystem services and climate change.

    Science.gov (United States)

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  4. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    Science.gov (United States)

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  5. Research project management 101: insiders' tips from Early Career Scientists

    Science.gov (United States)

    Cristini, Luisa; Pabortsava, Katsiaryna; Stichel, Torben

    2016-04-01

    From the very beginning of their career, it is important for Early Career Scientists (ECS) to develop project management skills to be able to organise their research efficiently. ECS are often in charge of specific tasks within their projects or for their teams. However, without specific training or tools, the successful completion of these assignments will depend entirely on the organisational skills of individual researchers. ECS are thus facing "sink-or-swim" situations, which can be either instructive or disastrous for their projects. Here we provide experience-based tips from fellow ECS that can help manage various project activities, including: 1. Communication with supervisors and peers 2. Lab management 3. Field trips (e.g., oceanographic campaigns) 4. Internships and collaborations with other institutions 5. Literature/background research 6. Conference convening These are potential "life buoys" for ECS, which will help them to carry out these tasks efficiently and successfully.

  6. Outcomes from the NIH Clinical Research Training Program: A Mentored Research Experience to Enhance Career Development of Clinician–Scientists

    Science.gov (United States)

    Ognibene, Frederick P.; Gallin, John I.; Baum, Bruce J.; Wyatt, Richard G.; Gottesman, Michael M.

    2017-01-01

    Purpose Clinician-scientists are considered an endangered species for many reasons, including challenges with establishing and maintaining a career pipeline. Career outcomes from year-long medical and dental students’ research enrichment programs have not been well determined. Therefore, the authors assessed career and research outcome data from a cohort of participants in the National Institutes of Health (NIH) Clinical Research Training Program (CRTP). Method The CRTP provided a year-long mentored clinical or translational research opportunity for 340 medical and dental students. Of these, 135 completed their training, including fellowships, from 1997 to January 2014. Data for 130 of 135 were analyzed, including time conducting research, types of public funding (NIH grants), and publications from self-reported surveys that were verified via NIH RePORT and PUBMED. Results Nearly two-thirds (84 of 130) indicated that they were conducting research, and over half of the 84 (approximately one-third of the total cohort) spent more than 25% of time devoted to research. Of those 84, over 25% received grant support from the NIH, and those further in their careers published more scholarly manuscripts. Conclusions Data suggest that the CRTP helped foster the careers of research-oriented medical and dental students as measured by time conducting research, successful competition for federal funding, and the publication of their research. Longer follow-up is warranted to assess the impact of these mentored research experiences. Investments in mentored research programs for health professional students are invaluable to support the dwindling pipeline of biomedical researchers and clinician-scientists. PMID:27224296

  7. IT Tools for Teachers and Scientists, Created by Undergraduate Researchers

    Science.gov (United States)

    Millar, A. Z.; Perry, S.

    2007-12-01

    Interns in the Southern California Earthquake Center/Undergraduate Studies in Earthquake Information Technology (SCEC/UseIT) program conduct computer science research for the benefit of earthquake scientists and have created products in growing use within the SCEC education and research communities. SCEC/UseIT comprises some twenty undergraduates who combine their varied talents and academic backgrounds to achieve a Grand Challenge that is formulated around needs of SCEC scientists and educators and that reflects the value SCEC places on the integration of computer science and the geosciences. In meeting the challenge, students learn to work on multidisciplinary teams and to tackle complex problems with no guaranteed solutions. Meantime, their efforts bring fresh perspectives and insight to the professionals with whom they collaborate, and consistently produces innovative, useful tools for research and education. The 2007 Grand Challenge was to design and prototype serious games to communicate important earthquake science concepts. Interns broke themselves into four game teams, the Educational Game, the Training Game, the Mitigation Game and the Decision-Making Game, and created four diverse games with topics from elementary plate tectonics to earthquake risk mitigation, with intended players ranging from elementary students to city planners. The games were designed to be versatile, to accommodate variation in the knowledge base of the player; and extensible, to accommodate future additions. The games are played on a web browser or from within SCEC-VDO (Virtual Display of Objects). SCEC-VDO, also engineered by UseIT interns, is a 4D, interactive, visualization software that enables integration and exploration of datasets and models such as faults, earthquake hypocenters and ruptures, digital elevation models, satellite imagery, global isochrons, and earthquake prediction schemes. SCEC-VDO enables the user to create animated movies during a session, and is now part

  8. Research in adaptive management: working relations and the research process.

    Science.gov (United States)

    Amanda C. Graham; Linda E. Kruger

    2002-01-01

    This report analyzes how a small group of Forest Service scientists participating in efforts to implement adaptive management approach working relations, and how they understand and apply the research process. Nine scientists completed a questionnaire to assess their preferred mode of thinking (the Herrmann Brain Dominance Instrument), engaged in a facilitated...

  9. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  10. Agricultural Research Service

    Science.gov (United States)

    ... Menu United States Department of Agriculture Agricultural Research Service Research Research Home National Programs Research Projects Scientific Manuscripts International Programs Scientific Software/Models Databases and Datasets Office of Scientific Quality ...

  11. Learning, teaching and researching on the internet a practical guide for social scientists

    CERN Document Server

    Stein, S D

    2014-01-01

    Learning, Teaching and Researching on the Internet: A Practical Guide for Social Scientists is directed at students and academic staff who want to be able to access Internet resources quickly and efficiently without needing to become IT experts. The emphasis throughout is on the harnessing of the large volume of potentially useful Internet resources to everyday requirements, whether these be focused on learning, teaching or research. The Internet is a significantly rich information, communication and research resource for all those involved in higher education, whether they be students, academ

  12. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  13. Quantifying the Burden of Writing Research Articles in a Second Language: Data from Mexican Scientists

    Science.gov (United States)

    Hanauer, David I.; Englander, Karen

    2011-01-01

    This article provides quantitative data to establish the relative, perceived burden of writing research articles in English as a second language. Previous qualitative research has shown that scientists writing English in a second language face difficulties but has not established parameters for the degree of this difficulty. A total of 141…

  14. Supporting the scientific lifecycle through cloud services

    Science.gov (United States)

    Gensch, S.; Klump, J. F.; Bertelmann, R.; Braune, C.

    2014-12-01

    Cloud computing has made resources and applications available for numerous use cases ranging from business processes in the private sector to scientific applications. Developers have created tools for data management, collaborative writing, social networking, data access and visualization, project management and many more; either for free or as paid premium services with additional or extended features. Scientists have begun to incorporate tools that fit their needs into their daily work. To satisfy specialized needs, some cloud applications specifically address the needs of scientists for sharing research data, literature search, laboratory documentation, or data visualization. Cloud services may vary in extent, user coverage, and inter-service integration and are also at risk of being abandonend or changed by the service providers making changes to their business model, or leaving the field entirely.Within the project Academic Enterprise Cloud we examine cloud based services that support the research lifecycle, using feature models to describe key properties in the areas of infrastructure and service provision, compliance to legal regulations, and data curation. Emphasis is put on the term Enterprise as to establish an academic cloud service provider infrastructure that satisfies demands of the research community through continious provision across the whole cloud stack. This could enable the research community to be independent from service providers regarding changes to terms of service and ensuring full control of its extent and usage. This shift towards a self-empowered scientific cloud provider infrastructure and its community raises implications about feasability of provision and overall costs. Legal aspects and licensing issues have to be considered, when moving data into cloud services, especially when personal data is involved.Educating researchers about cloud based tools is important to help in the transition towards effective and safe use. Scientists

  15. Promoting an Inclusive Image of Scientists among Students: Towards Research Evidence-Based Practice

    Science.gov (United States)

    Cakmakci, Gultekin; Tosun, Ozge; Turgut, Sebnem; Orenler, Sefika; Sengul, Kubra; Top, Gokce

    2011-01-01

    This study aims at investigating the effects of a teaching intervention, the design of which is informed by evidence from educational theories and research data, on students' images of scientists. A quasi-experimental design with a non-equivalent pre-test-post-test control group (CG) was used to compare the outcomes of the intervention. The…

  16. Engaging Scientists with the CosmoQuest Citizen Science Virtual Research Facility

    Science.gov (United States)

    Grier, Jennifer A.; Gay, Pamela L.; Buxner, Sanlyn; Noel-Storr, Jacob; CosmoQuest Team

    2016-10-01

    NASA Science Mission Directorate missions and research return more data than subject matter experts (SMEs - scientists and engineers) can effectively utilize. Citizen scientist volunteers represent a robust pool of energy and talent that SMEs can draw upon to advance projects that require the processing of large quantities of images, and other data. The CosmoQuest Virtual Research Facility has developed roles and pathways to engage SMEs in ways that advance the education of the general public while producing science results publishable in peer-reviewed journals, including through the CosmoQuest Facility Small Grants Program and CosmoAcademy. Our Facility Small Grants Program is open to SMEs to fund them to work with CosmoQuest and engage the public in analysis. Ideal projects have a specific and well-defined need for additional eyes and minds to conduct basic analysis and data collection (such as crater counting, identifying lineaments, etc.) Projects selected will undergo design and implementation as Citizen Science Portals, and citizen scientists will be recruited and trained to complete the project. Users regularly receive feedback on the quality of their data. Data returned will be analyzed by the SME and the CQ Science Team for joint publication in a peer-reviewed journal. SMEs are also invited to consider presenting virtual learning courses in the subjects of their choice in CosmoAcademy. The audience for CosmoAcademy are lifelong-learners and education professionals. Classes are capped at 10, 15, or 20 students. CosmoAcademy can also produce video material to archive seminars long-term. SMEs function as advisors in many other areas of CosmoQuest, including the Educator's Zone (curricular materials for K-12 teachers), Science Fair Projects, and programs that partner to produce material for podcasts and planetaria. Visit the CosmoQuest website at cosmoquest.org to learn more, and to investigate current opportunities to engage with us. CosmoQuest is funded

  17. Personality Traits Are Associated with Research Misbehavior in Dutch Scientists: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Joeri K Tijdink

    Full Text Available Personality influences decision making and ethical considerations. Its influence on the occurrence of research misbehavior has never been studied. This study aims to determine the association between personality traits and self-reported questionable research practices and research misconduct. We hypothesized that narcissistic, Machiavellianistic and psychopathic traits as well as self-esteem are associated with research misbehavior.Included in this cross-sectional study design were 535 Dutch biomedical scientists (response rate 65% from all hierarchical layers of 4 university medical centers in the Netherlands. We used validated personality questionnaires such as the Dark Triad (narcissism, psychopathy, and Machiavellianism, Rosenberg's Self-Esteem Scale, the Publication Pressure Questionnaire (PPQ, and also demographic and job-specific characteristics to investigate the association of personality traits with a composite research misbehavior severity score.Machiavellianism was positively associated (beta 1.28, CI 1.06-1.53 with self-reported research misbehavior, while narcissism, psychopathy and self-esteem were not. Exploratory analysis revealed that narcissism and research misconduct were more severe among persons in higher academic ranks (i.e., professors (p<0.01 and p<0.001, respectively, and self-esteem scores and publication pressure were lower (p<0.001 and p<0.01, respectively as compared to postgraduate PhD fellows.Machiavellianism may be a risk factor for research misbehaviour. Narcissism and research misbehaviour were more prevalent among biomedical scientists in higher academic positions. These results suggest that personality has an impact on research behavior and should be taken into account in fostering responsible conduct of research.

  18. Young Engineers and Scientists (YES) 2009 - Engaging Students and Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2009-12-01

    During the past 17 years, Young Engineers and Scientists (YES) has been a community partnership between local high schools in San Antonio, Texas (USA), and Southwest Research Institute (SwRI). The goals of YES are to increase the number of high school students, especially those from underrepresented groups, seeking careers in science and engineering, to enhance their success in entering the college and major of their choice, and to promote teacher development in STEM fields. This is accomplished by allowing students and teachers to interact on a continuing basis with role models at SwRI in real-world research experiences in physical sciences (including space science), information sciences, and a variety of engineering fields. A total of 218 students have completed YES or are currently enrolled. Of these students, 37% are females and 56% are ethnic minorities, reflecting the local ethnic diversity, and 67% represent underserved groups. Presently, there are 20 students and 3 teachers enrolled in the YES 2009/2010 Program. YES consists of an intensive three-week summer workshop held at SwRI where students and teachers experience the research environment and a collegial mentorship where they complete individual research projects under the guidance of SwRI mentors during the academic year. At the end of the school year, students publicly present and display their work, spreading career awareness to other students and teachers. Teachers participate in an in-service workshop to share classroom materials and spread awareness of space-related research. YES students develop a website (yesserver.space.swri.edu) for topics in space science (this year was NASA's MMS Mission) and high school science teachers develop space-related lessons for classroom presentation. Partnerships between research institutes, local high schools, and community foundations, like the YES Program, can positively affect students’ preparation for STEM careers via real-world research experiences with

  19. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  20. A trans-disciplinary review of deep learning research for water resources scientists

    OpenAIRE

    Shen, Chaopeng

    2017-01-01

    Deep learning (DL), a new-generation artificial neural network research, has made profound strides in recent years. This review paper is intended to provide water resources scientists with a simple technical overview, trans-disciplinary progress update, and potentially inspirations about DL. Effective architectures, more accessible data, advances in regularization, and new computing power enabled the success of DL. A trans-disciplinary review reveals that DL is rapidly transforming myriad sci...

  1. Many Scientists Welcome the Reluctance of Congress to Back Large Increases for "Star Wars" Research.

    Science.gov (United States)

    Cordes, Colleen

    1987-01-01

    Ronald Reagan's Strategic Defense Initiative (SDI) program has inspired heated debate on campuses, and many scientists have pledged not to accept federal money for SDI research, for a variety of political, economic, and scientific reasons. (MSE)

  2. US and Cuban Scientists Forge Collaboration on Arbovirus Research.

    Science.gov (United States)

    Pérez-Ávila, Jorge; Guzmán-Tirado, Maria G; Fraga-Nodarse, Jorge; Handley, Gray; Meegan, James; Pelegrino-Martínez de la Cotera, Jose L; Fauci, Anthony S

    2018-04-01

    After December 17, 2014, when the US and Cuban governments announced their intent to restore relations, the two countries participated in various exchange activities in an effort to encourage cooperation in public health, health research and biomedical sciences. The conference entitled Exploring Opportunities for Arbovirus Research Collaboration, hosted at Havana's Hotel Nacional, was part of these efforts and was the first major US-Cuban scientific conference in over 50 years. Its purpose was to share information about current arbovirus research and recent findings, and to explore opportunities for future joint research. The nearly 100 participants included leading arbovirus and vector transmission experts from ten US academic institutions, NIH, CDC, FDA and the US Department of Defense. Cuban participants included researchers, clinicians and students from Cuba's Ministry of Public Health, Pedro Kourí Tropical Medicine Institute, Center for Genetic Engineering and Biotechnology, Center for State Control of Medicines and Medical Devices and other health research and regulatory organizations. Topics highlighted at the three-day meeting included surveillance, research and epidemiology; pathogenesis, immunology and virology; treatment and diagnosis; vector biology and control; vaccine development and clinical trials; and regulatory matters. Concurrent breakout discussions focused on novel vector control, nonvector transmission, community engagement, Zika in pregnancy, and workforce development. Following the conference, the Pedro Kourí Tropical Medicine Institute and the US National Institute of Allergic and Infectious Diseases have continued to explore ways to encourage and support scientists in Cuba and the USA who wish to pursue arbovirus research cooperation to advance scientific discovery to improve disease prevention and control. KEYWORDS Arboviruses, flavivirus, Zika virus, chikungunya virus, dengue virus, research, disease vectors, Cuba, USA.

  3. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  4. Modeling the Skills and Practices of Scientists through an 'All-Inclusive' Comparative Planetology Student Research Investigation

    Science.gov (United States)

    Graff, P. V.; Bandfield, J. L.; Stefanov, W. L.; Vanderbloemen, L.; Willis, K. J.; Runco, S.

    2013-12-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an 'all-inclusive' comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  5. Earth2Class: Bringing the Earth to the Classroom-Innovative Connections between Research Scientists, Teachers, and Students

    Science.gov (United States)

    Passow, M. J.

    2017-12-01

    "Earth2Class" (E2C) is a unique program offered through the Lamont-Doherty Earth Observatory of Columbia University. It connects research scientists, classroom teachers, middle and high school students, and others in ways that foster broader outreach of cutting-edge discoveries. One key component are Saturday workshops offered during the school year. These provide investigators with a tested format for sharing research methods and results. Teachers and students learn more about "real"science than what is found in textbooks. They discover that Science is exciting, uncertain, and done by people not very different from themselves. Since 1998, we have offered more than 170 workshops, partnering with more than 90 LDEO scientists. E2C teachers establishe links with scientists that have led to participation in research projects, the LDEO Open House, and other programs. Connections developed between high school students and scientists resulted in authentic science research experiences. A second key component of the project is the E2C website, https://earth2class.org/site/. We provide archived versions of monthly workshops. The website hosts a vast array of resources geared to support learning Earth Science and other subjects. Resources created through an NSF grant to explore strategies which enhance Spatial Thinking in the NYS Regents Earth Science curriculum are found at https://earth2class.org/site/?page_id=2957. The site is well-used by K-12 Earth Science educators, averaging nearly 70k hits per month. A third component of the E2C program are week-long summer institutes offering opportunities to enhance content knowledge in weather and climate; minerals, rocks, and resources; and astronomy. These include exploration of strategies to implement NGSS-based approaches within the school curriculum. Participants can visit LDEO lab facilities and interact with scientists to learn about their research. In the past year, we have begun to create a "satellite" E2C program at UFVJM

  6. Connections, Productivity and Funding: An Examination of Factors Influencing Scientists' Perspectives on the Market Orientation of Academic Research

    Science.gov (United States)

    Ronning, Emily Anne

    2012-01-01

    This study examines scientists' perceptions of the environment in which they do their work. Specifically, this study examines how academic and professional factors such as research productivity, funding levels for science, connections to industry, type of academic appointment, and funding sources influence scientists' perceptions of the…

  7. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    Science.gov (United States)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  8. Preparing the Next Generation of Environmental Scientists to Work at the Frontier of Data-Intensive Research

    Science.gov (United States)

    Hampton, S. E.

    2015-12-01

    The science necessary to unravel complex environmental problems confronts severe computational challenges - coping with huge volumes of heterogeneous data, spanning vast spatial scales at high resolution, and requiring integration of disparate measurements from multiple disciplines. But as cyberinfrastructure advances to support such work, scientists in many fields lack sufficient computational skills to participate in interdisciplinary, data-intensive research. In response, we developed innovative training workshops for early-career scientists, in order to explore both the needs and solutions for training next-generation scientists in skills for data-intensive environmental research. In 2013 and 2014 we ran intensive 3-week training workshops for early-career researchers. One of the workshops was run concurrently in California and North Carolina, connected by virtual technologies and coordinated schedules. We attracted applicants to the workshop with the opportunity to pursue data-intensive small-group research projects that they proposed. This approach presented a realistic possibility that publishable products could result from 3 weeks of focused hands-on classroom instruction combined with self-directed group research in which instructors were present to assist trainees. Instruction addressed 1) collaboration modes and technologies, 2) data management, preservation, and sharing, 3) preparing data for analysis using scripting, 4) reproducible research, 5) sustainable software practices, 6) data analysis and modeling, and 7) communicating results to broad communities. The most dramatic improvements in technical skills were in data management, version control, and working with spatial data outside of proprietary software. In addition, participants built strong networks and collaborative skills that later resulted in a successful student-led grant proposal, published manuscripts, and participants reported that the training was a highly influential experience.

  9. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  10. Want to Inspire Science Students to Consider a Research Career? Host a Scientist in Your Classroom

    Directory of Open Access Journals (Sweden)

    Patricia J. Baynham

    2010-04-01

    Full Text Available Most biology students have limited exposure to research since this is not a public activity and the pace of science does not lend itself to television dramatization. In contrast, medicine is the subject of numerous TV shows, and students’ experience visiting doctors may lead them to think they want to become physicians. One effective way to encourage these students to consider a research career is to invite engaging scientists to speak about their career paths and lives during class. Students are most likely to be influenced by people they consider to be like themselves. While this method is well-suited to a lecture format where the scientist can address a larger audience, the laboratory would also be appropriate.

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  12. Clinician-scientists in Canada: barriers to career entry and progress.

    Directory of Open Access Journals (Sweden)

    Bryn Lander

    Full Text Available BACKGROUND: Clinician-scientists play an important role in translating between research and clinical practice. Significant concerns about a decline in their numbers have been raised. Potential barriers for career entry and progress are explored in this study. METHODS: Case-study research methods were used to identify barriers perceived by clinician-scientists and their research teams in two Canadian laboratories. These perceptions were then compared against statistical analysis of data from Canadian Institutes of Health Research (CIHR databases on grant and award performance of clinician-scientists and non-clinical PhDs for fiscal years 2000 to 2008. RESULTS: Three main barriers were identified through qualitative analysis: research training, research salaries, and research grants. We then looked for evidence of these barriers in the Canada-wide statistical dataset for our study period. Clinician-scientists had a small but statistically significant higher mean number of degrees (3.3 than non-clinical scientists (3.2, potentially confirming the perception of longer training times. But evidence of the other two barriers was equivocal. For example, while overall growth in salary awards was minimal, awards to clinician-scientists increased by 45% compared to 6.3% for non-clinical PhDs. Similarly, in terms of research funding, awards to clinician-scientists increased by more than 25% compared with 5% for non-clinical PhDs. However, clinician-scientist-led grants funded under CIHR's Clinical thematic area decreased significantly from 61% to 51% (p-value<0.001 suggesting that clinician-scientists may be shifting their attention to other research domains. CONCLUSION: While clinician-scientists continue to perceive barriers to career entry and progress, quantitative results suggest improvements over the last decade. Clinician-scientists are awarded an increasing proportion of CIHR research grants and salary awards. Given the translational importance of

  13. Scientists' perspectives on the ethical issues of stem cell research.

    Science.gov (United States)

    Longstaff, Holly; Schuppli, Catherine A; Preto, Nina; Lafrenière, Darquise; McDonald, Michael

    2009-06-01

    This paper describes findings from an ethics education project funded by the Canadian Stem Cell Network (SCN). The project is part of a larger research initiative entitled "The Stem Cell Research Environment: Drawing the Evidence and Experience Together". The ethics education study began with a series of focus groups with SCN researchers and trainees as part of a "needs assessment" effort. The purpose of these discussions was to identify the main ethical issues associated with stem cell (SC) research from the perspective of the stem cell community. This paper will focus on five prominent themes that emerged from the focus group data including: (1) the source of stem cells; (2) the power of stem cells; (3) working within a charged research environment; (4) the regulatory context; and (5) ethics training for scientists. Additional discussions are planned with others involved in Canadian stem cell research (e.g., research ethics board members, policy makers) to supplement initial findings. These assessment results combined with existing bioethics literature will ultimately inform a web-based ethics education module for the SCN. We believe that our efforts are important for those analyzing the ethical, legal, and social issues (ELSI) in this area because our in depth understanding of stem cell researcher perspectives will enable us to develop more relevant and effective education material, which in turn should help SC researchers address the important ethical challenges in their area.

  14. Genomic research with human samples. Points of view from scientists and research subjects about disclosure of results and risks of genomic research. Ethical and empirical approach.

    Science.gov (United States)

    Valle Mansilla, José Ignacio

    2011-01-01

    Biomedical researchers often now ask subjects to donate samples to be deposited in biobanks. This is not only of interest to researchers, patients and society as a whole can benefit from the improvements in diagnosis, treatment, and prevention that the advent of genomic medicine portends. However, there is a growing debate regarding the social and ethical implications of creating biobanks and using stored human tissue samples for genomic research. Our aim was to identify factors related to both scientists and patients' preferences regarding the sort of information to convey to subjects about the results of the study and the risks related to genomic research. The method used was a survey addressed to 204 scientists and 279 donors from the U.S. and Spain. In this sample, researchers had already published genomic epidemiology studies; and research subjects had actually volunteered to donate a human sample for genomic research. Concerning the results, patients supported more frequently than scientists their right to know individual results from future genomic research. These differences were statistically significant after adjusting by the opportunity to receive genetic research results from the research they had previously participated and their perception of risks regarding genetic information compared to other clinical data. A slight majority of researchers supported informing participants about individual genomic results only if the reliability and clinical validity of the information had been established. Men were more likely than women to believe that patients should be informed of research results even if these conditions were not met. Also among patients, almost half of them would always prefer to be informed about individual results from future genomic research. The three main factors associated to a higher support of a non-limited access to individual results were: being from the US, having previously been offered individual information and considering

  15. Manual on service business for policy research

    International Nuclear Information System (INIS)

    1999-01-01

    The contents of this book are summary of service business for policy research : conception classification and ways of service business for policy research, propel procedure of service business for policy research on system of committee, management, choice, contract, evaluation and post management, related regulation on service business for policy research : management regulation on service business for policy research, guide of evaluation for service business for policy research, estimation standard of policy research cost, law arrangement of national contract, required document on service business for policy research, and application manual for PRISM.

  16. Professional identity in clinician-scientists: brokers between care and science.

    Science.gov (United States)

    Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan

    2017-06-01

    Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care

  17. Confined to a tokenistic status: Social scientists in leadership roles in a national health research funding agency.

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne

    2017-07-01

    The idea of interdisciplinarity has been taken up by academic and governmental organisations around the world and enacted through science policies, funding programs and higher education institutions. In Canada, interdisciplinarity led to a major transformation in health research funding. In 2000, the federal government closed the Medical Research Council (MRC) and created the Canadian Institutes of Health Research (CIHR). From the outset, CIHR's vision and goals were innovative, as it sought to include the social sciences within its purview alongside more traditional health research sectors. The extent to which it has been successful in this endeavour, however, remains unknown. The aim of our study was to examine how CIHR's intentions to foster inclusiveness and cooperation across disciplines were implemented in the agency's own organisational structure. We focused on social scientists' representation on committees and among decision-makers between 2000 and 2015, one of the key mandates of CIHR being to include the social sciences within its remit and support research in this area. We examined the composition of the Governing Council, the Institute Scientific Directors, the Chairs of the College of Reviewers, and two International Review Panels invited by CIHR. We targeted these committees and decision-makers since they hold the power to influence the field of Canadian health research through the decisions they make. Our findings show that, while CIHR was created with the mandate to support the entire spectrum of health-related research-including the social sciences-this call for inclusiveness has not yet been materialized in the agency's organisational structure. Social scientists, as well as researchers from neighbouring disciplines such as social epidemiology, health promotion and the humanities, are still confined to low levels of representation within CIHR's highest echelons. This imbalance limits social scientists' input into health research in Canada and

  18. SpaceScience@Home: Authentic Research Projects that Use Citizen Scientists

    Science.gov (United States)

    Méndez, B. J. H.

    2008-06-01

    In recent years, several space science research projects have enlisted the help of large numbers of non-professional volunteers, ``citizen scientists'', to aid in performing tasks that are critical to a project, but require more person-time (or computing time) than a small professional research team can practically perform themselves. Examples of such projects include SETI@home, which uses time from volunteers computers to process radio-telescope observation looking for signals originating from extra-terrestrial intelligences; Clickworkers, which asks volunteers to review images of the surface of Mars to identify craters; Spacewatch, which used volunteers to review astronomical telescopic images of the sky to identify streaks made by possible Near Earth Asteroids; and Stardust@home, which asks volunteers to review ``focus movies'' taken of the Stardust interstellar dust aerogel collector to search for possible impacts from interstellar dust particles. We shall describe these and other similar projects and discuss lessons learned from carrying out such projects, including the educational opportunities they create.

  19. Improving adolescent and young adult health - training the next generation of physician scientists in transdisciplinary research.

    Science.gov (United States)

    Emans, S Jean; Austin, S Bryn; Goodman, Elizabeth; Orr, Donald P; Freeman, Robert; Stoff, David; Litt, Iris F; Schuster, Mark A; Haggerty, Robert; Granger, Robert; Irwin, Charles E

    2010-02-01

    To address the critical shortage of physician scientists in the field of adolescent medicine, a conference of academic leaders and representatives from foundations, National Institutes of Health, Maternal and Child Health Bureau, and the American Board of Pediatrics was convened to discuss training in transdisciplinary research, facilitators and barriers of successful career trajectories, models of training, and mentorship. The following eight recommendations were made to improve training and career development: incorporate more teaching and mentoring on adolescent health research in medical schools; explore opportunities and electives to enhance clinical and research training of residents in adolescent health; broaden educational goals for Adolescent Medicine fellowship research training and develop an intensive transdisciplinary research track; redesign the career pathway for the development of faculty physician scientists transitioning from fellowship to faculty positions; expand formal collaborations between Leadership Education in Adolescent Health/other Adolescent Medicine Fellowship Programs and federal, foundation, and institutional programs; develop research forums at national meetings and opportunities for critical feedback and mentoring across programs; educate Institutional Review Boards about special requirements for high quality adolescent health research; and address the trainee and faculty career development issues specific to women and minorities to enhance opportunities for academic success. Copyright 2010 Society for Adolescent Medicine. All rights reserved.

  20. CUAHSI Data Services: Tools and Cyberinfrastructure for Water Data Discovery, Research and Collaboration

    Science.gov (United States)

    Seul, M.; Brazil, L.; Castronova, A. M.

    2017-12-01

    CUAHSI Data Services: Tools and Cyberinfrastructure for Water Data Discovery, Research and CollaborationEnabling research surrounding interdisciplinary topics often requires a combination of finding, managing, and analyzing large data sets and models from multiple sources. This challenge has led the National Science Foundation to make strategic investments in developing community data tools and cyberinfrastructure that focus on water data, as it is central need for many of these research topics. CUAHSI (The Consortium of Universities for the Advancement of Hydrologic Science, Inc.) is a non-profit organization funded by the National Science Foundation to aid students, researchers, and educators in using and managing data and models to support research and education in the water sciences. This presentation will focus on open-source CUAHSI-supported tools that enable enhanced data discovery online using advanced searching capabilities and computational analysis run in virtual environments pre-designed for educators and scientists so they can focus their efforts on data analysis rather than IT set-up.

  1. Search, access and dissemination of scientific information from scientists, social scientists and humanists

    Directory of Open Access Journals (Sweden)

    Fernando César Lima Leite

    2015-05-01

    Full Text Available This paper presents results of study on the characteristics of search activities, access to and use of information, and dissemination habits of researchers from scientific research institutes. From the methodological point of view, it is a mixed methods study which adopted the concurrent triangulation strategy. Data were collected through questionnaires, interviews and checklist, and then submitted to statistical and text analysis. The research sphere was consisted of researchers linked to the research units of the Ministry of Science, Technology and Innovation, and the sample basis were the researchers of the Brazilian Centre for Physics Research (CBPF and Museum of Astronomy and Related Sciences (MAST. Among other aspects, the findings shows that the safeguarded their disciplinary differences, search, access and communication activities, regardless of the knowledge area, occurring mainly in the digital environment; communication habits are stimulated by motives common to scientists and social scientists and humanists, share knowledge and visibility are the main reasons for the dissemination of research results, physicists are naturally within the open access context.

  2. Modeling the Skills and Practices of Scientists through an “All-Inclusive” Comparative Planetology Student Research Investigation

    Science.gov (United States)

    Graff, Paige; Bandfield, J.; Stefanov, W.; Vanderbloemen, L.; Willis, K.; Runco, S.

    2013-01-01

    To effectively prepare the nation's future Science, Technology, Engineering, and Mathematics (STEM) workforce, students in today's classrooms need opportunities to engage in authentic experiences that model skills and practices used by STEM professionals. Relevant, real-world authentic research experiences allow students to behave as scientists as they model the process of science. This enables students to get a true sense of STEM-related professions and also allows them to develop the requisite knowledge, skills, curiosity, and creativity necessary for success in STEM careers. Providing professional development and opportunities to help teachers infuse research in the classroom is one of the primary goals of the Expedition Earth and Beyond (EEAB) program. EEAB, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students in grades 5-12 by getting them actively involved with exploration, discovery, and the process of science. The program combines the expertise of scientists and educators to ensure the professional development provided to classroom teachers is scientifically valid and also recognizes classroom constraints. For many teachers, facilitating research in the classroom can be challenging. In addition to addressing required academic standards and dealing with time constraints, challenges include structuring a research investigation the entire class can successfully complete. To build educator confidence, foster positive classroom research experiences, and enable teachers to help students model the skills and practices of scientists, EEAB has created an "allinclusive" comparative planetology research investigation activity. This activity addresses academic standards while recognizing students (and teachers) potentially lack experience with scientific practices involved in conducting

  3. Research data services in veterinary medicine libraries.

    Science.gov (United States)

    Kerby, Erin E

    2016-10-01

    The study investigated veterinary medicine librarians' experience with and perceptions of research data services. Many academic libraries have begun to offer research data services in response to researchers' increased need for data management support. To date, such services have typically been generic, rather than discipline-specific, to appeal to a wide variety of researchers. An online survey was deployed to identify trends regarding research data services in veterinary medicine libraries. Participants were identified from a list of contacts from the MLA Veterinary Medical Libraries Section. Although many respondents indicated that they have a professional interest in research data services, the majority of veterinary medicine librarians only rarely or occasionally provide data management support as part of their regular job responsibilities. There was little consensus as to whether research data services should be core to a library's mission despite their perceived importance to the advancement of veterinary research. Furthermore, most respondents stated that research data services are just as or somewhat less important than the other services that they provide and feel only slightly or somewhat prepared to offer such services. Lacking a standard definition of "research data" and a common understanding of precisely what research data services encompass, it is difficult for veterinary medicine librarians and libraries to define and understand their roles in research data services. Nonetheless, they appear to have an interest in learning more about and providing research data services.

  4. Connecting Alaskan Youth, Elders, and Scientists in Climate Change Research and Community Resilience

    Science.gov (United States)

    Spellman, K.; Sparrow, E.

    2017-12-01

    Integrated science, technology, engineering and math (STEM) solutions and effective, relevant learning processes are required to address the challenges that a changing climate presents to many Arctic communities. Learning that can both enhance a community's understanding and generate new knowledge about climate change impacts at both local and continental scales are needed to efficiently build the capacity to navigate these changes. The Arctic and Earth STEM Integrating GLOBE and NASA (SIGNs) program is developing a learning model to engage Alaskan rural and indigenous communities in climate change learning, research and action. Youth, elders, educators, community leaders and scientists collaborate to address a pressing local climate change concern. The program trains teams of educators and long-time community members on climate change concepts and environmental observing protocols in face-to-face or online workshops together with Arctic and NASA subject matter experts. Community teams return to their community to identify local data or information needs that align with their student's interests and the observations of local elders. They deepen their understanding of the subject through culturally responsive curriculum materials, and collaborate with a scientist to develop an investigation with their students to address the identified need. Youth make observations using GLOBE (Global Learning and Observations to Benefit the Environment) protocols that best fit the issue, analyze the data they have collected, and utilize indigenous or knowledge, and NASA data to address the issue. The use of GLOBE protocols allow for communities to engage in climate change research at both local and global scales, as over 110 nations worldwide are using these standardized protocols. Teams work to communicate their investigation results back to their community and other scientists, and apply their results to local stewardship action or climate adaptation projects. In this

  5. Research Data Services in European Academic Research Libraries

    OpenAIRE

    Tenopir, Carol; Talja, Sanna; Horstmann, Wolfram; Late, Elina; Hughes, Dane; Pollock, Danielle; Schmidt, Birgit; Baird, Lynn; Sandusky, Robert J.; Allard, Suzie

    2017-01-01

    Research data is an essential part of the scholarly record, and management of research data is increasingly seen as an important role for academic libraries. This article presents the results of a survey of directors of the Association of European Research Libraries (LIBER) academic member libraries to discover what types of research data services (RDS) are being offered by European academic research libraries and what services are planned for the future. Overall, the survey found that librar...

  6. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  7. Perspectives of Academic Social Scientists on Knowledge Transfer and Research Collaborations: A Cross-Sectional Survey of Australian Academics

    Science.gov (United States)

    Cherney, Adrian; Head, Brian; Boreham, Paul; Povey, Jenny; Ferguson, Michele

    2012-01-01

    This paper reports results from a survey of academic social scientists in Australian universities on their research engagement experience with industry and government partners and end-users of research. The results highlight that while academics report a range of benefits arising from research collaborations, there are also significant impediments…

  8. NREL Scientists Model Methane-Eating Bacteria | News | NREL

    Science.gov (United States)

    Scientists Model Methane-Eating Bacteria News Release: NREL Scientists Model Methane-Eating Bacteria February 13, 2018 Nature is full of surprises - not to mention solutions. A research team ) recently explored the possibilities provided by the natural world by researching how the bacteria

  9. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  10. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  11. Using Videoconferencing in a School-Scientist Partnership: Students' Perceptions and Scientists' Challenges

    Science.gov (United States)

    Falloon, Garry

    2012-01-01

    This research studied a series of videoconference teaching workshops and virtual labs, which formed a component of a school-scientist partnership involving a New Zealand science research institute and year 13 students at a Wellington high school. It explored students' perceptions of the effectiveness of the videoconferences as an interactive…

  12. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  13. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data.

    Directory of Open Access Journals (Sweden)

    Daniele Fanelli

    Full Text Available The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, "cooking" of data, etc... Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86-4.45 of scientists admitted to have fabricated, falsified or modified data or results at least once--a serious form of misconduct by any standard--and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91-19.72 for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words "falsification" or "fabrication", and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

  14. How many scientists fabricate and falsify research? A systematic review and meta-analysis of survey data.

    Science.gov (United States)

    Fanelli, Daniele

    2009-05-29

    The frequency with which scientists fabricate and falsify data, or commit other forms of scientific misconduct is a matter of controversy. Many surveys have asked scientists directly whether they have committed or know of a colleague who committed research misconduct, but their results appeared difficult to compare and synthesize. This is the first meta-analysis of these surveys. To standardize outcomes, the number of respondents who recalled at least one incident of misconduct was calculated for each question, and the analysis was limited to behaviours that distort scientific knowledge: fabrication, falsification, "cooking" of data, etc... Survey questions on plagiarism and other forms of professional misconduct were excluded. The final sample consisted of 21 surveys that were included in the systematic review, and 18 in the meta-analysis. A pooled weighted average of 1.97% (N = 7, 95%CI: 0.86-4.45) of scientists admitted to have fabricated, falsified or modified data or results at least once--a serious form of misconduct by any standard--and up to 33.7% admitted other questionable research practices. In surveys asking about the behaviour of colleagues, admission rates were 14.12% (N = 12, 95% CI: 9.91-19.72) for falsification, and up to 72% for other questionable research practices. Meta-regression showed that self reports surveys, surveys using the words "falsification" or "fabrication", and mailed surveys yielded lower percentages of misconduct. When these factors were controlled for, misconduct was reported more frequently by medical/pharmacological researchers than others. Considering that these surveys ask sensitive questions and have other limitations, it appears likely that this is a conservative estimate of the true prevalence of scientific misconduct.

  15. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  16. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    Science.gov (United States)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  17. Promoting seismology education through collaboration between university research scientists and school teachers

    Science.gov (United States)

    Brunt, M. R.; Ellins, K. K.; Boyd, D.; Mote, A. S.; Pulliam, J.; Frohlich, C. A.

    2012-12-01

    Participation in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development project paved the way for several teachers to receive educational seismometers and join the IRIS Seismograph in Schools program. This, in turn, has led to secondary school teachers working with university seismologists on research projects. Examples are the NSF-EarthScope SIEDCAR (Seismic Investigation of Edge Driven Convection Associated with the Rio Grande Rift) project; field studies to compile felt-reports for Texas earthquakes, some which may have been induced by human activities; and a seismic study of the Texas Gulf Coast to investigate ocean-continent transition processes along a passive margin. Such collaborations are mutually beneficial in nature. They help scientists to accomplish their research objectives, involve teachers and their students in the authentic, inquiry-based science, promote public awareness of such projects, and open the doors to advancement opportunities for those teachers involved. In some cases, bringing together research scientists and teachers results in collaborations that produce publishable research. In order to effectively integrate seismology research into 7-12 grade education, one of us (Brunt) established the Eagle Pass Junior High Seismology Team in connection with IRIS Seismograph in Schools, station EPTX (AS-1 seismograph), to teach students about earthquakes using authentic real-time data. The concept has sparked interest among other secondary teachers, leading to the creation of two similarly organized seismology teams: WPTX (Boyd, Williams Preparatory School, Dallas) and THTX (Mote, Ann Richards School for Young Women Leaders, Austin). Although the educational seismometers are basic instruments, they are effective educational tools. Seismographs in schools offer students opportunities to learn how earthquakes are recorded and how modern seismometers work, to collect and interpret seismic data, and to

  18. Creating Science Education Specialists and Scientific Literacy in Students through a Successful Partnership among Scientists, Science Teachers, and Education Researchers

    Science.gov (United States)

    Metoyer, S.; Prouhet, T.; Radencic, S.

    2007-12-01

    The nature of science and the nature of learning are often assumed to have little practical relationship to each other. Scientists conduct research and science teachers teach. Rarely do the scientist and the science teacher have an opportunity to learn from each other. Here we describe results from a program funded by NSF, the Information Technology in Science (ITS) Center for Teaching and Learning. The ITS Center provided the support and structure necessary for successful long-term collaboration among scientists, science teachers, and education researchers that has resulted in the creation of new science education specialists. These specialists are not only among the science teachers, but also include avid recruits to science education from the scientists themselves. Science teachers returned to their classrooms armed with new knowledge of content, inquiry, and ideas for technology tools that could support and enhance students' scientific literacy. Teachers developed and implemented action research plans as a means of exploring educational outcomes of their use and understanding of new technologies and inquiry applied to the classroom. In other words, they tried something different in the class related to authentic inquiry and technology. They then assessed the students' to determine if there was an impact to the students in some way. Many of the scientists, on the other hand, report that they have modified their instructional practices for undergraduate courses based on their experiences with the teachers and the ITS Center. Some joined other collaborative projects pairing scientists and educators. And, many of the scientists continue on-going communication with the science teachers serving as mentors, collaborators, and as an "expert" source for the students to ask questions to. In order to convey the success of this partnership, we illustrate and discuss four interdependent components. First, costs and benefits to the science teacher are discussed through case

  19. Research interests: their dynamics, structures and applications in unifying search and reasoning

    NARCIS (Netherlands)

    Zeng, Y.; Zhou, E.; Wang, Y.; Ren, X.; Qin, Y.; Huang, Z.; Zhong, N.

    2011-01-01

    Most scientific publication information, which may reflects scientists' research interests, is publicly available on the Web. Understanding the characteristics of research interests from previous publications may help to provide better services for scientists in the Web age. In this paper, we

  20. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  1. "A good personal scientific relationship": Philip Morris scientists and the Chulabhorn Research Institute, Bangkok.

    Directory of Open Access Journals (Sweden)

    Ross Mackenzie

    2008-12-01

    Full Text Available This paper examines the efforts of consultants affiliated with Philip Morris (PM, the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI. A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO Collaborating Centre in December 2005.This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships.The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is raised by the CRI's recently

  2. "A good personal scientific relationship": Philip Morris scientists and the Chulabhorn Research Institute, Bangkok.

    Science.gov (United States)

    Mackenzie, Ross; Collin, Jeff

    2008-12-23

    This paper examines the efforts of consultants affiliated with Philip Morris (PM), the world's leading transnational tobacco corporation, to influence scientific research and training in Thailand via the Chulabhorn Research Institute (CRI). A leading Southeast Asian institute for environmental health science, the CRI is headed by Professor Dr. Her Royal Highness Princess Chulabhorn, the daughter of the King of Thailand, and it has assumed international significance via its designation as a World Health Organization (WHO) Collaborating Centre in December 2005. This paper analyses previously confidential tobacco industry documents that were made publicly available following litigation in the United States. PM documents reveal that ostensibly independent overseas scientists, now identified as industry consultants, were able to gain access to the Thai scientific community. Most significantly, PM scientist Roger Walk has established close connections with the CRI. Documents indicate that Walk was able to use such links to influence the study and teaching of environmental toxicology in the institute and to develop relations with key officials and local scientists so as to advance the interests of PM within Thailand and across Asia. While sensitivities surrounding royal patronage of the CRI make public criticism extremely difficult, indications of ongoing involvement by tobacco industry consultants suggest the need for detailed scrutiny of such relationships. The establishment of close links with the CRI advances industry strategies to influence scientific research and debate around tobacco and health, particularly regarding secondhand smoke, to link with academic institutions, and to build relationships with national elites. Such strategies assume particular significance in the national and regional contexts presented here amid the globalisation of the tobacco pandemic. From an international perspective, particular concern is raised by the CRI's recently awarded status

  3. SECONDARY SCHOOL STUDENTS' PERCEPTIONS AND ATTITUDES ABOUT SCIENTISTS

    OpenAIRE

    Muhammed Doğukan Balçın; Ayşegül Ergün

    2018-01-01

    This research was carried out to determine secondary school students’ perceptions and attitudes towards scientists. The study group consists of 53 fifth and sixth grade students receiving education in a state secondary school in Turkey. Convergent parallel design among mixed research methods was used during the research. Research data were collected using “Questionnaire on attitudes towards scientists” and “Draw A Scientist (DAS)” forms. Descriptive and inferential statistical methods and con...

  4. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  5. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  6. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  7. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  8. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  9. Becoming an International Scientist in South Korea: Ho Wang Lee’s Research Activity about Epidemic Hemorrhagic Fever

    Directory of Open Access Journals (Sweden)

    Miyoung SHIN

    2017-04-01

    Full Text Available In the 1960-70s, South Korea was still in the position of a science latecomer. Although the scientific research environment in South Korea at that time was insufficient, there was a scientist who achieved outcomes that could be recognized internationally while acting in South Korea. He was Ho Wang Lee(1928~ who found Hantann Virus that causes epidemic hemorrhagic fever for the first time in the world. It became a clue to identify causative viruses of hemorrhagic diseases that were scattered here and there throughout the world. In addition, these outcomes put Ho Wang Lee on the global center of research into epidemic hemorrhagic fever. This paper examines how a Korean scientist who was in the periphery of virology could go into the central area of virology. Also this article shows the process through which the virus found by Ho Wang Lee was registered with the international academia and he proceeded with follow-up research based on this progress to reach the level at which he generalized epidemic hemorrhagic fever related studies throughout the world. While he was conducting the studies, experimental methods that he had never experienced encountered him as new difficulties. He tried to solve the new difficulties faced in his changed status through devices of cooperation and connection. Ho Wang Lee’s growth as a researcher can be seen as well as a view of a researcher that grew from a regional level to an international level and could advance from the area of non-mainstream into the mainstream. This analytic tool is meaningful in that it can be another method of examining the growth process of scientists in South Korea or developing countries.

  10. Being a Scientist While Teaching Science: Implementing Undergraduate Research Opportunities for Elementary Educators

    Science.gov (United States)

    Hock, Emily; Sharp, Zoe

    2016-03-01

    Aspiring teachers and current teachers can gain insight about the scientific community through hands-on experience. As America's standards for elementary school and middle school become more advanced, future and current teachers must gain hands-on experience in the scientific community. For a teacher to be fully capable of teaching all subjects, they must be comfortable in the content areas, equipped to answer questions, and able to pass on their knowledge. Hands-on research experiences, like the Summer Astronomy Research Experience at California Polytechnic University, pair liberal studies students with a cooperative group of science students and instructors with the goal of doing research that benefits the scientific community and deepens the team members' perception of the scientific community. Teachers are then able to apply the basic research process in their classrooms, inspire students to do real life science, and understand the processes scientists' undergo in their workplace.

  11. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  12. The State of Young Scholars and Scientists in Africa | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... career decisions and research performance of young scientists in higher education, ... progression Researchers will examine the supporting and limiting factors. ... They will work with scientists, government agencies, and higher education ...

  13. Non-native scientists, research dissemination and English neologisms: What happens in the early stages of reception and re-production?

    Directory of Open Access Journals (Sweden)

    Daniel Linder

    2016-11-01

    Full Text Available That the English language is the prevailing language in international scientific discourse is an undeniable fact for research professionals who are non-native speakers of English (NNSE. An exploratory, survey-based study of scientists in the experimental disciplines of neuroscience and medicine seeks to reveal, on the one hand, the habits of scientists who in their research practice come across neologisms in English and need to use them in oral and written scientific discourse in their own languages, and, on the other hand, their attitudes towards these neologisms and towards English as the language of international science. We found that all scientists write and publish their research articles (RAs in English and most submit them unrevised by native speakers of English. When first encountering a neologism in English, scientists tend to pay close attention to these new concepts, ideas or terms and very early in the reception process attempt to coin acceptable, natural-sounding Spanish equivalents for use in the laboratory and in their Spanish texts. In conjunction with the naturalized Spanish term, they often use the English neologism verbatim in a coexistent bilingual form, but they avoid using only the English term and very literal translations. These behaviors show an ambivalent attitude towards English (the language of both new knowledge reception and dissemination of their RAs and Spanish (used for local professional purposes and for popularization: while accepting to write in their acquired non-native language, they simultaneously recognize that their native language needs to preserve its specificity as a language of science.

  14. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  15. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  16. Linking ecosystem services with cultural landscape research

    DEFF Research Database (Denmark)

    Schaich, Harald; Biding, Claudia; Plieninger, Tobias

    2010-01-01

    The concept of ecosystem services facilitates the valuation of the multiple services from ecosystems and landscapes, the identification of trade-offs between different land use scenarios, and also informs decision making in land use planning. Unfortunately, cultural services have been mostly...... neglected within the ecosystem services framework. This could result in trade-off assessments which are biased and mislead ecosystem management and landscape planning. However, cultural landscape research approaches have proven valuable in the assessment of different nonmaterial landscape values...... and cultural services. In this paper, we compare the objectives, approaches, and methodologies adopted by ecosystem services research and cultural landscape research through a bibliographic research. Both research communities investigate the human dimension of ecosystems and landscapes and, hence, study...

  17. Engaging Students in Space Research: Young Engineers and Scientists 2008

    Science.gov (United States)

    Boice, D. C.; Asbell, H. E.; Reiff, P. H.

    2008-12-01

    Young Engineers and Scientists (YES) is a community partnership between Southwest Research Institute (SwRI), and local high schools in San Antonio, Texas (USA) during the past 16 years. The YES program provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences (including space science) and engineering. YES consists of an intensive three-week summer workshop held at SwRI and a collegial mentorship where students complete individual research projects under the guidance of their professional mentors during the academic year. During the summer workshop, students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, computers and the Internet, careers, science ethics, and other topics; and select individual research projects to be completed during the academic year. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has developed a website for topics in space science from the perspective of high school students, including NASA's Magnetospheric Multiscale Mission (MMS) (http://yesserver.space.swri.edu). Student evaluations indicate the effectiveness of YES on their academic preparation and choice of college majors. Over the past 16 years, all YES graduates have entered college, several have worked for SwRI, one business has started, and three scientific publications have resulted. Acknowledgements. We acknowledge funding and support from the NASA MMS Mission, Texas Space Grant Consortium, Northside Independent School District, SwRI, and several local charitable foundations.

  18. E-Services in Danish Research Libraries

    DEFF Research Database (Denmark)

    Scupola, Ada

    2008-01-01

    This chapter reports the findings of a case study of e-services adoption at research libraries. The case under consideration is Roskilde University Library (RUB), a research library supporting learning activities at Roskilde University. The research focuses on the main issues that RUB had to deal...... research libraries in Denmark. The main results can be summarized as follows: 1) Adoption of e-services has forced RUB to innovate rapidly. Innovation is driven, among other factors, by ICT developments (technology push), but innovation is also user-driven and pervasive throughout the organization.  2) E...... with in the process of adopting e-services and the future challenges that e-services provide for RUB. The chapter also presents the consequences of e-services adoption for Roskilde University library's organization, its business model and the relationships with customers, publishers (providers of knowledge) and other...

  19. Research evaluation support services in biomedical libraries.

    Science.gov (United States)

    Gutzman, Karen Elizabeth; Bales, Michael E; Belter, Christopher W; Chambers, Thane; Chan, Liza; Holmes, Kristi L; Lu, Ya-Ling; Palmer, Lisa A; Reznik-Zellen, Rebecca C; Sarli, Cathy C; Suiter, Amy M; Wheeler, Terrie R

    2018-01-01

    The paper provides a review of current practices related to evaluation support services reported by seven biomedical and research libraries. A group of seven libraries from the United States and Canada described their experiences with establishing evaluation support services at their libraries. A questionnaire was distributed among the libraries to elicit information as to program development, service and staffing models, campus partnerships, training, products such as tools and reports, and resources used for evaluation support services. The libraries also reported interesting projects, lessons learned, and future plans. The seven libraries profiled in this paper report a variety of service models in providing evaluation support services to meet the needs of campus stakeholders. The service models range from research center cores, partnerships with research groups, and library programs with staff dedicated to evaluation support services. A variety of products and services were described such as an automated tool to develop rank-based metrics, consultation on appropriate metrics to use for evaluation, customized publication and citation reports, resource guides, classes and training, and others. Implementing these services has allowed the libraries to expand their roles on campus and to contribute more directly to the research missions of their institutions. Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  20. Young Engineers & Scientists (YES) - Engaging Teachers in Space Research

    Science.gov (United States)

    Boice, D. C.; Reiff, P. H.

    2011-12-01

    The Young Engineers and Scientists (YES) Program is a community partnership between Southwest Research Institute (SwRI) and local high schools in San Antonio. It provides talented high school juniors and seniors a bridge between classroom instruction and real world, research experiences in physical sciences, information sciences, and engineering. YES consists of two parts: 1) An intensive three-week summer workshop held at SwRI where students experience the research environment first-hand; develop skills and acquire tools for solving scientific problems, attend mini-courses and seminars on electronics, C++ programming, the Internet, careers, science ethics, social impact of technology, and other topics; and select their individual research project with their mentor (SwRI staff member) to be completed during the academic year; and 2) A collegial mentorship where students complete individual research projects under the guidance of their mentors and teachers during the academic year and earn honors credit. At the end of the school year, students publicly present and display their work, acknowledging their accomplishments and spreading career awareness to other students and teachers. YES has been highly successful during the past nineteen (19) years. A total of 258 students have completed or are currently enrolled in YES. Of these students, 38% are females and 57% are ethnic minorities, reflecting the local diversity of the San Antonio area. All YES graduates have entered college, several work or have worked for SwRI, two businesses have formed, and three scientific publications have resulted. Sixteen (16) teacher participants have attended the YES workshop and have developed classroom materials based on their experiences in research at SwRI in the past three (3) years. In recognition of its excellence, YES received the Celebrate Success in 1996 and the Outstanding Campus Partner-of-the-Year Award in 2005, both from Northside Independent School District (San Antonio

  1. A Community of Practice among Educators, Researchers and Scientists for Improving Science Teaching in Southern Mexico

    Science.gov (United States)

    Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.

    2007-01-01

    This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…

  2. Meet EPA Physical Scientist Lukas Oudejans

    Science.gov (United States)

    Lukas Oudejans, Ph.D. is a physical scientist working in EPA’s National Homeland Security Research Center. His research focuses on preparing cleanup options for the agency following a disaster incident.

  3. 1990 National Compensation Survey of Research and Development Scientists and Engineers

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-01

    This report presents the results of the fourth in a new series of surveys of compensation and benefits for research and development (R D) scientists and engineers (S Es). The 1990 Survey represents the largest nationwide database of its kind, covering 104 establishments which provided data on almost 41,000 degreed researchers in the hard'' sciences. The fundamental nature of the survey has not changed: the focus is still on medium- and large-sized establishments which employ at least 100 degreed S Es in R D. The 1990 Survey contains data which cover about 18% of all establishments eligible to participate, encompassing approximately 18% of all eligible employees. As in the last three years, the survey sample constitutes a fairly good representation of the entire population of eligible establishments on the basis of business sector, geographic location, and size. Maturity-based analyses of salaries for some 34,000 nonsupervisory researchers are provided, as are job content-based analyses of more than 27,000 individual contributors and almost 5000 first level supervisors and division directors. Compensation policies and practices data are provided for 102 establishments, and benefits plans for 62 establishments are analyzed.

  4. [Health services research for the public health service (PHS) and the public health system].

    Science.gov (United States)

    Hollederer, A; Wildner, M

    2015-03-01

    There is a great need for health services research in the public health system and in the German public health service. However, the public health service is underrepresented in health services research in Germany. This has several structural, historical and disciplinary-related reasons. The public health service is characterised by a broad range of activities, high qualification requirements and changing framework conditions. The concept of health services research is similar to that of the public health service and public health system, because it includes the principles of multidisciplinarity, multiprofessionalism and daily routine orientation. This article focuses on a specified system theory based model of health services research for the public health system and public health service. The model is based on established models of the health services research and health system research, which are further developed according to specific requirements of the public health service. It provides a theoretical foundation for health services research on the macro-, meso- and microlevels in public health service and the public health system. Prospects for public health service are seen in the development from "old public health" to "new public health" as well as in the integration of health services research and health system research. There is a significant potential for development in a better linkage between university research and public health service as is the case for the "Pettenkofer School of Public Health Munich". © Georg Thieme Verlag KG Stuttgart · New York.

  5. Expedition Earth and Beyond: Engaging Classrooms in Student-Led Research Using NASA Data, Access to Scientists, and Integrated Educational Strategies

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.; McCollum, T.; Baker, M.; Lindgren, C.; Mailhot, M.

    2011-01-01

    Classroom teachers are challenged with engaging and preparing today s students for the future. Activities are driven by state required skills, education standards, and high-stakes testing. Providing educators with standards-aligned, inquiry-based activities that will help them engage their students in student-led research in the classroom will help them teach required standards, essential skills, and help inspire their students to become motivated learners. The Astromaterials Research and Exploration Science (ARES) Education Program, classroom educators, and ARES scientists at the NASA Johnson Space Center created the Expedition Earth and Beyond education program to help teachers promote student-led research in their classrooms (grades 5-14) by using NASA data, providing access to scientists, and using integrated educational strategies.

  6. Research data services in veterinary medicine libraries

    Directory of Open Access Journals (Sweden)

    Erin E. Kerby, MSI

    2017-01-01

    Conclusions: Lacking a standard definition of ‘‘research data’’ and a common understanding of precisely what research data services encompass, it is difficult for veterinary medicine librarians and libraries to define and understand their roles in research data services. Nonetheless, they appear to have an interest in learning more about and providing research data services.

  7. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  8. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  9. Scientific misconduct and research integrity for the bench scientist.

    Science.gov (United States)

    Pascal, C B

    2000-09-01

    This paper describes the role of the Office of Research Integrity (ORI), a component of the Public Health Service (PHS), in defining scientific misconduct in research supported with PHS funds and in establishing standards for responding to allegations of misconduct. The principal methods by which ORI exercises its responsibilities in this area are defining what types of behaviors undertaken by research investigators constitute misconduct, overseeing institutional efforts to investigate and report misconduct, and recommending to the Assistant Secretary for Health (ASH) PHS administrative actions when misconduct is identified. ORI also takes affirmative steps to promote research integrity through education, training, and other initiatives. The role of the research institution in responding to misconduct and promoting research integrity is complementary and overlapping with ORI's efforts but, as the employer of research investigators and front-line manager of the research, the institution has a greater opportunity to promote the highest standards of integrity in the day-to-day conduct of research. Finally, legal precedent established through civil litigation has played an important role in defining the standards that apply in determining when a breach of research integrity has occurred.

  10. The Research Funding Service: a model for expanded library services

    OpenAIRE

    Means, Martha L.

    2000-01-01

    Traditionally, libraries have provided a modest amount of information about grants and funding opportunities to researchers in need of research funding. Ten years ago, the University of Washington (UW) Health Sciences Libraries and Information Center joined in a cooperative effort with the School of Medicine to develop a complete, library-based grant and funding service for health sciences researchers called the Research Funding Service. The library provided space, access to the library colle...

  11. Academic and non-academic career options for marine scientists. - Support measures for early career scientists offered at MARUM - Center for Marine Environmental Sciences, University of Bremen, Germany

    Science.gov (United States)

    Hebbeln, Dierk; Klose, Christina

    2015-04-01

    Early career scientists at MARUM cover a wide range of research topics and disciplines including geosciences, biology, chemistry, social sciences and law. Just as colourful as the disciplinary background of the people, are their ideas for their personal careers. With our services and programmes, we aim to address some important career planning needs of PhD students and early career Postdocs, both, for careers in science and for careers outside academia. For PhD students aiming to stay in science, MARUM provides funding opportunities for a research stay abroad for a duration of up to 6 months. A range of courses is offered to prepare for the first Postdoc position. These include trainings in applying for research funding, proposal writing and interview skills. Following MARUM lectures which are held once a month, early career scientists are offered the opportunity to talk to senior scientists from all over the world in an informal Meet&Greet. Mentoring and coaching programmes for women in science are offered in cooperation with the office for equal opportunities at the University of Bremen. These programmes offer an additional opportunity to train interpersonal skills and to develop personal career strategies including a focus on special challenges that especially women might (have to) face in the scientific community. Early career scientists aiming for a non-academic career find support on different levels. MARUM provides funding opportunities for placements in industry, administration, consulting or similar. We offer trainings in e.g. job hunting strategies or interview skills. For a deeper insight into jobs outside the academic world, we regularly invite professionals for informal fireside chats and career days. These events are organised in cooperation with other graduate programmes in the region to broaden the focus of both, the lecturers and the participants. A fundamental component of our career programmes is the active involvement of alumni of MARUM and our

  12. Forging New Service Paths: Institutional Approaches to Providing Research Data Management Services

    Directory of Open Access Journals (Sweden)

    Regina Raboin

    2012-01-01

    Full Text Available Objective: This paper describes three different institutional experiences in developing research data management programs and services, challenges/opportunities and lessons learned.Overview: This paper is based on the Librarian Panel Discussion during the 4th Annual University of Massachusetts and New England Region e-Science Symposium. Librarians representing large public and private research universities presented an overview of service models developed at their respective organizations to bring support for data management and eScience to their communities. The approaches described include two library-based, integrated service models and one collaboratively-staffed, center-based service model.Results: Three institutions describe their experiences in creating the organizational capacity for research data management support services. Although each institutional approach is unique, common challenges include garnering administrative support, managing the integration of services with new or existing staff structures, and continuing to meet researchers needs as they evolve.Conclusions: There is no one way to provide research data management services, but any staff position, committee, or formalized center reflects an overarching organizational commitment to data management support.

  13. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  15. Want to Inspire Science Students to Consider a Research Career? Host a Scientist in Your Classroom

    OpenAIRE

    Baynham, Patricia J.

    2010-01-01

    Most biology students have limited exposure to research since this is not a public activity and the pace of science does not lend itself to television dramatization. In contrast, medicine is the subject of numerous TV shows, and students’ experience visiting doctors may lead them to think they want to become physicians. One effective way to encourage these students to consider a research career is to invite engaging scientists to speak about their career paths and lives during class. S...

  16. User centric monitoring (UCM) information service for the next generation of Grid-enabled scientists

    International Nuclear Information System (INIS)

    Alexander, D A; Li, C; Lauret, J; Fine, V

    2008-01-01

    Nuclear and high-energy physicists routinely execute data processing and data analysis jobs on a Grid and need to be able to easily and remotely monitor the execution of these jobs. Existing Grid monitoring tools provide abundant information about the whole system, but are geared towards production jobs and well suited for Grid administrators, while the information tailored towards an individual user is not readily available in a user-friendly and user-centric way. Such User Centric information includes monitoring information such as the status of the submitted job, queue position, time of the start/finish, percentage of being done, error messages, standard output, and reasons for failure. We proposed to develop a framework based on Grid service technology that allows scientists to track and monitor their jobs easily from a user-centric view. The proposed framework aims to be flexible so that it can be applied by any Grid Virtual Organization (VO) with various ways of collecting the user-centric job monitoring information built into the framework. Furthermore, the framework provides a rich and reusable set of methods of presenting the information to the user from within a Web browser and other clients. In this presentation, we will give an architectural overview of the UCM service, show an example implementation in the RHIC/STAR experiment context and discuss limitations and future collaborative work

  17. User centric monitoring (UCM) information service for the next generation of Grid-enabled scientists

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D A; Li, C [Tech-X Corporation, 5621 Arapahoe Avenue Suite A, Boulder, CO 80303 (United States); Lauret, J; Fine, V [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)], E-mail: alexanda@txcorp.com

    2008-07-15

    Nuclear and high-energy physicists routinely execute data processing and data analysis jobs on a Grid and need to be able to easily and remotely monitor the execution of these jobs. Existing Grid monitoring tools provide abundant information about the whole system, but are geared towards production jobs and well suited for Grid administrators, while the information tailored towards an individual user is not readily available in a user-friendly and user-centric way. Such User Centric information includes monitoring information such as the status of the submitted job, queue position, time of the start/finish, percentage of being done, error messages, standard output, and reasons for failure. We proposed to develop a framework based on Grid service technology that allows scientists to track and monitor their jobs easily from a user-centric view. The proposed framework aims to be flexible so that it can be applied by any Grid Virtual Organization (VO) with various ways of collecting the user-centric job monitoring information built into the framework. Furthermore, the framework provides a rich and reusable set of methods of presenting the information to the user from within a Web browser and other clients. In this presentation, we will give an architectural overview of the UCM service, show an example implementation in the RHIC/STAR experiment context and discuss limitations and future collaborative work.

  18. Is gender mainstreaming helping women scientists? Evidences from research policies in Spain

    Directory of Open Access Journals (Sweden)

    Alba Alonso

    2016-12-01

    Full Text Available Literature has repeatedly shown that gender mainstreaming is far from being transformative and smoothly introduced. It is rather a contested strategy, leading to steady impacts on changing routines and gendering policy outcomes. However, research policies have appeared to be one of the issues areas where a gender perspective has been introduced. This is the case for Spanish research policies, which have been assessed to promote the inclusion of women in the R&D system. This article explores these emerging shifts in order to explore the problem for women in science and the solutions proposed to solve it. In addition, it seeks to examine whether these measures can potentially help women to get an equal position in science or whether they are addressing the wrong targets. To do so, this work draws on a survey of doctoral and postdoctoral researchers carried out in Spain, covering 350 respondents. It captures the necessities, wills and obstacles for women scientists, and while doing that, it allows us to assess whether gender mainstreaming is likely to be effective for bringing more women to the academia.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  20. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  1. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  2. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  3. The Creation and Role of the USDA Biomass Research Centers

    Science.gov (United States)

    William F. Anderson; Jeffery Steiner; Randy Raper; Ken Vogel; Terry Coffelt; Brenton Sharratt; Bob Rummer; Robert L. Deal; Alan Rudie

    2011-01-01

    The Five USDA Biomass Research Centers were created to facilitate coordinated research to enhance the establishment of a sustainable feedstock production for bio-based renewable energy in the United States. Scientists and staff of the Agricultural Research Service (ARS) and Forest Service (FS) within USDA collaborate with other federal agencies, universities and...

  4. Engaging Scientists and Users in Climate Change Research and Results

    Science.gov (United States)

    Cloyd, E. T.; Reeves, K.; Shimamoto, M. M.; Zerbonne, S.

    2016-12-01

    The U.S. Global Change Research Program has a mandate to "consult with actual and potential users of the results of the program" in developing products that will support learning about and responding to climate change. USGCRP has sought to engage stakeholders throughout the development and dissemination of key products, such as the Third National Climate Assessment (NCA3, 2014) and the Climate and Health Assessment (CHA, 2016), in the strategic planning processes leading to the National Global Change Research Plan (2012) and Update to the Strategic Plan (2016), and through regular postings to social media that highlight research results and opportunities for engagement. Overall, USGCRP seeks to promote dialogue between scientific experts, stakeholders, and decision makers about information needs in regions or sectors, the potential impacts of climate change, and possible responses. This presentation will describe how USGCRP has implemented various stakeholder engagement measures during the planning, development, and release of products such as NCA3 and CHA. Through repeated opportunities for stakeholder input, USGCRP has promoted process transparency and inclusiveness in the framing of assessments and other products. In addition, USGCRP has supported scientists' engagement with a range of audiences and potential collaborators through a variety of mechanisms, including community-based meetings, deliberative forums, and identification of non-Federal speaking and knowledge co-production opportunities. We will discuss key lessons learned and successful approaches for engaging users as well as opportunities and challenges for future engagement.

  5. Politics and scientific expertise: Scientists, risk perception, and nuclear waste policy

    International Nuclear Information System (INIS)

    Barke, R.P.; Jenkins-Smith, H.C.

    1993-01-01

    To study the homogeneity and influences on scientists' perspectives of environmental risks, the authors have examined similarities and differences in risk perceptions, particularly regarding nuclear wastes, and policy preferences among 1011 scientists and engineers. Significant differences (p<0.05) were found in the patterns of beliefs among scientists from different fields of research. In contrast to physicists, chemists, and engineers, life scientists tend to: (a) perceive the greatest risks from nuclear energy and nuclear waste management; (b) perceive higher levels of overall environmental risk; (c) strongly oppose imposing risks on unconsenting individuals; and (d) prefer stronger requirements for environmental management. On some issues related to priorities among public problems and calls for government action, there are significant variations among life scientists or physical scientists. It was also found that-independently of field of research-perceptions of risk and its correlates are significantly associated with the type of institution in which the scientist is employed. Scientists in universities or state and local governments tend to see the risks of nuclear energy and wastes as greater than scientists who work as business consultants, for federal organizations, or for private research laboratories. Significant differences also are found in priority given to environmental risks, the perceived proximity of environmental disaster, willingness to impose risks on an unconsenting population, and the necessity of accepting risks and sacrifices. 33 refs., 3 figs., 9 tabs

  6. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  7. Medical laboratory scientist

    DEFF Research Database (Denmark)

    Smith, Julie; Qvist, Camilla Christine; Jacobsen, Katja Kemp

    2017-01-01

    Previously, biomarker research and development was performed by laboratory technicians working as craftsmen in laboratories under the guidance of medical doctors. This hierarchical structure based on professional boundaries appears to be outdated if we want to keep up with the high performance...... of our healthcare system, and take advantage of the vast potential of future biomarkers and personalized medicine. We ask the question; does our healthcare system benefit from giving the modern medical laboratory scientist (MLS) a stronger academic training in biomarker research, development...

  8. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A scientist's guide to engaging decision makers

    Science.gov (United States)

    Vano, J. A.

    2015-12-01

    Being trained as a scientist provides many valuable tools needed to address society's most pressing environmental issues. It does not, however, provide training on one of the most critical for translating science into action: the ability to engage decision makers. Engagement means different things to different people and what is appropriate for one project might not be for another. However, recent reports have emphasized that for research to be most useful to decision making, engagement should happen at the beginning and throughout the research process. There are an increasing number of boundary organizations (e.g., NOAA's Regional Integrated Sciences and Assessment program, U.S. Department of the Interior's Climate Science Centers) where engagement is encouraged and rewarded, and scientists are learning, often through trial and error, how to effectively include decision makers (a.k.a. stakeholders, practitioners, resource managers) in their research process. This presentation highlights best practices and practices to avoid when scientists engage decision makers, a list compiled through the personal experiences of both scientists and decision makers and a literature review, and how this collective knowledge could be shared, such as through a recent session and role-playing exercise given at the Northwest Climate Science Center's Climate Boot Camp. These ideas are presented in an effort to facilitate conversations about how the science community (e.g., AGU researchers) can become better prepared for effective collaborations with decision makers that will ultimately result in more actionable science.

  10. Internet of Things in Service Innovation

    Directory of Open Access Journals (Sweden)

    Xiangxuan Xu

    2012-11-01

    Full Text Available Last decade has witnessed rapid growth of Internet of Things (IoT literatures by scientists from technology domain such as computer science, telecommunication and engineering, but very few studies have been done by sociologists and even fewer by economic geographers in service research. The great impact that IoT will bring to service offerings and its spatial consequence is disproportionate to how much research has been done in this area. The paper aims to understand how the adoption of IoT affects the spatial ramification of service offerings and service business. After the theoretical framework and research method, part three explains what the implications of IoT in service context are, why and how IoT enables innovation in services and the current obstacles. Part four further discusses what could be the spatial ramification with the case of China emerging IoT industry in city Wuxi.

  11. The Pre-Service Teachers' Value Orientations

    Science.gov (United States)

    Akin, Mehmet Ali

    2018-01-01

    It is important to note that social scientists have recently concentrated on the issue of values. People's thoughts, decisions, behaviors etc. values that have an important place in the explanations constitute the subject of this research. The main purpose of the research is to analyze whether the value orientations of the pre-service teacher'…

  12. Professionals and Emerging Scientists Sharing Science

    Science.gov (United States)

    Graff, P. V.; Allen, J. S.; Tobola, K.

    2010-01-01

    The Year of the Solar System (YSS) celebration begins in the fall of 2010. As YSS provides a means in which NASA can inspire members of the public about exciting missions to other worlds in our solar system, it is important to remember these missions are about the science being conducted and new discoveries being made. As part of the Year of the Solar System, Astromaterials Research and Exploration Science (ARES) Education, at the NASA Johnson Space Center, will infuse the great YSS celebration within the Expedition Earth and Beyond Program. Expedition Earth and Beyond (EEAB) is an authentic research program for students in grades 5-14 and is a component of ARES Education. Students involved in EEAB have the opportunity to conduct and share their research about Earth and/or planetary comparisons. ARES Education will help celebrate this exciting Year of the Solar System by inviting scientists to share their science. Throughout YSS, each month will highlight a topic related to exploring our solar system. Additionally, special mission events will be highlighted to increase awareness of the exciting missions and exploration milestones. To bring this excitement to classrooms across the nation, the Expedition Earth and Beyond Program and ARES Education will host classroom connection events in which scientists will have an opportunity to share discoveries being made through scientific research that relate to the YSS topic of the month. These interactive presentations will immerse students in some of the realities of exploration and potentially inspire them to conduct their own investigations. Additionally, scientists will share their own story of how they were inspired to pursue a STEM-related career that got them involved in exploration. These career highlights will allow students to understand and relate to the different avenues that scientists have taken to get where they are today. To bring the sharing of science full circle, student groups who conduct research by

  13. Social Scientists and Public Administration in the Lula Silva Government

    Directory of Open Access Journals (Sweden)

    Maria Celina D’Araujo

    2009-06-01

    Full Text Available We focus here on a new theme among studies on the Social Sciences in Brazil, namely, the presence of social scientists in high-level office in the federal government, whether as directors or advisers. In general, studies on the social sciences in Brazil are devoted to examining the academic profile of their founders, the contents prioritized in the disciplines, processes of institutionalization and methodologies adopted, among other aspects. However, there has never been an examination of the place of the social scientist in the division of labour of the state bureaucracy, in the market and close to those in power. By means of empirical research, we have ascertained that individuals with this academic background have a notable presence in the Lula da Silva government (2003-2006; 2007- . Our hypothesis is that this presence cannot be explained chiefly by the specificity of the knowledge produced by this set of disciplines. Instead, one has to look at other variables, especially social scientists’ link with the public service.

  14. FNL Scientists Introduce Concept That Could Help the Immune System Respond to Vaccines | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Scientists have discovered an efficient and straightforward model to manipulate RNA nanoparticles, a new concept that could help trigger desirable activation of the immune system with vaccines and therapies. A multi-institutional team of researchers

  15. Soil "ecosystem" services and natural capital: Critical appraisal of research on uncertain ground

    Directory of Open Access Journals (Sweden)

    Philippe C. Baveye

    2016-06-01

    Full Text Available Over the last few years, considerable attention has been devoted in the scientific literature and in the media to the concept of ecosystem services of soils. The monetary valuation of these services, demanded by many governments and international agencies, is often depicted as a necessary condition for the preservation of the natural capital that soils represent. This focus on soil services is framed in the context of a general interest in ecosystem services that allegedly started in 1997, and took off in earnest after 2005. The careful analysis of the literature proposed in this article shows that, in fact, interest in the multifunctionality of soils emerged already in the mid-60s, at a time when hundreds of researchers worldwide were trying, and largely failing, to figure out how to put price tags meaningfully on nature's services. Soil scientists, since, have tried to better understand various functions/services of soils, as well as their possible relation with key soil characteristics, like biodiversity. They have also tried to make progress on the challenging quantification of soil functions/services. However, researchers have shown very little interest in monetary valuation, undoubtedly in part because it is not clear what economic and financial markets might do with prices of soil functions/services, even if we could somehow come up with such numbers, and because there is no assurance at all, based on neoclassical economic theory, that markets would manage soil resources optimally. Instead of monetary valuation, focus in the literature has been put on decision-making methods, like Multi-Criteria Decision Analysis (MCDA and Bayesian Belief Networks (BBN, which do not require the systematic monetization of soil functions/services and easily accommodate deliberative approaches involving a variety of stakeholders. A prerequisite to progress in such public deliberations is that participants be very cognizant of the extreme relevance of soils

  16. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. NSF Antarctic and Arctic Data Consortium; Scientific Research Support & Data Services for the Polar Community

    Science.gov (United States)

    Morin, P. J.; Pundsack, J. W.; Carbotte, S. M.; Tweedie, C. E.; Grunow, A.; Lazzara, M. A.; Carpenter, P.; Sjunneskog, C. M.; Yarmey, L.; Bauer, R.; Adrian, B. M.; Pettit, J.

    2014-12-01

    The U.S. National Science Foundation Antarctic & Arctic Data Consortium (a2dc) is a collaboration of research centers and support organizations that provide polar scientists with data and tools to complete their research objectives. From searching historical weather observations to submitting geologic samples, polar researchers utilize the a2dc to search andcontribute to the wealth of polar scientific and geospatial data.The goals of the Antarctic & Arctic Data Consortium are to increase visibility in the research community of the services provided by resource and support facilities. Closer integration of individual facilities into a "one stop shop" will make it easier for researchers to take advantage of services and products provided by consortium members. The a2dc provides a common web portal where investigators can go to access data and samples needed to build research projects, develop student projects, or to do virtual field reconnaissance without having to utilize expensive logistics to go into the field.Participation by the international community is crucial for the success of a2dc. There are 48 nations that are signatories of the Antarctic Treaty, and 8 sovereign nations in the Arctic. Many of these organizations have unique capabilities and data that would benefit US ­funded polar science and vice versa.We'll present an overview of the Antarctic & Arctic Data Consortium, current participating organizations, challenges & opportunities, and plans to better coordinate data through a geospatial strategy and infrastructure.

  18. Research and services provision on the world research market

    Directory of Open Access Journals (Sweden)

    Witold Wiśniowski

    2013-03-01

    Full Text Available It is necessary to create new knowledge for the development of the economy. The source of new knowledge are research: basic, applied and industrial, which complement each other to form one whole. Each of these research has other sources of financing and other purposes. Due to the large influx of foreign technology to Poland industrial research is not growing as we would expect. To balance this deficiency the Research Institutes may provide services on the world market. It would be advisable to seek the provision of services on the global research market so that it could became a Polish smart specialization. This specialization would include the sale of intellect, which should never run out of customers.

  19. Access and preservation of digital research content: Linked open data services - A research library perspective

    Science.gov (United States)

    Kraft, Angelina; Sens, Irina; Löwe, Peter; Dreyer, Britta

    2016-04-01

    Globally resolvable, persistent digital identifiers have become an essential tool to enable unambiguous links between published research results and their underlying digital resources. In addition, this unambiguous identification allows citation. In an ideal research world, any scientific content should be citable and the coherent content, as well as the citation itself, should be persistent. However, today's scientists do not just produce traditional research papers - they produce comprehensive digital collections of objects which, alongside digital texts, include digital resources such as research data, audiovisual media, digital lab journals, images, statistics and software code. Researchers start to look for services which allow management of these digital resources with minimum time investment. In light of this, we show how the German National Library of Science and Technology (TIB) develops supportive frameworks to accompany the life cycle of scientific knowledge generation and transfer. This includes technical infrastructures for • indexing, cataloguing, digital preservation, DOI names and licencing for text and digital objects (the TIB DOI registration, active since 2004) and • a digital repository for the deposition and provision of accessible, traceable and citeable research data (RADAR). One particular problem for the management of data originating from (collaborating) research infrastructures is their dynamic nature in terms of growth, access rights and quality. On a global scale, systems for access and preservation are in place for the big data domains (e.g. environmental sciences, space, climate). However, the stewardship for disciplines without a tradition of data sharing, including the fields of the so-called long tail, remains uncertain. The RADAR - Research Data Repository - project establishes a generic end-point data repository, which can be used in a collaborative way. RADAR enables clients to upload, edit, structure and describe their

  20. Association of Polar Early Career Scientists Promotes Professional Skills

    Science.gov (United States)

    Pope, Allen; Fugmann, Gerlis; Kruse, Frigga

    2014-06-01

    As a partner organization of AGU, the Association of Polar Early Career Scientists (APECS; http://www.apecs.is) fully supports the views expressed in Wendy Gordon's Forum article "Developing Scientists' `Soft' Skills" (Eos, 95(6), 55, doi:10.1002/2014EO060003). Her recognition that beyond research skills, people skills and professional training are crucial to the success of any early-career scientist is encouraging.

  1. Researchers must be aware of their roles at the interface of ecosystem services science and policy.

    Science.gov (United States)

    Crouzat, Emilie; Arpin, Isabelle; Brunet, Lucas; Colloff, Matthew J; Turkelboom, Francis; Lavorel, Sandra

    2018-02-01

    Scientists working on ecosystem service (ES) science are engaged in a mission-driven discipline. They can contribute to science-policy interfaces where knowledge is co-produced and used. How scientists engage with the governance arena to mobilise their knowledge remains a matter of personal choice, influenced by individual values. ES science cannot be considered neutral and a discussion of the values that shape it forms an important part of the sustainability dialogue. We propose a simple decision tree to help ES scientists identify their role and the purpose of the knowledge they produce. We characterise six idealised scientific postures spanning possible roles at the science-policy interface (pure scientist, science arbiter-guarantor, issue advocate-guardian, officer, honest broker and stealth issue advocate) and illustrate them with feedbacks from interviews. We encourage ES scientists to conduct a reflexive exploration of their attitudes regarding knowledge production and use, with the intention of progressing toward a higher recognition of the political and ethical importance of ES assessments.

  2. THEORETICAL AND APPLIED ANALYSIS OF CULTURAL POLICY IN RESEARCH OF DOMESTIC AND FOREIGN SCIENTISTS

    Directory of Open Access Journals (Sweden)

    Iryna Kinash

    2016-03-01

    Full Text Available The article analyses the cultural policies in research of domestic and foreign scientists. It was found that around the world it is a part of social policy and an important tool for development. The role of culture as a powerful means of consolidation of society, strengthening of national identity and patriotism is being determined. Implementation of cultural policy of Ukraine through the idea of national cultural revival and restoration of the unity of the state has been suggested. Keywords: cultural policy models, spirituality, society values, unity, national identity. JEL: Z 10

  3. The Political Scientist as Local Campaign Consultant

    Science.gov (United States)

    Crew, Robert E., Jr.

    2011-01-01

    During my 45 years as an academic, I have followed the admonition sometimes attributed to the legendary Jedi warrior Obi-Wan Kenobe that political scientists should "use [their] power for good and not for evil." In this spirit, I have devoted substantial portions of my career to public service by providing strategic advice and campaign management…

  4. Meet EPA Scientist Jeff Szabo, Ph.D.

    Science.gov (United States)

    EPA scientist Jeff Szabo, Ph.D., has worked for the EPA’s National Homeland Security Research Center since 2005. He conducts and manages water security research projects at EPA’s Test and Evaluation facility.

  5. [Qualitative Research in Health Services Research - Discussion Paper, Part 3: Quality of Qualitative Research].

    Science.gov (United States)

    Stamer, M; Güthlin, C; Holmberg, C; Karbach, U; Patzelt, C; Meyer, T

    2015-12-01

    The third and final discussion paper of the German Network of Health Services Research's (DNVF) "Qualitative Methods Working Group" demonstrates methods for the evaluation and quality of qualitative research in health services research. In this paper we discuss approaches described in evaluating qualitative studies, including: an orientation to the general principles of empirical research, an approach-specific course of action, as well as procedures based on the research-process and criteria-oriented approaches. Divided into general and specific aspects to be considered in a qualitative study quality evaluation, the central focus of the discussion paper undertakes an extensive examination of the process and criteria-oriented approaches. The general aspects include the participation of relevant groups in the research process as well as ethical aspects of the research and data protection issues. The more specific aspects in evaluating the quality of qualitative research include considerations about the research interest, research questions, and the selection of data collection methods and types of analyses. The formulated questions are intended to guide reviewers and researchers to evaluate and to develop qualitative research projects appropriately. The intention of this discussion paper is to ensure a transparent research culture, and to reflect on and discuss the methodological and research approach of qualitative studies in health services research. With this paper we aim to initiate a discussion on high quality evaluation of qualitative health services research. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Directory of Open Access Journals (Sweden)

    Anthony Dudo

    Full Text Available Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  7. CGH Short Term Scientist Exchange Program (STSEP)

    Science.gov (United States)

    STSEP promotes collaborative research between established U.S. and foreign scientists from low, middle, and upper-middle income countries (LMICs) by supporting, in part, exchange visits of cancer researchers between U.S. and foreign laboratories.

  8. Developing and Sustaining a Career as a Transdisciplinary Nurse Scientist.

    Science.gov (United States)

    Hickey, Kathleen T

    2018-01-01

    The purpose of this article is to provide an overview of strategies to build and sustain a career as a nurse scientist. This article examines how to integrate technologies and precision approaches into clinical practice, research, and education of the next generation of nursing scholars. This article presents information for shaping a sustainable transdisciplinary career. Programs of research that utilize self-management to improve quality of life are discussed throughout the article. The ongoing National Institute of Nursing Research-funded (R01 grant) iPhone Helping Evaluate Atrial Fibrillation Rhythm through Technology (iHEART) study is the first prospective, randomized controlled trial to evaluate whether electrocardiographic monitoring with the AliveCor™ device in the real-world setting will improve the time to detection and treatment of recurrent atrial fibrillation over a 6-month period as compared to usual cardiac care. Opportunities to sustain a career as a nurse scientist and build programs of transdisciplinary research are identified. These opportunities are focused within the area of research and precision medicine. Nurse scientists have the potential and ability to shape their careers and become essential members of transdisciplinary partnerships. Exposure to clinical research, expert mentorship, and diverse training opportunities in different areas are essential to ensure that contributions to nursing science are visible through publications and presentations as well as through securing grant funding to develop and maintain programs of research. Transcending boundaries and different disciplines, nurses are essential members of many diverse teams. Nurse scientists are strengthening research approaches, clinical care, and communication and improving health outcomes while also building and shaping the next generation of nurse scientists. © 2017 Sigma Theta Tau International.

  9. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  10. Developing Scientists' "Soft" Skills

    Science.gov (United States)

    Gordon, Wendy

    2014-02-01

    A great deal of professional advice directed at undergraduates, graduate students, postdoctoral fellows, and even early-career scientists focuses on technical skills necessary to succeed in a complex work environment in which problems transcend disciplinary boundaries. Collaborative research approaches are emphasized, as are cross-training and gaining nonacademic experiences [Moslemi et al., 2009].

  11. Think globally, research locally: paradigms and place in agroecological research.

    Science.gov (United States)

    Reynolds, Heather L; Smith, Alex A; Farmer, James R

    2014-10-01

    Conducting science for practical ends implicates scientists, whether they wish it or not, as agents in social-ecological systems, raising ethical, economic, environmental, and political issues. Considering these issues helps scientists to increase the relevance and sustainability of research outcomes. As we rise to the worthy call to connect basic research with food production, scientists have the opportunity to evaluate alternative food production paradigms and consider how our research funds and efforts are best employed. In this contribution, we review some of the problems produced by science conducted in service of industrial agriculture and its associated economic growth paradigm. We discuss whether the new concept of "ecological intensification" can rescue the industrial agriculture/growth paradigm and present an emerging alternative paradigm of decentralized, localized, biodiversity-promoting agriculture for a steady-state economy. This "custom fit" agriculture engages constructively with complex and highly localized ecosystems, and we draw from examples of published work to demonstrate how ecologists can contribute by using approaches that acknowledge local agricultural practices and draw on community participation. © 2014 Botanical Society of America, Inc.

  12. The talent process of successful academic women scientists at elite research universities in New York state

    Science.gov (United States)

    Kaenzig, Lisa M.

    women scientists at elite research universities in New York. A criterion sample (n=94) was selected resulting in forty-one successful academic women scientists as the study participants, representing a response rate of 43.6%. Findings include the important roles of parents, teachers, mentors and collaborators on the talent development process of the participants. The perception of the study participants was that there were multiple facilitators to their talent development process, while few barriers were acknowledged. The most important barriers cited by participants were perceptions of institutional culture and sexism. Implications for practice in both gifted and higher education are suggested, based on the findings of the study. For gifted education, these suggestions include the need to provide parental education programs emphasizing the importance of intellectual engagement at home, providing dedicated time for science in primary education, and fostering science and mathematics opportunities, particularly for girls and young women. Stressing the importance of hard work, persistence and intelligent risk-taking are also important for encouraging girls in science. For higher education, the study provides models of success of academic women scientists, outlines the importance of mentors and collaborators, and emphasizes the critical role that institutions and departments play in facilitating or impeding women's career development as academics. The current study suggests several areas for further research to continue the exploration of the talent development influences on academic women scientists. Based on the findings of this study, recommended studies include examining the differences of generational cohorts; probing the roles of collaborators/mentor colleagues; exploring differences for women from various ethnic and racial backgrounds; replicating the current study with larger populations of women scientists; investigating the role of facilitative school environments

  13. Implementing a 3D printing service in a biomedical library.

    Science.gov (United States)

    Walker, Verma

    2017-01-01

    Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.

  14. Teaching research ethics better: focus on excellent science, not bad scientists.

    Science.gov (United States)

    Yarborough, Mark; Hunter, Lawrence

    2013-06-01

    A recent report of the United States' Presidential Commission for the Study of Bioethical Issues highlights how important it is for the research community to enjoy the "earned confidence" of the public and how creating a "culture of responsibility" can contribute to that confidence. It identifies a major role for "creative, flexible, and innovative" ethics education in creating such a culture. Other recent governmental reports from various nations similarly call for a renewed emphasis on ethics education in the sciences. We discuss why some common approaches to ethics education in the graduate sciences fail to meet the goals envisioned in the reports and we describe an approach, animated by primary attention on excellent science as opposed to bad scientists, that we have employed in our ethics teaching that we think is better suited for inspiring and sustaining responsible, trustworthy science. © 2013 Wiley Periodicals, Inc.

  15. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  16. Biotechnology awareness study, Part 1: Where scientists get their information.

    Science.gov (United States)

    Grefsheim, S; Franklin, J; Cunningham, D

    1991-01-01

    A model study, funded by the National Library of Medicine (NLM) and conducted by the Southeastern/Atlantic Regional Medical Library (RML) and the University of Maryland Health Sciences Library, attempted to assess the information needs of researchers in the developing field of biotechnology and to determine the resources available to meet those needs in major academic health sciences centers. Nine medical schools in RML Region 2 were selected to participate in a biotechnology awareness study. A survey was conducted of the nine medical school libraries to assess their support of biotechnology research. To identify the information needs of scientists engaged in biotechnology-related research at the schools, a written survey was sent to the deans of the nine institutions and selected scientists they had identified. This was followed by individual, in-depth interviews with both the deans and scientists surveyed. In general, scientists obtained information from three major sources: their own experiments, personal communication with other scientists, and textual material (print or electronic). For textual information, most study participants relied on personal journal subscriptions. Tangential journals were scanned in the department's library. Only a few of these scientists came to the health sciences library on a regular basis. Further, the study found that personal computers have had a major impact on how biotechnologists get and use information. Implications of these findings for libraries and librarians are discussed. PMID:1998818

  17. PREFACE: 2nd International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research''

    Science.gov (United States)

    Naumova, A. V.; Khodanovich, M. Y.; Yarnykh, V. L.

    2016-02-01

    The Second International Conference and Young Scientist School ''Magnetic resonance imaging in biomedical research'' was held on the campus of the National Research Tomsk State University (Tomsk, Russia) on September 7-9, 2015. The conference was focused on magnetic resonance imaging (MRI) applications for biomedical research. The main goal was to bring together basic scientists, clinical researchers and developers of new MRI techniques to bridge the gap between clinical/research needs and advanced technological solutions. The conference fostered research and development in basic and clinical MR science and its application to health care. It also had an educational purpose to promote understanding of cutting-edge MR developments. The conference provided an opportunity for researchers and clinicians to present their recent theoretical developments, practical applications, and to discuss unsolved problems. The program of the conference was divided into three main topics. First day of the conference was devoted to educational lectures on the fundamentals of MRI physics and image acquisition/reconstruction techniques, including recent developments in quantitative MRI. The second day was focused on developments and applications of new contrast agents. Multinuclear and spectroscopic acquisitions as well as functional MRI were presented during the third day of the conference. We would like to highlight the main developments presented at the conference and introduce the prominent speakers. The keynote speaker of the conference Dr. Vasily Yarnykh (University of Washington, Seattle, USA) presented a recently developed MRI method, macromolecular proton fraction (MPF) mapping, as a unique tool for modifying image contrast and a unique tool for quantification of the myelin content in neural tissues. Professor Yury Pirogov (Lomonosov Moscow State University) described development of new fluorocarbon compounds and applications for biomedicine. Drs. Julia Velikina and Alexey

  18. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  19. The subjectivity of scientists and the Bayesian approach

    CERN Document Server

    Press, James S

    2001-01-01

    Comparing and contrasting the reality of subjectivity in the work of history's great scientists and the modern Bayesian approach to statistical analysisScientists and researchers are taught to analyze their data from an objective point of view, allowing the data to speak for themselves rather than assigning them meaning based on expectations or opinions. But scientists have never behaved fully objectively. Throughout history, some of our greatest scientific minds have relied on intuition, hunches, and personal beliefs to make sense of empirical data-and these subjective influences have often a

  20. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  1. Involving Practicing Scientists in K-12 Science Teacher Professional Development

    Science.gov (United States)

    Bertram, K. B.

    2011-12-01

    The Science Teacher Education Program (STEP) offered a unique framework for creating professional development courses focused on Arctic research from 2006-2009. Under the STEP framework, science, technology, engineering, and math (STEM) training was delivered by teams of practicing Arctic researchers in partnership with master teachers with 20+ years experience teaching STEM content in K-12 classrooms. Courses based on the framework were offered to educators across Alaska. STEP offered in-person summer-intensive institutes and follow-on audio-conferenced field-test courses during the academic year, supplemented by online scientist mentorship for teachers. During STEP courses, teams of scientists offered in-depth STEM content instruction at the graduate level for teachers of all grade levels. STEP graduate-level training culminated in the translation of information and data learned from Arctic scientists into standard-aligned lessons designed for immediate use in K-12 classrooms. This presentation will focus on research that explored the question: To what degree was scientist involvement beneficial to teacher training and to what degree was STEP scientist involvement beneficial to scientist instructors? Data sources reveal consistently high levels of ongoing (4 year) scientist and teacher participation; high STEM content learning outcomes for teachers; high STEM content learning outcomes for students; high ratings of STEP courses by scientists and teachers; and a discussion of the reasons scientists indicate they benefited from STEP involvement. Analyses of open-ended comments by teachers and scientists support and clarify these findings. A grounded theory approach was used to analyze teacher and scientist qualitative feedback. Comments were coded and patterns analyzed in three databases. The vast majority of teacher open-ended comments indicate that STEP involvement improved K-12 STEM classroom instruction, and the vast majority of scientist open-ended comments

  2. Study of interdisciplinarity in chemistry research based on the production of Puerto Rican scientists 1992-2001. Interdisciplinarity, Bibliometric indicators, Chemistry

    Directory of Open Access Journals (Sweden)

    Elias Sanz-Casado

    2004-01-01

    Full Text Available Determining the role played by interdisciplinarity in the generation of knowledge is a very fertile line of research in which synergies among different fields of science can be identified and their impact on research efficiency ascertained. A number of methods may be used to explore interdisciplinarity, from the sociological approach to those requiring the application of bibliometric indicators. In this paper, a bibliometric analysis of the research conducted by scientists with the Chemistry Department at the University of Puerto Rico was run on the basis of the subject matter of citing and cited papers, in order to ascertain how interdisciplinarity affects certain aspects of research, such as collaboration or visibility. The data used for this paper were taken from the Science Citation Index database, which lists the most significant contributions made by these scientists, along with the respective bibliographic references. The study revealed the existence of scientific areas that are highly dependent on the knowledge generated in the specific area itself. A positive, albeit weak, correlation was also observed between research interdisciplinarity and collaboration between researchers and institutions. Interdisciplinarity was not found to have any effect, however, on the visibility of research papers or to be correlated with international collaboration.

  3. Research evaluation support services in biomedical libraries

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Gutzman

    2018-01-01

    Conclusions: Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  4. Biomedical scientists' perceptions of ethical and social implications: is there a role for research ethics consultation?

    Directory of Open Access Journals (Sweden)

    Jennifer B McCormick

    Full Text Available Research ethics consultation programs are being established with a goal of addressing the ethical, societal, and policy considerations associated with biomedical research. A number of these programs are modelled after clinical ethics consultation services that began to be institutionalized in the 1980s. Our objective was to determine biomedical science researchers' perceived need for and utility of research ethics consultation, through examination of their perceptions of whether they and their institutions faced ethical, social or policy issues (outside those mandated by regulation and examination of willingness to seek advice in addressing these issues. We conducted telephone interviews and focus groups in 2006 with researchers from Stanford University and a mailed survey in December 2006 to 7 research universities in the U.S.A total of 16 researchers were interviewed (75% response rate, 29 participated in focus groups, and 856 responded to the survey (50% response rate. Approximately half of researchers surveyed (51% reported that they would find a research ethics consultation service at their institution moderately, very or extremely useful, while over a third (36% reported that such a service would be useful to them personally. Respondents conducting human subjects research were more likely to find such a service very to extremely useful to them personally than respondents not conducting human subjects research (20% vs 10%; chi(2 p<0.001.Our findings indicate that biomedical researchers do encounter and anticipate encountering ethical and societal questions and concerns and a substantial proportion, especially clinical researchers, would likely use a consultation service if they were aware of it. These findings provide data to inform the development of such consultation programs in general.

  5. One More Legacy of Paul F. Brandwein: Creating Scientists

    Science.gov (United States)

    Fort, Deborah C.

    2011-06-01

    This paper studies the influence of Paul F. Brandwein, author, scientist, teacher and mentor, publisher, humanist, and environmentalist, on gifted youngsters who later became scientists, based primarily on information gathered from surveys completed by 25 of his students and one colleague. It also traces his profound interactions with science educators. It illuminates the theories of Brandwein and his protégés and colleagues about the interaction of environment, schooling, and education and Brandwein's belief in having students do original research (that is, research whose results are unknown) on their way to discovering their future scientific paths. It tests Brandwein's 1955 hypothesis on the characteristics typical of the young who eventually become scientists, namely: Three factors are considered as being significant in the development of future scientists: a Genetic Factor with a primary base in heredity (general intelligence, numerical ability, and verbal ability); a Predisposing Factor, with a primary base in functions which are psychological in nature; an Activating Factor, with a primary base in the opportunities offered in school and in the special skills of the teacher. High intelligence alone does not make a youngster a scientist (p xix).

  6. Common Data Servers as a Foundation for Specialized Services

    Science.gov (United States)

    Burger, E. F.; Schweitzer, R.; O'Brien, K.; Manke, A. B.; Smith, K. M.

    2017-12-01

    NOAA's Pacific Marine Environmental Laboratory (PMEL) hosts a broad range of research efforts that span many scientific and environmental research disciplines. Many of these research projects have their own data streams that are as diverse as the research. Data are collected using various platforms, including innovative new platforms such as Saildrones and autonomous profilers. With its requirements for public access to federally funded research results and data, the 2013 White House Office of Science and Technology memo on Public Access to Research Results (PARR) changed the data landscape for Federal agencies. In 2015, with support from the PMEL Director, the PMEL Science Data Integration Group (SDIG) initiated a multi-year effort to formulate and implement an integrated data-management strategy for PMEL research efforts. The PMEL integrated data management strategy will provide data access, visualization and some archive services to PMEL data and use existing and proven frameworks for this capability. In addition to these foundational data services, these data access and visualization frameworks are also leveraged to provide enhanced services to scientists. One enhanced service developed is a data management "dashboard". This application provides scientists with a snapshot of their data assets, access to these data, a map view of data locations, and information on the archival status. Ideally, information on the dashboard continually updates to accurately reflect the project's data asset status. This poster explains how frameworks such as ERDDAP and LAS were used as a foundation for the development of custom services, as well as an explanation of the PMEL data management dashboard functionality. We will also highlight accomplishments of the PMEL Integrated data management strategy implementation.

  7. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  8. ServiceNow as a platform – practical research

    OpenAIRE

    Nechyporenko, Tamara

    2015-01-01

    In this thesis I am going to cover the main aspects of ServiceNow platform, what is it, and related areas to ServiceNow technologies such as cloud service technologies and ITIL framework, how it is used in ServiceNow. All the definitions and descriptions will be in details and a reader can get the important terms and definitions. The main scope of the thesis is practical research and creation of portal based on that research. The portal will be implemented using ServiceNow platform, Servic...

  9. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  10. Supporting Students as Scientists: One Mission's Efforts

    Science.gov (United States)

    Taylor, J.; Chambers, L. H.; Trepte, C. R.

    2012-12-01

    NASA's CALIPSO satellite mission provides an array of opportunities for teachers, students, and the general public. In developing our latest plan for education and public outreach, CALIPSO focused on efforts that would support students as scientists. CALIPSO EPO activities are aimed at inspiring young scientists through multiple avenues of potential contact, including: educator professional development, student-scientist mentoring, curriculum resource development, and public outreach through collaborative mission efforts. In this session, we will explore how these avenues complement one another and take a closer look at the development of the educator professional development activities. As part of CALIPSO's EPO efforts, we have developed the GLOBE Atmosphere Investigations Programs (AIP). The program encourages students to engage in authentic science through research on the atmosphere. The National Research Council (NRC) has emphasized the importance of teaching scientific inquiry in the National Science Education Standards (1996, 2000) and scientific practice in the recent Framework for K-12 Science Education (2011). In order to encourage student-centered science inquiry, teacher training utilizing GLOBE Atmosphere Investigations and GLOBE's Student Research Process are provided to middle and high school teachers to assist them in incorporating real scientific investigations into their classroom. Through participation in the program, teachers become a part of GLOBE (Global Learning and Observations to Benefit the Environment) - an international community of teachers, students, and scientists studying environmental science in over 24,000 schools around the world. The program uses NASA's satellites and the collection of atmosphere data by students to provide an engaging science learning experience for the students, and teachers. The GLOBE Atmosphere Investigations program offers year-long support to both teachers and students through direct involvement with NASA

  11. Mentors, networks, and resources for early career female atmospheric scientists

    Science.gov (United States)

    Hallar, A. G.; Avallone, L. M.; Edwards, L. M.; Thiry, H.; Ascent

    2011-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT is a multi-faceted approach to retaining these junior scientists through the challenges in their research and teaching career paths. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory - Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. An external evaluation of the three workshop cohorts concludes that the workshops have been successful in establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  12. "Who's gonna plant the trees?!?": Creating effective synergies between community and research goals in scientist-community partnerships

    Science.gov (United States)

    Declet-Barreto, J.; Johnson, C.

    2017-12-01

    Harnessing science into effective, community-focused action requires ongoing partnerships that increase both understanding and trust between communities and scientists. One hurdle to overcome is that often, research questions and goals do not line up with the most pressing perceived or objective issues that a partner community faces. Another barrier is that community members often do not have a clear idea of how communities could benefit from the research, an issue that can create confusion and undermine community support for a partnership. In this session, we will discuss some of our successes and misses in developing research partnerships and actionable science for the benefit of communities. We will share stories on how we crafted effective actionable research products in partnership with Environmental Justice and other vulnerable communities.

  13. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  14. 78 FR 50144 - Health Services Research and Development Service, Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2013-08-16

    ... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service, Scientific Merit... management, and nursing research. Applications are reviewed for scientific and technical merit, mission... Advisory Committee Act, 5 U.S.C. App. 2, that the Health Services Research and Development Service (HSR&D...

  15. Bridging the Gap Between Research and Operations in the National Weather Service: The Huntsville Model

    Science.gov (United States)

    Darden, C.; Carroll, B.; Lapenta, W.; Jedlovec, G.; Goodman, S.; Bradshaw, T.; Gordon, J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    The National Weather Service Office (WFO) in Huntsville, Alabama (HUN) is slated to begin full-time operations in early 2003. With the opening of the Huntsville WFO, a unique opportunity has arisen for close and productive collaboration with scientists at NASA Marshall Space Flight Center (MSFC) and the University of Alabama Huntsville (UAH). As a part of the collaboration effort, NASA has developed the Short-term Prediction Research and Transition (SPoRT) Center. The mission of the SPoRT center is to incorporate NASA earth science technology and research into the NWS operational environment. Emphasis will be on improving mesoscale and short-term forecasting in the first 24 hours of the forecast period. As part of the collaboration effort, the NWS and NASA will develop an implementation and evaluation plan to streamline the integration of the latest technologies and techniques into the operational forecasting environment. The desire of WFO HUN, NASA, and UAH is to provide a model for future collaborative activities between research and operational communities across the country.

  16. Operational research as implementation science: definitions, challenges and research priorities.

    Science.gov (United States)

    Monks, Thomas

    2016-06-06

    Operational research (OR) is the discipline of using models, either quantitative or qualitative, to aid decision-making in complex implementation problems. The methods of OR have been used in healthcare since the 1950s in diverse areas such as emergency medicine and the interface between acute and community care; hospital performance; scheduling and management of patient home visits; scheduling of patient appointments; and many other complex implementation problems of an operational or logistical nature. To date, there has been limited debate about the role that operational research should take within implementation science. I detail three such roles for OR all grounded in upfront system thinking: structuring implementation problems, prospective evaluation of improvement interventions, and strategic reconfiguration. Case studies from mental health, emergency medicine, and stroke care are used to illustrate each role. I then describe the challenges for applied OR within implementation science at the organisational, interventional, and disciplinary levels. Two key challenges include the difficulty faced in achieving a position of mutual understanding between implementation scientists and research users and a stark lack of evaluation of OR interventions. To address these challenges, I propose a research agenda to evaluate applied OR through the lens of implementation science, the liberation of OR from the specialist research and consultancy environment, and co-design of models with service users. Operational research is a mature discipline that has developed a significant volume of methodology to improve health services. OR offers implementation scientists the opportunity to do more upfront system thinking before committing resources or taking risks. OR has three roles within implementation science: structuring an implementation problem, prospective evaluation of implementation problems, and a tool for strategic reconfiguration of health services. Challenges facing OR

  17. Qualitative versus Quantitative Evaluation of Scientists' Impact: A Medical Toxicology Tale

    Directory of Open Access Journals (Sweden)

    Reza Afshari

    2014-12-01

    Full Text Available Evaluation of scientists working in a specific area of science is necessary, as they may strive for same limited resources, grants and academic promotions. One of the most common and accepted methods of assessing the performance and impact of a scientist is calculating the number of citations for their publications. However, such method suffer from certain shortcomings. It has become more and more obvious that evaluation of scientists should be qualitative in addition to quantitative. Moreover, the evaluation process should be pragmatic and reflective of the priorities of an institution, a country or an intended population. In this context, a scoring scale called "360-degree researcher evaluation score" is proposed in this paper. Accordingly, scientists are evaluated in 5 independent domains including (I science development, (II economic impact, (III policy impact, (IV societal impact and (V stewardship of research. This scale is designed for evaluation of impacts resulted from research activities and thus it excludes the educational programs done by a scientist. In general, it seems necessary that the evaluation process of a scientist’s impact moves from only scintometric indices to a combination of quantitative and qualitative indices.

  18. Implementing a 3D printing service in a biomedical library

    Directory of Open Access Journals (Sweden)

    Verma Walker, MLIS

    2017-01-01

    Full Text Available Three-dimensional (3D printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.

  19. International Scientist Mobility and the Locus of Knowledge and Technology Transfer

    DEFF Research Database (Denmark)

    Edler, Jakob; Fier, Hedie; Grimpe, Christoph

    2011-01-01

    Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge ...... circulation”. The article contributes to the growing strand of the literature on scientist mobility and on the determinants of industry–science linkages at the individual level.Scientist......Despite the growing interest of scholars and policymakers to better understand the determinants for researchers in public science to transfer knowledge and technology to firms, little is known how temporary international mobility of scientists affects both their propensity to engage in knowledge...... and technology transfer (KTT) as well as the locus of such transfer. Based on a sample of more than 950 German academics from science and engineering faculties, we investigate how the duration and the frequency of scientists’ visits at research institutions outside their home country affect KTT activities. We...

  20. EGU's Early Career Scientists Network

    Science.gov (United States)

    Roberts Artal, L.; Rietbroek, R.

    2017-12-01

    The EGU encourages early career scientists (ECS) to become involved in interdisciplinary research in the Earth, planetary and space sciences, through sessions, social events and short courses at the annual General Assembly in April and throughout the year. Through division-level representatives, all ECS members can have direct input into matters of the division. A Union-wide representative, who sits on the EGU Council, ensures that ECS are heard at a higher level in the Union too. After a brief introduction as to how the network is organised and structured, this presentation will discuss how EGU ECS activities have been tailored to the needs of ECS members and how those needs have been identified. Reaching and communicating opportunities to ECS remains an ongoing challenge; they will be discussed in this presentation too, as well as some thoughts on how to make them more effective. Finally, the service offered to EGU ECS members would certainly benefit from building links and collaboration with other early career networks in the geosciences. This presentation will outline some of our efforts in that direction and the challenges that remain.

  1. Opportunities and Resources for Scientist Participation in Education and Public Outreach

    Science.gov (United States)

    Buxner, Sanlyn; CoBabe-Ammann, E.; Shipp, S.; Hsu, B.

    2012-10-01

    Active engagement of scientists in Education and Public Outreach (E/PO) activities results in benefits for both the audience and scientists. Most scientists are trained in research but have little formal training in education. The Planetary Science Education and Public Outreach (E/PO) Forum helps the Science Mission Directorate support scientists currently involved in E/PO and to help scientists who are interested in becoming involved in E/PO efforts find ways to do so through a variety of avenues. We will present current and future opportunities and resources for scientists to become engaged in education and public outreach. These include upcoming NASA SMD E/PO funding opportunities, professional development resources for writing NASA SMD E/PO proposals (webinars and other online tools), toolkits for scientists interested in best practices in E/PO (online guides for K-12 education and public outreach), EarthSpace (a community web space where instructors can find and share about teaching space and earth sciences in the undergraduate classroom, including class materials news and funding opportunities, and the latest education research), thematic resources for teaching about the solar system (archived resources from Year of the Solar System), and an online database of scientists interested in connecting with education programs. Learn more about the Forum and find resources at http://smdepo.org/.

  2. From Laboratories to Classrooms: Involving Scientists in Science Education

    Science.gov (United States)

    DeVore, E. K.

    2001-12-01

    Scientists play a key role in science education: the adventure of making new discoveries excites and motivates students. Yet, American science education test scores lag behind those of other industrial countries, and the call for better science, math and technology education is widespread. Thus, improving American science, math and technological literacy is a major educational goal for the NSF and NASA. Today, funding for research often carries a requirement that the scientist be actively involved in education and public outreach (E/PO) to enhance the science literacy of students, teachers and citizens. How can scientists contribute effectively to E/PO? What roles can scientists take in E/PO? And, how can this be balanced with research requirements and timelines? This talk will focus on these questions, with examples drawn from the author's projects that involve scientists in working with K-12 teacher professional development and with K-12 curriculum development and implementation. Experiences and strategies for teacher professional development in the research environment will be discussed in the context of NASA's airborne astronomy education and outreach projects: the Flight Opportunities for Science Teacher EnRichment project and the future Airborne Ambassadors Program for NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA). Effective partnerships with scientists as content experts in the development of new classroom materials will be described with examples from the SETI Institute's Life in the Universe curriculum series for grades 3-9, and Voyages Through Time, an integrated high school science course. The author and the SETI Institute wish to acknowledge funding as well as scientific and technical support from the National Science Foundation, the National Aeronautics and Space Administration, the Hewlett Packard Company, the Foundation for Microbiology, and the Combined Federated Charities.

  3. More Appropriate Information Systems and Services for the Social Scientist: Time to Put Our Findings to Work. A review of: Line, Maurice B. “The Information Uses and Needs of Social Scientists: An Overview of INFROSS.” Aslib Proceedings 23.8 (1971: 412‐34. Rpt. in Lines of Thought: Selected Papers. Ed. L.J. Anthony. London: Bingley, 1988. 45‐66.

    Directory of Open Access Journals (Sweden)

    R. Laval Hunsucker

    2007-12-01

    Full Text Available Objective – The study reported in this article was conceived in order to answer a question of very large scope: What are the information systems and services requirements of social scientists? Inherent in this question was the correlative question: How do social scientists tend to use such systems and services, and what resources and information access approaches do they by choice employ? The choice for such an approach was well‐considered, given that 1 there were at the time almost no research results available in this area; 2 the investigators feared that approaches developed earlier for the natural sciences and technology would be uncritically adopted for the social sciences as well; and 3 “the social science information system was developing anyway, and if it was to develop in appropriate ways, some guidance had to be provided quickly” (412. The Investigation into Information Requirements of the Social Sciences (INFROSS project team believed that there was “no point” (412 in embarking first on a series of more narrowly focused studies. The express intention was to derive findings that would be usable “for the improvement of information systems, or for the design of new ones” (414. For more on the project's conceptual underpinnings, see Line’s “Information Requirements.” Design – Exploratory study employing both quantitative and qualitative approaches over a period of three and a half years, beginning in the autumn of 1967.Setting – The whole of the United Kingdom. The project was funded by that country’s Office for Scientific and Technical Information (OSTI, which had been established in 1965.Subjects – Almost 1,100 randomly selected academic social science researchers, plus a substantial number of government socialscience researchers and social science “practitioners” (“college of education lecturers, schoolteachers, and individuals in social work and welfare” [413]. For the purposes of the study, the

  4. Scientists in an alternative vision of a globalized world

    Science.gov (United States)

    Erzan, Ayse

    2008-03-01

    Why should ``increasing the visibility of scientists in emergent countries'' be of interest? Can increasing the relevance and connectedness of scientific output, both to technological applications at home and cutting edge basic research abroad contribute to the general welfare in such countries? For this to happen, governments, inter-governmental and non-governmental organizations must provide incentives for the local industry to help fund and actively engage in the creation of new technologies, rather than settling for the solution of well understood engineering problems under the rubric of collaboration between scientists and industry. However, the trajectory of the highly industrialized countries cannot be retraced. Globalization facilitates closer interaction and collaboration between scientists but also deepens the contrasts between the center and the periphery, both world wide and within national borders; as it is understood today, it can lead to the redundancy of local technology oriented research, as the idea of a ``local industry'' is rapidly made obsolete. Scientists from all over the world are sucked into the vortex as both the economic and the cultural world increasingly revolve around a single axis. The challenge is to redefine our terms of reference under these rapidly changing boundary conditions and help bring human needs, human security and human happiness to the fore in elaborating and forging alternative visions of a globalized world. Both natural scientists and social scientists will be indispensable in such an endeavor.

  5. Extending the Mertonian Norms: Scientists' Subscription to Norms of Research

    Science.gov (United States)

    Anderson, Melissa S.; Ronning, Emily A.; De Vries, Raymond; Martinson, Brian C.

    2010-01-01

    This analysis, based on focus groups and a national survey, assesses scientists' subscription to the Mertonian norms of science and associated counternorms. It also supports extension of these norms to governance (as opposed to administration), as a norm of decision-making, and quality (as opposed to quantity), as an evaluative norm. (Contains 1…

  6. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  7. Educating the Next Generation of Lunar Scientists

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2010-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute (LPI) and NASA’s Johnson Space Center (JSC), is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA’s and NLSI’s objective to train the next generation of scientists, CLSE’s High School Lunar Research Project is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The High School Lunar Research Project engages teams of high school students in authentic lunar research that envelopes them in the process of science and supports the science goals of the CLSE. Most high school students’ lack of scientific research experience leaves them without an understanding of science as a process. Because of this, each team is paired with a lunar scientist mentor responsible for guiding students through the process of conducting a scientific investigation. Before beginning their research, students undertake “Moon 101,” designed to familiarize them with lunar geology and exploration. Students read articles covering various lunar geology topics and analyze images from past and current lunar missions to become familiar with available lunar data sets. At the end of “Moon 101”, students present a characterization of the geology and chronology of features surrounding the Apollo 11 landing site. To begin their research, teams choose a research subject from a pool of topics compiled by the CLSE staff. After choosing a topic, student teams ask their own research questions, within the context of the larger question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results and, after receiving feedback, create and present a conference style poster to a panel of

  8. Ethical implication of providing scientific data and services to diverse stakeholders: the case of the EPOS research infrastructure

    Science.gov (United States)

    Freda, Carmela; Atakan, Kuvvet; Cocco, Massimo

    2017-04-01

    EPOS, the European Plate Observing System, is an ESFRI infrastructure serving the needs of the solid Earth science community as a whole. EPOS promotes the use of multidisciplinary solid Earth data to improve the understanding of physical and chemical processes controlling earthquakes, volcanic eruptions, tsunamis as well as those driving tectonics and surface dynamics. The EPOS mission is to create a single, sustainable, and distributed infrastructure that integrates the diverse European research infrastructures for solid Earth science under a common framework with the final goal of delivering a suite of domain-specific and multidisciplinary data, products, and services in one single and integrated platform. Addressing ethics issues is a relevant challenge for any initiative, program or project dealing with scientific data and products provision, access to services for scientific purposes and communication with different stakeholders, including industry and society at large. In examining the role of EPOS on openly and freely delivering scientific data and products to diverse stakeholders including but not limited to scientists, we are looking at ethical issues associated with the use and re-use of these data and products possibly leading to a malevolent use and/or misuse of the data with implications on, for example, national security, environmental protection and risk communication. Moreover, EPOS is aware that the research promoted by the use of data delivered through its platform can have a profound influence on the environment, human health and wellbeing, economic development, and other facets of societies. We know there is nothing intrinsically bad about openly and freely delivering scientific data, as it serves as a tool for leveraging researches leading to solutions for a responsible management of Earth's resources and mitigation of natural hazards. However, we must evaluate the effects of such a data provision and feel the obligation to adopt a responsible

  9. Scientists as communicators: A randomized experiment to assess public reactions to scientists' social media communication along the science-advocacy continuum

    Science.gov (United States)

    Kotcher, J.; Vraga, E.; Myers, T.; Stenhouse, N.; Roser-Renouf, C.; Maibach, E.

    2014-12-01

    The question of what type of role scientists, or experts more generally, should play in policy debates is a perennial point of discussion within the scientific community. It is often thought that communication containing some form of policy advocacy is likely to compromise the perceived credibility of the individual scientist engaged in such behavior, with the possibility that it may also harm the credibility of the scientific community more broadly. Rather than evaluating statements in a binary fashion as representing either pure objectivity or pure advocacy, one recent model proposes that public communication by scientists should instead be thought of as falling along a continuum based upon the extent of normative judgment implicit in a statement. This approach predicts that as the extent of normative judgment increases, it poses a relatively greater risk to a scientist's perceived credibility. Though such a model is conceptually useful, little empirical social science research has systematically explored how individuals form judgments about different types of advocacy to examine common assumptions about the relative risks associated with such behaviors. In this presentation, we will report results from a national online experiment (N=1200) that examines audience responses to fictional social media posts written by either a climate scientist or a television weathercaster. Following the above model, the posts represent differing degrees of advocacy defined by the extent of normative judgment implicit in each statement. In instances where a specific policy is advocated, we examine whether participants' reactions are shaped by the extent to which the policy mentioned is congruent with one's political ideology. We hope this study will serve as an exemplar of applied science communication research that can begin to help inform scientists and other experts about the potential implications of different communication options they may choose from in deciding how to engage

  10. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  11. A Serendipitous Scientist.

    Science.gov (United States)

    Lefkowitz, Robert J

    2018-01-06

    Growing up in a middle-class Jewish home in the Bronx, I had only one professional goal: to become a physician. However, as with most of my Vietnam-era MD colleagues, I found my residency training interrupted by the Doctor Draft in 1968. Some of us who were academically inclined fulfilled this obligation by serving in the US Public Health Service as commissioned officers stationed at the National Institutes of Health. This experience would eventually change the entire trajectory of my career. Here I describe how, over a period of years, I transitioned from the life of a physician to that of a physician-scientist; my 50 years of work on cellular receptors; and some miscellaneous thoughts on subjects as varied as Nobel prizes, scientific lineages, mentoring, publishing, and funding.

  12. INCOMPETENCE IN SCIENCE AND TECHNOLOGY - IT IS A BRAKE OF PROGRESS OR RAIDING IN THE FIELD OF RESEARCH SERVICES

    Directory of Open Access Journals (Sweden)

    S. V. Myamlin

    2014-12-01

    Full Text Available Purpose. The analysis of the prerequisite appearing of the unfair competition in the market of research services to prevent raiding in science. Methodology. During the conducting of this study methods of scientific analysis and synthesis, the benchmarking method, the method of expert estimations were used. Findings. Possible methods of uncompetitive struggle during the performing of scientific research were examined. The urgency of this problem was proved. Therefore, the problem of the prerequisite appearing for incompetence on the market of research services and the task of its prevention and minimization of adverse effects for the development of science and technique is relevant, especially in the period of formation and the reform of the leading branches of the Ukrainian economy. The prerequisite appearing and conditions for the existence of incompetence in scientific activity were analyzed. The classification of the main ways of raiding was proposed and its justification was proved. Originality. The investigation of the phenomenon of unfair competition in the field of research services was pro-posed. The methods and means of competition between scientific organizations and individual scientists in some fields of knowledge were analyzed. The concept of "raiding" was introduced for the first time in the intellectual sphere. Practical value. The research results can be used to analyze the activity of scientific and engineering organizations, which carry out various studies to assess the validity and legitimacy of the obtained results, and to prevent raiding in science. The results of the study have practical value for public and private organizations in the determination of the competent performers to conduct research and development services, including expertise, and especially related to the evaluation of material losses or lost earnings when the impartiality and independence of this assessment is the guarantee of obtaining the reliable and

  13. Research and Practice of the News Map Compilation Service

    Science.gov (United States)

    Zhao, T.; Liu, W.; Ma, W.

    2018-04-01

    Based on the needs of the news media on the map, this paper researches on the news map compilation service, conducts demand research on the service of compiling news maps, designs and compiles the public authority base map suitable for media publication, and constructs the news base map material library. It studies the compilation of domestic and international news maps with timeliness and strong pertinence and cross-regional characteristics, constructs the hot news thematic gallery and news map customization services, conducts research on types of news maps, establish closer liaison and cooperation methods with news media, and guides news media to use correct maps. Through the practice of the news map compilation service, this paper lists two cases of news map preparation services used by different media, compares and analyses cases, summarizes the research situation of news map compilation service, and at the same time puts forward outstanding problems and development suggestions in the service of news map compilation service.

  14. RESEARCH AND PRACTICE OF THE NEWS MAP COMPILATION SERVICE

    Directory of Open Access Journals (Sweden)

    T. Zhao

    2018-04-01

    Full Text Available Based on the needs of the news media on the map, this paper researches on the news map compilation service, conducts demand research on the service of compiling news maps, designs and compiles the public authority base map suitable for media publication, and constructs the news base map material library. It studies the compilation of domestic and international news maps with timeliness and strong pertinence and cross-regional characteristics, constructs the hot news thematic gallery and news map customization services, conducts research on types of news maps, establish closer liaison and cooperation methods with news media, and guides news media to use correct maps. Through the practice of the news map compilation service, this paper lists two cases of news map preparation services used by different media, compares and analyses cases, summarizes the research situation of news map compilation service, and at the same time puts forward outstanding problems and development suggestions in the service of news map compilation service.

  15. On genies and bottles: scientists' moral responsibility and dangerous technology R&D.

    Science.gov (United States)

    Koepsell, David

    2010-03-01

    The age-old maxim of scientists whose work has resulted in deadly or dangerous technologies is: scientists are not to blame, but rather technologists and politicians must be morally culpable for the uses of science. As new technologies threaten not just populations but species and biospheres, scientists should reassess their moral culpability when researching fields whose impact may be catastrophic. Looking at real-world examples such as smallpox research and the Australian "mousepox trick", and considering fictional or future technologies like Kurt Vonnegut's "ice-nine" from Cat's Cradle, and the "grey goo" scenario in nanotechnology, this paper suggests how ethical principles developed in biomedicine can be adjusted for science in general. An "extended moral horizon" may require looking not just to the effects of research on individual human subjects, but also to effects on humanity as a whole. Moreover, a crude utilitarian calculus can help scientists make moral decisions about which technologies to pursue and disseminate when catastrophes may result. Finally, institutions should be devised to teach these moral principles to scientists, and require moral education for future funding.

  16. Developing Earth and Space Scientists for the Future

    Science.gov (United States)

    Manduca, Cathryn A.; Cifuentes, Inés

    2007-09-01

    As the world's largest organization of Earth and space scientists, AGU safeguards the future of pioneering research by ensuring that ``the number and diversity of Earth and space scientists continue to grow through the flow of young talent into the field'' (AGU Strategic Plan 2008, Goal IV). Achieving this goal is the focus of the AGU Committee on Education and Human Resources (CEHR), one of the Union's three outreach committees.

  17. Dual use and the ethical responsibility of scientists.

    Science.gov (United States)

    Ehni, Hans-Jörg

    2008-01-01

    The main normative problem in the context of dual use is to determine the ethical responsibility of scientists especially in the case of unintended, harmful, and criminal dual use of new technological applications of scientific results. This article starts from an analysis of the concepts of responsibility and complicity, examining alternative options regarding the responsibility of scientists. Within the context of the basic conflict between the freedom of science and the duty to avoid causing harm, two positions are discussed: moral skepticism and the ethics of responsibility by Hans Jonas. According to these reflections, four duties are suggested and evaluated: stopping research, systematically carrying out research for dual-use applications, informing public authorities, and not publishing results. In the conclusion it is argued that these duties should be considered as imperfect duties in a Kantian sense and that the individual scientist should be discharged as much as possible from obligations which follow from them by the scientific community and institutions created for this purpose.

  18. Russian scientists make desperate plea to save nuclear institute

    CERN Multimedia

    2003-01-01

    Scientists from a Russian nuclear research institute recently held a news conference in Moscow to publicize their work on a revolutionary new type of nuclear reactor. However, it transpired that the scientists were worried about their institute being closed down, and saw the news conference as an opportunity to draw attention to their plight (1 page).

  19. Strangers at the Benchside: Research Ethics Consultation

    Science.gov (United States)

    Cho, Mildred K.; Tobin, Sara L.; Greely, Henry T.; McCormick, Jennifer; Boyce, Angie; Magnus, David

    2008-01-01

    Institutional ethics consultation services for biomedical scientists have begun to proliferate, especially for clinical researchers. We discuss several models of ethics consultation and describe a team-based approach used at Stanford University in the context of these models. As research ethics consultation services expand, there are many unresolved questions that need to be addressed, including what the scope, composition, and purpose of such services should be, whether core competencies for consultants can and should be defined, and how conflicts of interest should be mitigated. We make preliminary recommendations for the structure and process of research ethics consultation, based on our initial experiences in a pilot program. PMID:18570086

  20. A Tale of Two scientists and their Involvement in Education & Outreach

    Science.gov (United States)

    McDonnell, J.

    2004-12-01

    Many scientists, when faced with developing an education and outreach plan for their research proposals, are unclear on what kinds of impacts they can have on broader non scientist audiences. Many scientists feel their only options are to develop a website or invite a teacher to get involved in their sampling or research cruises. Scientists, who are constrained by time and resources, are not aware of the range of education and outreach options available to them and of the great value their involvement can bring to the public. In an recent survey at the National Science Foundation sponsored ORION conference (January 2004), respondents stated that the greatest public benefits to having scientists involved in public education are (1) that they can present the benefits and relevance of research (26%), (2) focus awareness on environmental issues (26%), (3) serve as models for teachers and motivators for children (25%) and (4) increase public understanding, awareness and appreciation of science (about 22%). As a member of the Mid-Atlantic Center for Ocean Sciences Education Excellence (MACOSEE), the Institute of Marine & Coastal Sciences (IMCS) at Rutgers University is dedicated to helping scientists and educators realize the benefits of working together to advance ocean discovery and make known the vital role of the ocean in our lives. A website called "Scientist Connection" (www.macosee.net) was developed to help busy scientists choose a role in education and outreach that will make the most of their talent and time. The goal of the web site is to help scientists produce a worthwhile education project that complements and enriches their research. In this session, the author will present two case studies that demonstrate very different but effective approaches to scientist's involvement in education and outreach projects. In the first case, we will chronicle how a team of biologists and oceanographers in the Rutgers University, Coastal Ocean Observation Laboratory (or

  1. "Star Wars" on Campus: Scientists Debate the Wisdom of SDI.

    Science.gov (United States)

    Rosenblatt, Jean

    1987-01-01

    President Reagan's Strategic Defense Initiative is opposed by many university scientists, but government officials have no problem placing research contracts. Specific arrangements and personal opinions are cited, and the text of the Star Wars Petition signed by 6,500 faculty and graduate student scientists is included. (MSE)

  2. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra

    2013-06-25

    The mountains of data thrusting from the new landscape of modern high-throughput biology are irrevocably changing biomedical research and creating a near-insatiable demand for training in data management and manipulation and data mining and analysis. Among life scientists, from clinicians to environmental researchers, a common theme is the need not just to use, and gain familiarity with, bioinformatics tools and resources but also to understand their underlying fundamental theoretical and practical concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource-centric demos, using interactivity, problem-solving exercises and cooperative learning to substantially enhance training quality and learning outcomes. In this context, this article discusses various pragmatic criteria for identifying training needs and learning objectives, for selecting suitable trainees and trainers, for developing and maintaining training skills and evaluating training quality. Adherence to these criteria may help not only to guide course organizers and trainers on the path towards bioinformatics training excellence but, importantly, also to improve the training experience for life scientists.

  3. The communications gap between scientists and public: More scientists and their institutions feel a need to communicate the results and nature of research with the public

    OpenAIRE

    Hunter, Philip

    2016-01-01

    Scientists and scientific institutions see an increasing need for outreach and communication to counter potentially dangerous misconceptions about science, or misinformation by lobbying groups. Along these lines, communication from scientists to the public is becoming more professional and better targeted to the audience.

  4. The Use of Internet Services and Resources by Scientists at Olabisi Onabanjo University, Ago Iwoye, Nigeria

    Science.gov (United States)

    Bankole, Olubanke M.

    2013-01-01

    Purpose: This study aims to investigate the extent and level of internet access and use among scientists at Olabisi Onabanjo University (OOU), Ago Iwoye, Nigeria, its impact on their academic activities and the constraints faced in internet use. Design/methodology/approach: A questionnaire survey with all the 125 scientists in the Faculty of…

  5. 78 FR 12422 - Health Services Research and Development Service Scientific Merit Review Board, Notice of Meeting

    Science.gov (United States)

    2013-02-22

    ... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service Scientific Merit... nursing research. Applications are reviewed for scientific and technical merit, mission relevance, and the... Program Manager, Scientific Merit Review Board, Department of Veterans Affairs, Health Services Research...

  6. Women scientists' scientific and spiritual ways of knowing

    Science.gov (United States)

    Buffington, Angela Cunningham

    While science education aims for literacy regarding scientific knowledge and the work of scientists, the separation of scientific knowing from other knowing may misrepresent the knowing of scientists. The majority of science educators K-university are women. Many of these women are spiritual and integrate their scientific and spiritual ways of knowing. Understanding spiritual women of science would inform science education and serve to advance the scientific reason and spirituality debate. Using interviews and grounded theory, this study explores scientific and spiritual ways of knowing in six women of science who hold strong spiritual commitments and portray science to non-scientists. From various lived experiences, each woman comes to know through a Passive knowing of exposure and attendance, an Engaged knowing of choice, commitment and action, an Mindful/Inner knowing of prayer and meaning, a Relational knowing with others, and an Integrated lifeworld knowing where scientific knowing, spiritual knowing, and other ways of knowing are integrated. Consequences of separating ways of knowing are discussed, as are connections to current research, implications to science education, and ideas for future research. Understanding women scientists' scientific/ spiritual ways of knowing may aid science educators in linking academic science to the life-worlds of students.

  7. Meet EPA Scientist Marie O'Shea, Ph.D.

    Science.gov (United States)

    EPA Scientist Dr. Marie O'Shea is Region 2's Liaison to the Agency's Office of Research and Development (ORD). Marie has a background in research on urban watershed management, focused on characterizing and controlling nutrients in stormwater runoff.

  8. Tools You Can Use! E/PO Resources for Scientists and Faculty to Use and Contribute To: EarthSpace and the NASA SMD Scientist Speaker’s Bureau

    Science.gov (United States)

    Buxner, Sanlyn; Shupla, C.; CoBabe-Ammann, E.; Dalton, H.; Shipp, S.

    2013-10-01

    The Planetary Science Education and Public Outreach (E/PO) Forum has helped to create two tools that are designed to help scientists and higher-education science faculty make stronger connections with their audiences: EarthSpace, an education clearinghouse for the undergraduate classroom; and NASA SMD Scientist Speaker’s Bureau, an online portal to help bring science - and scientists - to the public. Are you looking for Earth and space science higher education resources and materials? Come explore EarthSpace, a searchable database of undergraduate classroom materials for faculty teaching Earth and space sciences at both the introductory and upper division levels! In addition to classroom materials, EarthSpace provides news and information about educational research, best practices, and funding opportunities. All materials submitted to EarthSpace are peer reviewed, ensuring that the quality of the EarthSpace materials is high and also providing important feedback to authors. Your submission is a reviewed publication! Learn more, search for resources, join the listserv, sign up to review materials, and submit your own at http://www.lpi.usra.edu/earthspace. Join the new NASA SMD Scientist Speaker’s Bureau, an online portal to connect scientists interested in getting involved in E/PO projects (e.g., giving public talks, classroom visits, and virtual connections) with audiences! The Scientist Speaker’s Bureau helps educators and institutions connect with NASA scientists who are interested in giving presentations, based upon the topic, logistics, and audience. The information input into the database will be used to help match scientists (you!) with the requests being placed by educators. All Earth and space scientists funded by NASA - and/or engaged in active research using NASA’s science - are invited to become part of the Scientist Speaker’s Bureau. Submit your information into the short form at http://www.lpi.usra.edu/education/speaker.

  9. Applied regression analysis a research tool

    CERN Document Server

    Pantula, Sastry; Dickey, David

    1998-01-01

    Least squares estimation, when used appropriately, is a powerful research tool. A deeper understanding of the regression concepts is essential for achieving optimal benefits from a least squares analysis. This book builds on the fundamentals of statistical methods and provides appropriate concepts that will allow a scientist to use least squares as an effective research tool. Applied Regression Analysis is aimed at the scientist who wishes to gain a working knowledge of regression analysis. The basic purpose of this book is to develop an understanding of least squares and related statistical methods without becoming excessively mathematical. It is the outgrowth of more than 30 years of consulting experience with scientists and many years of teaching an applied regression course to graduate students. Applied Regression Analysis serves as an excellent text for a service course on regression for non-statisticians and as a reference for researchers. It also provides a bridge between a two-semester introduction to...

  10. Service users' perceptions about their hospital admission elicited by service user-researchers or by clinicians.

    LENUS (Irish Health Repository)

    O'Donoghue, Brian

    2013-05-01

    OBJECTIVE Service users may express positive, ambivalent, or negative views of their hospital admission. The objective of this study was to determine whether the background of the interviewer-service user-researcher or clinician-influences the information elicited. The primary outcome was the level of perceived coercion on admission, and secondary outcomes were perceived pressures on admission, procedural justice, perceived necessity for admission, satisfaction with services, and willingness to consent to participate in the study. METHODS Participants voluntarily and involuntarily admitted to three hospitals in Ireland were randomly allocated to be interviewed at hospital discharge by either a service user-researcher or a clinician. Interviewers used the MacArthur Admission Experience Survey and the Client Satisfaction Questionnaire. RESULTS A total of 161 participants were interviewed. No differences by interviewer status or by admission status (involuntary or voluntary) were found in levels of perceived coercion, perceived pressures, procedural justice, perceived necessity, or satisfaction with services. Service users were more likely to decline to participate if their consent was sought by a service user-researcher (24% versus 8%, p=.003). CONCLUSIONS Most interviewees gave positive accounts of their admission regardless of interviewer status. The findings indicate that clinicians and researchers can be more confident that service users\\' positive accounts of admissions are not attributable to a response bias. Researchers can also feel more confident in directly comparing the results of studies undertaken by clinicians and by service user-researchers.

  11. 78 FR 6854 - Health Services Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2013-01-31

    ... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service Scientific Merit... Research and Development Service Scientific Merit Review Board will meet on February 13-14, 2013, at the... research. Applications are reviewed for scientific and technical merit. Recommendations regarding funding...

  12. Research goes to School: understanding the content and the procedures of Science through a new dialogue among students, teachers and scientists

    Science.gov (United States)

    L'Astorina, Alba; Tomasoni, Irene

    2015-04-01

    The Education system is increasingly interested in a more interactive dialogue with scientists in order to make science taught at school more aware of the models and the ways in which knowledge is produced, revised and discussed within the scientific community. Not always, in fact, the ministerial programs, the media, and the textbooks adopted by schools seem to be able to grasp the content and the procedures of the scientific knowledge as it is today being developed, sometimes spreading the idea of a monolithic and static science, with no reference to revisions, uncertainties, errors and disputes that, on the opposite, characterize the debate about science. On the other side, scientists, that in several surveys define students and teachers as one of the key groups that are most important to communicate with, often do not seem to be aware that scientific knowledge is continuously revised by the school and its protagonists. Science teaching, in all classes, has a highly educational role, as it offers the opportunity to value individual differences, to make students acquire specific tools and methods that enable them understand the world and critically interact with it. In this process of conscious learning, in which teachers play the role of tutors, the student participates actively bringing his tacit knowledge and beliefs. In this context, an educational proposal has recently been developed by the Italian National Research Council (CNR), aimed at starting a new dialogue between Education and Research. It's a way to encourage the technical and scientific culture among young people and a mutual exchange between the two main actors of the scientific production and promotion, considering weaknesses and strengths of the relationship between these two systems. In this proposal, students and teachers follow side by side a group of CNR scientists involved in an ongoing research project based on the use of innovative methodologies of aerospace Earth Observation (EO) for

  13. The transformative experiences of a scientist-professor with teacher candidates

    Science.gov (United States)

    Lashley, Terry Lee Hester

    This case study documented the pedagogical and philosophical change experiences of a senior research scientist-professor at a large Research I University as he implemented an open inquiry immersion course with secondary science teacher candidates. The 4-semester hour graduate-level credit course (Botany 531) is titled "Knowing and Teaching Science: Just Do-It!" The students were 5th-year education students who possessed an undergraduate degree in the biological sciences. The premise for the course is that to teach science effectively, one must be able to DO science. Students were provided with extensive opportunities to design and carry out experiments and communicate the results both orally and in a written format. The focus of this dissertation was on changes in the pedagogical philosophy and practice of the scientist-professor as he taught this course over a 4-year period, 1997--2000. The data used in this study include the scientist-professor's reflective journals (1997--2000), the students' journals (1997--2000), and interviews with the scientist-professor (2001--2002). HyperRESEARCH 2.03 software was used to code and analyze the reflective journals and transcribed interviews. Data were reviewed and then placed into original codes. The codes were then grouped into themes for analysis. Identified themes included (1) Reflective Practice, (2) Social Construction of Knowledge, (3) Legitimate Peripheral Participation, and (4) the Zone of Proximal Development. There is clear evidence that the scientist-professor experienced transformative changes in his philosophy and practice over the 4-year period. This is shown by (1) differences in learning outcomes and expectations for Do-It! course students and traditional course students, (2) documentation of the scientist-professor's movement through the Concerns Based Adoption Model (CBAM) Stages of Concern, (3) increased collaboration and support from the college of education, (4) development and delivery of two other

  14. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  15. Power and Privilege: Community Service Learning in Tijuana

    Science.gov (United States)

    Camacho, Michelle Madsen

    2004-01-01

    As social scientists engage their own subjectivity, there is greater awareness of their own touristic "gaze," or at least the power relations that are evoked in the researcher-subject interaction. In teaching students involved in community service learning, the challenge is to provide a learning experience that addresses power inequities…

  16. University scientists test Mars probe equipment

    CERN Multimedia

    2002-01-01

    Scientists at Leicester University have spent four years researching and designing the Flight Model Position Adjustable Workbench (PAW) at the university. It will be attached to the Beagle 2 probe before being sent to the Red Planet in the spring (1/2 page).

  17. Managing postgraduate research service quality: Developing and assessing a conceptual model

    Directory of Open Access Journals (Sweden)

    Shawn Ramroop

    2013-05-01

    Full Text Available This paper reports on the conceptual development and empirical evaluation of a postgraduate (PG research service quality management model, through conducting an electronic survey among a cohort of master’s and doctorate graduates at one of the top three research universities in South Africa, using specifically developed and validated research instruments.By fitting the data from a sample of 117 graduates to a conceptual model using structural equation modelling, it became evident that the PG research students’ perception of the Organisational Climate for Research (OCR is associated with their perception of the PG Research Service Quality (PGSQUAL, the PG Service Experience (SERVEXP and their perception of their Role (RC. However, no association was found between the students’ perception of the research climate (OCR and their satisfaction (SERVSAT with the research service; the service experience (SERVEXP and postgraduate research service quality (PGSQUAL; service satisfaction (SERVSAT and postgraduate service quality (PGSQUAL.  The aforementioned findings imply that higher education institutions need to create a research climate which is supportive of service quality, and better manage the research climate, so that the PG students are clear about their role, which will eventually translate to a better PG service experience and improved perception of PG service quality.

  18. Integrating Project-Based Service-Learning into an Advanced Environmental Chemistry Course

    Science.gov (United States)

    Draper, Alison J.

    2004-01-01

    An active service-learning research work is conducted in the field of advanced environmental chemistry. Multiple projects are assigned to students, which promote individual learning skills, self-confidence as scientists, and a deep understanding of the environmental chemist's profession.

  19. Research Data Management - Building Service Infrastructure and Capacity

    KAUST Repository

    Baessa, Mohamed A.

    2018-03-07

    Research libraries support the missions of their institutions by facilitating the flow of scholarly information to and from the institutions’ researchers. As research in many disciplines becomes more data and software intensive, libraries are finding that services and infrastructure developed to preserve and provide access to textual documents are insufficient to meet their institutions’ needs. In response, libraries around the world have begun assessing the data management needs of their researchers, and expanding their capacity to meet the needs that they find. This discussion panel will discuss approaches to building research data management services and infrastructure in academic libraries. Panelists will discuss international efforts to support research data management, while highlighting the different models that universities have adopted to provide a mix of services and infrastructure tailored to their local needs.

  20. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  1. Rocky Mountain Research Station invasive species visionary white paper

    Science.gov (United States)

    D. E. Pearson; M. Kim; J. Butler

    2011-01-01

    Invasive species represent one of the single greatest threats to natural ecosystems and the services they provide. Effectively addressing the invasive species problem requires management that is based on sound research. We provide an overview of recent and ongoing invasive species research conducted by Rocky Mountain Research Station scientists in the Intermountain...

  2. Working with and promoting early career scientists within a larger community

    Science.gov (United States)

    Pratt, K.

    2017-12-01

    For many scientific communities, engaging early career researchers is critical for success. These young scientists (graduate students, postdocs, and newly appointed professors) are actively forming collaborations and instigating new research programs. They also stand to benefit hugely from being part of a scientific community, gaining access to career development activities, becoming part of strong collaborator networks, and achieving recognition in their field of study — all of which will help their professional development. There are many ways community leaders can work proactively to support and engage early career scientists, and it it is often a community manager's job to work with leadership to implement such activities. In this presentation, I will outline ways of engaging early career scientists at events and tailored workshops, of promoting development of their leadership skills, and of creating opportunities for recognizing early career scientists within larger scientific communities. In this talk, I will draw from my experience working with the Deep Carbon Observatory Early Career Scientist Network, supported by the Alfred P. Sloan Foundation.

  3. Forest Service Global Change Research Strategy, 2009-2019 Implementation Plan

    Science.gov (United States)

    Allen Solomon; Richard A. Birdsey; Linda A. Joyce

    2010-01-01

    In keeping with the research goals of the U.S. Global Change Research Program, the climate change strategy of the U.S. Department of Agriculture (USDA), and the climate change framework of the Forest Service, this Forest Service Global Change Research Strategy, 2009-2019 Implementation Plan (hereafter called the Research Plan), was written by Forest Service Research...

  4. Scientists and Educators: Joining Forces to Enhance Ocean Science Literacy

    Science.gov (United States)

    Keener-Chavis, P.

    2004-12-01

    The need for scientists to work with educators to enhance the general public's understanding of science has been addressed for years in reports like Science for All Americans (1990), NSF in a Changing World (1995), Turning to the Sea: America's Ocean Future (1999), Discovering the Earth's Final Frontier, A U.S. Strategy for Ocean Exploration (2000), and most recently, the U.S. Commission on Ocean Policy Report (2004). As reported in The National Science Foundation's Center for Ocean Science Education Excellence (COSEE) Workshop Report (2000), "The Ocean Sciences community did not answer (this) call, even though their discovery that the ocean was a more critical driving force in the natural environment than previously thought possessed great educational significance." It has been further acknowledged that "rapid and extensive improvement of science education is unlikely to occur until it becomes clear to scientists that they have an obligation to become involved in elementary- and secondary-level science (The Role of Scientists in the Professional Development of Science Teachers, National Research Council, 1996.) This presentation will focus on teachers' perceptions of how scientists conduct research, scientists' perceptions of how teachers should teach, and some misconceptions between the two groups. Criteria for high-quality professional development for teachers working with scientists will also be presented, along with a brief overview of the National Oceanic and Atmospheric Administration's Ocean Exploration program efforts to bring teachers and ocean scientists together to further ocean science literacy at the national level through recommendations put forth in the U.S. Commission on Ocean Policy Report (2004).

  5. 2010 NASA-AIHEC Summer Research Experience: Students and Teachers from TCUs Engage in GIS/Remote Sensing with Researchers and Scientists--Lessons Learned

    Science.gov (United States)

    Rock, B. N.; Carlson, M.; Mell, V.; Maynard, N.

    2010-12-01

    Researchers and scientists from the University of New Hampshire (UNH) and the Confederated Tribes of Grand Ronde joined with the National Aeronautics and Space Administration (NASA) to develop and present a Summer Research Experience (SRE) that trained 21 students and 10 faculty members from 9 of the 36 Tribal Colleges and Universities (TCUs) which comprise the American Indian Higher Education Council (AIHEC). The 10-week SRE program was an inquiry-based introduction to remote sensing, geographic information systems (GIS) and field science research methods. Teams of students and TCU faculty members developed research projects that explored climate change, energy development, contamination of water and air, fire damage in forests, and lost cultural resources on tribal lands. The UNH-Grand Ronde team presented SRE participants with an initial three-week workshop in the use of research tools and development of research projects. During the following seven weeks, the team conferred weekly with SRE participants to monitor and support their progress. Rock provided specific guidance on numerous scientific questions. Carlson coached students on writing and organization and provided laboratory analysis of foliar samples. Mell provided support on GIS technology. Eight of the SRE college teams completed substantial research projects by the end of the SRE while one other team developed a method for future research. Seventeen students completed individual research papers, oral presentations and posters. Nineteen students and all teachers maintained regular and detailed communication with the UNH-Grand Ronde mentors throughout the ten-week program. The SRE produced several significant lessons learned regarding outreach educational programs in inquiry-based science and technology applications. These include: Leadership by an active research scientist (Rock) inspired and supported students and teachers in developing their own scientific inquiries. An intensive schedule of

  6. [Research progress of ecosystem service flow.

    Science.gov (United States)

    Liu, Hui Min; Fan, Yu Long; Ding, Sheng Yan

    2016-07-01

    With the development of social economy, human disturbance has resulted in a variety of ecosystem service degradation or disappearance. Ecosystem services flow plays an important role in delivery, transformation and maintenance of ecosystem services, and becomes one of the new research directions. In this paper, based on the classification of ecosystem services flow, we analyzed ecosystem service delivery carrier, and investigated the mechanism of ecosystem service flow, including the information, property, scale features, quantification and cartography. Moreover, a tentative analysis on cost-effective of ecosystem services flow (such as transportation costs, conversion costs, usage costs and cost of relativity) was made to analyze the consumption cost in ecosystem services flow process. It aimed to analyze dissipation cost in ecosystem services flow process. To a certain extent, the study of ecosystem service flow solved the problem of "double counting" in ecosystem services valuation, which could make a contribution for the sake of recognizing hot supply and consumption spots of ecosystem services. In addition, it would be conducive to maximizing the ecosystem service benefits in the transmission process and putting forward scientific and reasonable ecological compensation.

  7. The 2nd Annual Clinical Scientist Trainee Symposium, August 22, 2017, London, Canada.

    Science.gov (United States)

    Yin, Charles; Blom, Jessica N; Lewis, James F

    2018-03-27

    Clinician scientists play a critical role in bridging research and clinical practice. Unfortunately, the neglect of research training in medical schools has created clinicians who are unable to translate evidence from literature to practice. Furthermore, the erosion of research training in medical education has resulted in clinicians who lack the skills required for successful scientific investigation. To counteract this, the Schulich School of Medicine & Dentistry has made an effort to engage trainees, at all levels, in the research process. The 2nd Annual Clinician Scientist Trainee Symposium was held in London, Ontario, Canada on August 22, 2017. Organized each year since 2016 by the Schulich Research Office, the symposium features research being conducted by trainees in Schulich's Clinical Research Training Program. The focus this year was on the current state of clinician-scientist training in Canada and visions for the path ahead.

  8. 77 FR 42365 - Health Services Research and Development Service Scientific Merit Review Board, Notice of Meeting

    Science.gov (United States)

    2012-07-18

    ... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service Scientific Merit...-463 (Federal Advisory Committee Act) that various subcommittees of the Health Services Research and Development Service Scientific Merit Review Board will meet on August 28-30, 2012, at the Boston Omni Parker...

  9. PREFACE: FAIRNESS 2014: FAIR Next Generation ScientistS 2014

    Science.gov (United States)

    2015-04-01

    FAIRNESS 2014 was the third edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on September 22-27 2014 in Vietri sul Mare, Italy. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Nuclear structure, astrophysics and reactions • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • New developments in atomic and plasma physics • Special emphasis is put on the experiments CBM, HADES, PANDA, NUSTAR, APPA and related experiments For each of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2014 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that

  10. Scientists Must Not Film but Must Appear on Screen!

    Science.gov (United States)

    Gerdes, A.; Madlener, S.

    2013-12-01

    Film production in science has affected its subjects in a truly remarkable way. Where scientists were once perceived to be poor communicators with an overwhelming aptitude for numbers and figures, audiences now have access to scientists they can understand and even relate to. Over the years, scientists have grown accustomed to involving and using the media in their research and exposing their science to wider audiences, making them better communicators. This is a huge development, and one that is especially noticeable at MARUM, the Center for Marine Environmental Sciences at the University of Bremen/Germany. Over time, the collaboration between the scientists and public relations staff has taught us all to be better at what we do. A unique characteristic of MARUM TV is that more or less all videos are produced 'in house'; we have established the small yet effective infrastructure necessary do develop, execute, and distribute semi-professional videos to access broader audiences and increase world-wide visibility. MARUM TV relies on our research scientists to operate cameras and capture important moments offshore on expedition, and to cooperate with us as we shoot footage of them and conduct interviews onshore in the lab. In turn, we promote their research and help increase their accessibility. At the forefront of our success is the relatively recent implementation of HD cameras on MARUM's fleet of remotely operated vehicles, which capture stunning video footage of the deep sea. Furthermore, sustained collaborations with national tv stations, online media portals, and large production companies helps inform our process and increases MARUM's visibility. The result is an extensive suite of about 70 short and long format science videos with some of the highest view counts on YouTube compared to other marine institutes. In the session PA011 'Scientists must film!' we intent to address issues regarding roadblocks to bridging science and media: a) Science communication

  11. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  12. Comparison of Design Research on Manufacturing Firms Moving Towards Services

    DEFF Research Database (Denmark)

    Matzen, Detlef; Sakao, Tomohiko; Sandström, Gunilla Ölundh

    2007-01-01

    Corresponding to a steadily advancing integration of roducts and service operations in the manufacturing industry, a number of research groups within the design community are working with issues of integrated product and service development. Although closely related, the evolving groups focus...... on different research dimensions, and thus the terminologies and concepts used in research contributions are not fully compatible. This research attempts to promote and support an evolving collaboration between the different research groups within the design community, by analysing and comparing the key...... contribution areas of three of the existing groups, namely the groups of Integrated Product and Service Engineering, Service/Product Engineering and Product/Service-System development. A review of the groups’ research contributions is carried out and the main characteristics’ of their research is compared...

  13. Poll of radiation health scientists

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1986-01-01

    A sampling of 210 university-employed radiation health scientists randomly selected from the membership lists of the Health Physics Society and the Radiation Research Society was polled in a secret ballot. The results support the positions that the public's fear of radiation is substantially greater than realistic, that TV, newspapers and magazines substantially exaggerate the dangers of radiation, that the amount of money now being spent on radiation protection is sufficient, and that the openness and honesty of U.S. government agencies about dangers of radiation were below average before 1972 but have been above average since then. Respondents give very high credibility ratings to BEIR, UNSCEAR, ICRP, and NCRP and to the individual scientists associated with their reports, and very low credibility ratings to those who have disputed them

  14. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  15. Quality assurance and quality control of geochemical data—A primer for the research scientist

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.

    2011-01-01

    Geochemistry is a constantly expanding science. More and more, scientists are employing geochemical tools to help answer questions about the Earth and earth system processes. Scientists may assume that the responsibility of examining and assessing the quality of the geochemical data they generate is not theirs but rather that of the analytical laboratories to which their samples have been submitted. This assumption may be partially based on knowledge about internal and external quality assurance and quality control (QA/QC) programs in which analytical laboratories typically participate. Or there may be a perceived lack of time or resources to adequately examine data quality. Regardless of the reason, the lack of QA/QC protocols can lead to the generation and publication of erroneous data. Because the interpretations drawn from the data are primary products to U.S. Geological Survey (USGS) stakeholders, the consequences of publishing erroneous results can be significant. The principal investigator of a scientific study ultimately is responsible for the quality and interpretation of the project's findings, and thus must also play a role in the understanding, implementation, and presentation of QA/QC information about the data. Although occasionally ignored, QA/QC protocols apply not only to procedures in the laboratory but also in the initial planning of a research study and throughout the life of the project. Many of the tenets of developing a sound QA/QC program or protocols also parallel the core concepts of developing a good study: What is the main objective of the study? Will the methods selected provide data of enough resolution to answer the hypothesis? How should samples be collected? Are there known or unknown artifacts or contamination sources in the sampling and analysis methods? Assessing data quality requires communication between the scientists responsible for designing the study and those collecting samples, analyzing samples, treating data, and

  16. Towards a renewed research agenda in ecotoxicology

    DEFF Research Database (Denmark)

    Artigas, Joan; Arts, Gertie; Babut, Marc

    2012-01-01

    New concerns about biodiversity, ecosystem services and human health triggered several new regulations increasing the need for sound ecotoxicological risk assessment. The PEER network aims to share its view on the research issues that this challenges. PEER scientists call for an improved biologic...

  17. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  18. An analysis of scientific poverty line of Iranian researchers and compared with top scientists of Islamic countries

    Directory of Open Access Journals (Sweden)

    Faramarz Soheili

    2014-02-01

    Full Text Available To study the scholarly production of Iran in the basic sciences and identify the place of the country among Islamic countries and the world, and also comparing the different disciplines in this field of knowledge, help to plan properly to provide necessary facilities for the advancement in these areas. The purpose of this study is the analysis of scientific poverty line of Iranian scientists and comparing them to the scientists of the superior Islamic countries. This is an applied research. Data were gathered and analyzed with the descriptive approach. In this study data collected from ISI during 1990 to 2011. Five disciplines of basic sciences, including mathematics, physics, chemistry, biology and earth science were studied. Yi and Xi and Sx scientometrics indicators were used. Based on the findings of this research, Iran with 35542 documents, academic ability 0.509 % and the relative performance of 0.468% is in the first place among the Islamic countries. Iran also is in the first place in physics, chemistry, earth science and mathematics and in second place in biology among the Islamic countries. Despite Iran's ranking first among Muslim countries, it is below the scientific poverty line in terms of Xi and Sx indicators. So it seems necessary to pay more attention to production and distribution of basic science especially in biology. The weaknesses and barriers also should be recognized.

  19. International environmental and occupational health: From individual scientists to networked science Hubs.

    Science.gov (United States)

    Rosenthal, Joshua; Jessup, Christine; Felknor, Sarah; Humble, Michael; Bader, Farah; Bridbord, Kenneth

    2012-12-01

    For the past 16 years, the International Training and Research in Environmental and Occupational Health program (ITREOH) has supported projects that link U.S. academic scientists with scientists from low- and middle-income countries in diverse research and research training activities. Twenty-two projects of varied duration have conducted training to enhance the research capabilities of scientists at 75 institutions in 43 countries in Asia, Africa, Eastern Europe, and Latin America, and have built productive research relationships between these scientists and their U.S. partners. ITREOH investigators and their trainees have produced publications that have advanced basic sciences, developed methods, informed policy outcomes, and built institutional capacity. Today, the changing nature of the health sciences calls for a more strategic approach. Data-rich team science requires greater capacity for information technology and knowledge synthesis at the local institution. More robust systems for ethical review and administrative support are necessary to advance population-based research. Sustainability of institutional research capability depends on linkages to multiple national and international partners. In this context, the Fogarty International Center, the National Institute of Environmental Sciences and the National Institute for Occupational Safety and Health, have reengineered the ITREOH program to support and catalyze a multi-national network of regional hubs for Global Environmental and Occupational Health Sciences (GEOHealth). We anticipate that these networked science hubs will build upon previous investments by the ITREOH program and will serve to advance locally and internationally important health science, train and attract first-class scientists, and provide critical evidence to guide policy discussions. Published in 2012. This article is a U.S. Government work and is in the public domain in the USA.

  20. Data sharing by scientists: Practices and perceptions

    Science.gov (United States)

    Tenopir, C.; Allard, S.; Douglass, K.; Aydinoglu, A.U.; Wu, L.; Read, E.; Manoff, M.; Frame, M.

    2011-01-01

    Background: Scientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers - data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results. Methodology/Principal Findings: A total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region. Conclusions/Significance: Barriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound

  1. The Women Scientists of India | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    She had 11 papers to her credit in international journals. ... in India at the Indian Cancer Research Centre (presently Cancer Research Institute). ..... eminent Indian Woman Scientists, the Ranbaxy Science Foundation Award for Clinical Research, etc. ... She is Professor at the Saraswati Medical & Dental College, Lucknow.

  2. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2013-01-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case

  3. Delivering research data management services fundamentals of good practice

    CERN Document Server

    Jones, Sarah; Whyte, Angus

    2014-01-01

    The research landscape is changing, with key global research funders now requiring institutions to demonstrate how they will preserve and share research data. However, the practice of structured research data management is very new, and the construction of services remains experimental and in need of models and standards of approach. This groundbreaking guide will lead researchers, institutions and policy makers through the processes needed to set up and run effective institutional research data management services. This book will provide a step-by-step explanation of the components for an institutional service - effectively a 'how to guide'. Case studies from the newly emerging service infrastructures in the UK, USA and Australia will draw out the lessons learnt from working (or near to delivery) exemplars. Different approaches are highlighted and compared, for example, a case study of a researcher-focused strategy from Australia contrasted with a national, top-down approach. A chapter on the redeveloped UK ...

  4. Data Management Practices and Perspectives of Atmospheric Scientists and Engineering Faculty

    Directory of Open Access Journals (Sweden)

    Christie Wiley

    2016-12-01

    Full Text Available This article analyzes 21 in-depth interviews of engineering and atmospheric science faculty at the University of Illinois Urbana-Champaign (UIUC to determine faculty data management practices and needs within the context of their research activities. A detailed literature review of previous large-scale and institutional surveys and interviews revealed that researchers have a broad awareness of data-sharing mandates of federal agencies and journal publishers and a growing acceptance, with some concerns, of the value of data-sharing. However, the disciplinary differences in data management needs are significant and represent a set of challenges for libraries in setting up consistent and successful services. In addition, faculty have not yet significantly changed their data management practices to conform with the mandates. The interviews focused on current research projects and funding sources, data types and format, the use of disciplinary and institutional repositories, data-sharing, their awareness of university library data management and preservation services, funding agency review panel experiences, and struggles or challenges with managing research data. In general, the interviews corroborated the trends identified in the literature. One clear observation from the interviews was that scientists and engineers take a holistic view of the research lifecycle and treat data as one of many elements in the scholarly communication workflow. Data generation, usage, storage, and sharing are an integrated aspect of a larger scholarly workflow, and are not necessarily treated as a separate entity. Acknowledging this will allow libraries to develop programs that better integrate data management support into scholarly communication instruction and training.

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Photos and Images Spanish Language Information Grants and Funding Extramural Research Division of Extramural Science Programs Division ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety ...

  6. Author Productivity and Collaboration Among Academic Scientists in ...

    African Journals Online (AJOL)

    A lot of researches on author productivity and collaboration were carried out in different fields. Many of the researches established that productive, active and prolific authors are also highly collaborative. This study determines whether the most productive author among the academic scientists in Modibbo Adama University ...

  7. From theory to practice: improving the impact of health services research

    Directory of Open Access Journals (Sweden)

    Levine Robert

    2005-01-01

    Full Text Available Abstract Background While significant strides have been made in health research, the incorporation of research evidence into healthcare decision-making has been marginal. The purpose of this paper is to provide an overview of how the utility of health services research can be improved through the use of theory. Integrating theory into health services research can improve research methodology and encourage stronger collaboration with decision-makers. Discussion Recognizing the importance of theory calls for new expectations in the practice of health services research. These include: the formation of interdisciplinary research teams; broadening the training for those who will practice health services research; and supportive organizational conditions that promote collaboration between researchers and decision makers. Further, funding bodies can provide a significant role in guiding and supporting the use of theory in the practice of health services research. Summary Institutions and researchers should incorporate the use of theory if health services research is to fulfill its potential for improving the delivery of health care.

  8. Advancing the fundamental sciences: proceedings of the Forest Service National Earth Sciences Conference, San Diego, CA, 18-22 October 2004.

    Science.gov (United States)

    Michael J. Furniss; Catherine F. Clifton; Kathryn L. Ronnenberg

    2007-01-01

    This conference was attended by nearly 450 Forest Service earth scientists representing hydrology, soil science, geology, and air. In addition to active members of the earth science professions, many retired scientists also attended and participated. These 60 peer-reviewed papers represent a wide spectrum of earth science investigation, experience, research, and...

  9. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  10. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  11. Science fiction by scientists an anthology of short stories

    CERN Document Server

    2017-01-01

    This anthology contains fourteen intriguing short stories by active research scientists and other writers trained in science. Science is at the heart of real science fiction, which is more than just westerns with ray guns or fantasy with spaceships. The people who do science and love science best are scientists. Scientists like Isaac Asimov, Arthur C. Clarke, and Fred Hoyle wrote some of the legendary tales of golden age science fiction. Today there is a new generation of scientists writing science fiction informed with the expertise of their fields, from astrophysics to computer science, biochemistry to rocket science, quantum physics to genetics, speculating about what is possible in our universe. Here lies the sense of wonder only science can deliver. All the stories in this volume are supplemented by afterwords commenting on the science underlying each story.

  12. K-12 Students' Perceptions of Scientists: Finding a valid measurement and exploring whether exposure to scientists makes an impact

    Science.gov (United States)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-10-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.

  13. 1997 Atmospheric Chemistry Colloquium for Emerging Senior Scientists

    Energy Technology Data Exchange (ETDEWEB)

    Paul H. Wine

    1998-11-23

    DOE's Atmospheric Chemistry Program is providing partial funding for the Atmospheric Chemistry Colloquium for Emerging Senior Scientists (ACCESS) and FY 1997 Gordon Research Conference in Atmospheric Chemistry

  14. On Responsibility of Scientists

    Science.gov (United States)

    Burdyuzha, Vladimir

    The situation of modern world is analised. It is impossible for our Civilization when at least half of the World Scientists are engaged in research intended to solve military problems. Civilization cannot be called reasonable so long as it spends a huge portion of national incomes on armaments. For resolution of our global problems International Scientific Center - Brain Trust of planet must be created, the status of which should be defined and sealed by the UN organization.

  15. Drought Information Supported by Citizen Scientists (DISCS)

    Science.gov (United States)

    Molthan, A.; Maskey, M.; Hain, C.; Meyer, P.; Nair, U. S.; Handyside, C. T.; White, K.; Amin, M.

    2017-12-01

    Each year, drought impacts various regions of the United States on time scales of weeks, months, seasons, or years, which in turn leads to a need to document these impacts and inform key decisions on land management, use of water resources, and disaster response. Mapping impacts allows decision-makers to understand potential damage to agriculture and loss of production, to communicate and document drought impacts on crop yields, and to inform water management decisions. Current efforts to collect this information includes parsing of media reports, collaborations with local extension offices, and partnerships with the National Weather Service cooperative observer network. As part of a NASA Citizen Science for Earth Systems proposal award, a research and applications team from Marshall Space Flight Center, the University of Alabama in Huntsville, and collaborators within the NWS have developed a prototype smartphone application focused on the collection of citizen science observations of crop health and drought impacts, along with development of innovative low-cost soil moisture sensors to supplement subjective assessments of local soil moisture conditions. Observations provided by citizen scientists include crop type and health, phase of growth, soil moisture conditions, irrigation status, along with an optional photo and comment to provide visual confirmation and other details. In exchange for their participation, users of the app also have access to unique land surface modeling data sets produced at MSFC such as the NASA Land Information System soil moisture and climatology/percentile products from the Short-term Prediction Research and Transition (SPoRT) Center, assessments of vegetation health and stress from NASA and NOAA remote sensing platforms (e.g. MODIS/VIIRS), outputs from a crop stress model developed at the University of Alabama in Huntsville, recent rainfall estimates from the NOAA/NWS network of ground-based weather radars, and other observations made

  16. Scientists “in the making” attend conference

    CERN Document Server

    CERN Bulletin

    2011-01-01

    The aim of the "Be a scientist for a day" project, which began in January (see previous article), was to introduce 9 to 12-year-olds to the methods of experimental science. On Friday 24 June a full-scale conference for the schoolchildren who took part in the project was held at the Globe of Science and Innovation to mark the end of the project.   "So what do you think was in the box?" The answer was finally revealed to the 650 or so schoolchildren taking part in the "Be a scientist for a day" project. Since the beginning of the year, 29 classes from the Pays de Gex and the Canton of Geneva had been taking part in the project, run jointly by CERN, Geneva University's "PhysiScope" group, the education authorities of the Pays de Gex (Inspection de l’éducation nationale) and Geneva (Service de la coordination pédagogique de l’enseignement primaire) and Geneva University's Faculty of Scien...

  17. Dairy and functional foods research in the Agricultural Research Service

    Science.gov (United States)

    The Dairy and Functional Foods Research Unit is the only group in the Agricultural Research Service that is dedicated to solving critical problems in milk utilization and fruit and vegetable byproducts from specialty crops. The many areas of investigation include development of specialty cheese, c...

  18. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  19. The Cosmic Ray Observatory Project: Results of a Summer High-School Student, Teacher, University Scientist Partnership Using a Capstone Research Experience

    Science.gov (United States)

    Shell, Duane F.; Snow, Gregory R.; Claes, Daniel R.

    2011-01-01

    This paper reports results from evaluation of the Cosmic Ray Observatory Project (CROP), a student, teacher, scientist partnership to engage high-school students and teachers in school based cosmic ray research. Specifically, this study examined whether an intensive summer workshop experience could effectively prepare teacher-student teams to…

  20. Promoting the confluence of tropical cyclone research.

    Science.gov (United States)

    Marler, Thomas E

    2015-01-01

    Contributions of biologists to tropical cyclone research may improve by integrating concepts from other disciplines. Employing accumulated cyclone energy into protocols may foster greater integration of ecology and meteorology research. Considering experienced ecosystems as antifragile instead of just resilient may improve cross-referencing among ecological and social scientists. Quantifying ecosystem capital as distinct from ecosystem services may improve integration of tropical cyclone ecology research into the expansive global climate change research community.

  1. Two Japanese scientists and the Curie family, Nobuo Yamada and Toshiko Yuasa

    International Nuclear Information System (INIS)

    Kawashima, Keiko

    2012-01-01

    This article presents two Japanese scientists, a man and a woman, who worked with Pierre and Marie Curie, and with Irene and Pierre Joliot-Curie. Nobuo Yamada (1896-1927) was the first Japanese researcher at the French Radium Institute; he was a specialist of researches on helium. Toshiko Yuasa was the first Japanese scientist to obtain a permanent appointment in France. Her researches were a contribution to the investigation of the continuous spectrum of beta radiation emitted by artificial radioactive bodies

  2. Helping students make meaning of authentic investigations: findings from a student–teacher–scientist partnership

    Science.gov (United States)

    Dolan, Erin

    2013-01-01

    As student–teacher–scientist partnerships become more widespread, there is a need for research to understand the roles assumed by scientists and teachers as they interact with students in general and in inquiry learning environments in particular. Although teacher roles during inquiry learning have been studied, there is a paucity of research about the roles that scientists assume in their interactions with students. Socio-cultural perspectives on learning emphasize social interaction as a means for students to make meaning of scientific ideas. Thus, this naturalistic study of classroom discourse aims to explore the ways scientists and teachers help high school students make meaning during authentic inquiry investigations. Conversational analysis is conducted of video recordings of discussions between students and teachers and students and scientists from two instances of a student–teacher–scientist partnership program. A social semiotic analytic framework is used to interpret the actions of scientists and teachers. The results indicate a range of common and distinct roles for scientists and teachers with respect to the conceptual, social, pedagogical, and epistemological aspects of meaning making. While scientists provided conceptual and epistemological support related to their scientific expertise, such as explaining scientific phenomena or aspects of the nature of science, teachers played a critical role in ensuring students' access to this knowledge. The results have implications for managing the division of labor between scientists and teachers in partnership programs. PMID:23828722

  3. Ecosystem services and economic theory: integration for policy-relevant research.

    Science.gov (United States)

    Fisher, Brendan; Turner, Kerry; Zylstra, Matthew; Brouwer, Roy; de Groot, Rudolf; Farber, Stephen; Ferraro, Paul; Green, Rhys; Hadley, David; Harlow, Julian; Jefferiss, Paul; Kirkby, Chris; Morling, Paul; Mowatt, Shaun; Naidoo, Robin; Paavola, Jouni; Strassburg, Bernardo; Yu, Doug; Balmford, Andrew

    2008-12-01

    It has become essential in policy and decision-making circles to think about the economic benefits (in addition to moral and scientific motivations) humans derive from well-functioning ecosystems. The concept of ecosystem services has been developed to address this link between ecosystems and human welfare. Since policy decisions are often evaluated through cost-benefit assessments, an economic analysis can help make ecosystem service research operational. In this paper we provide some simple economic analyses to discuss key concepts involved in formalizing ecosystem service research. These include the distinction between services and benefits, understanding the importance of marginal ecosystem changes, formalizing the idea of a safe minimum standard for ecosystem service provision, and discussing how to capture the public benefits of ecosystem services. We discuss how the integration of economic concepts and ecosystem services can provide policy and decision makers with a fuller spectrum of information for making conservation-conversion trade-offs. We include the results from a survey of the literature and a questionnaire of researchers regarding how ecosystem service research can be integrated into the policy process. We feel this discussion of economic concepts will be a practical aid for ecosystem service research to become more immediately policy relevant.

  4. [Memorandum IV: Theoretical and Normative Grounding of Health Services Research].

    Science.gov (United States)

    Baumann, W; Farin, E; Menzel-Begemann, A; Meyer, T

    2016-05-01

    With Memoranda and other initiatives, the German Network for Health Service Research [Deutsches Netzwerk Versorgungsforschung e.V. (DNVF)] is fostering the methodological quality of care research studies for years. Compared to the standards of empirical research, questions concerning the role and function of theories, theoretical approaches and scientific principles have not been taken up on its own. Therefore, the DNVF e.V. has set up a working group in 2013, which was commissioned to prepare a memorandum on "theories in health care research". This now presented memorandum will primarily challenge scholars in health care services research to pay more attention to questions concerning the theoretical arsenal and the background assumptions in the research process. The foundation in the philosophy of science, the reference to normative principles and the theory-bases of the research process are addressed. Moreover, the memorandum will call on to advance the theorizing in health services research and to strengthen not empirical approaches, research on basic principles or studies with regard to normative sciences and to incorporate these relevant disciplines in health services research. Research structures and funding of health services research needs more open space for theoretical reflection and for self-observation of their own, multidisciplinary research processes. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Fire, Fuel, and Smoke Program: 2014 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2015-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in FFS...

  6. Salutogenic service user involvement in nursing research: a case study.

    Science.gov (United States)

    Mjøsund, Nina Helen; Vinje, Hege Forbech; Eriksson, Monica; Haaland-Øverby, Mette; Jensen, Sven Liang; Kjus, Solveig; Norheim, Irene; Portaasen, Inger-Lill; Espnes, Geir Arild

    2018-05-12

    The aim was to explore the process of involving mental healthcare service users in a mental health promotion research project as research advisors and to articulate features of the collaboration which encouraged and empowered the advisors to make significant contributions to the research process and outcome. There is an increasing interest in evaluating aspects of service user involvement in nursing research. Few descriptions exist of features that enable meaningful service user involvement. We draw on experiences from conducting research which used the methodology interpretative phenomenological analysis to explore how persons with mental disorders perceived mental health. Aside from the participants in the project, five research advisors with service user experience were involved in the entire research process. We applied a case study design to explore the ongoing processes of service user involvement. Documents and texts produced while conducting the project (2012-2016), as well as transcripts from multistage focus group discussions with the research advisors, were analysed. The level of involvement was dynamic and varied throughout the different stages of the research process. Six features: leadership, meeting structure, role clarification, being members of a team, a focus on possibilities and being seen and treated as holistic individuals, were guiding principles for a salutogenic service user involvement. These features strengthened the advisors' perception of themselves as valuable and competent contributors. Significant contributions from research advisors were promoted by facilitating the process of involvement. A supporting structure and atmosphere were consistent with a salutogenic service user involvement. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Inspiring Students to be Scientists: Oceanographic Research Journeys of a Middle School Teacher

    Science.gov (United States)

    Paulishak, E.

    2006-12-01

    I will present my research and educational experiences with two professional development programs in which I practiced scientific research. Real world applications of scientific principles cause science to be less abstract and allow the students to be involved in genuine science in the field. Students view teachers differently as a teacher brings her/his experience and enthusiasm for learning into the classroom environment. Furthermore, by developing activities around those experiences, the teacher may permit the students to have some direct involvement with scientific research. One of the common goals of these programs is for teachers to understand the research process and the science involved with it. My goal is to remain a teacher and use these valuable experiences to inspire my students. My job, after completing the research experience and doing investigations in the field, becomes one of "translator" taking the content and process knowledge and making it understandable and authentic for the advancement of my students. It also becomes one of "mentor" when helping to develop the skills of new teachers. Both of my experiences included seagoing expeditions. The REVEL program was my first experience in the summer of 2000. It gave me an immense opportunity to become part of a research team studying the underwater volcanic environment of the Juan de Fuca Ridge in the Northeast Pacific Ocean. With the ARMADA project (2006), I learned about SONAR as we traveled via NOAA ship along the Aleutian Islands of Alaska. Using examples from both of these highly valuable programs, I will be presenting my ideas about how to prepare teachers for their research experience, how to make the transition from research experience to practical classroom application, and how these experiences play a role in retaining the best science teachers and developing new science teachers for the future. Research programs such as these, furnish me with an added sense of confidence as I facilitate

  8. Facilitating ethical reflection among scientists using the ethical matrix

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian

    2011-01-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about...... their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area...... of animal disease genomics (mainly drawn from the EADGENE EC Network of Excellence). This reflection process was facilitated by using an ethical engagement framework, a modified version of the Ethical Matrix. As judged by two criteria, a qualitative assessment of the outcomes and the participants' own...

  9. PREFACE: FAIRNESS 2013: FAIR NExt generation of ScientistS 2013

    Science.gov (United States)

    Petersen, Hannah; Destefanis, Marco; Galatyuk, Tetyana; Montes, Fernando; Nicmorus, Diana; Ratti, Claudia; Tolos, Laura; Vogel, Sascha

    2014-04-01

    FAIRNESS 2013 was the second edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on 16-21 September 2013 in Berlin, Germany. The topics of the workshop cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI Helmholtzzentrum for Schwerionenforschung close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. advanced PhD students and postdocs and young researchers without permanent position to present their work, to foster active informal discussions and build up of networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in box to stimulate discussions. Since the physics program of FAIR is very broad, this is reflected in the wide range of topics covered at the Conference: Physics of hot and dense nuclear matter, QCD phase transitions and critical point Nuclear structure, astrophysics and reactions Hadron spectroscopy, Hadrons in matter and Hypernuclei Special emphasis is put on the experiments CBM, HADES, PANDA, NuSTAR, as well as NICA and the RHIC low beam energy scan New developments in atomic and plasma physics For all of these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2013 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of

  10. JINR CLOUD SERVICE FOR SCIENTIFIC AND ENGINEERING COMPUTATIONS

    Directory of Open Access Journals (Sweden)

    Nikita A. Balashov

    2018-03-01

    Full Text Available Pretty often small research scientific groups do not have access to powerful enough computational resources required for their research work to be productive. Global computational infrastructures used by large scientific collaborations can be challenging for small research teams because of bureaucracy overhead as well as usage complexity of underlying tools. Some researchers buy a set of powerful servers to cover their own needs in computational resources. A drawback of such approach is a necessity to take care about proper hosting environment for these hardware and maintenance which requires a certain level of expertise. Moreover a lot of time such resources may be underutilized because а researcher needs to spend a certain amount of time to prepare computations and to analyze results as well as he doesn’t always need all resources of modern multi-core CPUs servers. The JINR cloud team developed a service which provides an access for scientists of small research groups from JINR and its Member State organizations to computational resources via problem-oriented (i.e. application-specific web-interface. It allows a scientist to focus on his research domain by interacting with the service in a convenient way via browser and abstracting away from underlying infrastructure as well as its maintenance. A user just sets a required values for his job via web-interface and specify a location for uploading a result. The computational workloads are done on the virtual machines deployed in the JINR cloud infrastructure.

  11. Research data management support for large-scale, long-term, interdisciplinary collaborative research centers with a focus on environmental sciences

    Science.gov (United States)

    Curdt, C.; Hoffmeister, D.; Bareth, G.; Lang, U.

    2017-12-01

    Science conducted in collaborative, cross-institutional research projects, requires active sharing of research ideas, data, documents and further information in a well-managed, controlled and structured manner. Thus, it is important to establish corresponding infrastructures and services for the scientists. Regular project meetings and joint field campaigns support the exchange of research ideas. Technical infrastructures facilitate storage, documentation, exchange and re-use of data as results of scientific output. Additionally, also publications, conference contributions, reports, pictures etc. should be managed. Both, knowledge and data sharing is essential to create synergies. Within the coordinated programme `Collaborative Research Center' (CRC), the German Research Foundation offers funding to establish research data management (RDM) infrastructures and services. CRCs are large-scale, interdisciplinary, multi-institutional, long-term (up to 12 years), university-based research institutions (up to 25 sub-projects). These CRCs address complex and scientifically challenging research questions. This poster presents the RDM services and infrastructures that have been established for two CRCs, both focusing on environmental sciences. Since 2007, a RDM support infrastructure and associated services have been set up for the CRC/Transregio 32 (CRC/TR32) `Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation' (www.tr32.de). The experiences gained have been used to arrange RDM services for the CRC1211 `Earth - Evolution at the Dry Limit' (www.crc1211.de), funded since 2016. In both projects scientists from various disciplines collect heterogeneous data at field campaigns or by modelling approaches. To manage the scientific output, the TR32DB data repository (www.tr32db.de) has been designed and implemented for the CRC/TR32. This system was transferred and adapted to the CRC1211 needs (www.crc1211db.uni-koeln.de) in 2016. Both

  12. Transdisciplinary designer-scientist collaboration in child oncology

    NARCIS (Netherlands)

    Remko van der Lugt; Fenne Verhoeven; Aeltsje Brinksma; Matthijs Roumen

    2015-01-01

    Integrating knowledge and expertise from designers and scientists proposes solutions to complex problems in a flexible and open-minded way. However, little insight is available in how this collaboration works. Therefore, we reflected on a research project aimed at supportive care interventions for

  13. Transfusion research priorities for blood services in sub-Saharan Africa.

    Science.gov (United States)

    Bates, Imelda; Hassall, Oliver; Mapako, Tonderai

    2017-06-01

    Evidence to support many blood transfusion policies and practices in sub-Saharan Africa (SSA) is weak or lacking. SSA cannot extrapolate from wealthy countries' research findings because its environment, users and structures are very different and SSA has critical blood shortages. SSA needs to generate its own evidence but research funds are very scarce and need to be carefully targeted to match need. This study aimed to define this need by determining research priorities for blood services in SSA. Thirty-five stakeholders representing diverse blood services' interests and expertise participated in a workshop. An adapted 'consensus development method' was used to identify, agree and justify research priorities under five themes through small group and plenary discussion, and cumulative voting. Research priorities covered traditional research areas, such as clinical use of blood and infection screening, but also highlighted many new, under-researched topics, mostly concerning blood service 'systems', such as economics, blood components and regulation. Lack of electronic information management systems was an important hindrance to the blood services' ability to generate robust research data. This study has identified and prioritised novel research that will help blood services in SSA to address their own needs including their most urgent problem: the lack of access to adequate blood supplies. To catalyse this research blood services in SSA need to enhance their capacity to conduct, commission and manage research and to strengthen their collaborations within and beyond Africa. © 2017 John Wiley & Sons Ltd.

  14. A theoretical framework to support research of health service innovation.

    Science.gov (United States)

    Fox, Amanda; Gardner, Glenn; Osborne, Sonya

    2015-02-01

    Health service managers and policy makers are increasingly concerned about the sustainability of innovations implemented in health care settings. The increasing demand on health services requires that innovations are both effective and sustainable; however, research in this field is limited, with multiple disciplines, approaches and paradigms influencing the field. These variations prevent a cohesive approach, and therefore the accumulation of research findings, in the development of a body of knowledge. The purpose of this paper is to provide a thorough examination of the research findings and provide an appropriate theoretical framework to examine sustainability of health service innovation. This paper presents an integrative review of the literature available in relation to sustainability of health service innovation and provides the development of a theoretical framework based on integration and synthesis of the literature. A theoretical framework serves to guide research, determine variables, influence data analysis and is central to the quest for ongoing knowledge development. This research outlines the sustainability of innovation framework; a theoretical framework suitable for examining the sustainability of health service innovation. If left unaddressed, health services research will continue in an ad hoc manner, preventing full utilisation of outcomes, recommendations and knowledge for effective provision of health services. The sustainability of innovation theoretical framework provides an operational basis upon which reliable future research can be conducted.

  15. British scientists and the Manhattan Project: the Los Alamos years

    International Nuclear Information System (INIS)

    Szasz, F.M.

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK)

  16. British scientists and the Manhattan Project: the Los Alamos years

    Energy Technology Data Exchange (ETDEWEB)

    Szasz, F.M. (New Mexico Univ., Albuquerque, NM (United States))

    1992-01-01

    This is a study of the British scientific mission to Los Alamos, New Mexico, from 1943 to 1947, and the impact it had on the early history of the atomic age. In the years following the Manhattan Project and the production of the world's first atomic explosion in 1945, the British contribution to the Project was played down or completely ignored leaving the impression that all the atomic scientists had been American. However, the two dozen or so British scientists contributed crucially to the development of the atomic bomb. First, the initial research and reports of British scientists convinced American scientists that an atomic weapons could be constructed before the likely end of hostilities. Secondly their contribution insured the bomb was available in the shortest possible time. Also, because these scientists became involved in post-war politics and in post-war development of nuclear power, they also helped forge the nuclear boundaries of the mid-twentieth century. (UK).

  17. Secondary Analysis: A Strategy for the Use of Knowledge from Research

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, PhD

    2013-12-01

    Full Text Available In recent years there has been a «rapidly expanding demand for sociologists services by organizations and groups for aid in solving their operating problems (Parsons, 1959. When a prospective client approaches the social scientist with a problem and asks what research can do to help solve it, he will generally focus this question in one or two ways: 1 what research already exists that may help and/or 2 what research can be done directly in the present situation? (Likert & Lippitt, 1953. This paper will discuss on strategy for applying existing research in the hope that it may help social scientist cope more effectively with the expanding demand for applied social research.

  18. Why Choose This One? Factors in Scientists' Selection of Bioinformatics Tools

    Science.gov (United States)

    Bartlett, Joan C.; Ishimura, Yusuke; Kloda, Lorie A.

    2011-01-01

    Purpose: The objective was to identify and understand the factors involved in scientists' selection of preferred bioinformatics tools, such as databases of gene or protein sequence information (e.g., GenBank) or programs that manipulate and analyse biological data (e.g., BLAST). Methods: Eight scientists maintained research diaries for a two-week…

  19. US Forest Service experimental forests and ranges: an untapped resource for social science

    Science.gov (United States)

    Susan Charnley; Lee K. Cerveny

    2011-01-01

    For a century, US Forest Service experimental forests and ranges (EFRs) have been a resource for scientists conducting long-term research relating to forestry and range management social science research has been limited, despite the history of occupation and current use of these sites for activities ranging from resource extraction and recreation to public education....

  20. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  1. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  2. Fire, Fuel, and Smoke Science Program 2015 Research Accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Charles W. McHugh; Colin C. Hardy

    2016-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support...

  3. Best practices in bioinformatics training for life scientists.

    KAUST Repository

    Via, Allegra; Blicher, Thomas; Bongcam-Rudloff, Erik; Brazas, Michelle D; Brooksbank, Cath; Budd, Aidan; De Las Rivas, Javier; Dreyer, Jacqueline; Fernandes, Pedro L; van Gelder, Celia; Jacob, Joachim; Jimenez, Rafael C; Loveland, Jane; Moran, Federico; Mulder, Nicola; Nyrö nen, Tommi; Rother, Kristian; Schneider, Maria Victoria; Attwood, Teresa K

    2013-01-01

    concepts. Providing bioinformatics training to empower life scientists to handle and analyse their data efficiently, and progress their research, is a challenge across the globe. Delivering good training goes beyond traditional lectures and resource

  4. To Boldly Go: Practical Career Advice for Young Scientists

    Science.gov (United States)

    Fiske, P.

    1998-05-01

    Young scientists in nearly every field are finding the job market of the 1990's a confusing and frustrating place. Ph.D. supply is far larger than that needed to fill entry-level positions in "traditional" research careers. More new Ph.D. and Master's degree holders are considering a wider range of careers in and out of science, but feel ill-prepared and uninformed about their options. Some feel their Ph.D. training has led them to a dead-end. I present a thorough and practical overview to the process of career planning and job hunting in the 1990's, from the perspective of a young scientist. I cover specific steps that young scientists can take to broaden their horizons, strengthen their skills, and present their best face to potential employers. An important part of this is the realization that most young scientists possess a range of valuable "transferable skills" that are highly sought after by employers in and out of science. I will summarize the specifics of job hunting in the 90's, including informational interviewing, building your network, developing a compelling CV and resume, cover letters, interviewing, based on my book "To Boldly Go: A Practical Career Guide for Scientists". I will also identify other resources available for young scientists. Finally, I will highlight individual stories of Ph.D.-trained scientists who have found exciting and fulfilling careers outside the "traditional" world of academia.

  5. Top scientists join Stephen Hawking at Perimeter Institute

    Science.gov (United States)

    Banks, Michael

    2009-03-01

    Nine leading researchers are to join Stephen Hawking as visiting fellows at the Perimeter Institute for Theoretical Physics in Ontario, Canada. The researchers, who include string theorists Leonard Susskind from Stanford University and Asoka Sen from the Harisch-Chandra Research Institute in India, will each spend a few months of the year at the institute as "distinguished research chairs". They will be joined by another 30 scientists to be announced at a later date.

  6. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  7. What do computer scientists tweet? Analyzing the link-sharing practice on Twitter.

    Directory of Open Access Journals (Sweden)

    Marco Schmitt

    Full Text Available Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists' style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science.

  8. What do computer scientists tweet? Analyzing the link-sharing practice on Twitter.

    Science.gov (United States)

    Schmitt, Marco; Jäschke, Robert

    2017-01-01

    Twitter communication has permeated every sphere of society. To highlight and share small pieces of information with possibly vast audiences or small circles of the interested has some value in almost any aspect of social life. But what is the value exactly for a scientific field? We perform a comprehensive study of computer scientists using Twitter and their tweeting behavior concerning the sharing of web links. Discerning the domains, hosts and individual web pages being tweeted and the differences between computer scientists and a Twitter sample enables us to look in depth at the Twitter-based information sharing practices of a scientific community. Additionally, we aim at providing a deeper understanding of the role and impact of altmetrics in computer science and give a glance at the publications mentioned on Twitter that are most relevant for the computer science community. Our results show a link sharing culture that concentrates more heavily on public and professional quality information than the Twitter sample does. The results also show a broad variety in linked sources and especially in linked publications with some publications clearly related to community-specific interests of computer scientists, while others with a strong relation to attention mechanisms in social media. This refers to the observation that Twitter is a hybrid form of social media between an information service and a social network service. Overall the computer scientists' style of usage seems to be more on the information-oriented side and to some degree also on professional usage. Therefore, altmetrics are of considerable use in analyzing computer science.

  9. Using partnerships with scientists to enhance teacher capacity to address the NGSS

    Science.gov (United States)

    Pavelsky, T.; Haine, D. B.; Drostin, M.

    2013-12-01

    Increasingly, scientists are seeking outreach experts to assist with the education and outreach components of their research grants. These experts have the skills and expertise to assist with translating scientific research into lessons and activities that are aligned to the Next Generation Science Standards (NGSS) as well as state standards, are STEM-focused and that address the realities of the K-12 science classroom. Since 2007, the Institute for the Environment (IE) at the University of North Carolina at Chapel Hill has been conducting teacher professional development and high school student science enrichment programs to promote climate literacy. Partnering with scientists to deepen content knowledge and promote engagement with technology and real data has been a successful strategy for cultivating increased climate literacy among teachers and students. In this session, we will share strategies for effectively engaging scientists in K-12 educational activities by providing specific examples of the various ways in which scientists can be integrated into programming and their research translated into relevant classroom activities. Engaging scientists and translating their research into classroom activities is an approach that becomes even more relevant with the advent of the NGSS. The NGSS's Disciplinary Core Ideas (DCIs) that encompass climate literacy can be addressed by partnering with scientists to provide teachers with current content knowledge and technological tools needed to promote integration of relevant science and engineering practices and cross-cutting themes. Here we highlight a successful partnership in which IE science educators collaborated with with a faculty member to develop a lesson for North Carolina teachers introducing them to new research on satellite remote sensing of the water cycle, while also promoting student engagement with local data. The resulting lesson was featured during a two-day, IE-led teacher workshop for 21 North Carolina

  10. Service Learning: Applications and Research in Business

    Science.gov (United States)

    Andrews, Christine P.

    2007-01-01

    Researchers have described "service learning" as an ideal way to integrate experiential education into coursework while meeting community needs and imbuing students with civic responsibility. They have advocated service learning in business as a method to implement course concepts and increase student understanding of the external environment. In…

  11. Professor Mansour Ali Haseeb: Highlights from a pioneer of biomedical research, physician and scientist.

    Science.gov (United States)

    Salih, Mustafa Abdalla M

    2013-01-01

    The article highlights the career of Professor Mansour Ali Haseeb (1910 - 1973; DKSM, Dip Bact, FRCPath, FRCP [Lond]), a pioneer worker in health, medical services, biomedical research and medical education in the Sudan. After his graduation from the Kitchener School of Medicine (renamed, Faculty of Medicine, University of Khartoum [U of K]) in 1934, he devoted his life for the development of laboratory medicine. He became the first Sudanese Director of Stack Medical Research Laboratories (1952 - 1962). He made valuable contributions by his services in the vaccine production and implementation programs, most notably in combating small pox, rabies and epidemic meningitis. In 1963 he became the first Sudanese Professor of Microbiology and Parasitology and served as the first Sudanese Dean of the Faculty of Medicine, U of K (1963-1969). He was an active loyal citizen in public life and served in various fields outside the medical profession. As Mayor of Omdurman, he was invited to visit Berlin in 1963 by Willy Brandt, Mayor of West Berlin (1957-1966) and Chancellor of the Federal Republic of Germany (1969 to 1974). Also as Mayor of Omdurman, he represented the City in welcoming Queen Elizabeth II during her visit to Sudan in February 1965. He also received State Medals from Egypt and Ethiopia. In 1973 he was appointed Chairman of the Sudan Medical Research Council, and was awarded the international Dr. Shousha Foundation Prize and Medal by the WHO for his contribution in the advancement of health, research and medical services.

  12. Interviewing German scientists on climate change. A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Ungar, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Kuestenforschung; Toronto Univ., Scarborough (Canada)

    2004-07-01

    This study is based on in-depth interviews with 25 German scientists at the Coastal Research Institute of the GKSS-Forschungszentrum. It takes as its context the differential rhetoric and planning on climate change found in Germany and North America. The interviews try to throw light on the early German decision to address climate change, and to assess the current attitudes, beliefs and experiences of these German scientists. The results reveal a degree of complacency among these scientists, including a sense that Germany is not particularly threatened by climate change and has the capacity to adapt to it. The scientists are critical of inaction among the German population, but themselves uphold a ''light version'' of the precautionary principle. They have great difficulty translating the idea of climate change into popular metaphors that can be grasped by children. They strongly reject any link between German leadership on the issue as a result of a sense of guilt about the German past. (orig.)

  13. Statistical regularities in the rank-citation profile of scientists.

    Science.gov (United States)

    Petersen, Alexander M; Stanley, H Eugene; Succi, Sauro

    2011-01-01

    Recent science of science research shows that scientific impact measures for journals and individual articles have quantifiable regularities across both time and discipline. However, little is known about the scientific impact distribution at the scale of an individual scientist. We analyze the aggregate production and impact using the rank-citation profile c(i)(r) of 200 distinguished professors and 100 assistant professors. For the entire range of paper rank r, we fit each c(i)(r) to a common distribution function. Since two scientists with equivalent Hirsch h-index can have significantly different c(i)(r) profiles, our results demonstrate the utility of the β(i) scaling parameter in conjunction with h(i) for quantifying individual publication impact. We show that the total number of citations C(i) tallied from a scientist's N(i) papers scales as [Formula: see text]. Such statistical regularities in the input-output patterns of scientists can be used as benchmarks for theoretical models of career progress.

  14. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    Science.gov (United States)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  15. Whom do scientists talk to? Themselves or the general public ...

    African Journals Online (AJOL)

    The paper reveals that although science researchers admit to the effectiveness of mass media as possible channels for science communication, they hardly make use of them to disseminate their research. Research scientists choose academic channels, namely; journals and brochures, lectures and seminars and, books ...

  16. Ernest Rutherford: scientist supreme

    International Nuclear Information System (INIS)

    Campbell, J.

    1998-01-01

    One hundred years ago this month, Ernest Rutherford a talented young New Zealander who had just spent three years as a postgraduate student in Britain left for Canada, where he was to do the work that won him a Nobel prize. All three countries can justifiably claim this great scientist as their own. Ernest Rutherford is one of the most illustrious scientists that the world has ever seen. He achieved enduring international fame because of an incredibly productive life, during which he altered our view of nature on three separate occasions. Combining brilliantly conceived experiments with much hard work and special insight, he explained the perplexing problem of naturally occurring radioactivity, determined the structure of the atom, and was the world's first successful alchemist, changing nitrogen into oxygen. Rutherford received a Nobel prize for the first discovery, but the other two would have been equally worthy candidates, had they been discovered by someone else. Indeed, any one of his other secondary achievements many of which are now almost forgotten would have been enough to bring fame to a lesser scientist. For example, he invented an electrical method for detecting individual ionizing radiations, he dated the age of the Earth, and briefly held the world record for the distance over which wireless waves could be detected. He predicted the existence of neutrons, he oversaw the development of large-scale particle accelerators, and, during the First World War, he led the allied research into the detection of submarines. In this article the author describes the life and times of Ernest Rutherford. (UK)

  17. Health Services Research for Drug and Alcohol Treatment and Prevention.

    Science.gov (United States)

    McCarty, Dennis; Roman, Paul M; Sorensen, James; Weisner, Constance

    2009-01-01

    Health services research is a multidisciplinary field that examines ways to organize, manage, finance, and deliver high-quality care. This specialty within substance abuse research developed from policy analyses and needs assessments that shaped federal policy and promoted system development in the 1970s. After the authorization of the National Institute on Alcohol Abuse and Alcoholism (NIAAA) and the National Institute on Drug Abuse (NIDA), patient information systems supported studies of treatment processes and outcomes. Health services research grew substantially in the 1990s when NIAAA and NIDA moved into the National Institutes of Health and legislation allocated 15% of their research portfolio to services research. The next decade will emphasize research on quality of care, adoption and use of evidence-based practices (including medication), financing reforms and integration of substance abuse treatment with primary care and mental health services.

  18. Fire, Fuel, and Smoke Science Program: 2013 Research accomplishments

    Science.gov (United States)

    Faith Ann Heinsch; Robin J. Innes; Colin C. Hardy; Kristine M. Lee

    2014-01-01

    The Fire, Fuel, and Smoke Science Program (FFS) of the U.S. Forest Service, Rocky Mountain Research Station, focuses on fundamental and applied research in wildland fire, from fire physics and fire ecology to fuels management and smoke emissions. Located at the Missoula Fire Sciences Laboratory in Montana, the scientists, engineers, technicians, and support staff in...

  19. Speech acts and performances of scientific citizenship: Examining how scientists talk about therapeutic cloning.

    Science.gov (United States)

    Marks, Nicola J

    2014-07-01

    Scientists play an important role in framing public engagement with science. Their language can facilitate or impede particular interactions taking place with particular citizens: scientists' "speech acts" can "perform" different types of "scientific citizenship". This paper examines how scientists in Australia talked about therapeutic cloning during interviews and during the 2006 parliamentary debates on stem cell research. Some avoided complex labels, thereby facilitating public examination of this field. Others drew on language that only opens a space for publics to become educated, not to participate in a more meaningful way. Importantly, public utterances made by scientists here contrast with common international utterances: they did not focus on the therapeutic but the research promises of therapeutic cloning. Social scientists need to pay attention to the performative aspects of language in order to promote genuine citizen involvement in techno-science. Speech Act Theory is a useful analytical tool for this.

  20. CASE STUDY: Uzbekistan — Competition research improves services

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-22

    Dec 22, 2010 ... Small Grants Competition for Distribution Sector Research ... restrictive business practices in international money transfer services and find ways to .... through its own methodology on analyzing the financial services market [.

  1. Preliminary construction of a service provider--informed domestic violence research agenda.

    Science.gov (United States)

    Murray, Christine E; Welch, Metoka L

    2010-12-01

    This article presents the results of a statewide survey of domestic violence (DV) service providers that focused on the needs, background characteristics, and opinions of service providers related to research. The survey included an examination of service providers' motivation for working in the field, research background and training, and perceptions of research as well as the topics they believe are important for researchers to study, the resources they consult to learn about DV, and their suggestions to help researchers learn more about the nature of their work. The results are integrated into a preliminary agenda for future DV research that accounts for the needs and insight of service providers.

  2. Call for new OWSD Fellowships for Early Career Women Scientists ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-03

    May 3, 2018 ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... or mathematics; and employed at an academic or scientific research ... research groups that will attract international visitors; and to develop links with ... opportunity to support Canadian-African research teams studying Ebola.

  3. Education and Public Outreach for the PICASSO-CENA Satellite-Based Research Mission: K-12 Students Use Sun Photometers to Assist Scientists in Validating Atmospheric Data

    Science.gov (United States)

    Robinson, D. Q.

    2001-05-01

    Hampton University, a historically black university, is leading the Education and Public Outreach (EPO) portion of the PICASSO-CENA satellite-based research mission. Currently scheduled for launch in 2004, PICASSO-CENA will use LIDAR (LIght Detection and Ranging), to study earth's atmosphere. The PICASSO-CENA Outreach program works with scientists, teachers, and students to better understand the effects of clouds and aerosols on earth's atmosphere. This program actively involves students nationwide in NASA research by having them obtain sun photometer measurements from their schools and homes for comparison with data collected by the PICASSO-CENA mission. Students collect data from their classroom ground observations and report the data via the Internet. Scientists will use the data from the PICASSO-CENA research and the student ground-truthing observations to improve predications about climatic change. The two-band passive remote sensing sun photometer is designed for student use as a stand alone instrument to study atmospheric turbidity or in conjunction with satellite data to provide ground-truthing. The instrument will collect measurements of column optical depth from the ground level. These measurements will not only give the students an appreciation for atmospheric turbidity, but will also provide quantitative correlative information to the PICASSO-CENA mission on ground-level optical depth. Student data obtained in this manner will be sufficiently accurate for scientists to use as ground truthing. Thus, students will have the opportunity to be involved with a NASA satellite-based research mission.

  4. How scientists view the public, the media and the political process.

    Science.gov (United States)

    Besley, John C; Nisbet, Matthew

    2013-08-01

    We review past studies on how scientists view the public, the goals of communication, the performance and impacts of the media, and the role of the public in policy decision-making. We add to these past findings by analyzing two recent large-scale surveys of scientists in the UK and US. These analyses show that scientists believe the public is uninformed about science and therefore prone to errors in judgment and policy preferences. Scientists are critical of media coverage generally, yet they also tend to rate favorably their own experience dealing with journalists, believing that such interactions are important both for promoting science literacy and for career advancement. Scientists believe strongly that they should have a role in public debates and view policy-makers as the most important group with which to engage. Few scientists view their role as an enabler of direct public participation in decision-making through formats such as deliberative meetings, and do not believe there are personal benefits for investing in these activities. Implications for future research are discussed, in particular the need to examine how ideology and selective information sources shape scientists' views.

  5. Service Robotics in Healthcare: A Perspective for Information Systems Researchers?

    OpenAIRE

    Garmann-Johnsen, Niels Frederik; Mettler, Tobias; Sprenger, Michaela

    2014-01-01

    Recent advances in electronics and telecommunication have paved the way for service robots to enter the clinical world. While service robotics has long been a core research theme in computer science and other engineering-related fields, it has attracted little interest of Information Systems (IS) researchers so far. We argue that service robotics represents an interesting area of investigation, especially for healthcare, since current research lacks a thorough examination of socio-technical p...

  6. The History of Winter: teachers as scientists

    Science.gov (United States)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned

  7. Assessing Ecosystem Services and Multifunctionality for Vineyard Systems

    Directory of Open Access Journals (Sweden)

    Klara J. Winkler

    2017-04-01

    Full Text Available Vineyards shape important economic, cultural, and ecological systems in many temperate biomes. Like other agricultural systems, they can be multifunctional landscapes that not only produce grapes, but also for example serve as wildlife habitat, sequester carbon, and are places of rich traditions. However, research and management practices often focus mostly on individual, specific ecosystem services, without considering multifunctionality. Therefore, we set out to meet four research objectives: (1 evaluate how frequently the ecosystem services approach has been applied in vineyard systems; (2 identify which individual ecosystem services have been most frequently studied in vineyard systems, (3 summarize knowledge on the key ecosystem services identified in (2, and (4 illustrate approaches to multifunctionality in vineyards to inform more holistic land management. For research objective (1, we identified 45 publications that used the term “ecosystem services” in relation to vineyards, but found that only seven fully apply the ecosystem service concept to their research. For research objective (2, we operationalized the Common International Classification of Ecosystem Services (CICES for 27 ecosystem services in vineyards, in order to consider provisioning, regulating, and cultural services through an analysis of more than 4,000 scientific papers that mentioned individual services. We found the six most frequently studied ecosystem services included (1 cultivated crops, (2 filtration, sequestration, storage and accumulation by the vineyards, (3 pest control and (4 disease control, (5 heritage, cultural and (6 scientific services. For research objective (3, we found that research on these six single ecosystem services is highly developed, but relationships between single ecosystem services are less studied. Therefore, we suggest that greater adoption of the ecosystem services approach could help scientists and practitioners to acknowledge the

  8. Feelings and ethics education: the film dear scientists.

    Science.gov (United States)

    Semendeferi, Ioanna

    2014-12-01

    There is an increasing body of evidence that not only cognition but also emotions shape moral judgment. The conventional teaching of responsible conduct of research, however, does not target emotions; its emphasis is on rational analysis. Here I present a new approach, 'the feelings method,' for incorporating emotions into science ethics education. This method is embodied in Dear Scientists, an innovative film that combines humanities with arts and works at the subconscious level, delivering an intense mix of music and images, contrasted by calm narration. Dear Scientists has struck a chord across the science, humanities, and arts communities-a promising sign.

  9. Scientists as citizens and knowers in the detection of deforestation in the Amazon.

    Science.gov (United States)

    Monteiro, Marko; Rajão, Raoni

    2017-08-01

    This paper examines how scientists deal with tensions emerging from their role as providers of objective knowledge and as citizens concerned with how their research influences policy and politics in Brazil. This is accomplished through an ethnographic account of scientists using remote sensing technology, of their knowledge-making activities and of the broader socio-political controversies that permeate the detection of deforestation in the Amazon rainforest. Strategies for mitigating uncertainty are central aspects of the knowledge practices analyzed, bringing controversies 'external' to the laboratory 'into' the lab, making these boundaries conceptually problematic. In particular, the anticipation of alternative interpretations of rainforest cover is a crucial way that scientists bring the world into the lab, helping to shed light on how scientists, usually seen and analyzed as isolated, are in fact often in constant dialogue with the broader political controversies related to their work. These insights help question the idea that the monitoring of deforestation through remote sensing is a form of secluded research, drawing a more complex picture of the dual role of scientists as knowledge producers and concerned citizens.

  10. Microgravity sciences application visiting scientist program

    Science.gov (United States)

    Glicksman, Martin; Vanalstine, James

    1995-01-01

    Marshall Space Flight Center pursues scientific research in the area of low-gravity effects on materials and processes. To facilitate these Government performed research responsibilities, a number of supplementary research tasks were accomplished by a group of specialized visiting scientists. They participated in work on contemporary research problems with specific objectives related to current or future space flight experiments and defined and established independent programs of research which were based on scientific peer review and the relevance of the defined research to NASA microgravity for implementing a portion of the national program. The programs included research in the following areas: protein crystal growth, X-ray crystallography and computer analysis of protein crystal structure, optimization and analysis of protein crystal growth techniques, and design and testing of flight hardware.

  11. Key insights for the future of urban ecosystem services research

    Directory of Open Access Journals (Sweden)

    Peleg Kremer

    2016-06-01

    Full Text Available Understanding the dynamics of urban ecosystem services is a necessary requirement for adequate planning, management, and governance of urban green infrastructure. Through the three-year Urban Biodiversity and Ecosystem Services (URBES research project, we conducted case study and comparative research on urban biodiversity and ecosystem services across seven cities in Europe and the United States. Reviewing > 50 peer-reviewed publications from the project, we present and discuss seven key insights that reflect cumulative findings from the project as well as the state-of-the-art knowledge in urban ecosystem services research. The insights from our review indicate that cross-sectoral, multiscale, interdisciplinary research is beginning to provide a solid scientific foundation for applying the ecosystem services framework in urban areas and land management. Our review offers a foundation for seeking novel, nature-based solutions to emerging urban challenges such as wicked environmental change issues.

  12. DOE Network 2025: Network Research Problems and Challenges for DOE Scientists. Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-02-01

    The growing investments in large science instruments and supercomputers by the US Department of Energy (DOE) hold enormous promise for accelerating the scientific discovery process. They facilitate unprecedented collaborations of geographically dispersed teams of scientists that use these resources. These collaborations critically depend on the production, sharing, moving, and management of, as well as interactive access to, large, complex data sets at sites dispersed across the country and around the globe. In particular, they call for significant enhancements in network capacities to sustain large data volumes and, equally important, the capabilities to collaboratively access the data across computing, storage, and instrument facilities by science users and automated scripts and systems. Improvements in network backbone capacities of several orders of magnitude are essential to meet these challenges, in particular, to support exascale initiatives. Yet, raw network speed represents only a part of the solution. Indeed, the speed must be matched by network and transport layer protocols and higher layer tools that scale in ways that aggregate, compose, and integrate the disparate subsystems into a complete science ecosystem. Just as important, agile monitoring and management services need to be developed to operate the network at peak performance levels. Finally, these solutions must be made an integral part of the production facilities by using sound approaches to develop, deploy, diagnose, operate, and maintain them over the science infrastructure.

  13. Implementing an online pharmaceutical service using design science research.

    Science.gov (United States)

    Lapão, Luís Velez; da Silva, Miguel Mira; Gregório, João

    2017-03-27

    The rising prevalence of chronic diseases is pressing health systems to introduce reforms. Primary healthcare and multidisciplinary models have been suggested as approaches to deal with this challenge, with new roles for nurses and pharmacists being advocated. More recently, implementing healthcare based on information systems and technologies (e.g. eHealth) has been proposed as a way to improve health services. However, implementing online pharmaceutical services, including their adoption by pharmacists and patients, is still an open research question. In this paper we present ePharmacare, a new online pharmaceutical service implemented using Design Science Research. The Design Science Research Methodology (DSRM) was chosen to implement this online service for chronic diseases management. In the paper, DSRM's different activities are explained, from the definition of the problem to the evaluation of the artifact. During the design and development activities, surveys, observations, focus groups, and eye-tracking glasses were used to validate pharmacists' and patients' requirements. During the demonstration and evaluation activities the new service was used with real-world pharmacists and patients. The results show the contribution of DSRM in the implementation of online services for pharmacies. We found that pharmacists spend only 50% of their time interacting with patients, uncovering a clear opportunity to implement online pharmaceutical care services. On the other hand, patients that regularly visit the same pharmacy recognize the value in patient follow-up demanding to use channels such as the Internet for their pharmacy interactions. Limitations were identified regarding the high workload of pharmacists, but particularly their lack of know-how and experience in dealing with information systems (IST) for the provision of pharmaceutical services. This paper summarizes a research project in which an online pharmaceutical service was proposed, designed, developed

  14. Cultural Ecosystem Services: A Literature Review and Prospects for Future Research

    Directory of Open Access Journals (Sweden)

    Andra Ioana. Milcu

    2013-09-01

    Full Text Available Cultural ecosystem services constitute a growing field of research that is characterized by an increasing number of publications from various academic disciplines. We conducted a semiquantitative review of publications explicitly dealing with cultural ecosystem services. Our aims were: (1 to provide an overview of the current state of research, (2 to classify the diversity of research approaches by identifying clusters of publications that address cultural ecosystem services in similar ways, and (3 to highlight some important challenges for the future of cultural ecosystem services research. We reviewed 107 publications and extracted 20 attributes describing their type and content, including methods, scales, drivers of change, and trade-offs between services. Using a cluster analysis on a subset of attributes we identified five groups of publications: Group 1, conceptual focus, deals with theoretical issues; Group 2, descriptive reviews, consists mostly of desktop studies; Group 3, localized outcomes, deals with case studies coming from different disciplines; Group 4, social and participatory, deals mainly with assessing preferences and perceptions; and Group 5, economic assessments, provides economic valuations. Emerging themes in cultural ecosystem services research relate to improving methods for cultural ecosystem services valuation, studying cultural ecosystem services in the context of ecosystem service bundles, and more clearly articulating policy implications. Based on our findings, we conclude that: (1 cultural ecosystem services are well placed as a tool to bridge gaps between different academic disciplines and research communities, (2 capitalizing on the societal relevance of cultural ecosystem services could help address real-world problems, and (3 cultural ecosystem services have the potential to foster new conceptual links between alternative logics relating to a variety of social and ecological issues.

  15. The scientist's role in the nuclear debate

    International Nuclear Information System (INIS)

    Blackstein, F.P.

    1981-01-01

    Until recently the public had little time for, or interest in, studying scientific developments. Details on topics such as medical research, energy developments and communications advances were left to scientific journals and specialist conferences. For the most part the public had faith in science and science was able to maintain that faith through developments which recognizably improved the lot of mankind. But faith is no longer sufficient; scientists must now interact with people if we are to fulfil our obligations in this new theatre of increased public awareness. Scientists and egineers like myself and my colleagues at Atomic Energy of Canada Ltd. are communicating with the public as one part of a broad programme of public information. This includes: operation of public information centres, visits to our laboratories, interaction with teachers, distribution of reports and hosting exhibits. Technical people have a lot to learn about communicating with the public, the media and the critics. It is an extremely difficult task, but as concerned scientists it is something we should and must do, openly and constructively

  16. Executable research compendia in geoscience research infrastructures

    Science.gov (United States)

    Nüst, Daniel

    2017-04-01

    From generation through analysis and collaboration to communication, scientific research requires the right tools. Scientists create their own software using third party libraries and platforms. Cloud computing, Open Science, public data infrastructures, and Open Source enable scientists with unprecedented opportunites, nowadays often in a field "Computational X" (e.g. computational seismology) or X-informatics (e.g. geoinformatics) [0]. This increases complexity and generates more innovation, e.g. Environmental Research Infrastructures (environmental RIs [1]). Researchers in Computational X write their software relying on both source code (e.g. from https://github.com) and binary libraries (e.g. from package managers such as APT, https://wiki.debian.org/Apt, or CRAN, https://cran.r-project.org/). They download data from domain specific (cf. https://re3data.org) or generic (e.g. https://zenodo.org) data repositories, and deploy computations remotely (e.g. European Open Science Cloud). The results themselves are archived, given persistent identifiers, connected to other works (e.g. using https://orcid.org/), and listed in metadata catalogues. A single researcher, intentionally or not, interacts with all sub-systems of RIs: data acquisition, data access, data processing, data curation, and community support [3]. To preserve computational research [3] proposes the Executable Research Compendium (ERC), a container format closing the gap of dependency preservation by encapsulating the runtime environment. ERCs and RIs can be integrated for different uses: (i) Coherence: ERC services validate completeness, integrity and results (ii) Metadata: ERCs connect the different parts of a piece of research and faciliate discovery (iii) Exchange and Preservation: ERC as usable building blocks are the shared and archived entity (iv) Self-consistency: ERCs remove dependence on ephemeral sources (v) Execution: ERC services create and execute a packaged analysis but integrate with

  17. Scenario of research on Food Service in Brazil

    Directory of Open Access Journals (Sweden)

    Flávia Milagres CAMPOS

    Full Text Available ABSTRACT Objective: The present study aims to investigate the scenario of research on Food Service in Brazil based on the Stricto Sensu Graduate Programs in Nutrition, research groups, and scientific production. Methods: A search of the research lines including studies related to this topic and the researchers engaged in those studies was conducted. The research groups were identified on the Directory of Research Groups in Brazil website and the profile of the scientific production was based on articles included in the Scientific Electronic Library Online database. Articles published in international journals that were related to research lines focused on food production were also searched and analyzed. Results: The search identified only two graduate programs with research lines that describe the food production as the object of study although 13 graduate programs carry out research related to Food Service, especially focused on nutritional and sanitary aspects of food. The same trend was observed in the national articles. The internationalization of these two research line results from the academic publication in 22 different journals over the past 5 years. Thirty five professors were identified and most of them hold a PhD in Food Science and Technology. The number of research groups increased from two in 2000 to twenty nine in 2010. Conclusion: The inclusion of Food Service in graduate programs is still limited. The main trend observed is towards a closer relationship with Food Science and Technology in terms of the lines of research, professional qualification, and published studies.

  18. Content of Future Economists' Professional Mobility in Researches of Foreign Scientists

    Science.gov (United States)

    Chorna, Iryna

    2017-01-01

    The content of professional mobility of future economists in the writings of foreign scientists have been presented. The components of future economists' professional mobility formation have been considered. It has been established that the possession of a combination of these components enables future specialists to achieve a high level of…

  19. Scientists discover how deadly fungal microbes enter host cells

    OpenAIRE

    Whyte, Barry James

    2010-01-01

    A research team led by scientists at the Virginia Bioinformatics Institute at Virginia Tech has discovered a fundamental entry mechanism that allows dangerous fungal microbes to infect plants and cause disease.

  20. Preparing Earth Data Scientists for 'the sexiest job of the 21st century'

    Science.gov (United States)

    Kempler, S. J.

    2014-12-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, and/or have varied in approach. This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  1. Preparing Earth Data Scientists for 'The Sexiest Job of the 21st Century'

    Science.gov (United States)

    Kempler, Steven

    2014-01-01

    What Exactly do Earth Data Scientists do, and What do They Need to Know, to do It? There is not one simple answer, but there are many complex answers. Data Science, and data analytics, are new and nebulas, and takes on different characteristics depending on: The subject matter being analyzed, the maturity of the research, and whether the employed subject specific analytics is descriptive, diagnostic, discoveritive, predictive, or prescriptive, in nature. In addition, in a, thus far, business driven paradigm shift, university curriculums teaching data analytics pertaining to Earth science have, as a whole, lagged behind, andor have varied in approach.This presentation attempts to breakdown and identify the many activities that Earth Data Scientists, as a profession, encounter, as well as provide case studies of specific Earth Data Scientist and data analytics efforts. I will also address the educational preparation, that best equips future Earth Data Scientists, needed to further Earth science heterogeneous data research and applications analysis. The goal of this presentation is to describe the actual need for Earth Data Scientists and the practical skills to perform Earth science data analytics, thus hoping to initiate discussion addressing a baseline set of needed expertise for educating future Earth Data Scientists.

  2. Superheroes and supervillains: reconstructing the mad-scientist stereotype in school science

    Science.gov (United States)

    Avraamidou, Lucy

    2013-04-01

    Background. Reform recommendations around the world call for an understanding about the nature of science and the work of scientists. However, related research findings provide evidence that students hold stereotypical views of scientists and the nature of their work. Purpose The aim of this case study was to examine the impact of an intervention on 15 elementary school students' views of scientists. Sample An urban, fifth-grade, European elementary school classroom defined the context of this study. Design and method The intervention was an 11-week-long investigation of a local problem concerning water quality. In carrying out this investigation the students collaborated with a young metrology scientist to collect and analyse authentic data that would help them to construct a claim about the quality of the water. The students' initial views of scientists were investigated through a drawing activity, classroom discussions and interviews. Results Analysis of these data indicated that all students but one girl held very stereotypical views on scientists and the nature of their work. Analysis of interviews with each student and classroom discussions after the intervention illustrated that they reconstructed their stereotypical views of scientists and the nature of their work owing to their personal engagement in the investigation and their collaboration with the scientist. Conclusions The findings of this study suggest that more in-depth study into project-based approaches, out-of-school learning and school-scientist partnerships is warranted, for the purpose of determining appropriate pedagogies that support students in developing up-to-date understanding about scientists and the nature of their work.

  3. LiGA Research and Service at CAMD

    International Nuclear Information System (INIS)

    Goettert, Jost; Datta, Proyag; Desta, Yohannes; Jin, Yoonyoung; Ling Zhonggeng; Singh, Varshni

    2006-01-01

    Since 1995 CAMD has been offering exposure services, so called print shop for a variety of users interested in making precision High-Aspect-Ratio Microstructures (HARMST) for various application. Services have been expanded beyond only the print shop service in recent years and now include x-ray mask fabrication, substrate preparation for PMMA and SU- 8 resists, electroplating, finishing and molding. Metallic and polymeric parts are now routinely fabricated for precision engineering, micro-fluidic and micro-optic applications. This paper presents a brief overview of the actual status of LiGA services provided at CAMD including ongoing research efforts and examples of LiGA components for different applications

  4. Research at the Dairy and Functional Foods Research Unit

    Science.gov (United States)

    Dr. Peggy Tomasula is Research Leader of the Dairy and Functional Foods Research Unit (DFFRU), ARS, USDA, Wyndmoor, PA, a group that includes 11 Research Scientists, 4 of whom are Lead Scientists (LS), 13 support scientists, and 3 Retired Collaborators. The mission of the DFFRU is to solve critical ...

  5. Conservation beyond science: scientists as storytellers

    Directory of Open Access Journals (Sweden)

    Diogo Veríssimo

    2014-11-01

    Full Text Available As scientists we are often unprepared and unwilling to communicate our passion for what we do to those outside our professional circles. Scientific literature can also be difficult or unattractive to those without a professional interest in research. Storytelling can be a successful approach to enable readers to engage with the challenges faced by scientists. In an effort to convey to the public what it means to be a field biologist, 18 Portuguese biologists came together to write a book titled “BIOgraphies: The lives of those who study life”, in the original Portuguese “BIOgrafias: Vidas de quem estuda a vida”. This book is a collection of 35 field stories that became career landmarks for those who lived them. We discuss the obstacles and opportunities of the publishing process and reflect on the lessons learned for future outreach efforts.

  6. Apparel Merchandising Students Learn Customer Service Strategies while Conducting Research.

    Science.gov (United States)

    Paulins, V, Ann

    2000-01-01

    Apparel merchandising students participated in a cooperative research project in which they observed customer service techniques by posing as customers in retail stores. The project taught research processes, collaboration, and principles of customer service. (SK)

  7. Framing design research for service orientation through PSS approaches

    DEFF Research Database (Denmark)

    Sakao, Tomohiko; Sandström, Gunilla Ölundh; Matzen, Detlef

    2009-01-01

    on the literature analysis, the authors present three crucial dimensions for service oriented design research, i.e. an offer dimension representing products and services, a provider dimension, and a customer/user dimension. In addition, three research targets are proposed; PSS-offer modelling, PSS development......, and PSS potential. Furthermore, several promising future research directions are identified. These include evaluating economic consequences or environmental benefits, establishing terminology, organizational issues, and developing methods and tools to support designers. The boundaries to other research...... fields are getting blurry and many aspects of other professionalisms must be taken into account. Thus, there is especially need in future research to open towards other research areas....

  8. Energy-related doctoral scientists and engineers in the United States, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-01

    The pursuit of a vigorous research and development program to provide renewable and other resources to meet U. S. energy needs in the next century is an important objective of President Carter's National Energy Plan. A highly educated and motivated pool of engineers and scientists must be available for energy research and development if this objective is to be achieved. This report provides, for the first time, information about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data for the year 1975 will become part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Information is provided for employment in the following fields: mathematics; physics/astronomy; chemistry; Earth, Environment, and Marine Sciences; Engineering; Life Sciences; Psychology; Social Sciences; Arts and Humanities; and Education and Business.

  9. The discovery of nuclear fission and the responsibility of the scientist

    International Nuclear Information System (INIS)

    Staab, H.A.

    1989-01-01

    The history of the discovery of nuclear fission is placed in historical context and the responsibility of the scientists involved for the subsequent military uses is discussed. It is explained that the deep things in science are not found because they are useful; they are found because it is possible to find them. If Otto Hahn and his co-workers had not discovered nuclear fission someone else in the late 1930s or early 1940s would have done so. It was decisions outside science which set the course for the nuclear fission research once the basic principle had been understood. The question how far does the scientists responsibility extend for unknown and unintended consequences of research and for misuses of his findings by others is discussed. Scientists have a duty to understand the applications of their work and to warn of misuse or hazards, as did Otto Hahn. (UK)

  10. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  11. FAIRNESS 2016 [4. workshop for young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research), Garmisch-Partenkirchen (Germany), 14-19 Feb 2016

    International Nuclear Information System (INIS)

    2016-01-01

    FAIRNESS 2016 was the fourth edition in a series of workshops designed to bring together excellent international young scientists with research interests focused on physics at FAIR (Facility for Antiproton and Ion Research) and was held on February 14-19 2016 in Garmisch-Partenkirchen, Germany. The topics of the workshops cover a wide range of aspects in both theoretical developments and current experimental status, concentrated around the four scientific pillars of FAIR. FAIR is a new accelerator complex with brand new experimental facilities, that is currently being built next to the existing GSI facility close to Darmstadt, Germany. The spirit of the conference is to bring together young scientists, e.g. young non-tenured scientists, postdocs and advanced PhD students to present their work, to foster active informal discussions and build up networks. Every participant in the meeting with the exception of the organizers gives an oral presentation, and all sessions are followed by an hour long discussion period. During the talks, questions are anonymously collected in a box to stimulate discussions. The broad physics program at FAIR is reflected in the wide range of topics covered by the workshop: • Atomic and plasma physics, biophysics, material sciences and applications • Nuclear structure, astrophysics and reactions • Physics of hot and dense nuclear matter, QCD phase transitions and critical point • Hadron Spectroscopy, Hadrons in matter and Hypernuclei • Experimental programs APPA, CBM, HADES, PANDA, NUSTAR, as well as BES, NICA and the RHIC beam energy scan For these different areas one invited speaker was selected to give a longer introductory presentation. The write-ups of the talks presented at FAIRNESS 2016 are the content of this issue of Journal of Physics: Conference Series and have been refereed according to the IOP standard for peer review. This issue constitutes therefore a collection of the forefront of research that is dedicated to the

  12. Caring for nanotechnology? Being an integrated social scientist.

    Science.gov (United States)

    Viseu, Ana

    2015-10-01

    One of the most significant shifts in science policy of the past three decades is a concern with extending scientific practice to include a role for 'society'. Recently, this has led to legislative calls for the integration of the social sciences and humanities in publicly funded research and development initiatives. In nanotechnology--integration's primary field site--this policy has institutionalized the practice of hiring social scientists in technical facilities. Increasingly mainstream, the workings and results of this integration mechanism remain understudied. In this article, I build upon my three-year experience as the in-house social scientist at the Cornell NanoScale Facility and the United States' National Nanotechnology Infrastructure Network to engage empirically and conceptually with this mode of governance in nanotechnology. From the vantage point of the integrated social scientist, I argue that in its current enactment, integration emerges as a particular kind of care work, with social scientists being fashioned as the main caretakers. Examining integration as a type of care practice and as a 'matter of care' allows me to highlight the often invisible, existential, epistemic, and affective costs of care as governance. Illuminating a framework where social scientists are called upon to observe but not disturb, to reify boundaries rather than blur them, this article serves as a word of caution against integration as a novel mode of governance that seemingly privileges situatedness, care, and entanglement, moving us toward an analytically skeptical (but not dismissive) perspective on integration.

  13. Python for scientists

    CERN Document Server

    Stewart, John M

    2017-01-01

    Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

  14. Developing national on-line services to annotate and analyse underwater imagery in a research cloud

    Science.gov (United States)

    Proctor, R.; Langlois, T.; Friedman, A.; Davey, B.

    2017-12-01

    Fish image annotation data is currently collected by various research, management and academic institutions globally (+100,000's hours of deployments) with varying degrees of standardisation and limited formal collaboration or data synthesis. We present a case study of how national on-line services, developed within a domain-oriented research cloud, have been used to annotate habitat images and synthesise fish annotation data sets collected using Autonomous Underwater Vehicles (AUVs) and baited remote underwater stereo-video (stereo-BRUV). Two developing software tools have been brought together in the marine science cloud to provide marine biologists with a powerful service for image annotation. SQUIDLE+ is an online platform designed for exploration, management and annotation of georeferenced images & video data. It provides a flexible annotation framework allowing users to work with their preferred annotation schemes. We have used SQUIDLE+ to sample the habitat composition and complexity of images of the benthos collected using stereo-BRUV. GlobalArchive is designed to be a centralised repository of aquatic ecological survey data with design principles including ease of use, secure user access, flexible data import, and the collection of any sampling and image analysis information. To easily share and synthesise data we have implemented data sharing protocols, including Open Data and synthesis Collaborations, and a spatial map to explore global datasets and filter to create a synthesis. These tools in the science cloud, together with a virtual desktop analysis suite offering python and R environments offer an unprecedented capability to deliver marine biodiversity information of value to marine managers and scientists alike.

  15. Social scientists in public health: a fuzzy approach

    Directory of Open Access Journals (Sweden)

    Juliana Luporini do Nascimento

    2015-05-01

    Full Text Available This study aims to describe and analyze the presence of social scientists, anthropologists, sociologists and political scientists in the field of public health. A survey by the Lattes Curriculum and sites of Medical Colleges, Institutes of Health Research Collective, seeking professionals who work in healthcare and have done some stage of their training in the areas of social sciences. In confluence with Norbert Elias' concepts of social networks and configuration of interdependence it was used fuzzy logic, and the tool free statistical software R version 2.12.0 which enabled a graphic representation of social scientists interdependence in the field of social sciences-health-social sciences. A total of 238 professionals were ready in 6 distinct clusters according to the distance or closer of each professional in relation to public health and social sciences. The work was shown with great analytical and graphical representation possibilities for social sciences of health, in using this innovative quantitative methodology.

  16. Applied research and service activities at the University of Missouri Research Reactor Facility (MURR)

    International Nuclear Information System (INIS)

    Alger, D.M.

    1987-01-01

    The University Of Missouri operates MURR to provide an intense source of neutron and gamma radiation for research and applications by experimenters from its four campuses and by experimenters from other universities, government and industry. The 10 MW reactor, which has been operating an average of 155 hours per week for the past eight years, produces thermal neutron fluxes up to 6-7x10 14 n/cm 2 -s in the central flux trap and beamport source fluxes of up to 1.2x10 14 n/cm 2 -s. The mission of the reactor facility, to promote research, education and service, is the same as the overall mission of the university and therefore, applied research and service supported by industrial firms have been welcomed. The university recognized after a few years of reactor operation that in order to build utilization, it would be necessary to develop in-house research programs including people, equipment and activity so that potential users could more easily and quickly obtain the results needed. Nine research areas have been developed to create a broadly based program to support the level of activity needed to justify the cost of operating the facility. Applied research and service generate financial support for about one-half of the annual budget. The applied and service programs provide strong motivation for university/industry association in addition to the income generated. (author)

  17. Preparing Scientists to be Community Partners

    Science.gov (United States)

    Pandya, R. E.

    2012-12-01

    Many students, especially students from historically under-represented communities, leave science majors or avoid choosing them because scientific careers do not offer enough opportunity to contribute to their communities. Citizen science, or public participation in scientific research, may address these challenges. At its most collaborative, it means inviting communities to partner in every step of the scientific process from defining the research question to applying the results to community priorities. In addition to attracting and retaining students, this level of community engagement will help diversify science, ensure the use and usability of our science, help buttress public support of science, and encourage the application of scientific results to policy. It also offers opportunities to tackle scientific questions that can't be accomplished in other way and it is demonstrably effective at helping people learn scientific concepts and methods. In order to learn how to prepare scientists for this kind of intensive community collaboration, we examined several case studies, including a project on disease and public health in Africa and the professionally evaluated experience of two summer interns in Southern Louisiana. In these and other cases, we learned that scientific expertise in a discipline has to be accompanied by a reservoir of humility and respect for other ways of knowing, the ability to work collaboratively with a broad range of disciplines and people, patience and enough career stability to allow that patience, and a willingness to adapt research to a broader set of scientific and non-scientific priorities. To help students achieve this, we found that direct instruction in participatory methods, mentoring by community members and scientists with participatory experience, in-depth training on scientific ethics and communication, explicit articulation of the goal of working with communities, and ample opportunity for personal reflection were essential

  18. Feelings and Ethics Education: The Film 'Dear Scientists'

    Directory of Open Access Journals (Sweden)

    Ioanna Semendeferi

    2014-10-01

    Full Text Available There is an increasing body of evidence that not only cognition but also emotions shape moral judgment. The conventional teaching of responsible conduct of research, however, does not target emotions; its emphasis is on rational analysis. Here I present a new approach, ‘the feelings method,’ for incorporating emotions into science ethics education. This method is embodied in Dear Scientists, an innovative film that combines humanities with arts and works at the subconscious level, delivering an intense mix of music and images, contrasted by calm narration. Dear Scientists has struck a chord across the science, humanities, and arts communities—a promising sign.

  19. Teenagers as scientist - Learning by doing or doing without learning?

    Science.gov (United States)

    Kapelari, Suzanne; Carli, Elisabeth; Tappeiner, Ulrike

    2010-05-01

    Title: Teenagers as scientist - Learning by doing or doing without learning? Authors: Dr. Suzanne Kapelari* and Elsabeth Carli*, Ulrike Tappeiner** *Science Educaton Center,**Institute of Ecology,University Innsbruck, Austria The PISA (2006-2007) Assessment Framework asks for"…. the development of a general understanding of important concepts and explanatory framework of science, of the methods by which science derives evidence to support claims for its knowledge and of the strength and limitations of science in the real world….". To meet these requirements pupils are eventually asked to engage in "working like scientists learning activities" at school or while visiting informal learning institutions. But what does it mean in a real life situation? An ambitious project call named "Sparkling Science" was launched by the Austrian Federal Ministry of Science and Research in 2008, asking scientists to run their research in tight co-operation with local teachers and pupils. Although this would be enough of a challenge anyway, the ultimate goals of these projects are to achieve publishable scientific results in the particular field. The project design appears to be promising. Pupils and teachers are invited to gain first hand experience as part of a research team investigating current research questions. Pupils experience science research first hand, explore laboratories and research sites, gather data, discuss findings, draw conclusions and finally publish them. They set off on an exciting two years journey through a real scientific project. Teachers have the unique opportunity to get insight into a research project and work closely together with scientists. In addition teachers and pupils have the opportunity to gain first hand knowledge about a particular topic and are invited to discuss science matters on the uppermost level. Sparkling Science promoting agents have high expectations. Their website (www.sparklingscience.at) says: "Forming research teams that

  20. Integrating Research and Education at the National Center for Atmospheric Research at the Interface of Formal and Informal Education

    Science.gov (United States)

    Johnson, R.; Foster, S.

    2005-12-01

    The National Center for Atmospheric Research (NCAR) in Boulder, Colorado, is a leading institution in scientific research, education and service associated with exploring and understanding our atmosphere and its interactions with the Sun, the oceans, the biosphere, and human society. NCAR draws thousands of public and scientific visitors from around the world to its Mesa Laboratory facility annually for educational as well as research purposes. Public visitors include adult visitors, clubs, and families on an informal visit to NCAR and its exhibits, as well as classroom and summer camp groups. Additionally, NCAR provides extensive computational and visualization services, which can be used not only for scientific, but also public informational purposes. As such, NCAR's audience provides an opportunity to address both formal and informal education through the programs that we offer. The University Corporation for Atmospheric Research (UCAR) Office of Education and Outreach works with NCAR to develop and implement a highly-integrated strategy for reaching both formal and informal audiences through programs that range from events and exhibits to professional development (for scientists and educators) and bilingual distance learning. The hallmarks of our program include close collaboration with scientists, multi-purposing resources where appropriate for maximum efficiency, and a commitment to engage populations historically underrepresented in science in the geosciences.

  1. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Search the NEI Website search NEI on Social Media | Search A-Z | en español | Text size S M L About NEI NEI Research Accomplishments Budget and Congress About the NEI Director History of the NEI NEI 50th Anniversary NEI Women Scientists Advisory Committee (WSAC) Board of Scientific Counselors ...

  2. Service quality in alcohol treatment: a research note.

    Science.gov (United States)

    Resnick, Sheilagh M; Griffiths, Mark D

    2011-01-01

    The purpose of this paper is to evaluate service quality in a UK privately funded alcohol treatment clinic. Data were gathered via interviews with two groups of participants using the SERVQUAL questionnaire. The first group comprised 32 patients and the second 15 clinic staff. The SERVQUAL instrument measures service quality expectations and perceptions across five service dimensions and identifies gaps between service expectations and perceptions of what was delivered. Patients' service quality expectations were exceeded on four of five dimensions. However, staff members felt services fell below expectations on four of five dimensions with the "reliability" service dimension emerging as the common service element falling below expectations for both participant groups. It was concluded that achieving consistent service delivery and increasing empathy between staff and patients improves overall service quality perceptions. The paper relies on self-report methods from a relatively small number of individuals. There have been limited research studies measuring alcohol treatment service quality in the private sector.

  3. Scientists discover planetary system similar to our own

    CERN Multimedia

    2003-01-01

    'An international team of scientists has discovered a planet and star that may share the same relationship as Jupiter and our Sun, the closest comparison that researchers have found since they began their search for extra-solar planets nearly a decade ago' (1 page).

  4. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  5. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  6. The use of "mixing" procedure of mixed methods in health services research.

    Science.gov (United States)

    Zhang, Wanqing; Creswell, John

    2013-08-01

    Mixed methods research has emerged alongside qualitative and quantitative approaches as an important tool for health services researchers. Despite growing interest, among health services researchers, in using mixed methods designs, little has been done to identify the procedural aspects of doing so. To describe how mixed methods researchers mix the qualitative and quantitative aspects of their studies in health services research. We searched the PubMed for articles, using mixed methods in health services research, published between January 1, 2006 and December 30, 2010. We identified and reviewed 30 published health services research articles on studies in which mixed methods had been used. We selected 3 articles as illustrations to help health services researcher conceptualize the type of mixing procedures that they were using. Three main "mixing" procedures have been applied within these studies: (1) the researchers analyzed the 2 types of data at the same time but separately and integrated the results during interpretation; (2) the researchers connected the qualitative and quantitative portions in phases in such a way that 1 approach was built upon the findings of the other approach; and (3) the researchers mixed the 2 data types by embedding the analysis of 1 data type within the other. "Mixing" in mixed methods is more than just the combination of 2 independent components of the quantitative and qualitative data. The use of "mixing" procedure in health services research involves the integration, connection, and embedding of these 2 data components.

  7. Science exchange in an era of diminished capacity: recreation management in the U.S. Forest Service

    Science.gov (United States)

    Clare M. Ryan; Lee K. Cerveny

    2010-01-01

    Promotion of effective science exchange between government scientists and managers requires thoughtful arrangement and operation of research and management functions. The U.S. Forest Service was established at the peak of the Progressive Era, when science exchange was designed to occur between researchers and resource managers who worked in distinct arms of the agency...

  8. Exploring Natural and Social Scientists' Views of Nature of Science

    Science.gov (United States)

    Bayir, Eylem; Cakici, Yilmaz; Ertas, Ozge

    2014-01-01

    Science education researchers recently turned their attention to exploring views about nature of science (NOS). A large body of research indicates that both students and teachers have many naïve views about the NOS. Unfortunately, less attention has been directed at the issue of exploring the views of the scientists. Also, the little research in…

  9. Explorations of the Effect of Experience on Preferences for a Health-Care Service

    OpenAIRE

    Neuman, Einat; Neuman, Shoshana

    2007-01-01

    The standard assumption in economic theory is that preferences do not change as a result of experience with the commodity/service/event. Behavioural scientists have challenged this assumption, claiming that preferences constantly do change as experience is accumulated. This paper tests the effect of experience with a health-care service on preferences for maternity-ward attributes. In order to explore the effect of experience on preferences, the research sample was decomposed into three sub-s...

  10. Alliance for NanoHealth (ANH) Training Program for the development of future generations of interdisciplinary scientists and collaborative research focused upon the advancement of nanomedicine

    Energy Technology Data Exchange (ETDEWEB)

    Gorenstein, David [Univ. of Texas Health Science Center, Houston, TX (United States)

    2013-12-23

    The objectives of this program are to promote the mission of the Department of Energy (DOE) Science, Technology, Engineering, Math (STEM) Program by recruiting students to science and engineering disciplines with the intent of mentoring and supporting the next generation of scientists; to foster interdisciplinary and collaborative research under the sponsorship of ANH for the discovery and design of nano-based materials and devices with novel structures, functions, and properties; and to prepare a diverse work force of scientists, engineers, and clinicians by utilizing the unique intellectual and physical resources to develop novel nanotechnology paradigms for clinical application.

  11. Changing the Culture of Science Communication Training for Junior Scientists

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S.

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today’s society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists. PMID:29904538

  12. Changing the Culture of Science Communication Training for Junior Scientists.

    Science.gov (United States)

    Bankston, Adriana; McDowell, Gary S

    2018-01-01

    Being successful in an academic environment places many demands on junior scientists. Science communication currently may not be adequately valued and rewarded, and yet communication to multiple audiences is critical for ensuring that it remains a priority in today's society. Due to the potential for science communication to produce better scientists, facilitate scientific progress, and influence decision-making at multiple levels, training junior scientists in both effective and ethical science communication practices is imperative, and can benefit scientists regardless of their chosen career path. However, many challenges exist in addressing specific aspects of this training. Principally, science communication training and resources should be made readily available to junior scientists at institutions, and there is a need to scale up existing science communication training programs and standardize core aspects of these programs across universities, while also allowing for experimentation with training. We propose a comprehensive core training program be adopted by universities, utilizing a centralized online resource with science communication information from multiple stakeholders. In addition, the culture of science must shift toward greater acceptance of science communication as an essential part of training. For this purpose, the science communication field itself needs to be developed, researched and better understood at multiple levels. Ultimately, this may result in a larger cultural change toward acceptance of professional development activities as valuable for training scientists.

  13. WFIRST CGI Adjutant Scientist

    Science.gov (United States)

    Kasdin, N.

    One of the most exciting developments in exoplanet science is the inclusion of a coronagraph instrument on WFIRST. After more than 20 years of research and development on coronagraphy and wavefront control, the technology is ready for a demonstration in space and to be used for revolutionary science. Good progress has already been made at JPL and partner institutions on the coronagraph technology and instrument design and test. The next five years as we enter Phase A will be critical for raising the TRL of the coronagraph to the needed level for flight and for converging on a design that is robust, low risk, and meets the science requirements. In addition, there is growing excitement over the possibility of rendezvousing an occulter with WFIRST/AFTA as a separate mission; this would both demonstrate that important technology and potentially dramatically enhance the science reach, introducing the possibility of imaging Earth-like planets in the habitable zone of nearby stars. In this proposal I will be applying for the Coronagraph Adjutant Scientist (CAS) position. I bring to the position the background and skills needed to be an effective liaison between the project office, the instrument team, and the Science Investigation Team (SIT). My background in systems engineering before coming to Princeton (I was Chief Systems Engineer for the Gravity Probe-B mission) and my 15 years of working closely with NASA on both coronagraph and occulter technology make me well-suited to the role. I have been a lead coronagraph scientist for the WFIRST mission from the beginning, including as a member of the SDT. Together with JPL and NASA HQ, I helped organize the process for selecting the coronagraphs for the CGI, one of which, the shaped pupil, has been developed in my lab. All of the key algorithms for wavefront control (including EFC and Stroke Minimization) were originally developed by students or post-docs in my lab at Princeton. I am thus in a unique position to work with

  14. Educational Mismatch and the Careers of Scientists

    Science.gov (United States)

    Bender, Keith A.; Heywood, John S.

    2011-01-01

    Previous research confirms that many employees work in jobs not well matched to their skills and education, resulting in lower pay and job satisfaction. While this literature typically uses cross-sectional data, we examine the evolution of mismatch and its consequences over a career, by using a panel data set of scientists in the USA. The results…

  15. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils

    Science.gov (United States)

    Smith, P.; Cotrufo, M. F.; Rumpel, C.; Paustian, K.; Kuikman, P. J.; Elliott, J. A.; McDowell, R.; Griffiths, R. I.; Asakawa, S.; Bustamante, M.; House, J. I.; Sobocká, J.; Harper, R.; Pan, G.; West, P. C.; Gerber, J. S.; Clark, J. M.; Adhya, T.; Scholes, R. J.; Scholes, M. C.

    2015-11-01

    Soils play a pivotal role in major global biogeochemical cycles (carbon, nutrient, and water), while hosting the largest diversity of organisms on land. Because of this, soils deliver fundamental ecosystem services, and management to change a soil process in support of one ecosystem service can either provide co-benefits to other services or result in trade-offs. In this critical review, we report the state-of-the-art understanding concerning the biogeochemical cycles and biodiversity in soil, and relate these to the provisioning, regulating, supporting, and cultural ecosystem services which they underpin. We then outline key knowledge gaps and research challenges, before providing recommendations for management activities to support the continued delivery of ecosystem services from soils. We conclude that, although soils are complex, there are still knowledge gaps, and fundamental research is still needed to better understand the relationships between different facets of soils and the array of ecosystem services they underpin, enough is known to implement best practices now. There is a tendency among soil scientists to dwell on the complexity and knowledge gaps rather than to focus on what we do know and how this knowledge can be put to use to improve the delivery of ecosystem services. A significant challenge is to find effective ways to share knowledge with soil managers and policy makers so that best management can be implemented. A key element of this knowledge exchange must be to raise awareness of the ecosystems services underpinned by soils and thus the natural capital they provide. We know enough to start moving in the right direction while we conduct research to fill in our knowledge gaps. The lasting legacy of the International Year of Soils in 2015 should be for soil scientists to work together with policy makers and land managers to put soils at the centre of environmental policy making and land management decisions.

  16. Pieter Hendrik Nienhuis: aquatic ecologist and environmental scientist

    NARCIS (Netherlands)

    Leuven, R.S.E.W.; van den Heuvel, P.J.; van Katwijk, M.; Herman, P.M.J.; van der Velde, G.; Ragas, A.M.J.

    2006-01-01

    Prof. Dr. Pieter Hendrik (Piet) Nienhuis worked for almost 40 years in all aspects of aquatic ecology and environmental science and retired on 31 October 2003. He can be characterised as a distinguished scientist, shaped in an applied estuarine and aquatic research ambience of the former Delta

  17. Scientists adopt new strategy to find Huntington's disease therapies

    Science.gov (United States)

    ... Links PubMed Stem Cell Information OppNet NIDB NIH Blueprint for Neuroscience Research Institutes at NIH List of ... Release Friday, August 7, 2015 Scientists adopt new strategy to find Huntington’s disease therapies A skyline view ...

  18. Real Science, Real Learning: Bridging the Gap Between Scientists, Educators and Students

    Science.gov (United States)

    Lewis, Y.

    2006-05-01

    Today as never before, America needs its citizens to be literate in science and technology. Not only must we only inspire a new generation of scientists and engineers and technologists, we must foster a society capable of meeting complex, 21st-century challenges. Unfortunately, the need for creative, flexible thinkers is growing at a time when our young students are lagging in science interest and performance. Over the past 17 years, the JASON Project has worked to link real science and scientists to the classroom. This link provide viable pipeline to creating the next generation scientists and researchers. Ultimately, JASON's mission is to improve the way science is taught by enabling students to learn directly from leading scientists. Through partnerships with agencies such as NOAA and NASA, JASON creates multimedia classroom products based on current scientific research. Broadcasts of science expeditions, hosted by leading researchers, are coupled with classroom materials that include interactive computer-based simulations, video- on-demand, inquiry-based experiments and activities, and print materials for students and teachers. A "gated" Web site hosts online resources and provides a secure platform to network with scientists and other classrooms in a nationwide community of learners. Each curriculum is organized around a specific theme for a comprehensive learning experience. It may be taught as a complete package, or individual components can be selected to teach specific, standards-based concepts. Such thematic units include: Disappearing Wetlands, Mysteries of Earth and Mars, and Monster Storms. All JASON curriculum units are grounded in "inquiry-based learning." The highly interactive curriculum will enable students to access current, real-world scientific research and employ the scientific method through reflection, investigation, identification of problems, sharing of data, and forming and testing hypotheses. JASON specializes in effectively applying

  19. Finding Common Ground Between Earth Scientists and Evangelical Christians

    Science.gov (United States)

    Grant Ludwig, L.

    2015-12-01

    In recent decades there has been some tension between earth scientists and evangelical Christians in the U.S., and this tension has spilled over into the political arena and policymaking on important issues such as climate change. From my personal and professional experience engaging with both groups, I find there is much common ground for increasing understanding and communicating the societal relevance of earth science. Fruitful discussions can arise from shared values and principles, and common approaches to understanding the world. For example, scientists and Christians are engaged in the pursuit of truth, and they value moral/ethical decision-making based on established principles. Scientists emphasize the benefits of research "for the common good" while Christians emphasize the value of doing "good works". Both groups maintain a longterm perspective: Christians talk about "the eternal" and geologists discuss "deep time". Both groups understand the importance of placing new observations in context of prior understanding: scientists diligently reference "the literature" while Christians quote "chapter and verse". And members of each group engage with each other in "fellowship" or "meetings" to create a sense of community and reinforce shared values. From my perspective, earth scientists can learn to communicate the importance and relevance of science more effectively by engaging with Christians in areas of common ground, rather than by trying to win arguments or debates.

  20. Assisting the U.S. Forest Service in monitoring and managing the Pacific pine marten

    Science.gov (United States)

    Force, A.; Hadley, N.; Howell, B. L.; Holsinger, K.

    2017-12-01

    Innovative partnerships that bridge institutional sectors may be key in seizing many opportunities for highly effective projects. Adventure Scientists is a nonprofit organization that works in partnership with governments, universities, businesses and other nonprofits to support their need for actionable, research-grade data. In every partnership, it is critical that responsible decision-makers are involved and in place to use the data collected, such as to inform new resource management strategies or regulatory policies. In this presentation, we will highlight our experience working on one such partnership. In 2013, the U.S. Forest Service and Adventure Scientists collaborated on a two-year project to better understand Pacific pine marten (Martes caurina), a small native carnivore, in the Olympic National Forest. In response to the species' recent disappearance, Forest managers needed to gather more accurate data on martens' presence and abundance to support species management. Adventure Scientists was in a unique position to provide the agency this needed data-collection capacity. Volunteers collected data about the marten populations by positioning and monitoring camera traps throughout the area. Utilizing our volunteer-collected data, the U.S. Forest Service was able to inform the management and protection of these threatened species in U.S Forest Service Region 6. This project was also successful in establishing the foundation for an expanded, long-term relationship with the agency, where both parties continue to explore partnership opportunities for Adventure Scientists to collect data system-wide in support of U.S. Forest Service improved land management and policy decisions.

  1. Four stages of a scientific discipline; four types of scientist.

    Science.gov (United States)

    Shneider, Alexander M

    2009-05-01

    In this article I propose the classification of the evolutionary stages that a scientific discipline evolves through and the type of scientists that are the most productive at each stage. I believe that each scientific discipline evolves sequentially through four stages. Scientists at stage one introduce new objects and phenomena as subject matter for a new scientific discipline. To do this they have to introduce a new language adequately describing the subject matter. At stage two, scientists develop a toolbox of methods and techniques for the new discipline. Owing to this advancement in methodology, the spectrum of objects and phenomena that fall into the realm of the new science are further understood at this stage. Most of the specific knowledge is generated at the third stage, at which the highest number of original research publications is generated. The majority of third-stage investigation is based on the initial application of new research methods to objects and/or phenomena. The purpose of the fourth stage is to maintain and pass on scientific knowledge generated during the first three stages. Groundbreaking new discoveries are not made at this stage. However, new ways to present scientific information are generated, and crucial revisions are often made of the role of the discipline within the constantly evolving scientific environment. The very nature of each stage determines the optimal psychological type and modus operandi of the scientist operating within it. Thus, it is not only the talent and devotion of scientists that determines whether they are capable of contributing substantially but, rather, whether they have the 'right type' of talent for the chosen scientific discipline at that time. Understanding the four different evolutionary stages of a scientific discipline might be instrumental for many scientists in optimizing their career path, in addition to being useful in assembling scientific teams, precluding conflicts and maximizing

  2. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  3. Stakeholder Participation in Research Design and Decisions: Scientists, Fishers, and Mercury in Saltwater Fish

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael; Fote, Tom

    2015-01-01

    Individuals who fish and eat self-caught fish make decisions about where to fish, the type to eat, and the quantity to eat. Federal and state agencies often issue consumption advisories for some fish with high mercury (Hg) concentrations, but seldom provide either the actual metal levels to the general public, or identify the fish that have low contaminant levels. Community participatory research is of growing importance in defining, studying, and resolving complex exposure and risk issues, and this paper is at the intersection of traditional stakeholder approaches and community-based participatory research. The objective of this paper is to describe the process whereby stakeholders (fishers), were involved in directing and refining research questions to address their particular informational needs about mercury levels in fish, potential risks, and methods to maintain health, by balancing the risks and benefits of fish consumption. A range of stakeholders, mainly individual fishers, fishing organizations, and other scientists, were involved at nearly every stage. Community participants influenced many aspects of the design and implementation of the research, in the determination of which fish species to sample, in the collection of the samples, and in the final analyses and synthesis, as well as the communication of results and implications of the research through their fishing club publications, talks and gatherings. By involving the most interested and affected communities, the data and conclusions are relevant to their needs because the fish examined were those they ate and wanted information about, and directly address concerns about the risk from consuming self-caught fish. Although mercury levels in fish presumed to be high in mercury are known, little information was available to the fishermen on mercury levels in fish that were low and thus provided little risk to their families. While community participatory research is more time-consuming and expensive

  4. Partnerships and Grassroots Action in the 500 Women Scientists Network

    Science.gov (United States)

    Weintraub, S. R.; Zelikova, T. J.; Pendergrass, A. G.; Bohon, W.; Ramirez, K. S.

    2017-12-01

    The past year has presented real challenges for scientists, especially in the US. The political context catalyzed the formation of many new organizations with a range of goals, from increasing the role of science in decision making to improving public trust in science and scientists. The grassroots organization 500 Women Scientists formed in the wake of the 2016 US election as a response to widespread anti-science, intolerant rhetoric and to form a community that could take action together. Within months, the network grew to more than 20,000 women scientists from across the globe. We evolved from our reactionary beginnings towards a broader mission to serve society by making science open, inclusive, and accessible. With the goal of transforming scientific institutions towards a more inclusive and just enterprise, we have been building alliances with diverse groups to provide training and mentorship opportunities to our members. In so doing, we created space for scientists from across disciplines to work together, speak out, and channel their energies toward making a difference. In partnership with the Union of Concerned Scientists and Rise Stronger, we assembled resources to help scientists write op-eds and letters to the editor about the importance of science in their communities. We partnered with researchers in Jordan to explore a new peer-to-peer mentoring model. Along with a healthcare advocacy group, we participated in dialogue to examine the role of science in affordable medicine. Finally, we are working with other groups to expand peer networks and career development resources for international STEM women. Our local chapters often initiate this work, teaming up with diverse organizations to bring science to their communities and, in the process, shift perceptions of what a scientist looks like. While as scientists, we would rather be conducting experiments or running models, what brings us together is an urgent sense that our scientific expertise is needed

  5. How Are Scientists Using Social Media in the Workplace?

    Directory of Open Access Journals (Sweden)

    Kimberley Collins

    Full Text Available Social media has created networked communication channels that facilitate interactions and allow information to proliferate within professional academic communities as well as in informal social circumstances. A significant contemporary discussion in the field of science communication is how scientists are using (or might use social media to communicate their research. This includes the role of social media in facilitating the exchange of knowledge internally within and among scientific communities, as well as externally for outreach to engage the public. This study investigates how a surveyed sample of 587 scientists from a variety of academic disciplines, but predominantly the academic life sciences, use social media to communicate internally and externally. Our results demonstrate that while social media usage has yet to be widely adopted, scientists in a variety of disciplines use these platforms to exchange scientific knowledge, generally via either Twitter, Facebook, LinkedIn, or blogs. Despite the low frequency of use, our work evidences that scientists perceive numerous potential advantages to using social media in the workplace. Our data provides a baseline from which to assess future trends in social media use within the science academy.

  6. How Are Scientists Using Social Media in the Workplace?

    Science.gov (United States)

    Collins, Kimberley; Shiffman, David; Rock, Jenny

    2016-01-01

    Social media has created networked communication channels that facilitate interactions and allow information to proliferate within professional academic communities as well as in informal social circumstances. A significant contemporary discussion in the field of science communication is how scientists are using (or might use) social media to communicate their research. This includes the role of social media in facilitating the exchange of knowledge internally within and among scientific communities, as well as externally for outreach to engage the public. This study investigates how a surveyed sample of 587 scientists from a variety of academic disciplines, but predominantly the academic life sciences, use social media to communicate internally and externally. Our results demonstrate that while social media usage has yet to be widely adopted, scientists in a variety of disciplines use these platforms to exchange scientific knowledge, generally via either Twitter, Facebook, LinkedIn, or blogs. Despite the low frequency of use, our work evidences that scientists perceive numerous potential advantages to using social media in the workplace. Our data provides a baseline from which to assess future trends in social media use within the science academy.

  7. Math for scientists refreshing the essentials

    CERN Document Server

    Maurits, Natasha

    2017-01-01

    Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: ·                     Read mathematical symbols ·                     Understand formulas, data or statistical information ·                     Determine medication equivalents ·                     Analyze neuroimaging  Mathematical concepts are presented alongside illustrative and useful real-world scien­tific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...

  8. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  9. Information Seeking Behaviour of Mathematicians: Scientists and Students

    Science.gov (United States)

    Sapa, Remigiusz; Krakowska, Monika; Janiak, Malgorzata

    2014-01-01

    Introduction: The paper presents original research designed to explore and compare selected aspects of the information seeking behaviour of mathematicians (scientists and students) on the Internet. Method: The data were gathered through a questionnaire distributed at the end of 2011 and in January 2012. Twenty-nine professional mathematicians and…

  10. DOE's foreign research reactor transportation services contract: Perspective and experience

    International Nuclear Information System (INIS)

    Patterson, John

    1997-01-01

    DOE committed to low- and moderate-income countries participating in the foreign research reactor spent fuel returns program that the United States government would provide for the transportation of the spent fuel. In fulfillment of that commitment, DOE entered into transportation services contracts with qualified, private-sector firms. NAC will discuss its experience as a transportation services provider, including range of services available to the foreign reactors, advantages to DOE and to the foreign research reactors, access to contract services by high income countries and potential advantages, and experience with initial tasks performed under the contract. (author)

  11. Bats and Academics: How Do Scientists Perceive Their Object of Study?

    Science.gov (United States)

    Boëte, Christophe; Morand, Serge

    2016-01-01

    Bats are associated with conflicting perceptions among humans, ranging from affection to disgust. If these attitudes can be associated with various factors among the general public (e.g. social norms, lack of knowledge), it is also important to understand the attitude of scientists who study bats. Such reflexive information on the researchers community itself could indeed help designing adequate mixed communication tools aimed at protecting bats and their ecosystems, as well as humans living in their vicinity that could be exposed to their pathogens. Thus, we conducted an online survey targeting researchers who spend a part of their research activity studying bats. Our aim was to determine (1) how they perceive their object of study, (2) how they perceive the representation of bats in the media and by the general population, (3) how they protect themselves against pathogen infections during their research practices, and (4) their perceptions of the causes underlying the decline in bat populations worldwide. From the 587 completed responses (response rate of 28%) having a worldwide distribution, the heterogeneity of the scientists' perception of their own object of study was highlighted. In the majority of cases, this depended on the type of research they conducted (i.e. laboratory versus field studies) as well as their research speciality. Our study revealed a high level of personal protection equipment being utilised against pathogens during scientific practices, although the role bats play as reservoirs for a number of emerging pathogens remains poorly known. Our results also disclosed the unanimity among specialists in attributing a direct role for humans in the global decline of bat populations, mainly via environmental change, deforestation, and agriculture intensification. Overall, the present study suggests the need for better communication regarding bats and their biology, their role within the scientific community, as well as in the general public

  12. Bats and Academics: How Do Scientists Perceive Their Object of Study?

    Directory of Open Access Journals (Sweden)

    Christophe Boëte

    Full Text Available Bats are associated with conflicting perceptions among humans, ranging from affection to disgust. If these attitudes can be associated with various factors among the general public (e.g. social norms, lack of knowledge, it is also important to understand the attitude of scientists who study bats. Such reflexive information on the researchers community itself could indeed help designing adequate mixed communication tools aimed at protecting bats and their ecosystems, as well as humans living in their vicinity that could be exposed to their pathogens. Thus, we conducted an online survey targeting researchers who spend a part of their research activity studying bats. Our aim was to determine (1 how they perceive their object of study, (2 how they perceive the representation of bats in the media and by the general population, (3 how they protect themselves against pathogen infections during their research practices, and (4 their perceptions of the causes underlying the decline in bat populations worldwide. From the 587 completed responses (response rate of 28% having a worldwide distribution, the heterogeneity of the scientists' perception of their own object of study was highlighted. In the majority of cases, this depended on the type of research they conducted (i.e. laboratory versus field studies as well as their research speciality. Our study revealed a high level of personal protection equipment being utilised against pathogens during scientific practices, although the role bats play as reservoirs for a number of emerging pathogens remains poorly known. Our results also disclosed the unanimity among specialists in attributing a direct role for humans in the global decline of bat populations, mainly via environmental change, deforestation, and agriculture intensification. Overall, the present study suggests the need for better communication regarding bats and their biology, their role within the scientific community, as well as in the general

  13. Automatic jargon identifier for scientists engaging with the public and science communication educators

    Science.gov (United States)

    Chapnik, Noam; Yosef, Roy; Baram-Tsabari, Ayelet

    2017-01-01

    Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012–2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1) comparison and correlation with existing frequency word lists in the literature; (2) a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3) a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and be implemented

  14. Automatic jargon identifier for scientists engaging with the public and science communication educators.

    Directory of Open Access Journals (Sweden)

    Tzipora Rakedzon

    Full Text Available Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012-2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1 comparison and correlation with existing frequency word lists in the literature; (2 a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3 a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and

  15. Automatic jargon identifier for scientists engaging with the public and science communication educators.

    Science.gov (United States)

    Rakedzon, Tzipora; Segev, Elad; Chapnik, Noam; Yosef, Roy; Baram-Tsabari, Ayelet

    2017-01-01

    Scientists are required to communicate science and research not only to other experts in the field, but also to scientists and experts from other fields, as well as to the public and policymakers. One fundamental suggestion when communicating with non-experts is to avoid professional jargon. However, because they are trained to speak with highly specialized language, avoiding jargon is difficult for scientists, and there is no standard to guide scientists in adjusting their messages. In this research project, we present the development and validation of the data produced by an up-to-date, scientist-friendly program for identifying jargon in popular written texts, based on a corpus of over 90 million words published in the BBC site during the years 2012-2015. The validation of results by the jargon identifier, the De-jargonizer, involved three mini studies: (1) comparison and correlation with existing frequency word lists in the literature; (2) a comparison with previous research on spoken language jargon use in TED transcripts of non-science lectures, TED transcripts of science lectures and transcripts of academic science lectures; and (3) a test of 5,000 pairs of published research abstracts and lay reader summaries describing the same article from the journals PLOS Computational Biology and PLOS Genetics. Validation procedures showed that the data classification of the De-jargonizer significantly correlates with existing frequency word lists, replicates similar jargon differences in previous studies on scientific versus general lectures, and identifies significant differences in jargon use between abstracts and lay summaries. As expected, more jargon was found in the academic abstracts than lay summaries; however, the percentage of jargon in the lay summaries exceeded the amount recommended for the public to understand the text. Thus, the De-jargonizer can help scientists identify problematic jargon when communicating science to non-experts, and be implemented by

  16. Health services research in urology.

    Science.gov (United States)

    Yu, Hua-Yin; Ulmer, William; Kowalczyk, Keith J; Hu, Jim C

    2011-06-01

    Health services research (HSR) is increasingly important given the focus on patient-centered, cost-effective, high-quality health care. We examine how HSR affects contemporary evidence-based urologic practice and its role in shaping future urologic research and care. PubMed, urologic texts, and lay literature were reviewed for terms pertaining to HSR/outcomes research and urologic disease processes. HSR is a broad discipline that focuses on access, cost, and outcomes of Health care. Its use has been applied to a myriad of urologic conditions to identify deficiencies in access, to evaluate cost-effectiveness of therapies, and to evaluate structural, process, and outcome quality measures. HSR utilizes an evidence-based approach to identify the most effective ways to organize/manage, finance, and deliver high-quality urologic care and to tailor care optimized to individuals.

  17. Italian scientists fear impact of cabinet reshuffle on reforms

    CERN Multimedia

    Abbott, A

    1998-01-01

    Scientists are nervous about the choice of Ortensio Zecchino for minister for research and universities in the new coalition government, mainly because the Italien Space, Energy and Environment agencies and CNR have not yet been formally approved (1 page).

  18. Beyond Assessment: Conducting Theoretically Grounded Research on Service-Learning in Gerontology Courses.

    Science.gov (United States)

    Kruger, Tina M; Pearl, Andrew J

    2016-01-01

    Service-learning is a useful pedagogical tool and high-impact practice, providing multiple benefits. Gerontology (and other) courses frequently include service-learning activities but lack theory-based, intentional research on outcomes. Here, the authors define service-learning and contextualize it in higher education, provide an overview of research and assessment in service-learning and gerontology courses, demonstrate the shortcomings of program evaluations, and offer suggestions for future research to advance and generate theory.

  19. Current state of seagrass ecosystem services: Research and policy integration

    KAUST Repository

    Ruiz-Frau, A.; Gelcich, S.; Hendriks, I.E.; Duarte, Carlos M.; Marbà , N.

    2017-01-01

    areas; a type of service research bias, provisioning and regulating services have received extensive attention while cultural services remain understudied; a type of discipline bias, the ecological aspects of SGES have been well documented while economic

  20. Frederic Joliot-Curie the history of a civic-minded scientist

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    The year 2000 marks the hundredth anniversary of the birth of Frederic Joliot-Curie, who can be safely termed as one of the most prominent figures of the twentieth century. The scientist and his wife Irene discovered artificial radioactivity at the Radium Institute; in 1935, they received the Nobel Chemistry Prize for their discovery. At the College de France four years later, Frederic Joliot-Curie uncovered the conditions required for a chain reaction in uranium. He gave meaning to the word civic-minded citizen. His many deeds were a statement that a scientist should offer more than his research and its possible applications to society; that he should not shrink from committing to political and social struggles. That is why this exceptional man is a model of a committed scientist. (author)

  1. A 2-1-1 research collaboration: participant accrual and service quality indicators.

    Science.gov (United States)

    Eddens, Katherine S; Alcaraz, Kassandra I; Kreuter, Matthew W; Rath, Suchitra; Greer, Regina

    2012-12-01

    In times of crises, 2-1-1 serves as a lifeline in many ways. These crises often cause a spike in call volume that can challenge 2-1-1's ability to meet its service quality standards. For researchers gathering data through 2-1-1s, a sudden increase in call volume might reduce accrual as 2-1-1 has less time to administer study protocols. Research activities imbedded in 2-1-1 systems may affect directly 2-1-1 service quality indicators. Using data from a 2-1-1 research collaboration, this paper examines the impact of crises on call volume to 2-1-1, how call volume affects research participant accrual through 2-1-1, and how research recruitment efforts affect 2-1-1 service quality indicators. t-tests were used to examine the effect of call volume on research participant accrual. Linear and logistic regressions were used to examine the effect of research participant accrual on 2-1-1 service quality indicators. Data were collected June 2010-December 2011; data were analyzed in 2012. Findings from this collaboration suggest that crises causing spikes in call volume adversely affect 2-1-1 service quality indicators as well as accrual of research participants. Administering a brief (2-3 minute) health risk assessment did not affect service quality negatively, but administering a longer (15-18 minute) survey had a modest adverse effect on these indicators. In 2-1-1 research collaborations, both partners need to understand the dynamic relationship among call volume, research accrual, and service quality and adjust expectations accordingly. If research goals include administering a longer survey, increased staffing of 2-1-1 call centers may be needed to avoid compromising service quality. Copyright © 2012 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Team science and the physician-scientist in the age of grand health challenges.

    Science.gov (United States)

    Steer, Clifford J; Jackson, Peter R; Hornbeak, Hortencia; McKay, Catherine K; Sriramarao, P; Murtaugh, Michael P

    2017-09-01

    Despite remarkable advances in medical research, clinicians face daunting challenges from new diseases, variations in patient responses to interventions, and increasing numbers of people with chronic health problems. The gap between biomedical research and unmet clinical needs can be addressed by highly talented interdisciplinary investigators focused on translational bench-to-bedside medicine. The training of talented physician-scientists comfortable with forming and participating in multidisciplinary teams that address complex health problems is a top national priority. Challenges, methods, and experiences associated with physician-scientist training and team building were explored at a workshop held at the Second International Conference on One Medicine One Science (iCOMOS 2016), April 24-27, 2016, in Minneapolis, Minnesota. A broad range of scientists, regulatory authorities, and health care experts determined that critical investments in interdisciplinary training are essential for the future of medicine and healthcare delivery. Physician-scientists trained in a broad, nonlinear, cross-disciplinary manner are and will be essential members of science teams in the new age of grand health challenges and the birth of precision medicine. Team science approaches have accomplished biomedical breakthroughs once considered impossible, and dedicated physician-scientists have been critical to these achievements. Together, they translate into the pillars of academic growth and success. © 2017 New York Academy of Sciences.

  3. SunBlock '99: Young Scientists Investigate the Sun

    Science.gov (United States)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  4. Performance Issues Related to Web Service Usage for Remote Data Access

    International Nuclear Information System (INIS)

    Pais, V. F.; Stancalie, V.; Mihailescu, F. A.; Totolici, M. C.

    2008-01-01

    Web services are starting to be widely used in applications for remotely accessing data. This is of special interest for research based on small and medium scale fusion devices, since scientists participating remotely to experiments are accessing large amounts of data over the Internet. Recent tests were conducted to see how the new network traffic, generated by the use of web services, can be integrated in the existing infrastructure and what would be the impact over existing applications, especially those used in a remote participation scenario

  5. Mixed Methods in Biomedical and Health Services Research

    Science.gov (United States)

    Curry, Leslie A.; Krumholz, Harlan M.; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.

    2013-01-01

    Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to the general readership of peer-reviewed biomedical and health services journals. Furthermore, existing guidelines for publishing mixed methods studies are not well known or applied by researchers and journal editors. Accordingly, this paper is intended to serve as a concise, practical resource for readers interested in core principles and practices of mixed methods research. We briefly describe mixed methods approaches and present illustrations from published biomedical and health services literature, including in cardiovascular care, summarize standards for the design and reporting of these studies, and highlight four central considerations for investigators interested in using these methods. PMID:23322807

  6. World climate research: an (un)comfortable coexistence among science and scientists' opinion

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2007-01-01

    Full text: Full text: My hypothesis is that the effective global governance so urgently needed in relation to greenhouse climate change is not developing, in part, because climate research scientists are failing to communicate well. This is, I believe, because traditionally science has informed society through a sequence of steps moving from facts, through assessment, projection, risk evaluation to policy for changed governance. Any prioritisation, facilitation, and co-ordination activity (such as the World Climate Research Programme) has to be concerned about the way in which science participates in policy. The range of options encompasses: Hands off: it is the job of policy, not science to make decisions; Recognise risk: provide credible and defensible information to help deal with risk; Inform people: because the ultimate policy-maker is the public. Good global governance of common resource, the climate, uses risk management to avoid free riding. History teaches that international cooperation can be successful, e.g. protection of the ozone layer. Some international collective moves towards global carbon governance are occurring: multilateral frameworks such as the UNFCCC, Kyoto Protocol and its follow-up (endorsed by the G8 in June) and domestic mandatory goals set by the EU, UK, China, California and other US states. It is very clear that the world must move from actuarial style climate risk management strategy (history as a good predictor of future) to a dynamically-based prediction and management regime. The urgency of this includes that while mitigation costs are high, delaying action increases them (e.g. Stern 2006; IPCC 2007); that atmospheric concentration of C02 is 380 ppmv (up from the pre-industrial 270 ppmv); current emissions are already higher than the 1990s IPCC scenarios; positive feedbacks seem to predominate; and finally social and climate systems inertias of decades mean that the world is already committed to unrealised warming. Stronger and

  7. The Rationale, Feasibility, and Optimal Training of the Non-Physician Medical Nutrition Scientist

    Directory of Open Access Journals (Sweden)

    Susan E. Ettinger

    2015-01-01

    Full Text Available Dietary components have potential to arrest or modify chronic disease processes including obesity, cancer, and comorbidities. However, clinical research to translate mechanistic nutrition data into clinical interventions is needed. We have developed a one-year transitional postdoctoral curriculum to prepare nutrition scientists in the language and practice of medicine and in clinical research methodology before undertaking independent research. Candidates with an earned doctorate in nutrition science receive intensive, didactic training at the interface of nutrition and medicine, participate in supervised medical observerships, and join ongoing clinical research. To date, we have trained four postdoctoral fellows. Formative evaluation revealed several learning barriers to this training, including deficits in prior medical science knowledge and diverse perceptions of the role of the translational nutrition scientist. Several innovative techniques to address these barriers are discussed. We propose the fact that this “train the trainer” approach has potential to create a new translational nutrition researcher competent to identify clinical problems, collaborate with clinicians and researchers, and incorporate nutrition science across disciplines from “bench to bedside.” We also expect the translational nutrition scientist to serve as an expert resource to the medical team in use of nutrition as adjuvant therapy for the prevention and management of chronic disease.

  8. Proceedings: Wildland Fire in the Appalachians: Discussions Among Managers and Scientists

    Science.gov (United States)

    Thomas A. Waldrop

    2014-01-01

    Many challenges face fire managers and scientists in the Appalachian Mountains because of the region’s diverse topography and limited research supporting prescribed burning. This conference was designed to promote communication among managers, researchers, and other interested parties. These proceedings contain 30 papers and abstracts that describe ongoing research,...

  9. An attack on science? Media use, trust in scientists, and perceptions of global warming.

    Science.gov (United States)

    Hmielowski, Jay D; Feldman, Lauren; Myers, Teresa A; Leiserowitz, Anthony; Maibach, Edward

    2014-10-01

    There is a growing divide in how conservatives and liberals in the USA understand the issue of global warming. Prior research suggests that the American public's reliance on partisan media contributes to this gap. However, researchers have yet to identify intervening variables to explain the relationship between media use and public opinion about global warming. Several studies have shown that trust in scientists is an important heuristic many people use when reporting their opinions on science-related topics. Using within-subject panel data from a nationally representative sample of Americans, this study finds that trust in scientists mediates the effect of news media use on perceptions of global warming. Results demonstrate that conservative media use decreases trust in scientists which, in turn, decreases certainty that global warming is happening. By contrast, use of non-conservative media increases trust in scientists, which, in turn, increases certainty that global warming is happening. © The Author(s) 2013.

  10. The Citizen-Scientist as Data Collector: GLOBE at Night, Part 1

    Science.gov (United States)

    Ward, D. L.; Henderson, S.; Meymaris, K.; Walker, C.; Pompea, S. M.; Gallagher, S.; Salisbury, D.

    2006-12-01

    GLOBE at Night is an international science event designed to observe and record the visible stars as a means of measuring light pollution in a given location. Increased and robust understanding of our environment requires learning opportunities that take place outside of the conventional K-12 classroom and beyond the confines of the school day. This hands-on learning activity extended the traditional classroom and school day through 11 nights last March, when 18,000 citizen-scientists made over 4,500 observations from 96 countries. Utilizing the international networking capabilities of The GLOBE Program, GLOBE at Night was designed to make data collection and input user-friendly. Citizen-scientists were able to participate in this global scientific campaign by submitting their observations through an online database, allowing for authentic worldwide research and analysis by participating scientists. The data collected is available online in a variety of formats for use by students, teachers and scientists worldwide to assess how the quality of the night sky varies around the world. Using the online analysis tools provided by ESRI, participants were able to compare the observed data with population density and nighttime lighting datasets (DMSP Earth at Night). This comparison allowed correlations between observed data patterns and commonly used indices of population density and energy usage. This session will share our results and demonstrate how students and scientists across the globe can explore and analyze the results of this exciting campaign. We will discuss how the project team planned and executed the project in such a way that non-astronomers were able to make valid and useful contributions. We will also discuss lessons learned and best practices based on the 2006 campaign. GLOBE at Night is a collaborative effort sponsored by The GLOBE Program, the National Optical Astronomy Observatory (NOAO), Centro de Apoyo a la Didactica de la Astronomia (CADIAS

  11. It's a wonderful life: a career as an academic scientist.

    Science.gov (United States)

    Vale, Ronald D

    2010-01-01

    Many years of training are required to obtain a job as an academic scientist. Is this investment of time and effort worthwhile? My answer is a resounding "yes." Academic scientists enjoy tremendous freedom in choosing their research and career path, experience unusual camaraderie in their lab, school, and international community, and can contribute to and enjoy being part of this historical era of biological discovery. In this essay, I further elaborate by listing my top ten reasons why an academic job is a desirable career for young people who are interested in the life sciences.

  12. Gummi-Bears On Fire! Bringing Students and Scientists Together at the Alaska Summer Research Academy (ASRA)

    Science.gov (United States)

    Drake, J.; Schamel, D.; Fisher, P.; Terschak, J. A.; Stelling, P.; Almberg, L.; Phillips, E.; Forner, M.; Gregory, D.

    2002-12-01

    When a gummi-bear is introduced into hot potassium chlorate there is a powerful reaction. This is analogous to the response we have seen to the Alaska Summer Research Academy (ASRA). ASRA is a residential science research camp supported by the College of Science, Engineering and Mathematics at the University of Alaska Fairbanks. The hallmark of ASRA is the opportunity for small groups of 4 or fewer students, ages 10-17, to conduct scientific research and participate in engineering design projects with university faculty and researchers as mentors. Participating scientists, engineers, faculty, graduate students, and K-12 teachers from a variety of disciplines design individual research units and guide the students through designing and constructing a project, collecting data, and synthesizing results. The week-long camp culminates with the students from each project making a formal presentation to the camp and public. In its second year ASRA is already a huge success, quadrupling in size from 21 students in 2001 to 89 students in 2002. Due to a high percentage of returning students, we anticipate there will be a waiting list next year. This presentation contains perspectives from administrators, instructors, staff, and students. Based on our experience we feel there is a large potential demand for education and public outreach (EPO) in university settings. We believe the quality and depth of the ASRA experience directly contributes to the success of a worthwhile EPO program. ASRA will be portrayed as a useful model for EPO at other institutions.

  13. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  14. On being a (modern) scientist: risks of public engagement in the UK interspecies embryo debate.

    Science.gov (United States)

    Porter, James; Williams, Clare; Wainwright, Steven; Cribb, Alan

    2012-12-01

    In 2006, a small group of UK academic scientists made headlines when they proposed the creation of interspecies embryos - mixing human and animal genetic material. A public campaign was fought to mobilize support for the research. Drawing on interviews with the key scientists involved, this paper argues that engaging the public through communicating their ideas via the media can result in tensions between the necessity of, and inherent dangers in, scientists campaigning on controversial issues. Some scientists believed that communicating science had damaged their professional standing in the eyes of their peers, who, in turn, policed the boundaries around what they believed constituted a "good" scientist. Tensions between promoting "science" versus promotion of the "scientist;" engaging the public versus publishing peer-reviewed articles and winning grants; and building expectations versus overhyping the science reveal the difficult choices scientists in the modern world have to make over the potential gains and risks of communicating science. We conclude that although scientists' participation in public debates is often encouraged, the rewards of such engagement remain. Moreover, this participation can detrimentally affect scientists' careers.

  15. Partnering Students, Scientists, and the Local Community in a Regionally-focused Field Campaign

    Science.gov (United States)

    McLaughlin, J. W.; Lemone, M. A.; Seavey, M. M.; Washburne, J. C.

    2006-05-01

    The GLOBE Program (www.globe.gov) involves students and scientists in a worldwide environmental data collection effort. The GLOBE ONE field campaign (www.globe.gov/globeone) represents a model for a focused implementation of GLOBE via a geographically-specific project. The campaign, which occurred in Black Hawk County, Iowa from February 2004 to February 2006, was developed by GLOBE Principal Investigators (PIs), the GLOBE Program Office, and GLOBE Iowa. The central scientific objective was to compare quantitatively the environmental effects of various soil tillage techniques. In addition, student research projects were supported that spanned a variety of Earth science topics. The campaign established a partnership between students and scientists to collect a structured, multidisciplinary data set and also increase GLOBE visibility. The fact that GLOBE ONE occurred in a focused geographic area made it necessary to form a network for local support. This started with choosing an active GLOBE partner, namely the Iowa Academy of Science, who had the ability to oversee the local implementation of such a project. Once this partner was chosen, additional local groups needed to be recruited to support the project. The local network included K-12 schools, the County Conservation Board, the University of Northern Iowa, Hawkeye Community College, and community volunteers. This network collected data via automated instrumentation, first-hand observations, and through special events organized with a focus on a specific measurement. The first major step in supporting student research was a teacher training workshop held in March of 2006 that helped to provide tools for, and increase comfort levels with, promoting scientific inquiry in the classroom. Student-scientists interactions were promoted via scientist visits, video conferences, letters, and email exchanges. The culminating event was a Student Research Symposium held in February 2006 which gave students and scientists a

  16. Facilitating ethical reflection among scientists using the ethical matrix.

    Science.gov (United States)

    Jensen, Karsten Klint; Forsberg, Ellen-Marie; Gamborg, Christian; Millar, Kate; Sandøe, Peter

    2011-09-01

    Several studies have indicated that scientists are likely to have an outlook on both facts and values that are different to that of lay people in important ways. This is one significant reason it is currently believed that in order for scientists to exercise a reliable ethical reflection about their research it is necessary for them to engage in dialogue with other stakeholders. This paper reports on an exercise to encourage a group of scientists to reflect on ethical issues without the presence of external stakeholders. It reports on the use of a reflection process with scientists working in the area of animal disease genomics (mainly drawn from the EADGENE EC Network of Excellence). This reflection process was facilitated by using an ethical engagement framework, a modified version of the Ethical Matrix. As judged by two criteria, a qualitative assessment of the outcomes and the participants' own assessment of the process, this independent reflective exercise was deemed to be successful. The discussions demonstrated a high level of complexity and depth, with participants demonstrating a clear perception of uncertainties and the context in which their research operates. Reflection on stakeholder views and values appeared to be embedded within the discussions. The finding from this exercise seems to indicate that even without the involvement of the wider stakeholder community, valuable reflection and worthwhile discourse can be generated from ethical reflection processes involving only scienitific project partners. Hence, the previous assumption that direct stakeholder engagement is necessary for ethical reflection does not appear to hold true in all cases; however, other reasons for involving a broad group of stakeholders relating to governance and social accountability of science remain.

  17. Attitudes Toward Gender, Work, and Family among Female and Male Scientists in Germany and the United States

    Science.gov (United States)

    Hanson, Sandra L.; Fuchs, Stefan; Aisenbrey, Silke; Kravets, Natalyia

    This research used a comparative approach and an elite framework to look at attitudes toward gender, work, and family among male and female scientists. The data came from the 1994 International Social Survey Program module measuring family and changing gender roles in (the former) East Germany, West Germany, and the United States. Research questions focused on the variation between the three samples in male scientists' attitudes regarding gender, work, and family; women's representation in science occupations; and the relation between the two. Another major concern was the extent to which female scientists express attitudes regarding gender, work, and family that resemble those of male scientists and the implications of these processes for increasing women's access to science. As predicted, male scientists in East Germany tended to have the most progressive attitudes (especially those regarding gender and work), East German women had the greatest access to science occupations, and there were virtually no sex differences in attitudes of East German scientists. West German male scientists were the most traditional on attitudes regarding gender and work, and U. S. male scientists tended to be the most traditional on attitudes regarding family. The attitudes of female scientists in West Germany and the United States reflected this larger trend, but there were sex differences within countries, with female scientists being more progressive than male scientists. Thus, the findings suggest that women s representation in science is related to the attitudes of male scientists regarding gender, work, and family. And although female scientists often hold quite similar attitudes as male scientists, there is considerable cross-country variation in how progressive the attitudes are and how similar men's and women's attitudes are. Implications for women's access to elite science occupations are discussed.

  18. Integrated modelling of ecosystem services and energy systems research

    Science.gov (United States)

    Agarwala, Matthew; Lovett, Andrew; Bateman, Ian; Day, Brett; Agnolucci, Paolo; Ziv, Guy

    2016-04-01

    The UK Government is formally committed to reducing carbon emissions and protecting and improving natural capital and the environment. However, actually delivering on these objectives requires an integrated approach to addressing two parallel challenges: de-carbonising future energy system pathways; and safeguarding natural capital to ensure the continued flow of ecosystem services. Although both emphasise benefiting from natural resources, efforts to connect natural capital and energy systems research have been limited, meaning opportunities to improve management of natural resources and meet society's energy needs could be missed. The ecosystem services paradigm provides a consistent conceptual framework that applies in multiple disciplines across the natural and economic sciences, and facilitates collaboration between them. At the forefront of the field, integrated ecosystem service - economy models have guided public- and private-sector decision making at all levels. Models vary in sophistication from simple spreadsheet tools to complex software packages integrating biophysical, GIS and economic models and draw upon many fields, including ecology, hydrology, geography, systems theory, economics and the social sciences. They also differ in their ability to value changes in natural capital and ecosystem services at various spatial and temporal scales. Despite these differences, current models share a common feature: their treatment of energy systems is superficial at best. In contrast, energy systems research has no widely adopted, unifying conceptual framework that organises thinking about key system components and interactions. Instead, the literature is organised around modelling approaches, including life cycle analyses, econometric investigations, linear programming and computable general equilibrium models. However, some consistencies do emerge. First, often contain a linear set of steps, from exploration to resource supply, fuel processing, conversion

  19. The MacGyver effect: alive and well in health services research?

    Directory of Open Access Journals (Sweden)

    Moriarty Helen J

    2011-09-01

    Full Text Available Abstract Background In a manner similar to the television action hero MacGyver, health services researchers need to respond to the pressure of unpredictable demands and constrained time frames. The results are often both innovative and functional, with the creation of outputs that could not have been anticipated in the initial planning and design of the research. Discussion In the conduct of health services research many challenges to robust research processes are generated as a result of the interface between academic research, health policy and implementation agendas. Within a complex and rapidly evolving environment the task of the health services researcher is, therefore, to juggle sometimes contradictory pressures to produce valid results. Summary This paper identifies the MacGyver-type dilemmas which arise in health services research, wherein innovation may be called for, to maintain the intended scientific method and rigour. These 'MacGyver drivers' are framed as opposing issues from the perspective of both academic and public policy communities. The ideas expressed in this paper are illustrated by four examples from research projects positioned at the interface between public policy strategy and academia.

  20. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.