WorldWideScience

Sample records for research reactors nuclear

  1. Nuclear research reactors

    International Nuclear Information System (INIS)

    1985-01-01

    It's presented data about nuclear research reactors in the world, retrieved from the Sien (Nuclear and Energetic Information System) data bank. The information are organized in table forms as follows: research reactors by countries; research reactors by type; research reactors by fuel and research reactors by purpose. (E.G.) [pt

  2. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  3. Nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias

    2011-01-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  4. Nuclear reactor safety research in Idaho

    International Nuclear Information System (INIS)

    Zeile, H.J.

    1983-01-01

    Detailed information about the performance of nuclear reactor systems, and especially about the nuclear fuel, is vital in determining the consequences of a reactor accident. Fission products released from the fuel during accidents are the ultimate safety concern to the general public living in the vicinity of a nuclear reactor plant. Safety research conducted at the Idaho National Engineering Laboratory (INEL) in support of the U.S. Nuclear Regulatory Commission (NRC) has provided the NRC with detailed data relating to most of the postulated nuclear reactor accidents. Engineers and scientists at the INEL are now in the process of gathering data related to the most severe nuclear reactor accident - the core melt accident. This paper describes the focus of the nuclear reactor safety research at the INEL. The key results expected from the severe core damage safety research program are discussed

  5. Nuclear reactor instrumentation at research reactor renewal

    International Nuclear Information System (INIS)

    Baers, B.; Pellionisz, P.

    1981-10-01

    The paper overviews the state-of-the-art of research reactor renewals. As a case study the instrumentation reconstruction of the Finnish 250 kW TRIGA reactor is described, with particular emphasis on the nuclear control instrumentation and equipment which has been developed and manufactured by the Central Research Institute for Physics, Budapest. Beside the presentation of the nuclear instrument family developed primarily for research reactor reconstructions, the quality assurance policy conducted during the manufacturing process is also discussed. (author)

  6. Nuclear Capacity Building through Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    Four Instruments: •The IAEA has recently developed a specific scheme of services for Nuclear Capacity Building in support of the Member States cooperating research reactors (RR) willing to use RRs as a primary facility to develop nuclear competences as a supporting step to embark into a national nuclear programme. •The scheme is composed of four complementary instruments, each of them being targeted to specific objective and audience: Distance Training: Internet Reactor Laboratory (IRL); Basic Training: Regional Research Reactor Schools; Intermediate Training: East European Research Reactor Initiative (EERRI); Group Fellowship Course Advanced Training: International Centres based on Research Reactors (ICERR)

  7. Directory of Nuclear Research Reactors 1994

    International Nuclear Information System (INIS)

    1995-08-01

    The Directory of Nuclear Research Reactors is an output of the Agency's computerized Research Reactor Data Base (RRDB). It contains administrative, technical and utilization information on research reactors known to the Agency at the end of December 1994. The data base converted from mainframe to PC is written in Clipper 5.0 and the publication generation system uses Excel 4. The information was collected by the Agency through questionnaires sent to research reactor owners. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the RRDB. This system contains all the information and data previously published in the Agency's publication, Directory of Nuclear Research Reactor, as well as updated information

  8. Utilization of nuclear research reactors

    International Nuclear Information System (INIS)

    1980-01-01

    Full text: Report on an IAEA interregional training course, Budapest, Hungary, 5-30 November 1979. The course was attended by 19 participants from 16 Member States. Among the 28 training courses which the International Atomic Energy Agency organized within its 1979 programme of technical assistance was the Interregional Training Course on the Utilization of Nuclear Research Reactors. This course was held at the Nuclear Training Reactor (a low-power pool-type reactor) of the Technical University, Budapest, Hungary, from 5 to 30 November 1979 and it was complemented by a one-week Study Tour to the Nuclear Research Centre in Rossendorf near Dresden, German Democratic Republic. The training course was very successful, with 19 participants attending from 16 Member States - Bangladesh, Bolivia, Czechoslovakia, Ecuador, Egypt, India, Iraq, Korean Democratic People's Republic, Morocco, Peru, Philippines, Spain, Thailand, Turkey, Vietnam and Yugoslavia. Selected invited lecturers were recruited from the USA and Finland, as well as local scientists from Hungarian institutions. During the past two decades or so, many research reactors have been put into operation around the world, and the demand for well qualified personnel to run and fully utilize these facilities has increased accordingly. Several developing countries have already acquired small- and medium-size research reactors mainly for isotope production, research in various fields, and training, while others are presently at different stages of planning and installation. Through different sources of information, such as requests to the IAEA for fellowship awards and experts, it became apparent that many research reactors and their associated facilities are not being utilized to their full potential in many of the developing countries. One reason for this is the lack of a sufficient number of trained professionals who are well acquainted with all the capabilities that a research reactor can offer, both in research and

  9. Nuclear data usage for research reactors

    International Nuclear Information System (INIS)

    Nakano, Yoshihiro; Soyama, Kazuhiko; Amano, Toshio

    1996-01-01

    In the department of research reactor, many neutronics calculations have been performed to construct, to operate and to modify research reactors of JAERI with several kinds of nuclear data libraries. This paper presents latest two neutronic analyses on research reactors. First one is design work of a low enriched uranium (LEU) fuel for JRR-4 (Japan Research Reactor No.4). The other is design of a uranium silicon dispersion type (silicide) fuel of JRR-3M (Japan Research Reactor No.3 Modified). Before starting the design work, to estimate the accuracy of computer code and calculation method, experimental data are calculated with several nuclear data libraries. From both cases of calculations, it is confirmed that JENDL-3.2 gives about 1 %Δk/k higher excess reactivity than JENDL-3.1. (author)

  10. Improving nuclear safety at international research reactors: The Integrated Research Reactor Safety Enhancement Program (IRRSEP)

    International Nuclear Information System (INIS)

    Huizenga, David; Newton, Douglas; Connery, Joyce

    2002-01-01

    Nuclear energy continues to play a major role in the world's energy economy. Research and test reactors are an important component of a nation's nuclear power infrastructure as they provide training, experiments and operating experience vital to developing and sustaining the industry. Indeed, nations with aspirations for nuclear power development usually begin their programs with a research reactor program. Research reactors also are vital to international science and technology development. It is important to keep them safe from both accident and sabotage, not only because of our obligation to prevent human and environmental consequence but also to prevent corresponding damage to science and industry. For example, an incident at a research reactor could cause a political and public backlash that would do irreparable harm to national nuclear programs. Following the accidents at Three Mile Island and Chernobyl, considerable efforts and resources were committed to improving the safety posture of the world's nuclear power plants. Unsafe operation of research reactors will have an amplifying effect throughout a country or region's entire nuclear programs due to political, economic and nuclear infrastructure consequences. (author)

  11. Preparation fo nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  12. Preparation of nuclear research reactors operators

    International Nuclear Information System (INIS)

    Roedel, G.

    1986-01-01

    The experience obtained with the training of operators of nuclear research reactors is presented. The main tool used in the experiments is the IPR-R1 reactor, a TRIGA MARK I type, owned by Nuclear Technology Development Centre (CDTN) of NUCLEBRAS. The structures of the Research Reactors Operators Training Course and of the Radiological Protection Course, as well as the Operators Qualifying and Requalifying Program, all of them prepared at CDTN, are also presented. Mention is made of the application of similar experiments to other groups, such as students coming from Nuclear Sciences and Techniques Course of the Federal University of Minas Gerais. (Author) [pt

  13. Preservation of the first research nuclear reactor in Korea

    International Nuclear Information System (INIS)

    2008-06-01

    This book describes preservation of the first research nuclear reactor in Korea and necessity of building memorial hall, sale of the Institute of Atomic Energy Research in Seoul and dismantlement of the first and the second nuclear reactor, preservation of the first research nuclear reactor and activity about memorial hall of the atomic energy reactor, assignment and leaving the report, and the list of related data.

  14. Operation and utilizations of Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.Z.

    1988-01-01

    The reconstructed Dalat nuclear research reactor was commissioned in March 1984 and up to September 1988 more than 6200 hours of operation at nominal power have been recorded. The major utilizations of the reactor include radioisotope production, activation analysis, nuclear data research and training. A brief review of the utilizations of the reactor is presented. Some aspects of reactor safety are also discussed. (author)

  15. Research reactors spent fuel management in the Nuclear Research Institute Rez

    International Nuclear Information System (INIS)

    Rychecky, J.

    2001-01-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15

  16. Research reactors spent fuel management in the Nuclear Research Institute Rez

    Energy Technology Data Exchange (ETDEWEB)

    Rychecky, J. [Nuclear Research Institute, 25068 Rez (Czech Republic)

    2001-07-01

    In Czech Republic 3 research and testing nuclear reactors are operated at present time, with the biggest one being the Nuclear Research Institute (NRI) reactor LVR-15, operated with maximum power 10 MW. This reactor serves as a radiation source for material testing, producing of ionizing radiation sources, theoretical studies, and, most recently, for boron neutron capture therapy. Another NRI reactor LR-0 is a reactor of zero power used mainly for the studies of WWER 1000 spent fuel criticality. For training of students the reactor called VRABEC (VR-1), operated also with very low power, serves since 1990 at the Faculty of Nuclear Engineering, of Czech Technical University. The similar testing type reactor (SR-0), already decommissioned, was also used since 1974 to 1989 in Skoda, Nuclear Machinery, Plzen. This contribution summarizes the present state of the spent fuel (SF) management of these nuclear reactors. As the SF management is different for very low or zero power reactors and power reactors, the first type will be only briefly discussed, and then the main attention will be devoted to SF management of the NRI experimental reactor LVR-15.

  17. Reactor materials research as an effective instrument of nuclear reactor perfection

    International Nuclear Information System (INIS)

    Baryshnikov, M.

    2006-01-01

    The work is devoted to reactor materiology, as to the practical tool of nuclear reactor development. The work is illustrated with concrete examples from activity experience of the appropriate division of the Russian Research Centre Kurchatov Institute - Institute of Reactor Materials Research and Radiation Nanotechnologies. Besides the description of some modern potentials of the mentioned institute is given. (author)

  18. Nuclear instrumentation for research reactors; Instrumentacion nuclear para reactores nucleares de investigacion

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Unidad de Actividades de Reactores y Centrales Nucleares. Sector Instrumentacion y Control

    1997-10-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70`. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs.

  19. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix B, foreign research reactor spent nuclear fuel characteristics and transportation casks. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix B of a draft Environmental Impact Statement (EIS) on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. It discusses relevant characterization and other information of foreign research reactor spent nuclear fuel that could be managed under the proposed action. It also discusses regulations for the transport of radioactive materials and the design of spent fuel casks

  20. Reactor safety research program. A description of current and planned reactor safety research sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research

    International Nuclear Information System (INIS)

    1975-06-01

    The reactor safety research program, sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, is described in terms of its program objectives, current status, and future plans. Elements of safety research work applicable to water reactors, fast reactors, and gas cooled reactors are presented together with brief descriptions of current and planned test facilities. (U.S.)

  1. Brief overview of American Nuclear Society's research reactor standards

    International Nuclear Information System (INIS)

    Richards, Wade J.

    1984-01-01

    The American Nuclear Society (ANS) established the research reactor standards group in 1968. The standards group, known as ANS-15, was established for the purpose of developing, preparing, and maintaining standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training

  2. Overview of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Nguyen Thai Sinh; Luong Ba Vien

    2016-01-01

    The present reactor called Dalat Nuclear Research Reactor (DNRR) has been reconstructed from the former TRIGA Mark II reactor which was designed by General Atomic (GA, San Diego, California, USA), started building in early 1960s, put into operation in 1963 and operated until 1968 at nominal power of 250 kW. In 1975, all fuel elements of the reactor were unloaded and shipped back to the USA. The DNRR is a 500-kW pool-type research reactor using light water as both moderator and coolant. The reactor is used as a neutron source for the purposes of: (1) radioactive isotope production; (2) neutron activation analysis; and (3) research and training

  3. The current status of nuclear research reactor in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Sittichai, C; Kanyukt, R; Pongpat, P [Office of Atomic Energy for Peace, Bangkok (Thailand)

    1998-10-01

    Since 1962, the Thai Research Reactor has been serving for various kinds of activities i.e. the production of radioisotopes for medical uses and research and development on nuclear science and technology, for more than three decades. The existing reactor site should be abandoned and relocated to the new suitable site, according to Thai cabinet`s resolution on the 27 December 1989. The decommissioning project for the present reactor as well as the establishment of new nuclear research center were planned. This paper discussed the OAEP concept for the decommissioning programme and the general description of the new research reactor and some related information were also reported. (author)

  4. Research reactor status for future nuclear research in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel [Commissariat a l' Energie Atomique - CEA (France)

    2010-07-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source

  5. Research reactor status for future nuclear research in Europe

    International Nuclear Information System (INIS)

    Raymond, Patrick; Bignan, Gilles; Guidez, Joel

    2010-01-01

    During the 1950's and 60's, the European countries built several research reactors, partially to support their emerging nuclear-powered electricity programs. Now, over forty years later, the use and operation of these reactors have both widened and grown more specialized. The irradiation reactors test materials and fuels for power reactors, produce radio-isotopes for medicine, neutro-graphies, doping silicon, and other materials. The neutron beam reactors are crucial to science of matter and provide vital support to the development of nano-technologies. Other reactors are used for other specialized services such as teaching, safety tests, neutron physics measurements... The modifications to the operating uses and the ageing of the nuclear facilities have led to increasing closures year after year. Since last ENC, for example, we have seen, only in France, the closure of the training reactor Ulysse in 2007, the closure of the safety test dedicated reactor Phebus in 2008 and recently the Phenix reactor, last fast breeder in operation in the European Community, has been shut down after a set of 'end of life' technological and physical tests. For other research reactors, safety re-evaluations have had to take place, to enable extension of reactor life. However, in the current context of streamlining and reorganization, new European tools have emerged to optimally meet the changing demands for research. However the operation market of these reactors seems now increasing in all fields. For the neutron beams reactors (FRMII, ORPHEE, ILL, ISIS,..) the experimental needs are increasing years after years, especially for nano sciences and bio sciences new needs. The measurement of residual stress on manufactured materials is also more and more utilised. All these reactors have increasing utilizations, and their future seems promising. A new project project based on a neutron spallation is under definition in Sweden (ESSS: European Spallation Source Scandinavia). The nuclear

  6. Progress report concerning safety research for nuclear reactor facilities

    International Nuclear Information System (INIS)

    1978-01-01

    Examination and evaluation of safety research results for nuclear reactor facilities have been performed, as more than a year has elapsed since the plan had been initiated in April, 1976, by the special sub-committee for the safety of nuclear reactor facilities. The research is carried out by being divided roughly into 7 items, and seems to be steadily proceeding, though it does not yet reach the target. The above 7 items include researches for (1) criticality accident, (2) loss of coolant accident, (3) safety for light water reactor fuel, (4) construction safety for reactor facilities, (5) reduction of release of radioactive material, (6) safety evaluation based on the probability theory for reactor facilities, and (7) aseismatic measures for reactor facilities. With discussions on the progress and the results of the research this time, research on the behaviour on fuel in abnormal transients including in-core and out-core experiments has been added to the third item, deleting the power-cooling mismatch experiment in Nuclear Safety Research Reactor of JAERI. Also it has been decided to add two research to the seventh item, namely measured data collection, classification and analysis, and probability assessment of failures due to an earthquake. For these 7 items, the report describes the concrete contents of research to be performed in fiscal years of 1977 and 1978, by discussing on most rational and suitable contents conceivable at present. (Wakatsuki, Y.)

  7. Nuclear instrumentation for research reactors

    International Nuclear Information System (INIS)

    Hofer, Carlos G.; Pita, Antonio; Verrastro, Claudio A.; Maino, Eduardo J.

    1997-01-01

    The nuclear instrumentation for research reactors in Argentina was developed in 70'. A gradual modernization of all the nuclear instrumentation is planned. It includes start-up and power range instrumentation, as well as field monitors, clamp, scram and rod movement control logic. The new instrumentation is linked to a computer network, based on real time operating system for data acquisition, display and logging. This paper describes the modules and whole system aspects. (author). 2 refs

  8. IAEA data base system for nuclear research reactors (RRDB)

    International Nuclear Information System (INIS)

    Lipscher, P.

    1986-01-01

    The IAEA Data Base System for Nuclear Research Reactors (RRDB) User's Guide is intended for the user who wishes to understand the concepts and operation of the RRDB system. The RRDB is a computerized system recording administrative, operational and technical data on all the nuclear research reactors currently operating, under construction, planned or shut down in IAEA Member States. The data is received by the IAEA from reactor centres on magnetic tapes or as responses to questionnaires. All the data on research, training, test and radioactive isotope production reactors and critical assemblies is stored on the RRDB system. A full set of RRDB programs (in NATURAL) are contained at the back of this Guide

  9. Nuclear research reactors in the world. June 1988 ed.

    International Nuclear Information System (INIS)

    1988-01-01

    This is the third edition of Reference Data Series No. 3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of June 1988, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. All data on research reactors, training reactors, test reactors, prototype reactors and critical assemblies are stored in the IAEA Research Reactor Data Base (RRDB) system. This system contains all the information and data previously published in the Agency's publication Power and Research Reactors in Member States as well as additional information. 12 figs, 19 tabs

  10. Nuclear Research Center IRT reactor dynamics calculation

    International Nuclear Information System (INIS)

    Aleman Fernandez, J.R.

    1990-01-01

    The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs

  11. Nuclear Reactor Physics

    Science.gov (United States)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  12. Nuclear research reactors in the world. May 1987 ed.

    International Nuclear Information System (INIS)

    1987-01-01

    This is the second edition of Reference Data Series No.3, Nuclear Research Reactors in the World, which replaces the Agency's publications Power and Research Reactors in Member States and Research Reactors in Member States. This booklet contains general information, as of the end of May 1987, on research reactors in operation, under construction, planned, and shut down. The information is collected by the Agency through questionnaires sent to the Member States through the designated national correspondents. 11 figs, 19 tabs

  13. Advanced nuclear reactor safety issues and research needs

    International Nuclear Information System (INIS)

    2002-01-01

    On 18-20 February 2002, the OECD Nuclear Energy Agency (NEA) organised, with the co-sponsorship of the International Atomic Energy Agency (IAEA) and in collaboration with the European Commission (EC), a Workshop on Advanced Nuclear Reactor Safety Issues and Research Needs. Currently, advanced nuclear reactor projects range from the development of evolutionary and advanced light water reactor (LWR) designs to initial work to develop even further advanced designs which go beyond LWR technology (e.g. high-temperature gas-cooled reactors and liquid metal-cooled reactors). These advanced designs include a greater use of advanced technology and safety features than those employed in currently operating plants or approved designs. The objectives of the workshop were to: - facilitate early identification and resolution of safety issues by developing a consensus among participating countries on the identification of safety issues, the scope of research needed to address these issues and a potential approach to their resolution; - promote the preservation of knowledge and expertise on advanced reactor technology; - provide input to the Generation IV International Forum Technology Road-map. In addition, the workshop tried to link advancement of knowledge and understanding of advanced designs to the regulatory process, with emphasis on building public confidence. It also helped to document current views on advanced reactor safety and technology, thereby contributing to preserving knowledge and expertise before it is lost. (author)

  14. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  15. Results of Operation and Utilization of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Luong Ba Vien; Le Vinh Vinh; Duong Van Dong; Nguyen Xuan Hai; Pham Ngoc Son; Cao Dong Vu

    2014-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kW was reconstructed and upgraded from the USA 250-kW TRIGA Mark-II reactor built in early 1960s. The renovated reactor was put into operation on 20 March 1984. It was designed for the purposes of radioisotope production (RI), neutron activation analysis (NAA), basic and applied researches, and nuclear education and training. During the last 30 years of operation, the DNRR was efficiently utilized for producing many kinds of radioisotopes and radiopharmaceuticals used in nuclear medicine centers and other users in industry, agriculture, hydrology and scientific research; developing a combination of nuclear analysis techniques (INAA, RNAA, PGNAA) and physic-chemical methods for quantitative analysis of about 70 elements and constituents in various samples; carrying out experiments on the reactor horizontal beam tubes for nuclear data measurement, neutron radiography and nuclear structure study; and establishing nuclear training and education programs for human resource development. This paper presents the results of operation and utilization of the DNRR. In addition, some main reactor renovation projects carried out during the last 10 years are also mentioned in the paper. (author)

  16. Nuclear safety requirements for operation licensing of Egyptian research reactors

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.

    2000-01-01

    From the view of responsibility for health and nuclear safety, this work creates a framework for the application of nuclear regulatory rules to ensure safe operation for the sake of obtaining or maintaining operation licensing for nuclear research reactors. It has been performed according to the recommendations of the IAEA for research reactor safety regulations which clearly states that the scope of the application should include all research reactors being designed, constructed, commissioned, operated, modified or decommissioned. From that concept, the present work establishes a model structure and a computer logic program for a regulatory licensing system (RLS code). It applies both the regulatory inspection and enforcement regulatory rules on the different licensing process stages. The present established RLS code is then applied to the Egyptian Research Reactors, namely; the first ET-RR-1, which was constructed and still operating since 1961, and the second MPR research reactor (ET-RR-2) which is now in the preliminary operation stage. The results showed that for the ET-RR-1 reactor, all operational activities, including maintenance, in-service inspection, renewal, modification and experiments should meet the appropriate regulatory compliance action program. Also, the results showed that for the new MPR research reactor (ET-RR-2), all commissioning and operational stages should also meet the regulatory inspection and enforcement action program of the operational licensing safety requirements. (author)

  17. On exposure of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    The Law for Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1988 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the exposure of workers was below the permissible exposure dose in 1988 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of Japan Atomic Energy Research Institute and Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  18. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1990-01-01

    The research and teaching operations of the Nuclear Chemistry Division of the Dept. of Chemistry and the Dept. of Nuclear Engineering are housed at the Oregon State University Radiation Center. This facility which includes a 1.1 MW TRIGA reactor was used for 53 classes from a number of different academic departments last year. About one-half of these classes used the reactor and ∼25% of the reactor's 45 hour week was devoted to teaching. Descriptions will be given of reactor-oriented instructional programs in nuclear engineering, radiation health and nuclear chemistry. In nuclear chemistry, classes in (a) nuclear chemistry for nuclear engineers, (b) radiotracer methods, (c) elementary and advanced activation analysis, and (d) advanced nuclear instrumentation will be described in detail. The use of the facility to promote general nuclear literacy among college students, high school and grade school students and the general population will also be covered

  19. Nuclear power reactor safety research activities in CIAE

    International Nuclear Information System (INIS)

    Pu Shendi; Huang Yucai; Xu Hanming; Zhang Zhongyue

    1994-01-01

    The power reactor safety research activities in CIAE are briefly reviewed. The research work performed in 1980's and 1990's is mainly emphasised, which is closely related to the design, construction and licensing review of Qinshan Nuclear Power Plant and the safety review of Guangdong Nuclear Power Station. Major achievements in the area of thermohydraulics, nuclear fuel, probabilistic safety assessment and severe accident researches are summarized. The foreseeable research plan for the near future, relating to the design and construction of 600 MWe PWR NPP at Qinshan Site (phase II development) is outlined

  20. The Utilization of Dalat nuclear research reactor for education and training purposes

    International Nuclear Information System (INIS)

    Luong, Ba Vien; Nguyen, Nhi Dien; Le, Vinh Vinh; Nguyen, Xuan Hai

    2017-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kWt is today the unique one in Vietnam. It was designed for the purposes of radioisotope production, neutron activation analysis, basic and applied researches, and nuclear education and training. With the rising demand in development of human resources for utilization of atomic energy in the country, the DNRR has been playing an important role in the nuclear education and training for students from universities and professionals who are interested in reactor engineering. At present, the Dalat Nuclear Research Institute (DNRI) offers two types of training course utilizing the research reactor: an one-week practical training course is applied for undergraduate students and a two-week training course on reactor engineering is applied for the professionals. This paper presents the reactor facility and experiments performed at the DNRR for education and training purposes. In addition, the co-operation between the DNRI with national and international educational organizations for nuclear human resource development for national and regional demands is also mentioned in the paper. (author)

  1. Nuclear reactor and materials science research: Technical report, May 1, 1985-September 30, 1986

    International Nuclear Information System (INIS)

    1987-01-01

    Throughout the 17-month period of its grant, May 1, 1985-September 30, 1986, the MIT Research Reactor (MITR-II) was operated in support of research and academic programs in the physical and life sciences and in related engineering fields. The reactor was operated 4115 hours during FY 1986 and for 6080 hours during the entire 17-month period, an average of 82 hours per week. Utilization of the reactor during that period may be classified as follows: neutron beam tube research; nuclear materials research and development; radiochemistry and trace analysis; nuclear medicine; radiation health physics; computer control of reactors; dose reduction in nuclear power reactors; reactor irradiations and services for groups outside MIT; MIT Research Reactor. Data on the above utilization for FY 1986 show that the MIT Nuclear Reactor Laboratory (NRL) engaged in joint activities with nine academic departments and interdepartmental laboratories at MIT, the Charles Stark Draper Laboratory in Cambridge, and 22 other universities and nonprofit research institutions, such as teaching hospitals

  2. International topical meeting on research reactor fuel management (RRFM) - United States foreign research reactor (FRR) spent nuclear fuel (SNF) acceptance program: 2010 update

    International Nuclear Information System (INIS)

    Messick, C.E.; Taylor, J.L.; Niehus, M.T.; Landers, C.

    2010-01-01

    The Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, adopted by the United States Department of Energy (DOE), in consultation with the Department of State (DOS) in May 1996, scheduled to expire May 12, 2016, to return research reactor fuel until May 12, 2019 to the U.S. is in its fourteenth year. This paper provides a brief update on the program, part of the National Nuclear Security Administration (NNSA), and discusses program initiatives and future activities. The goal of the program continues to be recovery of U.S.-origin nuclear materials, which could otherwise be used in weapons, while assisting other countries to enjoy the benefits of nuclear technology. The NNSA is seeking feedback from research reactor operators to help us understand ways to include eligible research reactors who have not yet participated in the program. (author)

  3. A world class nuclear research reactor complex for South Africa's nuclear future

    International Nuclear Information System (INIS)

    Keshaw, Jeetesh

    2008-01-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  4. RA Research nuclear reactor - Annual report 1987

    International Nuclear Information System (INIS)

    1987-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1987, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  5. Research nuclear reactor RA - Annual Report 1989

    International Nuclear Information System (INIS)

    Sotic, O.

    1989-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1989, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  6. Nuclear research reactor 0.5 to 3 MW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-05-15

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW{sub TH}, with a minimum thermal neutron flux of approx, 10{sup 13} n/cm{sup 2}{center_dot}sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor

  7. Nuclear research reactor 0.5 to 3 MW

    International Nuclear Information System (INIS)

    1992-05-01

    This nuclear reactor has been designed for radioisotope production, basic and applied research in reactor physics and nuclear engineering, neutron-beam experimentation, irradiation of various materials and training of scientific and technical personnel. It is located in the 'Production Area' of the Nuclear Technology Center. It is equipped with the necessary facilities for large-scale production of radioisotopes to be used in medicine as well as for other scientific and industrial purposes. In addition, it has a Neutronography Facility and the required equipment to perform Neutron-Activation Analysis. It is an open pool-type reactor, moderated and cooled with light water, fuelled with 20% enriched uranium. Its reflector are graphite and water. It has plate-type fuel elements clad in aluminium. The reactor core is located near the bottom of the demineralized water pool. It includes fuel elements, reflector and sample-holding devices for materials to be irradiated. This kind of configuration, which is widely used in research reactors, provides a high degree of safety since it prevents the core from becoming exposed under any circumstance and does not require any cooling system during reactor shutdown. Power output is between 0.5 to 3 MW TH , with a minimum thermal neutron flux of approx, 10 13 n/cm 2 ·sec, at irradiation zone almost with no modifications. Heat extraction is achieved by means of a cooling circuit which comprises two circulation pumps and a plate-type heat exchanger. Final heat dissipation to the atmosphere is performed through another cooling circuit which includes two circulation pumps and a cooling tower. Reactor control is accomplished with five neutron-absorbing rods positioned by means of especially designed elements and governed by the reactor's instrumentation and control system. Should an abnormal situation arise, gravity causes the rods to fall automatically, thus extinguishing the nuclear reaction. The reactor building has a ventilation

  8. Research nuclear reactor operation management

    International Nuclear Information System (INIS)

    Preda, M.; Carabulea, A.

    2008-01-01

    Some aspects of reactor operation management are highlighted. The main mission of the operational staff at a testing reactor is to operate it safely and efficiently, to ensure proper conditions for different research programs implying the use of the reactor. For reaching this aim, there were settled down operating plans for every objective, and procedure and working instructions for staff training were established, both for the start-up and for the safe operation of the reactor. Damages during operation or special situations which can arise, at stop, start-up, maintenance procedures were thoroughly considered. While the technical skill is considered to be the most important quality of the staff, the organising capacity is a must in the operation of any nuclear facility. Staff training aims at gaining both theoretical and practical experience based on standards about staff quality at each work level. 'Plow' sheet has to be carefully done, setting clear the decision responsibility for each person so that everyone's own technical level to be coupled to the problems which implies his responsibility. Possible events which may arise in operation, e.g., criticality, irradiation, contamination, and which do not arise in other fields, have to be carefully studied. One stresses that the management based on technical and scientific arguments have to cover through technical, economical and nuclear safety requirements a series of interlinked subprograms. Every such subprograms is subject to some peculiar demands by the help of which the entire activity field is coordinated. Hence for any subprogram there are established the objectives to be achieved, the applicable regulations, well-defined responsibilities, training of the personnel involved, the material and documentation basis required and activity planning. The following up of positive or negative responses generated by experiments and the information synthesis close the management scope. Important management aspects

  9. Factors affecting nuclear research reactor utilization across countries

    International Nuclear Information System (INIS)

    Hien, P.D.

    2000-01-01

    In view of the worldwide declining trend of research reactor utilization and the fact that many reactors in developing countries are under-utilised, a question naturally arises as to whether the investment in a research reactor is justifiable. Statistical analyses were applied to reveal relationships between the status of reactor utilization and socio-economic conditions among countries, that may provide a guidance for reactor planning and cost benefit assessment. The reactor power has significant regression relationships with size indicators such as GNP, electricity consumption and R and D expenditure. Concerning the effectiveness of investment in research reactors, the number of reactor operation days per year only weakly correlates with electricity consumption and R and D expenditure, implying that there are controlling factors specific of each group of countries. In the case of less developed countries, the low customer demands on reactor operation may be associated with the failure in achieving quality assurance for the reactor products and services, inadequate investment in the infrastructure for reactor exploitation, the shortage of R and D funding and well trained manpower and the lack of measures to get the scientific community involved in the application of nuclear techniques. (author)

  10. Lenin nuclear reactor research institute in the tenth five-year plan

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Kulov, E.V.

    1980-01-01

    Main tasks and research results of Lenin Nuclear Reactor Reseach Institute in the 10-th Five-Year Plan are considered. Main research achievements are noted in nuclear power, radiation material testing, accumulation of transuranium elements and investigation of their physicochemical properties at VK-50, BOR-60, SM-2, RBT-6 and MIR reactor plants and in material testing laboratories

  11. Sodium cooled research thermal reactor - a proposal to the Brazilian nuclear community

    International Nuclear Information System (INIS)

    Ishiguro, Yuji

    1996-01-01

    The nuclear community can contribute to the society in two ways: assuring reactor technologies for electric power supply and contributing to developments in other areas by application of radiations. Industrialized countries maintain intensive activities in the two senses, while in Brazil nuclear policy is not clear and opportunities of research with radiations are quite limited. It is proposed, as a way out of this situations, that the nuclear community concentrate its activities in the sense of proposing the construction of a low-power research reactor that can satisfy a majority of demands (radioisotopes, research, fast reactor) and avoid the problems of experimental fast reactors (high cost, use of Pu and HEU). (author)

  12. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  13. Development of a research nuclear reactor simulator using LABVIEW®

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  14. Development of a research nuclear reactor simulator using LABVIEW®

    International Nuclear Information System (INIS)

    Lage, Aldo Marcio Fonseca; Mesquita, Amir Zacarias; Pinto, Antonio Juscelino; Souza, Luiz Claudio Andrade

    2015-01-01

    The International Atomic Energy Agency recommends the use of safety and friendly interfaces for monitoring and controlling the operational parameters of the nuclear reactors. The most important variable in the nuclear reactors control is the power released by fission of the fuel in the core which is directly proportional to neutron flux. It was developed a digital system to simulate the neutron evolution flux and monitoring their interaction on the other operational parameters. The control objective is to bring the reactor power from its source level (mW) to a few W. It is intended for education of basic reactor neutronic principles such as the multiplication factor, criticality, reactivity, period, delayed neutron and control by rods. The 250 kW IPR-R1 TRIGA research reactor at Nuclear Technology Development Center - CDTN (Belo Horizonte/Brazil) was used as reference. TRIGA reactors, developed by General Atomics (GA), are the most widely used research reactor in the world. They are cooled by light water under natural convection and are characterized by being inherently safety. The simulation system was developed using the LabVIEW® (Laboratory Virtual Instruments Engineering Workbench) software, considering the modern concept of virtual instruments (VI's). The main purpose of the system is to provide to analyze the behavior, and the tendency of some processes that occur in the reactor using a user-friendly operator interface. The TRIGA simulator system will allow the study of parameters, which affect the reactor operation, without the necessity of using the facility.(author)

  15. Necessity of research reactors

    International Nuclear Information System (INIS)

    Ito, Tetsuo

    2016-01-01

    Currently, only three educational research reactors at two universities exist in Japan: KUR, KUCA of Kyoto University and UTR-KINKI of Kinki University. UTR-KINKI is a light-water moderated, graphite reflected, heterogeneous enriched uranium thermal reactor, which began operation as a private university No. 1 reactor in 1961. It is a low power nuclear reactor for education and research with a maximum heat output of 1 W. Using this nuclear reactor, researches, practical training, experiments for training nuclear human resources, and nuclear knowledge dissemination activities are carried out. As of October 2016, research and practical training accompanied by operation are not carried out because it is stopped. The following five items can be cited as challenges faced by research reactors: (1) response to new regulatory standards and stagnation of research and education, (2) strengthening of nuclear material protection and nuclear fuel concentration reduction, (3) countermeasures against aging and next research reactor, (4) outflow and shortage of nuclear human resources, and (5) expansion of research reactor maintenance cost. This paper would like to make the following recommendations so that we can make contribution to the world in the field of nuclear power. (1) Communication between regulatory authorities and business operators regarding new regulatory standards compliance. (2) Response to various problems including spent fuel measures for long-term stable utilization of research reactors. (3) Personal exchanges among nuclear experts. (4) Expansion of nuclear related departments at universities to train nuclear human resources. (5) Training of world-class nuclear human resources, and succession and development of research and technologies. (A.O.)

  16. Nuclear material control at IEA-R1 nuclear research reactor

    International Nuclear Information System (INIS)

    1988-01-01

    The control measurements system and verification of physical inventory for fuel elements used in the operation of IEA-R1 nuclear research reactor are described. The computer code used for burn-up calculation are shown. (E.G.) [pt

  17. Concerning control of radiation exposure to workers in nuclear reactor facilities for testing and nuclear reactor facilities in research and development phase (fiscal 1987)

    International Nuclear Information System (INIS)

    1988-01-01

    A nuclear reactor operator is required by the Nuclear Reactor Control Law to ensure that the radiation dose to workers engaged in the operations of his nuclear reactor is controlled below the permissible exposure doses that are specified in notifications issued based on the Law. The present note briefly summarizes the data given in the Reports on Radiation Control, which have been submitted according to the Nuclear Reactor Control Law by the operators of nuclear reactor facilities for testing and those in the research and development phase, and the Reports on Control of Radiation Exposure to Workers submitted in accordance with the applicable administrative notices. According to these reports, the measured exposure to workers in 1987 were below the above-mentioned permissible exposure doses in all these nuclear facilities. The 1986 and 1987 measurements of radiation exposure dose to workers in nuclear reactor facilities for testing are tabulated. The measurements cover dose distribution among the facilities' personnel and workers of contractors. They also cover the total exposure dose for all workers in each of four plants operated under the Japan Atomic Energy Research Institute and the Power Reactor and Nuclear Fuel Development Corporation. (N.K.)

  18. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Oyama, Yukio; Okamoto, Koji; Yamana, Hajime; Yamaguchi, Akira

    2011-01-01

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  19. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  20. International collaboration between nuclear research centres and the role of research reactors

    International Nuclear Information System (INIS)

    Dodd, B.

    2001-01-01

    A research reactor is a core facility in many nuclear research centres (NRCs) of Member States and it is logical that it should be the focus of any international collaboration between such centres. There are several large and sophisticated research reactors in operation in both developed and developing Member States, such as Belgium, China, Egypt, France, Hungary, Indonesia, India, Japan, ROK, Netherlands, South Africa and the USA. There are also several new, large reactors under construction or being planned such as those in Australia, Canada, China, France, Germany, and Thailand. It is felt that the utilization of these reactors can be enhanced by international co-operation to achieve common goals in research and applications. (author)

  1. Physical Characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy

    1994-10-01

    The operation of the TRIGA MARK II reactor of nominal power 250 KW has been stopped as all the fuel elements have been dismounted and taken away in 1968. The reconstruction of the reactor was accomplished with Russian technological assistance after 1975. The nominal power of the reconstructed reactor is of 500 KW. The recent Dalat reactor is unique of its kind in the world: Russian-designed core combined with left-over infrastructure of the American-made TRIGA II. The reactor was loaded in November 1983. It has reached physical criticality on 1/11/1983 (without central neutron trap) and on 18/12/1983 (with central neutron trap). The power start up occurred in February 1984 and from 20/3/1984 the reactor began to be operated at the nominal power 500 KW. The selected reports included in the proceedings reflect the start up procedures and numerous results obtained in the Dalat Nuclear Research Institute and the Centre of Nuclear Techniques on the determination of different physical characteristics of the reactor. These characteristics are of the first importance for the safe operation of the Dalat reactor

  2. The Preliminary Decommissioning Plan of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Pham Van; Vien, Luong Ba; Vinh, Le Vinh; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Phuong, Pham Hoai [Nuclear Research Institute, Da Lat (Viet Nam)

    2013-08-15

    Recently, after 25 years of operation, a preliminary decommissioning plan for the Dalat Nuclear Research Reactor (DNRR) has been produced but as yet it has not been implemented due to the continued operations of the reactor. However, from the early phases of facility design and construction and during operation, the aspects that facilitate decommissioning process have been considered. This paper outlines the DNRR general description, the organization that manages the facility, the decommissioning strategy and associated project management, and the expected decommissioning activities. The paper also considers associated cost and funding, safety and environmental issues and waste management aspects amongst other considerations associated with decommissioning a nuclear research reactor. (author)

  3. Present status of design, research and development of nuclear fusion reactors and problems

    International Nuclear Information System (INIS)

    1983-04-01

    Seven years have elapsed since the publication of ''Progress of nuclear fusion research and perspective toward the development of power reactors'' by the Atomic Energy Society of Japan in August, 1976. During this period, the research and development of nuclear fusion have changed from plasma physics to reactor technology, being conscious of the realization of fusion reactors. There are the R project in the Institute of Plasma Physics, Nagoya University, and the design and construction of JT-60 in Japan Atomic Energy Research Institute, to put it concretely. Now the research and development taking the economical efficiency into account are adopted. However, the type of fusion reactors is not reduced to tokamak type, accordingly the research and development to meet the diverse possibilities are forwarded. The progress of tokamak reactor research, core plasma design, nuclear design and shielding design, thermal structure design, the design of superconducting magnets, disassembling and repair, safety, economical efficiency, the conceptual design of other types than tokamak and others are reported. (Kako, I.)

  4. Legal Review: Issuance of Separate Permits for a Nuclear Reactor for Research

    International Nuclear Information System (INIS)

    Chang, Gun-Hyun; Kim, Sang-Wwon; Koh, Jae-Dong; Kim, Chang-Bum; Ahn, Sang-kyu

    2006-01-01

    With regard to the nuclear reactor permission system under the Atomic Energy Act of the Republic of Korea, two types of permits must be obtained for nuclear power reactors under Article 11 and Article 21 of the Atomic Energy Act: construction permits and operation permits. Concerning nuclear reactors for research, however, only one permit is required: a dual permit that authorizes both construction and operation, under Article 33 of said act. This permit can be obtained by submitting an application for a dual construction and operation permit to the regulatory authority. The question is whether a dual permit can be issued for nuclear reactors for research under any circumstances. If the literal provisions of the Atomic Energy Act are applied rigorously even in cases where it is realistically difficult to submit a dual permit application or issue a dual permit for construction and operation considering the power output, usage, and design complexity of nuclear reactors for research, separate permits for construction or operation shall never be issued, with only dual permits for construction and operation issued. For the Hanaro research reactor, a dual permit was issued with a condition attached thereto based on the literal provisions of the Atomic Energy Act at the time of its construction, although an application for and issuance of a dual permit for its construction and operation were impossible at the time. This is in violation of the purport of the law that provides for a dual permit

  5. Status of the DOE's foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Chacey, K.; Saris, E.C.

    1997-01-01

    In May 1996, the U.S. Department of Energy (DOE), in consultation with the U.S. Department of State (DOS), adopted a policy to accept and manage in the United States ∼20 tonnes of spent nuclear fuel from research reactors in up to 41 countries. This spent fuel is being accepted under the nuclear weapons non-proliferation policy concerning foreign research reactor spent nuclear fuel. Only spent fuel containing uranium enriched in the United States is covered under this policy. Implementing this policy is a top priority of the DOE. The purpose of this paper is to provide the current status of the foreign research reactor acceptance program, including achievements to date and future challenges

  6. Da Lat Nuclear Research Reactor. Role and perspective in the development of radioisotope and nuclear technique application in Vietnam

    International Nuclear Information System (INIS)

    Tran Ha Anh; Tran Khac An; Ngo Phu Khang; Nguyen Mong Sinh

    1995-01-01

    The Da Lat Nuclear Research Reactor is playing a central role in the development of both the Nuclear Research Institute and nuclear application in our country. Thanks to this main scientific tool, the Nuclear Research Institute nearly 10 years after the completion of its renovation from the previous American-made TRIGA MARK 2 reactor is being able to implement numerous scientific and technological research projects and to develop significant applications of radioisotopes and various nuclear techniques. A general overview of the research and development activities of the Institute based on the Da Lat Nuclear Research Reactor is given as well as those aiming at ensuring its safe, reliable and efficient operation and at enlarging the perspectives of its utilisation in the future. (authors). 5 refs., 1 fig., 1 tab

  7. French experience in design, operation and revamping of nuclear research reactors, in support of advanced reactors development

    International Nuclear Information System (INIS)

    Barre, B.; Bergeonneau, P.; Merchie, F.; Minguet, J.L.; Rousselle, P.

    1996-01-01

    The French nuclear program is strongly based on the R and D work performed in the CEA nuclear research centers and particularly on the various experimental programs carried out in its research reactors in the frame of cooperative actions between the Commissariat a l'Energie Atomique (CEA), Framatome and Electricite de France (EDF). Several types of research reactors have been built by Technicatome and CEA to carry out successfully this considerable R and D work on fuels and materials, among them the socalled Materials Testing Reactors (MTR) SILOE (35 MW) and OSIRIS (70 MW) which are indeed very well suited for technological irradiations. Their simple and flexible design and the large irradiation space available around the core, the SILOE and OSIRIS reactors can be shared by several types of applications such as fuel and material testings for nuclear power plants, radioisotopes production, silicon doping and fundamental research. It is worthwhile recalling that Technicatome and CEA have also built research reactors fully dedicated to safety experimental studies, such as the CABRI, SCARABEE and PHEBUS reactors at Cadarache, and others dedicated to fundamental research such as ORPHEE (14 MW) and the Reacteur a Haut Flux -High Flux Reactor- (RHF 57 MW). This paper will present some of the most significant conceptual and design features of all these reactors as well as the main improvements brought to most of them in the last years. Based on this wide experience, CEA and Technicatome have specially designed for export a new multipurpose research reactor named SIRIUS, with two versions depending on the utilization spectrum and the power range (5 MW to 30 MW). At last, CEA has recently launched the preliminary project study of a new MTR, the Jules Horowitz Reactor, to meet the future needs of fuels and materials irradiations in the next 4 or 5 decades, in support of the French long term nuclear power program. (J.P.N.)

  8. The RA nuclear research reactor at VINCA Institute as an engineering and scientific challenge

    International Nuclear Information System (INIS)

    Mesarovic, M.

    1997-01-01

    The RA nuclear research at the Vinca Institute of Nuclear Sciences is the largest nuclear research facility in Yugoslavia and belongs to that generation of research reactors which have had an important contribution to nuclear technology development. As these older reactors were generally not built to specific nuclear standards, new safety systems had to be installed at the RA reactor for a renewal of its operating licence in 1984 and it was shut down, after 25 years of operation. Although all the required and several additional systems were built for the restart of the RA reactor, a disruption of foreign delivery of new control equipment caused its conversion to a 'dormant' facility, and it is still out of operation. Therefore, the future status of the RA reactor presents an engineering and scientific challenge to the engineers and scientists from Yugoslavia and other countries that may be interested to participate. To attract their attention on the subject, principal features of the RA reactor and its present status are described in detail, based on a recent engineering economic and safety evaluation. A comparative review of the world research reactors is also presented.(author)

  9. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    International Nuclear Information System (INIS)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo

    2015-01-01

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically

  10. A Study on Comparison of HANARO and KIJANG Research Reactor in Nuclear Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Juang; Lee, Sung Ho; Kim, Hyun-Jo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    As one of major national projects for nuclear science and engineering in Korea, the KIJANG Research Reactor(KJRR) project was commenced in order to develop the core research reactor(RR) technologies for strengthening the competitiveness of the RR export and also to stabilize the supply of key radioisotopes for medical and industrial applications. This paper is about applying IAEA safeguards at new nuclear facility (KJRR). The beginning of this project is comparing of HANARO and KIJANG research reactor in nuclear safeguards for nuclear material accountancy method. As mentioned before, research reactor is basically item counting facility. In Fig 1, first two processes are belonging to item counting. But last two processes are for bulk handling. So KIJANG RR would be treated item counting facility as well as bulk handling facility by fission moly production facility. For this reason, nuclear material accountancy method for KJRR is not easy compared to existing one. This paper accounted for solution of KJRR nuclear material accountancy briefly. Future study on the suitable nuclear material accountancy method for mixed facility between item counting facility and bulk handling facility will be conducted more specifically.

  11. Availability analysis of the nuclear instrumentation of a research reactor

    International Nuclear Information System (INIS)

    Vianna Filho, Alfredo Marques

    2016-01-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  12. Nuclear science and engineering education at a university research reactor

    International Nuclear Information System (INIS)

    Loveland, W.

    1993-01-01

    The role of an on-site irradiation facility in nuclear science and engineering education is examined. Using the example of a university research reactor, the use of such devices in laboratory instruction, public outreach programs, special instructional programs, research, etc. is discussed. Examples from the Oregon State University curriculum in nuclear chemistry, nuclear engineering and radiation health are given. (author) 1 tab

  13. On exposure management of workers in nuclear reactor facilities for test and in nuclear reactor facilities in research and development stage in fiscal 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Law of Regulation on Nuclear Reactor requires the operators of nuclear reactors that the exposure dose of workers engaged in work for nuclear reactors should not exceed the limits specified in official notices that are issued based on the Law. The present article summarizes the contents of the Report on Radiation Management in 1993 submitted by the operators of nuclear reactor facilities for test and those of nuclear reactor facilities in research and development stage based on the Law, and the Report on Management of Exposure Dose of Workers submitted by them based on administrative notices. The reports demonstrate that the the exposure of workers was below the permissible exposure dose in 1993 in all nuclear reactor facilities. The article presents data on the distribution of exposure dose among workers in all facilities with a nuclear reactor for test, and data on personal exposure of employees and non-employees and overall exposure of all workers in the facilities of JAERI and PNC. (J.P.N.)

  14. Current status of nuclear research reactor management and utilization program in Thailand

    International Nuclear Information System (INIS)

    Aramrattana, M.; Busamongkol, Y.

    1999-01-01

    The TRR1/M1 is the first research reactor and has been in operational for more than 20 years. During the three decades of research reactor operation in Thailand the utilization of research reactor have been broadened in different fields such as agriculture, medicine and industry. Limitation on utilization of the existing reactor in various fields has led to establishing of a new nuclear research center, Ongkharak Nuclear Research Center (ONRC). The ONRC comprises three major facilities, namely Reactor Island, Isotope Production Facility and Waste Processing and Storage Facility. The reactor itself is a 10 MW TRIGA-type fuels, moderated and cooled by light water with beryllium and heavy water as the reflectors. It is a multi-purpose reactor consisting of different facilities inside and around the core for radioisotope production, medical and industrial uses; and for beam experiments such as High Resolution Powder Diffractometry (HRPD), Neutron Radiography (NR), Prompt Gamma Neutron Activation Analysis (PGNAA), and Boron Neutron Capture Therapy (BNCT). The center is expected to be operational by year 2001. (author)

  15. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  16. Reactors licensing: proposal of an integrated quality and environment regulatory structure for nuclear research reactors in Brazil

    International Nuclear Information System (INIS)

    Serra, Reynaldo Cavalcanti

    2014-01-01

    A new integrated regulatory structure based on quality and integrated issues has been proposed to be implemented on the licensing process of nuclear research reactors in Brazil. The study starts with a literature review about the licensing process in several countries, all of them members of the International Atomic Energy Agency. After this phase it is performed a comparative study with the Brazilian licensing process to identify good practices (positive aspects), the gaps on it and to propose an approach of an integrated quality and environmental management system, in order to contribute with a new licensing process scheme in Brazil. The literature review considered the following research nuclear reactors: Jules-Horowitz and OSIRIS (France), Hanaro (Korea), Maples 1 and 2 (Canada), OPAL (Australia), Pallas (Holand), ETRR-2 (Egypt) and IEA-R1 (Brazil). The current nuclear research reactors licensing process in Brazil is conducted by two regulatory bodies: the Brazilian National Nuclear Energy Commission (CNEN) and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). CNEN is responsible by nuclear issues, while IBAMA by environmental one. To support the study it was applied a questionnaire and interviews based on the current regulatory structure to four nuclear research reactors in Brazil. Nowadays, the nuclear research reactor’s licensing process, in Brazil, has six phases and the environmental licensing process has three phases. A correlation study among these phases leads to a proposal of a new quality and environmental integrated licensing structure with four harmonized phases, hence reducing potential delays in this process. (author)

  17. Neutrinos oscillations researches near a nuclear reactor

    International Nuclear Information System (INIS)

    Laiman, M.

    1999-01-01

    This thesis deals with the research of neutrinos oscillations near the Chooz B nuclear power plant in the Ardennes. The first part presents the framework of the researches and the chosen detector. The second part details the antineutrinos flux calculus from the reactors and the calculus of the expected events. The analysis procedure is detailed in the last part from the calibration to the events selection. (A.L.B.)

  18. Studies on capacity management for factories of nuclear fuel for research reactors

    International Nuclear Information System (INIS)

    Negro, Miguel Luiz Miotto; Durazzo, Michelangelo; Mesquita, Marco Aurélio de; Carvalho, Elita Fontenele Urano de; Andrade, Delvonei Alves de; Universidade de São Paulo

    2017-01-01

    The use and the power of nuclear reactors for research and materials testing is increasing worldwide. That implies the demand for nuclear fuel for this kind of reactors is rising. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently, safely and keeping good quality. Focus is given to factories that produce plate type fuel elements loaded with LEU U_3Si_2-Al fuel, which are typically used in nuclear research reactors. Of the various production routes for this kind of fuel, we chose the route which uses hydrolysis of uranium hexafluoride. Raising the capacity of this kind of plants faces several problems, especially regarding safety against nuclear criticality. Some of these problems are briefly addressed. The new issue of the paper is the application of knowledge from the area of production administration to the fabrication of nuclear fuel for research reactors. A specific method for the increase in production capacity is proposed. That method was tested by means of discrete event simulation. The data were collected from the nuclear fuel factory at IPEN. The results indicated the proposed method achieved its goal as well as ways of raising production capacity in up to 50%. (author). (author)

  19. Improvement of pulsing operation performance in the Nuclear Safety Research Reactor (NSRR)

    International Nuclear Information System (INIS)

    Kobayasi, S.; Ishijima, K.; Tanzawa, S.; Fujishiro, T.; Horiki, O.

    1990-01-01

    The Nuclear Safety Research Reactor (NSRR) is one of the TRIGA-type research reactors widely used in the world, and has mainly been used for studying reactor fuel behaviour during postulated reactivity-initiated accidents (RIAs). Its limited pulsing operation capability, however, could produce only a power burst from low power level simulating an RIA event from essentially zero power level. A computerized automatic reactor control system was developed and installed in the NSRR to simulate a wide range of abnormal events in nuclear power plants. This digitalized reactor control system requires no manipulation of the control rods by reactor operators during the course of the pulsing operation. Using this fully automated operation system, a variety of power transients such as power ramping, power bursts from high power level, and so on were made possible with excellent stability and safety. The present modification work in the NSRR and its fruitful results indicate new possibilities in the utilization of the TRIGA type research reactor

  20. Nuclear reactors. Introduction

    International Nuclear Information System (INIS)

    Boiron, P.

    1997-01-01

    This paper is an introduction to the 'nuclear reactors' volume of the Engineers Techniques collection. It gives a general presentation of the different articles of the volume which deal with: the physical basis (neutron physics and ionizing radiations-matter interactions, neutron moderation and diffusion), the basic concepts and functioning of nuclear reactors (possible fuel-moderator-coolant-structure combinations, research and materials testing reactors, reactors theory and neutron characteristics, neutron calculations for reactor cores, thermo-hydraulics, fluid-structure interactions and thermomechanical behaviour of fuels in PWRs and fast breeder reactors, thermal and mechanical effects on reactors structure), the industrial reactors (light water, pressurized water, boiling water, graphite moderated, fast breeder, high temperature and heavy water reactors), and the technology of PWRs (conceiving and building rules, nuclear parks and safety, reactor components and site selection). (J.S.)

  1. Proceedings of the seminar on nuclear safety research and the workshop on reactor safety research

    International Nuclear Information System (INIS)

    2001-07-01

    The seminar on the nuclear safety research was held on November 20, 2000 according to the start of new five year safety research plan (FY2001-2005: established by Nuclear Safety Commission) with 79 participants. In the seminar, Commissioner Dr. Kanagawa gave the outline of the next five year safety research plan. Following this presentation, progresses and future scopes of safety researches in the fields of reactor facility, fuel cycle facility, radioactive waste and environmental impact on radiation at Japan Atomic Energy Research Institute (JAERI) were reported. After the seminar, the workshop on reactor safety research was held on November 21-22, 2000 with 141 participants. In the workshop, four sessions titled safety of efficient and economic utilization of nuclear fuel, safety related to long-term utilization of power reactors, research on common safety-related issues and toward further improvement of nuclear safety were organized and, outcomes and future perspectives in these wide research R and D in the related area at other organizations including NUPEC, JAPEIC and Kansai Electric Power Co. was presented in each session. This report compiles outlines of the presentations and used materials in the seminar and the workshop to form the proceedings for the both meetings. (author)

  2. A world class nuclear research reactor complex for South Africa's nuclear future

    Energy Technology Data Exchange (ETDEWEB)

    Keshaw, Jeetesh [South African Young Nuclear Professional Society, PO Box 9396, Centurion, 0157 (South Africa)

    2008-07-01

    South Africa recently made public its rather ambitious goals pertaining to nuclear energy developments in a Draft Policy and Strategy issued for public comment. Not much attention was given to an important tool for nuclear energy research and development, namely a well equipped and maintained research reactor, which on its own does not do justice to its potential, unless it is fitted with all the ancillaries and human resources as most first world countries have. In South Africa's case it is suggested to establish at least one Nuclear Energy Research and Development Centre at such a research reactor, where almost all nuclear energy related research can be carried out on par with some of the best in the world. The purpose of this work is to propose how this could be done, and motivate why it is important that it be done with great urgency, and with full involvement of young professionals, if South Africa wishes to face up to the challenges mentioned in the Draft Strategy and Policy. (authors)

  3. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, C.E.; Mustin, T.P.; Massey, C.D.

    1998-01-01

    Since resuming the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy (DOE) and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues associated with the transport of Materials Testing Reactor (MTR)-type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be important to foreign research reactor operators, shippers, and cask vendors, so that appropriate amendments to the Certificate of Compliance for spent fuel casks can be submitted in a timely manner to facilitate the safe and scheduled transport of FRR SNF

  4. International topical meeting on research reactor fuel management (RRFM) - United States Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) acceptance program: 2007 update

    International Nuclear Information System (INIS)

    Messick, C.E.; Taylor, J.L.

    2007-01-01

    The Nuclear Weapons Non-proliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, adopted by The United States Department of Energy (DOE), in consultation with the Department of State in May 1996, has been extended to expire May 12, 2016, providing an additional 10 years to return fuel to the U.S. This paper provides a brief update on the program, now transferred to the National Nuclear Security Administration (NNSA), and discusses program initiatives and future activities. The goal of the program continues to be recovery of nuclear materials (27 countries have participated so far, returning a total of 7620 spent nuclear fuel elements), which could otherwise be used in weapons, while assisting other countries to enjoy the benefits of nuclear technology. More than ever before, DOE and reactor operators need to work together to schedule shipments as soon as possible, to optimize shipment efficiency over the remaining years of the program. The NNSA is seeking feedback from research reactor operators to help us understand ways to include eligible reactor who have not yet participated in the program

  5. Dismantling the nuclear research reactor Thetis

    Energy Technology Data Exchange (ETDEWEB)

    Michiels, P. [Belgoprocess, 2480 Dessel (Belgium)

    2013-07-01

    The research reactor Thetis, in service since 1967 and stopped in 2003, is part of the laboratories of the institution of nuclear science of the University of Ghent. The reactor, of the pool-type, was used as a neutron-source for the production of radio-isotopes and for activation analyses. The reactor is situated in a water pool with inner diameter of 3 m. and a depth of 7.5 m. The reactor core is situated 5.3 m under water level. Besides the reactor, the pool contains pneumatic loops, handling tools, graphite blocks for neutron moderation and other experimental equipment. The building houses storage rooms for fissile material and sources, a pneumatic circuit for transportation of samples, primary and secondary cooling circuits, water cleaning resin circuits, a ventilation system and other necessary devices. Because of the experimental character of the reactor, laboratories with glove boxes and other tools were needed and are included in the dismantling program. The building is in 3 levels with a crawl-space. The ground-floor contains the ventilation installation, the purification circuits with tanks, cooling circuits and pneumatic transport system. On the first floor, around the reactor hall, the control-room, visiting area, end-station for pneumatic transport, waste-storage room, fuel storage room and the labs are located. The second floor contains a few laboratories and end stations of the two high speed transfer tubes. The lowest level of the pool is situated under ground level. The reactor has been operated at a power of 150 kW and had a max operating power of 250 kW. Belgoprocess has been selected to decommission the reactor, the labs, storage halls and associated circuits to free release the building for conventional reuse and for the removal of all its internals as legal defined. Besides the dose-rate risk and contamination risk, there is also an asbestos risk of contamination. During construction of the installation, asbestos-containing materials were

  6. Studies on capacity management for factories of nuclear fuel for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel Luiz Miotto; Durazzo, Michelangelo; Mesquita, Marco Aurélio de; Carvalho, Elita Fontenele Urano de; Andrade, Delvonei Alves de, E-mail: mlnegro@ipen.br, E-mail: mdurazzo@ipen.br, E-mail: elitaucf@ipen.br, E-mail: delvonei@ipen.br, E-mail: mamesqui@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Universidade de São Paulo (USP), SP (Brazil). Escola Politécnica. Departamento de Engenharia de Produção

    2017-11-01

    The use and the power of nuclear reactors for research and materials testing is increasing worldwide. That implies the demand for nuclear fuel for this kind of reactors is rising. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently, safely and keeping good quality. Focus is given to factories that produce plate type fuel elements loaded with LEU U{sub 3}Si{sub 2}-Al fuel, which are typically used in nuclear research reactors. Of the various production routes for this kind of fuel, we chose the route which uses hydrolysis of uranium hexafluoride. Raising the capacity of this kind of plants faces several problems, especially regarding safety against nuclear criticality. Some of these problems are briefly addressed. The new issue of the paper is the application of knowledge from the area of production administration to the fabrication of nuclear fuel for research reactors. A specific method for the increase in production capacity is proposed. That method was tested by means of discrete event simulation. The data were collected from the nuclear fuel factory at IPEN. The results indicated the proposed method achieved its goal as well as ways of raising production capacity in up to 50%. (author). (author)

  7. Research on improvement of marine nuclear reactors and future perspective

    International Nuclear Information System (INIS)

    Yokomura, Takeyoshi

    1988-01-01

    The features when atomic energy is utilized on the sea are that the fuel cost is low, accordingly it is suitable to the power sources of large output, that the volume and weight of fuel are small, accordingly it is suitable to the continuous operation for a long period without refueling, and that oxygen is not required for the burning, accordingly it is suitable to undersea power sources. In USSR, four nuclear icebreakers have been in use, and four more are under construction. A nuclear LASH ship has been operated, and one more is under construction. As the other fields than sea transportation, an electricity generation barge MH-1A of USA used as the auxiliary power source for the Panama Canal and a research submarine NR-1 of USA have been in practical use. With the advance of ocean development in future, the creation of needs such as deep sea power stations, deep sea research ships and deep sea work ships is expected. Marine nuclear reactor technology was begun in the form of the nuclearization of merchant ships, and Savannah of USA, Otto Hahn of West Germany and Mutsu of Japan were built. The marine nuclear reactors built so far and of which the conceptual design was carried out are shown. The improvement of marine reactors is the reduction of size and weight, the simplification of the system, the adoption of self pressurization and self compensation and so on. The research on the improvement in Japan Atomic Energy Research Institute is reported. (Kako, I.)

  8. International guidelines for fire protection at nuclear installations including nuclear fuel plants, nuclear fuel stores, teaching reactors, research establishments

    International Nuclear Information System (INIS)

    The guidelines are recommended to designers, constructors, operators and insurers of nuclear fuel plants and other facilities using significant quantities of radioactive materials including research and teaching reactor installations where the reactors generally operate at less than approximately 10 MW(th). Recommendations for elementary precautions against fire risk at nuclear installations are followed by appendices on more specific topics. These cover: fire protection management and organization; precautions against loss during construction alterations and maintenance; basic fire protection for nuclear fuel plants; storage and nuclear fuel; and basic fire protection for research and training establishments. There are numerous illustrations of facilities referred to in the text. (U.K.)

  9. Ageing of research reactors

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2001-01-01

    Historically, many of the research institutions were centred on a research reactor facility as main technological asset and major source of neutrons for research. Important achievements were made in time in these research institutions for development of nuclear materials technology and nuclear safety for nuclear energy. At present, ageing of nuclear research facilities among these research reactors and ageing of staff are considerable factors of reduction of competence in research centres. The safe way of mitigation of this trend deals with ageing management by so called, for power reactors, Plant Life Management and new investments in staff as investments in research, or in future resources of competence. A programmatic approach of ageing of research reactors in correlation with their actual and future utilisation, will be used as a basis for safety evaluation and future spending. (author)

  10. Moroccan TRIGA nuclear reactor, an important tool for the development of research, education and training

    International Nuclear Information System (INIS)

    Caoui, A.

    2011-01-01

    Full text: The construction of the Nuclear Research Center of Maamora (NRCM) will enable to the National Center for Nuclear Energy, Sciences and Techniques (CNESTEN) to fulfill its missions for promotion of nuclear techniques in socioeconomic fields, act as technical support for the authorities, and contribute to the introduction of nuclear power for electricity generation considered in the new energy strategy as alternative option for the period 2020-2030. The CNESTEN has commisioned its nuclear research reactor Triga Mark II of 2000 KW on 2007 for wich the operating authorization was delivered on 2009. This research reactor is the keystone structure of the NRCM, its existing and planed utilization include: production of radioisotopes for medical use, neutron activation analysis, non-destructive examination techniques, neutron scattering, reactor physics research and training. In term of human ressources development, CNESTEN is more focusing on education and training for wich an international training Center is under development. The TRIGA research reactor will be an important component of this center. In order to promote the utilization of the reserch reactor in socio-economical sectors at national level, CNESTEN organizea meetings, schools and conferences around each of the reactor applications, and offers the opportunity to researchers, students, socio-economic operators to know more about reactor utilization within scientific visits, courses and training programs. At the international level, CNESTEN strengthens its international partenership. The regional and international cooperation with IAEA, AFRA and bilateral parteners (USA, France), constitutes the platform for capacity building in different areas of CNESTEN RIGA research reactor utilization

  11. Transferring knowledge and know-how from the nuclear power community to the research reactor community

    International Nuclear Information System (INIS)

    Wijtsma, F.J.

    2002-01-01

    Question What is the best way of transferring knowledge and know-how from the nuclear power community to the research reactor community, e.g. in the fields of quality assurance, safety culture, etc.? To answer the question on how to transfer knowledge and know-how from the nuclear power community to the research reactor community, one should first try to establish what are the differences and similarities between these types of nuclear facilities. Despite the big difference between the primary objectives of these two kinds of facilities, i.e. electricity production versus providing irradiation services, the underlying safety culture should be comparable. For historical reasons, nuclear power plant management took the lead in establishing fully accepted safety standards. However, research reactors can avail themselves of the wide body of nuclear safety experience accumulated at nuclear power plants. This should be applicable to all nuclear facilities. Nonetheless, in transferring their know-how, safety specialists should take into account the huge differences between critical assemblies, university reactors, small research reactors and multi-purpose high power research reactors. The goal to which a specific facility is dedicated bears heavily upon the outlook of its management Question: How can well run research reactors help problem research reactors? To answer this, a basic question should in turn be posed: Should one help a research reactor with operational difficulties? And, if so, to what extent? Who will benefit? Within the framework of this meeting, one should concentrate on nuclear safety, which is determined by: Safety culture (including quality assurance); The level of training of all staff; Ageing (installation, staff and documentation); The front/back end of the fuel cycle; A strong programme versus extended shutdown; Regulatory (nuclear regulatory) inspectorates; National (international) co-operation; The financial situation prevailing at the

  12. The development of the nuclear physics in Latvia II. The building of the Research Nuclear Reactor IRT

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2004-01-01

    Nuclear research reactor IRT of the Academy of Sciences was built near Riga in Salaspils. IRT is pool aqueous - aqueous reactor with nuclear fuel U-235 contained elements, located in the core at a depth of ∼ 7 m under distilled water. Ten horizontal and 10-15 vertical experimental channels are employed in experimental research with the use of neutron fluxes. For the research with gamma rays is constructed radiation loop facility with liquid In-Ga-SN solid solution as intensive gamma-ray sources. Main activities of IRT are to conduct research in nuclear spectroscopy, neutron activation analysis, neutron diffraction and radiation physics, chemistry and biology. (authors)

  13. History of Discharge of Radionuclide from Nuclear Malaysia Research Reactor

    International Nuclear Information System (INIS)

    Mohd Nahar Othman; Ismail Sulaiman

    2013-01-01

    After more than 40 years the operation of Malaysian Nuclear Agency research reactor, this is the first time, the discharge emission radionuclide to environment is recorded and analyzed in detail. Starting from 1984, radionuclide Ar-41 had been analyzed manually by Research Officers but their finding is not recorded in any Journal. That is responsible of Safety and Health Division to make sure the safety of the workers and public living around Malaysian Nuclear Agency receive safe dose. This paper will report dose that had been discharge to the environment starting from 1984 to 2012 and it detail calculations.After more than 40 years the operation of Malaysian Nuclear Agency research reactor, this is the first time, the discharge emission radionuclide to environment is recorded and analyzed in detail. Starting from 1984, radionuclide Ar-41 had been analyzed manually by Research Officers but their finding is not recorded in any Journal. That is responsible of Safety and Health Division to make sure the safety of the workers and public living around Malaysian Nuclear Agency receive safe dose. This paper will report dose that had been discharge to the environment starting from 1984 to 2012 and it detail calculations. (author)

  14. Research reactor standards and their impact on the TRIGA reactor community

    International Nuclear Information System (INIS)

    Richards, W.J.

    1980-01-01

    The American Nuclear Society has established a standards committee devoted to writing standards for research reactors. This committee was formed in 1971 and has since that time written over 15 standards that cover all aspects of research reactor operation. The committee has representation from virtually every group concerned with research reactors and their operation. This organization includes University reactors, National laboratory reactors, Nuclear Regulatory commission, Department of Energy and private nuclear companies and insurers. Since its beginning the committee has developed standards in the following areas: Standard for the development of technical specifications for research reactors; Quality control for plate-type uranium-aluminium fuel elements; Records and reports for research reactors; Selection and training of personnel for research reactors; Review of experiments for research reactors; Research reactor site evaluation; Quality assurance program requirements for research reactors; Decommissioning of research reactors; Radiological control at research reactor facilities; Design objectives for and monitoring of systems controlling research reactor effluents; Physical security for research reactor facilities; Criteria for the reactor safety systems of research reactors; Emergency planning for research reactors; Fire protection program requirements for research reactors; Standard for administrative controls for research reactors. Besides writing the above standards, the committee is very active in using communications with the nuclear regulatory commission on proposed rules or positions which will affect the research reactor community

  15. Current status of operation, utilization and refurbishment of the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Pham Duy Hien.

    1993-01-01

    The reconstructed nuclear research reactor at Dalat, Vietnam has been put into operation since March 1984. Up to present a cumulative operation time of 13,172 hrs at nominal power (500 kW) has been recorded. Production of radioisotopes for medical uses, element analysis by using activation techniques, as well as fundamental and applied research with filtered neutrons are the main activities of reactor utilizations. The problems facing Dalat Nuclear Research Institute are the ageing of the re-used TRIGA-MARK-II reactor components (especially the corrosion of the reactor tank), as well as the obsolescence of many equipment and components of the reactor control and instrumentation system. Refurbishment works are being in process with the technical and financial supports from the Vietnam government and the IAEA. (author). 7 refs, 2 tabs, 10 figs

  16. Investigation of the basic reactor physics characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Khang, Ngo Phu [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    The Dalat nuclear research reactor was reconstructed from TRIGA MARK II reactor, built in 1963 with nominal power of 250 KW, and reached its planned nominal power of 500 kW for the first time in Feb. 1984. The Dalat reactor has some characteristics distinct from the former TRIGA reactor. Investigation of its characteristics is carried out by the determination of the reactor physics parameters. This paper represents the experimental results obtained for the effective fraction of the delayed photoneutrons, the extraneous neutron source left after the reactor is shut down, the lowest power levels of reactor critical states, the relative axial and radial distributions of thermal neutrons, the safe positive reactivity inserted into the reactor at deep subcritical state, the reactivity temperature coefficient of water, the temperature on the surface of the fuel elements, etc. (author). 10 refs., 10 figs., 2 tabs.

  17. Progress of the United States foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, D.G.; Clapper, M.; Thrower, A.W.

    2002-01-01

    The United States Department of Energy (DOE), in consultation with the Department of State (DOS), adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program has completed 23 shipments. Almost 5000 spent fuel assemblies from eligible research reactors throughout the world have been accepted into the United States under this program. Over the past year, another cross-country shipment of fuel was accomplished, as well as two additional shipments in the fourth quarter of calendar year 2001. These shipments attracted considerable safeguards oversight since they occurred post September 11. Recent guidance from the Nuclear Regulatory Commission (NRC) pertaining to security and safeguards issues deals directly with the transport of nuclear material. Since the Acceptance Program has consistently applied above regulatory safety enhancements in transport of spent nuclear fuel, this guidance did not adversely effect the Program. As the Program draws closer to its termination date, an increased number of requests for program extension are received. Currently, there are no plans to extend the policy beyond its current expiration date; therefore, eligible reactor operators interested in participating in this program are strongly encouraged to evaluate their inventory and plan for future shipments as soon as possible. (author)

  18. Calculating the Unit Cost Factors for Decommissioning Cost Estimation of the Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Jeong, Kwan Seong; Lee, Dong Gyu; Jung, Chong Hun; Lee, Kune Woo

    2006-01-01

    The estimated decommissioning cost of nuclear research reactor is calculated by applying a unit cost factor-based engineering cost calculation method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning cost of nuclear research reactor is composed of labor cost, equipment and materials cost. Labor cost of decommissioning costs in decommissioning works are calculated on the basis of working time consumed in decommissioning objects. In this paper, the unit cost factors and work difficulty factors which are needed to calculate the labor cost in estimating decommissioning cost of nuclear research reactor are derived and figured out.

  19. Fuel Management at the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pham, V.L.; Nguyen, N.D.; Luong, B.V.; Le, V.V.; Huynh, T.N.; Nguyen, K.C. [Nuclear Research Institute, 01 Nguyen Tu Luc Street, Dalat City (Viet Nam)

    2011-07-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type research reactor which was reconstructed in 1982 from the old 250 kW TRIGA-MARK II reactor. The spent fuel storage was newly designed and installed in the place of the old thermalizing column for biological irradiation. The core was loaded by Russian WWR-M2 fuel assemblies (FAs) with 36% enrichment. The reconstructed reactor reached its initial criticality in November 1983 and attained it nominal power of 500 kW in February 1984. The first fuel reloading was executed in April 1994 after more than 10 years of operation with 89 highly enriched uranium (HEU) FAs. The third fuel reloading by shuffling of HEU FAs was executed in June 2004. After the shuffling the working configuration of reactor core kept unchanged of 104 HEU FAs. The fourth fuel reloading was executed in November 2006. The 2 new HEU FAs were loaded in the core periphery, at previous locations of wet irradiation channel and dry irradiation channel. After reloading the working configuration of reactor core consisted of 106 HEU FAs. Contracts for reactor core conversion between USA, Russia, Vietnam and the International Atomic Energy Agency for Nuclear fuel manufacture and supply for DNRR and Return of Russian-origin non-irradiated highly enriched uranium fuel to the Russian Federation have been realized in 2007. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory and Vietnam Atomic Energy Institute the mixed core configurations of irradiated HEU and new low enriched uranium (LEU) FAs has been created on 12 September, 2007 and on 20 July, 2009. After reloading in 2009, the 14 HEU FAs with highest burnup were removed from the core and put in the interim storage in reactor pool. The works on full core conversion for the DNRR are being realized in cooperation with the organizations, DOE and IAEA. Contract for Nuclear fuel manufacture and supply of 66 LEU FAs for DNRR

  20. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  1. Operational safety experience at 14 MW research reactor from Institute for Nuclear Research Pitesti

    International Nuclear Information System (INIS)

    Ciocanescu, M.

    2007-01-01

    The main challenges identified in TRIGA Research Reactor operated in Institute for Nuclear Research in Pitesti, Romania, are in fact similar with challenges of many other research reactors in the world, those are: Ageing of work forces and knowledge management; Maintaining an enhanced technical and scientific competences; Ensuring adequate financial and human resources; Enhancing excellence in management; Ensuring confidence of stakeholders and public; Ageing of equipment and systems.To ensure safety availability of TRIGA Research Reactor in INR Pitesti, the financial resources were secured and a large refurbishment programme and modernization was undertaking by management of institute. This programme concern the modernization of reactor control and safety systems, primary cooling system instrumentation, radiation protection and releases monitoring with new spectrometric computerized abilities, ventilation filtering system and cooling towers. The expected life extension of the reactor will be about 15 years

  2. Conceptual Nuclear Design Of Two Models Of Research Reactor Proposed For Vietnam

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien; Huynh Ton Nghiem; Le Vinh Vinh; Vo Doan Hai Dang

    2007-01-01

    The joint study on the development of a new research reactor model for Vietnam was done. The KAERI (Korea Atomic Energy Research Institute) experts and DNRI (Dalat Nuclear Research Institute) researchers developed an advanced HANARO reactor (AHR), a 20-MW open-tank-in-pool type reactor, upward cooled and moderated by light water, reflected by heavy water and rod type fuel assemblies used. Based on the AHR model, a MTR reactor with plate fuel assemblies was developed. Computer codes named MCNP and MVP/BURN were used. Major analyses have been done for the relevant nuclear design parameters such as the neutron flux and power distributions, reactivity coefficients, control rod worth, etc. in both with clean, unperturbed core and equilibrium core condition. In case of AHR model, calculation results using MVP/BURN and MCNP codes were compared with the results using HELIOS and MCNP codes by KAERI experts and they are in a good agreement. (author)

  3. Nuclear Security Management for Research Reactors and Related Facilities

    International Nuclear Information System (INIS)

    2016-03-01

    This publication provides a single source guidance to assist those responsible for the implementation of nuclear security measures at research reactors and associated facilities in developing and maintaining an effective and comprehensive programme covering all aspects of nuclear security on the site. It is based on national experience and practices as well as on publications in the field of nuclear management and security. The scope includes security operations, security processes, and security forces and their relationship with the State’s nuclear security regime. The guidance is provided for consideration by States, competent authorities and operators

  4. The nuclear safety case for the replacement research reactor

    International Nuclear Information System (INIS)

    Willers, A.; Garea, V.

    2003-01-01

    This paper presents a broad overview of the safety case being used in the licensing of Australia's Replacement Research Reactor. The reactor is a 20 MW pool-type research reactor and is being constructed at the Lucas Heights Science and Technology Centre in Sydney's south. It will be owned and operated by the Australian Nuclear Science and Technology Organisation (ANSTO) and will take over the duties currently performed by HIFAR, a DIDO-type reactor currently operating at the site. The safety case for the RRR considers all aspects of normal operation and anticipated occurrences and will be subject to periodic review and updated in line with evolving methodologies and modifications to plant and procedures. Its scope and degree of detail ensure that the risk posed to members of the public, operators and environment are all adequately low and well in the regulatory limits

  5. Status of the US foreign research reactor spent nuclear fuel program

    International Nuclear Information System (INIS)

    Chacey, K.A.; Zeitoun, A.; Saris, E.C.

    1997-01-01

    A significant step was made in 1996 with the establishment of a new nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Specifically the United States will accept over a 13-year period up to 20 tonnes of spent nuclear fuel from 41 countries. Only spent fuel containing uranium enriched in the United States is covered under this policy. Since the acceptance policy took effect on 13 May 1996, the Department of Energy has undertaken a number of steps to effectively implement the policy. An implementation strategy plan, mitigation action plan, and detailed transportation plans have been developed. Other activities include foreign research reactor assessments, and the determination of shipment priorities and schedules. The first shipment under the acceptance policy was received into the United States in September 1996. A second shipment was received from Canada in December 1996. The next shipment of foreign research reactor spent nuclear fuel is expected from Europe in early March 1997. The primary challenge for DOE is to continue to transport this material in a consistent, cost-effective manner over the 13-year duration of the program. This article covers the following topics: background; acceptance policy; implementation of the acceptance policy; next steps/closing. 6 figs

  6. Development of an educational nuclear research reactor simulator

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2014-01-01

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  7. Development of an educational nuclear research reactor simulator

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Reactor Physics Dept.

    2014-12-15

    This paper introduces the development of a research reactor educational simulator based on LabVIEW that allows the training of operators and studying different accident scenarios and the effects of operational parameters on the reactor behavior. Using this simulator, the trainee can test the interaction between the input parameters and the reactor activities. The LabVIEW acts as an engine implements the reactor mathematical models. In addition, it is used as a tool for implementing the animated graphical user interface. This simulator provides the training requirements for both of the reactor staff and the nuclear engineering students. Therefore, it uses dynamic animation to enhance learning and interest for a trainee on real system problems and provides better visual effects, improved communications, and higher interest levels. The benefits of conducting such projects are to develop the expertise in this field and save costs of both operators training and simulation courses.

  8. Research in nuclear reactor theory and experimental reactors; Istrazivanja u teoriji nuklearnih reaktora i ekspeimentalni reaktori

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Elektrotehnicki fakultet, Beograd (Yugoslavia)

    1978-05-15

    The paper is devoted to the possibilities of using experimental reactors for scientific research in nuclear power with a stress on problems in nuclear reactor theory. The stationary and nonstationary neutron fields, burnup prediction and analyses as well as fuel element development and the corresponding role of test-reactors were dealt with. It was shown that the investigations in nuclear reactor theory in Yugoslavia were developing continuously and in a useful interaction with experiments on research reactors. The needs for continuing the work on fundamental problems in neutron transport theory and on improving the calculation methods for thermal power reactors, together with the improvement of performances of existing research systems, were pointed out. A new quality in scientific work could be obtained dealing with the problems connected to a possible introduction of test-reactors, and fast systems later on. It was also pleaded for the corresponding orientations in fundamental sciences. (author) Rad je posvecen mogucnostima koriscenja eksperimentalnih reaktora za naucna istrazivanja u nuklearnoj energetici, sa akcentom na probleme teorije nuklearnih reaktora. Obradjena su stacionarna i nestacionarna neutronska polja, predikcija i analize sagorevanja, kao i razvoj gorivnih elemenata te uloga test-reaktora u osvajanju njihove tehnologije. Pokazano je da su se istrazivanja u teoriji nuklearnih reaktora u nas odvijala kontinualno i u korisnoj interakciji sa eksperimentima na istrazivackim reaktorima. Istaknuta je potreba nastavljanja rada na fundamentalnim problemima transportne teorije neutrona i na usavrsavanju metoda proracuna termalnih enerrgetskih reaktora, uz poboljsanje performansi postojecih istrazivackih sistema. Novi kvalitet u naucnom radu bi predstavljala orijentacija na probleme vezane sa eventualnim uvodjenjem test-reaktora, a zatim i brzih sistema. Pledirano je i za odgovarajuca usmeravanja u fundamentalnim naukama. (author)

  9. Research reactor`s role in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, C-O [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

    1996-12-31

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960`s in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs.

  10. Applications of Research Reactors Towards Research on Materials for Nuclear Fusion Technology. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-11-01

    Controlled nuclear fusion is widely considered to represent a nearly unlimited source of energy. Recent progress in the quest for fusion energy includes the design and current construction of the International Thermonuclear Experimental Reactor (ITER), for which a licence has recently been obtained as a first of its kind fusion nuclear installation. ITER is designed to demonstrate the scientific and technological feasibility of fusion energy production in excess of 500 MW for several consecutive minutes. ITER, however, will not be able to address all the nuclear fusion technology issues associated with the design, construction and operation of a commercial fusion power plant. The demonstration of an adequate tritium or fuel breeding ratio, as well as the development, characterization and testing of structural and functional materials in an integrated nuclear fusion environment, are examples of issues for which ITER is unable to deliver complete answers. To fill this knowledge gap, several facilities are being discussed, such as the International Fusion Materials Irradiation Facility and, eventually, a fusion demonstration power plant (DEMO). However, for these facilities, a vast body of preliminary research remains to be performed, for instance, concerning the preselection and testing of suitable materials able to withstand the high temperature and pressure, and intense radiation environment of a fusion reactor. Given their capacity for material testing in terms of available intense neutron fluxes, dedicated irradiation facilities and post-irradiation examination laboratories, high flux research reactors or material test reactors (MTRs) will play an indispensable role in the development of fusion technology. Moreover, research reactors have already achieved an esteemed legacy in the understanding of material properties and behaviour, and the knowledge gained from experiments in fission materials in certain cases can be applied to fusion systems, particularly those

  11. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  12. Artificial intelligence in nuclear reactor operation

    International Nuclear Information System (INIS)

    Da Ruan; Benitez-Read, J.S.

    2005-01-01

    Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined through a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK·CEN) and the Mexican Nuclear Centre (ININ) on AI-based intelligent control for nuclear reactor operation under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (authors)

  13. Multi purpose research reactor

    International Nuclear Information System (INIS)

    Raina, V.K.; Sasidharan, K.; Sengupta, Samiran; Singh, Tej

    2006-01-01

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor

  14. Progress of the United States foreign research reactor spent nuclear fuel acceptance program. Reduced enrichment for research and test reactors conference 2002

    International Nuclear Information System (INIS)

    Clapper, Maureen

    2002-01-01

    Foreign Research Reactor Spent nuclear fuel Acceptance Program is actively working with research reactors to accept eligible material before the Acceptance Policy proper expires in 2006. Reactors/governments wishing to participate should contact US immediately if they have not done so already. Program operations are changing to adapt to new challenges. We continue to promote the importance of this Program to senior management in the Department of Energy

  15. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  16. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  17. Transportation of failed or damaged foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Mustin, Tracy P.; Massey, Charles D.

    1999-01-01

    Since initiating the Foreign Research Reactor Spent Nuclear Fuel (FRR SNF) Acceptance Program in 1996, the Program has had to deal with difficult issues associated with the transportation of failed or damaged spent fuel. In several instances, problems with failed or damaged fuel have prevented the acceptance of the fuel at considerable cost to both the Department of Energy and research reactor operators. In response to the problems faced by the Acceptance Program, DOE has undertaken significant steps to better define the spent fuel acceptance criteria. DOE has worked closely with the U.S. Nuclear Regulatory Commission to address failed or damaged research reactor spent fuel causing a degradation of the fuel assembly exposing fuel meat and to identify cask certificate issues which must be resolved by cask owners and foreign regulatory authorities. The specific issues and implementation challenges associated with the transport of MTR type FRR SNF will be discussed. The information presented will include U.S. Nuclear Regulatory Commission regulatory issues, cask certificate issues, technical constraints, implementation status, and lessons learned. Specific information will also be provided on the latest efforts to revise DOE's Appendix B, Transport Package (Cask) Acceptance Criteria. The information presented in this paper will be of interest to foreign research reactor operators, shippers, and cask vendors in evaluating the condition of their fuel to ensure it can be transported in accordance with appropriate cask certificate requirements. (author)

  18. A continuing success - The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Mustin, Tracy P.; Clapper, Maureen; Reilly, Jill E.

    2000-01-01

    The United States Department of Energy, in consultation with the Department of State, adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. To date, the Foreign Research Reactor (FRR) Spent Nuclear Fuel (SNF) Acceptance Program, established under this policy, has completed 16 spent fuel shipments. 2,651 material test reactor (MTR) assemblies, one Slowpoke core containing less than 1 kilogram of U.S.-origin enriched uranium, 824 Training, Research, Isotope, General Atomic (TRIGA) rods, and 267 TRIGA pins from research reactors around the world have been shipped to the United States so far under this program. As the FRR SNF Acceptance Program progresses into the fifth year of implementation, a second U.S. cross country shipment has been completed, as well as a second overland truck shipment from Canada. Both the cross country shipment and the Canadian shipment were safely and successfully completed, increasing our knowledge and experience in these types of shipments. In addition, two other shipments were completed since last year's RERTR meeting. Other program activities since the last meeting included: taking pre-emptive steps to avoid license amendment pitfalls/showstoppers for spent fuel casks, publication of a revision to the Record of Decision allowing up to 16 casks per ocean going vessel, and the issuance of a cable to 16 of the 41 eligible countries reminding their governments and the reactor operators that the U.S.-origin uranium in their research reactors may be eligible for return to the United States under the Acceptance Program and urging them to begin discussions on shipping schedules. The FRR SNF program has also supported the Department's implementation of the competitive pricing policy for uranium and resumption of shipments of fresh uranium for fabrication into assemblies for research reactors. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues

  19. Experimental determination of fuel surface temperature in the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khang, Ngo Phu; Huy, Ngo Quang; An, Tran Khac; Lam, Pham Van [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Measured fuel surface temperatures, obtained at various locations of the core of the Dalat Nuclear Research Reactor under normal operating conditions, are presented, and some thermal characteristics of the reactor are discussed. (author). 2 refs., 11 figs., 2 tabs.

  20. Review of the nuclear reactor thermal hydraulic research in ocean motions

    Energy Technology Data Exchange (ETDEWEB)

    Yan, B.H., E-mail: yanbh3@mail.sysu.edu.cn

    2017-03-15

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  1. Review of the nuclear reactor thermal hydraulic research in ocean motions

    International Nuclear Information System (INIS)

    Yan, B.H.

    2017-01-01

    The research and development of small modular reactor in floating platform has been strongly supported by Chinese government and enterprises. Due to the effect of ocean waves, the thermal hydraulic behavior and safety characteristics of floating reactor are different from that of land-based reactor. Many scholars including the author have published their research and results in open literatures. Much of these literatures are valuable but there are also some contradictory conclusions. In this wok, the nuclear reactor thermal hydraulic research in ocean motions was systematically summarized. Valuable results and experimental data were analyzed and classified. Inherent mechanism for controversial issues in different experiments was explained. Necessary work needed in the future was suggested. Through this work, we attempt to find as many valuable results as possible for the designing and subsequent research.

  2. Digital Systems Implemented at the IPEN Nuclear Research Reactor (IEA-R1): Results and Necessities

    International Nuclear Information System (INIS)

    Nahuel-Cardenas, Jose-Patricio; Madi-Filho, Tufic; Ricci-Filho, Walter; Rodrigues-de-Carvalho, Marcos; Lima-Benevenuti, Erion-de; Gomes-Neto, Jose

    2013-06-01

    (Nuclear and Energy Research Institute) was founded in 1956 with the main purpose of doing research and development in the field of nuclear energy and its applications. It is located at the campus of University of Sao Paulo (USP), in the city of Sao Paulo, in an area of nearly 500, 000 m2. It has over 1.000 employees and 40% of them have qualification at master or doctor level The institute is recognized as a national leader institution in research and development (R and D) in the areas of radiopharmaceuticals, industrial applications of radiation, basic nuclear research, nuclear reactor operation and nuclear applications, materials science and technology, laser technology and applications. Along with the R and D, it has a strong educational activity, having a graduate program in Nuclear Technology, in association with the University of Sao Paulo, ranked as the best university in the country. The Federal Government Evaluation institution CAPES, granted to this course grade 6, considering it a program of Excellence. This program started at 1976 and has awarded 458 Ph.D. degrees and 937 master degrees since them. The actual graduate enrollment is around 400 students. One of major nuclear installation at IPEN is the IEA-R1 research reactor; it is the only Brazilian research reactor with substantial power level suitable for its utilization in researches concerning physics, chemistry, biology and engineering as well as for producing some useful radioisotopes for medical and other applications. IEA-R1 reactor is a swimming pool type reactor moderated and cooled by light water and uses graphite and beryllium as reflectors. The first criticality was achieved on September 16, 1957. The reactor is currently operating at 4.5 MW power level with an operational schedule of continuous 64 hours a week. In 1996 a Modernization Program was started to establish recommendations in order to mitigate equipment and structures ageing effects in the reactor components, detect and evaluate

  3. Nuclear reactors and fuel cycle

    International Nuclear Information System (INIS)

    2014-01-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100 th nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U 3 O 8 were replaced by U 3 Si 2 -based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to fulfill its mission that is

  4. Nuclear reactors and fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Nuclear Fuel Center (CCN) of IPEN produces nuclear fuel for the continuous operation of the IEA-R1 research reactor of IPEN. The serial production started in 1988, when the first nuclear fuel element was delivered for IEA-R1. In 2011, CCN proudly presents the 100{sup th} nuclear fuel element produced. Besides routine production, development of new technologies is also a permanent concern at CCN. In 2005, U{sub 3}O{sub 8} were replaced by U{sub 3}Si{sub 2}-based fuels, and the research of U Mo is currently under investigation. Additionally, the Brazilian Multipurpose Research Reactor (RMB), whose project will rely on the CCN for supplying fuel and uranium targets. Evolving from an annual production from 10 to 70 nuclear fuel elements, plus a thousand uranium targets, is a huge and challenging task. To accomplish it, a new and modern Nuclear Fuel Factory is being concluded, and it will provide not only structure for scaling up, but also a safer and greener production. The Nuclear Engineering Center has shown, along several years, expertise in the field of nuclear, energy systems and correlated areas. Due to the experience obtained during decades in research and technological development at Brazilian Nuclear Program, personnel has been trained and started to actively participate in design of the main system that will compose the Brazilian Multipurpose Reactor (RMB) which will make Brazil self-sufficient in production of radiopharmaceuticals. The institution has participated in the monitoring and technical support concerning the safety, licensing and modernization of the research reactors IPEN/MB-01 and IEA-R1. Along the last two decades, numerous specialized services of engineering for the Brazilian nuclear power plants Angra 1 and Angra 2 have been carried out. The contribution in service, research, training, and teaching in addition to the development of many related technologies applied to nuclear engineering and correlated areas enable the institution to

  5. Research reactor spent nuclear fuel shipment from the Czech Republic to the Russian Federation

    International Nuclear Information System (INIS)

    Svoboda, K.; Broz, V.; Novosad, P.; Podlaha, J.; Svitak, F.

    2009-01-01

    In May 2004, the Global Threat Reduction Initiative agreement was signed by the governments of the United States and the Russian Federation. The goal of this initiative is to minimize, in cooperation with the International Atomic Energy Agency (IAEA) in Vienna, the existing threat of misuse of nuclear and radioactive materials for terrorist purposes, particularly highly enriched uranium (HEU), fresh and spent nuclear fuel (SNF), and plutonium, which have been stored in a number of countries. Within the framework of the initiative, HEU materials and SNF from research reactors of Russian origin will be transported back to the Russian Federation for reprocessing/liquidation. The program is designated as the Russian Research Reactor Fuel Return (RRRFR) Program and is similar to the U.S. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program, which is underway for nuclear materials of United States origin. These RRRFR activities are carried out under the responsibilities of the respective ministries (i.e., U.S. Department of Energy (DOE) and Russian Federation Rosatom). The Czech Republic and the Nuclear Research Institute Rez, plc (NRI) joined Global Threat Reduction Initiative in 2004. During NRI's more than 50 years of existence, radioactive and nuclear materials had accumulated and had been safely stored on its grounds. In 1995, the Czech regulatory body , State Office for Nuclear Safety (SONS), instructed NRI that all ecological burdens from its past activities must be addressed and that the SNF from the research reactor LVR -15 had to be transported for reprocessing. At the end of November 2007, all these activities culminated with the unique shipment to the Russian Federation of 527 fuel assemblies of SNF type EK-10 (enrichment 10% U-235) and IRT-M (enrichment 36% and 80% U-235) and 657 irradiated fuel rods of EK-10 fuel, which were used in LVR-15 reactor. (authors)

  6. Nuclear RB research reactor. Thirty years of anniversary; Istrazhivacki nuklearni reaktor RB. Povodom 30 godina rada

    Energy Technology Data Exchange (ETDEWEB)

    Pesic, M; Stefanovic, D [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia)

    1988-07-01

    Nuclear research reactor RB in the Nuclear Engineering Laboratory - NET at the 'Boris Kidric' Institute of Nuclear Sciences in Vinca is the first reactor system built in Yugoslavia in 1958. This year is the thirtieth anniversary of the RB reactor operation, which has survived a series of modifications trying to follow a contemporary nuclear research directions. This report describes its basic technical characteristics and experimental possibilities. Especially, the modifications in the last 25 years are underlined, the experiences gained, and new plans for the future are presented. (author)

  7. The Need for Cyber-Informed Engineering Expertise for Nuclear Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert Stephen [Idaho National Laboratory

    2015-12-01

    Engineering disciplines may not currently understand or fully embrace cyber security aspects as they apply towards analysis, design, operation, and maintenance of nuclear research reactors. Research reactors include a wide range of diverse co-located facilities and designs necessary to meet specific operational research objectives. Because of the nature of research reactors (reduced thermal energy and fission product inventory), hazards and risks may not have received the same scrutiny as normally associated with power reactors. Similarly, security may not have been emphasized either. However, the lack of sound cybersecurity defenses may lead to both safety and security impacts. Risk management methodologies may not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Although most research reactors are old and may not have the same digital footprint as newer facilities, any digital instrument and control function must be considered as a potential attack platform that can lead to sabotage or theft of nuclear material, especially for some research reactors that store highly enriched uranium. This paper will provide a discussion about the need for cyber-informed engineering practices that include the entire engineering lifecycle. Cyber-informed engineering as referenced in this paper is the inclusion of cybersecurity aspects into the engineering process. A discussion will consider several attributes of this process evaluating the long-term goal of developing additional cyber safety basis analysis and trust principles. With a culture of free information sharing exchanges, and potentially a lack of security expertise, new risk analysis and design methodologies need to be developed to address this rapidly evolving (cyber) threatscape.

  8. Design of a multipurpose research reactor

    International Nuclear Information System (INIS)

    Sanchez Rios, A.A.

    1990-01-01

    The availability of a research reactor is essential in any endeavor to improve the execution of a nuclear programme, since it is a very versatile tool which can make a decisive contribution to a country's scientific and technological development. Because of their design, however, many existing research reactors are poorly adapted to certain uses. In some nuclear research centres, especially in the advanced countries, changes have been made in the original designs or new research prototypes have been designed for specific purposes. These modifications have proven very costly and therefore beyond the reach of developing countries. For this reason, what the research institutes in such countries need is a single sufficiently versatile nuclear plant capable of meeting the requirements of a nuclear research programme at a reasonable cost. This is precisely what a multipurpose reactor does. The Mexican National Nuclear Research Institute (ININ) plans to design and build a multipurpose research reactor capable at the same time of being used for the development of reactor design skills and for testing nuclear materials and fuels, for radioisotopes production, for nuclear power studies and basic scientific research, for specialized training, and so on. For this design work on the ININ Multipurpose Research Reactor, collaborative relations have been established with various international organizations possessing experience in nuclear reactor design: Atomehnergoeksport of the USSR: Atomic Energy of Canada Limited (AECL); General Atomics (GA) of the USA; and Japan Atomic Energy Research Institute

  9. Moving into the 21st century - The United States' Research Reactor Spent Nuclear Fuel Acceptance Program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Reilly, Jill E.

    1999-01-01

    Since 1996, when the United States Department of Energy and the Department of State jointly adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel, twelve shipments totaling 2,985 MTR and TRIGA spent nuclear fuel assemblies from research reactors around the world have been accepted into the United States. These shipments have contained approximately 1.7 metric tons of HEU and 0.6 metric tons of LEU. Foreign research reactor operators played a significant role in this success. A new milestone in the acceptance program occurred during the summer of 1999 with the arrival of TRIGA spent nuclear fuel from Europe through the Charleston Naval Weapons Station via the Savannah River Site to the Idaho National Engineering and Environmental Laboratory. This shipment consisted of five casks of TRIGA spent nuclear fuel from research reactors in Germany, Italy, Slovenia, and Romania. These casks were transported by truck approximately 2,400 miles across the United States (one cask packaged in an ISO container per truck). Drawing upon lessons learned in previous shipments, significant technical, legal, and political challenges were addressed to complete this cross-country shipment. Other program activities since the last RERTR meeting have included: formulation of a methodology to determine the quantity of spent nuclear fuel in a damaged condition that may be transported in a particular cask (containment analysis for transportation casks); publication of clarification of the fee policy; and continued planning for the outyears of the acceptance policy including review of reactors and eligible material quantities. The United States Foreign Research Reactor Spent Nuclear Fuel Acceptance Program continues to demonstrate success due to the continuing commitment between the United States and the research reactor community to make this program work. We strongly encourage all eligible research reactors to decide as soon as possible to

  10. Centralized digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, K.C.

    1987-01-01

    A hardware and software design for the centralized control of a research nuclear reactor by a digital computer are presented, as well as an investigation of automatic-feedback control. Current reactor-control philosophies including redundancy, inherent safety in failure, and conservative-yet-operational scram initiation were used as the bases of the design. The control philosophies were applied to the power-monitoring system, the fuel-temperature monitoring system, the area-radiation monitoring system, and the overall system interaction. Unlike the single-function analog computers currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control-rod movements to conform with operator requests, automatically log the required physical parameters during reactor operation, perform the required system tests, and monitor facility safety and security. Reactor power control is based on signals received from ion chambers located near the reactor core. Absorber-rod movements are made to control the rate of power increase or decrease during power changes and to control the power level during steady-state operation. Additionally, the system incorporates a rudimentary level of artificial intelligence

  11. Advanced nuclear reactor safety design technology research in NPIC

    International Nuclear Information System (INIS)

    Yu, H.

    2014-01-01

    After the Fukushima accident happen, Nuclear Power Plants (NPPs) construction has been suspended in China for a time. Now the new regulatory rule has been proposed that the most advanced safety standard must be adopted for the new NPPs and practical elimination of large fission product release by design during the next five plans period. So the advanced reactor research is developing in China. NPIC is engaging on the ACP1000 and ACP100 (Small Module Reactor) design. The main design character will be introduced in this paper. The Passive Combined with Active (PCWA) design was adopted during the ACP1000 design to reduce the core damage frequency (CDF); the Cavity Injection System (CIS) is design to mitigation the consequence of the severe accident. Advance passive safety system was designed to ensure the long term residual heat removal during the Small Module Reactor (SMR). The SMR will be utilized to be the floating reactors, district heating reactor and so on. Besides, the Science and Technology on Reactor System Design Technology Laboratory (LRSDT) also engaged on the fundamental thermal-hydraulic characteristic research in support of the system validation. (author)

  12. Future development of the research nuclear reactor IRT-2000 in Sofia

    International Nuclear Information System (INIS)

    Apostolov, T.G.

    1999-01-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  13. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  14. Plans and status for accepting spent nuclear fuel from foreign research reactors

    International Nuclear Information System (INIS)

    Zeitoun, Abe; Williams, John; Brown, Keith; Chacey, Kenneth

    1996-01-01

    In May 1996, the Department of Energy, acting with the cooperation of the Department of State, announced adoption of a policy that will have a significant influence on international efforts to prevent the spread of nuclear weapons. This policy is concerned with the management of spent nuclear fuel from foreign research reactors. Spent nuclear fuel, unirradiated fuel, and target material accepted under the policy must contain uranium enriched in the U.S. Although such spent fuel will comprise a relatively small part of the Department of Energy's (the Department's) overall inventory of spent nuclear fuel, the policy invokes actions that provide a cornerstone of U.S. nonproliferation activities. Implementation of this policy is now underway. This paper describes the Department's implementation strategy with the emphasis on those actions that will affect foreign research reactor operators. (author)

  15. The program of reactors and nuclear power plants; Programa de reactores y centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Calabrese, Carlos R [Comision Nacional de Energia Atomica, General San Martin (Argentina). Centro Atomico Constituyentes

    2001-07-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined.

  16. RA Research nuclear reactor Part 1, RA Reactor operation and maintenance in 1987

    International Nuclear Information System (INIS)

    Sotic, O.; Martinc, R.; Cupac, S.; Sulem, B.; Badrljica, R.; Majstorovic, D.; Sanovic, V.

    1987-01-01

    RA research reacto was not operated due to the prohibition issued in 1984 by the Government of Serbia. Three major tasks were finished in order to fulfill the licensing regulations about safety of nuclear facilities which is the condition for obtaining permanent operation licence. These projects involved construction of the emergency cooling system, reconstruction of the existing special ventilation system, and renewal of the system for electric power supply of the reactor systems. Renewal of the RA reactor instrumentation system was initiated. Design project was done by the Russian Atomenergoeksport, and is foreseen to be completed by the end of 1988. The RA reactor safety report was finished in 1987. This annual report includes 8 annexes concerning reactor operation, activities of services and financial issues, and three special annexes: report on testing the emergency cooling system, report on renewal of the RA reactor and design specifications for reactor renewal and reconstruction [sr

  17. Status of neutron beam utilization at the Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Dien, Nguyen Nhi; Hai, Nguyen Canh

    2003-01-01

    The 500-kW Dalat nuclear research reactor was reconstructed from the USA-made 250-kW TRIGA Mark II reactor. After completion of renovation and upgrading, the reactor has been operating at its nominal power since 1984. The reactor is used mainly for radioisotope production, neutron activation analysis, neutron beam researches and reactor physics study. In the framework of the reconstruction and renovation project of the 1982-1984 period, the reactor core, the control and instrumentation system, the primary and secondary cooling systems, as well as other associated systems were newly designed and installed by the former Soviet Union. Some structures of the reactor, such as the reactor aluminum tank, the graphite reflector, the thermal column, horizontal beam tubes and the radiation concrete shielding have been remained from the previous TRIGA reactor. As a typical configuration of the TRIGA reactor, there are four neutron beam ports, including three radial and one tangential. Besides, there is a large thermal column. Until now only two-neutron beam ports and the thermal column have been utilized. Effective utilization of horizontal experimental channels is one of the important research objectives at the Dalat reactor. The research program on effective utilization of these experimental channels was conducted from 1984. For this purpose, investigations on physical characteristics of the reactor, neutron spectra and fluxes at these channels, safety conditions in their exploitation, etc. have been carried out. The neutron beams, however, have been used only since 1988. The filtered thermal neutron beams at the tangential channel have been extracted using a single crystal silicon filter and mainly used for prompt gamma neutron activation analysis (PGNAA), neutron radiography (NR) and transmission experiments (TE). The filtered quasi-monoenergetic keV neutron beams using neutron filters at the piercing channel have been used for nuclear data measurements, study on

  18. Nuclear reactor safety research since Three Mile Island

    International Nuclear Information System (INIS)

    Mynatt, F.R.

    1982-01-01

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially

  19. Nuclear reactor safety research since three mile island.

    Science.gov (United States)

    Mynatt, F R

    1982-04-09

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially.

  20. Diagnosis of electric equipment at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Truong Sinh

    1999-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a pool type of its kind in the world: Soviet-designed core and control system harmoniously integrated into the left-over infrastructure of the former American-made TRIGA MARK II reactor, which includes the reactor tank and shielding, graphite reflector, beam tubes and thermal column. The reactor is mainly used for radioisotope and radiopharmaceutical production, elemental analysis using neutron activation techniques, neutron beam exploitation, silicon doping, and reactor physics experimentation. For safe operation of the reactor maintenance work has been carried out for the reactor control and instrumentation, reactor cooling, ventilation, radiomonitoring, mechanical, normal electric supply systems as well as emergency electric diesel generators and the water treatment station. Technical management of the reactor includes periodical maintenance as required by technical specifications, training, re-training and control of knowledge for reactor staff. During recent years, periodic preventive maintenance (PPM) has been carried out for the electric machines of the technological systems. (author)

  1. Future development of the research nuclear reactor IRT-2000 in Sofia

    Energy Technology Data Exchange (ETDEWEB)

    Apostolov, T.G. [Institute for Nuclear Research and Nuclear Energy, BAS, Sofia (Bulgaria)

    1999-07-01

    The present paper presents a short description of the research reactor IRT-2000 Sofia, started in 1961 and operated for 28 years. Some items are considered, connected to the improvements made in the contemporary safety requirements and the unrealized project for modernization to 5 MW. Proposals are considered for reconstruction of reactor site to a 'reactor of low power' for education purposes and as a basis for the country's nuclear technology development. (author)

  2. On the classification of structures, systems and components of nuclear research and test reactors

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel

    2009-01-01

    The classification of structures, systems and components of nuclear reactors is a relevant issue related to their design because it is directly associated with their safety functions. There is an important statement regarding quality standards and records that says Structures, systems, and components important to safety shall be designed, fabricated, erected, and tested to quality standards commensurate with the importance of the safety functions to be performed. The definition of the codes, standards and technical requirements applied to the nuclear reactor design, fabrication, inspection and tests may be seen as the main result from this statement. There are well established guides to classify structures, systems and components for nuclear power reactors such as the Pressurized Water Reactors but one can not say the same for nuclear research and test reactors. The nuclear reactors safety functions are those required to the safe reactor operation, the safe reactor shutdown and continued safe conditions, the response to anticipated transients, the response to potential accidents and the control of radioactive material. So, it is proposed in this paper an approach to develop the classification of structures, systems and components of these reactors based on their intended safety functions in order to define the applicable set of codes, standards and technical requirements. (author)

  3. Achievements and future directions in the reactors physics and nuclear safety research

    International Nuclear Information System (INIS)

    Dumitrache, Ion

    2001-01-01

    A historical overlook is presented with respect to inception and development of reactor physics research and on the job training in Romania. First these activities were carried out at the Institute for Atomic Physics and Institute for Power Reactors (IRNE) in Bucharest and afterward at the Institute for Nuclear Technologies, later on transformed in the Institute of Nuclear Research at Pitesti. CYBER Computer installed at Pitesti allowed formation in as early as 1971 reactor specialists who worked out computer programs for neutron physics calculations. These specialists were able to assimilate the characteristic of CANDU 6 type reactor as well as the AECL methodology of simulating processes of CANDU reactor physics. At present four programs are under way. These are: 1. The nuclear reactor physics; 2. The nuclear facility safety; 3. Safety analyses for the transport and radioactive waste disposal; 4. Analyses for radiation shielding and biological protection. There are presented results of the work associated to the CANDU type reactor: 1. Adapting and improving the code system for neutron and thermohydraulic calculation for CANDU type reactor, as supplied by AECL; 2. The IRNE manual for CANDU reactor neutron designing; 3. Final sizing of shim rods of Cernavoda NPP Unit 2; 4. Tests and measurements of reactor physics at the Cernavoda NPP Unit 1 commissioning; 5. Simulation and independent analysis of thermosiphoning carried out at Cernavoda NPP Unit 1 commissioning; 6. Static and dynamical response of the detectors in the CANDU reactor core and their time evolution following the burnup in the neutron flux and their ageing effects; 7. PSA studies at Unit 1; 8. Safety analyses for the radioactive waste disposal at Saligny repository. Also, reported are the results of the work associated to the TRIGA reactor, as follows: 1. Flux measurements and neutron computations necessary in the reactor commissioning; 2. Cleaning up controversial issues relating to neutron flux

  4. Work Breakdown Structure and Work Packages for Decommissioning the Nuclear Research Reactor VVR-S Magurele-Bucharest

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-15

    The research reactor type VVR-S (tank type, water cooled, moderator and reflector, thermal power 2 MW, thermal energy 9.52 GWd) was put into service in July 1957, and in December 1997, was shut down. In 2002, the Romanian Government decided to put the research reactor into a permanent shutdown condition in order to start decommissioning. This nuclear facility had been used in nuclear research and radioisotope production for 40 years without any events, incidents or accidents. At the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: a radioactive waste treatment plant, a tandem Van de Graaff heavy ion accelerator, a cyclotron, an industrial irradiator and a radioisotope production centre.

  5. Towards nuclear fusion reactors

    International Nuclear Information System (INIS)

    1993-11-01

    The results of nuclear fusion researches in JAERI are summarized. In this report, following themes are collected: the concept of fusion reactor (including ITER), fusion reactor safety, plasma confinement, fusion reactor equipment, and so on. Includes glossary. (J.P.N.)

  6. Reactor physics teaching and research in the Swiss nuclear engineering master

    International Nuclear Information System (INIS)

    Chawla, R.

    2012-01-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  7. Karlsruhe Nuclear Research Center, Institute of Neutron Physics and Reactor Engineering. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute of Neutron Physics and Reactor Engineering is concerned with research work in the field of nuclear engineering related to the safety of thermal reactors as well as with specific problems of fusion reactor technology. Under the project of nuclear safety research, the Institute works on concepts designed to drastically improve reactor safety. Apart from that, methods to estimate and minimize the radiological consequences of reactor accidents are developed. Under the fusion technology project, the Institute deals with neutron physics and technological questions of the breeding blanket. Basic research covers technico-physical questions of the interaction between light ion radiation of a high energy density and matter. In addition and to a small extent, questions of employing hydrogen in the transport area are studied. (orig.) [de

  8. The gamma two-step cascade method at Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan; Pham Dinh Khang; Nguyen Nhi Dien; Nguyen Xuan Hai; Tran Tuan Anh; Ho Huu Thang; Pham Ngoc Son; Mangengo Lumengano

    2014-01-01

    The event-event coincidence spectroscopy system was successfully established and operated on thermal neutron beam of channel No. 3 at Dalat Nuclear Research Reactor (DNRR) with resolving time value of about 10 ns. The studies on level density, gamma strength function and decay scheme of intermediate-mass and heavy nuclei have been performed on this system. The achieved results are opening a new research of nuclear structure based on (n, 2γ) reaction. (author)

  9. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    International Nuclear Information System (INIS)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo

    2011-01-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  10. Ageing implementation and refurbishment development at the IEA-R1 nuclear research reactor: a 15 years experience

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio N.; Ricci Filho, Walter; Carvalho, Marcos R. de; Berretta, Jose Roberto; Marra Neto, Adolfo, E-mail: ahiru@ipen.b, E-mail: wricci@ipen.b, E-mail: carvalho@ipen.b, E-mail: jrretta@ipen.b, E-mail: amneto@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    IPEN (Instituto de Pesquisas Energeticas e Nucleares) is a nuclear research center established into the Secretary of Science and Technology from the government of the state of Sao Paulo, and administered both technically and financially by Comissao Nacional de Energia Nuclear (CNEN), a federal government organization under the Ministry of Science and Technology. The institute is located inside the campus of the University of Sao Paulo, Sao Paulo city, Brazil. One of major nuclear facilities at IPEN is the IEA-R1 nuclear research reactor. It is the unique Brazilian research reactor with substantial power level suitable for application with research in physics, chemistry, biology and engineering, as well as radioisotope production for medical and other applications. Designed and built by Babcok-Wilcox, in accordance with technical specifications established by the Brazilian Nuclear Energy Commission, and financed by the US Atoms for Peace Program, it is a swimming pool type reactor, moderated and cooled by light water and uses graphite and beryllium as reflector elements. The first criticality was achieved on September 16, 1957 and the reactor is currently operating at 4.0 MW on a 64h per week cycle. Since 1996, an IEA-R1 reactor ageing study was established at the Research Reactor Center (CRPq) related with general deterioration of components belonging to some operational systems, as cooling towers from secondary cooling system, piping and pumps, sample irradiation devices, radiation monitoring system, fuel elements, rod drive mechanisms, nuclear and process instrumentation and safety operational system. Although basic structures are almost the same as the original design, several improvements and modifications in components, systems and structures had been made along reactor life. This work aims to show the development of the ageing program in the IEA-R1 reactor and the upgrading (modernization) that was carried out, concerning several equipment and system in the

  11. Quality assurance programme for the LVR-15 nuclear research reactor

    International Nuclear Information System (INIS)

    1995-03-01

    The document specifies all aspects of the quality assurance programme for the LVR-15 nuclear research reactor. The programme addresses the organization and responsibilities, basic quality assurance activities, and identification of management, planning, and working documents necessary to implement the programme. (P.A.)

  12. AIREKMOD-RR, Reactivity Transients in Nuclear Research Reactors

    International Nuclear Information System (INIS)

    Baggoura, B.; Mazrou, H.

    2001-01-01

    1 - Description of program or function: AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant. 2 - Method of solution: For transient reactor kinetic calculations a modified Runge Kutta numerical method is used. The external reactivity insertion, specified as a function of time, is converted in dollar ($) unit. The neutron density, energy release and feedback variables are given at each time step. The two types of reactivity feedback considered are: Doppler effect and moderator effect. A new expression for the reactivity dependence on the feedback variables has been introduced in the present version of the code. The feedback reactivities are fitted in power series expression. 3 - Restrictions on the complexity of the problem: The number of delayed neutron groups and the total number of equations are limited only by computer storage capabilities. - Coolant is always in liquid phase. - Void reactivity feedback is not considered

  13. The Ongkharak Nuclear Research Center (ONRC) research reactor project: a status review

    International Nuclear Information System (INIS)

    Rusch, R.; Jacobi, A. Jr.; Yamkate, P.

    2001-01-01

    The new Ongkharak Nuclear Research Center in the vicinity of Bangkok, Thailand is planned to replace the more than 30 years old facilities located in the Chatuchak district, Bangkok. An international team led by general atomics (GA) is designing and constructing the new research complex. It comprises a 10 MW TRIGA type reactor, an isotope production and a centralized waste processing and storage facility. Electrowatt-Ekono Ltd. was hired by the Thai Government Agency, the Office of Atomic Energy for Peace (OAEP), as a consultant to the project. As the project is now approaching the end of its 4 th year, it now stands at a decisive turning point. Basic design is nearly completed and detailed design is well advanced. The turnkey part of the contract including the reactor island, the isotope and waste facilities are still awaiting the issuance of the Construction Permit. Significant progress has been made on the other part of the project, which includes all the supporting infrastructure facilities. The Preliminary Safety Analysis Report (PSAR), prepared by GA, has been reviewed by various parties, including by nuclear safety experts from the IAEA, which has provided continuous support to the OAEP. Experts from the Argonne National Laboratory have been involved in the reviews as well. The PSAR is now under consideration at the Nuclear Facility Safety Sub-Committee (NFSS) of the Thai Atomic Energy for Peace Commission for issuing the Construction Permit of the ONRC Research Reactor. The following paper gives an overview of the project and its present status, outlining the features of the planned facilities and the issues the project is presently struggling with. Major lessons of the past 4 years are highlighted and an outlook into the future is attempted. (orig.)

  14. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuan, Nguyen Ngoc [Nuclear Research Institute, Dalat (Viet Nam)

    2003-03-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  15. Progress report on neutron activation analysis at Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Tuan, Nguyen Ngoc

    2003-01-01

    Neutron Activation Analysis (NAA) is one of most powerful techniques for the simultaneous multi-elements analysis. This technique has been studied and applied to analyze major, minor and trace elements in Geological, Biological and Environmental samples at Dalat Nuclear Research Reactor. At the sixth Workshop, February 8-11, 1999, Yojakarta, Indonesia we had a report on Current Status of Neutron Activation Analysis using Dalat Nuclear Research Reactor. Another report on Neutron Activation Analysis at the Dalat Nuclear Research Reactor also was presented at the seventh Workshop in Taejon, Korea from November 20-24, 2000. So in this report, we would like to present the results obtained of the application of NAA at NRI for one year as follows: (1) Determination of the concentrations of noble, rare earth, uranium, thorium and other elements in Geological samples according to requirement of clients particularly the geologists, who want to find out the mineral resources. (2) The analysis of concentration of radionuclides and nutrient elements in foodstuffs to attend the program on Asian Reference Man. (3) The evaluation of the contents of trace elements in crude oil and basement rock samples to determine original source of the oil. (4) Determination of the elemental composition of airborne particle in the Ho Chi Minh City for studying air pollution. The analytical data of standard reference material, toxic elements and natural radionuclides in seawater are also presented. (author)

  16. Application of powder metallurgy in production of nuclear fuels for research and power reactors

    International Nuclear Information System (INIS)

    Fukuda, Kosaku

    2000-01-01

    Powder metallurgy has been applied in many of the processes of nuclear fuel fabrication, which has contributed, to a great progress of the nuclear technology to date. Evolution of nuclear fuels still continues to meet various emerging demands in terms of enhanced safety, economical effectiveness, non-proliferation and environmental mitigation. This paper reviews recent progress of nuclear fuels of research and power reactors, in particular, focusing on the powder metallurgy application. First, the review is made on plate type fuels for research reactors, inter alia, silicide fuel which is prevailing worldwide from the viewpoint of non-proliferation. The relation between fabrication and irradiation behavior is also discussed. Next, oxide fuels including MOX are reviewed. Recent interests of UO 2 are directed toward large grain pellets and burnable absorber pellets, both of which arise from requirement of extended burnup. Finally, the MOX fuel for thermal reactors is reviewed. (author)

  17. Research nuclear reactor start-up simulator

    International Nuclear Information System (INIS)

    Sofo Haro, M.; Cantero, P.

    2009-01-01

    This work presents the design and FPGA implementation of a research nuclear reactor start-up simulator. Its aim is to generate a set of signals that allow replacing the neutron detector for stimulated signals, to feed the measurement electronic of the start-up channels, to check its operation, together with the start-up security logic. The simulator presented can be configured on three independent channels and adjust the shape of the output pulses. Furthermore, each channel can be configured in 'rate' mode, where you can specify the growth rate of the pulse frequency in %/s. Result and details of the implementation on FPGA of the different functional blocks are given. (author)

  18. The 10 MW multipurpose TRIGA reactor at Ongkharak Nuclear Research Center, Thailand

    International Nuclear Information System (INIS)

    Thurgood, B.E.; Razvi, J.; Whittemore, J.L.; Bhadrakom, K.

    1997-01-01

    General Atomics (GA), has been selected to lead a team of firms from the United States, Japan, Australia and Thailand to design, build and commission the Ongkharak Nuclear Research Center near Bangkok, Thailand, for the Office of Atomic Energy for Peace. The facilities to be provided comprise of: A Reactor Island, consisting of a 10 MW TRIGA reactor that takes full advantage of the inherent safety characteristics of uranium-zirconium hydride (UZrH) fuel; An Isotope Production Facility for the production of radioisotopes and radiopharmaceuticals using the TRIGA reactor; A Waste Processing and Storage Facility for the processing and storage of radioactive waste from the facility as well as other locations in Thailand. The centerpiece of the Center will be the TRIGA reactor, fueled with low-enriched UZrH fuel, cooled and moderated by light water, and reflected by beryllium and heavy water. The UZrH fueled reactor will have a rated steady state thermal power output of 10 MW, and will be capable of performing the following: Radioisotope production for medical, industrial and agricultural uses; Neutron transmutation doping of silicon; Beam experiments such as Neutron Scattering, Neutron Radiography (NR), and Prompt Gamma Neutron Activation Analysis (PGNAA); Medical therapy of patients using Boron Neutron Capture Therapy (BNCT); Applied research and technology development in the nuclear field; Training in principles of reactor operation, reactor physics, reactor experiments, etc. (author)

  19. Human factors engineering applied to Control Centre Design of a research nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Farias, Larissa P. de; Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R., E-mail: larissapfarias@ymail.com [Instituto de Engenharia Nuclear (DENN/SEESC/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab, de Usabilidade e Confiabilidade Humana; Monteiro, Beany G. [Universidade Federal do Rio Janeiro (UFRJ), Rio Janeiro, RJ (Brazil). Departamento de Desenho Industrial

    2017-07-01

    The Human Factors Engineering (HFE) program is an essential aspect for the design of nuclear installations. The overall aim of the HFE program is the improvement of the operational reliability and safety of plant operation. The HFE program main purpose is to ensure that human factor practices are incorporated into the plant design, emphasizing man-machine interface issues and design improvement of the nuclear reactor Control Centre. The Control Centre of nuclear reactor is a combination of control rooms, control suites and local control stations, which are functionally connected and located on the reactor site. The objective of this paper is to present a design approach for the Control Centre of a nuclear reactor used to produce radioisotopes and for nuclear research, including human factor issues. The design approach is based on participatory design principles, using human factor standards, ergonomic guidelines, and the participation of a multidisciplinary team during all design phases. Using the information gathered, an initial sketch 3D of the Control Centre was developed. (author)

  20. Human factors engineering applied to Control Centre Design of a research nuclear reactor

    International Nuclear Information System (INIS)

    Farias, Larissa P. de; Santos, Isaac J.A. Luquetti dos; Carvalho, Paulo V.R.; Monteiro, Beany G.

    2017-01-01

    The Human Factors Engineering (HFE) program is an essential aspect for the design of nuclear installations. The overall aim of the HFE program is the improvement of the operational reliability and safety of plant operation. The HFE program main purpose is to ensure that human factor practices are incorporated into the plant design, emphasizing man-machine interface issues and design improvement of the nuclear reactor Control Centre. The Control Centre of nuclear reactor is a combination of control rooms, control suites and local control stations, which are functionally connected and located on the reactor site. The objective of this paper is to present a design approach for the Control Centre of a nuclear reactor used to produce radioisotopes and for nuclear research, including human factor issues. The design approach is based on participatory design principles, using human factor standards, ergonomic guidelines, and the participation of a multidisciplinary team during all design phases. Using the information gathered, an initial sketch 3D of the Control Centre was developed. (author)

  1. Main safety lessons from 5-year operation of the renovated Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Anh, T.H.; Lam, P.V.; An, T.K.; Khang, N.P.; Tan, D.Q.

    1989-01-01

    The paper presents main safety related characteristics of the Dalat Nuclear Research Reactor (DNRR), which was reconstructed in 1982 at the site of the former TRIGA Mark II, while retaining some of its structures. Experience acquired from reactor operation is analysed. The programme of investigations aimed at better ensuring nuclear safety of the reactor, together with some of its results are presented. Finally some propositions to improve the present situation are suggested. (Authors). (2 Tables, 2 fig.)

  2. Nuclear plant-aging research on reactor protection systems

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed

  3. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  4. Research nuclear reactor RA, Annual Report 2001

    International Nuclear Information System (INIS)

    Sotic, O.

    2002-01-01

    During 2001, activities at the RA research nuclear reactor in were performed according to the Contract about financing of the RA reactor for the period January-December 2001, signed by the Ministry of Science, technology and development of the Republic of Serbia. RA reactor was not operated since shutdown in August 1984. Although, the most of the planned reconstruction activities were finished until 1991, the most important, which was concerned with exchange of the reactor instrumentation, financed by the IAEA, was interrupted due to international sanctions imposed on the country. Since 1992, all the renewal and reconstruction activities were ceased. Continuous aging and degradation of the equipment and facilities demand decision making about the future status of the Ra reactor. Until this decision is made it is an obligation to maintain control and maintenance of ventilation system, power supply, internal transportation system, spent fuel storage, hot cells, electronic fuel surveillance system, and part of the stationary dosimetry system. In 2001, apart from the mentioned activities, actions were undertaken related to maintenance of the reactor building and installations. The most important tasks fulfilled were: protection of the roof of the ventilation system building, purchase and installing the fire protection system and twelve new battery cells in the reactor building. There were no actions concerned with improvement of the conditions for intermediate spent fuel storage. With the support of IAEA, actions were initiated for possible transport of the spent fuel tu Russia. At the end of 2001, preparations were started for possible future decommissioning of the RA reactor. After, renewal of the membership of our country in the IAEA, the Government of Yugoslavia has declared its attitude about the intention of RA reactor decommissioning at the General Conference in September 2001 [sr

  5. The Experience of Storage and Shipment for Reprocessing of HEU Nuclear Fuel Irradiated in the IRT-M Research Reactor and Pamir-630 Mobile Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sikorin, S. N.; Polazau, S. A.; Luneu, A. N.; Hrigarovich, T. K. [Joint Institute for Power and Nuclear Research–Sosny of the National Academy of Sciences of Belarus, Minsk (Belarus)

    2014-08-15

    At the end of 2010 under the Global Threat Reduction Initiative (GTRI), the Joint Institute for Power and Nuclear Research–“Sosny” (JIPNR–Sosny) of the National Academy of Sciences of the Republic of Belarus repatriated HEU spent nuclear fuel to the Russian Federation. The spent nuclear fuel was from the decommissioned Pamir-630D mobile reactor and IRT-M research reactor. The paper discusses the Pamir-630D spent nuclear fuel; experience and problems of spent nuclear fuel storage; and various aspects of the shipment including legal framework, preparation activities and shipment logistics. The conceptual project of a new research reactor for Belarus is also presented.

  6. Research Reactor Utilization at the University of Utah for Nuclear Education, Training and Services

    International Nuclear Information System (INIS)

    Jevremovic, T.; Choe, D.O.

    2013-01-01

    In the years of nuclear renaissance we all recognize a need for modernizing the approaches in fostering nuclear engineering and science knowledge, in strengthening disciplinary depth in students’ education for their preparation for workforce, and in helping them learn how to extend range of skills, develop habits of mind and subject matter knowledge. The education infrastructure at the University of Utah has been recently revised to incorporate the experiential learning using our research reactor as integral part of curriculum, helping therefore that all of our students build sufficient level of nuclear engineering literacy in order to be able to contribute productively to nuclear engineering work force or continue their education toward doctoral degrees. The University of Utah TRIGA Reactor built 35 years ago represents a university wide facility to promote research, education and training, as well as is used for various applications of nuclear engineering, radiation science and health physics. Our curriculum includes two consecutive classes for preparation of our students for research reactor operating license. Every year the US Nuclear Regulatory Commission’s representatives hold the final exam for our students. Our activities serve the academic community of the University of Utah, commercial and government entities, other universities and national laboratories as well. (author)

  7. Bulletin of the Research Laboratory for Nuclear reactors (Tokyo Institute of Technology)

    International Nuclear Information System (INIS)

    Fujii, Yasuhiko

    2000-01-01

    This bulletin contains five chapters, which are Celebration of Prof. Tomiyasu's sixtieth birthday, Energy engineering, Mass transmutation engineering, System and safety engineering, and Co-operative researches. At first,, a memorial lecture of prof. Tomiyasu was expressed on a short note concerning pyrometallurgical nuclear reprocessing methods in view of recent studies under a title of 'Illusion in pyrometallurgical nuclear fuel reprocessing'. On next, at the energy engineering, 26 reports such as energy loss of 6 MeV/u iron ions in partially ionized helium plasma, nuclear fuel rods bundle thermal hydraulics analysis, coupling of space-dependent neutron kinetics model with thermal hydraulics analysis, and so on, were described. At the mass transmutation engineering, 22 reports such as a lead-bismuth cooled long life reactor with CANDLE burnup, molten salt reactor in the future equilibrium state, basic study on some equilibrium fuel cycle of PWR, and so on, were expressed. And, at the system and safety engineering, 16 reports such as study of a rotary phase shifter for power system applications, high field FBC tokamak for D-T fusion reactor, SMES using a high temperature superconductor, and so on, were found. At the co-operative researches at last chapter, four subjects on co-operative researches in T.I.T., themes of co-operative researches outside T.I.T., co-operative researches by use of MIT-RR, and themes supported by grants-in-aid for scientific research of the Ministry of Education, Science, Sports and Culture, were reported. (G.K.)

  8. Industrial structure at research reactor suppliers

    International Nuclear Information System (INIS)

    Roegler, H.-J.; Bogusch, E.; Friebe, T.

    2001-01-01

    Due to the recent joining of the forces of Framatome S. A. from France and the Nuclear Division of Siemens AG Power Generation (KWU) from Germany to a Joint Venture named Framatome Advanced Nuclear Power S.A.S., the issue of the necessary and of the optimal industrial structure for nuclear projects as a research reactor is, was discussed internally often and intensively. That discussion took place also in the other technical fields such as Services for NPPs but also in the field of interest here, i. e. Research Reactors. In summarizing the statements of this presentation one can about state that: Research Reactors are easier to build than NPPs, but not standardised; Research Reactors need a wide spectrum of skills and experiences; to design and build Research Reactors needs an experienced team especially in terms of management and interfaces; Research Reactors need background from built reference plants more than from operating plants; Research Reactors need knowledge of suitable experienced subsuppliers. Two more essential conclusions as industry involved in constructing and upgrading research reactors are: Research Reactors by far are more than a suitable core that generates a high neutron flux; every institution that designs and builds a Research Reactor lacks quality or causes safety problems, damages the reputation of the entire community

  9. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  10. Research reactors

    International Nuclear Information System (INIS)

    Merchie, Francois

    2015-10-01

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  11. Neutron physics and nuclear data measurements with accelerators and research reactors

    International Nuclear Information System (INIS)

    1988-08-01

    The report contains a collection of lectures devoted to the latest theoretical and experimental developments in the field of fast neutron physics and nuclear data measurements. The possibilities offered by particle accelerators and research reactors for research and technological applications in these fields are pointed out. Refs, figs and tabs

  12. Main research results in the field of nuclear power engineering of the Nuclear Reactors and Thermal Physics Institute in 2014

    International Nuclear Information System (INIS)

    Trufanov, A.A.; Orlov, Yu.I.; Sorokin, A.P.; Chernonog, V.L.

    2015-01-01

    The main results of scientific and technological activities for last years of the Nuclear Reactors and Thermal Physics Institute FSUE SSC RF - IPPE in solving problems of nuclear power engineering are presented. The work have been carried out on the following problems: justification of research and development solutions and safety of NPPs with fast reactors of new generation with sodium (BN-1200, MBIR) and lead (BREST-OD-300) coolants, justification of safety of operating and advanced NPPs with WWER reactor facilities (WWER-1000, AEhS 2006, WWER-TOI), development and benchmarking of computational codes, research and development support of Beloyarsk-3 (BN-600) and Bilibino (BN-800) NPPs operation, decommissioning of AM and BR-10 research reactors, pilot scientific studies (WWER-SKD, ITER), international scientific and technical cooperation. Problems for further investigations are charted [ru

  13. The research reactor as a tool in the master in nuclear reactors in Argentina

    International Nuclear Information System (INIS)

    Notari, Carla

    2003-01-01

    complete the Master with a seminar: Nuclear Power Plants, and a Thesis. In the frame of the academic plan, multiple activities are organized related to research reactors and also to nuclear power plants. Since the very beginning the performance of selected experiments in a nuclear reactor was recognized as an extraordinary tool to give the students an insight in the principal phenomena associated with the chain reaction and the related engineering problems. This experiments have an intrinsic elevated cost, associated with the relevance of the installation and with the specialized personnel involved. CNEA provides the career with this educational instrument through the Ra-1 and RA-3 reactors located at Constituyentes and Ezeiza Atomic Centers respectively. Various activities are under way but the most established, in the Reactor Physics Course, is the estimation of kinetic parameters in RA-1 reactor. The practice includes three different experiments: Approach to critical and calibration of control rods by the compensation method: Starting in a subcritical state with source the calibration of control rod B1 vs B2 is done by introduction of the first and withdrawal of the second. The methods used are based on the Point Kinetic Model; Measurement of control rods effectivity by the rod-drop method: Separate Rod Drop of rods B1 B2 B3 of the overall ensemble B1 B2 B3 B4 and total scram starting with three withdrawn and one partially inserted, is the procedure followed to estimate the reactivity worth of B1 B2 B3 and scram. The Point Kinetic Model and the Modal Kinetic Model are used; Reactor noise technique for the estimation of reactor parameters: α and Λ. The kinetic parameters are estimated assuring that the Point Kinetic Model is valid (detection chambers near to the core), that the fluctuation of the fission density is the dominant source of the correlated part of neutron noise (measurement at low power, <10kw), the dominance of the fundamental armonic (simultaneous use of

  14. Historical civilian nuclear accident based Nuclear Reactor Condition Analyzer

    Science.gov (United States)

    McCoy, Kaylyn Marie

    There are significant challenges to successfully monitoring multiple processes within a nuclear reactor facility. The evidence for this observation can be seen in the historical civilian nuclear incidents that have occurred with similar initiating conditions and sequences of events. Because there is a current lack within the nuclear industry, with regards to the monitoring of internal sensors across multiple processes for patterns of failure, this study has developed a program that is directed at accomplishing that charge through an innovation that monitors these systems simultaneously. The inclusion of digital sensor technology within the nuclear industry has appreciably increased computer systems' capabilities to manipulate sensor signals, thus making the satisfaction of these monitoring challenges possible. One such manipulation to signal data has been explored in this study. The Nuclear Reactor Condition Analyzer (NRCA) program that has been developed for this research, with the assistance of the Nuclear Regulatory Commission's Graduate Fellowship, utilizes one-norm distance and kernel weighting equations to normalize all nuclear reactor parameters under the program's analysis. This normalization allows the program to set more consistent parameter value thresholds for a more simplified approach to analyzing the condition of the nuclear reactor under its scrutiny. The product of this research provides a means for the nuclear industry to implement a safety and monitoring program that can oversee the system parameters of a nuclear power reactor facility, like that of a nuclear power plant.

  15. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  16. The role of research reactor and its future

    International Nuclear Information System (INIS)

    Nakagome, Yoshihiro

    2005-01-01

    About a half century passed since the start of operation of research reactors. Many research reactors were stopped their operation or decommissioned. With the practical use of nuclear energy, the meaning of research reactor has been buried in oblivion in the developed countries. Furthermore, under the nuclear weapons nonproliferation policy, the use of high enriched uranium fuel in research reactors is obliged to change to the use of low enriched uranium fuel. In such severe situation, this paper refers to the role of the research reactor once more through the operation experience of university-owned research reactor KUR (Kyoto University Reactor, Japan) and describes that research reactor is indispensable for the preparation to the second coming nuclear age. (author)

  17. United States Domestic Research Reactor Infrastructure TRIGA Reactor Fuel Support

    International Nuclear Information System (INIS)

    Morrell, Douglas

    2011-01-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  18. A probabilistic safety analysis of incidents in nuclear research reactors.

    Science.gov (United States)

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  19. A probabilistic safety analysis of incidents in nuclear research reactors

    International Nuclear Information System (INIS)

    Lopes, V. M.; Sordi, G. M. A. A.; Moralles, M.; Filho, T. M.

    2012-01-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64. (authors)

  20. Reactor use in nuclear engineering programs

    International Nuclear Information System (INIS)

    Murray, R.L.

    1975-01-01

    Nuclear reactors for dual use in training and research were established at about 50 universities in the period since 1950, with assistance by the U. S. Atomic Energy Commission and the National Science Foundation. Most of the reactors are in active use for a variety of educational functions--laboratory teaching of undergraduates and graduate students, graduate research, orientation of visitors, and nuclear power plant reactor operator training, along with service to the technical community. As expected, the higher power reactors enjoy a larger average weekly use. Among special programs are reactor sharing and high-school teachers' workshops

  1. Decommissioning of the research nuclear reactor IRT-M and problems connected with radioactive waste

    International Nuclear Information System (INIS)

    Abramidze, S.P.; Katamadze, N.M.; Kiknadze, G.G.; Saralidze, Z.K.

    2000-01-01

    The nuclear research reactor IRT-2000 is described, along with modifications and upgrades made over the past three decades. Considerations are outlined which followed a decision to shut-down the reactor and to dismantle it. (author)

  2. Research reactors in Argentina

    International Nuclear Information System (INIS)

    Carlos Ruben Calabrese

    1999-01-01

    Argentine Nuclear Development started in early fifties. In 1957, it was decided to built the first a research reactor. RA-1 reactor (120 kw, today licensed to work at 40 kW) started operation in January 1958. Originally RA-1 was an Argonaut (American design) reactor. In early sixties, the RA-1 core was changed. Fuel rods (20% enrichment) was introduced instead the old Argonaut core design. For that reason, a critical facility named RA-0 was built. After that, the RA-3 project started, to build a multipurpose 5 MW nuclear reactor MTR pool type, to produce radioisotopes and research. For that reason and to define the characteristics of the RA-3 core, another critical facility was built, RA-2. Initially RA-3 was a 90 % enriched fuel reactor, and started operation in 1967. When Atucha I NPP project started, a German design Power Reactor, a small homogeneous reactor was donated by the German Government to Argentina (1969). This was RA-4 reactor (20% enrichment, 1W). In 1982, RA-6 pool reactor achieved criticality. This is a 500 kW reactor with 90% enriched MTR fuel elements. In 1990, RA-3 started to operate fueled by 20% enriched fuel. In 1997, the RA-8 (multipurpose critical facility located at Pilcaniyeu) started to operate. RA-3 reactor is the most important CNEA reactor for Argentine Research Reactors development. It is the first in a succession of Argentine MTR reactors built by CNEA (and INVAP SE ) in Argentina and other countries: RA-6 (500 kW, Bariloche-Argentina), RP-10 (10MW, Peru), NUR (500 kW, Algeria), MPR (22 MW, Egypt). The experience of Argentinian industry permits to compete with foreign developed countries as supplier of research reactors. Today, CNEA has six research reactors whose activities have a range from education and promotion of nuclear activity, to radioisotope production. For more than forty years, Argentine Research Reactors are working. The experience of Argentine is important, and argentine firms are able to compete in the design and

  3. Computerized reactor monitor and control for research reactors

    International Nuclear Information System (INIS)

    Buerger, L.; Vegh, E.

    1981-09-01

    The computerized process control system developed in the Central Research Institute for Physics, Budapest, Hungary, is described together with its special applications at research reactors. The nuclear power of the Hungarian research reactor is controlled by this computerized system, too, while in Lybia many interesting reactor-hpysical calculations are built into the computerized monitor system. (author)

  4. Development of conceptual nuclear design of 10MWt research reactor core

    International Nuclear Information System (INIS)

    Kim, M. H.; Lim, J. Y.; Win, Naing; Park, J. M.

    2008-03-01

    KAERI has been devoted to develop export-oriented research reactors for a growing world-wide demand of new research reactor construction. Their ambition is that design of Korean research reactor must be competitive in commercial and technological based on the experience of the HANARO core design concept with thermal power of 30MW. They are developing a new research reactor named Advanced HANARO research Reactor (AHR) with thermal power of 20 MW. KAERI has export records of nuclear technology. In 1954-1967 two series of pool type research reactors based on the Russian design, VVR type and IRT type, have been constructed and commissioned in some countries as well as Russia. Nowadays Russian design is introducing again for export to developing countries such as Union of Myanmar. Therefore the objective of this research is that to build and innovative 10 MW research reactor core design based on the concept of HANARO core design to be competitive with Russian research reactor core design. system tool of HELIOS was used at the first stage in both cases which are research reactor using tubular type fuel assemblies and that reactor using pin type fuel assemblies. The reference core design of first kind of research reactor includes one in-core irradiation site at the core center. The neutron flux evaluations for core as well as reflector region were done through logical consistency of neutron flux distributions for individual assemblies. In order to find the optimum design, the parametric studies were carried out for assembly pitch, active fuel length, number of fuel ring in each assembly and so on. Design result shows the feasibility to have high neutron flux at in-core irradiation site. The second kind of research reactor is used the same kind of assemblies as HANARO and hence there is no optimization about basic design parameters. That core has only difference composition of assemblies and smaller specific power than HANARO. Since it is a reference core at first stage

  5. Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education

    International Nuclear Information System (INIS)

    Le Vinh Vinh; Huynh Ton Nghiem; Luong Ba Vien; Nguyen Minh Tuan; Nguyen Kien Cuong; Pham Quang Huy; Tran Tri Vien

    2015-01-01

    The project Completion of the experimental equipment systems and preparation of practical tutorials on the Dalat Nuclear Research Reactor for nuclear science and technology education performed by Dalat Nuclear Research Institute and financed by Ministry of Science and Technology aimed at strengthening the training capability of nuclear human resources. The content of this work includes: i) Improvement of experimental equipment; ii) Compilation of training material for experiments with the improved equipment systems on the reactor; iii) Compilation of training material for reactor calculations includes the following areas: neutronics, hydrothermal, safety analysis and accident consequence analysis. Results of the project provide important conditions to support practical educational and training curriculums in nuclear science and technology. (author)

  6. U.S. Department of Energy operational experience with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Messick, Charles E.; Massey, Charles D.; Mustin, Tracy P.

    1998-01-01

    On May 13, 1996, the U.S. Department of Energy issued a Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The goal of the long-term policy is to recover enriched uranium exported from the United States, while giving foreign research reactor operators sufficient time to develop their own long-term solutions for storage and disposal of spent fuel. The spent fuel accepted by the U.S. DOE under the policy must be out of the research reactors by May 12, 2006 and returned to the United States by May 12, 2009. (author)

  7. Research Reactors for the Development of Materials and Fuels for Innovative Nuclear Energy Systems

    International Nuclear Information System (INIS)

    2017-01-01

    This publication presents an overview of research reactor capabilities and capacities in the development of fuels and materials for innovative nuclear reactors, such as GenIV reactors. The compendium provides comprehensive information on the potential for materials and fuel testing research of 30 research reactors, both operational and in development. This information includes their power levels, mode of operation, current status, availability and historical overview of their utilization. A summary of these capabilities and capacities is presented in the overview tables of section 6. Papers providing a technical description of the research reactors, including their specific features for utilization are collected as profiles on a CD-ROM and represent an integral part of this publication. The publication is intended to foster wider access to information on existing research reactors with capacity for advanced material testing research and thus ensure their increased utilization in this particular domain. It is expected that it can also serve as a supporting tool for the establishment of regional and international networking through research reactor coalitions and IAEA designated international centres based on research reactors.

  8. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site

  9. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  10. Development of the reactor lithium ampoule device for research of spectral-luminescent characteristics of nuclear-excited plasma

    Energy Technology Data Exchange (ETDEWEB)

    Batyrbekov, E.G. [National Nuclear Center of RK, Kurchatov (Kazakhstan); Gordienko, Yu. N., E-mail: gordienko@nnc.kz [National Nuclear Center of RK, Kurchatov (Kazakhstan); Ponkratov, Yu. V. [National Nuclear Center of RK, Kurchatov (Kazakhstan); Khasenov, M.U. [PI “National Laboratory Astana”, Astana (Kazakhstan); Tazhibayeva, I.L.; Barsukov, N.I.; Kulsartov, T.V.; Zaurbekova, Zh. A.; Tulubayev, Ye. Yu.; Skakov, M.K. [National Nuclear Center of RK, Kurchatov (Kazakhstan)

    2017-04-15

    Highlights: • The development procedure of the ampoule device for experiments with nuclear-excited plasma under neutron irradiation is described. • The methods of nuclear reactions’ energy conversion into the energy of optical radiation of nuclear-excited plasma are presented. • A scheme of reactor experiments, the experimental facility and experimental device to carry out the reactor experiments are considered. - Abstract: This paper describes the development procedure of the reactor ampoule device to perform the experiments on study of spectral luminescence characteristics of nuclear-excited plasma formed by products of {sup 6}Li(n,α){sup 3}H reaction under neutron irradiation at the IVG.1 M research reactor. The methods of nuclear reactions’ energy conversion into the energy of optical radiation of nuclear-excited plasma are presented. A scheme of reactor experiments, the experimental facility and experimental device to carry out the reactor experiments are considered in paper. The designed ampoule device is totally meets the requirements of irradiation experiments on the IVG.1M reactor.

  11. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  12. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  13. IEA-R1 Nuclear Research Reactor: 58 Years of Operating Experience and Utilization for Research, Teaching and Radioisotopes Production

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jose Patricio Nahuel; Filho, Tufic Madi; Saxena, Rajendra; Filho, Walter Ricci [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242 Cid Universitaria CEP: 05508-000- Sao Paulo-SP (Brazil)

    2015-07-01

    IEA-R1 research reactor at the Instituto de Pesquisas Energeticas e Nucleares (Nuclear and Energy Research Institute) IPEN, Sao Paulo, Brazil is the largest power research reactor in Brazil, with a maximum power rating of 5 MWth. It is being used for basic and applied research in the nuclear and neutron related sciences, for the production of radioisotopes for medical and industrial applications, and for providing services of neutron activation analysis, real time neutron radiography, and neutron transmutation doping of silicon. IEA-R1 is a swimming pool reactor, with light water as the coolant and moderator, and graphite and beryllium as reflectors. The reactor was commissioned on September 16, 1957 and achieved its first criticality. It is currently operating at 4.5 MWth with a 60-hour cycle per week. In the early sixties, IPEN produced {sup 131}I, {sup 32}P, {sup 198}Au, {sup 24}Na, {sup 35}S, {sup 51}Cr and labeled compounds for medical use. During the past several years, a concerted effort has been made in order to upgrade the reactor power to 5 MWth through refurbishment and modernization programs. One of the reasons for this decision was to produce {sup 99}Mo at IPEN. The reactor cycle will be gradually increased to 120 hours per week continuous operation. It is anticipated that these programs will assure the safe and sustainable operation of the IEA-R1 reactor for several more years, to produce important primary radioisotopes {sup 99}Mo, {sup 125}I, {sup 131}I, {sup 153}Sm and {sup 192}Ir. Currently, all aspects of dealing with fuel element fabrication, fuel transportation, isotope processing, and spent fuel storage are handled by IPEN at the site. The reactor modernization program is slated for completion by 2015. This paper describes 58 years of operating experience and utilization of the IEA-R1 research reactor for research, teaching and radioisotopes production. (authors)

  14. How power is generated in a nuclear reactor

    International Nuclear Information System (INIS)

    Swaminathan, V.

    1978-01-01

    Power generation by nuclear fission as a result of chain reaction caused by neutrons interacting with fissile material such as 235 U, 233 U and 239 Pu is explained. Electric power production by reactor is schematically illustrated. Materials used in thermal reactor and breeder reactor are compared. Fuel reprocessing and disposal of radioactive waste coming from reprocessing plant is briefly described. Nuclear activities in India are reviewed. Four heavy water plants and two power reactors are under construction and will be operative in the near future. Two power reactors are already in operation. Nuclear Fuel Complex at Hyderabad supplies fuel element to the reactors. Fuel reprocessing and waste management facility has been set up at Tarapur. Bhabha Atomic Research Centre at Bombay and Reactor Research Centre at Kalpakkam near Madras are engaged in applied and basic research in nuclear science and engineering. (B.G.W.)

  15. Inventory of nuclear power plants and research reactors temporary or definitively stopped in industrialized countries

    International Nuclear Information System (INIS)

    Clauzon, J.; Vaubert, B.

    1984-12-01

    This paper presents data and information on the end of the life of nuclear reactors. One deals more particularly with installations of industrialized countries. This report gives the motivations which have involved the definitive shut down of nuclear power plants and of research reactors in the concerned countries. A schedule of definitive reactor shutdowns is presented. Then, one deals with nuclear power plants of which the construction has been stopped. The reasons of these situations are also given. The temporary difficulties met during the construction or the starting of nuclear power plants these last years are mentioned. Most times, there are economical or political considerations, or safety reasons. Finally, the nuclear power plants stopped for more than two years are mentioned [fr

  16. Safety of research reactors - A regulator's perspective

    International Nuclear Information System (INIS)

    Rahman, M.S.

    2001-01-01

    Due to historical reasons research reactors have received less regulatory attention in the world than nuclear power plants. This has given rise to several safety issues which, if not addressed immediately, may result in an undesirable situation. However, in Pakistan, research reactors and power reactors have received due attention from the regulatory authority. The Pakistan Research Reactor-1 has been under regulatory surveillance since 1965, the year of its commissioning. The second reactor has also undergone all the safety reviews and checks mandated by the licensing procedures. A brief description of the regulatory framework, the several safety reviews carried out have been briefly described in this paper. Significant activities of the regulatory authority have also been described in verifying the safety of research reactors in Pakistan along with the future activities. The views of the Pakistani regulatory authority on the specific issues identified by the IAEA have been presented along with specific recommendations to the IAEA. We are of the opinion that there are more Member States operating nuclear research reactors than nuclear power plants. Therefore, there should be more emphasis on the research reactor safety, which somehow has not been the case. In several recommendations made to the IAEA on the specific safety issues the emphasis has been, in general, to have a similar documentation and approach for maintaining and verifying operational safety at research reactors as is currently available for nuclear power reactors and may be planned for nuclear fuel cycle facilities. (author)

  17. Training and teaching with SILOETTE reactor and associated simulators at the Nuclear Research Centre of Grenoble

    International Nuclear Information System (INIS)

    Destot, M.

    1983-10-01

    Thanks to its three reactors SILOE (35 MW), MELUSINE (8 MW) and SILOETTE (100 KW), the Reactor Department of the Nuclear Research Centre of Grenoble has gained a considerable experience in the operation and utilization of research and material testing reactors. Inside of this general framework, the Reactor Department of Grenoble has built up a training and teaching centre that has been permanently active since 1975, with the aim of satisfying the considerable needs arising from the development of electro-nuclear power stations. The course is mainly intended for engineers and technicians who will be responsible for running power stations. A thorough series of practical exercices, carried out in the SILOETTE training reactor and in a PWR or in a Gas Cooled Reactor Simulator, desmonstrates the application of the theorical courses and familiarises the trainees with the behaviour of reactors and power stations

  18. Experimental study on accelerator driven subcritical reactor. JAERI's nuclear research promotion program, H12-031 (Contract research)

    International Nuclear Information System (INIS)

    Shiroya, Seiji; Misawa, Tsuyoshi; Unesaki, Hironobu

    2004-03-01

    In view of the future plan of Research Reactor Institute, Kyoto University (KURRI), the present study consisted of 1) the transmission experiments of high energy neutrons through materials, 2) experimental simulation of ADSR using the Kyoto University Critical Assembly (KUCA), and 3) conceptual neutronics design study on Kyoto University Reactor (KUR) type ADSR using the MCNPX code. The purpose of the present study was not only to obtain the knowledge usable for the realization of ADSR as a new neutron source for research but also to select technical issues in the field of reactor physics for the development of ADSR in general. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR was obtained both theoretically and experimentally. This kind of knowledge is indispensable to promote the study on ADSR further. If one dare say the main part of knowledge in short words, the basic nuclear characteristics of ADSR is overwhelmed by the characteristics of the subcritical reactor as expected. For the realization of ADSR in the future, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable 1) to compile the more precise nuclear data for the wide energy range, 2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement from the low energy region to the high energy region, and 3) to develop neutronics calculation tools which facilitate to take into account the neutron generation process by the spallation reaction and the delayed neutron behavior. (author)

  19. Research works at the Physics Institute nuclear reactor for the nuclear power engineering

    International Nuclear Information System (INIS)

    Gavars, V.V.; Kalnin'sh, D.O.; Lapenas, A.A.; Tomsons, E.Ya.; Ulmanis, U.A.

    1985-01-01

    Methods for neutron spectra determination in the nuclear reactor core and vessel have been developed. On their base the neutron spectra at the Novo-Voronezh and kola NPPs have been measured. Such measurements are necessary for the determination of the nuclear fuel reprocessing coefficients, for the evaluation of the construction radiation-damage stability and the NPP economical efficiency on the whole. A new type of the reactor regulator - a liquid metal one - has been created. Such regulators are promising in respect of their use at the NPPs. The base for studying new radiation-damage-stable insulators has been founded. The materials obtained are now applied to designing the reactors of the second (fast) and the third (thermonuclear H) generations. There have developed and by a long-time exploitation checked a hot loop, used for materials irradiation. the nuclear reactor in Salaspils provides training of students being the new brain-power for the nuclear power engineering

  20. Waste from decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    Massaut, V.

    2001-01-01

    Full text: Small nuclear facilities were often built for research or pilot purposes. It includes the research reactors of various types and various aims (physics research, nuclear research, nuclear weapons development, materials testing reactor, isotope production, pilot plant, etc.) as well as laboratories, hot cells and accelerators used for a broad spectrum of research or production purposes. These installations are characterized not only by their size (reduced footprint) but also, and even mostly, by the very diversified type of materials, products and isotopes handled within these facilities. This large variety can sometimes enhance the difficulties encountered for the dismantling of such facilities. The presence of materials like beryllium, graphite, lead, PCBs, sodium, sometimes in relatively large quantities, are also challenges to be faced by the dismantlers of such facilities, because these types of waste are either toxic or no solutions are readily available for their conditioning or long term disposal. The paper will review what is currently done in different small nuclear facilities, and what are the remaining problems and challenges for future dismantling and waste management. The question of whether Research and Development for waste handling methods and processes is needed is still pending. Even for the dismantling operation itself, important improvements can be brought in the fields of characterization, decontamination, remote handling, etc. by further developments and innovative systems. The way of funding such facilities decommissioning will be reviewed as well as the very difficult cost estimation for such facilities, often one-of-a-kind. The aspects of radioprotection optimization (ALARA principle) and classical operators safety will also be highlighted, as well as the potential solutions or improvements. In fact, small nuclear facilities encounter often, when dismantling, the same problems as the large nuclear power plants, but have in

  1. Status of the French research in the field of molten salt nuclear reactors

    International Nuclear Information System (INIS)

    Hery, M.; Israel, M.; Fauger, P.; Lecocq, A.

    1977-01-01

    The research program of the CEA in the field of molten salt nuclear reactors has been concerned with MSBR type reactors (Molten Salt Breeder Reactor). The papers written after having performed the theoretical analysis are entitled: core, circuits, chemistry and economy; they include some criticisms and suggestions. The experimental studies consisted in: graphite studies, chemical studies of the salt, metallic materials, the salt loop and the lead loop [fr

  2. RB research nuclear reactor, Annual report for 1981

    International Nuclear Information System (INIS)

    Markovic, H.; Sotic, O.; Pesic, M.; Vranic, S.; Zivkovic, B.; Bogdanovic, M.; Petronijevic, M.

    1981-01-01

    The annual report for 1981 includes the following: utilization of the RB reactor; accident and incidents analysis; description of the reactor equipment status; dosimetry and radiation protection; RB reactor staff; financial data. Seven Annexes to this report are concerned with: maintenance of the reactor components and equipment, including nuclear fuel, heavy water, reactor vessel, heavy water coolant circuit, experimental platforms, absorption rods; maintenance of the electric power supply system, neutron source equipment, crane; control and maintenance of ventilation and heating systems, gas and comprised gas systems, fire protection system; plan for renewal of the reactor components; contents of the RB reactor safety report; reactor staff; review of measured radiation doses; experimental methods; training of the staff; and financial report

  3. Concept of a nuclear powered submersible research vessel and a compact reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Odano, Naoteru; Yoritsune, Tsutomu; Ishida, Toshihisa; Nishimura, Hajime; Tokunaga, Sango

    2001-07-01

    A conceptual design study of a submersible research vessel navigating in 600 m depth and a compact nuclear reactor were carried out for the expansion of the nuclear power utilization. The mission of the vessel is the research of mechanism of the climate change to predict the global environment. Through conditions of the Arctic Ocean and the sea at high latitude have significant impacts on the global environmental change, it is difficult to investigate those areas by ordinary ships because of thick ice or storm. Therefore the research vessel is mainly utilized in the Arctic Ocean and the sea at high latitude. By taking account of the research mission, the basic specifications of the vessel are decided; the total weight is 500 t, the submersible depth is 600 m, the maximum speed is 12 knots (22.2 km/h), and the number of crews is 16. Nuclear power has an advantage in supplying large power of electricity in the sea for long period. Based on the requirements, it has been decided that two sets of submersible compact reactor, SCR, which is light-weighted and of enhanced safety characteristics of supply the total electricity of 500 kW. (author)

  4. Production of Radioisotopes and Radiopharmaceuticals at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Duong Van Dong; Pham Ngoc Dien; Bui Van Cuong; Mai Phuoc Tho; Nguyen Thi Thu; Vo Thi Cam Hoa

    2014-01-01

    After reconstruction, the Dalat Nuclear Research Reactor (DNRR) was inaugurated on March 20th, 1984 with the nominal power of 500 kW. Since then the production of radioisotopes and labelled compounds for medical use was started. Up to now, DNRR is still the unique one in Vietnam. The reactor has been operated safely and effectively with the total of about 37,800 hrs (approximately 1,300 hours per year). More than 90% of its operation time and over 80% of its irradiation capacity have been exploited for research and production of radioisotopes. This paper gives an outline of the radioisotope production programme using the DNRR. The production laboratory and facilities including the nuclear reactor with its irradiation positions and characteristics, hot cells, production lines and equipment for the production of Kits for labelling with 99m Tc and for quality control, as well as the production rate are mentioned. The methods used for production of 131 I, 99m Tc, 51 Cr, 32 P, etc. and the procedures for preparation of radiopharmaceuticals are described briefly. Status of utilization of domestic radioisotopes and radiopharmaceuticals in Vietnam is also reported. (author)

  5. Spent nuclear fuel management system of research reactor KINR NAS of Ukraine

    International Nuclear Information System (INIS)

    Slisenko, V.I.; Makarovskij, V.N.; Mazina, N.I.; D'yakov, A.G.; Andronov, O.B.

    2007-01-01

    The purpose of work - development of optimum, technically simple and reliable system of SNF management of research nuclear reactor taking into account received statistics and experience of long-term operation of reactor. The objective of this work - to place existing system of SNF management in conformity with modern normative requirements on the basis of 'ALARA' principle and taking into account the specificity of the object of application

  6. Utilizations of filtered neutron beams at Dalat nuclear research reactor

    International Nuclear Information System (INIS)

    Hien, P.D.; Chau, L.N.; Tan, V.H.; Hiep, N.T.; Phuong, L.B.

    1992-01-01

    Neutron beam utilizations in basic and applied researches have been important activities at the Dalat nuclear reactor. The neutron filters with single crystal of silicon are used to produce thermal neutrons at the tangential horizontal channel and quasi-monoenergetic 144 KeV and 54 KeV neutrons at the piercing beam tube. The paper presents some relevant characteristics of the filtered neutron beams at the two horizontal channels. Applications of neutron beams in prompt gamma-ray activation analysis and in nuclear data measurements are briefly described. (author)

  7. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z., E-mail: raissaomarques@gmail.com, E-mail: vasconv@cdtn.br, E-mail: soaresw@cdtn.br, E-mail: silvasf@cdtn.br, E-mail: amandaraso@hotmail.com, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  8. Probabilistic safety analysis and risk-based inspection of nuclear research reactors: state-of-the-art and implementation proposal

    International Nuclear Information System (INIS)

    Marques, Raíssa O.; Vasceoncelos, Vanderley de; Soares, Wellington A.; Silva Júnior, Silvério F.; Raso, Amanda L.; Mesquita, Amir Z.

    2017-01-01

    Industrial facilities systems deteriorate over time during operation, thus increasing the possibility of accidents. Risk-Based Inspection (RBI) classifies such systems by their risk information with the purpose of prioritizing inspection efforts. RBI can reduce inspection activities, resulting in lower risk levels, and maintaining reliability and safety in acceptable levels. Risk-Informed In-Service Inspection (RI-ISI) is a RBI approach used in nuclear industry. RI-ISI uses outcomes from Probabilistic Safety Analysis (PSA) of Nuclear Power Plants (NPP) to plan In-Service Inspections (ISI). Despite nuclear research reactors are simpler and have lower risks than power reactors, the application of PSA to them may be useful for safety improvements once they are more flexible, provide easier access to its core, and allow changes in fuel configurations in case of experimental tests. Ageing management of structures, systems and components important to safety of a nuclear research reactor throughout its lifetime is also required to assure continued adequacy of safety levels, reliable operation, and compliance with operational limits and conditions. This includes periodic review of ISI programs in which monitoring of material deterioration and aging effects are considered, and that can be supported by the RBI approach. A review of state-of-the-art of PSA and RBI applications to nuclear reactors is presented in this work. Advantages to apply these methodologies are also analyzed. PSA and RBI implementation proposal applied to nuclear research reactors is also presented, as well as its application to a TRIGA research nuclear reactor using computer codes developed by ReliaSoft® Corporation. (author)

  9. Progress of nuclear fusion research and review on development of fusion reactors

    International Nuclear Information System (INIS)

    1976-01-01

    Set up in October 1971, the ad hoc Committee on Survey of Nuclear Fusion Reactors has worked on overall fusion reactor aspects and definition of the future problems under four working groups of core, nuclear heat, materials and system. The presect volume is intended to provide reference materials in the field of fusion reactor engineering, prepared by members of the committee. Contents are broadly the following: concept of the nuclear fusion reactor, fusion core engineering, fusion reactor blanket engineering, fusion reactor materials engineering, and system problems in development of fusion reactors. (Mori, K.)

  10. Nuclear reactor physics course for reactor operators

    International Nuclear Information System (INIS)

    Baeten, P.

    2006-01-01

    The education and training of nuclear reactor operators is important to guarantee the safe operation of present and future nuclear reactors. Therefore, a course on basic 'Nuclear reactor physics' in the initial and continuous training of reactor operators has proven to be indispensable. In most countries, such training also results from the direct request from the safety authorities to assure the high level of competence of the staff in nuclear reactors. The aim of the basic course on 'Nuclear Reactor Physics for reactor operators' is to provide the reactor operators with a basic understanding of the main concepts relevant to nuclear reactors. Seen the education level of the participants, mathematical derivations are simplified and reduced to a minimum, but not completely eliminated

  11. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-12

    On 17 February 1999, the House of Representatives referred to the Parliamentary Standing Committee on Public Works for consideration and report the proposed replacement nuclear research reactor at Lucas Heights, New South Wales. The Committee received a written submission from ANSTO and took evidence from ANSTO officials at public hearings held at Parliament House. It has also received submissions and took evidence from a number of organisations and individuals. Prior to the first day of public hearings, the Committee undertook an extensive inspection of the facilities at Lucas Heights. The Committee's main conclusion and recommendations are as follows: (1) A need exists to replace HIFAR with a modern research reactor. The need for the replacement of HIFAR arises as a consequence of national interest considerations, research and development requirements and the need to sustain the local production of radiopharmaceuticals. The comparative costs of locating the replacement research reactor at Lucas Heights or a green fields site favour the former by a considerable margin. The refurbishing HIFAR of would not provide an enhancement of its research and operational capabilities which are considered by the scientific community to be limited. Such limitations have led to a reduction in national research and development opportunities. It is estimated that the new national research reactor must be operational some time before HIFAR is decommissioned. Provided all recommendations and commitments contained in the Environment Assessment Report are implemented during construction and commissioning and for the expected life of the research reactor, the Committee believes, based on the evidence, that all known risks have been identified and their impact on public safety will be as low as technically possible. It is recommended that during the licensing, construction and commissioning phases ANSTO should provide the Committee with six-monthly reports on progress and that removal of

  12. Proposed replacement nuclear research reactor, Lucas Heights, NSW

    International Nuclear Information System (INIS)

    1999-01-01

    On 17 February 1999, the House of Representatives referred to the Parliamentary Standing Committee on Public Works for consideration and report the proposed replacement nuclear research reactor at Lucas Heights, New South Wales. The Committee received a written submission from ANSTO and took evidence from ANSTO officials at public hearings held at Parliament House. It has also received submissions and took evidence from a number of organisations and individuals. Prior to the first day of public hearings, the Committee undertook an extensive inspection of the facilities at Lucas Heights. The Committee's main conclusion and recommendations are as follows: 1) A need exists to replace HIFAR with a modern research reactor. The need for the replacement of HIFAR arises as a consequence of national interest considerations, research and development requirements and the need to sustain the local production of radiopharmaceuticals.The comparative costs of locating the replacement research reactor at Lucas Heights or a green fields site favour the former by a considerable margin. The refurbishing HIFAR of would not provide an enhancement of its research and operational capabilities which are considered by the scientific community to be limited. Such limitations have led to a reduction in national research and development opportunities. It is estimated that the new national research reactor must be operational some time before HIFAR is decommissioned. Provided all recommendations and commitments contained in the Environment Assessment Report are implemented during construction and commissioning and for the expected life of the research reactor, the Committee believes, based on the evidence, that all known risks have been identified and their impact on public safety will be as low as technically possible. It is recommended that during the licensing, construction and commissioning phases ANSTO should provide the Committee with six-monthly reports on progress and that removal of

  13. Power probability density function control and performance assessment of a nuclear research reactor

    International Nuclear Information System (INIS)

    Abharian, Amir Esmaeili; Fadaei, Amir Hosein

    2014-01-01

    Highlights: • In this paper, the performance assessment of static PDF control system is discussed. • The reactor PDF model is set up based on the B-spline functions. • Acquaints of Nu, and Th-h. equations solve concurrently by reformed Hansen’s method. • A principle of performance assessment is put forward for the PDF of the NR control. - Abstract: One of the main issues in controlling a system is to keep track of the conditions of the system function. The performance condition of the system should be inspected continuously, to keep the system in reliable working condition. In this study, the nuclear reactor is considered as a complicated system and a principle of performance assessment is used for analyzing the performance of the power probability density function (PDF) of the nuclear research reactor control. First, the model of the power PDF is set up, then the controller is designed to make the power PDF for tracing the given shape, that make the reactor to be a closed-loop system. The operating data of the closed-loop reactor are used to assess the control performance with the performance assessment criteria. The modeling, controller design and the performance assessment of the power PDF are all applied to the control of Tehran Research Reactor (TRR) power in a nuclear process. In this paper, the performance assessment of the static PDF control system is discussed, the efficacy and efficiency of the proposed method are investigated, and finally its reliability is proven

  14. Nuclear reactors

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-10-01

    After some remarks on the nuclear fuel, on the chain reaction control, on fuel loading and unloading, this article proposes descriptions of the design, principles and operations of different types of nuclear reactors as well as comments on their presence and use in different countries: pressurized water reactors (design of the primary and secondary circuits, volume and chemistry control, backup injection circuits), boiling water reactors, heavy water reactors, graphite and boiling water reactors, graphite-gas reactors, fast breeder reactors, and fourth generation reactors (definition, fast breeding). For these last ones, six concepts are presented: sodium-cooled fast reactor, lead-cooled fast reactor, gas-cooled fast reactor, high temperature gas-cooled reactor, supercritical water-cooled reactor, and molten salt reactor

  15. Applications in nuclear data and reactor physics

    International Nuclear Information System (INIS)

    Cullen, D.E.; Muranaka, R.; Schmidt, J.

    1986-01-01

    This book presents the papers given at a conference on reactor kinetics and nuclear data collections. Topics considered at the conference included nuclear data processing, PWR core design calculations, reactor neutron dosimetry, in-core fuel management, reactor safety analysis, transients, two-phase flow, fuel cycles of research reactors, slightly enriched uranium, highly enriched uranium, reactor start-up, computer codes, and the transport of spent fuel elements

  16. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  17. Research reactor's role in Korea

    International Nuclear Information System (INIS)

    Choi, C-O.

    1995-01-01

    After a TRIGA MARK-II was constructed in 1962, new research activity of a general nature, utilizing neutrons, prevailed in Korea. Radioisotopes produced from the MARK-II played a good role in the 1960's in educating people as to what could be achieved by a neutron source. Because the research reactor had implanted neutron science in the country, another TRIGA MARK-III had to be constructed within 10 years after importing the first reactor, due to increased neutron demand from the nuclear community. With the sudden growth of nuclear power, however, the emphasis of research changed. For a while research activities were almost all oriented to nuclear power plant technology. However, the specifics of nuclear power plant technology created a need for a more highly capable research reactor like HANARO 30MWt. HANARO will perform well with irradiation testing and other nuclear programs in the future, including: production of key radioisotopes, doping of silicon by transmutation, neutron activation analysis, neutron beam experiments, cold neutron source. 3 tabs., 2 figs

  18. Sustainable operations in nuclear research reactors. A bibliographical study

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso; Marotti de Mello, Adriana; Tromboni de Souza Nascimento, Paulo

    2017-01-01

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  19. Sustainable operations in nuclear research reactors. A bibliographical study

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Rodrigues de Aquino, Afonso [Cidade Univ., Sao Paolo (Brazil). Inst. de Pesquisas Energeticas e Nucleares; Marotti de Mello, Adriana [Sao Paolo Univ. (Brazil). Faculdade de Economia; Tromboni de Souza Nascimento, Paulo [Sao Paolo Univ. (Brazil). Faculdade de Economia Administracao e Contabilidade

    2017-10-15

    Sustainability is gaining prominence in the area of operations management. By means of a bibliographical research, we identified in literature sustainable operations carried out by operating organizations of nuclear research reactors. The methodology applied consisted in gathering material, descriptive analysis, selection of analytical categories and evaluation of the material collected. The collection of material was performed by a search made on academic and nuclear databases, with keywords structured for the subject of the research. The collected material was analysed and analytical categories on the theme sustainable operations were established. The evaluation of the collected material resulted in references accepted for the study, classified according to the pre-established analytical categories. The results were significant. From then on, a theoretical review on the topic under study was structured, based on pre-defined analytical categories. Thus, we were able to identify gaps in the literature and propose new studies on the subject.

  20. Generic Procedures for Response to a Nuclear or Radiological Emergency at Triga Research Reactors. Attachment 1 (2011)

    International Nuclear Information System (INIS)

    2011-01-01

    The publication provides guidance for response to emergencies at TRIGA research reactors in Threat Category II and III. It contains information on the unique behaviour of TRIGA fuel during accident conditions; it describes design characteristics of TRIGA research reactors and provides specific symptom-based emergency classification for this type of research reactor. This publication covers the determination of the appropriate emergency class and protective actions for a nuclear or radiological emergency at TRIGA research reactors. It does not cover nuclear security at TRIGA research reactors. The term 'threat category' is used in this publication as described in Ref. [6] and for the purposes of emergency preparedness and response only; this usage does not imply that any threat, in the sense of an intention and capability to cause harm, has been made in relation to facilities, activities or sources. The threat category is determined by an analysis of potential nuclear and radiological emergencies and the associated radiation hazard that could arise as a consequence of those emergencies. STRUCTURE. The attachment consists of an introduction which defines the background, objective, scope and structure, two sections covering technical aspects and appendices. Section 2 describes the characteristics of TRIGA fuel in normal and accident conditions. Section 3 contains TRIGA research reactor specific emergency classification tables for Threat Category II and III. These tables should be used instead of the corresponding emergency classification tables presented in Ref. [1] while developing the emergency response arrangements at TRIGA research reactors. The appendices present some historical overview and typical general data for TRIGA research reactor projects and the list of TRIGA installations around the world. The terms used in this document are defined in the IAEA Safety Glossary and the IAEA Code of Conduct on the Safety of Research Reactors.

  1. Experimental and calculational works on characteristics of the Dalat Nuclear Research Reactor. Second edition

    International Nuclear Information System (INIS)

    Pham Ngoc Khoi; Nguyen Kim Dung

    2016-03-01

    Recognizing the significant value and necessity of publishing the scientific document of experimental and calculational works on the Dalat Nuclear Research Reactor (DNRR) physics and engineering for research, operation, training activities as well as for international scientific exchange, Vietnam Atomic Energy Agency (VAEA) and Vietnam Atomic Energy Institute have completed editing to publish the “Experimental and Calculational Works on Characteristics of THE DALAT NUCLEAR RESEARCH REACTOR” which consists of 26 typical papers representing the most important experimental and calculational results of the DNRR physics and engineering obtained during 30 years of operation and exploitation with the contribution of Vietnamese and former USSR’s experts, especially scientists and engineers working at the Reactor Center of the NRI

  2. Nuclear Education and Training Courses as a Commercial Product of a Low Power Research Reactor

    International Nuclear Information System (INIS)

    Böck, H.; Villa, M.; Steinhauser, G.

    2013-01-01

    The Vienna University of Technology (VUT) operates a 250 kW TRIGA Mark II research reactor at the Atominstitut (ATI) since March 1962. This reactor is uniquely devoted to nuclear education and training with the aim to offer an instrument to perform academic research and training. During the past decade a number of requests to the Atominstitut asked for the possibility to offer this reactor for external training courses. Over the years, such courses have been developed as regular courses for students during their academic curricula at the VUT/ATI. The courses cover such subjects as “Reactor physics and kinetics”, and “Reactor instrumentation and control”, in total about 20 practical exercises. Textbooks have been developed in English language for both courses. Target groups for commercial courses are other universities without an access to research reactors (i.e., the Technical University of Bratislava, Slovak Republic, or the University of Manchester, UK), international organisations (i.e., IAEA Dept of Safeguards, training section), research centres (ie. Mol, Belgium) for retraining of their reactor staff or nuclear power plants for staff retraining. These courses have been very successful during the past five years in such a manner that the Atominstitut has now to decline new course applications as the reactor is also used for Masters thesis and PhD work which requires full power operation while courses require low power operation. The paper describes typical training programs, target groups and possible transfers of these courses to other reactors. (author)

  3. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix A, environmental justice analysis. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix A to a draft Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. This appendix addresses environmental justice for the acceptance of foreign research reactor spent nuclear fuel containing uranium enriched in the United States. Analyses of environmental justice concerns are provided in three areas: (1) potential ports of entry, (2) potential transportation routes from candidate ports of entry to interim management sites, and (3) areas surrounding potential interim management sites. These analyses lead to the conclusion that the alternatives analyzed in this Environmental Impact Statement (EIS) would result in no disproportionate adverse effects on minority populations or low-income communities surrounding the candidate ports, transport routes, or interim management sites

  4. Research reactors: design, safety requirements and applications

    International Nuclear Information System (INIS)

    Hassan, Abobaker Mohammed Rahmtalla

    2014-09-01

    There are two types of reactors: research reactors or power reactors. The difference between the research reactor and energy reactor is that the research reactor has working temperature and fuel less than the power reactor. The research reactors cooling uses light or heavy water and also research reactors need reflector of graphite or beryllium to reduce the loss of neutrons from the reactor core. Research reactors are used for research training as well as testing of materials and the production of radioisotopes for medical uses and for industrial application. The difference is also that the research reactor smaller in terms of capacity than that of power plant. Research reactors produce radioactive isotopes are not used for energy production, the power plant generates electrical energy. In the world there are more than 284 reactor research in 56 countries, operates as source of neutron for scientific research. Among the incidents related to nuclear reactors leak radiation partial reactor which took place in three mile island nuclear near pennsylvania in 1979, due to result of the loss of control of the fission reaction, which led to the explosion emitting hug amounts of radiation. However, there was control of radiation inside the building, and so no occurred then, another accident that lead to radiation leakage similar in nuclear power plant Chernobyl in Russia in 1986, has led to deaths of 4000 people and exposing hundreds of thousands to radiation, and can continue to be effect of harmful radiation to affect future generations. (author)

  5. Research of heat releasing element of an active zone of gaseous nuclear reactor with pumped through nuclear fuel - uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Batyrbekov, G.; Batyrbekov, E.; Belyakova, E.; Kunakov, S.; Koltyshev, S.

    1996-01-01

    The purpose of the offered project is learning physics and substantiation of possibility of creation gaseous nuclear reactor with pumped through nuclear fuel-hexafluoride of uranium (Uf6).Main problems of this work are'. Determination of physic-chemical, spectral and optical properties of non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. Research of gas dynamics of laminar, non-mixing two-layer current of gases of hexafluoride of uranium and helium at availability and absence of internal energy release in hexafluoride of uranium with the purpose to determinate a possibility of isolation of hexafluoride of uranium from walls by inert helium. Creation and research of gaseous heat releasing element with pumped through fuel Uf6 in an active zone of research nuclear WWR-K reactor. Objects of a research: Non-equilibrium nuclear - excited plasma of hexafluoride of uranium and its mixtures with other gases. With use of specially created ampoules will come true in-reactor probe and spectral diagnostics of plasma. Calculations of kinetics with the account of main elementary processes proceeding in it, will be carried out. Two-layer non-mixed streams of hexafluoride of uranium and helium at availability and absence of internal energy release. Conditions of obtaining and characteristics of such streams will be investigated. Gaseous heat releasing element with pumped through fuel - Uf6 in an active zone of nuclear WWR-K reactor

  6. TRIGA 14 MW Research Reactor Status and Utilization

    International Nuclear Information System (INIS)

    Barbos, D.; Ciocanescu, M.; Paunoiu, C.

    2016-01-01

    Institute for Nuclear Research is the owner of the largest family TRIGA research reactor, TRIGA14 MW research reactor. TRIGA14 MW reactor was designed to be operated with HEU nuclear fuel but now the reactor core was fully converted to LEU nuclear fuel. The full conversion of the core was a necessary step to ensure the continuous operation of the reactor. The core conversion took place gradually, using fuel manufactured in different batches by two qualified suppliers based on the same well qualified technology for TRIGA fuel, including some variability which might lead to a peculiar behaviour under specific conditions of reactor utilization. After the completion of the conversion a modernization program for the reactor systems was initiated in order to achieve two main objectives: safe operation of the reactor and reactor utilization in a competitive environment to satisfy the current and future demands and requirements. The 14 MW TRIGA research reactor operated by the Institute for Nuclear Research in Pitesti, Romania, is a relatively new reactor, commissioned 37 years ago. It is expected to operate for another 15-20 years, sustaining new fuel and testing of materials for future generations of power reactors, supporting radioisotopes production through the development of more efficient new technologies, sustaining research or enhanced safety, extended burn up and verification of new developments concerning nuclear power plants life extension, to sustain neutron application in physics research, thus becoming a centre for instruction and training in the near future. A main objective of the TRIGA14MW research reactor is the testing of nuclear fuel and nuclear material. The TRIGA 14 MW reactor is used for medical and industrial radioisotopes production ( 131 I, 125 I, 192 Ir etc.) and a method for 99 Mo- 99 Tc production from fission is under development. For nuclear materials properties investigation, neutron radiography methods have been developed in the INR. The

  7. Nuclear reactor kinetics and control

    International Nuclear Information System (INIS)

    Lewins, J.

    1978-01-01

    A consistent, integrated account of modern developments in the study of nuclear reactor kinetics and the problem of their efficient and safe control. It aims to prepare the student for advanced study and research or practical work in the field. Special features include treatments of noise theory, reliability theory and safety related studies. It covers all aspects of the operation and control of nuclear reactors, power and research and is complete in providing physical data methods of calculation and solution including questions of equipment reliability. The work uses illustrations of the main types of reactors in use in the UK, USA and Europe. Each chapter contains problems and worked examples suitable for course work and study. The subject is covered in chapters, entitled: introductory review; neutron and precursor equations; elementary solutions at low power; linear reactor process dynamics with feedback; power reactor control systems; fluctuations and reactor noise; safety and reliability; nonlinear systems (safety and control); analogue computing. (author)

  8. Research reactor job analysis - A project description

    International Nuclear Information System (INIS)

    Yoder, John; Bessler, Nancy J.

    1988-01-01

    Addressing the need of the improved training in nuclear industry, nuclear utilities established training program guidelines based on Performance-Based Training (PBT) concepts. The comparison of commercial nuclear power facilities with research and test reactors owned by the U.S. Department of Energy (DOE), made in an independent review of personnel selection, training, and qualification requirements for DOE-owned reactors pointed out that the complexity of the most critical tasks in research reactors is less than that in power reactors. The U.S. Department of Energy (DOE) started a project by commissioning Oak Ridge Associated Universities (ORAU) to conduct a job analysis survey of representative research reactor facilities. The output of the project consists of two publications: Volume 1 - Research Reactor Job Analysis: Overview, which contains an Introduction, Project Description, Project Methodology,, and. An Overview of Performance-Based Training (PBT); and Volume 2 - Research Reactor Job Analysis: Implementation, which contains Guidelines for Application of Preliminary Task Lists and Preliminary Task Lists for Reactor Operators and Supervisory Reactor Operators

  9. Progress of nuclear safety research, (1)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successively in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also, the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts, and in this Part 1, the reactor safety research is described. The safety of nuclear fuel, the integrity and safety of pressure boundary components, the engineered safety in LOCA, fuel behavior in accident and others are reported. (Kako, I.)

  10. Digital control of research reactors

    International Nuclear Information System (INIS)

    Crump, J.C. III.; Richards, W.J.; Heidel, C.C.

    1991-01-01

    Research reactors provide an important service for the nuclear industry. Developments and innovations used for research reactors can be later applied to larger power reactors. Their relatively inexpensive cost allows research reactors to be an excellent testing ground for the reactors of tomorrow. One area of current interest is digital control of research reactor systems. Digital control systems offer the benefits of implementation and superior system response over their analog counterparts. At McClellan Air Force Base in Sacramento, California, the Stationary Neutron Radiography System (SNRS) uses a 1,000-kW TRIGA reactor for neutron radiography and other nuclear research missions. The neutron radiography beams generated by the reactor are used to detect corrosion in aircraft structures. While the use of the reactor to inspect intact F-111 wings is in itself noteworthy, there is another area in which the facility has applied new technology: the instrumentation and control system (ICS). The ICS developed by General Atomics (GA) contains several new and significant items: (a) the ability to servocontrol on three rods, (b) the ability to produce a square wave, and (c) the use of a software configurator to tune parameters affected by the actual reactor core dynamics. These items will probably be present in most, if not all, future research reactors. They were developed with increased control and overall usefulness of the reactor in mind

  11. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  12. Research reactors

    International Nuclear Information System (INIS)

    Kowarski, L.

    1955-01-01

    It brings together the techniques data which are involved in the discussion about the utility for a research institute to acquire an atomic reactor for research purposes. This type of decision are often taken by non-specialist people who can need a brief presentation of a research reactor and its possibilities in term of research before asking advises to experts. In a first part, it draws up a list of the different research programs which can be studied by getting a research reactor. First of all is the reactor behaviour and kinetics studies (reproducibility factor, exploration of neutron density, effect of reactor structure, effect of material irradiation...). Physical studies includes study of the behaviour of the control system, studies of neutron resonance phenomena and study of the fission process for example. Chemical studies involves the study of manipulation and control of hot material, characterisation of nuclear species produced in the reactor and chemical effects of irradiation on chemical properties and reactions. Biology and medicine research involves studies of irradiation on man and animals, genetics research, food or medical tools sterilization and neutron beams effect on tumour for example. A large number of other subjects can be studied in a reactor research as reactor construction material research, fabrication of radioactive sources for radiographic techniques or applied research as in agriculture or electronic. The second part discussed the technological considerations when choosing the reactor type. The technological factors, which are considered for its choice, are the power of the reactor, the nature of the fuel which is used, the type of moderator (water, heavy water, graphite or BeO) and the reflector, the type of coolants, the protection shield and the control systems. In the third part, it described the characteristics (place of installation, type of combustible and comments) and performance (power, neutron flux ) of already existing

  13. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Ngo Quang Huy; Ha Van Thong; Vu Hai Long; Ngo Phu Khang; Nguyen Nhi Dien; Pham Van Lam; Huynh Dong Phuong; Luong Ba Vien; Le Vinh Vinh

    1994-01-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10 5 /10 8 n/cm 2 /sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to (γ,n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is β B e eff =0.49%β eff for a beryllium weight relative to U 235 fuel of m B e/m U = 8.5. This result is acceptable in comparison to those obtained for other Be-U 235 media. (author). 5 refs., 2 figs., 4 tabs

  14. Selecting of key safety parameters in reactor nuclear safety supervision

    International Nuclear Information System (INIS)

    He Fan; Yu Hong

    2014-01-01

    The safety parameters indicate the operational states and safety of research reactor are the basis of nuclear safety supervision institution to carry out effective supervision to nuclear facilities. In this paper, the selecting of key safety parameters presented by the research reactor operating unit to National Nuclear Safety Administration that can express the research reactor operational states and safety when operational occurrence or nuclear accident happens, and the interrelationship between them are discussed. Analysis shows that, the key parameters to nuclear safety supervision of research reactor including design limits, operational limits and conditions, safety system settings, safety limits, acceptable limits and emergency action level etc. (authors)

  15. RMB. The new Brazilian multipurpose research reactor

    International Nuclear Information System (INIS)

    Perrotta, Jose Augusto; Soares, Adalberto Jose

    2015-01-01

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also presents the

  16. RMB. The new Brazilian multipurpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto; Soares, Adalberto Jose [Comissao Nacional de Energia Nuclear (CNEN) (Brazil)

    2015-01-15

    Brazil has four research reactors (RR) in operation: IEA-R1, a 5 MW pool type RR; IPR-R1, a 100 kW TRIGA type RR; ARGONAUTA, a 500 W Argonaut type RR, and IPEN/MB-01, a 100 W critical facility. The first three were constructed in the 50's and 60's, for teaching, training, and nuclear research, and for many years they were the basic infrastructure for the Brazilian nuclear developing program. The last, IPEN/MB-01, is the result of a national project developed specifically for qualification of reactor physics codes. Considering the relative low power of Brazilian research reactors, with exception of IEAR1, none of the other reactors are feasible for radioisotope production, and even IEA-R1 has a limited capacity. As a consequence, since long ago, 100% of the Mo-99 needed to attend Brazilian nuclear medicine services has been imported. Because of the high dependence on external supply, the international Moly-99 supply crisis that occurred in 2008/2009 affected significantly Brazilian nuclear medicine services, and as presented in previous IAEA events, in 2010 Brazilian government formalized the decision to build a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be a 30 MW open pool type reactor, using low enriched uranium fuel. The facility will be part of a new nuclear research centre, to be built about 100 kilometres from Sao Paulo city, in the southern part of Brazil. The new nuclear research centre will have several facilities, to use thermal and cold neutron beams; to produce radioisotopes; to perform neutron activation analysis; and to perform irradiations tests of materials and fuels of interest for the Brazilian nuclear program. An additional facility will be used to store, for at least 100 years, all the fuel used in the reactor. The paper describes the main characteristics of the new centre, emphasising the research reactor and giving a brief description of the laboratories that will be constructed, It also

  17. From nuclear research to multidisciplinary research

    International Nuclear Information System (INIS)

    Theenhaus, R.; Baurmann, K.W.

    1996-01-01

    Forty years ago, the North Rhine-Westphalian State Government founded the then Juelich Nuclear Research Center. After a growth period of the reactor engineering program until 1980, claiming a share of 42% of R and D resources, that share declined continuously to a present level of 8%. This development is an expression of the activities successfully completed in the past, of progress achieved in industrial reactor development, but also of the fact that the high temperature reactor, which had been run successfully for twenty years, failed as a technical scale THTR-300 version. The Center has reorientated its line of research in a process of structural reshuffle beginning some fifteen years ago and still going on. Information technology, materials research, life sciences, environmental research, and energy technology have become main activities of equal weight. Activities specific to nuclear reactors have been incorporated in this new line of work as nuclear safety research and work on safe repository storage. (orig.) [de

  18. Virtual nuclear reactor for education of nuclear reactor physics

    International Nuclear Information System (INIS)

    Tsuji, Masashi; Narabayashi, Takashi; Shimazu, Youichiro

    2008-01-01

    As one of projects that were programmed in the cultivation program for human resources in nuclear engineering sponsored by the Ministry of Economy, Trade and Industry, the development of a virtual reactor for education of nuclear reactor physics started in 2007. The purpose of the virtual nuclear reactor is to make nuclear reactor physics easily understood with aid of visualization. In the first year of this project, the neutron slowing down process was visualized. The data needed for visualization are provided by Monte Carlo calculations; The flights of the respective neutrons generated by nuclear fissions are traced through a reactor core until they disappear by neutron absorption or slow down to a thermal energy. With this visualization and an attached supplement textbook, it is expected that the learners can learn more clearly the physical implication of neutron slowing process that is mathematically described by the Boltzmann neutron transport equation. (author)

  19. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Pham Van Lam; Le Vinh Vinh; Huynh Ton Nghiem

    2004-01-01

    Requirements of neutron, thermohydraulic and safety analysis calculation are very important because of issuing new version of SAR for DNRR, research on construction of new research reactor and nuclear power plant. Research on application of system of neutron, thermohydraulic and safety analysis codes in order to simulation of the Dalat Nuclear Research Reactor has been done in the frame work of research theme in the year 2002-2003. The purposes of the research are maintaining safety operation of the DNRR and enhancement of man power and calculation and safety analysis tool potential. (author)

  20. New nuclear technologies will help to ensure the public trust and further development of research reactors

    International Nuclear Information System (INIS)

    Miasnikov, S.V.

    2001-01-01

    Decrease of public trust to research reactors causes the concern of experts working in this field. In the paper the reasons of public mistrust to research reactors are given. A new technology of 99 Mo production in the 'Argus' solution reactor developed in the Russian Research Centre 'Kurchatov Institute' is presented as an example assisting to eliminate these reasons. 99 Mo is the most widespread and important medical isotope. The product received employing a new technology completely meets the international specifications. Besides, the proposed technology raises the efficiency of 235 U consumption practically up to 100% and allows using a reactor with power 10 and more times lower than that in the target technology. The developed technology meets the requirements of the community to nuclear safety of manufacture, reduction of radioactive waste and non-proliferation of nuclear materials. (author)

  1. Improvement of research reactor sustainability

    International Nuclear Information System (INIS)

    Ciocanescu, M.; Paunoiu, C.; Toma, C.; Preda, M.; Ionila, M.

    2010-01-01

    The Research Reactors as is well known have numerous applications in a wide range of science technology, nuclear power development, medicine, to enumerate only the most important. The requirements of clients and stack-holders are fluctuating for the reasons out of control of Research Reactor Operating Organization, which may ensure with priority the safety of facility and nuclear installation. Sustainability of Research Reactor encompasses several aspects which finally are concentrated on safety of Research Reactor and economical aspects concerning operational expenses and income from external resources. Ensuring sustainability is a continuous, permanent activity and also it requests a strategic approach. The TRIGA - 14 MW Research Reactor detains a 30 years experience of safe utilization with good performance indicators. In the last 4 years the reactor benefited of a large investment project for modernization, thus ensuring the previous performances and opening new perspectives for power increase and for new applications. The previous core conversion from LEU to HEU fuel accomplished in 2006 ensures the utilization of reactor based on new qualified European supplier of TRIGA LEU fuel. Due to reduction of number of performed research reactors, the 14 MW TRIGA modernized reactor will play a significant role for the following two decades. (author)

  2. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  3. Digital computer control of a research nuclear reactor

    International Nuclear Information System (INIS)

    Crawford, Kevan

    1986-01-01

    Currently, the use of digital computers in energy producing systems has been limited to data acquisition functions. These computers have greatly reduced human involvement in the moment to moment decision process and the crisis decision process, thereby improving the safety of the dynamic energy producing systems. However, in addition to data acquisition, control of energy producing systems also includes data comparison, decision making, and control actions. The majority of the later functions are accomplished through the use of analog computers in a distributed configuration. The lack of cooperation and hence, inefficiency in distributed control, and the extent of human interaction in critical phases of control have provided the incentive to improve the later three functions of energy systems control. Properly applied, centralized control by digital computers can increase efficiency by making the system react as a single unit and by implementing efficient power changes to match demand. Additionally, safety will be improved by further limiting human involvement to action only in the case of a failure of the centralized control system. This paper presents a hardware and software design for the centralized control of a research nuclear reactor by a digital computer. Current nuclear reactor control philosophies which include redundancy, inherent safety in failure, and conservative yet operational scram initiation were used as the bases of the design. The control philosophies were applied to the power monitoring system, the fuel temperature monitoring system, the area radiation monitoring system, and the overall system interaction. Unlike the single function analog computers that are currently used to control research and commercial reactors, this system will be driven by a multifunction digital computer. Specifically, the system will perform control rod movements to conform with operator requests, automatically log the required physical parameters during reactor

  4. Thermohydraulic characteristics under some transient conditions of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang; Khang, Ngo Phu; An, Tran Khac; Nghiem, Huynh Ton [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Some experimental and theoretical thermal hydraulic characteristics of the Dalat Nuclear Research Reactor are presented, together with some general assessments, from a thermal hydraulic point of view, of its safety under transient conditions. (author). 3 refs., 9 figs., 7 tabs.

  5. Radiation exposures associated with shipments of foreign research reactor spent nuclear fuel

    International Nuclear Information System (INIS)

    Massey, C.D.; Messick, C.E.; Mustin, T.

    1999-01-01

    In accordance with the Record of Decision on a Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (ROD) (DOE, 1996a), the U.S. Department of Energy (DOE) is implementing a 13-year program under which DOE accepts foreign research reactor spent nuclear fuel (SNF) containing uranium that was enriched in the United States. The ROD required that DOE take several steps to ensure low environmental and health impacts resulting from the implementation of the program. These efforts mainly focus on transportation related activities that the analysis of potential environmental impacts in the Environmental Impact Statement on a Proposed Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel (EIS) (DOE, 1996b) identified as having the potential for exceeding current radiation protection guidelines. Consequently, DOE issued a Mitigation Action Plan to reduce the likelihood of potential adverse environmental impacts associated with the policy established in the ROD. As shown in the EIS, incident-free radiation exposures to members of the ship's crew, port workers, and ground transportation personnel due to shipments of spent nuclear fuel from foreign research reactors are expected to be below the radiation exposure limit of 100 mrem (1 mSv) per year established to protect the general public. However, the analysis in the EIS demonstrated that port and transportation workers could conceivably receive a cumulative radiation dose above the limit established for the general public if, for example, they are involved in multiple shipments within one year or if the radiation levels outside the casks are at the maximum allowable regulatory limit (10 mrem/hr [0.1 mSv/h] at 2 meters from the surface of the cask). With the program successfully underway, DOE has collected information from the shipments in accordance with the Mitigation Action Plan. The information to date has demonstrated that the analysis in

  6. Status report of the program on neutron beam utilization at the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Vuong Huu Tan

    1996-08-01

    The thermal reactor is an intense source not only of thermal neutron, but also intermediate as well as fast neutrons. Using the filtered neutron beam technique at steady state atomic reactor allows receiving the neutrons in the intermediate energy region with the most available intense flux at present. In the near time at the Dalat reactor the filtered neutron beam technique has been applied. Utilization of the filtered neutron beams in basic and applied researches has been a important activity of the Dalat Nuclear Research Institute (DNRI). This report presents some relevant characteristics of the filtered neutron beams and their utilization in nuclear data measurements, neutron capture gamma ray spectroscopy, neutron radiography, neutron dose calibration and other applications. (author). 3 refs, 2 figs

  7. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  8. The research reactors their contribution to the reactors physics

    International Nuclear Information System (INIS)

    Barral, J.C.; Zaetta, A.; Johner, J.; Mathoniere, G.

    2000-01-01

    The 19 october 2000, the french society of nuclear energy organized a day on the research reactors. This associated report of the technical session, reactors physics, is presented in two parts. The first part deals with the annual meeting and groups general papers on the pressurized water reactors, the fast neutrons reactors and the fusion reactors industry. The second part presents more technical papers about the research programs, critical models, irradiation reactors (OSIRIS and Jules Horowitz) and computing tools. (A.L.B.)

  9. Planning and management for the decommissioning of research reactors and other small nuclear facilities

    International Nuclear Information System (INIS)

    1993-01-01

    Many research reactors and other small nuclear facilities throughout the world date from the original nuclear research programmes in the Member States. Consequently, a large number of these plants have either been retired from service or will soon reach the end of their useful lives and are likely to become significant decommissioning tasks for those Members States. In recognition of this situation and in response to considerable interest shown by Member States, the IAEA has produced this document on planning and management for the decommissioning of research reactors and other small nuclear facilities. While not directed specifically at large nuclear installations, it is likely that much of the information presented will also be of interest to those involved in the decommissioning of such facilities. Current views, information and experience on the planning and management of decommissioning projects in Member States were collected and assessed during a Technical Committee Meeting held by the IAEA in Vienna from 29 July to 2 August 1991. It was attended by 22 participants from 14 Member States and one international organization. 28 refs, 2 figs, 3 tabs

  10. Neutronic design of a 22 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.; Soleman, I.; Ghazi, N.

    2008-01-01

    The neutronic design calculations of a 22 MW MTR type nuclear research reactor are conducted in this project. This reactor type is selected by the Arab Atomic Energy Commission in a cooperated project. The design calculations are conducted in two methods: The deterministic method, solving the neutron transport and diffusion equations using the WIMSD4 and the CITATION codes, and the probabilistic method using the MCNP code. Good agreements are noticed between the results of the multiplication factor and the neutron flux distribution which prove the accuracy of our models using the two methods. (authors)

  11. Neutronic design of a 22 MW MTR type nuclear research reactor

    International Nuclear Information System (INIS)

    Khamis, I.; Khattab, K.; Soleman, I.; Ghazi, N.

    2006-12-01

    The neutronic design calculations of a 22 MW MTR type nuclear research reactor are conducted in this project. This reactor type is selected by the Arab Atomic Energy Commission in a cooperated project. The design calculations are conducted in two methods: The deterministic method, solving the neutron transport and diffusion equations using the WIMSD4 and the CITATION codes, and the probabilistic method using the MCNP code. Good agreements are noticed between the results of the multiplication factor and the neutron flux distribution which prove the accuracy of our models using the two methods. (author)

  12. Delayed photoneutrons of the of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Khang, Ngo Phu; Dien, Nguyen Nhi; Lam, Pham Van; Phuong, Huynh Dong; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    Time spectrum of delayed neutrons of the Dalat nuclear research reactor is measured and analyzed. It corresponds to a shut-down neutron fluxes of about 10{sup 5}/10{sup 8} n/cm{sup 2}/sec after 100 hours continuous reactor operation at steady power level of 500 kW. Data processing of experimental time neutron spectrum gives 16 exponents, of which 10, resulting from photoneutrons due to ({gamma},n) reactions on beryllium used inside the reactor core, are obtained by using successive exponential stripping fitting method. For the Dalat reactor, the effective delayed photoneutron fraction relative to the total effective delayed neutron fraction is {beta}{sup B}e{sub eff}=0.49%{beta}{sub eff} for a beryllium weight relative to U{sup 235} fuel of m{sub B}e/m{sub U} = 8.5. This result is acceptable in comparison to those obtained for other Be-U{sup 235} media. (author). 5 refs., 2 figs., 4 tabs.

  13. Current status and prospects of research reactors

    International Nuclear Information System (INIS)

    Gabaraev, A.B.; Cherepnin, Yu.S.; Tretyakov, I.T.; Khmelshikov, V.V.; Dollezhal, N.A.

    2009-01-01

    Full text: The first nuclear research reactors (RR) appeared in the 1940s. Their initial purpose was to provide knowledge of the main processes associated with neutron-induced nuclear reactions. Later, the rang of problems addressed expanded substantially. Besides fundamental research in the properties of matter, such reactors are successfully used for dealing with problems in the fields of materials science, nuclear engineering, medicine, isotope production, education, etc. Over the whole period of RR fleet growth, more than six hundred nuclear research facilities were built in 70 countries of the world. As of the end of 2008, the number of Russian research reactors in service was about 20% of the globally operating RR fleet. This paper discusses the current status of the world's RR fleet and describes the capabilities of the experimental reactor facilities existing in Russia. In the 21st century, research reactors will remain in demand to solve scientific and technological problems for innovative development of society. The emerging renaissance of nuclear power, the expanding RR uses for production of isotopes and other applications, the increase in the number of countries willing to use nuclear technologies in energy production, industry and science - all contribute to a rebirth of interest in research reactors. One of the ways to improve the experimental capabilities lies in radical upgrading of the reactor facilities with qualitative changes in the main neutronic characteristics of the core. The associated design approaches are illustrated with the example of the IBR-2M reactor at the JNRI in Dubna. The imperative need restricting the spread of nuclear threat leads us to give up using highly enriched uranium in most research reactors. Development of RR fuel with reduced enrichment in uranium has been one of the priority objectives of NIKIET for many years. This paper presents the latest results obtained along these lines, as applied to pool-type research

  14. Research and materials irradiation reactors

    International Nuclear Information System (INIS)

    Ballagny, A.; Guigon, B.

    2004-01-01

    Devoted to the fundamental and applied research on materials irradiation, research reactors are nuclear installations where high neutrons flux are maintained. After a general presentation of the research reactors in the world and more specifically in France, this document presents the heavy water cooled reactors and the water cooled reactors. The third part explains the technical characteristics, thermal power, neutron flux, operating and details the Osiris, the RHF (high flux reactor), the Orphee and the Jules Horowitz reactors. The last part deals with the possible utilizations. (A.L.B.)

  15. Wind rose and Radionuclide Dispersion Modelling for Nuclear Malaysia Research Reactor

    International Nuclear Information System (INIS)

    Mohd Nahar Othman

    2015-01-01

    After the incident of radioactive gasses released to the environment because of unusual earthquake and tsunamis happen in Fukushima, Japan. The problem of release of radiological radionuclide became deep concern and serious problem to the world community. The incident course almost all nuclear power plant in Japan cannot operate because opposition from local people. From this point of view Malaysian Nuclear agency don't left behind in doing it research in release of radionuclide from it research reactor, in the meantime new wind rose data had been collected from 2013 to 2014. This paper will present the new radionuclide release including the new dispersion modelling that had been developed. (author)

  16. Research nuclear reactors and their role in nuclear-power program; Istrazivacki nuklearni reaktori i njihova uloga u nuklearno-energetskom programu

    Energy Technology Data Exchange (ETDEWEB)

    Sotic, O [Boris Kidric Institute of nuclear sciences, Vinca, Belgrade (Yugoslavia)

    1980-07-01

    This paper deals with the role of experimental and research reactors in the nuclear power program. In addition to the overall analysis it contains more detailed description of experimental possibilities and operation properties of reactors RA, RB in Vinca, Belgrade and TRIGA in Ljubljana.

  17. New research possibilities at the Budapest research reactor

    International Nuclear Information System (INIS)

    Hargitai, T.; Vidovszky, I.

    2001-01-01

    The Budapest Research Reactor is the first nuclear facility of Hungary. It was commissioned in 1959, reconstructed and upgraded in 1967 and 1986-92. The main purpose of the reactor is to serve neutron research. The reactor was extended by a liquid hydrogen type cold neutron source in 2000. The research possibilities are much improved by the CNS both in neutron scattering and neutron activation. (author)

  18. Availability analysis of the nuclear instrumentation of a research reactor; Analise da disponibilidade da instrumentacao nuclear de um reator de pesquisa

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Filho, Alfredo Marques

    2016-07-01

    The maintenance of systems and equipment is a central question related to Production Engineering. Although systems are not fully reliable, it is often necessary to minimize the failure occurrence likelihood. The failures occurrences can have disastrous consequences during a plane flight or operation of a nuclear power plant. The elaboration of a maintenance plan has as objective the prevention and recovery from system failures, increasing reliability and reducing the cost of unplanned shutdowns. It is also important to consider the issues related to organizations safety, especially those dealing with dangerous technologies. The objective of this thesis is to propose a method for maintenance analysis of a nuclear research reactor, using a socio-technical approach, and focused on existing conditions in Brazil. The research reactor studied belongs to the federal government and it is located in the city of Rio de Janeiro. The specific objective of this thesis is to develop the availability analysis of one of the principal systems of the research reactor, the nuclear instrumentation system. In this analysis, were taken into account not only the technical aspects of the modules related to nuclear instrumentation system, but also the human and organizational factors that could affect the availability of the nuclear instrumentation system. The results showed the influence of these factors on the availability of the nuclear instrumentation system. (author)

  19. Water cooled reactor technology: Safety research abstracts no. 1

    International Nuclear Information System (INIS)

    1990-01-01

    The Commission of the European Communities, the International Atomic Energy Agency and the Nuclear Energy Agency of the OECD publish these Nuclear Safety Research Abstracts within the framework of their efforts to enhance the safety of nuclear power plants and to promote the exchange of research information. The abstracts are of nuclear safety related research projects for: pressurized light water cooled and moderated reactors (PWRs); boiling light water cooled and moderated reactors (BWRs); light water cooled and graphite moderated reactors (LWGRs); pressurized heavy water cooled and moderated reactors (PHWRs); gas cooled graphite moderated reactors (GCRs). Abstracts of nuclear safety research projects for fast breeder reactors are published independently by the Nuclear Energy Agency of the OECD and are not included in this joint publication. The intention of the collaborating international organizations is to publish such a document biannually. Work has been undertaken to develop a common computerized system with on-line access to the stored information

  20. Conceptual Study for development of a low power research reactor

    International Nuclear Information System (INIS)

    Park, C.; Kim, H. S.; Park, J. H.; Chae, H. T.; Lee, B. C.

    2013-01-01

    Even though the nuclear society is again facing with difficult situations after Fukusima accident, some countries still continues to consider nuclear power as one option of national energy sources and to introduce nuclear energy. As a research reactor has been regarded as a step-stone to establish infrastructures for the nuclear power development program, some countries that have plan to introduce the nuclear power energy are considering to construct a research reactor. Particularly, a low power research reactor whose main purpose is basic researches on the nuclear technology and education/training would be of interest to developing countries when taking the economy and level of science and technology into consideration. And many low power research reactors at operation are obsolescent and their numbers are decreasing. Hence, some concepts on a low power research reactor are being studied for the future needs. This paper presents the conceptual study on the basic requirements and the preliminary design features of a low power research reactor

  1. Nuclear reactor kinetics and plant control

    CERN Document Server

    Oka, Yoshiaki

    2013-01-01

    Understanding time-dependent behaviors of nuclear reactors and the methods of their control is essential to the operation and safety of nuclear power plants. This book provides graduate students, researchers, and engineers in nuclear engineering comprehensive information on both the fundamental theory of nuclear reactor kinetics and control and the state-of-the-art practice in actual plants, as well as the idea of how to bridge the two. The first part focuses on understanding fundamental nuclear kinetics. It introduces delayed neutrons, fission chain reactions, point kinetics theory, reactivit

  2. The Research on Operation Strategy of Nuclear Power Plant with Multi-reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Maoyao; Peng, Minjun; Cheng Shouyu [Harbin Engineering University, Harbin (China)

    2014-08-15

    In this paper, the operation characteristics and control strategy of nuclear power plant (NPP) with multi-modular pressurized water reactors (PWR) were researched through simulation. The main objective of this research was to ensure the coordinated operation and satisfy the convenience of turbine-generator and reactor's load adjustment in NPP with multi-reactors (MR). According to the operation characteristics of MR-NPP, the operation and control strategy was proposed, which was 'he average allocation of load for each reactor and maintaining average temperature of coolant at a constant? The control system was designed based the operation and control strategy. In order to research the operation characteristics and control strategy of MR-NPP, the paper established the transient analysis model which included the reactors and thermal hydraulic models, turbine model, could simulate and analyze on different operating conditions such as load reducing, load rising. Based on the proposed operation and control strategy and simulation models, the paper verified and validated the operation strategy and control system through load reducing, load rising. The results of research simulation showed that the operation strategy was feasible and can make the MR-NPP running safely as well as steadily on different operating conditions.

  3. The Research on Operation Strategy of Nuclear Power Plant with Multi-reactors

    International Nuclear Information System (INIS)

    Fang, Maoyao; Peng, Minjun; Cheng Shouyu

    2014-01-01

    In this paper, the operation characteristics and control strategy of nuclear power plant (NPP) with multi-modular pressurized water reactors (PWR) were researched through simulation. The main objective of this research was to ensure the coordinated operation and satisfy the convenience of turbine-generator and reactor's load adjustment in NPP with multi-reactors (MR). According to the operation characteristics of MR-NPP, the operation and control strategy was proposed, which was 'he average allocation of load for each reactor and maintaining average temperature of coolant at a constant? The control system was designed based the operation and control strategy. In order to research the operation characteristics and control strategy of MR-NPP, the paper established the transient analysis model which included the reactors and thermal hydraulic models, turbine model, could simulate and analyze on different operating conditions such as load reducing, load rising. Based on the proposed operation and control strategy and simulation models, the paper verified and validated the operation strategy and control system through load reducing, load rising. The results of research simulation showed that the operation strategy was feasible and can make the MR-NPP running safely as well as steadily on different operating conditions

  4. Efforts onto nuclear research and development such as new reactor and so forth

    International Nuclear Information System (INIS)

    Onishi, Tuneji

    2000-01-01

    The Japan Atomic Power Co. which is one of specified business company on nuclear power generation, has carried out construction and operation of power plants with different types of reactor such as boiling light water reactor (BWR), pressurized light water rector (PWR), and so forth. And, by actively using technical powers and experiences accumulated before then, additional construction of a new power unit, and researches and developments on a simplified light water reactor, a future type rector, and a high breeder proof reactor have been made some efforts. Here were introduced some outlines on development of an improved type PWR, development of a new type reactor for example, deep embedded plant), future type reactor (for example, revolutionary middle and small type reactor, simplified PWR, and simplified BWR), a fast breeder reactor, and a reactor building suitable for a ship shell structure. (G.K.)

  5. Nuclear non-proliferation: the U.S. obligation to accept spent fuel from foreign research reactors

    International Nuclear Information System (INIS)

    Shapar, Howard K.; Egan, Joseph R.

    1995-01-01

    The U.S. Department of Energy (DOE) had a 35-year program for the sale and receipt (for reprocessing) of high-enriched research reactor fuel for foreign research reactors, executed pursuant to bilateral agreements with nuclear trading partners. In 1988, DOE abruptly let this program lapse, citing environmental obstacles. DOE promised to renew the program upon completion of an environmental review which was to take approximately six months. After three and a half years, an environmental assessment was finally produced.Over a year and half elapsed since publication of the assessment before DOE finally took action to renew the program. The paper sets forth the nuclear non-proliferation and related foreign policy considerations which support renewal of the program. It also summarized the contractual and other commitments made to foreign research reactors and foreign governments and aspects of U.S. environmental law as they apply to continuation of the program. (author)

  6. Current status and ageing management of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Nhi Dien [Nuclear Research Institute, Dalat (Viet Nam)

    2000-10-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor loaded with the Soviet WWR-M2 fuel elements, moderated and cooled by light water. It was reconstructed and upgraded from the former 250 kW TRIGA Mark-II reactor built in 1963. The first criticality of the renovated reactor was in November 1983 and it has been put in regular operation at nominal power since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs every 4 weeks, for radioisotope production, neutron activation analyses and other research purposes. The remaining time is devoted to maintenance work and to short runs for reactor physics studies as well. From its first start-up to the end of 1998, it totaled about 20,000 hrs of operation at nominal power. After ten years of operation, reactor general inspection and refurbishment were implemented in the 1992-1996 period. In April 1994, refueling work was executed with adding of 11 fresh fuel elements to the reactor core. At present, the reactor has been working with 100-fuel element configuration. Corrosion study has been implemented by visual inspection of the reactor pool tank and some other inside components which remain unchanged from the previous TRIGA reactor. The inspections were carried out with the assistance of some experts from other countries. Some visual inspection results have been obtained and the nature of the electrochemical corrosion and related aspects were little by little identified. In this paper, the operation status of the Dalat reactor is presented, and some activities related to the ageing management of the reactor pool tank and its inside components are also discussed. (author)

  7. Current status and ageing management of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Nguyen Nhi Dien

    2000-01-01

    The Dalat Nuclear Research Reactor (DNRR) is a 500 kW swimming pool type reactor loaded with the Soviet WWR-M2 fuel elements, moderated and cooled by light water. It was reconstructed and upgraded from the former 250 kW TRIGA Mark-II reactor built in 1963. The first criticality of the renovated reactor was in November 1983 and it has been put in regular operation at nominal power since March 1984. The DNRR is operated mainly in continuous runs of 100 hrs every 4 weeks, for radioisotope production, neutron activation analyses and other research purposes. The remaining time is devoted to maintenance work and to short runs for reactor physics studies as well. From its first start-up to the end of 1998, it totaled about 20,000 hrs of operation at nominal power. After ten years of operation, reactor general inspection and refurbishment were implemented in the 1992-1996 period. In April 1994, refueling work was executed with adding of 11 fresh fuel elements to the reactor core. At present, the reactor has been working with 100-fuel element configuration. Corrosion study has been implemented by visual inspection of the reactor pool tank and some other inside components which remain unchanged from the previous TRIGA reactor. The inspections were carried out with the assistance of some experts from other countries. Some visual inspection results have been obtained and the nature of the electrochemical corrosion and related aspects were little by little identified. In this paper, the operation status of the Dalat reactor is presented, and some activities related to the ageing management of the reactor pool tank and its inside components are also discussed. (author)

  8. Maintenance management of nuclear power reactors at the stage of research and development

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Chikazawa, Yoshitaka; Kubo, Shigenobu; Hayashida, Kiichi; Tagawa, Akihiro; Yamashita, Atsushi

    2016-07-01

    A maintenance management required to nuclear power reactors at the R and D stage was discussed in this report. It is the most important to ensure safety of nuclear power plants by taking account of characteristics of nuclear power reactors at the R and D stage. In addition, it is needed to establish a system of maintenance management technologies suitable for reactor types. In this report, objectives of maintenance management of nuclear power reactors at the R and D stage were clarified. Next, requirements and consideration for maintenance management of nuclear power reactors at the R and D stage were discussed according to the objectives. 'Code for Maintenance at Nuclear Power Plants' and 'Guide for Maintenance at Nuclear Power Plants' published by the Japan Electric Association were refereed in the discussion. Then, a draft of codes for maintenance management of nuclear power plants at the R and D stage was newly proposed. Finally, an example that the draft codes were applied to components containing sodium, typical components of sodium-cooled fast reactor, was presented. (author)

  9. Future plant of basic research for nuclear energy by university researchers

    International Nuclear Information System (INIS)

    Shibata, Toshikazu

    1984-01-01

    National Committee for Nuclear Energy Research, Japan Science Council has completed a future plan for basic nuclear energy research by university researchers. The JSC has recommended the promotion of basic research for nuclear energy based on the plan in 1983. The future plan consists of four main research fields, namely, (1) improvements of reactor safety, (2) down stream, (3) thorium fuel reactors, and (4) applications of research reactor and radioisotopes. (author)

  10. Energy Research Advisory Board, Civilian Nuclear Power Panel: Subpanel 1 report, Light water reactor utilization and improvement: Volume 2

    International Nuclear Information System (INIS)

    1986-10-01

    The Secretary of Energy requested that the Office of Nuclear Energy prepare a strategic national plan that outlines the Department's role in the future development of civilian nuclear power and that the Energy Research Advisory Board establish an ad hoc panel to review and comment on this plan. The Energy Research Advisory Board formed a panel for this review and three subpanels were formed. One subpanel was formed to address the institutional issues surrounding nuclear power, one on research and development for advanced nuclear power plants and a third subpanel on light water reactor utilization and improvement. The subpanel on light water reactors held two meetings at which representatives of the DOE, the NRC, EPRI, industry and academic groups made presentations. This is the report of the subpanel on light water reactor utilization and improvement. This report presents the subpanel's assessment of initiatives which the Department of Energy should undertake in the national interest, to develop and support light water reactor technologies

  11. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  12. The market for research reactors

    International Nuclear Information System (INIS)

    Roegler, H.J.

    1986-01-01

    The assay deals with some basic questions if there is an international market for research reactors at all, which influencing factors affect this market, and if research reactors have any effects on the future market for nuclear engineering. (UA) [de

  13. Euratom contributions in Fast Reactor research programmes

    International Nuclear Information System (INIS)

    Fanghänel, Th.; Somers, J.

    2013-01-01

    The Sustainable Nuclear Initiative: • demonstrate long-term sustainability of nuclear energy; • demonstration reactors of Gen IV: •more efficient use of resources; • closed fuel cycle; • reduced proliferation risks; • enhanced safety features. • Systems pursued in Europe: • Sodium-cooled fast reactor SFR; • Lead-cooled fast reactor LFR; • Gas-cooled fast reactor GFR. Sustainable Nuclear Energy Technology Platform SNE-TP promotes research, development and demonstration of the nuclear fission technologies necessary to achieve the SET-Plan goals

  14. Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors' spent fuel

    International Nuclear Information System (INIS)

    1994-01-01

    One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE's Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE's efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE's activities in taking back spent fuel

  15. Regulatory Framework for Controlling the Research Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2009-01-01

    Decommissioning is one of important stages in construction and operation of research reactors. Currently, there are three research reactors operating in Indonesia. These reactors are operated by the National Nuclear Energy Agency (BATAN). The age of the three research reactors varies from 22 to 45 years since the reactors reached their first criticality. Regulatory control of the three reactors is conducted by the Nuclear Energy Regulatory Agency (BAPETEN). Controlling the reactors is carried out based on the Act No. 10/1997 on Nuclear Energy, Government Regulations and BAPETEN Chairman Decrees concerning the nuclear safety, security and safeguards. Nevertheless, BAPETEN still lack of the regulation, especially for controlling the decommissioning project. Therefore, in the near future BAPETEN has to prepare the regulations for decommissioning, particularly to anticipate the decommissioning of the oldest research reactors, which probably will be done in the next ten years. In this papers author give a list of regulations should be prepared by BAPETEN for the decommissioning stage of research reactor in Indonesia based on the international regulatory practice

  16. Building on success. The foreign research reactor spent nuclear fuel acceptance program

    International Nuclear Information System (INIS)

    Huizenga, David G.; Mustin, Tracy P.; Saris, Elizabeth C.; Massey, Charles D.

    1998-01-01

    The second year of implementation of the research reactor spent nuclear fuel acceptance program was marked by significant challenges and achievements. In July 1998, the Department of Energy completed by significant challenges and achievements. In July 1998, the Department of Energy completed its first shipment of spent fuel from Asia via the Concord Naval Weapons Station in California to the Idaho National Engineering and Environmental (INEEL). This shipment, which consisted of three casks of spent nuclear fuel from two research reactors in the Republic of Korea, presented significant technical, legal, and political challenges in the United States and abroad. Lessons learned will be used in the planning and execution of our next significant milestone, a shipment of TRIGA spent fuel from research reactors in Europe to INEEL, scheduled for the summer of 1999. This shipment will include transit across the United States for over 2,000 miles. Other challenges and advances include: clarification of the fee policy to address changes in the economic status of countries during the life of the program; resolution of issues associated with cask certification and the specific types and conditions of spent fuel proposed for transport; revisions to standard contract language in order to more clearly address unique shipping situations; and priorization and scheduling of shipments to most effectively implement the program. As of this meeting, eight shipments, consisting of nearly 2,000 spent fuel assemblies from fifteen countries, have been successfully completed. With the continued cooperation of the international research reactor community, we are committed to building on this success in the remaining years of the program. (author)

  17. Application of research reactors for radiation education

    International Nuclear Information System (INIS)

    Ito, Yasuo; Harasawa, Susumu; Hayashi, Shu A.; Tomura, Kenji; Matsuura, Tatsuo; Nakanishi, Tomoko M.; Yamamoto, Yusuke

    1999-01-01

    Nuclear research Reactors are, as well as being necessary for research purposes, indispensable educational tools for a country whose electric power resources are strongly dependent on nuclear energy. Both large and small research reactors are available, but small ones are highly useful from the viewpoint of radiation education. This paper oders a brief review of how small research reactors can, and must, be used for radiation education for high school students, college and graduate students, as well as for the public. (author)

  18. Application of research reactors for radiation education

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Yasuo [Tokyo Univ. (Japan). Research Center for Nuclear Science and Technology; Harasawa, Susumu; Hayashi, Shu A.; Tomura, Kenji; Matsuura, Tatsuo; Nakanishi, Tomoko M.; Yamamoto, Yusuke

    1999-09-01

    Nuclear research Reactors are, as well as being necessary for research purposes, indispensable educational tools for a country whose electric power resources are strongly dependent on nuclear energy. Both large and small research reactors are available, but small ones are highly useful from the viewpoint of radiation education. This paper oders a brief review of how small research reactors can, and must, be used for radiation education for high school students, college and graduate students, as well as for the public. (author)

  19. On the utilization of neutron beams of research reactors in research and applications

    International Nuclear Information System (INIS)

    FAYEK, M.K.

    2000-01-01

    Nuclear research reactors are the most widely available neutron sources, and they are capable of producing very high fluxes of neutrons having a considerable range of energies, from a few MeV to 10 MeV. Therefore, these neutrons can be used in many fields of basic research and for applications in physics, chemistry, medicine, biology, etc. Experiments with research reactors over the last 50 years have laid the foundations of today's nuclear technology. In addition, research reactors continue to be utilized as facilities for testing materials and in training manpower for nuclear programs, because basic training on a research reactor provides an essential understanding of the nuclear process, and personnel become accustomed to work under the special conditions resulting from irradiation and contamination risks

  20. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    International Nuclear Information System (INIS)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim; Ashoub, Nagieb

    2015-01-01

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  1. Design and implementation progress of multi-purpose simulator for nuclear research reactor using LabVIEW

    Energy Technology Data Exchange (ETDEWEB)

    Arafa, Amany Abdel Aziz; Saleh, Hassan Ibrahim [Atomic Energy Authority, Cairo (Egypt). Radiation Engineering Dept.; Ashoub, Nagieb [Atomic Energy Authority, Cairo (Egypt). Nuclear Research Center

    2015-11-15

    This paper illustrates the neutronic and thermal hydraulic models that were implemented in the nuclear research reactor simulator based on LabVIEW. It also describes the system and transient analysis of the simulator that takes into consideration the temperature effects and poisoning. This simulator is designed to be a multi-purpose in which the operator could understand the effects of the input parameters on the reactor. A designer can study different solutions for virtual reactor accident scenarios. The main features of the simulator are the flexibility to design and maintain the interface and the ability to redesign and remodel the reactor core engine. The developed reactor simulator permits to acquire hands-on the experience of the physics and technology of nuclear reactors including reactivity control, thermodynamics, technology design and safety system design. This simulator can be easily customizable and upgradable and new opportunities for collaboration between academic groups could be conducted.

  2. Safety status of Russian research reactors

    International Nuclear Information System (INIS)

    Morozov, S.I.

    2001-01-01

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety at nuclear research facilities, including research reactors, critical assemblies and sub-critical assemblies. It implies implementing three major activities: 1) establishing the laws and safety standards in the field of research reactors nuclear and radiation safety; 2) research reactors licensing; and 3) inspections (or license conditions tracking and inspection). The database on nuclear research facilities has recently been updated based on the actual status of all facilities. It turned out that many facilities have been shutdown, whether temporary or permanently, waiting for the final decision on their decommissioning. Compared to previous years the situation has been inevitably changing. Now we have 99 nuclear research facilities in total under Gosatomnadzor of Russia supervision (compared to 113 in previous years). Their distribution by types and operating organizations is presented. The licensing and conduct of inspection processes are briefly outlined with emphasis being made on specific issues related to major incidents that happened in 2000, spent fuel management, occupational exposure, effluents and emissions, emergency preparedness and physical protection. Finally, a summary of problems at current Russian research facilities is outlined. (author)

  3. New research reactor for Australia

    International Nuclear Information System (INIS)

    Miller, R.

    1992-01-01

    HIFAR, Australia's major research reactor was commissioned in 1958 to test materials for an envisaged indigenous nuclear power industry. HIFAR is a Dido type reactor which is operated at 10 MW. With the decision in the early 1970's not to proceed to nuclear power, HIFAR was adapted to other uses and has served Australia well as a base for national nuclear competence; as a national facility for neutron scattering/beam research; as a source of radioisotopes for medical diagnosis and treatment; and as a source of export revenue from the neutron transmutation doping of silicon for the semiconductor industry. However, all of HIFAR's capabilities are becoming less than optimum by world and regional standards. Neutron beam facilities have been overtaken on the world scene by research reactors with increased neutron fluxes, cold sources, and improved beams and neutron guides. Radioisotope production capabilities, while adequate to meet Australia's needs, cannot be easily expanded to tap the growing world market in radiopharmaceuticals. Similarly, neutron transmutation doped silicon production, and export income from it, is limited at a time when the world market for this material is expanding. ANSTO has therefore embarked on a program to replace HIFAR with a new multi-purpose national facility for nuclear research and technology in the form of a reactor: a) for neutron beam research, - with a peak thermal flux of the order of three times higher than that from HIFAR, - with a cold neutron source, guides and beam hall, b) that has radioisotope production facilities that are as good as, or better than, those in HIFAR, c) that maximizes the potential for commercial irradiations to offset facility operating costs, d) that maximizes flexibility to accommodate variations in user requirements during the life of the facility. ANSTO's case for the new research reactor received significant support earlier this month with the tabling in Parliament of a report by the Australian Science

  4. Jordan Research and Training Reactor (JRTR) Utilization Facilities

    International Nuclear Information System (INIS)

    Xoubi, N.

    2013-01-01

    Jordan Research and Training Reactor (JRTR) is a 5 MW light water open pool multipurpose reactor that serves as the focal point for Jordan National Nuclear Centre, and is designed to be utilized in three main areas: Education and training, nuclear research, and radioisotopes production and other commercial and industrial services. The reactor core is composed of 18 fuel assemblies, MTR plate type 19.75% enriched uranium silicide (U 3 Si 2 ) in aluminium matrix, and is reflected on all sides by beryllium and graphite. The reactor power is upgradable to 10 MW with a maximum thermal flux of 1.45×10 14 cm -2 s -1 , and is controlled by a Hafnium control absorber rod and B 4 C shutdown rod. The reactor is designed to include laboratories and classrooms that will support the establishment of a nuclear reactor school for educating and training students in disciplines like nuclear engineering, reactor physics, radiochemistry, nuclear technology, radiation protection, and other related scientific fields where classroom instruction and laboratory experiments will be related in a very practical and realistic manner to the actual operation of the reactor. JRTR is designed to support advanced nuclear research as well as commercial and industrial services, which can be preformed utilizing any of its 35 experimental facilities. (author)

  5. Summary of trial design of improved marine nuclear reactors

    International Nuclear Information System (INIS)

    1984-01-01

    In order to carry out the research and development of improved marine nuclear reactors, the Japan Nuclear Ship Research and Development Agency decided the project for the purpose in accordance with the procedure of research and development shown by the Nuclear Ship Research and Development Committee of Atomic Energy Commission in December, 1979, and along the basic plan regarding the development of nuclear ships of the Agency decided in February, 1981. As the first step, the Agency has been advancing the research on the design evaluation comprising the trial design and conceptual design to establish the concept of the marine reactor plant with excellent economical efficiency and reliability, which will be developed as the practical plant for future nuclear ships. The trial design started as a three-year project from 1983 is related to a 100 MWt marine reactor, and it is to obtain the concept of improved marine reactors which can be realized after adequate development period based on the pressurized water reactors of separate type, one-body type and semi-one-body type. In this summary, the works carried out in fiscal year 1983 are reported, that is, the design and calculation of the reactor core and the equipment of primary cooling system, and the selection of the required items of research and development. (Kako, I.)

  6. Selection of nuclear reactor coolant materials

    International Nuclear Information System (INIS)

    Shi Lisheng; Wang Bairong

    2012-01-01

    Nuclear material is nuclear material or materials used in nuclear industry, the general term, it is the material basis for the construction of nuclear power, but also a leader in nuclear energy development, the two interdependent and mutually reinforcing. At the same time, nuclear materials research, development and application of the depth and breadth of science and technology reflects a nation and the level of the nuclear power industry. Coolant also known as heat-carrier agent, is an important part of the heart nuclear reactor, its role is to secure as much as possible to the economic output in the form fission energy to heat the reactor to be used: the same time cooling the core, is controlled by the various structural components allowable temperature. This paper described the definition of nuclear reactor coolant and characteristics, and then addressed the requirements of the coolant material, and finally were introduced several useful properties of the coolant and chemical control. (authors)

  7. Status of international cooperation in nuclear technology on testing/research reactors between JAEA and INP-NNC

    International Nuclear Information System (INIS)

    Kawamura, Hiroshi; Tsuchiya, Kunihiko; Takemoto, Noriyuki; Kimura, Akihiro; Tanimoto, Masataka; Izumo, Hironobu; Chakrov, Petr; Gizatulin, Shamil; Chakrova, Yelena; Ludmila, Chkushuina; Asset, Shaimerdenov; Nataliya, Romanova

    2012-02-01

    Based on the implementing arrangement between National Nuclear Center of the Republic of Kazakhstan (NNC) and the Japan Atomic Energy Agency (JAEA) for 'Nuclear Technology on Testing/Research Reactors' in cooperation in Research and Development in Nuclear Energy and Technology, four specific topics of cooperation (STC) have been carried out from June, 2009. Four STCs are as follows; (1) STC No.II-1 : International Standard of Instrumentation. (2) STC No.II-2 : Irradiation Technology of RI Production. (3) STC No.II-3 : Lifetime Expansion of Beryllium Reflector. (4) STC No.II-4 : Irradiation Technology for NTD-Si. The information exchange, personal exchange and cooperation experiments are carried out under these STCs. The status in the field of nuclear technology on testing/research reactors in the implementing arrangement is summarized, and future plans of these specific topics of cooperation are described in this report. (author)

  8. The role of a research nuclear reactor within the framework of mineral prospection and processing programs

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de; Stasiulevicius, R.; Sabino, C.V.S.; Maretti Junior, F.

    1982-01-01

    The Empresas Nucleares Brasileiras S.A. - NUCLEBRAS own the only TRIGA MARK I nuclear reactor in Brazil, which is in operation at the Centro de Desenvolvimento da Tecnologia Nuclear - CDTN, in Belo Horizonte. This reactor operates since 1960 and was formerly intended for training, research and isotope production. Nowadays, it is worthwhile to emphasize its further application, as an important tool devoted to the chemical analyses, based on neutron-gamma and neutron-fission nuclear reactions. An amount of about 240000 mineral samples have been irradiated in the reactor, since the foundation of the NUCLEBRAS, in 1974. The analytical determinations according to activation methods allowed for a better evaluation of the uranium ore resources and, consequently, contributed to the achievement of present Brazilian position in the world market. (Author) [pt

  9. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  10. Management of operational events in research reactor

    International Nuclear Information System (INIS)

    Zhong Heping; Yang Shuchun; Peng Xueming

    2001-01-01

    The author describes the tracing management process post-operational event in a research reactor based on nuclear safety code, under the background of the research reactor in Nuclear Power Institute of China. It presorts the definite measures to the event tracing and it up its management factors

  11. Research and development of the Chinese nuclear heating reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dazhong, Wang; Wenziang, Zheng; Jiangui, Lin; Changwen, Ma; Duo, Dong [Institute of Nuclear Energy and Technology, Tsinghua Univ., Beijing (China)

    1997-09-01

    The paper presents the significance of nuclear heat application in China as well as the development status, main design features and safety concepts of the nuclear heating reactor exploited by INET. (author). 3 refs, 3 figs, 1 tab.

  12. Progress of nuclear safety research, (2)

    International Nuclear Information System (INIS)

    Amano, Hiroshi; Nakamura, Hiroei; Nozawa, Masao

    1981-01-01

    The Japan Atomic Energy Research Institute was established in 1956 in conformity with the national policy to extensively conduct the research associated with nuclear energy. Since then, the research on nuclear energy safety has been conducted. In 1978, the Division of Reactor Safety was organized to conduct the large research programs with large scale test facilities. Thereafter, the Divisions of Reactor Safety Evaluation, Environmental Safety Research and Reactor Fuel Examination were organized successevely in the Reactor Safety Research Center. The subjects of research have ranged from the safety of nuclear reactors to that in the recycling of nuclear fuel. In this pamphlet, the activities in JAERI associated with the safety research are reported, which have been carried out in the past two years. Also the international cooperation research program in which JAERI participated is included. This pamphlet consists of two parts and in this Part 2, the environmental safety research is described. The evaluation and analysis of environmental radioactivity, the study on radioactive waste management and the studies on various subjects related to environmental safety are reported. (Kako, I.)

  13. Nuclear reactor theory

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi

    2007-09-01

    This textbook is composed of two parts. Part 1 'Elements of Nuclear Reactor Theory' is composed of only elements but the main resource for the lecture of nuclear reactor theory, and should be studied as common knowledge. Much space is therefore devoted to the history of nuclear energy production and to nuclear physics, and the material focuses on the principles of energy production in nuclear reactors. However, considering the heavy workload of students, these subjects are presented concisely, allowing students to read quickly through this textbook. (J.P.N.)

  14. Activities performed within the program of nuclear safety research on structural and cladding materials for innovative reactor system able to transmute nuclear waste

    International Nuclear Information System (INIS)

    Fazio, C.; Rieth, M.; Lindau, R.; Aktaa, J.; Schneider, H-C.; Konys, J.; Yurechko, M.; Mueller, G.; Weisenburger, A.

    2009-01-01

    The transmutation of nuclear waste to reduce the burden on a geological repository is a relevant topic within the Program of Nuclear Safety Research of the Research Centre Karlsruhe. Several studies have confirmed that a high efficiency of transmutation of actinides is reached in fast neutron spectrum reactor system. Therefore, an important effort is dedicated to the study of transmutation strategies with different fast reactors and their associated technologies. Moreover, in international contexts as Generation IV International Forum (GIF) and Sustainable Nuclear Energy Technology Platform (SNETP), fast reactors are considered in the frame of sustainable development of nuclear energy and reduction of waste. The systems that are currently under investigation, in the frame of the different fuel cycle scenarios, are liquid metal cooled and gas cooled fast reactors as well as Accelerator Driven Sub-critical Transmutation devices (ADS). These innovative reactor systems, call for structural and clad materials, which are able to perform in a safe manner under the envisaged operational and postulated transient conditions. In this context the European Commission supports the FP7 project GETMAT, with the objective to contribute to the development and selection of reference structure materials for core components and primary systems of fast neutron reactors. Several institutes of the Research Centre Karlsruhe are involved in this project with activities in the area of 9Cr ODS steel development and mechanical characterisation; optimisation and ranking of weld and joining techniques as Electron Beam, TIG and Diffusion Bonding; assessment of materials behaviour in corrosive environment and in neutron and neutron/proton irradiation field; and development of corrosion protection barriers for cladding and primary system components and their characterisation. The objective of this contribution is to describe the context in which the GETMAT activities are embedded in the Program

  15. Application of IAEA's International Nuclear Event Scale to events at testing/research reactors in Japan

    International Nuclear Information System (INIS)

    Nozawa, Masao; Watanabe, Norio

    1999-01-01

    The International Nuclear Event Scale (INES) is a means for providing prompt, clear and consistent information related to nuclear events and facilitating communication between the nuclear community, the media and the public on such events. This paper describes the INES rating process for events at testing/research reactors and nuclear fuel processing facilities and experience on the application of the INES scale in Japan. (author)

  16. Self Assessment for the Safety of Research Reactor in Indonesia

    International Nuclear Information System (INIS)

    Melani, Ai; Chang, Soon Heung

    2008-01-01

    At the present Indonesia has no nuclear power plant in operation yet, although it is expected that the first nuclear power plant will be operated and commercially available in around the year of 2016 to 2017 in Muria Peninsula. National Nuclear Energy Agency (BATAN) has three research reactor; which are: Reactor Triga Mark II at Bandung, Reactor Kartini at Yogyakarta and Reactor Serbaguna (Multi Purpose Reactor) at Serpong. The Code of Conduct on the Safety of Research Reactors establishes 'best practice' guidelines for the licensing, construction and operation of research reactors. In this paper the author use the requirement in code of conduct to review the safety of research reactor in Indonesia

  17. Training methods and facilities on reactor and simulators at the Grenoble Nuclear Research Centre

    International Nuclear Information System (INIS)

    Destot, M.; Siebert, S.

    1987-01-01

    Siloette is a CEA unit with a threshold vocation: operation of the Siloette 100 KW pool-type research reactor; basic training in reactor physics for nuclear power plant operators; and production of nuclear power plant simulators: PWR, GCR and more generally of all types of industrial unit simulators, thermal power plant, network, chemical plant, etc. From this experience, they would emphasize in particular the synergy arising from these complementary activities, the essential role of training in basic principles as a complement to operation training, and the ever-increasing importance of design ergonomics of the training means

  18. RB research nuclear reactor, Annual report for 1989, I - III

    International Nuclear Information System (INIS)

    Stefanovic, D.; Pesic, M.; Hadimahmutovic, N.; Vranic, S.; Petronijevic, M.; Jevremovic, M.; Ilic, I.

    1989-12-01

    This report is made of three parts. Part one contains a short description of the reactor, reactor operation, incidents, status of reactor equipment and components (nuclear fuel, heavy water, reactor vessel, heavy water circulation system, electronic, electric and mechanical equipment, auxiliary systems and Vax-8250 computer). It includes dosimetry and radiation protection data, personnel and financial data. Second part of this report in concerned with maintenance of reactor components and instrumentation. Part three includes data about reactor utilization during 1989

  19. Utilization of MCNP code in the research and design for China advanced research reactor

    International Nuclear Information System (INIS)

    Shen Feng

    2006-01-01

    MCNP, which is the internationalized neutronics code, is used for nuclear research and design in China Advanced Research Reactor (CARR). MCNP is an important neutronics code in the research and design for CARR since many calculation tasks could be undertaken by it. Many nuclear parameters on reactor core, the design and optimization research for many reactor utilizations, much verification for other nuclear calculation code and so on are conducted with help of MCNP. (author)

  20. Convective parameters in fuel elements for research nuclear reactors

    International Nuclear Information System (INIS)

    Lopez Martinez, C.D.

    1992-01-01

    The study of a prototype for the simulation of fuel elements for research nuclear reactors by natural convection in water is presented in this paper. This project is carry out in the thermofluids laboratory of National Institute of Nuclear Research. The fuel prototype has already been test for natural convection in air, and the first results in water are presented in this work. In chapter I, a general description of Triga Mark III is made, paying special atention to fuel-moderator components. In chapter II and III an approach to convection subject in its global aspects is made, since the intention is to give a general idea of the events occuring around fuel elements in a nuclear reactor. In chapter II, where an emphasis on forced convection is made, some basic concepts for forced convection as well as for natural convection are included. The subject of flow through cylinders is annotated only as a comparative reference with natural convection in vertical cylinders, noting the difference between used correlations and the involved variables. In chapter III a compilation of correlation found in the bibliography about natural convection in vertical cylinders is presented, since its geometry is the more suitable in the analysis of a fuel rod. Finally, in chapter IV performed experiments in the test bench are detailed, and the results are presented in form of tables and graphs, showing the used equations for the calculations and the restrictions used in each case. For the analysis of the prototypes used in the test bench, a constant and uniform flow of heat in the whole length of the fuel rod is considered. At the end of this chapter, the work conclusions and a brief explanation of the results are presented (Author)

  1. State of exposure control for workers engaging in radiation works and state of radioactive waste management in nuclear reactor facilities for test and research and nuclear reactor facilities at research and development stage, fiscal year 1995

    International Nuclear Information System (INIS)

    1996-01-01

    This is the summary of the reports submitted in fiscal year 1995 by the installers of the nuclear reactor facilities for test and research or at research and development stage, conforming to the related law. The individual dose equivalent of the workers engaging in radiation works in fiscal year 1995 was sufficiently lower than the prescribed limit in all reactor facilities. As for the released quantities of gaseous and liquid wastes, the radioactive substances in the air and water outside the monitor zones never exceeded the prescribed concentration limit in all reactor facilities. In the reactor facilities, for which the target values of release control have been determined, the values were less than the targets in all cases. The increase of stored radioactive solid waste decreased as the dismantling works of the reactor auxiliary system of the nuclear powered ship 'Mutsu' were finished in fiscal year 1994. As the amount of stored radioactive solid waste approaches the installed capacity, the preservation capacity of the existing waste preservation building was increased. (K.I.)

  2. Prospect of realizing nuclear fusion reactors

    International Nuclear Information System (INIS)

    1989-01-01

    This Report describes the results of the research work on nuclear fusion, which CRIEPI has carried out for about ten years from the standpoint of electric power utilities, potential user of its energy. The principal points are; (a) economic analysis (calculation of costs) based on Japanese analysis procedures and database of commercial fusion reactors, including fusion-fission hybrid reactors, and (b) conceptual design of two types of hybrid reactors, that is, fission-fuel producing DMHR (Demonstration Molten-Salt Hybrid Reactor) and electric-power producing THPR (Tokamak Hybrid Power Reactor). The Report consists of the following chapters: 1. Introduction. 2. Conceptual Design of Hybrid Reactors. 3. Economic Analysis of Commercial Fusion Reactors. 4. Basic Studies Applicable Also to Nuclear Fusion Technology. 5. List of Published Reports and Papers; 6. Conclusion. Appendices. (author)

  3. Influence of regulatory requirements for nuclear power plants on the backfitting of Austrian research reactors

    International Nuclear Information System (INIS)

    Boeck, H.; Hammer, J.

    1985-01-01

    In general the licensing and backfitting activities have once more demonstrated the fact that safety assessment of a research reactor is by no means just a scaled-down version of a nuclear power plant licensing procedure. Naturally the risk potential is much lower, however, the very nature of research calls for much more flexibility in operation, for temporary installations and for experimental methods which cannot be covered by detailed regulations in advance. Therefore the application of nuclear power reactor criteria to such facilities has to be considered with extreme caution. If NPP standards are applicable at all, they have to be carefully interpreted in each individual case. It is interesting to compare the original reactor safety reports with their modern versions: emphasis has shifted from reactivity accident calculations to thermal-hydraulic considerations, to better instrumentation (both in quality and quantity) and to more effort in reducing, measuring and documenting all radioactive effluents. This tendency is also reflected in most of the backfitting requirements. In summary, the result of the lengthy licensing and backfitting process is certainly a considerable improvement in performance and safety of the Austrian research reactors

  4. Strategy for Sustainable Utilization of IRT-Sofia Research Reactor

    International Nuclear Information System (INIS)

    Mitev, M.; Apostolov, T.; Ilieva, K.; Belousov, S.; Nonova, T.

    2013-01-01

    The Research Reactor IRT-2000 in Sofia is in process of reconstruction into a low-power reactor of 200 kW under the decision of the Council of Ministers of Republic of Bulgaria from 2001. The reactor will be utilized for development and preservation of nuclear science, skills, and knowledge; implementation of applied methods and research; education of students and training of graduated physicists and engineers in the field of nuclear science and nuclear energy; development of radiation therapy facility. Nuclear energy has a strategic place within the structure of the country’s energy system. In that aspect, the research reactor as a material base, and its scientific and technical personnel, represent a solid basis for the development of nuclear energy in our country. The acquired scientific experience and qualification in reactor operation are a precondition for the equal in rights participation of the country in the international cooperation and the approaching to the European structures, and assurance of the national interests. Therefore, the operation and use of the research reactor brings significant economic benefits for the country. For education of students in nuclear energy, reactor physics experiments for measurements of static and kinetic reactor parameters will be carried out on the research reactor. The research reactor as a national base will support training and applied research, keep up the good practice and the preparation of specialists who are able to monitor radioactivity sources, to develop new methods for detection of low quantities of radioactive isotopes which are hard to find, for deactivation and personal protection. The reactor will be used for production of isotopes needed for medical therapy and diagnostics; it will be the neutron source in element activation analysis having a number of applications in industrial production, medicine, chemistry, criminology, etc. The reactor operation will increase the public understanding, confidence

  5. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    International Nuclear Information System (INIS)

    Allen, Francis; Bonin, Hugues

    2008-01-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU TM nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  6. Extending the Candu Nuclear Reactor Concept: The Multi-Spectrum Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Francis [Director General Nuclear Safety, 280 Slater St, Ottawa, K1A OK2 (Canada); Bonin, Hugues [Royal Military College of Canada, 11 General Crerar Cres, Kingston, K7K 7B4 (Canada)

    2008-07-01

    The aim of this work is to examine the multi-spectrum nuclear reactor concept as an alternative to fast reactors and accelerator-driven systems for breeding fissile material and reducing the radiotoxicity of spent nuclear fuel. The design characteristics of the CANDU{sup TM} nuclear power reactor are shown to provide a basis for a novel approach to this concept. (authors)

  7. Experience in utilizing research reactors in Yugoslavia

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J.; Raisic, N. [Boris Kidric Institute of Nuclear Sciences VINCA, Belgrade (Yugoslavia); Copic, M.; Gabrovsek, Z. [Jozef Stefan Institute Ljubljana (Yugoslavia)

    1972-07-01

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied by means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro

  8. Experience in utilizing research reactors in Yugoslavia

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.; Raisic, N.; Copic, M.; Gabrovsek, Z.

    1972-01-01

    The nuclear institutes in Yugoslavia possess three research reactors. Since 1958, two heavy-water reactors have been in operation at the 'Boris Kidric' Institute, a zero-power reactor RB and a 6. 5-MW reactor RA. At the Jozef Stefan Institute, a 250-kW TRIGA Mark II reactor has been operating since 1966. All reactors are equipped with the necessary experimental facilities. The main activities based on these reactors are: (1) fundamental research in solid-state and nuclear physics; (2) R and D activities related to nuclear power program; and (3) radioisotope production. In fundamental physics, inelastic neutron scattering and diffraction phenomena are studied by means of the neutron beam tubes and applied to investigations of the structures of solids and liquids. Valuable results are also obtained in n - γ reaction studies. Experiments connected with the fuel -element development program, owing to the characteristics of the existing reactors, are limited to determination of the fuel element parameters, to studies on the purity of uranium, and to a small number of capsule irradiations. All three reactors are also used for the verification of different methods applied in the analysis of power reactors, particularly concerning neutron flux distributions, the optimization of reactor core configurations and the shielding effects. An appreciable irradiation space in the reactors is reserved for isotope production. Fruitful international co-operation has been established in all these activities, on the basis of either bilateral or multilateral arrangements. The paper gives a critical analysis of the utilization of research reactors in a developing country such as Yugoslavia. The investments in and the operational costs of research reactors are compared with the benefits obtained in different areas of reactor application. The impact on the general scientific, technological and educational level in the country is also considered. In particular, an attempt is made ro

  9. Research and development of the software for visualizing nuclear reactor and neutronics analysis

    International Nuclear Information System (INIS)

    Okui, Shota; Sekimoto, Hiroshi

    2009-01-01

    It is not easy to image three-dimensional construct of a nuclear reactor with only its two-dimensional figure because it contains a number of structures and its construction is very complicated. Several visualization softwares for the nuclear reactor or some other plant exist, but require high skills and their operation is not simple. In this study, we developed nuclear reactor visualization software, called 'Visual Reactor (VR)', which does not require specific skills. We added the neutronics analysis code to that software. This code executes cell calculation, neutron diffusion calculation and nuclide burnup calculation by itself without any other codes. We tried to treat simple physics model in order to perform these calculation in a short time. Neutronics characteristics, such as neutron flux and power density distribution, are visualized on structure of nuclear reactor. Target operating system is Microsoft Windows XP or Vista. VR is utilized to figure out the structure of nuclear reactor and whole picture of neutronics characteristics. (author)

  10. RMB: the new Brazilian Multipurpose Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Perrotta, Jose Augusto, E-mail: perrotta@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2016-07-01

    Full text: The Brazilian research reactors have a limited capacity for radioisotopes production, leading to a high dependence on external supply for radioisotopes used in nuclear medicine. In order to overcome this condition and due to the old age of these research reactors, the Brazilian Nuclear Energy Commission decided, in 2008, to construct a new research reactor. The new reactor named RMB (Brazilian Multipurpose Reactor) will be part of a new nuclear research center, to be built on a site about 100 kilometers from São Paulo city, in the southern part of Brazil. The new nuclear research center will have a 30 MW open pool type research reactor using low enriched uranium fuel, and several associated laboratories in order to produce radioisotopes for medical and industrial use, to use neutron beams in scientific and technological research; to perform neutron activation analysis; and to perform materials and fuels irradiation tests. Regarding the neutron beams use, the RMB design provides thermal and cold neutron beams. From one side of the reactor, the neutron guides will extend to an experimental hall of instruments named Neutron Guide Hall where it will be installed the scattering instruments. In the initial stage of the reactor operation, the intent is to implement two neutron guides for thermal neutrons and another two for cold neutrons. The 2015 SBPMAT symposium has presented the technical overview of the RMB project and its main buildings, structures and components. At this year symposium, the RMB presentation updates some technical information and the development status of the project, discussing the negative results of the Brazilian political and economic crisis to the project development and its future perspectives. (author)

  11. Design of the decision aiding system for the control of the research nuclear reactor

    International Nuclear Information System (INIS)

    Adda, F.; Allek, M.; Larbes, C.

    2003-01-01

    Intelligent and decision aiding systems as support to operators are becoming increasingly a necessity in nuclear installations and in nuclear reactors in particular, specially after the Tree Mile Island. Development of new technologies based on linguistic approaches such as fuzzy logic has given rise to much interest during the last years. Fuzzy logic controller (FLC) has many advantage compared to conventional controllers using classical techniques. The aim of the present work is to use a fuzzy logic controller in parallel to actual semi-automatic controller in order to supervise in real time the operation of the research nuclear reactor. The principal of this controller is based on rules which are established previous from experiment using the semi-automatic controller and from the knowledge of the operators. (authors)

  12. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    Science.gov (United States)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  13. The program of reactors and nuclear power plants

    International Nuclear Information System (INIS)

    Calabrese, Carlos R.

    2001-01-01

    Into de framework of the program of research reactors and nuclear power plants, the operating Argentine reactors are described. The uses of the research reactors in Argentina are summarized. The reactors installed by Argentina in other countries (Peru, Algeria, Egypt) are briefly described. The CAREM project for the design and construction of an innovator small power reactor (27 MWe) is also described in some detail. The next biennial research and development program for reactor is briefly outlined

  14. Status report of Indonesian research reactor

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1992-01-01

    A general description of three Indonesian research reactor, its irradiation facilities and its future prospect are described. Since 1965 Triga Mark II 250 KW Bandung, has been in operation and in 1972 the design powers were increased to 1000 KW. Using core grid form Triga 250 KW BATAN has designed and constructed Kartini Reactor in Yogyakarta which started its operation in 1979. Both of this Triga type reactors have served a wide spectrum of utilization such as training manpower in nuclear engineering, radiochemistry, isotope production and beam research in solid state physics. Each of this reactor have strong cooperation with Bandung Institute of Technology at Bandung and Gajah Mada University at Yogyakarta which has a faculty of Nuclear Engineering. Since 1976 the idea to have high flux reactor has been foreseen appropriate to Indonesian intention to prepare infrastructure for nuclear industry for both energy and non-energy related activities. The idea come to realization with the first criticality of RSG-GAS (Multipurpose Reactor G.A. Siwabessy) in July 1987 at PUSPIPTEK Serpong area. It is expected that by early 1992 the reactor will reached its full power of 30 MW and by end 1992 its expected that irradiation facilities will be utilized in the future for nuclear scientific and engineering work. (author)

  15. Non-electric applications of pool-type nuclear reactors

    International Nuclear Information System (INIS)

    Adamov, E.O.; Cherkashov, Yu.M.; Romenkov, A.A.

    1997-01-01

    This paper recommends the use of pool-type light water reactors for thermal energy production. Safety and reliability of these reactors were already demonstrated to the public by the long-term operation of swimming pool research reactors. The paper presents the design experience of two projects: Apatity Underground Nuclear Heating Plant and Nuclear Sea-Water Desalination Plant. The simplicity of pool-type reactors, the ease of their manufacturing and maintenance make this type of a heat source attractive to the countries without a developed nuclear industry. (author). 6 figs, 1 tab

  16. Passive cooling of a fixed bed nuclear reactor

    International Nuclear Information System (INIS)

    Petry, V.J.; Bortoli, A.L. de; Sefidwash, F.

    2005-01-01

    Small nuclear reactors without the need for on-site refuelling have greater simplicity, better compliance with passive safety systems, and are more adequate for countries with small electric grids and limited investment capabilities. Here the passive cooling characteristic of the fixed bed nuclear reactor (FBNR), that is being developed under the International Atomic Energy Agency (IAEA) Coordinated Research Project, is studied. A mathematical model is developed to calculate the temperature distribution in the fuel chamber of the reactor. The results demonstrate the passive cooling of this nuclear reactor concept. (authors)

  17. Present status and future prospect of research reactors

    International Nuclear Information System (INIS)

    Takemi, Hirokatsu

    1996-01-01

    The present status of research reactors more than MW class reactor in JAERI and the Kyoto University and the small reactors in the Musashi Institute of Technology, the Rikkyo University, the Tokyo University, the Kinki University and other countries are explained in the paper. The present status of researches are reported by the topics in each field. The future researches of the beam reactor and the irradiation reactor are reviewed. On various kinds of use of research reactor and demands of neutron field of a high order, new type research reactors under investigation are explained. Recently, the reactors are used in many fields such as the basic science: the basic physics, the material science, the nuclear physics, and the nuclear chemistry and the applied science; the earth and environmental science, the biology and the medical science. (S.Y.)

  18. Computerized reactor monitor and control for nuclear reactors

    International Nuclear Information System (INIS)

    Buerger, L.

    1982-01-01

    The analysis of a computerized process control system developed by Transelektro-KFKI-Videoton (Hangary) for a twenty-year-old research reactor in Budapest and or a new one in Tajura (Libya) is given. The paper describes the computer hardware (R-10) and the implemented software (PROCESS-24K) as well as their applications at nuclear reactors. The computer program provides for man-machine communication, data acquisition and processing, trend and alarm analysis, the control of the reactor power, reactor physical calculations and additional operational functions. The reliability and the possible further development of the computerized systems which are suitable for application at reactors of different design are also discussed. (Sz.J.)

  19. REDNET: a distributed data acquisition system for a nuclear research reactor

    International Nuclear Information System (INIS)

    Shah, R.R.; Pensom, C.F.

    1984-05-01

    Experimental facilities such as those in the NRU nuclear research reactor at the Chalk River Nuclear Laboratories (CRNL) need a data acquisition system that combines high performance with flexibility. The REactor Data NETwork (REDNET) is a system being developed at CRNL that used distributed computer technology to meet demanding requirements. This paper describes the distributed architecture of REDNET, comprising 7 minicomputers, and presents an overview of the software configuration and data structures which have been designed to produce a versatile and interactive system that must gather and store data at rates ranging from 20 times a second to once every 30 minutes. Each experimenter is provided with a unique set of points that are referred to collectively, and manipulated together as a group. Facilities are provided to modify operating parameters for and view data values in a group without affecting other groups. Facilities incorporated for graceful degradation of REDNET and automatic recovery from failures are also described

  20. The role of the IPR-R1 TRIGA Mark I research reactor in nuclear education and training in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Andrea V.; Mesquita, Amir Z.; Maretti Junior, Fausto; Souza, Rose Mary G.P.; Dalle, Hugo M.; Paiano, Silvestre, E-mail: avf@cdtn.br, E-mail: amir@cdtn.br, E-mail: fmj@cdtn.br, E-mail: souzarm@cdtn.br, E-mail: dallehm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The revival of the Brazilian nuclear program has anticipated a large demand for training in nuclear technology. The Nuclear Technology Development Center (CDTN), a research institute of the Brazilian Nuclear Energy Commission (CNEN), offers the Operator Training Course on Research Reactors (CTORP). This course has existed since 1974 and about 258 workers were certificated by CTORP. This article describes the activities of CTORP and presents a proposal for its activities expansion in order to provide the current demand in the nuclear technology. Experimental research projects programs would be created in the postgraduate course at CDTN. In addition to the normal reactor physics topics addressed by CTORP, new subjects such as thermal hydraulic and instrumentation should be added and discussed too. (author)

  1. The role of the IPR-R1 TRIGA Mark I research reactor in nuclear education and training in Brazil

    International Nuclear Information System (INIS)

    Ferreira, Andrea V.; Mesquita, Amir Z.; Maretti Junior, Fausto; Souza, Rose Mary G.P.; Dalle, Hugo M.; Paiano, Silvestre

    2011-01-01

    The revival of the Brazilian nuclear program has anticipated a large demand for training in nuclear technology. The Nuclear Technology Development Center (CDTN), a research institute of the Brazilian Nuclear Energy Commission (CNEN), offers the Operator Training Course on Research Reactors (CTORP). This course has existed since 1974 and about 258 workers were certificated by CTORP. This article describes the activities of CTORP and presents a proposal for its activities expansion in order to provide the current demand in the nuclear technology. Experimental research projects programs would be created in the postgraduate course at CDTN. In addition to the normal reactor physics topics addressed by CTORP, new subjects such as thermal hydraulic and instrumentation should be added and discussed too. (author)

  2. Prospects for nuclear safety research

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-04-01

    This document is the text of a paper presented by Eric S. Beckjord (Director, Nuclear Regulatory Research/NRC) at the 22nd Water Reactor Safety Meeting in Bethesda, MD in October 1994. The following topics are briefly reviewed: (1) Reactor vessel research, (2) Probabilistic risk assessment, (3) Direct containment heating, (4) Advanced LWR research, (5) Nuclear energy prospects in the US, and (6) Future nuclear safety research. Subtopics within the last category include economics, waste disposal, and health and safety.

  3. General principles of nuclear safety management related to research reactor decommissioning

    International Nuclear Information System (INIS)

    Banciu, Ortenzia; Vladescu, Gabriela

    2003-01-01

    The paper contents the general principles applicable to the decommissioning of research reactors to ensure a proper nuclear safety management, during both decommissioning activities and post decommissioning period. The main objective of decommissioning is to ensure the protection of workers, population and environment against all radiological and non-radiological hazards that could result after a reactor shutdown and dismantling. In the same time, it is necessary, by some proper provisions, to limit the effect of decommissioning for the future generation, according to the new Romanian, IAEA and EU Norms and Regulations. Assurance of nuclear safety during decommissioning process involves, in the first step, to establish of some safety principles and requirements to be taken into account during whole process. In the same time, it is necessary to perform a series of analyses to ensure that the whole process is conducted in a planned and safe manner. The general principles proposed for a proper management of safety during research reactor decommissioning are as follows: - Set-up of all operations included in a Decommissioning Plan; - Set-up and qualitative evaluation of safety problems, which could appear during normal decommissioning process, both radiological and nonradiological risks for workers and public; - Set-up of accident list related to decommissioning process the events that could appear both due to some abnormal working conditions and to some on-site and off-site events like fires, explosions, flooding, earthquake, etc.); - Development and qualitative/ quantitative evaluation of scenarios for each incidents; - Development (and evaluation) of safety indicator system. The safety indicators are the most important tools used to assess the level of nuclear safety during decommissioning process, to discover the weak points and to establish safety measures. The paper contains also, a safety case evaluation (description of facility according to the decommissioning

  4. Simulation of a marine nuclear reactor

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Kyouya, Masahiko; Kobayashi, Hideo; Ochiai, Masaaki

    1995-01-01

    A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan Atomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship's motions because of the ship's maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship's motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship's motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship's motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship's motions on the reactor behavior can be accurately simulated by NESSY

  5. Safety of research reactors (Design and Operation)

    International Nuclear Information System (INIS)

    Dirar, H. M.

    2012-06-01

    The primary objective of this thesis is to conduct a comprehensive up-to-date literature review on the current status of safety of research reactor both in design and operation providing the future trends in safety of research reactors. Data and technical information of variety selected historical research reactors were thoroughly reviewed and evaluated, furthermore illustrations of the material of fuel, control rods, shielding, moderators and coolants used were discussed. Insight study of some historical research reactors was carried with considering sample cases such as Chicago Pile-1, F-1 reactor, Chalk River Laboratories,. The National Research Experimental Reactor and others. The current status of research reactors and their geographical distribution, reactor category and utilization is also covered. Examples of some recent advanced reactors were studied like safety barriers of HANARO of Korea including safety doors of the hall and building entrance and finger print identification which prevent the reactor from sabotage. On the basis of the results of this research, it is apparent that a high quality of safety of nuclear reactors can be attained by achieving enough robust construction, designing components of high levels of efficiency, replacing the compounds of the reactor in order to avoid corrosion and degradation with age, coupled with experienced scientists and technical staffs to operate nuclear research facilities.(Author)

  6. Gamma exposure rate estimation in irradiation facilities of nuclear research reactors

    International Nuclear Information System (INIS)

    Daoud, Adrian

    2009-01-01

    There are experimental situations in the nuclear field, in which dose estimations due to energy-dependent radiation fields are required. Nuclear research reactors provide such fields under normal operation or due to radioactive disintegration of fission products and structural materials activation. In such situations, it is necessary to know the exposure rate of gamma radiation the different materials under experimentation are subject to. Detectors of delayed reading are usually used for this purpose. Direct evaluation methods using portable monitors are not always possible, because in some facilities the entrance with such devices is often impracticable and also unsafe. Besides, these devices only provide information of the place where the measurement was performed, but not of temporal and spatial fluctuations the radiation fields could have. In this work a direct evaluation method was developed for the 'in-situ' gamma exposure rate for the irradiation facilities of the RA-1 reactor. This method is also applicable in any similar installation, and may be complemented by delayed evaluations without problem. On the other hand, it is well known that the residual effect of radiation modifies some properties of the organic materials used in reactors, such as density, colour, viscosity, oxidation level, among others. In such cases, a correct dosimetric evaluation enables in service estimation of material duration with preserved properties. This evaluation is for instance useful when applied to lubricating oils for the primary circuit pumps in nuclear power plants, thus minimizing waste generation. In this work the necessary elements required to estimate in-situ time and space integrated dose are also established for a gamma irradiated sample in an irradiation channel of a nuclear facility with zero neutron flux. (author)

  7. A fuzzy controller design for nuclear research reactors using the particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Coban, Ramazan

    2011-01-01

    Research highlights: → A closed-loop fuzzy logic controller based on the particle swarm optimization algorithm was proposed for controlling the power level of nuclear research reactors. → The proposed control system was tested for various initial and desired power levels, and it could control the reactor successfully for most situations. → The proposed controller is robust against the disturbances. - Abstract: In this paper, a closed-loop fuzzy logic controller based on the particle swarm optimization algorithm is proposed for controlling the power level of nuclear research reactors. The principle of the fuzzy logic controller is based on the rules constructed from numerical experiments made by means of a computer code for the core dynamics calculation and from human operator's experience and knowledge. In addition to these intuitive and experimental design efforts, consequent parts of the fuzzy rules are optimally (or near optimally) determined using the particle swarm optimization algorithm. The contribution of the proposed algorithm to a reactor control system is investigated in details. The performance of the controller is also tested with numerical simulations in numerous operating conditions from various initial power levels to desired power levels, as well as under disturbance. It is shown that the proposed control system performs satisfactorily under almost all operating conditions, even in the case of very small initial power levels.

  8. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    International Nuclear Information System (INIS)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M.

    2017-01-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  9. Design of a digital system for operational parameters simulation of IPR-R1 TRIGA nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lage, Aldo M.F.; Mesquita, Amir Z.; Felippe, Adriano de A.M., E-mail: aldo@cdtn.br, E-mail: amir@cdtn.br, E-mail: adrianoamfelippe@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN /CNEN-MG), Belo Horizonte, MG (Brazil); Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-11-01

    The instrumentation of nuclear reactors is designed based on the reliability, redundancy and diversification of control systems. The monitoring of the parameters is of crucial importance with regard to the operational efficiency and safety of the installation. Since the first criticality of a nuclear reactor, achieved by Fermi et al. in 1942, there has been concern about the reliable monitoring of the parameters involved in the chain reaction. This paper presents the current stage of the system of simulation, which is under development at the CDTN, which intends to simulate the operation of the TRIGA IPR-R1 nuclear reactor, involving the evolution of neutron flux and reactor power related events. The system will be developed using LabVIEW® software, using the modern concept of virtual instruments (VIs) that are visualized in a video monitor. For the implementation of this model, computational tools and systems analysis are necessary, which help and facilitate the implementation of the simulator. In this article we will show some of these techniques and the initial design of the model to be implemented. The design of a computational system is of great importance, since it guides in the implementation stages and generates the documentation for later maintenance and updating of the computational system. It is noteworthy that the innovations developed in research reactors are normally used in power reactors. The relatively low costs enable research reactors to be an excellent laboratory for developing techniques for future reactors. (author)

  10. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    International Nuclear Information System (INIS)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department's research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff's participation in national and international committees. (au) 5 tabs., 21 ills

  11. Department of Nuclear Safety Research and Nuclear Facilities annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Majborn, B.; Brodersen, K.; Damkjaer, A.; Floto, H.; Jacobsen, U.; Oelgaard, P.L. [eds.

    1996-03-01

    The report presents a summary of the work of the Department of Nuclear Safety Research and Nuclear Facilities in 1995. The department`s research and development activities are organized in three research programmes: Radiation Protection, Reactor Safety, and Radioanalytical Chemistry. The nuclear facilities operated by the department include the Research Reactor DR3, the Isotope Laboratory, the Waste Treatment Plant, and the Educational Reactor DR1. Lists of staff and publications are included together with a summary of the staff`s participation in national and international committees. (au) 5 tabs., 21 ills.

  12. Nuclear science research report

    International Nuclear Information System (INIS)

    1977-01-01

    Research activities in nuclear science carried out during 1976 are summarized. Research centers around nuclear structure and the application of nuclear techniques to solid state science, materials, engineering, chemistry, biology, and medicine. Reactor and accelerator operations are reported. (E.C.B.)

  13. Nuclear Safety Research Reactor (NSRR) program in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M; Hoshi, T; Ohnishi, N; Fujishiro, T; Inabe, T [Japan Atomic Energy Research Institute (Japan)

    1974-07-01

    An experimental research program, named Nuclear Safety Research Reactor (NSRR) Program, has been progressing in Japan Atomic Energy Research Institute (JAERI) using a modified TRIGA-ACPR. This paper is prepared to describe the outline of the NSRR program. The purpose of the NSRR program is to examine the behaviors of fuel rods under various accidental conditions of power reactors so as to establish realistic safety criteria and to develop analytical models for prediction of fuel failures. We expect to contribute finally to the improvement of reactor design and fuel fabrication techniques based on these experimental results. The NSRR experiments will be performed in the large central experimental tube, which is one of the most excellent features of this reactor, using specially designed capsules or loops which can accommodate up to 49 BWR type test fuels. Many types of test fuels in various conditions will be examined by the NSRR program, such as BWR, PWR and FBR type fuels from the beginning of life to the end of life with and without simulated reactor internal structures. The experiments will be continued for more than 10 years divided into three phases. The first phase of the program will be devoted to the experiments pertaining to reactivity initiated accidents (RIA). In these experiments we will make use of the excellent pulsing capability of ACPR, which is expected to generate 100 MW-sec prompt energy release with 1.3 msec of minimum reactor period by 4.7 dollar reactivity insertion and to yield more than 280 cal/g-UO{sub 2} heat deposit even in an approximately 10% enriched BWR type test fuel. (280 cal/g-UO{sub 2} is believed enough heat deposit to cause fuel failure.) In general, heat flow behaviors from fuel meat to clad and from clad to coolant are very complex phenomena, but they are the key point in analyzing transient response of fuels. In the sudden heat transient conditions brought by pulsing, however, it will be possible to examine each phenomenon

  14. Nuclear Safety Research Reactor (NSRR) program in JAERI

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hoshi, T.; Ohnishi, N.; Fujishiro, T.; Inabe, T.

    1974-01-01

    An experimental research program, named Nuclear Safety Research Reactor (NSRR) Program, has been progressing in Japan Atomic Energy Research Institute (JAERI) using a modified TRIGA-ACPR. This paper is prepared to describe the outline of the NSRR program. The purpose of the NSRR program is to examine the behaviors of fuel rods under various accidental conditions of power reactors so as to establish realistic safety criteria and to develop analytical models for prediction of fuel failures. We expect to contribute finally to the improvement of reactor design and fuel fabrication techniques based on these experimental results. The NSRR experiments will be performed in the large central experimental tube, which is one of the most excellent features of this reactor, using specially designed capsules or loops which can accommodate up to 49 BWR type test fuels. Many types of test fuels in various conditions will be examined by the NSRR program, such as BWR, PWR and FBR type fuels from the beginning of life to the end of life with and without simulated reactor internal structures. The experiments will be continued for more than 10 years divided into three phases. The first phase of the program will be devoted to the experiments pertaining to reactivity initiated accidents (RIA). In these experiments we will make use of the excellent pulsing capability of ACPR, which is expected to generate 100 MW-sec prompt energy release with 1.3 msec of minimum reactor period by 4.7 dollar reactivity insertion and to yield more than 280 cal/g-UO 2 heat deposit even in an approximately 10% enriched BWR type test fuel. (280 cal/g-UO 2 is believed enough heat deposit to cause fuel failure.) In general, heat flow behaviors from fuel meat to clad and from clad to coolant are very complex phenomena, but they are the key point in analyzing transient response of fuels. In the sudden heat transient conditions brought by pulsing, however, it will be possible to examine each phenomenon separately

  15. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman

    2015-01-01

    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  16. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  17. Global results concerning the operation of the reactors at the Grenoble nuclear research centre

    International Nuclear Information System (INIS)

    Jacquemain, M.; Marouby, R.

    1964-01-01

    The Grenoble Nuclear Research Centre has 3 reactors of the open-core swimming-pool type: Melusine (2 MW) operating since 1959, Siloe (15 MW) operating since 1963, Siloette (100 kW) operating since 1964 The report describes the operating conditions of these reactors and the improvements which have been made to increase the flux in the irradiation rigs and to increase the safety and the regularity of operation. The advantages are also explained of having on the same site, close to one another, several reactors with wide ranges of flux. (authors) [fr

  18. Growing dimensions. Spent fuel management at research reactors

    International Nuclear Information System (INIS)

    Ritchie, I.G.

    1998-01-01

    More than 550 nuclear research reactors are operating or shout down around the world. At many of these reactors, spent fuel from their operations is stored, pending decisions on its final disposition. In recent years, problems associated with this spent fuel storage have loomed larger in the international nuclear community. In efforts to determine the overall scope of problems and to develop a database on the subject, the IAEA has surveyed research reactor operators in its Member States. Information for the Research Reactor Spent Fuel Database (RRSFDB) so far has been obtained from a limited but representative number of research reactors. It supplements data already on hand in the Agency's more established Research Reactor Database (RRDB). Drawing upon these database resources, this article presents an overall picture of spent fuel management and storage at the world's research reactors, in the context of associated national and international programmes in the field

  19. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel: Appendix C, marine transport and associated environmental impacts. Volume 2

    International Nuclear Information System (INIS)

    1995-03-01

    This is Appendix C to a Draft Environmental Statement on a Proposed Nuclear Weapon Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. Shipment of any material via ocean transport entails risks to both the ship's crew and the environment. The risks result directly from transportation-related accidents and, in the case of radioactive or other hazardous materials, also include exposure to the effects of the material itself. This appendix provides a description of the approach used to assess the risks associated with the transport of foreign research reactor spent nuclear fuel from a foreign port to a U.S. port(s) of entry. This appendix also includes a discussion of the shipping configuration of the foreign research reactor spent nuclear fuel, the possible types of vessels that could be used to make the shipments, the risk assessment methodology (addressing both incident-free and accident risks), and the results of the analyses. Analysis of activities in the port(s) is described in Appendix D. The incident-free and accident risk assessment results are presented in terms of the per shipment risk and total risks associated with the basic implementation of Management Alternative 1and other implementation alternatives. In addition, annual risks from incident-free transport are developed

  20. Nuclear safety research master plan

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jae Joo; Yang, J. U.; Jun, Y. S. and others

    2001-06-01

    The SRMP (Safety Research Master Plan) is established to cope with the changes of nuclear industry environments. The tech. tree is developed according to the accident progress of the nuclear reactor. The 11 research fields are derived to cover the necessary technologies to ensure the safety of nuclear reactors. Based on the developed tech. tree, the following four main research fields are derived as the main safety research areas: 1. Integrated nuclear safety enhancement, 2. Thermal hydraulic experiment and assessment, 3. Severe accident management and experiment, and 4. The integrity of equipment and structure. The research frame and strategies are also recommended to enhance the efficiency of research activity, and to extend the applicability of research output.

  1. Nuclear waste management plan of the Finnish TRIGA reactor

    International Nuclear Information System (INIS)

    Salmenhaara, S.E.J. . Author

    2004-01-01

    The FiR 1 - reactor, a 250 kW Triga reactor, has been in operation since 1962. The main purpose to run the reactor is now the Boron Neutron Capture Therapy (BNCT). The BNCT work dominates the current utilization of the reactor. The weekly schedule allows still one or two days for other purposes such as isotope production and neutron activation analysis. According to the Finnish legislation the research reactor must have a nuclear waste management plan. The plan describes the methods, the schedule and the cost estimate of the whole decommissioning waste and spent fuel management procedure starting from the removal of the spent fuel, the dismantling of the reactor and ending to the final disposal of the nuclear wastes. The cost estimate of the nuclear waste management plan has to be updated annually and every fifth year the plan will be updated completely. According to the current operating license of our reactor we have to achieve a binding agreement, in 2005 at the latest, between our Research Centre and the domestic nuclear power companies about the possibility to use the Olkiluoto final disposal facility for our spent fuel. There is also the possibility to make the agreement with USDOE about the return of our spent fuel back to USA. If we want, however, to continue the reactor operation beyond the year 2006, the domestic final disposal is the only possibility. In Finland the producer of nuclear waste is fully responsible for its nuclear waste management. The financial provisions for all nuclear waste management have been arranged through the State Nuclear Waste Management Fund. The main objective of the system is that at any time there shall be sufficient funds available to take care of the nuclear waste management measures caused by the waste produced up to that time. The system is applied also to the government institutions like FiR 1 research reactor. (author)

  2. Nuclear reactor control with fuzzy logic approaches - strengths, weakness, opportunities, and threats

    International Nuclear Information System (INIS)

    Ruan, Da

    2004-01-01

    As part of the special track on 'Lessons learned from computational intelligence in nuclear applications' at the forthcoming FLINS 2004 conference on Applied Computational Intelligence (Blankenberge, Belgium, September 1-3, 2004), research experiences on fuzzy logic techniques in applications of nuclear reactor control operation are critically reviewed in this presentation. Assessment of four real fuzzy control applications at the MIT research reactor in the US, the FUGEN heavy water reactor in Japan, the BR1 research reactor in Belgium, and a TRIGA Mark III reactor in Mexico will be examined thought a SWOT analysis (strengths, weakness, opportunities, and threats). Special attention will be paid to the current cooperation between the Belgian Nuclear Research Centre (SCK-CEN) and the Mexican Nuclear Centre (ININ) on the fuzzy logic control for nuclear reactor control project under the partial support of the National Council for Science and Technology of Mexico (CONACYT). (Author)

  3. A model for nuclear research reactor dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barati, Ramin, E-mail: Barati.ramin@aut.ac.ir; Setayeshi, Saeed, E-mail: setayesh@aut.ac.ir

    2013-09-15

    Highlights: • A thirty-fourth order model is used to simulate the dynamics of a research reactor. • We consider delayed neutrons fraction as a function of time. • Variable fuel and temperature reactivity coefficients are used. • WIMS, BORGES and CITVAP codes are used for initial condition calculations. • Results are in agreement with experimental data rather than common codes. -- Abstract: In this paper, a useful thirty-fourth order model is presented to simulate the kinetics and dynamics of a research reactor core. The model considers relevant physical phenomena that govern the core such as reactor kinetics, reactivity feedbacks due to coolant and fuel temperatures (Doppler effects) with variable reactivity coefficients, xenon, samarium, boron concentration, fuel burn up and thermal hydraulics. WIMS and CITVAP codes are used to extract neutron cross sections and calculate the initial neuron flux respectively. The purpose is to present a model with results similar to reality as much as possible with reducing common simplifications in reactor modeling to be used in different analyses such as reactor control, functional reliability and safety. The model predictions are qualified by comparing with experimental data, detailed simulations of reactivity insertion transients, and steady state for Tehran research reactor reported in the literature and satisfactory results have been obtained.

  4. The development of the nuclear physics in Latvia III. The research nuclear reactor IRT begins to work in Latvia

    International Nuclear Information System (INIS)

    Ulmanis, U.

    2005-01-01

    This article is associated with the study of reactors technical parameters with specific interest on the effect the distribution of neutron and gamma radiation through the reactor's cooling systems has on the environment. Scientist began by implementing monitoring system to assist in the research of nuclear spectroscopy, neutron activation analysis, neutron diffraction, solid-state radiation physics, chemistry and radiobiology. The first sets of results are summarized with in the article. (author)

  5. Thermal hydraulic tests for reactor safety system -Research on the improvement of nuclear safety-

    International Nuclear Information System (INIS)

    Chung, Moon Ki; Park, Chun Kyeong; Yang, Seon Kyu; Chung, Chang Hwan; Chun, Shee Yeong; Song, Cheol Hwa; Chun, Hyeong Gil; Chang, Seok Kyu; Chung, Heung Joon; Won, Soon Yeon; Cho, Yeong Ro; Kim, Bok Deuk; Min, Kyeong Ho

    1994-07-01

    The present research aims at the development of the thermal hydraulic verification test technology for the reactor safety system of the conventional and advanced nuclear power plant and the development of the advanced thermal hydraulic measuring techniques. (Author)

  6. Nuclear reaction data and nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Paver, N [University of Trieste (Italy); Herman, M [International Atomic Energy Agency, Vienna (Austria); Gandini, A [ENEA, Rome (Italy)

    2001-12-15

    These two volumes contain the lecture notes of the workshop 'Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety', which was held at the Abdus Salam ICTP in the Spring of 2000. The workshop consisted of five weeks of lecture courses followed by practical computer exercises on nuclear data treatment and design of nuclear power systems. The spectrum of topics is wide enough to timely cover the state-of-the-art and the perspectives of this broad field. The first two weeks were devoted to nuclear reaction models and nuclear data evaluation. Nuclear data processing for applications to reactor calculations was the subject of the third week. On the last two weeks reactor physics and on-going projects in nuclear power generation, waste disposal and safety were presented.

  7. Study on operation conditions and an operation system of a nuclear powered submersible research vessel, 'report of working group on application of a very small nuclear reactor to an ocean research'

    International Nuclear Information System (INIS)

    Ura, Tamaki; Takamasa, Tomoji; Nishimura, Hajime

    2001-07-01

    JAERI has studied on design of a nuclear powered submersible research vessel, which will navigate under sea mainly in the Arctic Ocean, as a part of the design activity of advanced marine reactors. This report describes operation conditions and an operating system of the vessel, which were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated in the cases of underwater and surface navigations taking account of observation activities in the Arctic Ocean. The effect of ship motions on the compact nuclear reactor SCR was assessed. A submarine transponder system and an on-ice communication buoy system were examined as a positioning and communication system, supposing the activity under ice. The interval between transponders or communication buoys was recommended as 130 km. Procedures to secure safety of nuclear powered submersible research vessel were discussed according to accidents on the hull or the nuclear reactor. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects to be settled in the next step were clarified. (author)

  8. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    Energy Technology Data Exchange (ETDEWEB)

    Aghoyeh, Reza Gholizadeh [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Khalafi, Hosein, E-mail: hkhalafi@aeoi.org.i [Reactor Research Group, Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran (AEOI), North Amirabad, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2010-10-15

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  9. Design of make-up water system for Tehran research reactor spent nuclear fuels storage pool

    International Nuclear Information System (INIS)

    Aghoyeh, Reza Gholizadeh; Khalafi, Hosein

    2010-01-01

    Spent nuclear fuels storage (SNFS) is an essential auxiliary system in nuclear facility. Following discharge from a nuclear reactor, spent nuclear fuels have to be stored in water pool of SNFS away from reactor to allow for radioactive to decay and removal of generated heat. To prevent corrosion damage of fuels and other equipments, the storage pool is filled with de-ionized water which serves as moderator, coolant and shielding. The de-ionized water will be provided from make-up water system. In this paper, design of a make-up water system for optimal water supply and its chemical properties in SNFS pool is presented. The main concern of design is to provide proper make-up water throughout the storage time. For design of make-up water system, characteristics of activated carbon purifier, anionic, cationic and mixed-bed ion-exchangers have been determined. Inlet water to make-up system provide from Tehran municipal water system. Regulatory Guide 1.13 of the and graver company manual that manufactured the Tehran research reactor (TRR) make-up water system have been used for make-up water system of TRR spent nuclear fuels storage pool design.

  10. Education and Training on ISIS Research Reactor

    International Nuclear Information System (INIS)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X.

    2013-01-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions

  11. Education and Training on ISIS Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Foulon, F.; Badeau, G.; Lescop, B.; Wohleber, X. [French Atomic Energy and Alternative Energies Commission, Paris (France)

    2013-07-01

    In the frame of academic and vocational programs the National Institute for Nuclear Science and Technology uses the ISIS research reactor as a major tool to ensure a practical and comprehensive understanding of the nuclear reactor physics, principles and operation. A large set of training courses have been developed on ISIS, optimising both the content of the courses and the pedagogical approach. Programs with duration ranging from 3 hours (introduction to reactor operation) to 24 hours (full program for the future operators of research reactors) are carried out on ISIS reactor. The reactor is operated about 350 hours/year for education and training, about 40 % of the courses being carried out in English. Thus, every year about 400 trainees attend training courses on ISIS reactor. We present here the ISIS research reactor and the practical courses that have been developed on ISIS reactor. Emphasis is given to the pedagogical method which is used to focus on the operational and safety aspects, both in normal and incidental operation. We will present the curricula of the academic and vocational courses in which the practical courses are integrated, the courses being targeted to a wide public, including operators of research reactors, engineers involved in the design and operation of nuclear reactors as well as staff of the regulatory body. We address the very positive impact of the courses on the development of the competences and skills of participants. Finally, we describe the Internet Reactor Laboratories (IRL) that are under development and will consist in broadcasting the training courses via internet to remote facilities or institutions.

  12. Reactor safety research in times of change

    International Nuclear Information System (INIS)

    Zipper, Reinhard

    2013-01-01

    Since the early 1970ies reactor safety research sponsored by the German Ministry of Economics an Technology and its predecessors and pursued independently from interests of industry or industrial associations as well as from current licensing issues significantly contributed to the extension of knowledge regarding risks and possible threats associated with the operation of nuclear power plants. The results of these research activities triggered several measures taken by industry and utilities to further enhance the internationally recognized high safety standards of nuclear power plants in Germany. Furthermore, by including especially universities in the distinguished research activities a large number of young scientists were given the opportunity to qualify in the field of nuclear reactor technology and safety thus contributing to the preservation of competence during the demographic change. The nuclear phase out in Germany affects also issues of reactor safety research in Germany. While Germany will progressively decrease and terminate the use of nuclear energy for public power supply other countries in Europe and in other parts of the world are continuing, expanding and even starting the use of nuclear power. As generally recognized, nuclear safety is an international issue and in the wake of the Fukushima disaster there are several initiatives to launch a system of internationally binding safety rules and guide lines. The German Competence Alliance therefore has elaborated a framework of areas were future reactor safety research will still be needed to support German efforts based on own and independent expertise to continuously develop and establish highest safety standards for the use of nuclear power supply domestic and abroad.

  13. Nuclear power reactor technology

    International Nuclear Information System (INIS)

    1978-09-01

    Risoe National Laboratory was established more than twenty years ago with research and development of nuclear reactor technology as its main objective. The Laboratory has by now accumulated many years of experience in a number of areas vital to nuclear reactor technology. The work and experience of, and services offered by the Laboratory within the following fields are described: Health physics site supervision; Treatment of low and medium level radioactive waste; Core performance evaluation; Transient analysis; Accident analysis; Fuel management; Fuel element design, fabrication and performance evaluation; Non-destructive testing of nuclear fuel; Theoretical and experimental structural analysis; Reliability analysis; Site evaluation. Environmental risk and hazard calculation; Review and analysis of safety documentation. Risoe has already given much assistance to the authorities, utilities and industries in such fields, carrying out work on both light and heavy water reactors. The Laboratory now offers its services to others as a consultant, in education and training of staff, in planning, in qualitative and quantitative analysis, and for the development and specification of fabrication techniques. (author)

  14. IAEA Activities supporting education and training at research reactors

    International Nuclear Information System (INIS)

    Peld, N.D.; Ridikas, D.

    2013-01-01

    Full-text: Through the provision of neutrons for experiments and their historical association with universities, research reactors have played a prominent role in nuclear education and training of students, scientists and radiation workers. Today education and training remains the foremost application of research reactors, involving close to 160 facilities out of 246 operational. As part of its mandate to facilitate and expand the contribution of atomic energy to peace, health and prosperity throughout the world, the IAEA administers a number of activities intended to promote nuclear research and enable access to nuclear technology for peaceful purposes, one of which is the support of various education and training measures involving research reactors. In the last 5 years, education and training has formed one pillar for the creation of research reactor coalitions and networks to pool their resources and offer joint programmes, such as the on-going Group Fellowship Training Course. Conducted mainly through the Eastern European Research Reactor Initiative, this programme is a periodic sic week course for young scientists and engineers on nuclear techniques and administration jointly conducted at several member research reactor institutes. Organization of similar courses is under consideration in Latin America and the Asia-Pacific Region, also with support from the IAEA. Additionally, four research reactor institutes have begun offering practical education courses through virtual reactor experiments and operation known as the Internet Reactor Laboratory. Through little more than an internet connection and projection screens, university science departments can be connected regionally or bilaterally with the control room o a research reactor for various training activities. Finally, two publications are being prepared, namely Hands-On Training Courses Using Research Reactors and Accelerators, and Compendium on Education and training Based on Research Reactors. These

  15. Neutronics analysis of Dalat Nuclear Research Reactor by MVP/GMVP code

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Toru Obara

    2008-01-01

    The paper presents neutronics calculation for Dalat Nuclear Research Reactor (DNRR) to validate MVP/GMVP Code. Beside fresh core calculation, burnt core and burn up distribution were also carried out and compared with experimental data or result obtained from other codes. With complex geometry and operating history like DNRR, burn up calculation by Monte Carlo Method is the better choice owing to the use of exact geometry description and continuous neutron energy in calculation. The discrepancy between calculated data and experimental data is good to compare. By using Monte Carlo method, continuous neutron energy from JENDL3.3 library and combined with burn up calculation, MVP/GMVP Code is a very useful tool for reactor calculation. (author)

  16. Proceedings of first SWCR-KURRI academic seminar on research reactors and related research topics

    International Nuclear Information System (INIS)

    Kimura, Itsuro; Cong, Zhebao

    1986-01-01

    These are the proceedings of an academic seminar on research reactors and related research topics held at the Southwest Centre for Reactor Engineering Research and Design in Chengdu, Sichuan, People's Republic of China in September 24-26 in 1985. Included are the chairmen's addresses and 10 papers presented at the seminar in English. The titles of these papers are: (1) Nuclear Safety and Safeguards, (2) General Review of Thorium Research in Japanese Universities, (3) Comprehensive Utilization and Economic Analysis of the High Flux Engineering Test Reactor, (4) Present States of Applied Health Physics in Japan, (5) Neutron Radiography with Kyoto University Reactor, (6) Topics of Experimental Works with Kyoto University Reactor, (7) Integral Check of Nuclear Data for Reactor Structural Materials, (8) The Reactor Core, Physical Experiments and the Operation Safety Regulation of the Zero Energy Thermal Reactor for PWR Nuclear Power Plant, (9) HFETR Core Physical Parameters at Power, (10) Physical Consideration for Loads of Operated Ten Cycles in HFETR. (author)

  17. Euratom innovation in nuclear fission: Community research in reactor systems and fuel cycles

    International Nuclear Information System (INIS)

    Goethem, G. van; Hugon, M.; Bhatnagar, V.; Manolatos, P.; Deffrennes, M.

    2007-01-01

    The following questions are naturally at the heart of the current Euratom research and training framework programme:(1)What are the challenges facing the European Union nuclear fission research community in the short (today), medium (2010) and long term (2040)? (2)What kind of research and technological development (RTD) does Euratom offer to respond to these challenges, in particular in the area of reactor systems and fuel cycles? In the general debate about energy supply technologies there are challenges of both a scientific and technological (S/T) as well as an economic and political (E/P) nature. Though the Community research programme acts mainly on the former, there is nevertheless important links with Community policy. These not only exist in the specific area of nuclear policy, but also more generally as is depicted in the following figure. It is shown in the particular area of nuclear fission, to what extent Euratom research, education and innovation ('Knowledge Triangle' in above figure) respond to the following long-term criteria: (1) sustainability, (2) economics, (3) safety, and (4) proliferation resistance. Research and innovation in nuclear fission technology has broad and extended geographical, disciplinary and time horizons:- the community involved extends to all 25 EU Member States and beyond; - the research assembles a large variety of scientific disciplines; - three generations of nuclear power technologies (called II, III and IV) are involved, with the timescales extending from now to around the year 2040. To each of these three generations, a couple of challenges are associated (six in total):- Generation II (1970-2000, today): security of supply+environmental compatibility; - Generation III (around 2010): enhanced safety and competitiveness (economics); - Generation IV (around 2040): cogeneration of heat and power, and full recycling. At the European Commission (EC), the research related to nuclear reactor systems and fuel cycles is

  18. Foreign research reactor spent nuclear fuel inventories containing HEU and LEU of US-origin

    International Nuclear Information System (INIS)

    Matos, J.E.

    1995-01-01

    This paper provides estimates of the quantities and types of foreign research reactor spent nuclear fuel containing HEU and LEU of US-origin that are anticipated during the period beginning in January 1996 and extending for 10-15 years

  19. Advanced nuclear reactors and their simulators

    International Nuclear Information System (INIS)

    Chaushevski, Anton; Boshevski, Tome

    2003-01-01

    Population growth, economy development and improvement life standard impact on continually energy needs as well as electricity. Fossil fuels have limited reserves, instability market prices and destroying environmental impacts. The hydro energy capacities highly depend on geographic and climate conditions. The nuclear fission is significant factor for covering electricity needs in this century. Reasonable capital costs, low fuel and operating expenses, environmental acceptable are some of the facts that makes the nuclear energy an attractive option especially for the developing countries. The simulators for nuclear reactors are an additional software tool in order to understand, study research and analyze the processes in nuclear reactors. (Original)

  20. Determination of the lowest critical power levels of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huy, Ngo Quang [Centre for Nuclear Technique Application, Ho Chi Minh City (Viet Nam); Thong, Ha Van; Long, Vu Hai; Binh, Do Quang; Nghiem, Huynh Ton; Tuan, Nguyen Minh; Vien, Luong Ba; Vinh, Le Vinh [Nuclear Research Inst., Da Lat (Viet Nam)

    1994-10-01

    This paper presents the experimental methods for determining critical states of the Dalat Nuclear Research Reactor containing an extraneous neutron source induced by gamma ray reactions on beryllium in the reactor. The lowest critical power levels are measured at various moments after the reactor is shut down following 100 hours of its continuous operation. Th power levels vary from (0.5-1.2) x 10{sup -4} of P{sub n}, i.e. (25-60)W to (1.1-1.6) x 10{sup -5} of P{sub n}, i.e. (5.5-8)W at corresponding times of 4 days to 13 days after the reactor is shut down. However the critical power must be chosen greater than 500 W to sustain the steady criticality of the reactor for a long time. (author). 3 refs. 4 figs. 1 tab.

  1. Monochromatic neutron beam production at Brazilian nuclear research reactors

    Science.gov (United States)

    Stasiulevicius, Roberto; Rodrigues, Claudio; Parente, Carlos B. R.; Voi, Dante L.; Rogers, John D.

    2000-12-01

    Monochomatic beams of neutrons are obtained form a nuclear reactor polychromatic beam by the diffraction process, suing a single crystal energy selector. In Brazil, two nuclear research reactors, the swimming pool model IEA-R1 and the Argonaut type IEN-R1 have been used to carry out measurements with this technique. Neutron spectra have been measured using crystal spectrometers installed on the main beam lines of each reactor. The performance of conventional- artificial and natural selected crystals has been verified by the multipurpose neutron diffractometers installed at IEA-R1 and simple crystal spectrometer in operator at IEN- R1. A practical figure of merit formula was introduced to evaluate the performance and relative reflectivity of the selected planes of a single crystal. The total of 16 natural crystals were selected for use in the neutron monochromator, including a total of 24 families of planes. Twelve of these natural crystal types and respective best family of planes were measured directly with the multipurpose neutron diffractometers. The neutron spectrometer installed at IEN- R1 was used to confirm test results of the better specimens. The usually conventional-artificial crystal spacing distance range is limited to 3.4 angstrom. The interplane distance range has now been increased to approximately 10 angstrom by use of naturally occurring crystals. The neutron diffraction technique with conventional and natural crystals for energy selection and filtering can be utilized to obtain monochromatic sub and thermal neutrons with energies in the range of 0.001 to 10 eV. The thermal neutron is considered a good tool or probe for general applications in various fields, such as condensed matter, chemistry, biology, industrial applications and others.

  2. Supercomputer applications in nuclear research

    International Nuclear Information System (INIS)

    Ishiguro, Misako

    1992-01-01

    The utilization of supercomputers in Japan Atomic Energy Research Institute is mainly reported. The fields of atomic energy research which use supercomputers frequently and the contents of their computation are outlined. What is vectorizing is simply explained, and nuclear fusion, nuclear reactor physics, the hydrothermal safety of nuclear reactors, the parallel property that the atomic energy computations of fluids and others have, the algorithm for vector treatment and the effect of speed increase by vectorizing are discussed. At present Japan Atomic Energy Research Institute uses two systems of FACOM VP 2600/10 and three systems of M-780. The contents of computation changed from criticality computation around 1970, through the analysis of LOCA after the TMI accident, to nuclear fusion research, the design of new type reactors and reactor safety assessment at present. Also the method of using computers advanced from batch processing to time sharing processing, from one-dimensional to three dimensional computation, from steady, linear to unsteady nonlinear computation, from experimental analysis to numerical simulation and so on. (K.I.)

  3. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part I : Physics and Nuclear Reactor

    International Nuclear Information System (INIS)

    Kusminarto; Sri Juari Santoso; Agus Taftazani; Sudjatmoko; Darsono; Samin; Syarip; Prajitno; Muhadi Ayub Wasitho; Sukarsono; Tjipto Sujitno; Elisabeth Supriyatni

    2009-07-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The proceedings contains papers presented on scientific meeting about Physics and Nuclear Reactor. The proceedings is the first part of the three parts which published in series. There are 28 papers. (PPIN)

  4. The experiences of research reactor accident to safety improvement

    International Nuclear Information System (INIS)

    Wiranto, S.

    1999-01-01

    The safety of reactor operation is the main factor in order that the nuclear technology development program can be held according the expected target. Several experience with research reactor incidents must be learned and understood by the nuclear program personnel, especially for operators and supervisors of RSG-GA. Siwabessy. From the incident experience of research reactor in the world, which mentioned in the book 'Experience with research reactor incidents' by IAEA, 1995, was concluded that the main cause of research reactor accidents is understandless about the safety culture by the nuclear installation personnel. With learn, understand and compare between this experiences and the condition of RSG GA Siwabessy is expended the operators and supervisors more attention about the safety culture, so that RSG GA Siwabessy can be operated successfull, safely according the expected target

  5. Power Nuclear Reactors: technology and innovation for development in future

    International Nuclear Information System (INIS)

    Suarez Antola, R.

    2009-01-01

    The conference is about some historicals task of the fission technology as well as many types of Nuclear Reactors. Enrichment of fuel, wastes, research reactors and power reactors, a brief advertisment about Uruguay electric siystem and power generation, energetic worldwide, proliferation, safety reactors, incidents, accidents, Three-Mile Island accident, Chernobil accident, damages, risks, classification and description of Power reactors steam generation, nuclear reactor cooling systems, future view

  6. Order for execution of the law concerning regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1987-01-01

    Chapeter 1 specifies regulations concerning business management for refining and processing, which cover application for designation of refining operation, application for permission for processing operation, and approval of personnel responsible for handling nuclear fuel. Chapter 2 specifies regulations concerning construction and operation of nuclear reactors, which cover application for construction of nuclear reactors, reactors in a research and development stage, application for permission concerning nuclear reactors mounted on foreign nuclear powered ships, application for permission for alteration concerning construction of nuclear reactors, application for permission for alteration concerning nuclear reactors mounted on foreign nuclear powered ships, nuclear reactor facilities to be subjected to regular inspection, nuclear reactor for which submission of operation plan is not required, and application for permission for transfer of nuclear reactor. Chapter 2 also specifies regulations concerning business management for reprocessing and waste disposal. Chapter 3 stipulates regulations concerning use of nuclear fuel substances, nuclear material substances and other substances covered by international regulations, which include rules for application for permission for use of nuclear fuel substances, etc. Supplementary provisions are provided in Chapter 4. (Nogami, K.)

  7. Research Reactors Types and Utilization

    International Nuclear Information System (INIS)

    Abdelrazek, I.D.

    2008-01-01

    A nuclear reactor, in gross terms, is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate. The nuclei of fuel heavy atoms (mostly 235 U or 239 Pu), when struck by a slow neutron, may split into two or more smaller nuclei as fission products,releasing energy and neutrons in a process called nuclear fission. These newly-born fast neutrons then undergo several successive collisions with relatively low atomic mass material, the moderator, to become thermalized or slow. Normal water, heavy water, graphite and beryllium are typical moderators. These neutrons then trigger further fissions, and so on. When this nuclear chain reaction is controlled, the energy released can be used to heat water, produce steam and drive a turbine that generates electricity. The fission process, and hence the energy release, are controlled by the insertion (or extraction) of control rods through the reactor. These rods are strongly neutron absorbents, and thus only enough neutrons to sustain the chain reaction are left in the core. The energy released, mostly in the form of heat, should be continuously removed, to protect the core from damage. The most significant use of nuclear reactors is as an energy source for the generation of electrical power and for power in some military ships. This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. Research reactors are used for radioisotope production and for beam experiments with free neutrons. Historically, the first use of nuclear reactors was the production of weapons grade plutonium for nuclear weapons. Currently all commercial nuclear reactors are based on nuclear fission. Fusion power is an experimental technology based on nuclear fusion instead of fission.

  8. Back-end of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    Gruber, Gehard J.

    1996-01-01

    This paper outlines the status of topics and issues related to: (1) Research Reactor Spent Nuclear Fuel Return to the U.S., including policy, shipments and ports of entry, management sites, fees, storage technologies, contracts, actual shipment, and legal process, (2) UKAEA: MTR Spent Nuclear Fuel Reprocessing, (3) COGEMA: MTR Spent Nuclear Fuel Reprocessing, and (4) Intermediate Storage + Direct Disposal for Research Reactors. (author)

  9. Development of a computational database for application in Probabilistic Safety Analysis of nuclear research reactors

    International Nuclear Information System (INIS)

    Macedo, Vagner dos Santos

    2016-01-01

    The objective of this work is to present the computational database that was developed to store technical information and process data on component operation, failure and maintenance for the nuclear research reactors located at the Nuclear and Energy Research Institute (Instituto de Pesquisas Energéticas e Nucleares, IPEN), in São Paulo, Brazil. Data extracted from this database may be applied in the Probabilistic Safety Analysis of these research reactors or in less complex quantitative assessments related to safety, reliability, availability and maintainability of these facilities. This database may be accessed by users of the corporate network, named IPEN intranet. Professionals who require the access to the database must be duly registered by the system administrator, so that they will be able to consult and handle the information. The logical model adopted to represent the database structure is an entity-relationship model, which is in accordance with the protocols installed in IPEN intranet. The open-source relational database management system called MySQL, which is based on the Structured Query Language (SQL), was used in the development of this work. The PHP programming language was adopted to allow users to handle the database. Finally, the main result of this work was the creation a web application for the component reliability database named PSADB, specifically developed for the research reactors of IPEN; furthermore, the database management system provides relevant information efficiently. (author)

  10. Nuclear power reactors

    International Nuclear Information System (INIS)

    1982-11-01

    After an introduction and general explanation of nuclear power the following reactor types are described: magnox thermal reactor; advanced gas-cooled reactor (AGR); pressurised water reactor (PWR); fast reactors (sodium cooled); boiling water reactor (BWR); CANDU thermal reactor; steam generating heavy water reactor (SGHWR); high temperature reactor (HTR); Leningrad (RMBK) type water-cooled graphite moderated reactor. (U.K.)

  11. Reactor aging research. United States Nuclear Regulatory Commission

    International Nuclear Information System (INIS)

    Vassilaros, M.G.

    1998-01-01

    The reactor ageing research activities in USA described, are focused on the research of reactor vessel integrity, including regulatory issues and technical aspects. Current emphasis are described for fracture analysis, embrittlement research, inspection capabilities, validation od annealing rule, revision of regulatory guide

  12. The research reactor TRIGA Mainz

    International Nuclear Information System (INIS)

    Hampel, G.; Eberhardt, K.; Trautmann, N.

    2006-01-01

    The TRIGA Mark II reactor at the Institut fuer Kernchemie became first critical on August 3 rd , 1965. It can be operated in the steady state mode with a maximum power of 100 kWth and in the pulse mode with a peak power of 250 MWth. A survey of the research programmes performed at the TRIGA Mainz is given covering applications in basic research as well as applied science in nuclear chemistry and nuclear physics. Furthermore, the reactor is used for neutron activation analysis and for education and training of scientists, teachers, students and technical personal. Important projects for the future of the TRIGA Mainz are the UCN (ultra cold neutrons) experiment, fast chemical separation, medical applications and the use of the NAA as well as the use of the reactor facility for the training of students in the fields of nuclear chemistry, nuclear physics and radiation protection. Taking into account the past and future operation schedule and the typically low burn-up of TRIGA fuel elements (∝4 g U-235/a), the reactor can be operated for at least the next decade taking into account the fresh fuel elements on stock and without changing spent fuels. (orig.)

  13. The law for the regulations of nuclear source materials, nuclear fuel materials and reactors

    International Nuclear Information System (INIS)

    1980-01-01

    The law intends under the principles of the atomic energy act to regulate the refining, processing and reprocessing businesses of nuclear raw and fuel metarials and the installation and operation of reactors for the peaceful and systematic utilization of such materials and reactors and for securing public safety by preventing disasters, as well as to control internationally regulated things for effecting the international agreements on the research, development and utilization of atomic energy. Basic terms are defined, such as atomic energy; nuclear fuel material; nuclear raw material; nuclear reactor; refining; processing; reprocessing; internationally regulated thing. Any person who is going to engage in refining businesses other than the Power Reactor and Nuclear Fuel Development Corporation shall get the special designation by the Prime Minister and the Minister of International Trade Industry. Any person who is going to engage in processing businesses shall get the particular admission of the Prime Minister. Any person who is going to establish reactors shall get the particular admission of the Prime Minister, The Minister of International Trade and Industry or the Minister of Transportation according to the kinds of specified reactors, respectively. Any person who is going to engage in reprocessing businesses other than the Power Reactor and Nuclear Fuel Development Corporation and the Japan Atomic Energy Research Institute shall get the special designation by the Prime Minister. The employment of nuclear fuel materials and internationally regulated things is defined in detail. (Okada, K.)

  14. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  15. Nuclear data and reactor physics activities in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Liem, P.H. [National Atomic Energy Agency, Tangerang (Indonesia). Center for Multipurpose Reactor

    1998-03-01

    The nuclear data and reactor physics activities in Indonesia, especially, in the National Atomic Energy Agency are presented. In the nuclear data field, the Agency is now taking the position of a user of the main nuclear data libraries such as JENDL and ENDF/B. These nuclear data libraries become the main sources for producing problem dependent cross section sets that are needed by cell calculation codes or transport codes for design, analysis and safety evaluation of research reactors. In the reactor physics field, besides utilising the existing core analysis codes obtained from bilateral and international co-operation, the Agency is putting much effort to self-develop Batan`s codes for reactor physics calculations, in particular, for research reactor and high temperature reactor design, analysis and fuel management. Under the collaboration with JAERI, Monte Carlo criticality calculations on the first criticality of RSG GAS (MPR-30) first core were done using JAERI continuous energy, vectorized Monte Carlo code, MVP, with JENDL-3.1 and JENDL-3.2 nuclear data libraries. The results were then compared with the experiment data collected during the commissioning phase. Monte Carlo calculations with both JENDL-3.1 and -3.2 libraries produced k{sub eff} values with excellent agreement with experiment data, however, systematically, JENDL-3.2 library showed slightly higher k{sub eff} values than JENDL-3.1 library. (author)

  16. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1979-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1978 are described. Works of the Division are development of multi-purpose Very High Temperature Gas Cooled Reactor, fusion reactor engineering, and development of Liquid Metal Fast Breeder Reactor for Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, dynamics analysis and control method development, fusion reactor technology, and Committees on Reactor Physics and in Decommissioning of Nuclear Facilities. (author)

  17. Comparative Study on Research Reactor Design Requirements between IAEA and Korea

    International Nuclear Information System (INIS)

    Chang, Won Joon; Yune, Young Gill; Song, Myung Ho; Cho, Seung Ho

    2013-01-01

    This study has identified the gaps in the safety requirements for design of research reactors of Korea comparing with those of the IAEA. The review results showed that the gaps have arisen mainly from the following aspects: - The differences in the characteristics of design and operation between power reactor and research reactor - Enhancement of the level of safety of nuclear reactor facility - Consideration of advanced safety technologies. The review results will be utilized to reflect the IAEA safety requirements for design of research reactors into those of Korea, which will contribute to enhancing the level of safety and improving the technical standards of research reactors of Korea. The IAEA safety standards encompass international consensus to strengthen the nuclear safety and to reflect the latest advancement of nuclear safety technologies. Also, they provide reliable means to ensure the effective fulfillment of obligations under the various international safety conventions. Many countries have adopted the IAEA safety standards as their national standards in nuclear regulations. Since Korea has exported research reactor technologies abroad these days and will continue to export them in the future, it is desirable to harmonize domestic safety requirements for research reactor with those of the IAEA. The KINS (Korea Institute of Nuclear Safety) has performed a review of the IAEA safety requirements for design of research reactors comparing with those of Korea. The purpose of this comparative study is to harmonize the safety requirements for the design of research reactors of Korea with those of the IAEA as a member state of the IAEA, and to encompass global efforts to enhance the nuclear safety and to reflect the latest advancement of nuclear safety technologies into the safety requirements for the design of research reactors of Korea. Design requirements for structures, systems, and components of research reactors important to safety, which are required to

  18. Management and storage of spent nuclear fuel at research and test reactors. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1996-08-01

    Irradiated fuel from research and test reactors has been stored at various facilities for several decades. As these facilities age and approach or exceed their original design lifetimes, there is mounting concern about closure of the fuel cycle and about the integrity of ageing fuels from the materials point of view as well as some concern about the loss of self-protection of the fuels as their activity decays. It is clear that an international effort is necessary to give these problems sufficient exposure and to ensure that work continues on appropriate solutions. The future of nuclear research, with its many benefits to mankind, is in jeopardy in some countries, especially countries without nuclear power programmes, because effective solutions for extended interim storage and final disposition of spent research reactor fuels are not yet available. An advisory Group meeting was convened in Vienna to consider a Database on the Management and Storage of Spent Nuclear Fuel from Research and Test Reactors. Sixteen experts from sixteen different countries participated in the Advisory Group meeting and presented country reports, which together represent an overview of the technologies used in spent fuel management and storage at research and test reactors world-wide. The sixteen country reports together with the database summary are presented in this publication. Refs, figs, tabs

  19. KNK II, Compact Sodium-Cooled Reactor in the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives an overview of the project of the sodium-cooled fast reactor KNK II in the nuclear research center KfK in Karlsruhe. This test reactor was the preparatory stage of the prototype plant SNR 300 and had several goals: to train operating personal, to practice the licensing procedures in Germany, to get experience with the sodium technology and to serve as a test bed for fast breeder core components. The report contains contributions of KfK as the owner and project managing organization, of INTERATOM as the design and construction company and of the KBG as the plant operating organization. Experience with and results of relevant aspects of the project are tackled: project management, reactor core and component design, safety questions and licensing, plant design and test programs [de

  20. Research program on nuclear technology and nuclear safety

    International Nuclear Information System (INIS)

    Dreier, J.

    2010-04-01

    This paper elaborated for the Swiss Federal Office of Energy (SFOE) presents the synthesis report for 2009 made by the SFOE's program leader on the research program concerning nuclear technology and nuclear safety. Work carried out, knowledge gained and results obtained in the various areas are reported on. These include projects carried out in the Laboratory for Reactor Physics and System Behaviour LRS, the LTH Thermohydraulics Laboratory, the Laboratory for Nuclear Materials LNM, the Laboratory for Final Storage Safety LES and the Laboratory for Energy Systems Analysis LEA of the Paul Scherrer Institute PSI. Work done in 2009 and results obtained are reported on, including research on transients in Swiss reactors, risk and human reliability. Work on the 'Proteus' research reactor is reported on, as is work done on component safety. International co-operation in the area of serious accidents and the disposal of nuclear wastes is reported on. Future concepts for reactors and plant life management are discussed. The energy business in general is also discussed. Finally, national and international co-operation is noted and work to be done in 2010 is reviewed

  1. Experimental researches of nuclear reactor neutron and gamma radiation scattering into the atmosphere

    International Nuclear Information System (INIS)

    Istomin, Yu.L.; Zelensky, D.I.; Cherepnin, Yu.S.; Orlov, Yu.V.; Netecha, M.E.; Avaev, V.N.; Vasel'ev, G.A.; Sakamoto, H.; Nomura, Y.; Naito, Y.

    1998-01-01

    In the report there are results of measuring radiation distribution on the caps of the RA and IWG.1M research reactors. Comparative analysis of the results is also in the report. There are neutron spectra in the interval of energies from 10 -9 to 13 MeV above RA and IWG.1M reactors. The spectra were measured with a set of activation detectors. Measurements were calculated to a nominal rate: for RA reactor - 300 kw, for IWG.1M - 7 MW. Thus, in the course of the experiment, vast experimental information relating to distribution of the RA and IWG.1M reactor gamma and neutron radiation scattered in the air for distances varying from 50 to 1000 m from the reactors has become available. The data obtained are to be used to verify the calculation codes and to validate the group nuclear constants

  2. IRT-type research reactor physical calculation methodology

    International Nuclear Information System (INIS)

    Carrera, W.; Castaneda, S.; Garcia, F.; Garcia, L.; Reyes, O.

    1990-01-01

    In the present paper an established physical calculation procedure for the research reactor of the Nuclear Research Center (CIN) is described. The results obtained by the method are compared with the ones reported during the physical start up of a reactor with similar characteristics to the CIN reactor. 11 refs

  3. Reactor pressure vessel steels[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-07-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use.

  4. Nuclear reactor coolant channels

    International Nuclear Information System (INIS)

    Macbeth, R.V.

    1978-01-01

    A nuclear reactor coolant channel is described that is suitable for sub-cooled reactors as in pressurised water reactors as well as for bulk boiling, as in boiling water reactors and steam generating nuclear reactors. The arrangement aims to improve heat transfer between the fuel elements and the coolant. Full constructional details are given. See also other similar patents by the author. (U.K.)

  5. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  6. Investigation for calculation methods used in analyzing the physics characteristics of nuclear power reactor

    International Nuclear Information System (INIS)

    Nguyen Tuan Khai; Hoang Van Khanh; Phan Quoc Vuong; Tran Viet Phu; Tran Vinh Thanh; Nguyen Thi Mai Huong; Nguyen Thi Dung; Le Tran Chung; Nguyen Minh Tuan; Tran Quoc Duong

    2014-01-01

    The project aims at nuclear human resource development and enhancement in research capability in reactor physics and kinetics at Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat). The main research items of the project can be summarized as follows: i) Considering possibility on using modern calculation techniques and methods in investigating neutronic characteristics and neutronics-thermal hydraulics coupling. This item is proposed to carry out based on international collaboration with Prof. Le Trong Thuy, San Jose University, US; ii) Carrying out the collaborative activities in research and training between Nuclear Energy Center (Institute for Nuclear Science and Technology) and Nuclear Reactor Center (Nuclear Research Institute, Dalat); iii) Opening two-week training course on nuclear reactor engineering (25 Nov - 12 Dec 2013) in collaboration with Japan Atomic Energy Agency (JAEA). (author)

  7. Kinetic characteristics of the Dalat Nuclear Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    An, Tran Khac; Dien, Nguyen Nhi; Hien, Pham Duy [Nuclear Research Inst., Da Lat (Viet Nam); and others

    1994-10-01

    Kinetic characteristics of the reconstructed nuclear reactor in Dalat is investigated. Experimental parameters measured consist of: temperature coefficient of reactivity for water moderator, xenon poisoning, contribution of delayed photoneutrons induced by Be({gamma}, n) reactions and positive reactivity insertion behavior. (author). 6 refs. 4 figs.

  8. Kinetic characteristics of the Dalat Nuclear Research Reactor

    International Nuclear Information System (INIS)

    Tran Khac An; Nguyen Nhi Dien; Pham Duy Hien

    1994-01-01

    Kinetic characteristics of the reconstructed nuclear reactor in Dalat is investigated. Experimental parameters measured consist of: temperature coefficient of reactivity for water moderator, xenon poisoning, contribution of delayed photoneutrons induced by Be(γ, n) reactions and positive reactivity insertion behavior. (author). 6 refs. 4 figs

  9. Cost aspects of the research reactor fuel cycle

    International Nuclear Information System (INIS)

    2010-01-01

    Research reactors have made valuable contributions to the development of nuclear power, basic science, materials development, radioisotope production for medicine and industry, and education and training. In doing so, they have provided an invaluable service to humanity. Research reactors are expected to make important contributions in the coming decades to further development of the peaceful uses of nuclear technology, in particular for advanced nuclear fission reactors and fuel cycles, fusion, high energy physics, basic research, materials science, nuclear medicine, and biological sciences. However, in the context of decreased public sector support, research reactors are increasingly faced with financial constraints. It is therefore of great importance that their operations are based on a sound understanding of the costs of the complete research reactor fuel cycle, and that they are managed according to sound financial and economic principles. This publication is targeted at individuals and organizations involved with research reactor operations, with the aim of providing both information and an analytical framework for assessing and determining the cost structure of fuel cycle related activities. Efficient management of fuel cycle expenditures is an important component in developing strategies for sustainable future operation of a research reactor. The elements of the fuel cycle are presented with a description of how they can affect the cost efficient operation of a research reactor. A systematic review of fuel cycle choices is particularly important when a new reactor is being planned or when an existing reactor is facing major changes in its fuel cycle structure, for example because of conversion of the core from high enriched uranium (HEU) to low enriched uranium (LEU) fuel, or the changes in spent fuel management provision. Review and optimization of fuel cycle issues is also recommended for existing research reactors, even in cases where research reactor

  10. Planning the Decommissioning of Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Podlaha, J., E-mail: pod@ujv.cz [Nuclear Research Institute Rez, 25068 Rez (Czech Republic)

    2013-08-15

    In the Czech Republic, three research nuclear reactors are in operation. According to the valid legislation, preliminary decommissioning plans have been prepared for all research reactors in the Czech Republic. The decommissioning plans shall be updated at least every 5 years. Decommissioning funds have been established and financial resources are regularly deposited. Current situation in planning of decommissioning of research reactors in the Czech Republic, especially planning of decommissioning of the LVR-15 research reactor is described in this paper. There appeared new circumstances having wide impact on the decommissioning planning of the LVR-15 research reactor: (1) Shipment of spent fuel to the Russian Federation for reprocessing and (2) preparation of processing of radioactive waste from reconstruction of the VVR-S research reactor (now LVR-15 research reactor). The experience from spent fuel shipment to the Russian Federation and from the process of radiological characterization and processing of radioactive waste from reconstruction of the VVR-S research reactor (now the LVR-15 research reactor) and the impact on the decommissioning planning is described in this paper. (author)

  11. Probabilistic safety assessment for research reactors

    International Nuclear Information System (INIS)

    1986-12-01

    Increasing interest in using Probabilistic Safety Assessment (PSA) methods for research reactor safety is being observed in many countries throughout the world. This is mainly because of the great ability of this approach in achieving safe and reliable operation of research reactors. There is also a need to assist developing countries to apply Probabilistic Safety Assessment to existing nuclear facilities which are simpler and therefore less complicated to analyse than a large Nuclear Power Plant. It may be important, therefore, to develop PSA for research reactors. This might also help to better understand the safety characteristics of the reactor and to base any backfitting on a cost-benefit analysis which would ensure that only necessary changes are made. This document touches on all the key aspects of PSA but placed greater emphasis on so-called systems analysis aspects rather than the in-plant or ex-plant consequences

  12. Concepts for space nuclear multi-mode reactors

    International Nuclear Information System (INIS)

    Myrabo, L.; Botts, T.E.; Powell, J.R.

    1983-01-01

    A number of nuclear multi-mode reactor power plants are conceptualized for use with solid core, fixed particle bed and rotating particle bed reactors. Multi-mode systems generate high peak electrical power in the open cycle mode, with MHD generator or turbogenerator converters and cryogenically stored coolants. Low level stationkeeping power and auxiliary reactor cooling (i.e., for the removal of reactor afterheat) are provided in a closed cycle mode. Depending on reactor design, heat transfer to the low power converters can be accomplished by heat pipes, liquid metal coolants or high pressure gas coolants. Candidate low power conversion cycles include Brayton turbogenerator, Rankine turbogenerator, thermoelectric and thermionic approaches. A methodology is suggested for estimating the system mass of multi-mode nuclear power plants as a function of peak electric power level and required mission run time. The masses of closed cycle nuclear and open cycle chemical power systems are briefly examined to identify the regime of superiority for nuclear multi-mode systems. Key research and technology issues for such power plants are also identified

  13. Foreign research reactor irradiated nuclear fuel inventories containing HEU and LEU of United States origin

    International Nuclear Information System (INIS)

    Matos, J.E.

    1994-12-01

    This report provides estimates of foreign research reactor inventories of aluminum-based and TRIGA irradiated nuclear fuel elements containing highly enriched and low enriched uranium of United States origin that are anticipated in January 1996, January 2001, and January 2006. These fuels from 104 research reactors in 41 countries are the same aluminum-based and TRIGA fuels that were eligible for receipt under the Department of Energy's Offsite Fuels Policy that was in effect in 1988. All fuel inventory and reactor data that were available as of December 1, 1994, have been included in the estimates of approximately 14,300 irradiated fuel elements in January 1996, 18,800 in January 2001, and 22,700 in January 2006

  14. Physics of nuclear reactors

    International Nuclear Information System (INIS)

    Baeten, Peter

    2006-01-01

    This course gives an introduction to Nuclear Reactor Physics. The first chapter explains the most important parameters and concepts in nuclear reactor physics such as fission, cross sections and the effective multiplication factor. Further on, in the second chapter, the flux distributions in a stationary reactor are derived from the diffusion equation. Reactor kinetics, reactor control and reactor dynamics (feedback effects) are described in the following three chapters. The course concludes with a short description of the different types of existing and future reactors. (author)

  15. Conceptual design of multipurpose compact research reactor

    International Nuclear Information System (INIS)

    Nagata, Hiroshi; Kusunoki, Tsuyoshi; Hori, Naohiko; Kaminaga, Masanori

    2012-01-01

    Conceptual design of the high-performance and low-cost multipurpose compact research reactor which will be expected to construct in the nuclear power plant introduction countries, started from 2010 in JAEA and nuclear-related companies in Japan. The aims of this conceptual design are to achieve highly safe reactor, economical design, high availability factor and advanced irradiation utilization. One of the basic reactor concept was determined as swimming pool type, thermal power of 10MW and water cooled and moderated reactor with plate type fuel element same as the JMTR. It is expected that the research reactors are used for human resource development, progress of the science and technology, expansion of industry use, lifetime extension of LWRs and so on. (author)

  16. Decommissioning of the research reactors at the Russian Research Centre Kurchatov Institute

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.N.; Ryantsev, E.P.; Kolyadin, V.I.; Kucharkin, N.E.; Melkov, E.S.; Gorlinsky, Yu.E.; Kyznetsova, T.I.; Bulkin, B.K.

    2002-01-01

    The Kurchatov Institute is the largest research center of Russia in the field of nuclear science and engineering. It comprises more than 10 research institutes and scientific-technological complexes carrying out research work in the field of safe development of atomic engineering, controlled thermonuclear fusion, and plasma physics, nuclear physics and elementary particle physics, research reactors, radiation materials technology, solid state physics and superconductivity, molecular and chemical physics, and also perspective know-how's, information science and ecology. This report is basically devoted to the decommissioning of the research reactor installations, in particular to the reactor MR because of the volume and complexity of actions involved. (author)

  17. Impact of proposed research reactor standards on reactor operation

    Energy Technology Data Exchange (ETDEWEB)

    Ringle, J C; Johnson, A G; Anderson, T V [Oregon State University (United States)

    1974-07-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  18. Impact of proposed research reactor standards on reactor operation

    International Nuclear Information System (INIS)

    Ringle, J.C.; Johnson, A.G.; Anderson, T.V.

    1974-01-01

    A Standards Committee on Operation of Research Reactors, (ANS-15), sponsored by the American Nuclear Society, was organized in June 1971. Its purpose is to develop, prepare, and maintain standards for the design, construction, operation, maintenance, and decommissioning of nuclear reactors intended for research and training. Of the 15 original members, six were directly associated with operating TRIGA facilities. This committee developed a standard for the Development of Technical Specifications for Research Reactors (ANS-15.1), the revised draft of which was submitted to ANSI for review in May of 1973. The Committee then identified 10 other critical areas for standards development. Nine of these, along with ANS-15.1, are of direct interest to TRIGA owners and operators. The Committee was divided into subcommittees to work on these areas. These nine areas involve proposed standards for research reactors concerning: 1. Records and Reports (ANS-15.3) 2. Selection and Training of Personnel (ANS-15.4) 3. Effluent Monitoring (ANS-15.5) 4. Review of Experiments (ANS-15.6) 5. Siting (ANS-15.7) 6. Quality Assurance Program Guidance and Requirements (ANS-15.8) 7. Restrictions on Radioactive Effluents (ANS-15.9) 8. Decommissioning (ANS-15.10) 9. Radiological Control and Safety (ANS-15.11). The present status of each of these standards will be presented, along with their potential impact on TRIGA reactor operation. (author)

  19. Communications programme for the RA nuclear reactor decommission

    International Nuclear Information System (INIS)

    Milanovic, S.; Antic, D.

    2002-01-01

    During the decommissioning of the RA research nuclear reactor at the VINCA Institute of Nuclear Sciences, an adequate number of radiation and contamination surveys should be conduced to assure radiological safety of the workers, the public and the environment. Public would like to know more about the nuclear and radiological safety. The communications programme defines the ways to informing the public, its representatives and the information media about the health and safety aspects of the activities during the RA nuclear reactor decommission. (author)

  20. Sustainability management for operating organizations of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de, E-mail: ekibrit@ipen.br, E-mail: araquino@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNE-SP), Sao Paulo, SP (Brazil)

    2017-07-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  1. Sustainability management for operating organizations of research reactors

    International Nuclear Information System (INIS)

    Kibrit, Eduardo; Aquino, Afonso Rodrigues de

    2017-01-01

    Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. In a country like Brazil, where nuclear activity is geared towards peaceful purposes, any operating organization of research reactor should emphasize its commitment to social, environmental, economic and institutional aspects. Social aspects include research and development, production and supply of radiopharmaceuticals, radiation safety and special training for the nuclear sector. Environmental aspects include control of the surroundings and knowledge directed towards environment preservation. Economic aspects include import substitution and diversification of production. Institutional aspects include technology, innovation and knowledge. These aspects, if considered in the management system of an operating organization of research reactor, will help with its long-term maintenance and success in an increasingly competitive market scenario. About this, we propose a sustainability management system approach for operating organizations of research reactors. A bibliographical review on the theme is made. A methodology for identifying indicators for measuring sustainability in nuclear research reactors processes is also described. Finally, we propose a methodology for sustainability perception assessment to be applied at operating organizations of research reactors. (author)

  2. The future role of research reactors

    International Nuclear Information System (INIS)

    Glaeser, W.

    2001-01-01

    The decline of neutron source capacity in the next decades urges for the planning and construction of new neutron sources for basic and applied research with neutrons. Modern safety precautions of research reactors make them competitive with other ways of neutron production using non-chain reactions for many applications. Research reactors consequently optimized offer a very broad range of possible applications in basic and applied research. Research reactors at universities also in the future have to play an important role in education and training in basic and applied nuclear science. (orig.)

  3. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  4. International topical meeting. Research Reactor Fuel Management (RRFM) and meeting of the International Group on Reactor Research (IGORR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    Nuclear research and test reactors have been in operation for over 60 years, over 270 research reactors are currently operating in more than 50 countries. This meeting is dedicated to different aspects of research reactor fuels: new fuels for new reactors, the conversion to low enriched uranium fuels, spent fuel management and computational tools for core simulation. About 80 contributions are reported in this document, they are organized into 7 sessions: 1) international topics and overview on new projects and fuel, 2) new projects and upgrades, 3) fuel development, 4) optimisation and research reactor utilisation, 5) innovative methods in research reactors physics, 6) safety, operation and research reactor conversion, 7) fuel back-end management, and a poster session. Experience from Australian, Romanian, Libyan, Syrian, Vietnamese, South-African and Ghana research reactors are reported among other things. The Russian program for research reactor spent fuel management is described and the status of the American-driven program for the conversion to low enriched uranium fuels is presented. (A.C.)

  5. Contributions to the research programs in nuclear and industrial electronics, domestic production of instrumentation, safety and control systems and equipment for nuclear reactors and auxiliary installations

    International Nuclear Information System (INIS)

    Talpariu, C; Talpariu, J.; Matei, C.

    2001-01-01

    Domestic production of component system and equipment for the control and safety of nuclear facilities was one of the priority objective of the Nuclear Research Institute Pitesti. The problems addressed were particularly related to design and production of analog and digital equipment for measurements, triggering and display of the values of process parameters as well as to regulating complex functions of this equipment. Associated to this effort were the research works concerning: - reliability and in-service life-time of the electronic components and equipment in the safety and control systems for nuclear processes; - radiation endurance of industrial electronic components; utilization of whirling currents in calandria tube testing; - expert systems and applications in nuclear reactor control and safety; design and testing methods of process real time software packages for safety in control critical systems for nuclear domain. There are presented characteristics of the following equipment: 1. amplifier for ionization chambers with triggering comparator circuits for the CANDU 600 reactor shut down system; 2. amplifier for ionization chambers without triggering comparator circuits for power regulating system; 3. safety and regulating computerized system for C9 and C5 cans; 4. acquisition system for dosimetric data in nuclear facilities; 5. program able digital comparator for the reactor shut down system; 6. stationary gamma areal monitors for CANDU 600 reactors and other nuclear facilities

  6. Nuclear data and low energy nuclear research in Israel

    International Nuclear Information System (INIS)

    Yiftah, S.

    1977-04-01

    The Israel Nuclear Data and Low Energy Nuclear Research relevant to the International Nuclear Data Committee was continued in various institutions. The major experimental facilities consist of: A 5 Megawatt swimming pool enriched uranium reactor at the Soreq Nuclear Research Centre; A 26 Megawatt heavy water tank-type natural uranium reactor at the Negev Research Centre; A 6-million volt EN tandem accelerator at the Weizmann Institute of Science, Rehovot; The new most modern high energy 14 UD pelletron accelerator manufactured by the National Electrostatic Corporation of Middleton, Wisconsin, installed inside the Koffler Accelerator Tower at the Weizmann Institute of Science, Rehovot. Brief abstracts of the research work, both published and unpublished, listed according to the various laboratories, are reported in the following pages. (author)

  7. The present status and the prospect of China research reactors

    International Nuclear Information System (INIS)

    Yongmao, Z.; Yizheng, C.

    1990-01-01

    A total of 100 reactor operation years' experience of research reactors has now been obtained in China. The type and principal parameters of China research reactors and their operating status are briefly introduced in this paper. Chinese research reactors have been playing an important role in nuclear power and nuclear weapon development, industrial and agricultural production, medicine, basic and applied science research and environmental protection, etc. The utilization scale, benefits and achievements will be given. There is a good safety record in the operation of these reactors. A general safety review is discussed. The important incidents and accidents happening during a hundred reactor operating years are described and analyzed. China has the capability of developing any type of research reactor. The prospective projects are briefly introduced

  8. Study on operation conditions and an operation system of a nuclear powered submersible research vessel, 'report of working group on application of a very small nuclear reactor to an ocean research'

    Energy Technology Data Exchange (ETDEWEB)

    Ura, Tamaki [Tokyo Univ., Tokyo (Japan); Takamasa, Tomoji [Tokyo Univ. of Mercantile Marine, Tokyo (Japan); Nishimura, Hajime [Japan Marine Science and Technology Center, Yokosuka, Kanagawa (JP)] [and others

    2001-07-01

    JAERI has studied on design of a nuclear powered submersible research vessel, which will navigate under sea mainly in the Arctic Ocean, as a part of the design activity of advanced marine reactors. This report describes operation conditions and an operating system of the vessel, which were discussed by the specialists of hull design, sound positioning, ship motions and oceanography, etc. The design conditions on ship motions for submersible vessels were surveyed considering regulations in our country, and ship motions were evaluated in the cases of underwater and surface navigations taking account of observation activities in the Arctic Ocean. The effect of ship motions on the compact nuclear reactor SCR was assessed. A submarine transponder system and an on-ice communication buoy system were examined as a positioning and communication system, supposing the activity under ice. The interval between transponders or communication buoys was recommended as 130 km. Procedures to secure safety of nuclear powered submersible research vessel were discussed according to accidents on the hull or the nuclear reactor. These results were reflected to the concept of the nuclear powered submersible research vessel, and subjects to be settled in the next step were clarified. (author)

  9. Licensed reactor nuclear safety criteria applicable to DOE reactors

    International Nuclear Information System (INIS)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC [Nuclear Regulatory Commission] licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor

  10. Nuclear reactor buildings

    International Nuclear Information System (INIS)

    Nagashima, Shoji; Kato, Ryoichi.

    1985-01-01

    Purpose: To reduce the cost of reactor buildings and satisfy the severe seismic demands in tank type FBR type reactors. Constitution: In usual nuclear reactor buildings of a flat bottom embedding structure, the flat bottom is entirely embedded into the rock below the soils down to the deck level of the nuclear reactor. As a result, although the weight of the seismic structure can be decreased, the amount of excavating the cavity is significantly increased to inevitably increase the plant construction cost. Cross-like intersecting foundation mats are embedded to the building rock into a thickness capable withstanding to earthquakes while maintaining the arrangement of equipments around the reactor core in the nuclear buildings required by the system design, such as vertical relationship between the equipments, fuel exchange systems and sponteneous drainings. Since the rock is hard and less deformable, the rigidity of the walls and the support structures of the reactor buildings can be increased by the embedding into the rock substrate and floor responsivity can be reduced. This enables to reduce the cost and increasing the seismic proofness. (Kamimura, M.)

  11. Proceedings of the Scientific Meeting and Presentation on Basic Research in Nuclear of the Science and Technology part I : Physics and Nuclear Reactor

    International Nuclear Information System (INIS)

    Kamsul Abraha; Yateman Arryanto; Sri Jauhari S; Agus Taftazani; Kris Tri Basuki; Djoko Sardjono, Ign.; Sukarsono, R.; Samin; Syarip; Suryadi, MS; Sardjono, Y.; Tri Mardji Atmono; Dwiretnani Sudjoko; Tjipto Sujitno, BA.

    2007-08-01

    The Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity held by Centre for Accelerator Technology and Material Process, National Nuclear Energy Agency, for monitoring the research activity which achieved in National Nuclear Energy Agency. The Meeting was held in Yogyakarta on July 10, 2007. The proceedings contains papers presented on the meeting about Physics and Nuclear Reactor and there are 52 papers. The proceedings is the first part of the three parts which published in series. (PPIN)

  12. Neely Nuclear Research Center, Georgia Tech Research Reactor: Annual report for the period September 1, 1985-August 31, 1986

    International Nuclear Information System (INIS)

    1986-01-01

    The Neely Nuclear Research Center, Georgia Institute of Technology, has been a participant in the University Reactor Sharing Program since 1970. During this period, NNRC has made available its 5 MW research reactor, its Co-60 irradiation facility, and its activation analysis laboratory to large numbers of students and faculty from many universities and colleges. This report of NNRC utilization is prepared in compliance with the requirement of Contract No. FG05-80ER10771 between the US Department of Energy and the Georgia Institute of Technology. The report contains information with regard to facilities descriptions, personnel, organization, and programs

  13. Nuclear safety research in HGF 2011

    International Nuclear Information System (INIS)

    Tromm, Walter

    2012-01-01

    After the events at the Japanese nuclear power plant of Fukushima Daiichi, the German federal government decided that Germany will give up electricity generation from nuclear power within a decade. The last reactor will be disconnected from the power grid in 2022. Helping to make this opt-out as safe as possible is one of the duties of the Helmholtz Association with its Nuclear Safety Research Program within the Energy Research Area. Also the demolition of nuclear power plants and the repository problem will keep society, and thus also research, busy for a number of decades to come. Giving up electricity production from nuclear power thus must not mean giving up the required nuclear technology competences. In the fields of reactor safety, demolition, final storage, radiation protection, and crisis management, in critical support of international developments, and for competent evaluation of nuclear facilities around Germany, these competences will be in demand far beyond the German opt-out. This is the reason why the final report by the Ethics Committee on 'Safe Energy Supply' emphasizes the importance of nuclear technology research. Close cooperation on national, European and international levels is indispensable in this effort. Also nuclear safety research in the Helmholtz Association is aligned with the challenges posed by the opt-out of the use of nuclear power. It is important that the high competences in the areas of plant safety and demolition, handling of radioactive waste, and safe final storage as well as radiation protection be preserved. The Nuclear Safety Research Program within the Energy Research Area of the Helmholtz Association therefore will continue studying scientific and technical aspects of the safety of nuclear reactors and the safety of nuclear waste management. These research activities are provident research conducted for society and must be preserved for a long period of time. The work is closely harmonized with the activities of the

  14. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    International Nuclear Information System (INIS)

    Friess, Friederike Renate

    2017-01-01

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  15. Neutron-physical simulation of fast nuclear reactor cores. Investigation of new and emerging nuclear reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Friess, Friederike Renate

    2017-07-12

    According to a many publications and discussions, fast reactors hold promises to improve safety, non-proliferation, economic aspects, and reduce the nuclear waste problems. Consequently, several reactor designs advocated by the Generation IV Forum are fast reactors. In reality, however, after decades of research and development and billions of dollars investment worldwide, there are only two fast breeders currently operational on a commercial basis: the Russian reactors BN-600 and BN-800. Energy generation alone is apparently not a sufficient selling point for fast breeder reactors. Therefore, other possible applications for fast nuclear reactors are advocated. Three relevant examples are investigated in this thesis. The first one is the disposition of excess weapon-grade plutonium. Unlike for high enriched uranium that can be downblended for use in light water reactors, there exists no scientifically accepted solution for the disposition of weapon-grade plutonium. One option is the use in fast reactors that are operated for energy production. In the course of burn-up, the plutonium is irradiated which intends to fulfill two objectives: the resulting isotopic composition of the plutonium is less suitable for nuclear weapons, while at the same time the build-up of fission products results in a radiation barrier. Appropriate reprocessing technology is in order to extract the plutonium from the spent fuel. The second application is the use as so-called nuclear batteries, a special type of small modular reactors (SMRs). Nuclear batteries offer very long core lifetimes and have a very small energy output of sometimes only 10 MWe. They can supposedly be placed (almost) everywhere and supply energy without the need for refueling or shuffling of fuel elements for long periods. Since their cores remain sealed for several decades, nuclear batteries are claimed to have a higher proliferation resistance. The small output and the reduced maintenance and operating requirements

  16. Regulatory requirements for desalination plant coupled with nuclear reactor plant

    International Nuclear Information System (INIS)

    Yune, Young Gill; Kim, Woong Sik; Jo, Jong Chull; Kim, Hho Jung; Song, Jae Myung

    2005-01-01

    A small-to-medium sized reactor has been developed for multi-purposes such as seawater desalination, ship propulsion, and district heating since early 1990s in Korea. Now, the construction of its scaled-down research reactor, equipped with a seawater desalination plant, is planned to demonstrate the safety and performance of the design of the multi-purpose reactor. And the licensing application of the research reactor is expected in the near future. Therefore, a development of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant is necessary for the preparation of the forthcoming licensing review of the research reactor. In this paper, the following contents are presented: the design of the desalination plant, domestic and foreign regulatory requirements relevant to desalination plants, and a draft of regulatory requirements/guides for a desalination plant coupled with a nuclear reactor plant

  17. Management of the Interface between Nuclear Safety and Security for Research Reactors

    International Nuclear Information System (INIS)

    2016-08-01

    The aim of this publication is to provide technical guidelines and practical information to assist Member States, operating organizations and regulatory bodies, on the basis of international good practices, and to manage the interface between nuclear safety and security at research reactor facilities in an integrated and coordinated manner. The publication was developed based on input from IAEA technical and consultants' meetings held between 2013 and 2015

  18. Applications of Research Reactors

    International Nuclear Information System (INIS)

    2014-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world.' One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property'. The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. The purpose of the earlier publication, The Application of Research Reactors, IAEA-TECDOC-1234, was to present descriptions of the typical forms of research reactor use. The necessary criteria to enable an application to be performed were outlined for each one, and, in many cases, the minimum as well as the desirable requirements were given. This revision of the publication over a decade later maintains the original purpose and now specifically takes into account the changes in service requirements demanded by the relevant stakeholders. In particular, the significant improvements in

  19. Laboratory instrumentation modernization at the WPI Nuclear Reactor Facility

    International Nuclear Information System (INIS)

    1995-01-01

    With partial funding from the Department of Energy (DOE) University Reactor Instrumentation Program several laboratory instruments utilized by students and researchers at the WPI Nuclear Reactor Facility have been upgraded or replaced. Designed and built by General Electric in 1959, the open pool nuclear training reactor at WPI was one of the first such facilities in the nation located on a university campus. Devoted to undergraduate use, the reactor and its related facilities have been since used to train two generations of nuclear engineers and scientists for the nuclear industry. The low power output of the reactor and an ergonomic facility design make it an ideal tool for undergraduate nuclear engineering education and other training. The reactor, its control system, and the associate laboratory equipment are all located in the same room. Over the years, several important milestones have taken place at the WPI reactor. In 1969, the reactor power level was upgraded from 1 kW to 10 kW. The reactor's Nuclear Regulatory Commission operating license was renewed for 20 years in 1983. In 1988, under DOE Grant No. DE-FG07-86ER75271, the reactor was converted to low-enriched uranium fuel. In 1992, again with partial funding from DOE (Grant No. DE-FG02-90ER12982), the original control console was replaced

  20. New generation of nuclear reactors

    International Nuclear Information System (INIS)

    Chwaszczewski, S.

    2000-01-01

    The development trends of the construction of nuclear reactors has been performed on the background of worldwide electricity demand for now and predicted for future. The social acceptance, political and economical circumstances has been also taken into account. Seems to Electric Power Research Institute (US) and other national authorities the advanced light water reactors have the best features and chances for further development and commercial applications in future

  1. An overview of future sustainable nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Poullikkas, Andreas [Electricity Authority of Cyprus, P.O. Box 24506, 1399 Nicosia (Cyprus)

    2013-07-01

    In this paper an overview of the current and future nuclear power reactor technologies is carried out. In particular, the nuclear technology is described and the classification of the current and future nuclear reactors according to their generation is provided. The analysis has shown that generation II reactors currently in operation all around the world lack significantly in safety precautions and are prone to loss of coolant accident (LOCA). In contrast, generation III reactors, which are an evolution of generation II reactors, incorporate passive or inherent safety features that require no active controls or operational intervention to avoid accidents in the event of malfunction, and may rely on gravity, natural convection or resistance to high temperatures. Today, partly due to the high capital cost of large power reactors generating electricity and partly due to the consideration of public perception, there is a shift towards the development of smaller units. These may be built independently or as modules in a larger complex, with capacity added incrementally as required. Small reactors most importantly benefit from reduced capital costs, simpler units and the ability to produce power away from main grid systems. These factors combined with the ability of a nuclear power plant to use process heat for co-generation, make the small reactors an attractive option. Generally, modern small reactors for power generation are expected to have greater simplicity of design, economy of mass production and reduced installation costs. Many are also designed for a high level of passive or inherent safety in the event of malfunction. Generation III+ designs are generally extensions of the generation III concept, which include advanced passive safety features. These designs can maintain the safe state without the use of any active control components. Generation IV reactors, which are future designs that are currently under research and development, will tend to have closed

  2. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  3. Safety evaluation of the Dalat research reactor operation

    International Nuclear Information System (INIS)

    Long, V.H.; Lam, P.V.; An, T.K.

    1989-01-01

    After an introduction presenting the essential characteristics of the Dalat Nuclear Research Reactor, the document presents i) The safety assurance condition of the reactor, ii) Its safety behaviour after 5 years of operation, iii) Safety research being realized on the reactor. Following is questionnaire of safety evaluation and a list of attachments, which concern the reactor

  4. The use of nuclear reactor in radiation biology

    International Nuclear Information System (INIS)

    Ujeno, Yowri

    1991-01-01

    The Kyoto University Reactor (KUR) is widely used not only in biology, but also in applied biology, today. These studies were surveyed in the present paper and the future possibility to use KUR in radiation biology was discussed. The researches on the effects of thermal neutrons on various normal tissues, the biological effects of neutrons except thermal neutrons, especially intermediate neutrons between thermal and high speed neutrons or cold neutrons, the adaptive response of cells to thermal neutron radiation, the application of nuclear reactor-produced radionuclides including 195m Pt to biology, and the mutation in botanical science and so on, should be continued using nuclear reactor. The necessity of nuclear reactor in biology and applied biology is emphasized. (author)

  5. Application of JAERI research reactors to education

    International Nuclear Information System (INIS)

    Ogawa, Shigeru; Morozumi, Minoru

    1987-01-01

    At the dawning of the atomic age in Japan, training on reactor operation and reactor engineering experiments has been started in 1958 using JRR-1 (a 50 kW water boiler type reactor with liquid fuel), which was the first research reactor in Japan. The role of the training has been transferred to JRR-4 (a 3500 kW swimming pool type reactor with ETR type fuel) since 1969 due to the decommission of JRR-1. The training courses which have been held are: JRR-1 Short-Term Course for Operation (1958 ∼ 1963) General Course (1961 ∼ ) Reactor Engineering Course (1976 ∼ ) Training Course in Nuclear Technology (International course)(1986 ∼ ). And individual training concerning research reactors for the participants of scientist exchange program sponsored by Science and Technology Agency and of bilateral agreement have been initiated in 1985. The graduates of these courses work as staff members in various fields in nuclear industry. (author)

  6. Making better use of research reactors

    International Nuclear Information System (INIS)

    1964-01-01

    Some 250 research reactors are in operation in the world today, and there are problems in putting them to the most fruitful use. The difficulties - of trained manpower, of auxiliary equipment, of satisfactory research programmes, of co-ordination, between the various disciplines - are common to all users. But as is only to be expected, they press more heavily on the newly-established centres, particularly those in the developing countries which are lacking in long experience in research and usually severely limited as to technical manpower and money. The IAEA has been turning its attention to this question for the past three or four years - ever since, in fact, its early assistance missions and other field operations brought it into close contact with the operations of numerous Member States. The task of providing assistance and advice in this matter is growing. Many centres have been building research reactors under bilateral arrangements; with the completion of their projects this form of aid usually ends, and they look to IAEA for help in operating the reactors. Although some critics consider that difficulties have been caused by premature construction of research reactors, before well-founded programmes of nuclear research had been developed in the countries concerned, several valid motives have led to the establishment of some of these centres at an early stage. A research reactor often provides an effective stimulant for scientific research in the country. It is a remarkably versatile tool for workers in many fields of science and technology. There have been instances where the establishment of a research reactor has had a great impact on the scientific education of a country and has led to a salutary reappraisal and reforms. A reactor is sometimes considered to be a particularly effective means of retaining in the country men trained in the nuclear field. This particular problem is common to most countries. In fact, it is a feature of the present age that

  7. Revision of the second basic plans of power reactor development in Power Reactor and Nuclear Fuel Development Corporation

    International Nuclear Information System (INIS)

    1978-01-01

    Revision of the second basic plans concerning power reactor development in PNC (Power Reactor and Nuclear Fuel Development Corporation) is presented. (1) Fast breeder reactors: As for the experimental fast breeder reactor, after reaching the criticality, the power is raised to 50 MW thermal output within fiscal 1978. The prototype fast breeder reactor is intended for the electric output of 200 MW -- 300 MW, using mixed plutonium/uranium oxide fuel. Along the above lines, research and development will be carried out on reactor physics, sodium technology, machinery and parts, nuclear fuel, etc. (2) Advanced thermal reactor: The prototype advanced thermal reactor, with initial fuel primarily of slightly enriched uranium and heavy water moderation and boiling water cooling, of 165 MW electric output, is brought to its normal operation by the end of fiscal 1978. Along the above lines, research and development will be carried out on reactor physics, machinery and parts, nuclear fuel, etc. (Mori, K

  8. Japan Atomic Energy Research Institute, Reactor Engineering Division annual report

    International Nuclear Information System (INIS)

    1981-09-01

    Research activities in the Division of Reactor Engineering in fiscal 1980 are described. The work of the Division is closely related to development of multipurpose Very High Temperature Gas Cooled Reactor and fusion reactor, and development of Liquid Metal Fast Breeder Reactor carried out by Power Reactor and Nuclear Fuel Development Corporation. Contents of the report are achievements in fields such as nuclear data and group constants, theoretical method and code development, integral experiment and analysis, shielding, reactor and nuclear instrumentation, reactor control and diagnosis, and fusion reactor technology, and activities of the Committee on Reactor Physics. (author)

  9. Institute of Energy and Climate Research IEK-6 : nuclear waste management & reactor safety report 2009/2010 ; material science for nuclear waste management

    OpenAIRE

    Klinkenberg, M.; Neumeier, S.; Bosbach, D. (Editors)

    2011-01-01

    This is the first issue of a new series of bi-annual reports intended to provide an overview of research activities for the safe management of nuclear waste in the Institute of Energy and Climate Research (IEK-6), Nuclear Waste Management and Reactor Safety devision in Jülich. The report gives a thematic overview of the research in 2009 and 2010 by short papers of five to eight pages. Some papers are discussing the work within different projects with intensive overlap, such as ...

  10. The United States foreign research reactor spent nuclear fuel acceptance program: Proposal to modify the program

    International Nuclear Information System (INIS)

    Messick, C.E.

    2005-01-01

    The United States Department of Energy (DOE), in consultation with the Department of State (DOS), adopted the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel in May 1996. The policy was slated to expire in May 2009. However, in October 2003, a petition requesting a program extension was delivered to the United States Secretary of Energy from a group of research reactor operators from foreign countries. In April 2004, the Secretary directed DOE undertake an analysis, as required by the National Environmental Policy Act (NEPA), to consider potential extension of the Program. On December 1, 2004, a Federal Register Notice was issued approving the program extension. This paper discusses the findings from the NEPA analysis and the potential changes in the program that may result from implementation of the proposed changes. (author)

  11. CANDU nuclear reactor technology

    International Nuclear Information System (INIS)

    Kakaria, B. K.

    1994-01-01

    AECL has over 40 years of experience in the nuclear field. Over the past 20 years, this unique Canadian nuclear technology has made a worldwide presence, In addition to 22 CANDU reactors in Canada, there are also two in India, one in Pakistan, one in Argentina, four in Korea and five in Romania. CANDU advancements are based on evolutionary plant improvements. They consist of system performance improvements, design technology improvements and research and development in support of advanced nuclear power. Given the good performance of CANOU plants, it is important that this CANDU operating experience be incorporated into new and repeat designs

  12. Proceeding of the Scientific Meeting and Presentation on Basic Research of Nuclear Science and Technology: Book I. Physics, Reactor Physics and Nuclear Instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The proceeding contains papers presented on Scientific Meeting and Presentation on on Basic Research of Nuclear Science and Technology, held in Yogyakarta, 25-27 April 1995. This proceeding is part one from two books published for the meeting contains papers on Physics, Reactor Physics and Nuclear Instrumentation as results of research activities in National Atomic Energy Agency. There are 39 papers indexed individually. (ID)

  13. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  14. Replacement Nuclear Research Reactor: Draft Environmental Impact Statement. Vol. 2. Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    The appendices contains additional relevant information on: Environment Australia EIS Guidelines, composition of the Study Team, Consultation Activities and Resuits, Relevant Legislation and Regulatory Requirements, Exampies of Multi-Purpose Research Reactors, Impacts of Radioactive Emissions and Wastes Generated at Lucas Heights Science and Technology Centre, Technical Analysis of the Reference Accident, Flora and Fauna Species Lists, Summary of Environmental Commitments and an Outline of the Construction Environmental Management Plan Construction Environmental Management Plan figs., ills., refs. Prepared for Australian Nuclear Science and Technology Organisation (ANSTO)

  15. Research reactors for the social safety and prosperous neutron use

    International Nuclear Information System (INIS)

    Ito, Yasuo

    2000-01-01

    The present status of nuclear reactors in Japan and the world was briefly described in this report. Aiming to construct a background of stable future society dependent on nuclear energy, the necessity to establish an organization for research reactors in Japan was pointed out. There are a total of 468 reactors in the world, but only 248 of them are running at present and most of them are superannuated. In Japan, 15 research reactors are running and 8 of them are under collaborative utilization, but not a few of them have various problems. In the education of atomic energy, a reactor is dispensable for understanding its working principle through practice learning. Furthermore, a research reactor has important roles for development of power reactor in addition to various basic studies such as activation analysis, fission track, biological irradiation, neutron scattering, etc. Application of a reactor has been also progressing in industrial and medical fields. However, operation of the reactors has become more and more difficult in Japan because of a large running cost and a lack of residential consensus for nuclear reactor. Here, the author proposed an establishment of organization of research reactor in order to promote utilization of a reactor in the field of education, rearing of professionals and science and engineering. (M.N.)

  16. Research reactors in Austria - Present situation

    International Nuclear Information System (INIS)

    Boeck, H.; Musilek, A.; Villa, M.

    2005-01-01

    In the past decades Austria operated three research reactors, the 10 MW ASTRA reactor at Seibersdorf, the 250 kW TRIGA reactor at the Atominstitut and the 1 kW Argonaut reactor at the Technical University in Graz. Since the shut down of the ASTRA on July 31th, 1999 and its immediate decommissioning reactor and the shut down of the Argonaut reactor in Graz on August 31st, 2004 only one reactor remains operational for keeping nuclear competence in Austria which is the 250 kW TRIGA Mark II reactor. (author)

  17. Code on the safety of nuclear research reactors: Design

    International Nuclear Information System (INIS)

    1992-01-01

    The main objective of this publication is to provide a safety basis for the design of a research reactor and for the assessment of the design. Another objective is to cover certain aspects related to regulatory supervision, siting and quality assurance, as far as these are related to activities for the design of a research reactor. These objectives are expressed in terms of requirements and recommendations for the design of research reactors. Emphasis is placed on the safety requirements that shall be met rather than on ways in which they can be met. The requirements and recommendations may form the foundation necessary for a Member State to develop specific regulations and safety criteria for its research reactor programme.

  18. Digital instrumentation system for nuclear research reactors

    International Nuclear Information System (INIS)

    Aghina, Mauricio A.C.; Carvalho, Paulo Vitor R.

    2002-01-01

    This work describes a proposal for a system of nuclear instrumentation and safety totally digital for the Argonauta Reactor. The system divides in the subsystems: channel of pulses, channel of current, conventional instrumentation and safety system. The connection of the subsystems is made through redundant double local net, using the protocol modbus/rtu. So much the channel of pulses, the current channel and safety's system use modules operating in triple redundancy. (author)

  19. Arkansas Tech University TRIGA nuclear reactor

    International Nuclear Information System (INIS)

    Sankoorikal, J.; Culp, R.; Hamm, J.; Elliott, D.; Hodgson, L.; Apple, S.

    1990-01-01

    This paper describes the TRIGA nuclear reactor (ATUTR) proposed for construction on the campus of Arkansas Tech University in Russellville, Arkansas. The reactor will be part of the Center for Energy Studies located at Arkansas Tech University. The reactor has a steady state power level of 250 kW and can be pulsed with a maximum reactivity insertion of $2.0. Experience gained in dismantling and transporting some of the components from Michigan State University, and the storage of these components will be presented. The reactor will be used for education, training, and research. (author)

  20. Experience in using a research reactor for the training of power reactor operators

    International Nuclear Information System (INIS)

    Blotcky, A.J.; Arsenaut, L.J.

    1972-01-01

    A research reactor facility such as the one at the Omaha Veterans Administration Hospital would have much to offer in the way of training reactor operators. Although most of the candidates for the course had either received previous training in the Westinghouse Reactor Operator Training Program, had operated nuclear submarine reactors or had operated power reactors, they were not offered the opportunity to perform the extensive manipulations of a reactor that a small research facility will allow. In addition the AEC recommends 10 research reactor startups per student as a prerequisite for a cold operator?s license and these can easily be obtained during the training period

  1. Fast reactors in nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Kazachkovskii, O

    1981-02-01

    The possible applications are discussed of fast reactor nuclear power plants. Basic differences are explained in fast and thermal reactors, mainly with a view to nuclear fuel utilization. Discussed in more detail are the problems of nuclear fuel reproduction and the nost important technical problems of fast reactors. Flow charts are shown of heat transfer for fast reactors BN-350 (loop design) and BN-600 (integral coolant circuit design). Main specifications are given for demonstration and power fast reactors in operation, under construction and in project-stage.

  2. MIT nuclear reactor laboratory high school teaching program

    International Nuclear Information System (INIS)

    Olmez, I.

    1991-01-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff a have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power

  3. Nuclear reactors; graphical symbols

    International Nuclear Information System (INIS)

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  4. IRSN research programs concerning reactor safety

    International Nuclear Information System (INIS)

    Bardelay, J.

    2005-01-01

    This paper is made up of 3 parts. The first part briefly presents the missions of IRSN (French research institute on nuclear safety), the second part reviews the research works currently led by IRSN in the following fields : -) the assessment of safety computer codes, -) thermohydraulics, -) reactor ageing, -) reactivity accidents, -) loss of coolant, -) reactor pool dewatering, -) core meltdown, -) vapor explosion, and -) fission product release. In the third part, IRSN is shown to give a major importance to experimental programs led on research or test reactors for collecting valid data because of the complexity of the physical processes that are involved. IRSN plans to develop a research program concerning the safety of high or very high temperature reactors. (A.C.)

  5. Nuclear calculation of the thorium reactor

    International Nuclear Information System (INIS)

    Hirakawa, Naohiro

    1998-01-01

    Even if for a reactor using thorium (and 233-U), its nuclear design calculation procedure is similar to the case using conventional 235-U, 238-U and plutonium. As nuclear composition varies with time on operation of nuclear reactor, calculation of its mean cross section should be conducted in details. At that time, one-group cross section obtained by integration over a whole of energy range is used for small member group. And, as the nuclear data for a base of its calculation is already prepared by JENDL3.2 and nuclear data library derived from it, the nuclear calculation of a nuclear reactor using thorium has no problem. From such a veiwpoint, IAEA has organized a coordinated research program of 'Potential of Th-based Fuel Cycles to Constrain Pu and to reduce Long-term Waste Toxicities' since 1996. All nations entering this program were regulated so as to institute by selecting a nuclear fuel cycle thinking better by each nation and to examine what cycle is expected by comparing their results. For a promise to conduct such neutral comparison, a comparison of bench mark calculations aiming at PWR was conducted to protect that the obtained results became different because of different calculation method and cross section adopted by each nation. Therefore, it was promoted by entrance of China, Germany, India, Israel, Japan, Korea, Russia and USA. The SWAT system developed by Tohoku University is used for its calculation code, by using which calculated results on the bench mark calculation at the fist and second stages and the nuclear reactor were reported. (G.K.)

  6. Establishment of computer code system for nuclear reactor design - analysis

    International Nuclear Information System (INIS)

    Subki, I.R.; Santoso, B.; Syaukat, A.; Lee, S.M.

    1996-01-01

    Establishment of computer code system for nuclear reactor design analysis is given in this paper. This establishment is an effort to provide the capability in running various codes from nuclear data to reactor design and promote the capability for nuclear reactor design analysis particularly from neutronics and safety points. This establishment is also an effort to enhance the coordination of nuclear codes application and development existing in various research centre in Indonesia. Very prospective results have been obtained with the help of IAEA technical assistance. (author). 6 refs, 1 fig., 1 tab

  7. Handbook of nuclear engineering: vol 1: nuclear engineering fundamentals; vol 2: reactor design; vol 3: reactor analysis; vol 4: reactors of waste disposal and safeguards

    CERN Document Server

    2013-01-01

    The Handbook of Nuclear Engineering is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all academic levels, this five volume set provides the latest findings in nuclear data and experimental techniques, reactor physics, kinetics, dynamics and control. Readers will also find a detailed description of data assimilation, model validation and calibration, sensitivity and uncertainty analysis, fuel management and cycles, nuclear reactor types and radiation shielding. A discussion of radioactive waste disposal, safeguards and non-proliferation, and fuel processing with partitioning and transmutation is also included. As nuclear technology becomes an important resource of non-polluting sustainable energy in the future, The Handbook of Nuclear Engineering is an excellent reference for practicing engineers, researchers and professionals.

  8. Guidebook to nuclear reactors

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen

  9. Nuclear power plant with several reactors

    Energy Technology Data Exchange (ETDEWEB)

    Grishanin, E I; Ilyunin, V G; Kuznetsov, I A; Murogov, V M; Shmelev, A N

    1972-05-10

    A design of a nuclear power plant suggested involves several reactors consequently transmitting heat to a gaseous coolant in the joint thermodynamical circuit. In order to increase the power and the rate of fuel reproduction the low temperature section of the thermodynamical circuit involves a fast nuclear reactor, whereas a thermal nuclear reactor is employed in the high temperature section of the circuit for intermediate heating and for over-heating of the working body. Between the fast nuclear and the thermal nuclear reactors there is a turbine providing for the necessary ratio between pressures in the reactors. Each reactor may employ its own coolant.

  10. Nuclear energy research until 2000

    International Nuclear Information System (INIS)

    Reiman, L.; Rintamaa, R.; Vanttola, T.

    1994-03-01

    The working group was to assess the need and orientation of nuclear energy research (apart from research on nuclear waste management and fusion technology) up until the year 2000 in Finland and to propose framework schemes and organization guidelines for any forthcoming publicly financed research programmes from 1995 onwards. The main purpose of nuclear energy research is to ensure the safety and continued development of Finland's existing nuclear power plants. Factors necessarily influencing the orientation of research are Parliaments decision of late 1993 against further nuclear capacity in the country, the need to assess reactor safety in the eastern neighbour regions, and Finland's potential membership in the European Union. The working group proposes two new research programmes similar to the current ones but with slightly modified emphasis. Dedicated to reactor safety and structural safety respectively, they would both cover the four years from 1995 to 1998. A separate research project is proposed for automation technology. In addition, environmental research projects should have a joint coordination unit. (9 figs., 4 tabs.)

  11. Research nuclear reactor RA - Annual Report 1990 with the comparative evaluation for the period 1986-1990

    International Nuclear Information System (INIS)

    Sotic, O.

    1990-12-01

    Annual report concerning the project 'RA research nuclear reactor' for 1990, financed by the Serbian ministry of science is divided into two parts. First part is concerned with RA reactor operation and maintenance, which is the task of the Division for reactor engineering of the Institute for multidisciplinary studies and RA reactor engineering. Second part deals with radiation protection activities at the RA reactor which is the responsibility of the Institute for radiation protection. Scientific council of the Institute for multidisciplinary studies and RA reactor engineering has stated that this report describes adequately the activity and tasks fulfilled at the RA reactor in 1989. The scope and the quality of the work done were considered successful both concerning the maintenance and reconstruction, as well as radiation protection activities [sr

  12. The training and research reactor of the Zittau Technical College

    International Nuclear Information System (INIS)

    Ackermann, G.; Hampel, R.; Konschak, K.

    1979-01-01

    The light-water moderated training and research reactor of the Zittau Technical College, which has been put into operation 1 July 1979, is described. Having a power of 10 MW, it is provided for education of students and advanced training of nuclear power plant staff members. High inherent nuclear safety and economy of operation are achieved by appropriate design of the reactor core and the use of fresh fuel elements provided for the 10-MW research reactor at the Rossendorf Central Institute for Nucleear Research for one year on a loan basis. Further characteristics of the reactor are easy accessibility of the core interior for in-core studies, sufficient external experimental channels, and a control and protection system meeting the requirements of teaching operation. The installed technological and dosimetric devices not only ensure reliable operation of the reactor, but also extend the potentialities of experimental work and education that is reported in detail. The principles on which the training programs are based are explained in the light of some examples. The training reactor is assumed to serve for providing basic knowledge about processes in nuclear power stations with pressurized water reactors. Where the behaviour of a nuclear power station cannot sufficiently be demonstrated by the training reactor, a reasonable completion of practical training at special simulation models and experimental facilities of the Technical College and at the nuclear power plant simulator of the Rheinsberg nuclear power plant school has been conceived. (author)

  13. Proposed nuclear weapons nonproliferation policy concerning foreign research reactor spent nuclear fuel. Summary

    International Nuclear Information System (INIS)

    1995-03-01

    The United States Department of Energy and United States Department of State are jointly proposing to adopt a policy to manage spent nuclear fuel from foreign research reactors. Only spent nuclear fuel containing uranium enriched in the United States would be covered by the proposed policy. The purpose of the proposed policy is to promote U.S. nuclear weapons nonproliferation policy objectives, specifically by seeking to reduce highly-enriched uranium from civilian commerce. This is a summary of the Draft Environmental Impact Statement. Environmental effects and policy considerations of three Management Alternative approaches for implementation of the proposed policy are assessed. The three Management Alternatives analyzed are: (1) acceptance and management of the spent nuclear fuel by the Department of Energy in the United States, (2) management of the spent nuclear fuel at one or more foreign facilities (under conditions that satisfy United States nuclear weapons nonproliferation policy objectives), and (3) a combination of components of Management Alternatives 1 and 2 (Hybrid Alternative). A No Action Alternative is also analyzed. For each Management Alternative, there are a number of alternatives for its implementation. For Management Alternative 1, this document addresses the environmental effects of various implementation alternatives such as varied policy durations, management of various quantities of spent nuclear fuel, and differing financing arrangements. Environmental impacts at various potential ports of entry, along truck and rail transportation routes, at candidate management sites, and for alternate storage technologies are also examined. For Management Alternative 2, this document addresses two subalternatives: (1) assisting foreign nations with storage; and (2) assisting foreign nations with reprocessing of the spent nuclear fuel

  14. Research nuclear reactor RA - Annual report 1992

    International Nuclear Information System (INIS)

    Sotic, O.

    1992-12-01

    Research reactor RA Annual report for year 1992 is divided into two main parts to cover: (1) operation and maintenance and (2) activities related to radiation protection. First part includes 8 annexes describing reactor operation, activities of services for maintenance of reactor components and instrumentation, financial report and staffing. Second annex B is a paper by Z. Vukadin 'Recurrence formulas for evaluating expansion series of depletion functions' published in 'Kerntechnik' 56, (1991) No.6 (INIS record no. 23024136. Second part of the report is devoted to radiation protection issues and contains 4 annexes with data about radiation control of the working environment and reactor environment, description of decontamination activities, collection of radioactive wastes, and meteorology data [sr

  15. Research reactor support

    International Nuclear Information System (INIS)

    2005-01-01

    Research reactors (RRs) have been used in a wide range of applications including nuclear power development, basic physics research, education and training, medical isotope production, geology, industry and other fields. However, many research reactors are fuelled with High Enriched Uranium (HEU), are underutilized and aging, and have significant quantities of spent fuel. HEU inventories (fresh and spent) pose security risks Unavailability of a high-density-reprocessable fuel hinders conversion and limits back-end options and represents a survival dilemma for many RRs. Improvement of interim spent fuel storage is required at some RRs. Many RRs are under-utilized and/or inadequately funded and need to find users for their services, or permanently shut down and eventually decommission. Reluctance to decommission affect both cost and safety (loss of experienced staff ) and many shut down but not decommissioned RR with fresh and/or spent fuel at the sites invoke serious concern. The IAEA's research reactor support helps to ensure that research reactors can be operated efficiently with fuels and targets of lower proliferation and security concern and that operators have appropriate technology and options to manage RR fuel cycle issues, especially on long term interim storage of spent research reactor fuel. Availability of a high-density-reprocessable fuel would expand and improve back end options. The International Atomic Energy Agency provides assistance to Member States to convert research reactors from High Enriched Uranium fuel and targets (for medical isotope production) to qualified Low Enriched Uranium fuel and targets while maintaining reactor performance levels. The assistance includes provision of handbooks and training in the performance of core conversion studies, advice for the procurement of LEU fuel, and expert services for LEU fuel acceptance. The IAEA further provides technical and administrative support for countries considering repatriation of its

  16. Problems of nuclear reactor safety. Vol. 2

    International Nuclear Information System (INIS)

    Goncharov, L.A.

    1995-01-01

    Theses of proceedings of the 9 Topical Meeting on problems of nuclear power plant safety are presented. Reports include results of neutron-physical experiments carried out for reactor safety justification. Concepts of advanced reactors with improved safety are considered. Results of researches on fuel cycles are given too

  17. Concerning partial revision of regulations on installation, operation, etc., of nuclear reactor, etc., for test and research

    International Nuclear Information System (INIS)

    1989-01-01

    To enforce the rules relating to nuclear material protection at nuclear power facilities as covered by the Nuclear Reactor Control Law, which was revised in May last year, orders should be issued by the Prime Minister's Office (or Ministry of International Trade and Industry) to specify the following matters: (1) measures to be carried out by the operators of nuclear facilities to ensure the protection of specially designated nuclear fuel materials, (2) procedures for the application for permission as covered by nuclear material protection rules, and (3) requirements for managers in charge of nuclear material protection. The new regulations should cover the following: (1) rules relating to the business of refining of nuclear fuels, and raw materials for nuclear substances, (2) rules relating to the business of processing of nuclear fuels, (3) rules relating to the installation, operation, etc., of nuclear reactor, etc., for test and research, (4) rules relating to the business of reprocessing of spent fules, (5) rules relating to the business of management of nuclear fuels or waste contaminated with nuclear fuels, and (6) rules relating to the application of nuclear fuels. (N.K)

  18. Lessons learned from 50 years period the storage of the spent fuel from nuclear research reactor VVR-S

    International Nuclear Information System (INIS)

    Dragusin, M.

    2010-01-01

    The nuclear research reactor VVR-S was commissioned in July 1957. This reactor is in permanent shutdown since December 1997 and will be decommissioned. The duration of the decommissioning project is 11 years. The first year of decommissioning project is 2010. The spent nuclear fuels resulting from the 40 years of operating the nuclear research reactor are stored under wet conditions. The chemical and physical water parameters monitored are: transparency, conductibility, pH, chloride content, oxygen content, temperature, dry residual content, Al, Mn, Mg, Fe, Vn, Cr. Residual dry content must be maintained in requested range in order to prevent degradation and corrosion both of the clads, assemblies and linen material of the ponds. Two types of the nuclear fuel assemblies were used: LEU type -EK-10 and HEU type S-36 Russian origin. All spent nuclear fuel assemblies HEU-S-36 type were repatriated in Russian Federation in June 2009 in safety and security conditions without any problems due of the wet storage, after 25 years storage in wet conditions. The spent nuclear fuel assemblies types LEU EK-10 were stored in wet conditions more than 50 years. This paper describes the lessons learned during the 50 years management of the spent nuclear fuel resulted from the operation the research reactor VVR-S. The management was based on the maintenance of water parameters by water filtration, using at all times air HEPA filter incorporated in technological ventilation system and by monitoring the level, temperature, physical and chemical parameters of the water storage from ponds and by controlling ponds linen physical integrity. Also we have used the discs having the same compositions with materials from assemblies stored in the same ponds, in order to verify degradation and corrosion phenomena induced due to the quality of storage water. The paper will described these results obtained by metallographic, visual, XRF analysis onto discs and dry residual samples from storage

  19. The Nuclear Regulatory Commission's research reactor inspection program

    International Nuclear Information System (INIS)

    Constable, George L.

    1977-01-01

    The Division of Reactor Inspection Program's functional responsibilities are presented. The include (a) inspections and investigations necessary to determine whether licensees are complying with license provisions and rules, and to ascertain whether licensed operations are being conducted safely; (b) establishment of bases for the issuance or denial of a construction permit or license; (c) investigation of accidents, incidents, and theft or diversion of special nuclear materials; (d) enforcement actions; and (e) evaluation of licensed operations as a basis for recommending changes to standards and license conditions and for issuance of reports to the nuclear industry and the public

  20. Bulletin of the Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    1992-01-01

    In this bulletin, 48 reports of the researches in the Energy Engineering Division on two-phase flow characteristics, thermo-hydraulic behavior of fuel channel, FBR cores, combustion systems, boiling heat transfer, MHD generators, thermoluminescence emission, nuclear magnetic resonance, photoreduction of uranium, kinetics and mechanism of reaction, chemical heat pumps and others, 39 reports of the researches in the Mass Transmutation Engineering Division on heavy ion linac system, tritiated water diffusion into concrete, hydrogen plasma-driven permeation, neutron diffusion, long life small safe reactors, use of U-233, mercury coolant, low level neutron detectors, tritium enrichment, free electron laser, compact storage and acceleration rings and others, and 20 reports of the researches in the System and Safety Engineering Division on self-consistent nuclear energy supply system, behavior of plasma-facing components, fragmentation of liquid metal, flywheel motor generator, modeling of tokamak plasma, irradiation effect on SiC ceramics, safety analysis of fusion energy system and others are collected. (K.I.)

  1. From high to low. The IAEA is helping to reduce the use of high-risk nuclear fuel at the world's research reactors

    International Nuclear Information System (INIS)

    Adelfang, P.; Goldman, I.

    2006-01-01

    Research reactors play a key role in the development of peaceful uses of atomic energy. They are used for the production of isotopes for medicine and industry, for research in physics, biology and materials science, and for scientific education and training. They also continue to play an important role in support of nuclear power programmes. The IAEA's data shows there are 249 operational research reactors worldwide. Of these, more than 100 reactors are still fuelled with highly enriched uranium (HEU). It is considered high-risk nuclear material since it can be easily used for a nuclear explosive device. As part of a developing international norm to minimize and eventually eliminate HEU in civilian nuclear applications, research reactor operators increasingly are working with national and international agencies. They are being encouraged and supported to improve their physical security arrangements, convert their reactors to low-enriched uranium (LEU) fuel, and ship irradiated fuel back to the country of origin.For more than twenty years the IAEA has been supporting international efforts associated with reducing the amount of HEU in international commerce. Projects and activities have directly supported a programme the United States initiated in 1978, called Reduced Enrichment for Research and Test Reactors (RERTR). The IAEA's work additionally supports efforts to return research reactor fuel to the country where it was originally enriched so-called take back activities. IAEA initiatives have included the development and maintenance of several databases with information related to research reactors and research reactor spent fuel inventories. These databases have been essential in planning and managing both RERTR and take-back programmes. Other Agency activities through technical cooperation and other channels have supported the conversion of research reactors to using lower enriched fuels. In other ways, the IAEA supports the exchange of information among experts

  2. RA research reactor in 'Vinca' Institute-approach to the decommissioning

    International Nuclear Information System (INIS)

    Ljubenov, V.Lj.; Pesic, M.P.; Sotic, O.

    2002-01-01

    In this paper short overview of decommissioning process of research reactors according to IAEA standards and world practice is given. Basic technical characteristics and details of operational history of the RA research reactor in Vinca Institute of Nuclear Sciences are present. The main nuclear and radiation safety problems related to the RA reactor facility are defined and the outlines of the future decommissioning project are proposed. (author)

  3. Experiments with preirradiated fuel rods in the Nuclear Safety Research Reactor

    International Nuclear Information System (INIS)

    Horiki, O.; Kobayashi, S.; Takariko, I.; Ishijima, K.

    1992-01-01

    In the Nuclear Safety Research Reactor (NSRR) owned and operated by Japan Atomic Energy Research Institute (JAERI), extensive experimental studies on the fuel behavior under reactivity initiated accident (RIA) conditions have been continued since the start of the test program in 1975. Accumulated experimental data were used as the fundamental data base of the Japanese safety evaluation guideline for reactivity initiated events in light water cooled nuclear power plants established by the nuclear safety commission in 1984. All of the data used to establish the guideline were, however, limited to those derived from the tests with fresh fuel rods as test samples because of the lack of experimental facility to handle highly radioactive materials.The guideline, therefore, introduces the peak fuel enthalpy of 85 cal/g which was adopted from the SPERT-CDC data as a provisional failure threshold of preirradiated fuel rod and, says that this value should be revised based on the NSRR experiments in the future. According to the above requirement, new NSRR experimental program with the preirradiated fuel rods as test samples was started in 1989. Test fuel rods are prepared by refabrication of the long-sized fuel rods preirradiated in commercial PWRs and BWRs into short segments and by preirradiation of short-sized test fuel rods in the Japan Material Testing Reactor(JMTR). For the tests with preirradiated fuel rods as test samples, the special experimental capsules, the automatic instrumentation fitting device, the automatic capsule assembling device and the capsule loading device were newly developed. In addition, the existing hot cave was modified to mount the capsule assembling device and the other inspection tools and, a new small iron cell was established adjacent to the cave to store the instrumentation fitting device. (author)

  4. Nuclear reactor engineering: Reactor design basics. Fourth edition, Volume One

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in design and operation of nuclear power plants. Extensively updated, the fourth edition includes new material on reactor safety and risk analysis, regulation, fuel management, waste management, and operational aspects of nuclear power. This volume contains the following: energy from nuclear fission; nuclear reactions and radiations; neutron transport; nuclear design basics; nuclear reactor kinetics and control; radiation protection and shielding; and reactor materials

  5. Present status and future perspective of research and test reactors in JAERI

    International Nuclear Information System (INIS)

    Baba, Osamu; Kaieda, Keisuke

    1999-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  6. Present status and future perspective of research and test reactors in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Osamu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kaieda, Keisuke

    1999-08-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  7. Problems of space-time behaviour of nuclear reactors

    International Nuclear Information System (INIS)

    Obradovic, D.

    1966-01-01

    This paper covers a review of literature and mathematical methods applied for space-time behaviour of nuclear reactors. The review of literature is limited to unresolved problems and trends of actual research in the field of reactor physics [sr

  8. Role of Halden Reactor Project for world-wide nuclear energy development

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M.A.; Volkov, B.

    2011-07-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  9. Role of Halden Reactor Project for world-wide nuclear energy development

    International Nuclear Information System (INIS)

    McGrath, M.A.; Volkov, B.

    2011-01-01

    The great interest for utilization of nuclear materials to produce energy in the middle of last century needed special investigations using first class research facilities. Common problems in the area of nuclear fuel development motivated the establishment of joint research efforts. The OECD Halden Reactor Project (HRP) is a good example of such a cooperative research effort, which has been performing for more than 50 years. During that time, the Halden Reactor evolved from a prototype heavy water reactor envisaged as a power source for different applications to a research reactor that is able to simulate in-core conditions of modern commercial power reactors. The adaptability of the Halden Reactor enables the HRP to be an important international test facility for nuclear fuels and materials development. The long-term international cooperation is based on the flexible HRP organizational structure which also provides the continued success. [1,2] This paper gives a brief history of the Halden Reactor Project and its contribution to world-wide nuclear energy development. Recent expansion of the Project to the East and Asian countries may also assist and stimulate the development of a nuclear industry within these countries. The achievements of the HRP rely on the versatility of the research carried out in the reactor with reliable testing techniques and in-pile instrumentation. Diversification of scientific activity in the areas of development of alternative energy resources and man-machine technology also provide the HRP with a stable position as one of the leaders in the world scientific community. All of these aspects are described in this paper together with current experimental works, including the investigation of ULBA (Kazakhstan) production fuel in comparison with other world fuel suppliers, as well as other future and prospective plans of the Project.(Author)

  10. Status report of Indonesian research reactors

    International Nuclear Information System (INIS)

    Arbie, B.; Supadi, S.

    1995-01-01

    A general description of the three Indonesia research reactors, their irradiation facilities and future prospect are given. The 250 kW Triga Mark II in Bandung has been in operation since 1965 and in 1972 its designed power was increased to 1000 kW. The core grid from the previous 250 kW Triga Mark II was then used by Batan for designing and constructing the Kartini reactor in Yogyakarta. This reactor commenced its operation in 1979. Both Triga reactors have served a wide spectrum of utilization such as for manpower training in nuclear engineering, radiochemistry, isotope production, and beam research in solid state physics. The Triga reactor management in Bandung has a strong cooperation with the Bandung Institute of Technology and the one in Yogyakarta with the Gadjah Mada University which has a Nuclear Engineering Department at its Faculty of Engineering. In 1976 there emerged an idea to have a high flux reactor appropriate for Indonesia's intention to prepare an infrastructure for both nuclear energy and non-energy industry era. Such an idea was then realized with the achievement of the first criticality of the RSG-GAS reactor at the Serpong area. It is now expected that by early 1992 the reactor will reach its full 30 MW power level and by the end of 1992 the irradiation facilities be utilizable fully for future scientific and engineering work. As a part of the national LEU fuel development program a study has been underway since early 1989 to convert the RSG-GAS reactor core from using oxide fuel to using higher loading silicide fuel. (author)

  11. Nuclear reactor engineering: Reactor systems engineering. Fourth edition, Volume Two

    International Nuclear Information System (INIS)

    Glasstone, S.; Sesonske, A.

    1994-01-01

    This new edition of this classic reference combines broad yet in-depth coverage of nuclear engineering principles with practical descriptions of their application in the design and operation of nuclear power plants. Extensively updated, the fourth edition includes new materials on reactor safety and risk analysis, regulation, fuel management, waste management and operational aspects of nuclear power. This volume contains the following: the systems concept, design decisions, and information tools; energy transport; reactor fuel management and energy cost considerations; environmental effects of nuclear power and waste management; nuclear reactor safety and regulation; power reactor systems; plant operations; and advanced plants and the future

  12. Nuclear reactor

    International Nuclear Information System (INIS)

    Batheja, P.; Huber, R.; Rau, P.

    1985-01-01

    Particularly for nuclear reactors of small output, the reactor pressure vessel contains at least two heat exchangers, which have coolant flowing through them in a circuit through the reactor core. The circuit of at least one heat exchanger is controlled by a slide valve, so that even for low drive forces, particularly in natural circulation, the required even loading of the heat exchanger is possible. (orig./HP) [de

  13. High-temperature and breeder reactors - economic nuclear reactors of the future

    International Nuclear Information System (INIS)

    Djalilzadeh, A.M.

    1977-01-01

    The thesis begins with a review of the theory of nuclear fission and sections on the basic technology of nuclear reactors and the development of the first generation of gas-cooled reactors applied to electricity generation. It then deals in some detail with currently available and suggested types of high temperature reactor and with some related subsidiary issues such as the coupling of different reactor systems and various schemes for combining nuclear reactors with chemical processes (hydrogenation, hydrogen production, etc.), going on to discuss breeder reactors and their application. Further sections deal with questions of cost, comparison of nuclear with coal- and oil-fired stations, system analysis of reactor systems and the effect of nuclear generation on electricity supply. (C.J.O.G.)

  14. A parametric study on characteristics for nuclear design of high-performance research reactor

    International Nuclear Information System (INIS)

    Joe, D. G.; Lee, C. S.; Lee, B. C.; Seo, C. G.; Chae, H. T.; Park, C.

    2003-01-01

    A conceptual design of advanced research reactor with high neutron performance has been performed at KAERI based on design and operation experience obtained from HANARO. In this study, nuclear characteristics of design parameters such as various types of fuel assemblies, structural materials of core and fuel assembly, and the number of absorber rods were analyzed. Among rod, plate and tube type fuel assemblies considered, tube type assembly seems to be preferable as a high performance research reactor fuel because of high thermal margin and neutron flux in reflector. Aluminium block as a structural material of core was shown to be superior to flow tube due to higher reactivity and thermal flux in reflector. The stiffener to fix plates in th fuel assembly had the no impact on fast flux in central trap. The reduction of thermal flux in reflector caused by the stiffener was about 7%. If the control absorber rods of 4 mm thickness were chosen, it would be possible to operate the reactor with fresh fuel assemblies from the initial core

  15. Research and development for the future nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, Hideo [Japan International Cooperation Agency, Tokyo (Japan)

    2002-11-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  16. Research and development for the future nuclear power

    International Nuclear Information System (INIS)

    Morimoto, Hideo

    2002-01-01

    This paper consists of nuclear power technologies in Japan, its states of other countries, the today's objects, investment, change of the research and development paradigm, new type of reactor, public research and target research and resource. The new types of reactor investigated in Japan are FBR, 4S, aqueous homogenous reactor, gas reactor and molten-salt reactor. On the basis of correspondence to environment of market and materialization of business model, nuclear power has to cooperate with electric power side. The international joint research should be investigated, because the investment is limited. There are three references such as Report of nuclear power section in the total source energy investigation (2001): http://www.meti.go.jp/report/data/g10627aj.html, OECD/NEA (2002): http://www.neafr/html/ndd/reports/2002/nea3969.html and public research: http://www.iae.or.jp/koubo/koubo.html. (S.Y.)

  17. Contributions of research Reactors in science and technology

    International Nuclear Information System (INIS)

    Butt, N.M.; Bashir, J.

    1992-12-01

    In the present paper, after defining a research reactor, its basic constituents, types of reactors, their distribution in the world, some typical examples of their uses are given. Particular emphasis in placed on the contribution of PARR-I (Pakistan Research Reactor-I), the 5 MW Swimming Pool Research reactor which first became critical at the Pakistan Institute of Nuclear Science and Technology (PINSTECH) in Dec. 1965 and attained its full power in June 1966. This is still the major research facility at PINSTECH for research and development. (author)

  18. Thailand's nuclear research centre

    International Nuclear Information System (INIS)

    Yamkate, P.

    2001-01-01

    The Office of Atomic Energy for Peace, Thailand, is charged with three main tasks, namely, Nuclear Energy development Plan, Utilization of Nuclear Based technology Plan and Science and Technology Plan. Its activities are centred around the research reactor TRR-1/M1. The main areas of contribution include improvement in agricultural production, nuclear medicine and nuclear oncology, health care and nutrition, increasing industrial productivity and efficiency and, development of cadre competent in nuclear science and technology. The office also has the responsibility of ensuring nuclear safety, radiation safety and nuclear waste management. The office has started a new project in 1997 under which a 10 MWt research reactor, an isotope production facility and a waste processing and storage facility would be set up by General Atomic of USA. OAEP has a strong linkage with the IAEA and has been an active participant in RCA programmes. In the future OAEP will enhance its present capabilities in the use of radioisotopes and radiation and look into the possibility of using nuclear energy as an alternative energy resource. (author)

  19. Research reactor spent fuel in Ukraine

    International Nuclear Information System (INIS)

    Trofimenko, A.P.

    1996-01-01

    This paper describes the research reactors in Ukraine, their spent fuel facilities and spent fuel management problems. Nuclear sciences, technology and industry are highly developed in Ukraine. There are 5 NPPs in the country with 14 operating reactors which have total power capacity of 12,800 MW

  20. The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO): General description and implications for the research reactor infrastructure needed for R and D

    International Nuclear Information System (INIS)

    Sokolov, Yury A.

    2005-01-01

    The substantial growth in 21st century energy supplies needed to meet sustainable development goals has been emphasized by UNCSD, WSSD, IPCC and others. This will be driven by continuing population growth, economic development and aspiration to provide access to modern energy systems to the 1,6 billion people now without such access, the growth demand on limiting greenhouse gas emissions, and reducing the risk of climate change. A key factor to the future of nuclear power is the degree to which innovative nuclear technologies can be developed to meet challenges of economic competitiveness, safety, waste and proliferation concerns. There are two major international initiatives in the area of innovative nuclear technology: the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycle (INPRO) and the Generation IV International Forum. With INPRO some scenarios of future energy needs were identified and the methodology for holistic assessment of the innovative nuclear energy systems (INS), which can be developed to meet these scenarios, was developed.. The current status of the INPRO project and details of the INPRO methodology will be reported. The research needs identified due to Agency's activities on innovative nuclear system development assume the use of research reactors. The areas crucial for the development of INS which critically dependent of the RR experiments and following requirements addressed to the RR will be discussed. These areas include the development of advanced fuel and core materials for proposed innovative power reactor concepts. (author)

  1. Artificial intelligence applications to nuclear reactor diagnostics

    International Nuclear Information System (INIS)

    Lee, J.C.; Hassberger, J.A.; Wehe, D.K.

    1987-01-01

    The authors research into applications of artificial intelligence to nuclear reactor diagnostics involves three main areas. In the first area, the authors combine reactor simulation models and expert systems to diagnose the state of the plant. The second area examines ways in which the rule or knowledge base of an intelligent controller can be generated systematically from either fault trees or acquired plant data. Third, efforts are described to develop the capabilities to validate these techniques in a realistic reactor setting. The techniques are applicable to all reactor types, including fast reactors

  2. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  3. A human reliability analysis of the University of New Mexico's AGN- 201M nuclear research reactor

    International Nuclear Information System (INIS)

    Brumburgh, G.P.; Heger, A.S.

    1992-01-01

    During 1990--1991, a probabilistic risk assessment was conducted on the University of New Mexico's AGN-201M nuclear research reactor to address the risk and consequence of a maximum hypothetical release accident. The assessment indicated a potential for consequential human error to precipitate Chis scenario. Subsequently, a human reliability analysis was performed to evaluate the significance of human interaction on the reactor's safety systems. This paper presents the results of that investigation

  4. Present status of nuclear fusion research and development

    International Nuclear Information System (INIS)

    Discussions are included on the following topics: (1) plasma confinement theoretical research, (2) torus plasma research, (3) plasma measurement research, (4) technical development of equipment, (5) plasma heating, (6) vacuum wall surface phenomena, (7) critical plasma test equipment design, (8) noncircular cross-sectional torus test equipment design, (9) nuclear fusion reactor design, (10) nuclear fusion reactor engineering, (11) summary of nuclear fusion research in foreign countries, and (12) long range plan in Japan

  5. Nuclear characteristics evaluation for Kyoto University Research Reactor with low-enriched uranium core

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Ken; Unesaki, Hironobu [Kyoto University Research Reactor Institute, Kumatori-cho Sennan-gun Osaka (Japan)

    2008-07-01

    A project to convert the fuel of Kyoto University Research Reactor (KUR) from highly enriched uranium (HEU) to low-enriched uranium (LEU) is in progress as a part of RERTR program. Prior to the operation of LEU core, the nuclear characteristics of the core have been evaluated to confirm the safety operation. In the evaluation, nuclear parameters, such as the excess reactivity, shut down margin control rod worth, reactivity coefficients, were calculated, and they were compared with the safety limits. The results of evaluation show that the LEU core is able to satisfy the safety requirements for operation, i.e. all the parameters satisfy the safety limits. Consequently, it was confirmed that the LEU fuel core has the proper nuclear characteristics for the safety operation. (authors)

  6. Refuelling nuclear reactors

    International Nuclear Information System (INIS)

    Stacey, J.; Webb, J.; White, W.P.; McLaren, N.H.

    1981-01-01

    An improved nuclear reactor refuelling machine is described which can be left in the reactor vault to reduce the off-load refuelling time for the reactor. The system comprises a gripper device rangeable within a tubular chute, the gripper device being movable by a pantograph. (U.K.)

  7. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    Science.gov (United States)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  8. Experience and prospects for developing research reactors of different types

    International Nuclear Information System (INIS)

    Kuatbekov, R.P.; Tretyakov, I.T.; Romanov, N.V.; Lukasevich, I.B.

    2015-01-01

    NIKIET has a 60-year experience in the development of research reactors. Altogether, there have been more than 25 NIKIET-designed plants of different types built in Russia and 20 more in other countries, including pool-type water-cooled and water moderated research reactors, tank-type and pressure-tube research reactors, pressurized high-flux, heavy-water, pulsed and other research reactors. Most of the research reactors were designed as multipurpose plants for operation at research centers in a broad range of applications. Besides, unique research reactors were developed for specific application fields. Apart from the experience in the development of research reactor designs and the participation in the reactor construction, a unique amount of knowledge has been gained on the operation of research reactors. This makes it possible to use highly reliable technical solutions in the designs of new research reactors to ensure increased safety, greater economic efficiency and maintainability of the reactor systems. A multipurpose pool-type research reactor of a new generation is planned to be built at the Center for Nuclear Energy Science & Technology (CNEST) in the Socialist Republic of Vietnam to be used to support a spectrum of research activities, training of skilled personnel for Vietnam nuclear industry and efficient production of isotopes. It is exactly the applications a research reactor is designed for that defines the reactor type, design and capacity, and the selection of fuel and components subject to all requirements of industry regulations. The design of the new research reactor has a great potential in terms of upgrading and installation of extra experimental devices. (author)

  9. Australia's replacement research reactor project

    International Nuclear Information System (INIS)

    Harris, K.J.

    1999-01-01

    HIFAR, a 10 MW tank type DIDO Class reactor has operated at the Lucas Heights Science and Technology Centre for 43 years. HIFAR and the 10 kW Argonaut reactor 'Moata' which is in the Care and Maintenance phase of decommissioning are Australia's only nuclear reactors. The initial purpose for HIFAR was for materials testing to support a nuclear power program. Changing community attitude through the 1970's and a Government decision not to proceed with a planned nuclear power reactor resulted in a reduction of materials testing activities and a greater emphasis being placed on neutron beam research and the production of radioisotopes, particularly for medical purposes. HIFAR is not fully capable of satisfying the expected increase in demand for medical radiopharmaceuticals beyond the next 5 years and the radial configuration of the beam tubes severely restricts the scope and efficiency of neutron beam research. In 1997 the Australian Government decided that a replacement research reactor should be built by the Australian Nuclear Science and Technology Organisation at Lucas Heights subject to favourable results of an Environmental Impact Study. The Ei identified no reasons on the grounds of safety, health, hazard or risk to prevent construction on the preferred site and it was decided in May 1999 that there were no environmental reasons why construction of the facility should not proceed. In recent years ANSTO has been reviewing the operation of HIFAR and observing international developments in reactor technology. Limitations in the flexibility and efficiency achievable in operation of a tank type reactor and the higher intrinsic safety sought in fundamental design resulted in an early decision that the replacement reactor must be a pool type having cleaner and higher intensity tangential neutron beams of wider energy range than those available from HIFAR. ANSTO has chosen to use it's own resources supported by specialised external knowledge and experience to identify

  10. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    International Nuclear Information System (INIS)

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions

  11. IAEA/CRP for decommissioning techniques for research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities.

  12. IAEA/CRP for decommissioning techniques for research reactors

    International Nuclear Information System (INIS)

    Oh, Won Zin; Won, H. J.; Kim, K. N.; Lee, K. W.; Jung, C. H.

    2001-03-01

    The following were studied through the project entitled 'IAEA/CRP for decommissioning techniques for research reactors 1. Decontamination technology development for TRIGA radioactive soil waste - Electrokinetic soil decontamination experimental results and its mathematical simulation 2. The 2nd IAEA/CRP for decommissioning techniques for research reactors - Meeting results and program 3. Hosting the 2001 IAEA/RCA D and D training course for research reactors and small nuclear facilities

  13. Nuclear reactor internals arrangement

    International Nuclear Information System (INIS)

    Frisch, E.; Andrews, H.N.

    1976-01-01

    A nuclear reactor internals arrangement is disclosed which facilitates reactor refueling. A reactor vessel and a nuclear core is utilized in conjunction with an upper core support arrangement having means for storing withdrawn control rods therein. The upper core support is mounted to the underside of the reactor vessel closure head so that upon withdrawal of the control rods into the upper core support, the closure head, the upper core support and the control rods are removed as a single unit thereby directly exposing the core for purposes of refueling

  14. Indian advanced nuclear reactors

    International Nuclear Information System (INIS)

    Saha, D.; Sinha, R.K.

    2005-01-01

    For sustainable development of nuclear energy, a number of important issues like safety, waste management, economics etc. are to be addressed. To do this, a number of advanced reactor designs as well as fuel cycle technologies are being pursued worldwide. The advanced reactors being developed in India are the AHWR and the CHTR. Both the reactors use thorium based fuel and have many passive features. This paper describes the Indian advanced reactors and gives a brief account of the international initiatives for the sustainable development of nuclear energy. (author)

  15. A nuclear reactor for district heating

    International Nuclear Information System (INIS)

    Bancroft, A.R.; Fenton, N.

    1989-07-01

    Global energy requirements are expected to double over the next 40 years. In the northern hemisphere, many countries consume in excess of 25 percent of their primary energy supply for building heating. Satisfying this need, within the constraints now being acknowledged for sustainable global development, provides an important opportunity for district heating. Fuel-use flexibility, energy and resource conservation, and reduced atmospheric pollution from acid gases and greenhouse gases, are important features offered by district heating systems. Among the major fuel options, only hydro-electricity and nuclear heat completely avoid emissions of combustion gases. To fill the need for an economical nuclear heat source, Atomic Energy of Canada Limited has designed a 10 MW plant that is suitable as a heat source within a network or as the main supply to large individual users. Producing hot water at temperatures below 100 degrees C, it incorporates a small pool-type reactor based on AECL's successful SLOWPOKE Research Reactor. A 2 MW prototype for the commercial unit is now being tested at the Whiteshell Nuclear Research Establishment in Manitoba. With capital costs of $7 million (Canadian), unit energy costs are projected to be $0.02/kWh for a 10 MW unit operating in a heating grid over a 30-year period. By keeping the reactor power low and the water temperature below 100 degrees C, much of the complexity of the large nuclear power plants can be avoided, thus allowing these small, safe nuclear heating systems to be economically viable

  16. Licensing of nuclear reactor operators

    International Nuclear Information System (INIS)

    1979-09-01

    Recommendations are presented for the licensing of nuclear reactor operators in units licensed according to the legislation in effect. They apply to all physical persons designated by the Operating Organization of the nuclear reactor or reactors to execute any of the following functional activities: a) to manipulate the controls of a definite reactor b) to direct the authorized activities of the reactor operators licesed according to the present recommendations. (F.E.) [pt

  17. The rehabilitation/upgrading of Philippine Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Renato, T Banaga [Philippines Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E{sub 1}-U-Z{sub 1}-H{sub 1.6} TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  18. The rehabilitation/upgrading of Philippine Research Reactor

    International Nuclear Information System (INIS)

    Renato T, Banaga

    1998-01-01

    The Philippine Research Reactor (PRR-1) is the only research reactor in the Philippines. It was acquired through the Bilateral Agreement with the United States of America. The General Electric (G.E.) supplied PRR-1 first become operational in 1963 and used MTR plate type fuel. The original one-megawatt G.E. reactor was shutdown and converted into a 3 MW TRIGA PULSING REACTOR in 1984. The conversion includes the upgrading of the cooling system, replacement of new reactor coolant pumps, heat exchanger, cooling tower, replacement of new nuclear instrumentation and standard TRIGA console, TRIGA fuel supplied by General Atomic (G.A.). Philippine Nuclear Research Institute (PNRI) provided the old reactor, did the detailed design of the new cooling system, provided the new non-nuclear instrumentation and electrical power supply system and performed all construction, installation and modification work on site. The TRIGA conversion fuel is contained in a shrouded 4-rod cluster which fit into the original grid plate. The new fuel is a E 1 -U-Z 1 -H 1.6 TRIGA fuel, has a 20% wt Uranium loading with 19.7% U-235 enrichment and about 0.5 wt % Erbium. The Start-up, calibration and Demonstration of Pulsing and Full Power Operation were completed during a three week start-up phase which were performed last March 1968. A few days after, a leak in the pool liner was discovered. The reactor was shutdown again for repair and up to present the reactor is still in the process of rehabilitation. This paper will describe the rehabilitation/upgrading done on the PRR-1 since 1988 up to present. (author)

  19. Sodium-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Hammers, H.W.

    1982-01-01

    The invention concerns a sodium-cooled nuclear reactor, whose reactor tank contains the primary circuit, shielding surrounding the reactor core and a primary/secondary heat exchanger, particularly a fast breeder reactor on the module principle. In order to achieve this module principle it is proposed to have electromagnetic circulating pumps outside the reactor tank, where the heat exchanger is accomodated in an annular case above the pumps. This case has several openings at the top end to the space above the reactor core, some smaller openings in the middle to the same space and is connected at the bottom to an annular space between the tank wall and the reactor core. As a favoured variant, it is proposed that the annular electromagnetic pumps should be arranged concentrically to the reactor tank, where there is an annual duct on the inside of the reactor tank. In this way the sodium-cooled nuclear reactor is made suitable as a module with a large number of such elements. (orig.) [de

  20. Nuclear energy research in Germany 2008. Research centers and universities

    International Nuclear Information System (INIS)

    Tromm, Walter

    2009-01-01

    This summary report presents nuclear energy research at research centers and universities in Germany in 2008. Activities are explained on the basis of examples of research projects and a description of the situation of research and teaching in general. Participants are the - Karlsruhe Research Center, - Juelich Research Center (FZJ), - Dresden-Rossendorf Research Center (FZD), - Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), - Technical University of Dresden, - University of Applied Sciences, Zittau/Goerlitz, - Institute for Nuclear Energy and Energy Systems (IKE) at the University of Stuttgart, - Reactor Simulation and Reactor Safety Working Group at the Bochum Ruhr University. (orig.)