WorldWideScience

Sample records for research program scientific

  1. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  2. THE OFFICE OF AEROSPACE RESEARCH SCIENTIFIC AND TECHNICAL INFORMATION PROGRAM

    Science.gov (United States)

    The document outlines the mission and organization of the Office of Aerospace Research (OAR), then describes how its principal product, scientific...effective technical information program, are documented by examples. The role of the Office of Scientific and Technical Information within OAR as performed

  3. 78 FR 63454 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2013-10-24

    ... Strategic Environmental Research and Development Program, Scientific Advisory Board that was to have taken... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Federal Advisory Committee Meeting; Cancellation of Meeting...

  4. 75 FR 5288 - Strategic Environmental Research and Development Program, Scientific Advisory Board

    Science.gov (United States)

    2010-02-02

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board AGENCY: Department of Defense (DOD). ACTION: Notice. SUMMARY: This... requesting Strategic Environmental Research and Development Program funds in excess of $1M. This meeting is...

  5. 76 FR 45542 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board

    Science.gov (United States)

    2011-07-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board AGENCY: Office of the Secretary, Department of Defense. ACTION... program areas. These projects are requesting Strategic Environmental Research and Development Program...

  6. 76 FR 81918 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board...

    Science.gov (United States)

    2011-12-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION... research and development projects requesting Strategic Environmental Research and Development Program...

  7. 75 FR 55778 - Strategic Environmental Research and Development Program, Scientific Advisory Board

    Science.gov (United States)

    2010-09-14

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board AGENCY: Department of Defense. ACTION: Notice. SUMMARY: This notice is... requesting Strategic Environmental Research and Development Program funds in excess of $1M. This meeting is...

  8. 76 FR 46756 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board

    Science.gov (United States)

    2011-08-03

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board AGENCY: Department of Defense, Office of the Secretary. ACTION... Change program areas. These projects are requesting Strategic Environmental Research and Development...

  9. 76 FR 49753 - Strategic Environmental Research and Development Program Scientific Advisory Board Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program Scientific Advisory Board Meeting AGENCY: Department of Defense. ACTION: Notice. SUMMARY: This... projects requesting Strategic Environmental Research and Development Program (SERDP) funds in excess of $1M...

  10. 77 FR 49439 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2012-08-16

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION: Notice... research and development projects requesting Strategic Environmental Research and Development Program funds...

  11. 77 FR 26521 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2012-05-04

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION: Notice... development projects requesting Strategic Environmental Research and Development Program (SERDP) funds in...

  12. A Review of NASA Human Research Program's Scientific Merit Processes: Letter Report

    Science.gov (United States)

    Pawelczyk, James A. (Editor); Strawbridge, Larisa M. (Editor); Schultz, Andrea M. (Editor); Liverman, Catharyn T. (Editor)

    2012-01-01

    At the request of the National Aeronautics and Space Administration (NASA), the Institute of Medicine (IOM) convened the Committee on the Review of NASA Human Research Program's (HRP's) Scientific Merit Assessment Processes in December 2011. The committee was asked to evaluate the scientific merit assessment processes that are applied to directed research tasks2 funded through the HRP and to determine best practices from similar assessment processes that are used in other federal agencies. This letter report and its recommendations are the product of a 10-member ad hoc committee, which included individuals who had previously conducted research under the HRP, were familiar with the HRP s research portfolio and operations, had specific knowledge of peer review processes, or were familiar with scientific merit assessment processes used in other organizations and federal agencies, such as the Canadian Institutes of Health Research (CIHR); National Institutes of Health (NIH); National Science Foundation (NSF); and U.S. Departments of Agriculture (USDA), Defense (DOD), and Transportation.

  13. Basic materials research programs at the U.S. Air Force Office of Scientific Research

    International Nuclear Information System (INIS)

    Carlson, Herbert C.; Goretta, K.C.

    2006-01-01

    The Air Force Office of Scientific Research (AFOSR) annually sponsors approximately 5000 research scientists at 1000 universities and laboratories, generating about 10,000 Ph.D. graduates per decade, all expected to publish their basic research findings in peer-reviewed journals. After a brief introduction of the nature of AFOSR's support to basic research in the U.S. and international scientific communities, work it supports at the frontiers of materials science is highlighted. One focused research theme that drives our investment is the MEANS program. It begins with the end in mind; materials are designed with practicable manufacture as an explicit initial goal. AFOSR's broad research portfolio comprises many materials. Nanotechnology efforts include optical materials that reduce distortion to the scale of the nanoparticles themselves. Advances in semiconductors include breakthroughs in Group III nitrides, some of which emanated from Asia under sponsorship from AFOSR's Asian office. Advances in structural materials include those for use at ultra-high temperatures and self-healing composites. The growing role of high-performance computing in design and study of functional, biological, and structural materials is also discussed

  14. Ignalina Nuclear Power Plant and the Environment. Scientific research program: 1993-1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The aim of the research program is not only to asses the impact of the Ignalina NPP to the ecosystems. There was a need to study the region of Ignalina NPP as a comprehensive nature complex, not limited by the interests or potential of one institution. The implementation of such program could provide scientific conclusions vital for formulating the strategies of nature and health protection under the conditions of normal and emergency operational regimes of Ignalina NPP. The program will be carried out by 250 members of 13 research and academic institutions and will continue from 1993 till 1997. (author). 13 refs., 13 figs.

  15. Ignalina Nuclear Power Plant and the Environment. Scientific research program: 1993-1997

    International Nuclear Information System (INIS)

    1993-01-01

    The aim of the research program is not only to asses the impact of the Ignalina NPP to the ecosystems. There was a need to study the region of Ignalina NPP as a comprehensive nature complex, not limited by the interests or potential of one institution. The implementation of such program could provide scientific conclusions vital for formulating the strategies of nature and health protection under the conditions of normal and emergency operational regimes of Ignalina NPP. The program will be carried out by 250 members of 13 research and academic institutions and will continue from 1993 till 1997. (author). 13 refs., 13 figs

  16. Institute for Scientific and Educational Technology (ISET)-Education, Research and Training Programs in Engineering and Sciences

    Science.gov (United States)

    Tiwari, S. N. (Principal Investigator); Massenberg, Samuel E. (Technical Monitor)

    2002-01-01

    The 'Institute for Scientific and Educational Technology' has been established to provide a mechanism through which universities and other research organizations may cooperate with one another and with different government agencies and industrial organizations to further and promote research, education, and training programs in science, engineering, and related fields. This effort has been undertaken consistent with the national vision to 'promote excellence in America s educational system through enhancing and expanding scientific and technological competence.' The specific programs are directed in promoting and achieving excellence for individuals at all levels (elementary and secondary schools, undergraduate and graduate education, and postdoctoral and faculty research). The program is consistent with the existing activities of the Institute for Computational and Applied Mechanics (ICAM) and the American Society for Engineering Education (ASEE) at NASA Langley Research Center (LaRC). The efforts will be directed to embark on other research, education, and training activities in various fields of engineering, scientific, and educational technologies. The specific objectives of the present program may be outlined briefly as follows: 1) Cooperate in the various research, education, and technology programs of the Office of Education at LaRC. 2) Develop procedures for interactions between precollege, college, and graduate students, and between faculty and students at all levels. 3) Direct efforts to increase the participation by women and minorities in educational programs at all levels. 4) Enhance existing activities of ICAM and ASEE in education, research, and training of graduate students and faculty. 5) Invite distinguished scholars as appropriate and consistent with ISET goals to spend their summers and/or sabbaticals at NASA Langley andor ODU and interact with different researchers and graduate students. Perform research and administrative activities as needed

  17. 77 FR 51785 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2012-08-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION: Notice... Act (Pub. L. 92-463). The topic of the meeting on October 23-25, 2012 is to review new start research...

  18. Overview of the RERF scientific research program

    International Nuclear Information System (INIS)

    Bennett, B.G.

    2003-01-01

    Radiation Effects Research Foundation (RERF) was founded to study the effects of radiation in survivors of the atomic bombings of Hiroshima and Nagasaki. Several fixed cohorts or sub-cohorts were established to provide epidemiological and clinical data on the health status and mortality of survivors and their children. Genetics and radiobiological studies are carried out to help interpret the findings. The Life Span Study is the core project of RERF. It consists of a large cohort from a general population of both sexes and all ages, encompassing a wide range of accurately known doses and incorporating accurate disease incidence and mortality recording. These features make this a very valuable and informative study. The Adult Health Study is a clinical study of a sub-cohort of the Life Span Study. Examinations of survivors are conducted every two years, providing a continuing health profile of an aging population and establishing the radiation-related risk of non-cancer diseases. The children of atomic-bomb survivors are being studied to determine whether genetic effects might be apparent that could be related to parental exposures. Initial study of post-natal defects did not demonstrate discernable effects. The mortality follow up is continuing. A new clinical study of survivor children was recently started to examine the health condition of these now middle-aged individuals. It is now 58 years since the atomic bombings of Hiroshima and Nagasaki. The legacy of those events still marks the lives of the survivors. RERF feels an important responsibility to investigate the effects of radiation to contribute to the welfare of those affected, to understand and quantify the effects, and to provide a scientific basis for radiation protection worldwide. We intend to continue a high quality scientific research program into the future, establishing where possible more collaborative efforts to be sure that our shared resources and capabilities are most effectively utilized

  19. 76 FR 20335 - Meeting of the Strategic Environmental Research and Development Program, Scientific Advisory Board

    Science.gov (United States)

    2011-04-12

    ... DEPARTMENT OF DEFENSE Office of the Secretary Meeting of the Strategic Environmental Research and Development Program, Scientific Advisory Board AGENCY: Department of Defense. ACTION: Notice. SUMMARY: This...-463). The topic of the meeting on June 16, 2011 is to review continuing research and development...

  20. The Knowledge Management Research of Agricultural Scientific Research Institution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.

  1. Learning scientific programming with Python

    CERN Document Server

    Hill, Christian

    2015-01-01

    Learn to master basic programming tasks from scratch with real-life scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to quickly gain proficiency. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving onto the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualisation, this textbook also discusses the use of IPython notebooks to build rich-media, shareable documents for scientific analysis. Including a final chapter introducing challenging topics such as floating-point precision and algorithm stability, and with extensive online resources to support advanced study, this textbook represents a targeted package for students...

  2. The scientific program of the Tokamak de Varennes

    International Nuclear Information System (INIS)

    Daughney, C.C.

    1989-01-01

    The Tokamak de Varennes (TdeV) is the principal research tool of the Centre canadien de fusion magnetique (CCFM). This article places the Tokamak de Varennes within the framework of the Canadian National Fusion Program (NFP) and describes the scientific program of the TdeV as it was presented at the April 1989 meeting of the CCFM Advisory Committee. The CCFM scientific plant contains three main elements: tokamak development, research on transport and equilibrium in plasmas, and research on the plasma-wall problem. Phase I of the experimental program, commissioning the tokamak and the diagnostic systems, has been completed. Phase II of the experimental program will begin in December 1989 with the plasma boundary defined by a magnetic divertor and the power supplies and vacuum system capable of creating a sequence of one-second plasma pulses. (3 figs., 3 refs.) (L.L.)

  3. ANSTO - Program of Research 1993-1994

    International Nuclear Information System (INIS)

    1993-01-01

    The 1993-1994 Program of Research outlines ANSTO's scientific activities in four key research areas, Advanced Materials, Application of Nuclear Physics, Biomedicine and Health and Environmental Science. The effort has been channeled into applied research and development in partnership with industry and appropriate national and international institutions and into interdisciplinary strategic research projects to enhance the scientific base of the key research activities. A list of scientific publications originated from these program areas is also included. ills

  4. 2004 Annual Scientific Conference. Program and Abstracts

    International Nuclear Information System (INIS)

    Barborica, Andrei; Bulinski, Mircea; Stefan, Sabina

    2005-01-01

    As consequence of a long experience in educational as well as research field the Physics Department of the Bucharest University is offering high-standard undergraduate and graduate programs of higher education in physical sciences. The long-term strategy adopted by the faculty was focused on developing scientific research in modern topics of theoretical, experimental and applied physics as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of environment, physics-computer science. Following this strategy the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to approach modern and competitive research projects. Every year the Physics Department of the University of Bucharest organizes the 'Annual Scientific Conference' to present the most interesting scientific results, obtained within the department. This 2004 scientific session is opened also to the interested physics researchers from other institutes and universities in the country. This scientific event represents a recognition and a continuation of the prestigious tradition of physics research performed within University. The scientific research in the Physics Department is performed in groups and research centers, the terminal year undergraduate students and graduate students being involved in a high extent in the research works. There are 5 research centers with the status of Center of excellence in research. The long-term strategy adopted by the faculty was focused on developing the scientific research in modern topics of theoretical, experimental and applied physics, as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of the environment, physics - computer science. Following this strategy, the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to perform modern

  5. 2003 Annual Scientific Conference. Program and Abstracts

    International Nuclear Information System (INIS)

    Barborica, Andrei; Bulinski, Mircea

    2003-01-01

    As consequence of a long experience in educational as well as research field the Physics Department of the Bucharest University is offering high-standard undergraduate and graduate programs of higher education in physical sciences. The long-term strategy adopted by the faculty was focused on developing scientific research in modern topics of theoretical, experimental and applied physics as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of environment, physics-computer science. Following this strategy the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to approach modern and competitive research projects. Every year the Physics Department of the University of Bucharest organizes the 'Annual Scientific Conference' to present the most interesting scientific results, obtained within the department. This scientific session is opened also to the interested physics researchers from other institutes and universities in the country. This scientific event represents a recognition and a continuation of the prestigious tradition of physics research performed within University. The scientific research in the Physics Department is performed in groups and research centers, the terminal year undergraduate students and graduate students being involved in a high extent in the research works. There are 5 research centers with the status of Center of excellence in research. The long-term strategy adopted by the faculty was focused on developing the scientific research in modern topics of theoretical, experimental and applied physics, as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of the environment, physics - computer science. Following this strategy, the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to perform modern and

  6. 2002 Annual Scientific Conference. Program and Abstracts

    International Nuclear Information System (INIS)

    Barborica, Andrei; Bulinski, Mircea; Dinca, Mihai P.

    2002-01-01

    As consequence of a long experience in educational as well as research field the Physics Department of the Bucharest University is offering high-standard undergraduate and graduate programs of higher education in physical sciences. The long-term strategy adopted by the faculty was focused on developing scientific research in modern topics of theoretical, experimental and applied physics as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of environment, physics-computer science. Following this strategy the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to approach modern and competitive research projects. Every year the Physics Department of the University of Bucharest organizes the 'Annual Scientific Conference' to present the most interesting scientific results, obtained within the department. This scientific session is opened also to the interested physics researchers from other institutes and universities in the country. This scientific event represents a recognition and a continuation of the prestigious tradition of physics research performed within University. The scientific research in the Physics Department is performed in groups and research centers, the terminal year undergraduate students and graduate students being involved in a high extent in the research works. There are 5 research centers with the status of Center of excellence in research. The long-term strategy adopted by the faculty was focused on developing the scientific research in modern topics of theoretical, experimental and applied physics, as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of the environment, physics - computer science. Following this strategy, the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to perform modern and

  7. National nuclear scientific program

    International Nuclear Information System (INIS)

    Plecas, I.; Matausek, M.V.; Neskovic, N.

    2001-01-01

    National scientific program of the Vinca Institute Nuclear Reactors And Radioactive Waste comprises research and development in the following fields: application of energy of nuclear fission, application of neutron beams, analyses of nuclear safety and radiation protection. In the first phase preparatory activities, conceptual design and design of certain processes and facilities should be accomplished. In the second phase realization of the projects is expected. (author)

  8. 7 CFR 3400.21 - Scientific peer review for research activities.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Scientific peer review for research activities. 3400... STATE RESEARCH, EDUCATION, AND EXTENSION SERVICE, DEPARTMENT OF AGRICULTURE SPECIAL RESEARCH GRANTS PROGRAM Peer and Merit Review Arranged by Grantees § 3400.21 Scientific peer review for research...

  9. REQUIREMENTS TO AUTOMATIZATION PROCESSING IN THE PROGRAMMING INFORMATION SYSTEM OF SCIENTIFIC RESEARCHES IN ACADEMY OF PEDAGOGICAL SCIENCES OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Alla V. Kilchenko

    2010-08-01

    Full Text Available A construction and introduction of the information systems in a management education is the actual task of forming of modern information society. In the article the results of research of automation of treatment of financial documents, which was conducted within the project «Scientific-methodical providing of the informative system of programming of scientific researches in Academy of Pedagogical Sciences of Ukraine based on the Internet» № 0109U002139 are represented. The article contains methodical principles of automation of treatment programming and financial documents as well as requirements to the information system, which will be the base to next project stages.

  10. Radon Research Program, FY 1991

    International Nuclear Information System (INIS)

    1992-03-01

    The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny as well as to provide information useful in radon control strategies. Results generated under the Program were highlighted in a National Research Council report on radon dosimetry. The study concluded that the risk of radon exposure is 30% less in homes than in mines. This program summary of book describes the OHER FY-1991 Radon Research Program. It is the fifth in an annual series of program books designed to provide scientific and research information to the public and to other government agencies on the DOE Radon Research Program

  11. Achievement in research on ion beam application under the scientific cooperation program with the Gesellschaft fuer schwerionenforschung mbH

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaru; Maekawa, Yasunari (eds.) [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-03-01

    The Japan Atomic Energy Research Institute (JAERI) and the Gasellshaft fuer Schwerionenforshung mbH (GSI) signed a memorandum of 'Research and Development in the Field of Ion Beam Application' in January, 1991 and started the cooperative research program. The cooperation has been implemented by means of joint research between JAERI and GSI, exchange of scientific and technical experts, and providing mutual exchange of research materials as well as technical information. This report summarizes the cooperative research activities under the cooperative research program in the last 12 years. The list of publications and several articles relating to this cooperative research program are attached as an appendix. All the attached articles are reprinted with permission from the publishers. (author)

  12. 2005 Annual Scientific Conference. Program and Abstracts

    International Nuclear Information System (INIS)

    Barborica, Andrei; Bulinski, Mircea; Stefan, Sabina

    2005-01-01

    Every year the Physics Department of the University of Bucharest organizes the 'Annual Scientific Conference' to present the most interesting scientific results, obtained within the department. This scientific session is opened also to the interested physics researchers from other institutes and universities in the country. This scientific event represents a recognition and a continuation of the prestigious tradition of physics research performed within University. The scientific research in the Physics Department is performed in groups and research centers, the terminal year undergraduate students and graduate students being involved in a high extent in the research works. There are 5 research centers with the status of Center of excellence in research. The long-term strategy adopted by the faculty was focused on developing the scientific research in modern topics of theoretical, experimental and applied physics, as well as in inter-disciplinary fields as biophysics, medical physics, physics and protection of the environment, physics - computer science. Following this strategy, the Faculty of Physics has diversified the research activity, developing new research laboratories and encouraging the academic community to perform modern and competitive research projects. The Faculty of Physics is a partner in many common research programs with prestigious foreign universities and institutes. The 2005 session covered the following 8 topics: 1. Atmosphere and Earth Science; Environment Protection (21 papers); 2. Atomic and Molecular Physics; Astrophysics (12 papers); 3. Electricity and Biophysics (19 papers); 4. Nuclear and Elementary Particles Physics (17 papers); 5. Optics, Spectroscopy, Plasma and Lasers (19 papers); 6. Polymer Physics (10 papers); 7. Solid State Physics and Materials Science (10 papers); 8. Theoretical Physics and Applied Mathematics Seminar (12 papers)

  13. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  14. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  15. Recent Developments in Scientific Research Ballooning

    International Nuclear Information System (INIS)

    Jones, W. Vernon

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Balloon Program is committed to meeting the need for extended duration scientific investigations by providing advanced balloon vehicles and support systems. A sea change in ballooning capability occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990's. The attainment of 28-31 day flights and a record-breaking 42-day flight in, respectively, two and three circumnavigations of the continent has greatly increased the expectations of the scientific users. A new super-pressure balloon is currently under development for future flights of 60-100 days at any latitude, which would bring another sea change in scientific research ballooning

  16. Data Management Challenges in a National Scientific Program of 55 Diverse Research Projects

    Science.gov (United States)

    De Bruin, T.

    2016-12-01

    In 2007-2015, the Dutch funding agency NWO funded the National Ocean and Coastal Research Program (in Dutch: ZKO). This program focused on `the scientific analysis of five societal challenges related to a sustainable use of the sea and coastal zones'. These five challenges were safety, economic yield, nature, spatial planning & development and water quality. The ZKO program was `set up to strengthen the cohesion and collaboration within Dutch marine research'. From the start of the program, data management was addressed, to allow data to be shared amongst the, diverse, research projects. The ZKO program was divided in 4 different themes (or regions). The `Carrying Capacity' theme was subdivided into 3 `research lines': Carrying capacity (Wadden Sea) - Policy-relevant Research - Monitoring - Hypothesis-driven Research Oceans North Sea Transnational Wadden Sea Research 56 Projects were funded, ranging from studies on the governance of the Wadden Sea to expeditions studying trace elements in the Atlantic Ocean. One of the first projects to be funded was the data management project. Its objectives were to allow data exchange between projects, to archive all relevant data from all ZKO projects and to make the data and publications publicly available, following the ZKO Data Policy. This project was carried out by the NIOZ Data Management Group. It turned out that the research projects had hardly any interest in sharing data between projects and had good (?) arguments not to share data at all until the end of the projects. A data portal was built, to host and make available all ZKO data and publications. When it came to submitting the data to this portal, most projects obliged willingly, though found it occasionally difficult to find time to do so. However, some projects refused to submit data to an open data portal, despite the rules set up by the funding agency and agreed by all. The take-home message of this presentation is that data sharing is a cultural and

  17. Scientific Research Competencies of Prospective Teachers and their Attitu des toward Scientific Research

    Directory of Open Access Journals (Sweden)

    Hasan Hüseyin Şahan

    2015-09-01

    Full Text Available Present study has been constructed to determine scientific research competencies of prospective teachers and identify the extent of effect of prospective teachers’ attitudes toward scientific research and scientific research methods course on their research skills and attitudes towards research. This study has two dimensions: it is a descriptive study by virtue of identifying prospective teachers’ research skills and attitudes toward research, also an experimental study by virtue of determining the effect of scientificresearch methods course on prospective teachers’ skills and their attitudes toward research. In order to obtain the data related to identified sub-problems “Scale for Identifying Scientific Research Competencies” and “Scale for Identifying the Attitude toward Research” have been utilized. Data collection tools were applied to 445 prospective teachers. It has thus been concluded in this study that scientific research methods course had no significant effect in gaining scientific research competencies to prospective teachers and that this effect demonstrated no differentiation with respect to departments. On the other hand it has been explored that scientific research methods course had a negative effect onthe attitudes of prospective teachers toward research and that there was a differentiation to the disadvantage of prospective teachers studying at Primary Education Mathematics Teaching Department.

  18. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  19. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  20. Applications of artificial intelligence to scientific research

    Science.gov (United States)

    Prince, Mary Ellen

    1986-01-01

    Artificial intelligence (AI) is a growing field which is just beginning to make an impact on disciplines other than computer science. While a number of military and commercial applications were undertaken in recent years, few attempts were made to apply AI techniques to basic scientific research. There is no inherent reason for the discrepancy. The characteristics of the problem, rather than its domain, determines whether or not it is suitable for an AI approach. Expert system, intelligent tutoring systems, and learning programs are examples of theoretical topics which can be applied to certain areas of scientific research. Further research and experimentation should eventurally make it possible for computers to act as intelligent assistants to scientists.

  1. Scientific Programming in Fortran

    Directory of Open Access Journals (Sweden)

    W. Van Snyder

    2007-01-01

    Full Text Available The Fortran programming language was designed by John Backus and his colleagues at IBM to reduce the cost of programming scientific applications. IBM delivered the first compiler for its model 704 in 1957. IBM's competitors soon offered incompatible versions. ANSI (ASA at the time developed a standard, largely based on IBM's Fortran IV in 1966. Revisions of the standard were produced in 1977, 1990, 1995 and 2003. Development of a revision, scheduled for 2008, is under way. Unlike most other programming languages, Fortran is periodically revised to keep pace with developments in language and processor design, while revisions largely preserve compatibility with previous versions. Throughout, the focus on scientific programming, and especially on efficient generated programs, has been maintained.

  2. Impact of research investment on scientific productivity of junior researchers.

    Science.gov (United States)

    Farrokhyar, Forough; Bianco, Daniela; Dao, Dyda; Ghert, Michelle; Andruszkiewicz, Nicole; Sussman, Jonathan; Ginsberg, Jeffrey S

    2016-12-01

    There is a demand for providing evidence on the effectiveness of research investments on the promotion of novice researchers' scientific productivity and production of research with new initiatives and innovations. We used a mixed method approach to evaluate the funding effect of the New Investigator Fund (NIF) by comparing scientific productivity between award recipients and non-recipients. We reviewed NIF grant applications submitted from 2004 to 2013. Scientific productivity was assessed by confirming the publication of the NIF-submitted application. Online databases were searched, independently and in duplicate, to locate the publications. Applicants' perceptions and experiences were collected through a short survey and categorized into specified themes. Multivariable logistic regression was performed. Odds ratios (OR) with 95 % confidence intervals (CI) are reported. Of 296 applicants, 163 (55 %) were awarded. Gender, affiliation, and field of expertise did not affect funding decisions. More physicians with graduate education (32.0 %) and applicants with a doctorate degree (21.5 %) were awarded than applicants without postgraduate education (9.8 %). Basic science research (28.8 %), randomized controlled trials (24.5 %), and feasibility/pilot trials (13.3 %) were awarded more than observational designs (p   scientific productivity and professional growth of novice investigators and production of research with new initiatives and innovations. Further efforts are recommended to enhance the support of small grant funding programs.

  3. The Swedish Deep Drilling Program - an emerging scientific drilling program and new infrastructure.

    Science.gov (United States)

    Lorenz, Henning; Juhlin, Christopher

    2010-05-01

    Scientific drilling projects imply numerous aspects that are difficult to handle for individual research groups. Therefore, about three years ago a joint effort was launched in the Swedish geoscientific community to establish a national program for scientific drilling, the Swedish Deep Drilling Program (SDDP). Soon afterwards, several working groups established drilling proposals with Nordic and, also, international participation. With this serious interest in scientific drilling SDDP was able to successfully promote the Swedish membership in ICDP which commenced in 2008. Two SDDP projects achieved workshop grants from the International Continental Scientific Drilling Program (ICDP) in 2009. In the same year the Swedish Research Council decided to support an application for a truck-mounted drill rig - a big success for the SDDP working group. Scientific Drilling infrastructure: SDDP envisages a mobile platform that is capable of core drilling to at least 2500 m depth. The procurement will be made during 2010 and first operations are planned for 2011. This drill rig is primarily intended for use in the SDDP drilling projects, but will be rented out to other scientific drilling projects or even commercial enterprises in the remaining time to cover maintenance and future upgrade costs. SDDP's drill rig will be unique in Europe and complementary to the deep drilling InnovaRig of the GFZ German Research Centre for Geosciences. Until now, drilling to 2000 - 3000 m implied the use of a full-sized drill rig like the InnovaRig or the mobilization of a core drill rig from another continent. This gap will now be filled by Sweden's upcoming scientific drilling infrastructure. Drilling projects and proposals: Presently, SDDP serves six projects: "Collisional Orogeny in the Scandinavian Caledonides" (COSC; ICDP workshop spring 2010), the "Postglacial Fault Drilling Project" (PFDP; ICDP workshop autumn 2010), a "Deep Rock Laboratory" (DRL), "Palaeoproterozoic Mineralized Volcanic

  4. Refining Current Scientific Priorities and Identifying New Scientific Gaps in HIV-Related Heart, Lung, Blood, and Sleep Research.

    Science.gov (United States)

    Twigg, Homer L; Crystal, Ronald; Currier, Judith; Ridker, Paul; Berliner, Nancy; Kiem, Hans-Peter; Rutherford, George; Zou, Shimian; Glynn, Simone; Wong, Renee; Peprah, Emmanuel; Engelgau, Michael; Creazzo, Tony; Colombini-Hatch, Sandra; Caler, Elisabet

    2017-09-01

    The National Heart, Lung, and Blood Institute (NHLBI) AIDS Program's goal is to provide direction and support for research and training programs in areas of HIV-related heart, lung, blood, and sleep (HLBS) diseases. To better define NHLBI current HIV-related scientific priorities and with the goal of identifying new scientific priorities and gaps in HIV-related HLBS research, a wide group of investigators gathered for a scientific NHLBI HIV Working Group on December 14-15, 2015, in Bethesda, MD. The core objectives of the Working Group included discussions on: (1) HIV-related HLBS comorbidities in the antiretroviral era; (2) HIV cure; (3) HIV prevention; and (4) mechanisms to implement new scientific discoveries in an efficient and timely manner so as to have the most impact on people living with HIV. The 2015 Working Group represented an opportunity for the NHLBI to obtain expert advice on HIV/AIDS scientific priorities and approaches over the next decade.

  5. NASA Guidelines for Promoting Scientific and Research Integrity

    Science.gov (United States)

    Kaminski, Amy P.; Neogi, Natasha A.

    2017-01-01

    This guidebook provides an overarching summary of existing policies, activities, and guiding principles for scientific and research integrity with which NASA's workforce and affiliates must conform. This document addresses NASA's obligations as both a research institution and as a funder of research, NASA's use of federal advisory committees, NASA's public communication of research results, and professional development of NASA's workforce. This guidebook is intended to provide a single resource for NASA researchers, NASA research program administrators and project managers, external entities who do or might receive funding from NASA for research or technical projects, evaluators of NASA research proposals, NASA advisory committee members, NASA communications specialists, and members of the general public so that they can understand NASA's commitment to and expectations for scientific and integrity across the agency.

  6. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  7. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  8. Integrating authentic scientific research in a conservation course–based undergraduate research experience

    Science.gov (United States)

    Sorensen, Amanda E.; Corral, Lucia; Dauer, Jenny M.; Fontaine, Joseph J.

    2018-01-01

    Course-based undergraduate research experiences (CUREs) have been developed to overcome barriers including students in research. However, there are few examples of CUREs that take place in a conservation and natural resource context with students engaging in field research. Here, we highlight the development of a conservation-focused CURE integrated to a research program, research benefits, student self-assessment of learning, and perception of the CURE. With the additional data, researchers were able to refine species distribution models and facilitate management decisions. Most students reported gains in their scientific skills, felt they had engaged in meaningful, real-world research. In student reflections on how this experience helped clarify their professional intentions, many reported being more likely to enroll in graduate programs and seek employment related to science. Also interesting was all students reported being more likely to talk with friends, family, or the public about wildlife conservation issues after participating, indicating that courses like this can have effects beyond the classroom, empowering students to be advocates and translators of science. Field-based, conservation-focused CUREs can create meaningful conservation and natural resource experiences with authentic scientific teaching practices.

  9. State program on scientific support of nuclear power development in Belarus

    International Nuclear Information System (INIS)

    Mikhalevich, A.

    2010-01-01

    Following the decision on NPP construction in Belarus, the Organization on Technical and Scientific Support of Nuclear Power Development (Joint Institute of Power and Nuclear Research - 'Sosny') has been nominated. In 2009, the Government adopted the State Program on Scientific Support of Nuclear Power Development in the Republic of Belarus for period up to 2020. The paper reviews activities implemented within the framework of this Program. (author)

  10. Summary of entire research achievements of creative engineering research program on nuclear fuel cycle

    International Nuclear Information System (INIS)

    Takenaka, Shingo; Ikegami, Tetsuo

    2008-03-01

    Creative Engineering Research Program on Nuclear Fuel Cycle (former In-house Innovative Research Encouraging Program) was implemented from FY 2001 to FY 2007 in order to support such in-house researches that create innovative new concepts and aim technical break-through. Totally 37 applications have been received and 14 research themes have been accepted and been performed in this program. As for the research achievements of the 14 research themes, first author papers accepted by scientific journals and by science councils were 47 and 32, respectively, and oral presentations at scientific societies were 99. Furthermore, interpretive articles for scientific journals, requested lectures, patents, and prize winnings were 13, 30, 8, and 3, respectively. Consequently, it can be evaluated that the research achievements resulted from this program are generally in high level and that the expectations, at the starting point of this program, to activate the innovative research activities have been accomplished. In this report, the final reports of the 14 research themes together with the outline of this program are included. (author)

  11. Review of the scientific results obtained at the research reactor-booster IBR-30 and the Program of investigations at the neutron source IREN

    CERN Document Server

    Furman, W

    2002-01-01

    Brief review of the main scientific results obtained at research reactor booster IBR-30 and its predecessor IBR and IBR-1 for the period 1960 - 2001 is presented. The thesis of the scientific program for the upgrade of IBR-30 resonance neutron source IREN are adduced

  12. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1985-07-01

    The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The current organization of ER is shown. The budgets for the various ER programs for the last two fiscal years are shown. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large

  13. Reading, Writing, and Presenting Original Scientific Research: A Nine-Week Course in Scientific Communication for High School Students†

    Science.gov (United States)

    Danka, Elizabeth S.; Malpede, Brian M.

    2015-01-01

    High school students are not often given opportunities to communicate scientific findings to their peers, the general public, and/or people in the scientific community, and therefore they do not develop scientific communication skills. We present a nine-week course that can be used to teach high school students, who may have no previous experience, how to read and write primary scientific articles and how to discuss scientific findings with a broad audience. Various forms of this course have been taught for the past 10 years as part of an intensive summer research program for rising high school seniors that is coordinated by the Young Scientist Program at Washington University in St. Louis. The format presented here includes assessments for efficacy through both rubric-based methods and student self-assessment surveys. PMID:26753027

  14. 50 CFR 600.512 - Scientific research.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Scientific research. 600.512 Section 600... research. (a) Scientific research activity. Persons planning to conduct scientific research activities on board a scientific research vessel in the EEZ that may be confused with fishing are encouraged to submit...

  15. Defense Nanotechnology Research and Development Program

    National Research Council Canada - National Science Library

    2007-01-01

    ...), Army Research Office (ARO) and the Air Force Office of Scientific Research (AFOSR)initiated numerous research and development programs focusing on advancing science and technology below one micron in size...

  16. A Semantic Web-Based Methodology for Describing Scientific Research Efforts

    Science.gov (United States)

    Gandara, Aida

    2013-01-01

    Scientists produce research resources that are useful to future research and innovative efforts. In a typical scientific scenario, the results created by a collaborative team often include numerous artifacts, observations and relationships relevant to research findings, such as programs that generate data, parameters that impact outputs, workflows…

  17. 78 FR 12422 - Health Services Research and Development Service Scientific Merit Review Board, Notice of Meeting

    Science.gov (United States)

    2013-02-22

    ... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service Scientific Merit... nursing research. Applications are reviewed for scientific and technical merit, mission relevance, and the... Program Manager, Scientific Merit Review Board, Department of Veterans Affairs, Health Services Research...

  18. CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    CERN Document Server

    Di Meglio, Alberto; Purcell, Andrew

    2014-01-01

    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates.

  19. CGH U.S.-China Program for Biomedical Research Cooperation

    Science.gov (United States)

    The International Bilateral Programs for Collaborative Scientific Research seeks to enhance the global activities of NCI’s intramural researchers and grantees through co-funded support for collaborative research between NIH and international scientific research agencies.

  20. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific-analysis computer programs for year-2000 compliance is part of AECL' s year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  2. The Y2K program for scientific-analysis computer programs at AECL

    International Nuclear Information System (INIS)

    Popovic, J.; Gaver, C.; Chapman, D.

    1999-01-01

    The evaluation of scientific analysis computer programs for year-2000 compliance is part of AECL's year-2000 (Y2K) initiative, which addresses both the infrastructure systems at AECL and AECL's products and services. This paper describes the Y2K-compliance program for scientific-analysis computer codes. This program involves the integrated evaluation of the computer hardware, middleware, and third-party software in addition to the scientific codes developed in-house. The project involves several steps: the assessment of the scientific computer programs for Y2K compliance, performing any required corrective actions, porting the programs to Y2K-compliant platforms, and verification of the programs after porting. Some programs or program versions, deemed no longer required in the year 2000 and beyond, will be retired and archived. (author)

  3. Mapping the research on scientific collaboration

    Institute of Scientific and Technical Information of China (English)

    HOU Jianhua; CHEN Chaomei; YAN Jianxin

    2010-01-01

    The aim of this paper was to identify the trends and hot topics in the study of scientific collaboration via scientometric analysis.Information visualization and knowledge domain visualization techniques were adopted to determine how the study of scientific collaboration has evolved.A total of 1,455 articles on scientific cooperation published between 1993 and 2007 were retrieved from the SCI,SSCI and A&HCI databases with a topic search of scientific collaboration or scientific cooperation for the analysis.By using CiteSpace,the knowledge bases,research foci,and research fronts in the field of scientific collaboration were studied.The results indicated that research fronts and research foci are highly consistent in terms of the concept,origin,measurement,and theory of scientific collaboration.It also revealed that research fronts included scientific collaboration networks,international scientific collaboration,social network analysis and techniques,and applications of bibliometrical indicators,webmetrics,and health care related areas.

  4. Scientific Merit Review of Directed Research Tasks Within the NASA Human Research Program

    Science.gov (United States)

    Charles, John B.

    2010-01-01

    The Human Research Program is instrumental in developing and delivering research findings, health countermeasures, and human systems technologies for spacecraft. :HRP is subdivided into 6 research entities, or Elements. Each Element is charged with providing the Program with knowledge and capabilities to conduct research to address the human health and performance risks as well as advance the readiness levels of technology and countermeasures. Project: An Element may be further subdivided into Projects, which are defined as an integrated set of tasks undertaken to deliver a product or set of products

  5. LASL's FY 1978 supporting research program

    International Nuclear Information System (INIS)

    Hammel, E.F.; Merlan, S.J.; Freiwald, D.A.

    1978-09-01

    This report gives a brief overview of Los Alamos Scientific Laboratory's supporting research program, including philosophy, management and program analysis, funding, and a brief description of the kinds of work currently supported. 10 figures

  6. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Peisert, Sean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States); Potok, Thomas E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Todd [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-03

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues included research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the

  7. Clinical research in dermatology: resources and activities associated with a higher scientific productivity.

    Science.gov (United States)

    Molina-Leyva, Alejandro; Descalzo, Miguel A; García-Doval, Ignacio

    2018-03-06

    Clinical research papers and their derived metrics can be useful to assess the scientific production of medical and research centers. Diverse factors are probably associated to differences in scientific production. But there are scarce studies analyzing them. Resources are limited and have to be distributed efficiently. The objective of this study is to explore what resources and activities are potentially associated with a higher scientific productivity. A bibliometric study was performed to obtain information about scientific productivity. Papers included had to meet criteria to be considered clinical research in dermatology, additionally had to be published between the years 2005-2014, had to be included in Pubmed or Embase and had to include a Spanish center of dermatology as the correspondence address. Information about research resources and activities of the year 2015 was gathered by means of an online survey sent to the authors identified in the bibliometric study. The search strategy returned 8617 papers and only 1104 of them (12.81%) met the inclusion criteria. 63 out of 113 centers responded to the survey (55.75%). Factors associated with a higher scientific productivity were: the size of the resident program, the amount of time specifically dedicated to research, a lower clinical workload, and the number of clinical trials performed in the last year. We have demonstrated that some factors are associated with a higher scientific productivity. Residency program, more research staff, clinical workload redistribution and research motivation/initiatives are key strategies that could improve scientific productivity of a center.

  8. Profile and scientific production of CNPq researchers in Nephrology and Urology.

    Science.gov (United States)

    Oliveira, Eduardo A; Pécoits-Filho, Roberto; Quirino, Isabel G; Oliveira, Maria Christina; Martelli, Daniela Reis; Lima, Leonardo S; Martelli, Hercílio

    2011-03-01

    This study aimed at evaluating the profile and scientific production of researchers in Nephrology and Urology, receiving grants in the area of Clinical Medicine from the Brazilian National Research Council. The standardized online curriculum vitae (Curriculum Lattes) of 39 researchers in Medicine receiving grants in the 2006-2008 triennium were included in the analysis. The variables analyzed were: gender, affiliation, time from completion of the PhD program, scientific production, and supervision of undergraduate students, and master's and PhD programs. Males (74.4%) and category 2 grants (56.4%) predominated. The following three Brazilian states are responsible for 90% of the researchers: São Paulo (28; 71.8%); Rio Grande do Sul (4; 10.3%); and Minas Gerais (3; 7.7%). Four institutions are responsible for 70% of the researchers: UNIFESP (14; 36%); USP (8; 20.5%); UFMG (3, 7.7%); and UNICAMP (3; 7.7%). Considering the academic career, the assessed researchers published 3,195 articles in medical journals, with a median of 75 articles per researcher (QI = 52-100). The researchers received a total of 25,923 citations at the database Web of Science®, with a median of 452 citations per researcher (QI = 161-927). The average number of citations per article was 13.8 citations (SD = 11.6). The Southeastern region of Brazil concentrates researchers in Nephrology and Urology. Our study has shown an increase in the scientific production of most researchers in the last five years. By knowing the profile of researchers in Nephrology and Urology, more effective strategies to encourage the scientific production and the demand for resources to finance research projects can be defined.

  9. The balance principle in scientific research.

    Science.gov (United States)

    Hu, Liang-ping; Bao, Xiao-lei; Wang, Qi

    2012-05-01

    The principles of balance, randomization, control and repetition, which are closely related, constitute the four principles of scientific research. The balance principle is the kernel of the four principles which runs through the other three. However, in scientific research, the balance principle is always overlooked. If the balance principle is not well performed, the research conclusion is easy to be denied, which may lead to the failure of the whole research. Therefore, it is essential to have a good command of the balance principle in scientific research. This article stresses the definition and function of the balance principle, the strategies and detailed measures to improve balance in scientific research, and the analysis of the common mistakes involving the use of the balance principle in scientific research.

  10. Promoting Original Scientific Research and Teacher Training Through a High School Science Research Program: A Five Year Retrospective and Analysis of the Impact on Mentored 8th Grade Geoscience Students and the Mentors Themselves

    Science.gov (United States)

    Danch, J. M.

    2015-12-01

    In 2010 a group of 8th grade geoscience students participated in an extracurricular activity allowing them to conduct original scientific research while being mentored by students enrolled in a 3 - year high school Science Research program. Upon entering high school the mentored students themselves enrolled in the Science Research program and continued for 4 years, culminating with their participation in Science Research 4. This allowed them to continue conducting original scientific research, act as mentors to 8th grade geoscience students and to provide teacher training for both middle and high school teachers conducting inquiry-based science lessons. Of the 7 Science Research 4 students participating since 2010, 100% plan on majoring or minoring in a STEM - related field in college and their individual research projects have been been granted over 70 different awards and honors in science fair and symposia including a 3rd and 4th place category awards at two different international science fairs - the International Sustainable Energy Engineering and Environment Project (iSWEEP) and the International Science and Engineering Fair (ISEF). Science Research 4 students developed and conducted a Society for Science and the Public affiliated science fair for middle school students enrolled in an 8th grade honors geoscience program allowing over 100 students from 5 middle schools to present their research and be judged by STEM professionals. Students with research judged in the top 10% were nominated for participation in the National Broadcom MASTERS program which they successfully entered upon further mentoring from the Science Research 4 students. 8th grade enrollment in the Science Research program for 2015 increased by almost 50% with feedback from students, parents and teachers indicating that the mentorship and participation in the 8th grade science fair were factors in increasing interest in continuing authentic scientific research in high school.

  11. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  12. Physical Research Program: research contracts and statistical summary

    International Nuclear Information System (INIS)

    1975-01-01

    The physical research program consists of fundamental theoretical and experimental investigations designed to support the objectives of ERDA. The program is directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall ERDA effort and the fundamental principles of natural phenomena so that these phenomena may be understood and new principles, formulated. The physical research program is organized into four functional subprograms, high-energy physics, nuclear sciences, materials sciences, and molecular sciences. Approximately four-fifths of the total physical research program costs are associated with research conducted in ERDA-owned, contractor-operated federally funded research and development centers. A little less than one-fifth of the costs are associated with the support of research conducted in other laboratories

  13. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  14. Beyond 2013 - The Future of European Scientific Drilling Research - An introduction.

    Science.gov (United States)

    Camoin, G.; Stein, R.

    2009-04-01

    The Integrated Ocean Drilling Program (IODP) is funded for the period 2003-2013, and is now starting to plan the future of ocean drilling beyond 2013, including the development of new technologies, new emerging research fields as and the societal relevance of this programme. In this context an interdisciplinary and multinational (USA, Europe, Japan, Asian and Oceanian countries), key conference - INVEST IODP New Ventures in Exploring Scientific Targets - addressing all international IODP partners is therefore planned for September 23rd-25th 2009 in Bremen, Germany (more information at http://www.iodp.org and http://marum.de/iodp-invest.html) to discuss future directions of ocean drilling research and related aspects such as ventures with related programmes or with industry. The first critical step of INVEST is to define the scientific research goals of the second phase of the Integrated Ocean Drilling Program (IODP), which is expected to begin in late 2013. INVEST will be open to all interested scientists and students and will be the principal opportunity for the international science community to help shape the future of scientific ocean drilling. The outcome of the conference will be the base to draft a science plan in 2010 and to define new goals and strategies to effectively meet the challenges of society and future ocean drilling. The current EGU Session and the related two days workshop which will be held at the University of Vienna will specifically address the future of European scientific drilling research. The major objectives of those two events are to sharpen the European interests in the future IODP and to prepare the INVEST Conference and are therefore of prime importance to give weight to the European propositions in the program renewal processes, both on science, technology and management, and to provide the participants with information about the status/process of ongoing discussions and negotiations regarding program structure, and provide them

  15. Managing scientific information and research data

    CERN Document Server

    Baykoucheva, Svetla

    2015-01-01

    Innovative technologies are changing the way research is performed, preserved, and communicated. Managing Scientific Information and Research Data explores how these technologies are used and provides detailed analysis of the approaches and tools developed to manage scientific information and data. Following an introduction, the book is then divided into 15 chapters discussing the changes in scientific communication; new models of publishing and peer review; ethics in scientific communication; preservation of data; discovery tools; discipline-specific practices of researchers for gathering and using scientific information; academic social networks; bibliographic management tools; information literacy and the information needs of students and researchers; the involvement of academic libraries in eScience and the new opportunities it presents to librarians; and interviews with experts in scientific information and publishing.

  16. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  17. Training Elementary Teachers to Prepare Students for High School Authentic Scientific Research

    Science.gov (United States)

    Danch, J. M.

    2017-12-01

    The Woodbridge Township New Jersey School District has a 4-year high school Science Research program that depends on the enrollment of students with the prerequisite skills to conduct authentic scientific research at the high school level. A multifaceted approach to training elementary teachers in the methods of scientific investigation, data collection and analysis and communication of results was undertaken in 2017. Teachers of predominately grades 4 and 5 participated in hands on workshops at a Summer Tech Academy, an EdCamp, a District Inservice Day and a series of in-class workshops for teachers and students together. Aspects of the instruction for each of these activities was facilitated by high school students currently enrolled in the High School Science Research Program. Much of the training activities centered around a "Learning With Students" model where teachers and their students simultaneously learn to perform inquiry activities and conduct scientific research fostering inquiry as it is meant to be: where participants produce original data are not merely working to obtain previously determined results.

  18. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  19. Peer Mentoring to Facilitate Original Scientific Research by Students With Special Needs

    Science.gov (United States)

    Danch, J. M.

    2007-12-01

    Developed to allow high school students with special needs to participate in original scientific research, the Peer Mentoring Program was a supplement to existing science instruction for students in a self-contained classroom. Peer mentors were high school seniors at the end of a three-year advanced science research course who used their experience to create and develop inquiry-based research activities appropriate for students in the self- contained classroom. Peer mentors then assisted cooperative learning groups of special education students to facilitate the implementation of the research activities. Students with special needs successfully carried out an original research project and developed critical thinking and laboratory skills. Prior to embarking on their undergraduate course of study in the sciences, peer mentors developed an appreciation for the need to bring original scientific research to students of all levels. The program will be expanded and continued during the 2007-2008 school year.

  20. The NASA Ames Research Center Institutional Scientific Collection: History, Best Practices and Scientific Opportunities

    Science.gov (United States)

    Rask, Jon C.; Chakravarty, Kaushik; French, Alison; Choi, Sungshin; Stewart, Helen

    2017-01-01

    The NASA Ames Life Sciences Institutional Scientific Collection (ISC), which is composed of the Ames Life Sciences Data Archive (ALSDA) and the Biospecimen Storage Facility (BSF), is managed by the Space Biosciences Division and has been operational since 1993. The ALSDA is responsible for archiving information and animal biospecimens collected from life science spaceflight experiments and matching ground control experiments. Both fixed and frozen spaceflight and ground tissues are stored in the BSF within the ISC. The ALSDA also manages a Biospecimen Sharing Program, performs curation and long-term storage operations, and makes biospecimens available to the scientific community for research purposes via the Life Science Data Archive public website (https:lsda.jsc.nasa.gov). As part of our best practices, a viability testing plan has been developed for the ISC, which will assess the quality of archived samples. We expect that results from the viability testing will catalyze sample use, enable broader science community interest, and improve operational efficiency of the ISC. The current viability test plan focuses on generating disposition recommendations and is based on using ribonucleic acid (RNA) integrity number (RIN) scores as a criteria for measurement of biospecimen viablity for downstream functional analysis. The plan includes (1) sorting and identification of candidate samples, (2) conducting a statiscally-based power analysis to generate representaive cohorts from the population of stored biospecimens, (3) completion of RIN analysis on select samples, and (4) development of disposition recommendations based on the RIN scores. Results of this work will also support NASA open science initiatives and guides development of the NASA Scientific Collections Directive (a policy on best practices for curation of biological collections). Our RIN-based methodology for characterizing the quality of tissues stored in the ISC since the 1980s also creates unique

  1. Scientific Visualization Tools for Enhancement of Undergraduate Research

    Science.gov (United States)

    Rodriguez, W. J.; Chaudhury, S. R.

    2001-05-01

    Undergraduate research projects that utilize remote sensing satellite instrument data to investigate atmospheric phenomena pose many challenges. A significant challenge is processing large amounts of multi-dimensional data. Remote sensing data initially requires mining; filtering of undesirable spectral, instrumental, or environmental features; and subsequently sorting and reformatting to files for easy and quick access. The data must then be transformed according to the needs of the investigation(s) and displayed for interpretation. These multidimensional datasets require views that can range from two-dimensional plots to multivariable-multidimensional scientific visualizations with animations. Science undergraduate students generally find these data processing tasks daunting. Generally, researchers are required to fully understand the intricacies of the dataset and write computer programs or rely on commercially available software, which may not be trivial to use. In the time that undergraduate researchers have available for their research projects, learning the data formats, programming languages, and/or visualization packages is impractical. When dealing with large multi-dimensional data sets appropriate Scientific Visualization tools are imperative in allowing students to have a meaningful and pleasant research experience, while producing valuable scientific research results. The BEST Lab at Norfolk State University has been creating tools for multivariable-multidimensional analysis of Earth Science data. EzSAGE and SAGE4D have been developed to sort, analyze and visualize SAGE II (Stratospheric Aerosol and Gas Experiment) data with ease. Three- and four-dimensional visualizations in interactive environments can be produced. EzSAGE provides atmospheric slices in three-dimensions where the researcher can change the scales in the three-dimensions, color tables and degree of smoothing interactively to focus on particular phenomena. SAGE4D provides a navigable

  2. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  3. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  4. Programs of the Office of Energy Research

    International Nuclear Information System (INIS)

    1986-04-01

    The programs of the Office of Energy Research, DOE, include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the United States. The major programs and activities are described briefly, and include high energy and nuclear physics, fusion energy, basic energy sciences, and health and environmental research, as well as advisory, assessment, support, and scientific computing activities

  5. Antibody Scientific Committee | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The Antibody Scientific Committee provides scientific insight and guidance to the NCI's Antibody Characterization Program. Specifically, the members of this committee evaluate request from the external scientific community for development and characterization of antibodies by the program. The members of the Antibody Scientific Committee include:

  6. Programs of the Office of Energy Research: Revision

    International Nuclear Information System (INIS)

    1987-06-01

    In establishing each of the Federal Agencies that have been successively responsible for energy technologies and their development - the Atomic Energy Commission, the Energy Research and Development Administration, and, currently, the US Department of Energy (DOE) - Congress made specific provisions for the conduct of advanced and fundamental research. The purpose of this research has been to support the energy technology development programs by providing insight into fundamental science and associated phenomena and developing new or advanced concepts and techniques. Today, this responsibility rests with the Office of Energy Research (ER), DOE, whose present programs have their origins in pioneering energy-related research of this nature, which was initiated nearly 40 years ago. The Director, Office of Energy Research, also acts as the chief scientist and scientific advisor to the Secretary of Energy for the entire spectrum of energy research and development (R and D) programs of the Department. ER programs include several thousand individual projects and hundreds of laboratories, universities, and other research facilities throughout the Unites States. In the following pages, each of these programs and activities are described briefly for the information of the scientific community and the public at large. 5 figs., 6 tabs

  7. Toward the Development of a Sustainable Scientific Research Culture in Azerbaijan (2011-2015).

    Science.gov (United States)

    Aliyeva, Saida; Flanagan, Peter; Johnson, April; Strelow, Lisa

    2016-01-01

    This review especially describes the dangerous pathogens research program in Azerbaijan (AJ) funded by the US Defense Threat Reduction Agency under the Cooperative Biological Engagement Program (CBEP) from 2011 through 2015. The objectives of the CBEP are to prevent the proliferation of biological weapons; to consolidate and secure collections of dangerous pathogens in central repositories; to strengthen biosafety and biosecurity of laboratory facilities; and to improve partner nations' ability to detect, diagnose, report, and respond to outbreaks of disease caused by especially dangerous pathogens. One of the missions of the CBEP is therefore to increase the research skills and proficiency of partner country scientists. The program aims to fulfill this mission by sponsoring scientific research projects that exercise the modern diagnostic techniques available in the CBEP-engaged laboratories and the enhanced disease surveillance/control programs. To strengthen the local scientists' ability to develop research ideas, write grant proposals, and conduct research independently, in-country CBEP integrating contractor personnel have mentored scientists across AJ and conducted workshops to address technical gaps. As a result of CBEP engagement, seven research projects developed and led by AJ scientists have been funded, and five projects are currently in various stages of implementation. The Defense Threat Reduction Agency has also sponsored AJ scientist participation at international scientific conferences to introduce and integrate them into the global scientific community. The efforts summarized in this review represent the first steps in an ongoing process that will ultimately provide AJ scientists with the skills and resources to plan and implement research projects of local and regional relevance.

  8. 78 FR 37242 - Draft Report and Recommendations Prepared by the Research Committee of the Scientific Working...

    Science.gov (United States)

    2013-06-20

    ... Recommendations Prepared by the Research Committee of the Scientific Working Group on Medicolegal Death... Justice Programs, National Institute of Justice, Scientific Working Group for Medicolegal Death Investigation will make available to the general public a document entitled, ``Research in Forensic Pathology...

  9. Establishing a scientific and technical information program: Planning and resource management

    Science.gov (United States)

    Blados, Walter R.

    1992-01-01

    In the last 50 years, technological advances have accelerated at a rate unprecedented in history. We are experiencing a tremendous expansion of scientific and technological effort in many directions, and the result is a fantastic increase in the accumulation of scientific and technical information (STI) and knowledge. An integral part of the research and development (R&D) process is the STI associated with it. STI is both a raw material (input) and a product (output) of this process. The topics addressed include the following: the value of STI, management of an STI program, program policy and guidance, organizational structure, data sources, training/orientation, and the current information environment.

  10. Scientific and technical information output of the Langley Research Center

    Science.gov (United States)

    1984-01-01

    Scientific and technical information that the Langley Research Center produced during the calendar year 1983 is compiled. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  11. Scientific Research: How Many Paradigms?

    Science.gov (United States)

    Strawn, George O.

    2012-01-01

    As Yogi Berra said, "Predictions are hard, especially about the future." In this article, the author offers a few forward-looking observations about the emerging impact of information technology on scientific research. Scientific research refers to a particular method for acquiring knowledge about natural phenomena. This method has two dimensions:…

  12. 50 CFR 300.104 - Scientific research.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Scientific research. 300.104 Section 300... REGULATIONS Antarctic Marine Living Resources § 300.104 Scientific research. (a) The management measures... vessel for research purposes, unless otherwise indicated. (b) Catches taken by any vessel for research...

  13. Assessment of scientific programs: a necessary procedure for Brazilian scientific policy - the Young Investigator Program of the State of São Paulo Research Foundation

    Directory of Open Access Journals (Sweden)

    Carlos A. de Pian

    2007-09-01

    Full Text Available Programs of Science and Technology research have grown significantly in Brazil over the last decades. Until the 1980s the so-called undirected programs, without specific goals and requiring only scientific merit, prevailed. The few programs with defined goals in this period were never objectively assessed. The same situation occurred in developed countries. In the early 1990s, the assessment of programs supported by public funding became mandatory in US and some European countries. In Brazil, program assessment has so far not been implemented yet. The Fundação de Amparo à Pesquisa no Estado de São Paulo (FAPESP (Brazilian funding agency Young Investigator (YI Program is in its eleventh year, with approximately eight hundred projects awarded. Although it is free-demand based as concerns areas of knowledge, it has specific goals : (1 conceding grants to YI in view of the balance between funding, merit and real needs so as to enable satisfactory working conditions in the short term, (2 providing priority for institutions with a less extensive background in research, (3 granting a special fellowship to YI with no employment connection and (4 introduction of new research fronts in centers with a sound research background. This assessment provided evidence for the achievement of first three goals. The fourth one is still pending on additional data requiring survey assessment. Actions in this direction are recommended.Programas de Ciência e Tecnologia cresceram significativamente no Brasil nas últimas décadas. Até a década de 80 os assim chamados programas não dirigidos, sem metas específicas e requerendo apenas mérito científico prevaleciam. Os poucos programas com metas definidas neste período não foram jamais objetivamente avaliados. A mesma situação ocorria nos países desenvolvidos. No início da década de 90, a avaliação de programas dependentes de recursos públicos tornou-se mandatória nos Estados Unidos e em alguns pa

  14. The SUPER Program: A Research-based Undergraduate Experience

    Science.gov (United States)

    Ernakovich, J. G.; Boone, R. B.; Boot, C. M.; Denef, K.; Lavallee, J. M.; Moore, J. C.; Wallenstein, M. D.

    2014-12-01

    Producing undergraduates capable of broad, independent thinking is one of the grand challenges in science education. Experience-based learning, specifically hands-on research, is one mechanism for increasing students' ability to think critically. With this in mind, we created a two-semester long research program called SUPER (Skills for Undergraduate Participation in Ecological Research) aimed at teaching students to think like scientists and enhancing the student research experience through instruction and active-learning about the scientific method. Our aim was for students to gain knowledge, skills, and experience, and to conduct their own research. In the first semester, we hosted active-learning workshops on "Forming Hypotheses", "Experimental Design", "Collecting and Managing Data", "Analysis of Data", "Communicating to a Scientific Audience", "Reading Literature Effectively", and "Ethical Approaches". Each lesson was taught by different scientists from one of many ecological disciplines so that students were exposed to the variation in approach that scientists have. In the second semester, students paired with a scientific mentor and began doing research. To ensure the continued growth of the undergraduate researcher, we continued the active-learning workshops and the students attended meetings with their mentors. Thus, the students gained technical and cognitive skills in parallel, enabling them to understand both "the how" and "the why" of what they were doing in their research. The program culminated with a research poster session presented by the students. The interest in the program has grown beyond our expectations, and we have now run the program successfully for two years. Many of the students have gone on to campus research jobs, internships and graduate school, and have attributed part of their success in obtaining their positions to their experience with the SUPER program. Although common in other sciences, undergraduate research experiences are

  15. ORD Water Quality Research Program Mid-Cycle Review - June 2009

    Science.gov (United States)

    The Board of Scientific Counselors (BOSC) completed a mid-cycle review of the Office of Research and Development’s (ORD) Water Quality Research Program (WQRP), focusing on Agency efforts to enhance the program following the 2006 BOSC program review.

  16. Design and validation of general biology learning program based on scientific inquiry skills

    Science.gov (United States)

    Cahyani, R.; Mardiana, D.; Noviantoro, N.

    2018-03-01

    Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.

  17. SKI review of SKB research programs 1992. Compilation of scientific reports

    International Nuclear Information System (INIS)

    1993-03-01

    Swedish Nuclear Power Inspectorate (SKI) has reviewed the research programs 1992 of the Swedish Nuclear Fuel and Waste Management Co (SKB). This report presents the examination of the individual programs

  18. Shaping scientific attitude of biology education students through research-based teaching

    Science.gov (United States)

    Firdaus, Darmadi

    2017-08-01

    Scientific attitude is need of today's society for peaceful and meaningful living of every person in a multicultural world. A case study was conducted at the Faculty of Teacher Training and Education, University of Riau, Pekanbaru in order to describe the scientific attitude that shaped by research-based teaching (RBT). Eighteen students of English for Biology bilingual program were selected from 88 regular students as a subject of the study. RBT designed consists of 9 steps: 1) field observations, 2) developing research proposals, 3) research proposal seminar, 4) field data collecting, 5) data analyzing & ilustrating, 6) writing research papers, 7) preparing power point slides, 8) creating a scientific poster, 9) seminar & poster session. Data were collected by using check list observation instuments during 14 weeks (course sessions), then analyzed by using descriptive-quantitative method. The results showed that RBT were able to shape critical-mindedness, suspended judgement, respect for evidence, honesty, objectivity, and questioning attitude as well as tolerance of uncertainty. These attitudes which shaped were varies according to every steps of learning activities. It's seems that the preparation of scientific posters and research seminar quite good in shaping the critical-mindedness, suspended judgment, respect for evidence, honesty, objectivity, and questioning attitude, as well as tolerance of uncertainty. In conclusion, the application of research-based teaching through the English for Biology courses could shape the students scientific attitudes. However, the consistency of the appearance of a scientific attitude in every stage of Biology-based RBT learning process need more intensive and critical assessment.

  19. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  20. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  1. The international management of big scientific research programs. The example of particle physics

    International Nuclear Information System (INIS)

    Feltesse, J.

    2004-01-01

    High energy physics is a basic research domain with a well established European and international cooperation. Cooperation can be of different type depending on the size of the facilities involved (accelerators), on their financing, and on the type of experiments that use these facilities. The CERN, the European center for nuclear research, created in October 1954, is the best example of such a cooperation. This article examines first the juridical and scientifical structure of the CERN and the mode of organization of big experiments. Then, it presents the role of international committees in the establishment of a common scientific policy in Europe and in the rest of the world. Finally, the possible future evolution of the CERN towards a worldwide project is evoked. (J.S.)

  2. Methods of Scientific Research: Teaching Scientific Creativity at Scale

    Science.gov (United States)

    Robbins, Dennis; Ford, K. E. Saavik

    2016-01-01

    We present a scaling-up plan for AstroComNYC's Methods of Scientific Research (MSR), a course designed to improve undergraduate students' understanding of science practices. The course format and goals, notably the open-ended, hands-on, investigative nature of the curriculum are reviewed. We discuss how the course's interactive pedagogical techniques empower students to learn creativity within the context of experimental design and control of variables thinking. To date the course has been offered to a limited numbers of students in specific programs. The goals of broadly implementing MSR is to reach more students and early in their education—with the specific purpose of supporting and improving retention of students pursuing STEM careers. However, we also discuss challenges in preserving the effectiveness of the teaching and learning experience at scale.

  3. Fusion Energy Postdoctoral Research Program, Professional Development Program: FY 1987 annual report

    International Nuclear Information System (INIS)

    1988-01-01

    In FY 1986, Oak Ridge Associated Universities (ORAU) initiated two programs for the US Department of Energy (DOE), Office of Fusion Energy (OFE): the Fusion Energy Postdoctoral Research Program and the Fusion Energy Professional Development Program. These programs provide opportunities to conduct collaborative research in magnetic fusion energy research and development programs at DOE laboratories and contractor sites. Participants become trained in advanced fusion energy research, interact with outstanding professionals, and become familiar with energy-related national issues while making personal contributions to the search for solutions to scientific problems. Both programs enhance the national fusion energy research and development effort by providing channels for the exchange of scientists and engineers, the diffusion of ideas and knowledge, and the transfer of relevant technologies. These programs, along with the Magnetic Fusion Energy Science and Technology Fellowship Programs, compose the fusion energy manpower development programs administered by ORAU for DOE/OFE

  4. A primer on scientific programming with Python

    CERN Document Server

    Langtangen, Hans Petter

    2014-01-01

    The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen … does an excellent job of introducing programming as a set of skills in problem solving. ...

  5. A primer on scientific programming with Python

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen … does an excellent job of introducing programming as a set of skills in problem solving. ...

  6. Summer Undergraduate Research Program: Environmental studies

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, J. [ed.

    1994-12-31

    The purpose of the summer undergraduate internship program for research in environmental studies is to provide an opportunity for well-qualified students to undertake an original research project as an apprentice to an active research scientist in basic environmental research. The students are offered research topics at the Medical University in the scientific areas of pharmacology and toxicology, epidemiology and risk assessment, environmental microbiology, and marine sciences. Students are also afforded the opportunity to work with faculty at the University of Charleston, SC, on projects with an environmental theme. Ten well-qualified students from colleges and universities throughout the eastern United States were accepted into the program.

  7. [Academician Li Lianda talking about doctors doing scientific research].

    Science.gov (United States)

    He, Ping; Li, Yi-kui

    2015-09-01

    At present, Chinese medical field faces with an important problem of how to correctly handle the relationship between medical and scientific research. Academician Li Lianda advocates doctors doing scientific research under the premise of putting the medical work first. He points out that there are many problems in the process of doctors doing scientific research at present such as paying more attention to scientific research than medical care, excessively promoting building scientific research hospital, only paying attention to training scientific talents, research direction be flashy without substance, the medical evaluation system should be improved and so on. Medical, scientific research and teaching are inseparable because improving medical standards depends on scientific research and personnel training. But not all doctors need to take into account of medical treatment, scientific research and teaching in the same degree while not all hospitals need to turn into three-in-one hospital, scientific research hospital or teaching hospital. It must be treated differently according to the actual situation.

  8. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  9. Establishments of scientific radiation protection management program

    International Nuclear Information System (INIS)

    Pan Ziqiang

    1988-01-01

    Some aspects for establishing the radiation protection management program have been discussed. Radiation protection management program includes: definite aims of management, complete data register, strict supervision system, and scientific management methodology

  10. Speaking the right language: the scientific method as a framework for a continuous quality improvement program within academic medical research compliance units.

    Science.gov (United States)

    Nolte, Kurt B; Stewart, Douglas M; O'Hair, Kevin C; Gannon, William L; Briggs, Michael S; Barron, A Marie; Pointer, Judy; Larson, Richard S

    2008-10-01

    The authors developed a novel continuous quality improvement (CQI) process for academic biomedical research compliance administration. A challenge in developing a quality improvement program in a nonbusiness environment is that the terminology and processes are often foreign. Rather than training staff in an existing quality improvement process, the authors opted to develop a novel process based on the scientific method--a paradigm familiar to all team members. The CQI process included our research compliance units. Unit leaders identified problems in compliance administration where a resolution would have a positive impact and which could be resolved or improved with current resources. They then generated testable hypotheses about a change to standard practice expected to improve the problem, and they developed methods and metrics to assess the impact of the change. The CQI process was managed in a "peer review" environment. The program included processes to reduce the incidence of infections in animal colonies, decrease research protocol-approval times, improve compliance and protection of animal and human research subjects, and improve research protocol quality. This novel CQI approach is well suited to the needs and the unique processes of research compliance administration. Using the scientific method as the improvement paradigm fostered acceptance of the project by unit leaders and facilitated the development of specific improvement projects. These quality initiatives will allow us to improve support for investigators while ensuring that compliance standards continue to be met. We believe that our CQI process can readily be used in other academically based offices of research.

  11. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2018-05-01

    conducted the following activities in support of the subject contract: Outreach and Promotion The promotional schedule to advertise the NRC Research...Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT During this reporting period, the NRC promoted research...Associateship Programs included the following: 1) attendance at meetings of major scientific and engineering professional societies; 2) advertising in

  12. A training program for scientific supercomputing users

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, F.; Moher, T.; Sabelli, N.; Solem, A.

    1988-01-01

    There is need for a mechanism to transfer supercomputing technology into the hands of scientists and engineers in such a way that they will acquire a foundation of knowledge that will permit integration of supercomputing as a tool in their research. Most computing center training emphasizes computer-specific information about how to use a particular computer system; most academic programs teach concepts to computer scientists. Only a few brief courses and new programs are designed for computational scientists. This paper describes an eleven-week training program aimed principally at graduate and postdoctoral students in computationally-intensive fields. The program is designed to balance the specificity of computing center courses, the abstractness of computer science courses, and the personal contact of traditional apprentice approaches. It is based on the experience of computer scientists and computational scientists, and consists of seminars and clinics given by many visiting and local faculty. It covers a variety of supercomputing concepts, issues, and practices related to architecture, operating systems, software design, numerical considerations, code optimization, graphics, communications, and networks. Its research component encourages understanding of scientific computing and supercomputer hardware issues. Flexibility in thinking about computing needs is emphasized by the use of several different supercomputer architectures, such as the Cray X/MP48 at the National Center for Supercomputing Applications at University of Illinois at Urbana-Champaign, IBM 3090 600E/VF at the Cornell National Supercomputer Facility, and Alliant FX/8 at the Advanced Computing Research Facility at Argonne National Laboratory. 11 refs., 6 tabs.

  13. The Cuban nuclear program and its Scientific and Technical Infrastructure

    International Nuclear Information System (INIS)

    Gandarias Cruz, D.; Codorniu Pujals, D.

    1995-01-01

    The present paper shows the aspects including the Cuban Nuclear Program and underlines its close connection with the strategy of economic, social and scientific technical development in the country, the organizing structure of the Cuban nuclear activity is explained. The application of nuclear techniques and research development activity in the nuclear field are also expressed in detailed in this paper

  14. Empirical Scientific Research and Legal Studies Research--A Missing Link

    Science.gov (United States)

    Landry, Robert J., III

    2016-01-01

    This article begins with an overview of what is meant by empirical scientific research in the context of legal studies. With that backdrop, the argument is presented that without engaging in normative, theoretical, and doctrinal research in tandem with empirical scientific research, the role of legal studies scholarship in making meaningful…

  15. Motivating Scientific Research and Development: | Ononogbu | Bio ...

    African Journals Online (AJOL)

    Scientific research is an important aspect of the function of a university lecturer. It is how he/she carries out this function that determines his/her relevance in the university system and indeed in the scientific community as a whole. Scientific research or investigation may be divided into four sections: mental exercise, ...

  16. Environmental Research Division's Data Access Program (ERDDAP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — ERDDAP (the Environmental Research Division's Data Access Program) is a data server that gives you a simple, consistent way to download subsets of scientific...

  17. Natural and accelerated bioremediation research program plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE`s Office of Environmental Management (EM). The program builds on OHER`s tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER`s and Office of Energy Research`s (OER`s) commitment to supporting DOE`s environmental management mission and the belief that bioremediation is an important part of the solution to DOE`s environmental problems.

  18. C Versus Fortran-77 for Scientific Programming

    Directory of Open Access Journals (Sweden)

    Tom MacDonald

    1992-01-01

    Full Text Available The predominant programming language for numeric and scientific applications is Fortran-77 and supercomputers are primarily used to run large-scale numeric and scientific applications. Standard C* is not widely used for numerical and scientific programming, yet Standard C provides many desirable linguistic features not present in Fortran-77. Furthermore, the existence of a standard library and preprocessor eliminates the worst portability problems. A comparison of Standard C and Fortran-77 shows several key deficiencies in C that reduce its ability to adequately solve some numerical problems. Some of these problems have already been addressed by the C standard but others remain. Standard C with a few extensions and modifications could be suitable for all numerical applications and could become more popular in supercomputing environments.

  19. Natural and accelerated bioremediation research program plan

    International Nuclear Information System (INIS)

    1995-09-01

    This draft plan describes a ten-year program to develop the scientific understanding needed to harness and develop natural and enhanced biogeochemical processes to bioremediate contaminated soils, sediments and groundwater at DOE facilities. The Office of Health and Environmental Research (OHER) developed this program plan, with advice and assistance from DOE's Office of Environmental Management (EM). The program builds on OHER's tradition of sponsoring fundamental research in the life and environmental sciences and was motivated by OHER's and Office of Energy Research's (OER's) commitment to supporting DOE's environmental management mission and the belief that bioremediation is an important part of the solution to DOE's environmental problems

  20. Roadmap for a National Wildland Fire Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Wagoner, R; Bradley, M M; Lin, R R

    2003-02-01

    Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and the National Center for Atmospheric Research have formed a partnership to facilitate an innovative National Wildfire Research and Development Program. The ultimate purpose of the program will be to establish a deeper scientific understanding of the physics of fire than currently exists, to establish a solid scientific basis for strategic planning and policy making, and to develop and implement a set of advanced, scientifically based decision-making tools for the wildfire management community. The three main components of the program will be wildfire science, societal impacts, and operational applications. Smoke management, prescribed burns, wildfire mitigation and fuels assessment will be cross-cutting themes. We anticipate that this multidisciplinary, interagency program will bridge organizational and institutional barriers, and will be highly collaborative with numerous organizations and agencies, including other national laboratories; universities: federal, state, and county fire agencies; the Environmental Protection Agency; the Federal Emergency Management Agency; and the Western Governor's Association.

  1. NRC/AMRMC Resident Research Associateship Program

    Science.gov (United States)

    2018-05-01

    2- 0010 Report Period: 02/06/2012-02/28/2018 4/11/2018, 12:17 PM During the reporting period, the National Academies of Sciences, Engineering , and...to advertise the NRC Research Associateship Programs included the following: 1) attendance at meetings of major scientific and engineering ...professional societies; 2) advertising in programs and career centers for these and other professional society meetings; 3) direct mailing and emailing of

  2. Speedup predictions on large scientific parallel programs

    International Nuclear Information System (INIS)

    Williams, E.; Bobrowicz, F.

    1985-01-01

    How much speedup can we expect for large scientific parallel programs running on supercomputers. For insight into this problem we extend the parallel processing environment currently existing on the Cray X-MP (a shared memory multiprocessor with at most four processors) to a simulated N-processor environment, where N greater than or equal to 1. Several large scientific parallel programs from Los Alamos National Laboratory were run in this simulated environment, and speedups were predicted. A speedup of 14.4 on 16 processors was measured for one of the three most used codes at the Laboratory

  3. FORMING OF FUNCTIONAL MAINTENANCE OF INFORMATIVE SYSTEM PLANNING OF SCIENTIFIC RESEARCHES IN NAPN OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Tetyana V. Kuznetsova

    2010-09-01

    Full Text Available Relevance of the material stated in article is caused by urgent needs of society in creation of administrative information systems, in particular Information system of planning of scientific researches in National Academy of Pedagogical Sciences of Ukraine on Internet basis (ІС "Planning". Information and technological support of processes of planning of scientific researches which are carried out in scientific institutions of NAPS of Ukraine is the purpose of creation of this system. The parameters of the functional maintenance of the informative system are pointed in the article, technology of treatment of documents on planning of scientific researches, scheme of routes of working of separate documents, and proper diagrams of their business-processes, on the basis of which using programmatic facilities of Microsoft Sharepoint the functions of programming are automatized, is examined.

  4. Arguments for new Yugoslav National Nuclear Scientific Program

    International Nuclear Information System (INIS)

    Plecas, I.; Pesic, M.; Pavlovic, R.; Neskovic, N.; Matausek, M.V.

    2001-01-01

    Information on actual status and arguments for urgent actions for solution of serious ecological problems concerning undefined status of the RA Reactor, spent fuel storage pool, and intermediate-level radioactive waste storage in the Vinca Institute, including proposal for modernisation of zero power Reactor RB and design of small low flux ADS are given in this paper. To solve problems mentioned above in next few years a national nuclear scientific program of the Vinca Institute, concerning Nuclear Reactors and Radioactive Waste, the following four projects were proposed to government for support: 1. Final shut down of the RA research reactor; 2. Provision of long term storage for spent fuel from the RA research reactor; 3. Refurbishment of the RB research reactor and design of the new research reactor H5B; 4. Building of the final repository for low and medium level radioactive waste. (authors)

  5. Visualization and Interaction in Research, Teaching, and Scientific Communication

    Science.gov (United States)

    Ammon, C. J.

    2017-12-01

    Modern computing provides many tools for exploring observations, numerical calculations, and theoretical relationships. The number of options is, in fact, almost overwhelming. But the choices provide those with modest programming skills opportunities to create unique views of scientific information and to develop deeper insights into their data, their computations, and the underlying theoretical data-model relationships. I present simple examples of using animation and human-computer interaction to explore scientific data and scientific-analysis approaches. I illustrate how valuable a little programming ability can free scientists from the constraints of existing tools and can facilitate the development of deeper appreciation data and models. I present examples from a suite of programming languages ranging from C to JavaScript including the Wolfram Language. JavaScript is valuable for sharing tools and insight (hopefully) with others because it is integrated into one of the most powerful communication tools in human history, the web browser. Although too much of that power is often spent on distracting advertisements, the underlying computation and graphics engines are efficient, flexible, and almost universally available in desktop and mobile computing platforms. Many are working to fulfill the browser's potential to become the most effective tool for interactive study. Open-source frameworks for visualizing everything from algorithms to data are available, but advance rapidly. One strategy for dealing with swiftly changing tools is to adopt common, open data formats that are easily adapted (often by framework or tool developers). I illustrate the use of animation and interaction in research and teaching with examples from earthquake seismology.

  6. Measuring scientific research in emerging nano-energy field

    Science.gov (United States)

    Guan, Jiancheng; Liu, Na

    2014-04-01

    The purpose of this paper is to comprehensively explore scientific research profiles in the field of emerging nano-energy during 1991-2012 based on bibliometrics and social network analysis. We investigate the growth pattern of research output, and then carry out across countries/regions comparisons on research performances. Furthermore, we examine scientific collaboration across countries/regions by analyzing collaborative intensity and networks in 3- to 4-year intervals. Results indicate with an impressively exponential growth pattern of nano-energy articles, the world share of scientific "giants," such as the USA, Germany, England, France and Japan, display decreasing research trends, especially in the USA. Emerging economies, including China, South Korea and India, exhibit a rise in terms of the world share, illustrating strong development momentum of these countries in nano-energy research. Strikingly, China displays a remarkable rise in scientific influence rivaling Germany, Japan, France, and England in the last few years. Finally, the scientific collaborative network in nano-energy research has expanded steadily. Although the USA and several major European countries play significantly roles on scientific collaboration, China and South Korea exert great influence on scientific collaboration in recent years. The findings imply that emerging economies can earn competitive advantages in some emerging fields by properly engaging a catch-up strategy.

  7. 77 FR 9731 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2012-02-17

    ...--Rehabilitation Engineering and Prosthetics/Orthotics. March 7--Career Development Award Program. March 13--Spinal... DEPARTMENT OF VETERANS AFFAIRS Rehabilitation Research and Development Service Scientific Merit...-463 (Federal Advisory Committee Act) that a meeting of the Rehabilitation Research and Development...

  8. SCIENTIFIC KNOWLEDGE ISSUED IN BRAZIL AT POST GRADUATE PROGRAMS IN TOURISM AND CORRELATED AREAS FROM 2000 TO 2006

    Directory of Open Access Journals (Sweden)

    Christiane Fabíola Momm

    2010-11-01

    Full Text Available A research on scientific knowledge issued in Brazil at post graduate programs in Tourism and correlated areas was conducted taking in account bibliographical references contained in Master Thesis presented in four Post Graduate Programs from 2000 to 2006. It was an exploratory, descriptive, qualitative study using bibliometric a scientometric tools and techniques. 334 bibliographical references were organized and classified following the Spanish Documental Center of Spain Tourism Thesaurus patterns. As a result 15 research lines were identified. As for scientific knowledge itself, a great diversity of research lines and issues were identified. The study demonstrates the hierarchical relation between generic terms and specific terms and points which knowledge areas have a dialogue with the field. Final considerations suggest reflection on scientific development in Tourism in Brazil is needed.

  9. HONESTY AND GOOD PRACTICE IN SCIENTIFIC RESEARCH

    Directory of Open Access Journals (Sweden)

    Jože Trontelj

    2008-01-01

    Full Text Available In the field of science, we see cases of misconduct ranging from relatively minor departurefrom good manners and practice to more severe dishonesty and even criminal behaviour.Unethical experiments on human beings are among the worst abuses in scientific researchin medicine. Unethical research is usually also worthless from the scientific point of view.The commonest types of offence, however, include mismanagement of data, conscious misinterpretation,wrongful authorship, biased citation of work by others, plagiarism, misquotationor suppression of findings for the interests or upon the request of the sponsor or In the field of science, we see cases of misconduct ranging from relatively minor departurefrom good manners and practice to more severe dishonesty and even criminal behaviour.Unethical experiments on human beings are among the worst abuses in scientific researchin medicine. Unethical research is usually also worthless from the scientific point of view.The commonest types of offence, however, include mismanagement of data, conscious misinterpretation,wrongful authorship, biased citation of work by others, plagiarism, misquotationor suppression of findings for the interests or upon the request of the sponsor or In the field of science, we see cases of misconduct ranging from relatively minor departurefrom good manners and practice to more severe dishonesty and even criminal behaviour.Unethical experiments on human beings are among the worst abuses in scientific researchin medicine. Unethical research is usually also worthless from the scientific point of view.The commonest types of offence, however, include mismanagement of data, conscious misinterpretation,wrongful authorship, biased citation of work by others, plagiarism, misquotationor suppression of findings for the interests or upon the request of the sponsor or even a senior scientist in the team. Every case of misconduct and fraud may causedamage: it may undermine confidence of the

  10. Our changing planet: The FY 1994 US Global Change Research Program

    International Nuclear Information System (INIS)

    1993-01-01

    The approach of the US Global Change Research Program recognizes the profound economic and social implications of responding to global envirorunental changes and advances US leadership on this issue. The report outlines a careful blend of ground- and space-based efforts in research, data gathering, and modeling activities, as well as economic research, with both near- and long-term scientific and public policy benefits. In FY 1994, the Program will add an explicit focus on assessment, seeking to improve our understanding of the state of scientific knowledge and the implications of that knowledge for national and international policymaking activities

  11. Our changing planet: The FY 1994 US Global Change Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The approach of the US Global Change Research Program recognizes the profound economic and social implications of responding to global envirorunental changes and advances US leadership on this issue. The report outlines a careful blend of ground- and space-based efforts in research, data gathering, and modeling activities, as well as economic research, with both near- and long-term scientific and public policy benefits. In FY 1994, the Program will add an explicit focus on assessment, seeking to improve our understanding of the state of scientific knowledge and the implications of that knowledge for national and international policymaking activities.

  12. The economic scientific research, a production neo-factor

    Directory of Open Access Journals (Sweden)

    Elena Ciucur

    2007-12-01

    Full Text Available The scientific research represents a modern production neo-factor that implies two groups of coordinates: preparation and scientific research. The scientific research represents a complex of elements that confer a new orientation of high performance and is materialized in resources and new availabilities brought in active shape by the contribution of the creators and by the attraction in a specific way in the economic circuit. It is the creator of new ideas, lifting the performance and understanding to the highest international standards of competitive economic efficiency. In the present, the role of the scientific research stands before some new challenges generated by the stage of society. It.s propose a unitary, coherent scientific research and educational system, created in corresponding proportions, based on the type, level and utility of the system, by the state, the economic-social environment and the citizen himself.

  13. Radon Research Program, FY 1992

    International Nuclear Information System (INIS)

    1993-04-01

    The United States Department of Energy, Office of Health and Environmental Research (DOE/OHER) is the principal federal agency conducting basic research related to indoor radon. The scientific information being sought in this program encompasses research designed to determine radon availability and transport outdoors, modeling transport into and within buildings, physics and chemistry of radon and radon progeny, dose response relationships, lung cancer risk, and mechanisms of radon carcinogenesis. There still remains a significant number of uncertainties in the currently available knowledge that is used to estimate lung cancer risk from exposure to environmental levels of radon and its progeny. The main goal of the DOE/OHER Radon Research Program is to develop information to reduce these uncertainties and thereby provide an improved health risk estimate of exposure to radon and its progeny and to identify and understand biological mechanisms of lung cancer development and required copollutants at low levels of exposure. Information useful in radon control strategies is also provided by the basic science undertaken in this program

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  15. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  16. The epistemic integrity of scientific research.

    Science.gov (United States)

    De Winter, Jan; Kosolosky, Laszlo

    2013-09-01

    We live in a world in which scientific expertise and its epistemic authority become more important. On the other hand, the financial interests in research, which could potentially corrupt science, are increasing. Due to these two tendencies, a concern for the integrity of scientific research becomes increasingly vital. This concern is, however, hollow if we do not have a clear account of research integrity. Therefore, it is important that we explicate this concept. Following Rudolf Carnap's characterization of the task of explication, this means that we should develop a concept that is (1) similar to our common sense notion of research integrity, (2) exact, (3) fruitful, and (4) as simple as possible. Since existing concepts do not meet these four requirements, we develop a new concept in this article. We describe a concept of epistemic integrity that is based on the property of deceptiveness, and argue that this concept does meet Carnap's four requirements of explication. To illustrate and support our claims we use several examples from scientific practice, mainly from biomedical research.

  17. Scientific and technical information output of the Langley Research Center for calendar year 1980

    Science.gov (United States)

    1981-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1980. Approximately 1400 citations are given. Formal reports, quick-release technical memorandums, contractor reports, journal articles, meeting/conference papers, computer programs, tech briefs, patents, and unpublished research are included.

  18. Ethical muscle and scientific interests: a role for philosophy in scientific research.

    Science.gov (United States)

    Kaposy, Chris

    2008-03-01

    Ethics, a branch of philosophy, has a place in the regulatory framework of human subjects research. Sometimes, however, ethical concepts and arguments play a more central role in scientific activity. This can happen, for example, when violations of research norms are also ethical violations. In such a situation, ethical arguments can be marshaled to improve the quality of the scientific research. I explore two different examples in which philosophers and scientists have used ethical arguments to plead for epistemological improvements in the conduct of research. The first example deals with research dishonesty in pharmaceutical development. The second example is concerned with neuropsychological research using fMRI technology.

  19. Frames of scientific evidence: How journalists represent the (un)certainty of molecular medicine in science television programs.

    Science.gov (United States)

    Ruhrmann, Georg; Guenther, Lars; Kessler, Sabrina Heike; Milde, Jutta

    2015-08-01

    For laypeople, media coverage of science on television is a gateway to scientific issues. Defining scientific evidence is central to the field of science, but there are still questions if news coverage of science represents scientific research findings as certain or uncertain. The framing approach is a suitable framework to classify different media representations; it is applied here to investigate the frames of scientific evidence in film clips (n=207) taken from science television programs. Molecular medicine is the domain of interest for this analysis, due to its high proportion of uncertain and conflicting research findings and risks. The results indicate that television clips vary in their coverage of scientific evidence of molecular medicine. Four frames were found: Scientific Uncertainty and Controversy, Scientifically Certain Data, Everyday Medical Risks, and Conflicting Scientific Evidence. They differ in their way of framing scientific evidence and risks of molecular medicine. © The Author(s) 2013.

  20. For the Anniversary Edition of the Scientific Journal European Researcher. Series A – 110 issue

    OpenAIRE

    Goran Rajović; JelisavkaBulatović

    2016-01-01

    This article is a review of the jubilee scientific journal "European Researcher. Series A ", marked at all in 2016 – the sixth anniversary, of regular and of continuous publication. In addition to the history of the newspaper are exposed to the development phase of its program concept. The journal is the period 2010 – 2016 year, profiled in an important factor of development and the formation of professional and scientific thought. Journal “European Research. Series A” is now open forum for p...

  1. Research governance and scientific knowledge production in The Gambia

    Directory of Open Access Journals (Sweden)

    Frederick U. Ozor

    2014-09-01

    Full Text Available Public research institutions and scientists are principal actors in the production and transfer of scientific knowledge, technologies and innovations for application in industry as well for social and economic development. Based on the relevance of science and technology actors, the aim of this study was to identify and explain factors in research governance that influence scientific knowledge production and to contribute to empirical discussions on the impact levels of different governance models and structures. These discussions appear limited and mixed in the literature, although still are ongoing. No previous study has examined the possible contribution of the scientific committee model of research governance to scientific performance at the individual level of the scientist. In this context, this study contributes to these discussions, firstly, by suggesting that scientific committee structures with significant research steering autonomy could contribute not only directly to scientific output but also indirectly through moderating effects on research practices. Secondly, it is argued that autonomous scientific committee structures tend to play a better steering role than do management-centric models and structures of research governance.

  2. Applied Information Systems Research Program Workshop

    Science.gov (United States)

    1991-01-01

    The first Applied Information Systems Research Program (AISRP) Workshop provided the impetus for several groups involved in information systems to review current activities. The objectives of the workshop included: (1) to provide an open forum for interaction and discussion of information systems; (2) to promote understanding by initiating a dialogue with the intended benefactors of the program, the scientific user community, and discuss options for improving their support; (3) create an advocacy in having science users and investigators of the program meet together and establish the basis for direction and growth; and (4) support the future of the program by building collaborations and interaction to encourage an investigator working group approach for conducting the program.

  3. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  4. Integrating scientific knowledge into large-scale restoration programs: the CALFED Bay-Delta Program experience

    Science.gov (United States)

    Taylor, K.A.; Short, A.

    2009-01-01

    Integrating science into resource management activities is a goal of the CALFED Bay-Delta Program, a multi-agency effort to address water supply reliability, ecological condition, drinking water quality, and levees in the Sacramento-San Joaquin Delta of northern California. Under CALFED, many different strategies were used to integrate science, including interaction between the research and management communities, public dialogues about scientific work, and peer review. This paper explores ways science was (and was not) integrated into CALFED's management actions and decision systems through three narratives describing different patterns of scientific integration and application in CALFED. Though a collaborative process and certain organizational conditions may be necessary for developing new understandings of the system of interest, we find that those factors are not sufficient for translating that knowledge into management actions and decision systems. We suggest that the application of knowledge may be facilitated or hindered by (1) differences in the objectives, approaches, and cultures of scientists operating in the research community and those operating in the management community and (2) other factors external to the collaborative process and organization.

  5. Space Life Sciences Research and Education Program

    Science.gov (United States)

    Coats, Alfred C.

    2001-01-01

    Since 1969, the Universities Space Research Association (USRA), a private, nonprofit corporation, has worked closely with the National Aeronautics and Space Administration (NASA) to advance space science and technology and to promote education in those areas. USRA's Division of Space Life Sciences (DSLS) has been NASA's life sciences research partner for the past 18 years. For the last six years, our Cooperative Agreement NCC9-41 for the 'Space Life Sciences Research and Education Program' has stimulated and assisted life sciences research and education at NASA's Johnson Space Center (JSC) - both at the Center and in collaboration with outside academic institutions. To accomplish our objectives, the DSLS has facilitated extramural research, developed and managed educational programs, recruited and employed visiting and staff scientists, and managed scientific meetings.

  6. Air Toxics Under the Big Sky: examining the effectiveness of authentic scientific research on high school students' science skills and interest

    Science.gov (United States)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-04-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1) how the program affects student understanding of scientific inquiry and research and (2) how the open-inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  7. Cleveland Clinic's summer research program in reproductive medicine: an inside look at the class of 2014.

    Science.gov (United States)

    Durairajanayagam, Damayanthi; Kashou, Anthony H; Tatagari, Sindhuja; Vitale, Joseph; Cirenza, Caroline; Agarwal, Ashok

    2015-01-01

    The American Center for Reproductive Medicine's summer internship course in reproductive medicine and research at Cleveland Clinic is a rigorous, results-oriented annual program that began in 2008 to train both local and international students in the fundamentals of scientific research and writing. The foremost goal of the program is to encourage premedical and medical students to aspire toward a career as a physician-scientist. The internship provides participants with an opportunity to engage in original bench research and scientific writing while developing theoretical knowledge and soft skills. This study describes selected survey responses from interns who participated in the 2014 internship program. The objective of these surveys was to elicit the interns' perspective on the internship program, its strengths and weaknesses, and to obtain insight into potential areas for improvement. Questionnaires were structured around the five fundamental aspects of the program: 1) theoretical knowledge, 2) bench research, 3) scientific writing, 4) mentorship, and 5) soft skills. In addition, an exit survey gathered information on factors that attracted the interns to the program, communication with mentors, and overall impression of the research program. The opportunity to experience hands-on bench research and scientific writing, personalized mentorship, and the reputation of the institution were appreciated and ranked highly among the interns. Nearly 90% of the interns responded that the program was beneficial and well worth the time and effort invested by both interns and faculty. The outcomes portrayed in this study will be useful in the implementation of new programs or refinement of existing medical research training programs.

  8. Mendelian Genetics: Paradigm, Conjecture, or Research Program.

    Science.gov (United States)

    Oldham, V.; Brouwer, W.

    1984-01-01

    Applies Kuhn's model of the structure of scientific revolutions, Popper's hypothetic-deductive model of science, and Lakatos' methodology of competing research programs to a historical biological episode. Suggests using Kuhn's model (emphasizing the nonrational basis of science) and Popper's model (emphasizing the rational basis of science) in…

  9. Study of the comprehension of the scientific method by members of a university health research laboratory.

    Science.gov (United States)

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  10. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  11. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  12. Making graduate research in science education more scientific

    Science.gov (United States)

    Firman, Harry

    2016-02-01

    It is expected that research conducted by graduate students in science education provide research findings which can be utilized as evidence based foundations for making decisions to improve science education practices in schools. However, lack of credibility of research become one of the factors cause idleness of thesis and dissertation in the context of education improvement. Credibility of a research is constructed by its scientificness. As a result, enhancement of scientific characters of graduate research needs to be done to close the gap between research and practice. A number of guiding principles underlie educational researchs as a scientific inquiry are explored and applied in this paper to identify common shortages of some thesis and dissertation manuscripts on science education reviewed in last two years.

  13. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  14. MS PHD'S Professional Development Program: A Scientific Renaissance in Cyberspace

    Science.gov (United States)

    Powell, J. M.; Williamson, V. A.; Griess, C. A.; Pyrtle, A. J.

    2004-12-01

    This study is a component of a four-year investigation of MS PHD'S Professional Development Program's virtual community through the lenses of underrepresented minority students in Earth system science and engineering fields. In this presentation, the development, assessment and projected utilization of the ongoing study will be discussed. The overall goal of this study is to examine the effectiveness of virtual team building methods and understand how the development of a communal cyberinfrastructure acts as an integral part of the emergence of a Scientific Renaissance. The exemplar, Minorities Striving and Pursuing Higher Degrees of Success in Earth System Science (MS PHD'S), provides professional development experiences to facilitate the advancement of students of color achieving outstanding Earth system careers. Undergraduate and graduate students are supported through access to scientific conferences, mentorship and virtual community building. Framed by critical theory, this ethnographic exploration uses a mixed methods research design to record, observe, and analyze both the processes and products of the website, listserv and synchronous web-based dialogue. First, key findings of the formative evaluation and annual reports of the successfully implemented 2003 MS PHD'S Pilot Project are presented. These findings inform future evaluations of the use of technological resources and illustrate how this public space provides peer support and enriched research opportunities. Quantitative methods such as statistical analysis, academic and professional tracking and evaluative tools for scientific content and competency are complimented by qualitative methods that include observations, heuristic case studies and focus group interviews. The findings of this ongoing investigation will provide insight on how national organizations, higher education practitioners, community-based support systems and underrepresented minorities in the sciences promote diversity by developing

  15. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest.

    Science.gov (United States)

    Ward, Tony J; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path . Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom.

  16. Air Toxics Under the Big Sky: Examining the Effectiveness of Authentic Scientific Research on High School Students’ Science Skills and Interest

    Science.gov (United States)

    Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    Air Toxics Under the Big Sky is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. A quasi-experimental design was used in order to understand: 1) how the program affects student understanding of scientific inquiry and research and 2) how the open inquiry learning opportunities provided by the program increase student interest in science as a career path. Treatment students received instruction related to air pollution (airborne particulate matter), associated health concerns, and training on how to operate air quality testing equipment. They then participated in a yearlong scientific research project in which they developed and tested hypotheses through research of their own design regarding the sources and concentrations of air pollution in their homes and communities. Results from an external evaluation revealed that treatment students developed a deeper understanding of scientific research than did comparison students, as measured by their ability to generate good hypotheses and research designs, and equally expressed an increased interest in pursuing a career in science. These results emphasize the value of and need for authentic science learning opportunities in the modern science classroom. PMID:28286375

  17. Authentic scientific research in an international setting as a path toward higher education

    Science.gov (United States)

    Mladenov, N.; Palomo, M.; Casad, B.; Pietruschka, B.; Buckley, C.

    2016-12-01

    Studies have shown that undergraduate research opportunities foster student interest in research, encourage minority students to seek advanced degrees, and put students on a path toward higher education. It has been further suggested that engineering projects in international settings address issues of sustainability and promote a connection between engineering and social welfare that may compel students to seek future research opportunities. In this study, we explored the role that authentic research experiences in an international setting play in promoting higher education for students from groups typically under-represented in engineering and sciences. We hypothesized that the international context of the research experiences will provide undergraduate and graduate students with a global perspective of water reuse challenges and promote increased interest in pursuing a higher degree in engineering. Through the Sustainable Sanitation International Research Experiences for Students (IRES) Program, US students conducting research in Durban, South Africa in 2015 and 2016, were tasked with leading 6-week long research projects, collaborating with partners at the University of KwaZulu Natal, and producing papers and presentations for regional and international scientific conferences. All undergraduate participants were from groups under-represented in the sciences. Pre- and post-program survey results revealed that, after completing the program, participants of Cohort 1 had 1) greater research skills, 2) greater identification as an engineer, and 3) stronger intentions to pursue a PhD in engineering. Survey data were also used to evaluate comfort with cultural diversity before and after the international program and the effect of pairing US with South African student researchers. Our results indicate that students' awareness of societal needs and engineering challenges faced in Durban resulted in a positive impact on each student. The benefits gained from the

  18. Exploration and thinking of dynamic scientific and technical intelligence research

    International Nuclear Information System (INIS)

    Zhang Xupu; Xia Yun

    2014-01-01

    This article discusses the concept and types of dynamic scientific and technical intelligence, describes the characteristics and role of dynamic scientific and technical intelligence, and analyzes methods and procedures of dynamic scientific and technical intelligence research. Combined with the status quo of dynamic scientific and technical intelligence research in library of China Institute of Atomic Energy, this article makes some suggestions for strengthening dynamic scientific and technical intelligence research. (authors)

  19. Forschungszentrum Karlsruhe Technik und Umwelt. Research and development program 2002

    International Nuclear Information System (INIS)

    2001-01-01

    The five main fields of research and the activities under the R and D program 2002 are explained in great detail in five chapters with the following captions: 1. ENVIRONMENT. Programs: - Sustainable development, energy and environmental engineering (UMWELT). - Earth atmosphere and climate research (ATMO). 2. PUBLIC HEALTH. Programs: - Biomedical research (BIOMED). - Medical engineering (MEDTECH). 3. ENERGY. Programs: - Thermonuclear fusion (FUSION). - Nuclear safety (NUKLEAR). 4. KEY TECHNOLOGIES. Programs: - Microsystems engineering (MIKRO). - Nanotechnology (NANO). - Materials science (MATERIAL). - Chemical process engineering (CHEMIE). - Superconductivity (SUPRA). 5. MATTER and STRUCTURE. Program: The structure of matter (STRUKTUR). The sixth chapter presents cross-cutting activities under the program: Technology transfer and marketing (TTM). The concluding chapter lists and briefly presents the activities of the scientific and technical institutes of the Karlsruhe Research Center. (CB) [de

  20. Cleveland Clinic's summer research program in reproductive medicine: an inside look at the class of 2014

    Directory of Open Access Journals (Sweden)

    Damayanthi Durairajanayagam

    2015-11-01

    Full Text Available Background: The American Center for Reproductive Medicine's summer internship course in reproductive medicine and research at Cleveland Clinic is a rigorous, results-oriented annual program that began in 2008 to train both local and international students in the fundamentals of scientific research and writing. The foremost goal of the program is to encourage premedical and medical students to aspire toward a career as a physician–scientist. The internship provides participants with an opportunity to engage in original bench research and scientific writing while developing theoretical knowledge and soft skills. This study describes selected survey responses from interns who participated in the 2014 internship program. The objective of these surveys was to elicit the interns' perspective on the internship program, its strengths and weaknesses, and to obtain insight into potential areas for improvement. Methods: Questionnaires were structured around the five fundamental aspects of the program: 1 theoretical knowledge, 2 bench research, 3 scientific writing, 4 mentorship, and 5 soft skills. In addition, an exit survey gathered information on factors that attracted the interns to the program, communication with mentors, and overall impression of the research program. Results: The opportunity to experience hands-on bench research and scientific writing, personalized mentorship, and the reputation of the institution were appreciated and ranked highly among the interns. Nearly 90% of the interns responded that the program was beneficial and well worth the time and effort invested by both interns and faculty. Conclusion: The outcomes portrayed in this study will be useful in the implementation of new programs or refinement of existing medical research training programs.

  1. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  2. Small Business Innovation Research Program. Program solicitation FY 1984

    International Nuclear Information System (INIS)

    1984-01-01

    The Nuclear Regulatory Commission (NRC) invites science-based and high-technology small business firms to submit research proposals under this program solicitation entitled Small Business Innovation Research (SBIR). Firms with strong research capabilities in science or engineering in any of the following topic areas are encouraged to participate. NRC will support high-quality research proposals on important scientific or engineering problems and opportunities that could lead to significant advancement in the safety of nuclear operations or nuclear power plants. Objectives of the solicitation include stimulating technological innovation in the private sector, strengthening the role of small business in meeting Federal research and development needs, increasing the commercial application of NRC-supported research results, and improving the return on investment from Federally funded research for economic and social benefits to the Nation

  3. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  4. Museum-University Partnerships as a New Platform for Public Engagement with Scientific Research

    Science.gov (United States)

    Bell, Jamie; Chesebrough, David; Cryan, Jason; Koster, Emlyn

    2016-01-01

    A growing trend in natural history museums, science museums, and science centers is the establishment of innovative new partnerships with universities to bring scientific research to the public in compelling and transformative ways. The strengths of both kinds of institutions are leveraged in effective and publicly visible programs, activities,…

  5. National Geospatial-Intelligence Agency Academic Research Program

    Science.gov (United States)

    Loomer, S. A.

    2004-12-01

    "Know the Earth.Show the Way." In fulfillment of its vision, the National Geospatial-Intelligence Agency (NGA) provides geospatial intelligence in all its forms and from whatever source-imagery, imagery intelligence, and geospatial data and information-to ensure the knowledge foundation for planning, decision, and action. To achieve this, NGA conducts a multi-disciplinary program of basic research in geospatial intelligence topics through grants and fellowships to the leading investigators, research universities, and colleges of the nation. This research provides the fundamental science support to NGA's applied and advanced research programs. The major components of the NGA Academic Research Program (NARP) are: - NGA University Research Initiatives (NURI): Three-year basic research grants awarded competitively to the best investigators across the US academic community. Topics are selected to provide the scientific basis for advanced and applied research in NGA core disciplines. - Historically Black College and University - Minority Institution Research Initiatives (HBCU-MI): Two-year basic research grants awarded competitively to the best investigators at Historically Black Colleges and Universities, and Minority Institutions across the US academic community. - Director of Central Intelligence Post-Doctoral Research Fellowships: Fellowships providing access to advanced research in science and technology applicable to the intelligence community's mission. The program provides a pool of researchers to support future intelligence community needs and develops long-term relationships with researchers as they move into career positions. This paper provides information about the NGA Academic Research Program, the projects it supports and how other researchers and institutions can apply for grants under the program.

  6. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory.

  7. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    International Nuclear Information System (INIS)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory

  8. The effectiveness of web-programming module based on scientific approach to train logical thinking ability for students in vocational high school

    Science.gov (United States)

    Nashiroh, Putri Khoirin; Kamdi, Waras; Elmunsyah, Hakkun

    2017-09-01

    Web programming is a basic subject in Computer and Informatics Engineering, a program study in a vocational high school. It requires logical thinking ability in its learning activities. The purposes of this research were (1) to develop a web programming module that implement scientific approach that can improve logical thinking ability for students in vocational high school; and (2) to test the effectiveness of web programming module based on scientific approach to train students' logical thinking ability. The results of this research was a web-programming module that apply scientific approach for learning activities to improve logical thinking ability of students in the vocational high school. The results of the effectiveness test of web-programming module give conclusion that it was very effective to train logical thinking ability and to improve learning result, this conclusion was supported by: (1) the average of posttest result of students exceeds the minimum criterion value, it was 79.91; (2) the average percentage of students' logical thinking score is 82,98; and (3) the average percentage of students' responses to the web programming module was 81.86%.

  9. Authentic Astronomy Research Experiences for Teachers: The NASA/IPAC Teacher Archive Research Program (NITARP)

    Science.gov (United States)

    Rebull, L. M.; Gorjian, V.; Squires, G.; Nitarp Team

    2012-08-01

    How many times have you gotten a question from the general public, or read a news story, and concluded that "they just don't understand how real science works?" One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Students, which in 2009 was rechristened the NASA/IPAC Teacher Archive Research Program, or NITARP). We partner small groups of teachers with a mentor astronomer, they do research as a team, write up a poster, and present it at an American Astronomical Society (AAS) meeting. The teachers incorporate this experience into their classroom, and their experiences color their teaching for years to come, influencing hundreds of students per teacher. This program differs from other similar programs in several important ways. First, each team works on an original, unique project. There are no canned labs here! Second, each team presents their results in posters at the AAS, in science sessions (not outreach sessions). The posters are distributed throughout the meeting, in amongst other researchers' work; the participants are not "given a free pass" because they are teachers. Finally, the "product" of this project is the scientific result, not any sort of curriculum packet. The teachers adapt their project to their classroom environment, and we change the way they think about science and scientists.

  10. [Performance analysis of scientific researchers in biomedicine].

    Science.gov (United States)

    Gamba, Gerardo

    2013-01-01

    There is no data about the performance of scientific researchers in biomedicine in our environment that can be use by individual subjects to compare their execution with their pairs. Using the Scopus browser the following data from 115 scientific researchers in biomedicine were obtained: actual institution, number of articles published, place on each article within the author list as first, last or unique author, total number of citations, percentage of citations due to the most cited paper, and h-index. Results were analyzed with descriptive statistics and simple lineal regressions. Most of scientific researches in the sample are from the National Institutes of the Health Ministry or some of the research institutes or faculties at the Universidad Nacional Autónoma de México. Total number of publications was biomedicine in Mexico City, which can be used to compare the productivity of individual subjects with their pairs.

  11. Open Science: Open source licenses in scientific research

    OpenAIRE

    Guadamuz, Andres

    2006-01-01

    The article examines the validity of OSS (open source software) licenses for scientific, as opposed to creative works. It draws on examples of OSS licenses to consider their suitability for the scientific community and scientific research.

  12. I Can Make a Scientific Research: A Course about Scientific Research Methods, in Which Learning Management System (LMS) Is Used

    Science.gov (United States)

    Özden, Bülent

    2016-01-01

    The purpose of this study was to determine the changes in the perception of teacher candidates towards scientific research process and their self-efficacy in this process, during Scientific Research Methods course that has been conducted using "Learning Management System" based on out-of-class learning activities. Being designed as a…

  13. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  14. Communication about scientific uncertainty in environmental nanoparticle research - a comparison of scientific literature and mass media

    Science.gov (United States)

    Heidmann, Ilona; Milde, Jutta

    2014-05-01

    The research about the fate and behavior of engineered nanoparticles in the environment is despite its wide applications still in the early stages. 'There is a high level of scientific uncertainty in nanoparticle research' is often stated in the scientific community. Knowledge about these uncertainties might be of interest to other scientists, experts and laymen. But how could these uncertainties be characterized and are they communicated within the scientific literature and the mass media? To answer these questions, the current state of scientific knowledge about scientific uncertainty through the example of environmental nanoparticle research was characterized and the communication of these uncertainties within the scientific literature is compared with its media coverage in the field of nanotechnologies. The scientific uncertainty within the field of environmental fate of nanoparticles is by method uncertainties and a general lack of data concerning the fate and effects of nanoparticles and their mechanisms in the environment, and by the uncertain transferability of results to the environmental system. In the scientific literature, scientific uncertainties, their sources, and consequences are mentioned with different foci and to a different extent. As expected, the authors in research papers focus on the certainty of specific results within their specific research question, whereas in review papers, the uncertainties due to a general lack of data are emphasized and the sources and consequences are discussed in a broader environmental context. In the mass media, nanotechnology is often framed as rather certain and positive aspects and benefits are emphasized. Although reporting about a new technology, only in one-third of the reports scientific uncertainties are mentioned. Scientific uncertainties are most often mentioned together with risk and they arise primarily from unknown harmful effects to human health. Environmental issues itself are seldom mentioned

  15. Augmenting Research, Education, and Outreach with Client-Side Web Programming.

    Science.gov (United States)

    Abriata, Luciano A; Rodrigues, João P G L M; Salathé, Marcel; Patiny, Luc

    2018-05-01

    The evolution of computing and web technologies over the past decade has enabled the development of fully fledged scientific applications that run directly on web browsers. Powered by JavaScript, the lingua franca of web programming, these 'web apps' are starting to revolutionize and democratize scientific research, education, and outreach. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Scientific research - support for achieving the national strategy for radioactive waste management

    International Nuclear Information System (INIS)

    Ionita, Gheorghe

    2008-01-01

    Full text: The lecture contains an overview on current status of research activity in Romania and especially, the organizing and development of research activity in nuclear field. The main characteristics for fundamental and applied research, for technological development and for innovation and technological transfer are presented beside of the evolution of legislative framework, the dynamics of research and development institutions and of number of scientific researchers. The main modalities for financing of research activities in nuclear field based on Governmental Decision No. 144/1998, Technical Cooperation Program with AIEA, Phare projects and the second National Program for Research, Development and Innovation are discussed. Aspects concerning the selection and financing of research topics in correlation with the requirements of National Strategy for the Safety Management of Radioactive Waste in cooperation with radioactive waste producers are discussed. Current and future requirements, concerning the near-surface and geological disposal of radioactive waste and resized of Research National Program in nuclear field according to the provisions of the new National Energy Strategy have to be taken into consideration. The present material and human resources and the infrastructure and ascending financing of research activities in nuclear field constitutes a guaranty that the main objectives of national strategy for safety management of spent fuel and radioactive waste can be achieved. (author)

  17. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  18. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  19. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  20. DIII-D Research Operations annual report to the US Department of Energy, October 1, 1990--September 30, 1991. Magnetic Fusion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Simonen, T.C.; Evans, T.E. [eds.

    1992-03-01

    This report discusses the following topics on Doublet-3 research operations: DIII-D Program Overview; Boundary Plasma Research Program/Scientific Progress; Radio Frequency Heating and Current Drive; Core Physics; DIII-D Operations; Program Development; Support Services; ITER Contributions; Burning Plasma Experiment Contributions; and Collaborative Efforts.

  1. Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education

    Science.gov (United States)

    Fischer, Frank; Kollar, Ingo; Ufer, Stefan; Sodian, Beate; Hussmann, Heinrich; Pekrun, Reinhard; Neuhaus, Birgit; Dorner, Birgit; Pankofer, Sabine; Fischer, Martin; Strijbos, Jan-Willem; Heene, Moritz; Eberle, Julia

    2014-01-01

    Scientific reasoning and scientific argumentation are highly valued outcomes of K-12 and higher education. In this article, we first review main topics and key findings of three different strands of research, namely research on the development of scientific reasoning, research on scientific argumentation, and research on approaches to support…

  2. Scientific and technical information output of the Langley Research Center for calendar year 1984

    Science.gov (United States)

    1985-01-01

    The scientific and technical information that the Langley Research Center produced during the calendar year 1984 is compiled. Approximately 1650 citations are included comprising formal reports, quick-release technical memorandums, contractor reports, journal articles and other publications, meeting presentations, technical talks, computer programs, tech briefs, and patents.

  3. The 12-th INS scientific computational programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This issue is the collection of the paper on INS scientific computational programs. Separate abstracts were presented for 3 of the papers in this report. The remaining 5 were considered outside the subject scope of INIS. (J.P.N.)

  4. The Atomic Energy Control Board's regulatory research and support program

    International Nuclear Information System (INIS)

    1988-04-01

    The purpose of the Regulatory Research and Support Program is to augment and extend the capability of the Atomic Energy Control Board's (AECB) regulatory program beyond the capability of in-house resources. The overall objective of the program is to produce pertinent and independent scientific and other knowledge and expertise that will assist the AECB in making correct, timely and credible decisions on regulating the development, application and use of atomic energy. The objectives are achieved through contracted research, development, studies, consultant and other kinds of projects administered by the Research and Radiation Protection Branch (RRB) of the AECB

  5. SCIENTIFIC-RESEARCH WORK OF STUDENTS IN ORGANIZATIONS OF SECONDARY VOCATIONAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Natalya O. Vaganova

    2016-01-01

    Full Text Available The aim of the study is to reveal features and possibilities of research work in the organizations of secondary professional education. Methods. Theoretical methods involve analysis of legislative, normative documents; comparison and generalization of the findings of scientists on research activities. Empirical methods: pedagogical observation, to study the experience of organization of research work. Results. The definition of «research ability» is proposed; the system of organization of research activity in the organization of secondary vocational education, including the identification of approaches to the concept of «research» is developed; development of a program of research skills formation is given; definition of subjective functional relationships for the implementation of the programmer of research; the development of training programs for teaching staff the organization of the secondary professional education to the organization and conduct of research activities with students; creation of innovative infrastructure as a set of resources and means to ensure the maintenance of research activities. Scientific novelty. An attempt to fill the gaps in the methodology of organization of research activity in organizations of secondary vocational education is taken. Peculiarities of the educational programs of secondary vocational education, defining the forms of research activities are disclosed. Approaches to the concept of «research», the formation of research skills and development of professional-pedagogical competences of teachers as subjects of research activities are proposed. Practical significance. The use of suggested approaches to conducting research in organizations of secondary vocational education can increase the level of students and extend the functionality of teachers. 

  6. Activities in an S-STEM Program to Catalyze Early Entry into Research

    Science.gov (United States)

    Graham, Kate J.; McIntee, Edward J.; Raigoza, Annette F.; Fazal, M. Abul; Jakubowski, Henry V.

    2017-01-01

    A cohort program to increase retention of under-represented groups in chemistry was developed at the College of Saint Benedict/Saint John's University. In particular, this program chose to emphasize early career mentoring and early access to research. This goal was chosen because research has been repeatedly shown to increase scientific identity…

  7. 50 CFR 216.41 - Permits for scientific research and enhancement.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Permits for scientific research and... AND IMPORTING OF MARINE MAMMALS Special Exceptions § 216.41 Permits for scientific research and enhancement. In addition to the requirements under §§ 216.33 through 216.38, permits for scientific research...

  8. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  9. [Strengthening the methodology of study designs in scientific researches].

    Science.gov (United States)

    Ren, Ze-qin

    2010-06-01

    Many problems in study designs have affected the validity of scientific researches seriously. We must understand the methodology of research, especially clinical epidemiology and biostatistics, and recognize the urgency in selection and implement of right study design. Thereafter we can promote the research capability and improve the overall quality of scientific researches.

  10. Radioactive Waste Management Research Program Plan for high-level waste: 1987

    International Nuclear Information System (INIS)

    1987-05-01

    This plan will identify and resolve technical and scientific issues involved in the NRC's licensing and regulation of disposal systems intended to isolate high level hazardous radioactive wastes (HLW) from the human environment. The plan describes the program goals, discusses the research approach to be used, lays out peer review procedures, discusses the history and development of the high level radioactive waste problem and the research effort to date and describes study objectives and research programs in the areas of materials and engineering, hydrology and geochemistry, and compliance assessment and modeling. The plan also details the cooperative interactions with international waste management research programs. Proposed Earth Science Seismotectonic Research Program plan for radioactive waste facilities is appended

  11. Scientific and technical information output of the Langley Research Center for Calendar Year 1985

    Science.gov (United States)

    1986-01-01

    A compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1985 is presented. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Technical Talks, Computer Programs, Tech Briefs, and Patents.

  12. Applied Information Systems Research Program (AISRP) Workshop 3 meeting proceedings

    Science.gov (United States)

    1993-01-01

    The third Workshop of the Applied Laboratory Systems Research Program (AISRP) met at the Univeristy of Colorado's Laboratory for Atmospheric and Space Physics in August of 1993. The presentations were organized into four sessions: Artificial Intelligence Techniques; Scientific Visualization; Data Management and Archiving; and Research and Technology.

  13. An Analysis of the Relationship between Scientific Epistemological Beliefs and Educational Philosophies: A Research on Formation Teacher Candidates

    Science.gov (United States)

    Terzi, Ali Riza; Uyangör, Nihat

    2017-01-01

    This research explores the relationship between scientific epistemological beliefs and educational philosophies of formation teacher candidates. The research was conducted in the summer pedagogical formation program at Balikesir University of Necatibey Education Faculty during the 2016-17 academic years. The research, conducted with 379 candidate…

  14. [The representation of scientific research through a poster].

    Science.gov (United States)

    Dupin, Cécile-Marie

    2013-12-01

    The poster is a medium of scientific communication. When presented in public, it optimises the value of an original research approach. The poster sessions are devoted to one-to-one exchanges with peers on the subject of the research. The poster can help to integrate scientific knowledge into the nursing decision-making process.

  15. Scientific Programs and Funding Opportunities at the National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    Baird, Richard

    2006-03-01

    The mission of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) is to improve human health by promoting the development and translation of emerging technologies in biomedical imaging and bioengineering. To this end, NIBIB supports a coordinated agenda of research programs in advanced imaging technologies and engineering methods that enable fundamental biomedical discoveries across a broad spectrum of biological processes, disorders, and diseases and have significant potential for direct medical application. These research programs dramatically advance the Nation's healthcare by improving the detection, management and, ultimately, the prevention of disease. The research promoted and supported by NIBIB also is strongly synergistic with other NIH Institutes and Centers as well as across government agencies. This presentation will provide an overview of the scientific programs and funding opportunities supported by NIBIB, highlighting those that are of particular important to the field of medical physics.

  16. U.S. Global Change Research Program National Climate Assessment Global Change Information System

    Science.gov (United States)

    Tilmes, Curt

    2012-01-01

    The program: a) Coordinates Federal research to better understand and prepare the nation for global change. b) Priori4zes and supports cutting edge scientific work in global change. c) Assesses the state of scientific knowledge and the Nation s readiness to respond to global change. d) Communicates research findings to inform, educate, and engage the global community.

  17. Object-Oriented Scientific Programming with Fortran 90

    Science.gov (United States)

    Norton, C.

    1998-01-01

    Fortran 90 is a modern language that introduces many important new features beneficial for scientific programming. We discuss our experiences in plasma particle simulation and unstructured adaptive mesh refinement on supercomputers, illustrating the features of Fortran 90 that support the object-oriented methodology.

  18. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Sam [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station; Harper, David [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station; Womac, Al [University of Tennessee, Knoxville, TN (United States). Tennessee Agricultural Experiment Station

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  19. Lab notebooks as scientific communication: Investigating development from undergraduate courses to graduate research

    Directory of Open Access Journals (Sweden)

    Jacob T. Stanley

    2016-09-01

    Full Text Available In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered “best practice” for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely, physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.

  20. Teacher Research Experience Programs = Increase in Student Achievement

    Science.gov (United States)

    Dubner, J.

    2010-12-01

    Columbia University's Summer Research Program for Science Teachers (SRP), founded in 1990, is one of the largest, best known university-based professional development programs for science teachers in the U.S. The program’s basic premise is simple: teachers cannot effectively teach science if they have not experienced it firsthand. For eight weeks in each of two consecutive summers, teachers participate as a member of a research team, led by a member of Columbia University’s research faculty. In addition to the laboratory experience, all teachers meet as a group one day each week during the summer for a series of pedagogical activities. A unique quality of the Summer Research Program is its focus on objective assessment of its impact on attitudes and instructional practices of participating teachers, on the performance of these teachers in their mentors’ laboratories, and most importantly, on the impact of their participation in the program on student interest and performance in science. SRP uses pass rate on the New York State Regents standardized science examinations as an objective measure of student achievement. SRP's data is the first scientific evidence of a connection between a research experience for teachers program and gains in student achievement. As a result of the research, findings were published in Science Magazine. The author will present an overview of Columbia's teacher research program and the results of the published program evaluation.

  1. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  2. Authentic Astronomy Research Experiences for Teachers: The NASA/IPAC Teacher Archive Research Program (NITARP)

    OpenAIRE

    Rebull, L. M.; Gorjian, V.; Squires, G.

    2012-01-01

    How many times have you gotten a question from the general public, or read a news story, and concluded that “they just don’t understand how real science works?” One really good way to get the word out about how science works is to have more people experience the process of scientific research. Since 2004, the way we have chosen to do this is to provide authentic research experiences for teachers using real data (the program used to be called the Spitzer Teacher Program for Teachers and Stu...

  3. Scientific Research & Subsistence: Protocols to Ensure Co-Existence

    Science.gov (United States)

    Nachman, C.; Holman, A.; DeMaster, D.

    2017-12-01

    Commercial, industrial, and research interests in the Arctic are expanding rapidly. Potentials are numerous and exciting, giving rise to the need for guidelines to ensure interactions among waterway users do not conflict. Of particular concern is the potential for adverse impacts to U.S. Arctic coastal communities that rely on living marine resources for nutritional and cultural health, through subsistence hunts from small craft, ice edges, and shore. Recent events raised concerns over research surveys potentially interfering with subsistence hunts in the Bering, Chukchi, and Beaufort Seas. Incidents led to calls by Native Alaskan communities to restrict science activities with a mixed response from the scientific community (i.e., some sympathetic, some defensive). With a common goal of wanting to mitigate this potential interaction, Federal agencies made a commitment in the National Strategy for the Arctic Region to coordinate and consult with Alaska Natives and also to pursue responsible Arctic stewardship, with understanding through scientific research and traditional knowledge. The effort to create a "Standard of Care" for research surveys incorporates years of experience by subsistence hunters working to mitigate impacts of other anthropogenic activities in the region, as well as best practices by many in the research community. The protocols are designed to ensure potential conflicts between the scientific research community and subsistence hunters are avoided and to encourage mutual assistance and collaboration between researchers and hunters. The guidelines focus on enhancing communication between researchers and subsistence hunters before, during, and after research occurs. The best management practices outlined in the Standard of Care assist those overseeing and funding scientific research in making decisions about how best to accomplish the goals of the research while ensuring protection of the Alaska subsistence lifestyle. These protocols could also be

  4. Meaningful public participation in scientific research: How to build an effective site-based long-term education program

    Science.gov (United States)

    Barnett, L.

    2013-12-01

    Many site-based educators (Wildlife Refuges, nature centers, Cooperative Extension Programs, schools, arboretums) struggle with developing and implementing cohesive long-term scientific monitoring projects into their existing outreach programming. Moreover, projects that are not meaningful to participants often have little or no sustainable long-term impact. Programs proven most effective are those which 1.) engage the participants in the study design and implementation process, 2.) answer a scientific question posed by site leaders; the data collected supports USA-NPN efforts as well as related site management and monitoring questions, 3.) are built into existing outreach and education programs, using phenology as a lens for understanding both natural and cultural history, and 4.) consistently share outcomes and results with the participants. The USA National Phenology Network's (USA-NPN) Education Program provides phenology curriculum and outreach to educators in formal, non-formal, and informal settings. Materials are designed to serve participants in grades 5-12, higher education, and adult learners. Phenology, used as a lens for place-based education, can inform science, environmental, and climate literacy, as well as other subject areas including cultural studies, art, and language arts. The USA-NPN offers consultation with site leaders on how to successfully engage site-based volunteers and students in long-term phenological studies using Nature's Notebook (NN), the professional and citizen science phenology monitoring program. USA-NPN education and educator instruction materials are designed and field-tested to demonstrate how to implement a long-term NN phenology-monitoring program at such sites. These curricula incorporate monitoring for public visitors, long-term volunteers, and school groups, while meeting the goals of USA-NPN and the site, and can be used as a model for other public participation in science programs interested in achieving similar

  5. Scientific and technical information output of the Langley Research Center for calendar year 1986

    Science.gov (United States)

    1987-01-01

    This document is a compilation of the scientific and technical information that the Langley Research Center has produced during the calendar year 1986. Included are citations for Formal Reports, Quick-Release Technical Memorandums, Contractor Reports, Journal Articles and Other Publications, Meeting Presentations, Techncial Talks, Computer Programs, Tech Briefs, and Patents.

  6. Esther Wojcicki Scientific Research in America at Risk

    CERN Multimedia

    2007-01-01

    It is hard to believe, but science in America is struggling. Funding for scientific research has been cut back for years, but this year it is so bad that in the Chicago area, needs to in 2008 to make ends meet. Last week Congress failed to provide enough budgetary support for basic scientific research in all fields.

  7. Listing of engineering research contract reports under the DREAM, AERD and ERDAF programs of the Research Branch, 1973-1988

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, B A; Thuns, A; Feldman, M

    1988-01-01

    To supplement in-house investigations, Agriculture Canada contracted out research in a number of programs including three which supported engineering work. This document lists the contracts awarded under the programs and provides reference citations of the contract reports. Reports are grouped by file number, scientific authority, author or contractor, and subject, and a subject index is also included. The three programs are: Development, Research and Evaluation in Agricultural Mechanization (DREAM), Agricultural Engineering Research and Development Program (AERD), and Energy Research and Development in Agriculture and Food (ERDAF). AERD, which replaced DREAM, has been terminated, but the ERDAF program is still continuing as of the date of this document.

  8. Scientific Computing in the CH Programming Language

    Directory of Open Access Journals (Sweden)

    Harry H. Cheng

    1993-01-01

    Full Text Available We have developed a general-purpose block-structured interpretive programming Ianguage. The syntax and semantics of this language called CH are similar to C. CH retains most features of C from the scientific computing point of view. In this paper, the extension of C to CH for numerical computation of real numbers will be described. Metanumbers of −0.0, 0.0, Inf, −Inf, and NaN are introduced in CH. Through these metanumbers, the power of the IEEE 754 arithmetic standard is easily available to the programmer. These metanumbers are extended to commonly used mathematical functions in the spirit of the IEEE 754 standard and ANSI C. The definitions for manipulation of these metanumbers in I/O; arithmetic, relational, and logic operations; and built-in polymorphic mathematical functions are defined. The capabilities of bitwise, assignment, address and indirection, increment and decrement, as well as type conversion operations in ANSI C are extended in CH. In this paper, mainly new linguistic features of CH in comparison to C will be described. Example programs programmed in CH with metanumbers and polymorphic mathematical functions will demonstrate capabilities of CH in scientific computing.

  9. [Eleven thesis on the archive of scientific research, for a new patrimonial and scientific policy].

    Science.gov (United States)

    Müller, Bertrand

    2015-12-01

    Abstracting the main content of a recent report on the bad state of the archives of scientific research, this paper puts forward eleven thesis likely to feed, in this time of numeric transition to a new documentary regime and to a new patrimonial policy. The recent numeric conditions impose to set new archival pratices, more proactive, anticipative and prospective. Archives of scientific research must be thought in a double memorial and scientific dimension, and not only as a patrimonial or historical one.

  10. Agricultural Research Service

    Science.gov (United States)

    ... Menu United States Department of Agriculture Agricultural Research Service Research Research Home National Programs Research Projects Scientific Manuscripts International Programs Scientific Software/Models Databases and Datasets Office of Scientific Quality ...

  11. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  12. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  13. The Internet of Scientific Research Things

    Science.gov (United States)

    Chandler, Cynthia; Shepherd, Adam; Arko, Robert; Leadbetter, Adam; Groman, Robert; Kinkade, Danie; Rauch, Shannon; Allison, Molly; Copley, Nancy; Gegg, Stephen; Wiebe, Peter; Glover, David

    2016-04-01

    The sum of the parts is greater than the whole, but for scientific research how do we identify the parts when they are curated at distributed locations? Results from environmental research represent an enormous investment and constitute essential knowledge required to understand our planet in this time of rapid change. The Biological and Chemical Oceanography Data Management Office (BCO-DMO) curates data from US NSF Ocean Sciences funded research awards, but BCO-DMO is only one repository in a landscape that includes many other sites that carefully curate results of scientific research. Recent efforts to use persistent identifiers (PIDs), most notably Open Researcher and Contributor ID (ORCiD) for person, Digital Object Identifier (DOI) for publications including data sets, and Open Funder Registry (FundRef) codes for research grants and awards are realizing success in unambiguously identifying the pieces that represent results of environmental research. This presentation uses BCO-DMO as a test case for adding PIDs to the locally-curated information published out as standards compliant metadata records. We present a summary of progress made thus far; what has worked and why, and thoughts on logical next steps.

  14. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  15. 78 FR 29121 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2013-05-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development... Department of Defense announces an open meeting of the Strategic Environmental Research and Development... requesting Strategic Environmental Research and Development Program funds in excess of $1 million over the...

  16. 78 FR 29122 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2013-05-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development... Department of Defense announces an open meeting of the Strategic Environmental Research and Development... development projects requesting Strategic Environmental Research and Development Program funds in excess of $1...

  17. Strengthening maintenance and reconstruction of scientific experiment building and creating a good working environment for scientific research and production

    International Nuclear Information System (INIS)

    Fu Jianping

    2005-01-01

    The quality of scientific experiment building directly influences the scientific research work and production. To create a good working environment for scientific research and production, it is necessary to strengthen the maintenance and reconstruction for old scientific experiment building. The paper briefly introduces the site supervisory work of maintaining and reconstructing old scientific experiment building in Beijing Research Institute of Uranium Geology, as well as some measures taken to ensure the project quality, and the reconstructed building. (authors)

  18. Social sciences, scientific research, higher education and social developments - An Albanian inside of dialectics and structured scientific research, in social sciences

    Directory of Open Access Journals (Sweden)

    Nada Kallçiu

    2013-01-01

    At first this will involve the policy makers at the central level, like the Ministry of Education and Sciences and the main research actors in the public and in the private sector. The criteria of the geographical and the subjects coverage has been also used in order to be able to present a public institutions of the higher education and research but even the enterprises that act in the research area are mainly focusing to the integration of these two systems which have been working separately for a long period of time and that must become efficient in order to adapt to the conditions of a country that has limited financial resources. This article is intended to provide a comprehensive overview of the scientific research in Albania, focusing in defining the priority areas for the research in social sciences. The information about the higher education and the potential problems that it faces, is based on a big number of research institutions, selected based on their involvement in scientific research in social sciences. This article brings into evidence the fact that in order to establish a stable and effective infrastructure in scientific research in Albania, is important to work in different directions. A successful way to increase the efficasity through the elements of the “innovative system” is by working with organizations that work in specific sectors of the economy, aiming for a possible cooperation in scientific search, for an important social contribution.

  19. Profile and scientific production of CNPq researchers in cardiology.

    Science.gov (United States)

    Oliveira, Eduardo Araujo de; Ribeiro, Antonio Luiz Pinho; Quirino, Isabel Gomes; Oliveira, Maria Christina Lopes; Martelli, Daniella Reis; Lima, Leonardo Santos; Colosimo, Enrico Antonio; Lopes, Thais Junqueira; Silva, Ana Cristina Simões; Martelli, Hercílio

    2011-09-01

    Systematic assessments of the scientific production can optimize resource allocation and increase research productivity in Brazil. The aim of this study was to evaluate the profile and scientific production of researchers in the field of Cardiology who have fellowship in Medicine provided by the Conselho Nacional de Desenvolvimento Científico e Tecnológico. The curriculum Lattes of 33 researchers with active fellowships from 2006 to 2008 were included in the analysis. The variables of interest were: gender, affiliation, tutoring of undergraduate, masters and PhD students, and scientific production and its impact. : There was predominance of males (72.7%) and of fellowship level 2 (56.4%). Three states of the Federation were responsible for 94% of the researchers: SP (28; 71.8%), RS (4; 10.3%), e RJ (3; 9.1%). Four institutions are responsible for about 82% of researchers: USP (13; 39.4%), UNESP (5; 15.2%), UFRGS (4; 12.1%) e UNIFESP (3; 9.1%). During all academic careers, the researchers published 2.958 journal articles, with a mean of 89 articles per researcher. Of total, 55% and 75% were indexed at Web of Science and Scopus databases, respectively. The researchers received a total of 19648 citations at the database Web of Science, with a median of 330 citations per researcher (IQ = 198-706). The average number of citations per article was 13.5 citations (SD = 11.6). Our study has shown that researchers in the field of cardiology have a relevant scientific production. The knowledge of the profile of researchers in the field of Cardiology will probably enable effective strategies to qualitatively improve the scientific output of Brazilian researchers.

  20. A Critique for the Methodology of Scientific Research Programmes

    Directory of Open Access Journals (Sweden)

    Saeed Naji

    2009-01-01

    Full Text Available The purpose of the paper is to evaluate of Imre Lakatos' MSRP (Methodology of Scientific Research Programs. Presenting the methodology which is based on Popperian Refutationism, Lakatos intended to overcome Pluralism (, Relativism and Skepticism and distinguishes the best theory (/program in science. The question is that did the lakatos' secondary change in the form and content of MSRP -against some historical facts and criticisms- make some serious deficiencies in his methodology? The answer to this question is positive. One of Lakatos' changes in MSRP is to resort to a new concept of "rationality". Presenting a logical analysis, the paper shows that this change causes MSRP to be unable to distinguish the best program among others. Furthermore he gives a new definition of the term 'methodology'. This definition, in its turn, makes MSRP main task to be inactive.Showing the irreparable harms Lakatos' changes produce in MSRP, the paper shows that these changes not only cannot get rid of the deficiencies therein, but it is also unable to meet lakatos' original purpose for MSRP.

  1. Lakatos' Scientific Research Programmes as a Framework for Analysing Informal Argumentation about Socio-Scientific Issues

    Science.gov (United States)

    Chang, Shu-Nu; Chiu, Mei-Hung

    2008-01-01

    The purpose of this study is to explore how Lakatos' scientific research programmes might serve as a theoretical framework for representing and evaluating informal argumentation about socio-scientific issues. Seventy undergraduate science and non-science majors were asked to make written arguments about four socio-scientific issues. Our analysis…

  2. Understanding Peer Review of Scientific Research

    Science.gov (United States)

    Association of American Universities, 2011

    2011-01-01

    An important factor in the success of America's national research system is that federal funds for university-based research are awarded primarily through peer review, which uses panels of scientific experts, or "peers," to evaluate the quality of grant proposals. In this competitive process, proposals compete for resources based on their…

  3. The Integrating Role of the LBA and the LPB Programs as an Example of Cyberinfrastructures in International Scientific Collaboration

    Science.gov (United States)

    Dias, P. L.

    2007-05-01

    International science collaboration is a key component of research programs such as the The Large Scale Biosphere Atmosphere Interaction Program (LBA) and the La Plata Basin Project (LPB). Both are programs with crosscutting science questions permeating different areas of knowledge related to the functioning of the natural and agricultural ecosystems in the Amazon system (LBA) and the change in the hydrological, agricultural and social systems of the Plata Basin (LPB) ecosystem under natural climatic variability and climate change. Both programs are strongly related to GEWEX, CLIVAR and IGBP and are based on extensive use of data information system (LBA/LPB/DIS) with mirror sites in the US, Europe and South America. These international programs have a significant impact in building up regional scientific capabilities at all levels of education and triggered the establishment of new research groups located in remote areas of South America. The cyberinfrastructure has been fundamental to promote the integration of the research groups, and a remarkable feedback with the operational forecasting systems has been detected. The LBA/LPB should be used as examples on how to promote international scientific and operational collaboration.

  4. About working of the research program on development of underground space of Russia

    International Nuclear Information System (INIS)

    Kartoziya, B.A.

    1995-01-01

    Basic proposition relative to the developed federal program on scientific research in the area of assimilating underground space in Russia are presented. The underground objects are divided by their purpose into four groups: 1) underground objects of house-hold purpose (energy and mining complex, industrial enterprises, storages, garages, etc); 2) underground objects of social purpose (libraries, shops, restaurants, etc); 3) underground objects of ecological purpose (storages, disposal sites for radioactive wastes and hazardous substances, dangerous productions, etc); 4) underground objects of defense purpose. Trends in the scientific-research program formation, relative to underground space assimilation are enumerated. 7 refs

  5. Description and Methods of the Automated Document Management System Usage in Scientific Organizational Activities of the Joint Institute for Nuclear Research (ADS SOA JINR)

    CERN Document Server

    Borisovsky, V F; Kekelidze, M G; Nikonov, E G; Senchenko, V A

    2005-01-01

    This paper presents the structure description and user guide for Information program system for automation of a document flow for support of scientific arrangement planning (ADS SOA) which can be used for planning and carrying out seminars, workshops, conferences and other arrangements of research management. This work is intended for automation of scientific research management in the Joint Institute for Nuclear Research. The complex of programs represents the CDS Agenda system used in the European Organization for Nuclear Research (CERN), which is adapted to the conditions of JINR.

  6. Procurement management in scientific research and production project

    International Nuclear Information System (INIS)

    Wan Yi

    2008-01-01

    To meet the requirement of development trend of scientific research and production, it is necessary to incorporate the modern procurement management theory in the whole procurement process for the items used in scientific research and production.This paper provided some suggestions to improve the procurement management by introducing the experiences in the application of the modern procurement management methods in the procurement of parts production. (author)

  7. [Significance of the doctorate in scientific medical education].

    Science.gov (United States)

    Frosch, Matthias

    2018-02-01

    According to European and German law, the medical education of physicians must take place in a scientific degree program at a university or under the supervision of a university. To keep up the ideal of a scientific degree program, various organizations and associations, such as the German Research Foundation, the German Council of Science and Humanities and the German Medical Faculty Association, see the need for an even stronger anchoring of academic learning content in the course of study. Traditionally, a scientific project, which is carried out during the studies, provides the basis for the Doctor of Medicine (Dr. med.) after graduation, although the research projects as a basis for medical degrees are currently not obligatory parts of the curricula. The number of medical students performing such research projects is significantly decreasing, thus they are missing major skills for working in science. To counteract these developments, faculties of medicine are currently developing model curricula including deepened scientific education. Despite these efforts, the German Association of Faculties of Medicine argues that the performance of research projects leading to the doctoral degree is most suitable for obtaining expertise in scientific work. According to recommendations by the German Council of Science on the requirements for quality assurance of graduation doctoral degree programs have been introduced. This and further measures, like MD/PhD programs or research-based additional study programs serving the scientific qualification of medical students, are the subject of this article.

  8. Summer Research Program - 1997 Summer Faculty Research Program Volume 6 Arnold Engineering Development Center United States Air Force Academy Air Logistics Centers

    Science.gov (United States)

    1997-12-01

    Fracture Analysis of the F-5, 15%-Spar Bolt DR Devendra Kumar SAALC/LD 6- 16 CUNY-City College, New York, NY A Simple, Multiversion Concurrency Control...Program, University of Dayton, Dayton, OH. [3]AFGROW, Air Force Crack Propagation Analysis Program, Version 3.82 (1997) 15-8 A SIMPLE, MULTIVERSION ...Office of Scientific Research Boiling Air Force Base, DC and San Antonio Air Logistic Center August 1997 16-1 A SIMPLE, MULTIVERSION CONCURRENCY

  9. Scientific Integrity and Professional Ethics at AGU - The Establishment and Evolution of an Ethics Program at a Large Scientific Society

    Science.gov (United States)

    McPhaden, Michael; Leinen, Margaret; McEntee, Christine; Townsend, Randy; Williams, Billy

    2016-04-01

    The American Geophysical Union, a scientific society of 62,000 members worldwide, has established a set of scientific integrity and professional ethics guidelines for the actions of its members, for the governance of the union in its internal activities, and for the operations and participation in its publications and scientific meetings. This presentation will provide an overview of the Ethics program at AGU, highlighting the reasons for its establishment, the process of dealing ethical breaches, the number and types of cases considered, how AGU helps educate its members on Ethics issues, and the rapidly evolving efforts at AGU to address issues related to the emerging field of GeoEthics. The presentation will also cover the most recent AGU Ethics program focus on the role for AGU and other scientific societies in addressing sexual harassment, and AGU's work to provide additional program strength in this area.

  10. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  11. The BLAZE language - A parallel language for scientific programming

    Science.gov (United States)

    Mehrotra, Piyush; Van Rosendale, John

    1987-01-01

    A Pascal-like scientific programming language, BLAZE, is described. BLAZE contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus BLAZE should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with conceptually sequential control flow. A central goal in the design of BLAZE is portability across a broad range of parallel architectures. The multiple levels of parallelism present in BLAZE code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of BLAZE are described and it is shown how this language would be used in typical scientific programming.

  12. The BLAZE language: A parallel language for scientific programming

    Science.gov (United States)

    Mehrotra, P.; Vanrosendale, J.

    1985-01-01

    A Pascal-like scientific programming language, Blaze, is described. Blaze contains array arithmetic, forall loops, and APL-style accumulation operators, which allow natural expression of fine grained parallelism. It also employs an applicative or functional procedure invocation mechanism, which makes it easy for compilers to extract coarse grained parallelism using machine specific program restructuring. Thus Blaze should allow one to achieve highly parallel execution on multiprocessor architectures, while still providing the user with onceptually sequential control flow. A central goal in the design of Blaze is portability across a broad range of parallel architectures. The multiple levels of parallelism present in Blaze code, in principle, allow a compiler to extract the types of parallelism appropriate for the given architecture while neglecting the remainder. The features of Blaze are described and shows how this language would be used in typical scientific programming.

  13. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  14. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  15. Vdebug: debugging tool for parallel scientific programs. Design report on vdebug

    International Nuclear Information System (INIS)

    Matsuda, Katsuyuki; Takemiya, Hiroshi

    2000-02-01

    We report on a debugging tool called vdebug which supports debugging work for parallel scientific simulation programs. It is difficult to debug scientific programs with an existing debugger, because the volume of data generated by the programs is too large for users to check data in characters. Usually, the existing debugger shows data values in characters. To alleviate it, we have developed vdebug which enables to check the validity of large amounts of data by showing these data values visually. Although targets of vdebug have been restricted to sequential programs, we have made it applicable to parallel programs by realizing the function of merging and visualizing data distributed on programs on each computer node. Now, vdebug works on seven kinds of parallel computers. In this report, we describe the design of vdebug. (author)

  16. Profile and scientific production of Brazilian National Council of Technological and Scientific Development researchers in Pediatrics.

    Science.gov (United States)

    Oliveira, Maria Christina L; Martelli, Daniella Reis B; Pinheiro, Sergio Veloso; Miranda, Debora Marques; Quirino, Isabel Gomes; Leite, Barbara Gusmão L; Colosimo, Enrico Antonio; e Silva, Ana Cristina S; Martelli-Júnior, Hercílio; Oliveira, Eduardo Araujo

    2013-09-01

    To evaluate the profile and the scientific production of researchers in Pediatrics with scholarship from the National Counsel of Technological and Scientific Development. The Lattes curricula of 34 researchers in Pediatrics with active scholarships, from 2006 to 2008 were included in the analysis. The variables of interest were: gender, affiliation, time since PHD, tutoring of undergraduate students, mentorship of masters and doctors, scientific production and the papers' impact. In a total of 411 researchers in Medicine, 34 (8%) belonged to Pediatrics. Males (77%) and scholars in the category 2 of productivity (62%) prevailed. Three states of Brazil were responsible for approximately 90% of the researchers: São Paulo (53%), Minas Gerais (21%), and Rio Grande do Sul (15%). During their academic career, the Pediatrics researchers have published 3,122 articles with a median of 89 articles per researcher (interquartile range - IQ=51-119). Of the total, 40 and 59% articles were indexed in the Web of Science and Scopus databases, respectively. The Pediatrics researchers have published papers in 599 journals with a median impact factor of 2.35 (IQ=1.37-3.73) for the 323 indexed journals. The Pediatrics researchers have a relevant scientific output from the quantity point of the view, but there is a need to improve quality.

  17. Reauthorization of NCLB: Time to Reconsider the Scientifically Based Research Requirement

    Directory of Open Access Journals (Sweden)

    Suzanne Franco

    2007-09-01

    Full Text Available The federal initiative, NCLB, includes guidelines about educational research methodology as well as school practices ("No Child Left Behind Act," p. 532. The law states that reforms and school practices should be based on scientifically based research (SBR. SBR is mentioned over 100 times in NCLB (A. Smith, 2003, p. 126. Next to the strong emphasis on dis-aggregation of test scores, NCLB’s reference to SBR has spawned the next most frequent number of responses in the literature (Viadero, 2004. Educational researchers spend time “fighting these designs when they are inappropriate or irrelevant, which is often the case” (Eisenhart, 2005, p. 246. In response to the NCLB SBR mandate, the National Research Council (2002 published a report, Scientific Research in Education (SRE, addressing the question of the meaning of SBR. On the NCLB website, the U.S. Department of Education explains that “scientifically based research means there is reliable evidence that the program or practice works ” (n.d.. The explanation includes a reference to experimental study involving an experiment/control group. The report states that requiring SBR “moves the testing of educational practices toward the medical model used by scientists to assess the effectiveness of medications, therapies and the like” (A. Smith, 2003, p. 126. The strong emphasis on SBR leads one to the conclusion that forms of research that do not conform to SBR are invalid (Mayer, 2006, Winter, p. 8. Having the federal government legislate SBR is unusual and can be interpreted to have political overtones. Howe (2005 explains that research methodology is “unavoidably political by virtue of adopting certain aims, employing certain kinds of vocabularies and theories, and providing certain people the opportunity to be (or not to be heard (p. 321.” It has been suggested that SBR was mandated to improve the credibility of educational research and thus to increase the likelihood of continued

  18. Low-level radioactive waste research program plan

    International Nuclear Information System (INIS)

    O'Donnell, E.; Lambert, J.

    1989-11-01

    The Waste Management Branch, Division of Engineering, Office of Nuclear Regulatory Research, has developed a strategy for conducting research on issues of concern to the US Nuclear Regulatory Commission (NRC) in its efforts to ensure safe disposal of low-level radioactive waste (LLW). The resulting LLW research program plan provides an integrated framework for planning the LLW research program to ensure that the program and its products are responsive and timely for use in NRC's LLW regulatory program. The plan discusses technical and scientific issues and uncertainties associated with the disposal of LLW, presents programmatic goals and objectives for resolving them, establishes a long-term strategy for conducting the confirmatory and investigative research needed to meet these goals and objectives, and includes schedules and milestones for completing the research. Areas identified for investigation include waste form and other material concerns, failure mechanisms and radionuclide releases, engineered barrier performance, site characterization and monitoring, and performance assessment. The plan proposes projects that (1) analyze and test actual LLW and solidified LLW under laboratory and field conditions to determine leach rates and radionuclide releases, (2) examine the short- and long-term performance of concrete-enhanced LLW burial structures and high-integrity containers, and (3) attempt to predict water movement and contaminant transport through low permeability saturated media and unsaturated porous media. 4 figs., 3 tabs

  19. The Scientific Research in Libya: The Role of the New Generation of Researchers

    Directory of Open Access Journals (Sweden)

    Tashani OA

    2009-01-01

    Full Text Available There is a potential for improving the scientific research environment in Libya. One reason to be optimistic about the prospects of the future of science in Libya is the number of postgraduate students in all disciplines who are training in European and North American Universities. According to statistics of the Higher Education Authorities in Libya, there are approximately 3000 Libyan students enrolled in postgraduate studies in British universities alone and almost half of this number in North America [1]. However, research output of Libyan universities’ academic staff members is still very low. For example, a recent survey of published medical literature revealed that the average annual production rate at the Al-Fateh Medical University is 1.4 article/100 academic staff [2]. In my opinion, four major reasons may explain the problems facing scientific research in Arab countries in general and in Libya in particular: 1 Brain Drain 2 Lack of funding 3 Lack of scientific infrastructure and incompetent supportive staff, and 4 Teaching overload. I will discuss the role that the new generation of Libyan researchers* could play to advance the scientific research output in Libya.

  20. [Evaluation and prioritisation of the scientific research in Spain. Researchers' point of view].

    Science.gov (United States)

    María Martín-Moreno, José; Juan Toharia, José; Gutiérrez Fuentes, José Antonio

    2008-12-01

    The assessment and prioritisation of research activity are essential components of any Science, Technology and Industry System. Data on researchers' perspectives in this respect are scarce. The objective of this paper was to describe Spanish scientists' point of view on the current evaluation system in Spain and how they believe this system should be functionally structured. From the sampling frame formed by established Spanish scientists, listed in the databases of CSIC and FIS (Institute of Health Carlos III), clinical, biomedical-non clinical, and physics and chemical researchers were randomly selected. Two hundred and eleven interviews were carried out by means of a computer-assisted telephone interviewing system. Researchers expressed their acknowledgement of progress in the Spanish research field but made their wish clear to progress towards better scientific scenarios. In their assessment, they gave a score of 5.4 to scientific policy, as opposed to 9.4 when speaking about the goals, reflecting the desire for a better policy definition, with clear objectives, stable strategies and better coordination of R&D activities (the current coordination received a score of 3.9, while the desirable coordination was valued as high as 9.2). There was certain agreement regarding the need for a prioritisation criteria which preserves some degree of creativity by researchers. They also stated that they would like to see an independent research structure with social prestige and influence. The interviewed researchers believe that the evaluation of scientific activities is fundamental in formulating a sound scientific policy. Prioritisation should arise from appropriate evaluation. Strategies properly coordinated among all the stakeholders (including the private sector) should be fostered. Budget sufficiency, stability, and better organization of independent researchers should be the backbone of any strategy tailored to increase their capacity to influence future scientific

  1. CEBAF [Continuous Electron Beam Accelerator Facility] scientific program

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    The principal scientific mission of the Continuous Electron Beam Facility (CEBAF) is to study collective phenomena in cold (or normal) nucler matter in order to understand the structure and behavior of macroscopic systems constructed from nuclei. This document discusses in broad popular terms those issues which the CEBAF experimental and theoretical program are designed to address. Specific experimental programs currently planned for CEBAF are also reivewed. 35 refs., 19 figs

  2. Primary prevention research: a preliminary review of program outcome studies.

    Science.gov (United States)

    Schaps, E; Churgin, S; Palley, C S; Takata, B; Cohen, A Y

    1980-07-01

    This article reviews 35 drug abuse prevention program evaluations employing drug-specific outcome measures. Many of these evaluations assessed the effects of "new generation" prevention strategies: affective, peer-oriented, and multidimensional approaches. Only 14 studies evaluated purely informational programs. Evaluations were analyzed to ascertain (1) characteristics of the programs under study, (2) characteristics of the research designs, and (3) patterns among findings. This review provides some evidence that the newer prevention strategies may produce more positive and fewer negative outcomes than did older drug information approaches. Over 70% of the programs using the newer strategies produced some positive effects; only 29% showed negative effects. In contrast, 46% of informational programs showed positive effects; 46% showed negative effects. These findings must be approached with great caution, since the research was frequently scientifically inadequate, and since rigor of research was negatively correlated with intensity and duration of program services.

  3. Team Structure and Scientific Impact of "Big Science" Research

    DEFF Research Database (Denmark)

    Lauto, Giancarlo; Valentin, Finn; Jeppesen, Jacob

    This paper summarizes preliminary results from a project studying how the organizational and cognitive features of research carried out in a Large Scale Research Facility (LSRF) affect scientific impact. The study is based on exhaustive bibliometric mapping of the scientific publications...... of the Neutron Science Department of Oak Ridge National Laboratories in 2006-2009. Given the collaborative nature of research carried out at LSRFs, it is important to understand how its organization affects scientific impact. Diversity of teams along the institutional and cognitive dimensions affects both...... opportunities for combination of knowledge and coordination costs. The way specific collaborative configurations strike this trade-offs between these opportunities and costs have notable effects on research performance. The findings of the paper show that i.) scientists combining affiliations to both...

  4. Preliminary Study on Management of Agricultural Scientific Research Projects in the New Situation

    Institute of Scientific and Technical Information of China (English)

    Haiyan LUO; Qingqun YAO; Lizhen CHEN; Yu ZHENG

    2015-01-01

    Project management of agricultural scientific research institutions is an important section of agricultural scientific research plan management. It is of great significance for sustainable development of scientific research work of scientific research institutions. According to a series of opinions and notices about scientific and technological system reform issued by the state,and combining current situations of management of scientific research projects in scientific research institutions,this paper made a preliminary study on management of agricultural scientific research projects in the new trend. Finally,on the basis of the current situations of management of agricultural scientific research projects,it came up with pertinent recommendations,including strengthening communication and cooperation and actively declaring projects,strengthening preliminary planning of projects and establishing project information database,reinforcing project process management,ensuring on-time and high quality completion of projects,and strengthening learning and improving quality of management personnel.

  5. Organization of Biomedical Data for Collaborative Scientific Research: A Research Information Management System.

    Science.gov (United States)

    Myneni, Sahiti; Patel, Vimla L

    2010-06-01

    Biomedical researchers often work with massive, detailed and heterogeneous datasets. These datasets raise new challenges of information organization and management for scientific interpretation, as they demand much of the researchers' time and attention. The current study investigated the nature of the problems that researchers face when dealing with such data. Four major problems identified with existing biomedical scientific information management methods were related to data organization, data sharing, collaboration, and publications. Therefore, there is a compelling need to develop an efficient and user-friendly information management system to handle the biomedical research data. This study evaluated the implementation of an information management system, which was introduced as part of the collaborative research to increase scientific productivity in a research laboratory. Laboratory members seemed to exhibit frustration during the implementation process. However, empirical findings revealed that they gained new knowledge and completed specified tasks while working together with the new system. Hence, researchers are urged to persist and persevere when dealing with any new technology, including an information management system in a research laboratory environment.

  6. Tunisian women in scientific research

    Science.gov (United States)

    Jaziri, Sihem

    2013-03-01

    The number of Tunisian women conducting scientific research is comparable to that of countries where educating girls has been going on much longer. Although women play an increasingly important role in the field of research, they rarely hold positions of responsibility. Enormous similarities exist between the degree of integration of Tunisian women in science and technology and that of developed countries. Since independence and the removal of discrimination between girls and boys, Tunisian women have been catching up very quickly.

  7. The diplomacy of scientific research in the South China Sea: the case of join to oceanographic marine scientific research expedition between Vietnam and the Philippines

    Science.gov (United States)

    Satyawan, I. A.

    2018-03-01

    The South China Sea is one of the hot-spot areas in the world. This area is claimed by China, Malaysia, Brunei, Taiwan, Vietnam and the Philippines. It also noted, the South China Sea is rich in biodiversity as well as oil and gas. On the other side, environmental degradation is still happening in the South China Sea due to the reluctance of surrounding states to conduct a preservation program and mitigating action on climate change effects. Joint Oceanographic Marine Scientific Research Expedition between Vietnam and the Philippines is a breakthrough to start collaboration actions as well as to conduct Science Diplomacy.

  8. The United States of America and scientific research.

    Science.gov (United States)

    Hather, Gregory J; Haynes, Winston; Higdon, Roger; Kolker, Natali; Stewart, Elizabeth A; Arzberger, Peter; Chain, Patrick; Field, Dawn; Franza, B Robert; Lin, Biaoyang; Meyer, Folker; Ozdemir, Vural; Smith, Charles V; van Belle, Gerald; Wooley, John; Kolker, Eugene

    2010-08-16

    To gauge the current commitment to scientific research in the United States of America (US), we compared federal research funding (FRF) with the US gross domestic product (GDP) and industry research spending during the past six decades. In order to address the recent globalization of scientific research, we also focused on four key indicators of research activities: research and development (R&D) funding, total science and engineering doctoral degrees, patents, and scientific publications. We compared these indicators across three major population and economic regions: the US, the European Union (EU) and the People's Republic of China (China) over the past decade. We discovered a number of interesting trends with direct relevance for science policy. The level of US FRF has varied between 0.2% and 0.6% of the GDP during the last six decades. Since the 1960s, the US FRF contribution has fallen from twice that of industrial research funding to roughly equal. Also, in the last two decades, the portion of the US government R&D spending devoted to research has increased. Although well below the US and the EU in overall funding, the current growth rate for R&D funding in China greatly exceeds that of both. Finally, the EU currently produces more science and engineering doctoral graduates and scientific publications than the US in absolute terms, but not per capita. This study's aim is to facilitate a serious discussion of key questions by the research community and federal policy makers. In particular, our results raise two questions with respect to: a) the increasing globalization of science: "What role is the US playing now, and what role will it play in the future of international science?"; and b) the ability to produce beneficial innovations for society: "How will the US continue to foster its strengths?"

  9. The United States of America and scientific research.

    Directory of Open Access Journals (Sweden)

    Gregory J Hather

    2010-08-01

    Full Text Available To gauge the current commitment to scientific research in the United States of America (US, we compared federal research funding (FRF with the US gross domestic product (GDP and industry research spending during the past six decades. In order to address the recent globalization of scientific research, we also focused on four key indicators of research activities: research and development (R&D funding, total science and engineering doctoral degrees, patents, and scientific publications. We compared these indicators across three major population and economic regions: the US, the European Union (EU and the People's Republic of China (China over the past decade. We discovered a number of interesting trends with direct relevance for science policy. The level of US FRF has varied between 0.2% and 0.6% of the GDP during the last six decades. Since the 1960s, the US FRF contribution has fallen from twice that of industrial research funding to roughly equal. Also, in the last two decades, the portion of the US government R&D spending devoted to research has increased. Although well below the US and the EU in overall funding, the current growth rate for R&D funding in China greatly exceeds that of both. Finally, the EU currently produces more science and engineering doctoral graduates and scientific publications than the US in absolute terms, but not per capita. This study's aim is to facilitate a serious discussion of key questions by the research community and federal policy makers. In particular, our results raise two questions with respect to: a the increasing globalization of science: "What role is the US playing now, and what role will it play in the future of international science?"; and b the ability to produce beneficial innovations for society: "How will the US continue to foster its strengths?"

  10. Tools for Reproducibility and Extensibility in Scientific Research

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Open inquiry through reproducing results is fundamental to the scientific process. Contemporary research relies on software engineering pipelines to collect, process, and analyze data. The open source projects within Project Jupyter facilitate these objectives by bringing software engineering within the context of scientific communication. We will highlight specific projects that are computational building blocks for scientific communication, starting with the Jupyter Notebook. We will also explore applications of projects that build off of the Notebook such as Binder, JupyterHub, and repo2docker. We will discuss how these projects can individually and jointly improve reproducibility in scientific communication. Finally, we will demonstrate applications of Jupyter software that allow researchers to build upon the code of other scientists, both to extend their work and the work of others.    There will be a follow-up demo session in the afternoon, hosted by iML. Details can be foun...

  11. [On freedom of scientific research].

    Science.gov (United States)

    Folkers, G

    2013-07-01

    Debates about science and, more specifically, about scientific research quickly bring up the question about its freedom. Science is readily blamed for technological disasters or criticized for nursing fantasies of omnipotence and commercial gain. This prompts the call for a restriction of its freedom. At the same time, society's demands on science are enormous, to the effect that science and technology have acquired the status of a deus-ex-machina: they are expected to furnish short-term, affordable, and convenient solutions to a wide range of problems, including issues of health, transportation, food and, more generally, a comfortable life. What kind of freedom is required to meet these expectations? Who is in a position to grant it? What does freedom for science mean and how is it linked to responsibility? The paper examines the current situation of freedom in scientific research and of its restrictions, many of which are mentally or economically conditioned. It calls for the involvement of an informed, self-confident bourgeoisie in research decisions and for the educational measures this necessitates. Finally, it demands a greater appreciation of education (rather than training) as the basis of social trust, and the recognition of continuous education as a productive investment of time and a crucial element in the employment of social goods.

  12. 77 FR 6784 - Proposed Information Collection; Comment Request; Scientific Research, Exempted Fishing, and...

    Science.gov (United States)

    2012-02-09

    ... Collection; Comment Request; Scientific Research, Exempted Fishing, and Exempted Activity Submissions AGENCY... collection. Fishery regulations do not generally affect scientific research activities conducted by a scientific research vessel. Persons planning to conduct such research are encouraged to submit a scientific...

  13. Profile and scientific production of Brazilian National Council of Technological and Scientific Development researchers in Pediatrics

    Directory of Open Access Journals (Sweden)

    Maria Christina L. Oliveira

    2013-09-01

    Full Text Available OBJECTIVE: To evaluate the profile and the scientific production of researchers in Pediatrics with scholarship from the National Counsel of Technological and Scientific Development. METHODS: The Lattes curricula of 34 researchers in Pediatrics with active scholarships, from 2006 to 2008 were included in the analysis. The variables of interest were: gender, affiliation, time since PHD, tutoring of undergraduate students, mentorship of masters and doctors, scientific production and the papers' impact. RESULTS: In a total of 411 researchers in Medicine, 34 (8% belonged to Pediatrics. Males (77% and scholars in the category 2 of productivity (62% prevailed. Three states of Brazil were responsible for approximately 90% of the researchers: São Paulo (53%, Minas Gerais (21%, and Rio Grande do Sul (15%. During their academic career, the Pediatrics researchers have published 3,122 articles with a median of 89 articles per researcher (interquartile range - IQ=51-119. Of the total, 40 and 59% articles were indexed in the Web of Science and Scopus databases, respectively. The Pediatrics researchers have published papers in 599 journals with a median impact factor of 2.35 (IQ=1.37-3.73 for the 323 indexed journals. CONCLUSIONS: The Pediatrics researchers have a relevant scientific output from the quantity point of the view, but there is a need to improve quality.

  14. ENHANCING SEISMIC CALIBRATION RESEARCH THROUGH SOFTWARE AUTOMATION AND SCIENTIFIC INFORMATION MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, S; Dodge, D A; Ganzberger, M D; Hauk, T F; Matzel, E M

    2008-07-03

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. The foundation of a robust, efficient data development and processing environment is comprised of many components built upon engineered versatile libraries. We incorporate proven industry 'best practices' throughout our code and apply source code and bug tracking management as well as automatic generation and execution of unit tests for our experimental, development and production lines. Significant software engineering and development efforts have produced an object-oriented framework that provides database centric coordination between scientific tools, users, and data. Over a half billion parameters, signals, measurements, and metadata entries are all stored in a relational database accessed by an extensive object-oriented multi-technology software framework that includes stored procedures, real-time transactional database triggers and constraints, as well as coupled Java and C++ software libraries to handle the information interchange and validation requirements. Significant resources were applied to schema design to enable management of processing methods and station parameters, responses and metadata. This allowed for the development of merged ground-truth (GT) data sets compiled by the NNSA labs and AFTAC that include hundreds of thousands of events and tens of millions of arrivals. The

  15. [Qualitative research: which priority for scientific journals?].

    Science.gov (United States)

    Rodella, Stefania

    2016-04-01

    Quantitative and qualitative approaches in scientific research should not be looked at as separate or even opposed fields of thinking and action, but could rather offer complementary perspectives in order to build appropriate answers to increasingly complex research questions. An open letter recently published by the BMJ and signed by 76 senior academics from 11 countries invite the editors to reconsider their policy of rejecting qualitative research on the grounds of low priority and challenge the journal to develop a proactive, scholarly and pluralistic approach to research that aligns with its stated mission. The contents of the letter, the many voices raised by almost fifty rapid responses and the severe but not closed responses of the editors outline a stimulating debate and hopefully prelude some "change in emphasis", ensuring that all types of research relevant to the mission of the BMJ (as well as other core journals) are considered for publication and providing an evolving landmark for scientific and educational purposes.

  16. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  17. Enhancing Seismic Calibration Research Through Software Automation and Scientific Information Management

    Energy Technology Data Exchange (ETDEWEB)

    Ruppert, S D; Dodge, D A; Ganzberger, M D; Harris, D B; Hauk, T F

    2009-07-07

    The National Nuclear Security Administration (NNSA) Ground-Based Nuclear Explosion Monitoring Research and Development (GNEMRD) Program at LLNL continues to make significant progress enhancing the process of deriving seismic calibrations and performing scientific integration, analysis, and information management with software automation tools. Our tool efforts address the problematic issues of very large datasets and varied formats encountered during seismic calibration research. New information management and analysis tools have resulted in demonstrated gains in efficiency of producing scientific data products and improved accuracy of derived seismic calibrations. In contrast to previous years, software development work this past year has emphasized development of automation at the data ingestion level. This change reflects a gradually-changing emphasis in our program from processing a few large data sets that result in a single integrated delivery, to processing many different data sets from a variety of sources. The increase in the number of sources had resulted in a large increase in the amount of metadata relative to the final volume of research products. Software developed this year addresses the problems of: (1) Efficient metadata ingestion and conflict resolution; (2) Automated ingestion of bulletin information; (3) Automated ingestion of waveform information from global data centers; and (4) Site Metadata and Response transformation required for certain products. This year, we also made a significant step forward in meeting a long-standing goal of developing and using a waveform correlation framework. Our objective for such a framework is to extract additional calibration data (e.g. mining blasts) and to study the extent to which correlated seismicity can be found in global and regional scale environments.

  18. The AAVSO Photoelectric Photometry Program in its Scientific and Socio-Historic Context

    Science.gov (United States)

    Percy, John R.

    2011-05-01

    Photoelectric photometry began in the 1900s through the work of Guthnick, Stebbins, and others who constructed and used photometers based on the recently-discovered photoelectric effect. The mid 20th century saw a confluence of several areas of amateur interest: astronomy, telescope making, radio and electronics, and general interest in space. This is the time when AAVSO photoelectric photometry (PEP) began, with observers using mostly hand-built photometers on hand-built telescopes. The 1980s brought a revolution: affordable off-the-shelf solid-state photometers, and infrastructure such as the International Amateur-Professional Photoelectric Photometry (IAPPP) conferences, books, and journal. The AAVSO developed a formal PEP program in the early 1980s. Its emphasis was on long-term monitoring of pulsating red giants. It was competing, not always successfully, with programs such as active sun-like binaries (RS CVn stars) which offered "instant gratification" in the form of publicity and quick publications. Nevertheless, the AAVSO PEP program has, through careful organization, motivation, and feedback to observers, produced extensive scientific results. In this presentation, I shall describe, as examples, my own work, its scientific significance, its educational benefit to dozens of my students, and its satisfaction to the observers. To some extent, the AAVSO PEP program has been superceded by its CCD program, but there is still a useful place for ongoing PEP observations of thousands of variable stars. Reference: http://www.aavso.org/sites/default/files/newsletter/PEP/lastpepnl.pdf Acknowledgements: I thank NSERC Canada for research support, my students, and AAVSO staff and observers, especially Howard Landis.

  19. NASA's Student Airborne Research Program (SARP) 2009-2017

    Science.gov (United States)

    Schaller, E. L.

    2017-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for rising senior undergraduates majoring in any of the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of a NASA airborne campaign, including flying onboard NASA research aircraft while studying Earth system processes. Approximately thirty-two students are competitively selected each summer from colleges and universities across the United States. Students work in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assist in the operation of instruments onboard NASA aircraft where they sample and measure atmospheric gases and image land and water surfaces in multiple spectral bands. Along with airborne data collection, students participate in taking measurements at field sites. Mission faculty and research mentors help to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student develops an individual research project from the data collected and delivers a conference-style final presentation on their results. Each year, several students present the results of their SARP research projects in scientific sessions at this meeting. We discuss the results and effectiveness of the program over the past nine summers and plans for the future.

  20. Effects of interior design on wellness: theory and recent scientific research.

    Science.gov (United States)

    Ulrich, R S

    1991-01-01

    To summarize briefly, key general points in this presentation include the following: To promote wellness, healthcare facilities should be designed to support patients in coping with stress. As general compass points for designers, scientific research suggests that healthcare environments will support coping with stress and promote wellness if they are designed to foster: 1. Sense of control; 2. Access to social support; 3. Access to positive distractions, and lack of exposure to negative distractions; A growing amount of scientific evidence suggests that nature elements or views can be effective as stress-reducing, positive distractions that promote wellness in healthcare environments. In considering the needs of different types of users of healthcare facilities--patients, visitors, staff--it should be kept in mind that these groups sometimes have conflicting needs or orientations with respect to control, social support, and positive distractions. It is important for designers to recognize such differing orientations as potential sources of conflict and stress in health facilities (Schumaker and Pequegnat, 1989). For instance, a receptionist in a waiting area may understandably wish to control the programs on a television that he or she is continuously exposed to; however, patients in the waiting area may experience some stress if they cannot select the programs or elect to turn off the television. Some staff may prefer bright, arousing art for corridors and patient rooms where they spend much of their time; however, for many patients, such art may increase rather than reduce stress. A difficult but important challenge for designers is to be sensitive to such group differences in orientations, and try to assess the gains or losses for one group vis-a-vis the other in attempting to achieve the goal of psychologically supportive design. Designers should also consider programs or strategies that combine or mesh different stress-reducing components. For example, it

  1. The research program coordinator: an example of effective management.

    Science.gov (United States)

    Merry, Lisa; Gagnon, Anita J; Thomas, Julia

    2010-01-01

    Careers in clinical research management are increasingly common. Despite nurses' important role in clinical research, their status as research professionals is underrecognized. In this article, we describe the role of a "program coordinator" (PC) in the context of a complex research program on migration and reproductive health. The PC role expands beyond the usual role of a research coordinator because he or she is involved in all aspects of the program of research and his or her responsibilities include research, education, clinical, and administration components. He or she ensures optimal organization and continuity across several studies and ensures ethical and scientific standards are applied for each individual study. His or her clinical knowledge assures data are accurate and subjects are safe. In addition, he or she assists with applying for funding, the maintenance of research partnerships, and dissemination of research findings; he or she supports students' learning and completes all regulatory aspects related to the program of research. Key to the PC role is relationship building and the application of Good Clinical Practice principles. The advanced role of a PC also warrants opportunities for professional development and a competitive salary. A PC is an effective approach for research management and a natural role for professional nurse. Copyright 2010 Elsevier Inc. All rights reserved.

  2. French high level nuclear waste program: key research areas

    International Nuclear Information System (INIS)

    Sombret, G.

    1985-09-01

    The most important aspects of this research program concern disposal safety: the long-term behavior and sensitivity of the materials to the variability inherent in industrial processes, and the characterization of the final product. This research requires different investigations involving various scientific fields, and implements radioactive and non-radioactive glass samples as well as industrial scale glass blocks. Certain studies have now been completed; others are still in progress

  3. International health research monitoring: exploring a scientific and a cooperative approach using participatory action research.

    Science.gov (United States)

    Chantler, Tracey; Cheah, Phaik Yeong; Miiro, George; Hantrakum, Viriya; Nanvubya, Annet; Ayuo, Elizabeth; Kivaya, Esther; Kidola, Jeremiah; Kaleebu, Pontiano; Parker, Michael; Njuguna, Patricia; Ashley, Elizabeth; Guerin, Philippe J; Lang, Trudie

    2014-02-17

    To evaluate and determine the value of monitoring models developed by the Mahidol Oxford Tropical Research Unit and the East African Consortium for Clinical Research, consider how this can be measured and explore monitors' and investigators' experiences of and views about the nature, purpose and practice of monitoring. A case study approach was used within the context of participatory action research because one of the aims was to guide and improve practice. 34 interviews, five focus groups and observations of monitoring practice were conducted. Fieldwork occurred in the places where the monitoring models are coordinated and applied in Thailand, Cambodia, Uganda and Kenya. Participants included those coordinating the monitoring schemes, monitors, senior investigators and research staff. Transcribed textual data from field notes, interviews and focus groups was imported into a qualitative data software program (NVIVO V. 10) and analysed inductively and thematically by a qualitative researcher. The initial coding framework was reviewed internally and two main categories emerged from the subsequent interrogation of the data. The categories that were identified related to the conceptual framing and nature of monitoring, and the practice of monitoring, including relational factors. Particular emphasis was given to the value of a scientific and cooperative style of monitoring as a means of enhancing data quality, trust and transparency. In terms of practice the primary purpose of monitoring was defined as improving the conduct of health research and increasing the capacity of researchers and trial sites. The models studied utilise internal and network wide expertise to improve the ethics and quality of clinical research. They demonstrate how monitoring can be a scientific and constructive exercise rather than a threatening process. The value of cooperative relations needs to be given more emphasis in monitoring activities, which seek to ensure that research protects

  4. Being scientifical: Popularity, purpose and promotion of amateur research and investigation groups in the U.S

    Science.gov (United States)

    Hill, Sharon A.

    21st century television and the Internet are awash in content regarding amateur paranormal investigators and research groups. These groups proliferated after reality investigation programs appeared on television. Exactly how many groups are active in the U.S. at any time is not known. The Internet provides an ideal means for people with niche interests to find each other and organize activities. This study collected information from 1000 websites of amateur research and investigation groups (ARIGs) to determine their location, area of inquiry, methodology and, particularly, to determine if they state that they use science as part of their mission, methods or goals. 57.3% of the ARIGs examined specifically noted or suggested use of science as part of the groups' approach to investigation and research. Even when not explicit, ARIGs often used science-like language, symbols and methods to describe their groups' views or activities. Yet, non-scientific and subjective methods were described as employed in conjunction with objective methods. Furthermore, what were considered scientific processes by ARIGs did not match with established methods and the ethos of the scientific research community or scientific processes of investigation. ARIGs failed to display fundamental understanding regarding objectivity, methodological naturalism, peer review, critical thought and theoretical plausibility. The processes of science appear to be mimicked to present a serious and credible reputation to the non-scientific public. These processes are also actively promoted in the media and directly to the local public as "scientific". These results highlight the gap between the scientific community and the lay public regarding the understanding of what it means to do science and what criteria are necessary to establish reliable knowledge about the world.

  5. Embedding Scientific Integrity and Ethics into the Scientific Process and Research Data Lifecycle

    Science.gov (United States)

    Gundersen, L. C.

    2016-12-01

    Predicting climate change, developing resources sustainably, and mitigating natural hazard risk are complex interdisciplinary challenges in the geosciences that require the integration of data and knowledge from disparate disciplines and scales. This kind of interdisciplinary science can only thrive if scientific communities work together and adhere to common standards of scientific integrity, ethics, data management, curation, and sharing. Science and data without integrity and ethics can erode the very fabric of the scientific enterprise and potentially harm society and the planet. Inaccurate risk analyses of natural hazards can lead to poor choices in construction, insurance, and emergency response. Incorrect assessment of mineral resources can bankrupt a company, destroy a local economy, and contaminate an ecosystem. This paper presents key ethics and integrity questions paired with the major components of the research data life cycle. The questions can be used by the researcher during the scientific process to help ensure the integrity and ethics of their research and adherence to sound data management practice. Questions include considerations for open, collaborative science, which is fundamentally changing the responsibility of scientists regarding data sharing and reproducibility. The publication of primary data, methods, models, software, and workflows must become a norm of science. There are also questions that prompt the scientist to think about the benefit of their work to society; ensuring equity, respect, and fairness in working with others; and always striving for honesty, excellence, and transparency.

  6. The current state of the Russian reduced enrichment research reactors program

    Energy Technology Data Exchange (ETDEWEB)

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A. [and others

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% from RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.

  7. Research Experience for Undergraduates Program in Multidisciplinary Environmental Science

    Science.gov (United States)

    Wu, M. S.

    2012-12-01

    During summers 2011 and 12 Montclair State University hosted a Research Experience for Undergraduates Program (REU) in transdisciplinary, hands-on, field-oriented research in environmental sciences. Participants were housed at the Montclair State University's field station situated in the middle of 30,000 acres of mature forest, mountain ridges and freshwater streams and lakes within the Kittatinny Mountains of Northwest New Jersey, Program emphases were placed on development of project planning skills, analytical skills, creativity, critical thinking and scientific report preparation. Ten students were recruited in spring with special focus on recruiting students from underrepresented groups and community colleges. Students were matched with their individual research interests including hydrology, erosion and sedimentation, environmental chemistry, and ecology. In addition to research activities, lectures, educational and recreational field trips, and discussion on environmental ethics and social justice played an important part of the program. The ultimate goal of the program is to facilitate participants' professional growth and to stimulate the participants' interests in pursuing Earth Science as the future career of the participants.

  8. [Animal experimentation, animal welfare and scientific research].

    Science.gov (United States)

    Tal, H

    2013-10-01

    Hundreds of thousands of laboratory animals are being used every year for scientific experiments held in Israel, mostly mice, rats, rabbits, guinea pigs, and a few sheep, cattle, pigs, cats, dogs, and even a few dozen monkeys. In addition to the animals sacrificed to promote scientific research, millions of animals slain every year for other purposes such as meat and fine leather fashion industries. While opening a front against all is an impossible and perhaps an unjustified task, the state of Israel enacted the Animal Welfare (Animal Experimentation) Law (1994). The law aims to regulate scientific animal experiments and to find the appropriate balance between the need to continue to perform animal experiments for the advancement of research and medicine, and at the same time to avoid unnecessary trials and minimize animal suffering. Among other issues the law deals with the phylogenetic scale according to which experimental animals should be selected, experiments for teaching and practicing, and experiments for the cosmetic industry. This article discusses bioethics considerations in animal experiments as well as the criticism on the scientific validity of such experiments. It further deals with the vitality of animal studies and the moral and legal obligation to prevent suffering from laboratory animals.

  9. NASA Ames summary high school apprenticeship research program, 1983 research papers

    Science.gov (United States)

    Powell, P.

    1984-01-01

    Engineering enrollments are rising in universities; however, the graduate engineer shortage continues. Particularly, women and minorities will be underrepresented for years to come. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created 4 years ago to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP Program is designed for high school juniors (women and minorities) who are U.S. citizens, are 16 years old, and who have unusually high promise in mathematics and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hours a day in a 5-day work week. This work-study program features weekly field trips, lectures and written reports, and job experience related to the student's career interests.

  10. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  11. Optimization Research of Generation Investment Based on Linear Programming Model

    Science.gov (United States)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  12. NASA Ames Summer High School Apprenticeship Research Program: 1986 research papers

    Science.gov (United States)

    Powell, Patricia

    1988-01-01

    Engineering enrollments are rising in universities; however the graduate engineering shortage continues. Particularly, women and minorities will be underrepresented for many years. As one means of solving this shortage, Federal agencies facing future scientific and technological challenges were asked to participate in the Summer High School Apprenticeship Research Program (SHARP). This program was created to provide an engineering experience for gifted female and minority high school students at an age when they could still make career and education decisions. The SHARP program is designed for high school juniors who are U.S. citizens, are 16 years old, and who have very high promise in math and science through outstanding academic performance in high school. Students who are accepted into this summer program will earn as they learn by working 8 hr days in a 5-day work week. Reports from SHARP students are presented.

  13. DOE (Department of Energy) Epidemiologic Research Program

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal.

  14. DOE [Department of Energy] Epidemiologic Research Program

    International Nuclear Information System (INIS)

    1990-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and of the operation of DOE facilities. The program is divided into seven general areas of activity; the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 340 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliography is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by laboratory and by year and also summarizes the results from individual authors by journal

  15. Scientific research in the Soviet Union

    International Nuclear Information System (INIS)

    Mtingwa, S.K.

    1990-01-01

    I report on the scientific aspects of my US/USSR Interacademy Exchange Visit to the Soviet Union. My research was conducted at three different institutes: the Lebedev Physical Institute in Moscow, the Leningrad Nuclear Physics Institute in Gatchina, and the Yerevan Physics Institute in Soviet Armenia. I included relevant information about the Soviet educational system, salaries of Soviet physicists, work habits and research activities at the three institutes, and the relevance of that research to work going on in the United States. 18 refs

  16. USING THE INTERNATIONAL SCIENTOMETRIC DATABASES OF OPEN ACCESS IN SCIENTIFIC RESEARCH

    Directory of Open Access Journals (Sweden)

    O. Galchevska

    2015-05-01

    Full Text Available In the article the problem of the use of international scientometric databases in research activities as web-oriented resources and services that are the means of publication and dissemination of research results is considered. Selection criteria of scientometric platforms of open access in conducting scientific researches (coverage Ukrainian scientific periodicals and publications, data accuracy, general characteristics of international scientometrics database, technical, functional characteristics and their indexes are emphasized. The review of the most popular scientometric databases of open access Google Scholar, Russian Scientific Citation Index (RSCI, Scholarometer, Index Copernicus (IC, Microsoft Academic Search is made. Advantages of usage of International Scientometrics database Google Scholar in conducting scientific researches and prospects of research that are in the separation of cloud information and analytical services of the system are determined.

  17. Cyber warfare building the scientific foundation

    CERN Document Server

    Jajodia, Sushil; Subrahmanian, VS; Swarup, Vipin; Wang, Cliff

    2015-01-01

    This book features a wide spectrum of the latest computer science research relating to cyber warfare, including military and policy dimensions. It is the first book to explore the scientific foundation of cyber warfare and features research from the areas of artificial intelligence, game theory, programming languages, graph theory and more. The high-level approach and emphasis on scientific rigor provides insights on ways to improve cyber warfare defense worldwide. Cyber Warfare: Building the Scientific Foundation targets researchers and practitioners working in cyber security, especially gove

  18. ARIANE: a scientific programming assisting system

    International Nuclear Information System (INIS)

    Kavenoky, A.; Lautard, J.J.; Robeau, M.F.

    1982-06-01

    The ARIANE system had been designed to make easier development, maintenance and operation of scientific programs; ARIANE is divided into three elementary functions: 1/ a pre-compiler processes a super-set of FORTRAN allowing virtual memory simulation (LAGD translator) and the OTOMAT library is used at run-time to perform the storage management, 2/ a dynamic loader permits the cancellation of the standard linkage-editor step and of the generation of overlays, 3/ the logical chaining of the mathematical modules is controlled by the ARIANE language: the user submits to the ARIANE compiler a program describing the logical algorithm to be perfomed; the compiler output is executed. The ARIANE system had been designed for IBM computers running under OS/VS1 or VS2; a Cray version had been generated and is now operational [fr

  19. Course-Based Undergraduate Research Experiences Can Make Scientific Research More Inclusive

    Science.gov (United States)

    Bangera, Gita; Brownell, Sara E.

    2014-01-01

    Current approaches to improving diversity in scientific research focus on graduating more science, technology, engineering, and mathematics (STEM) majors, but graduation with a STEM undergraduate degree alone is not sufficient for entry into graduate school. Undergraduate independent research experiences are becoming more or less a prerequisite…

  20. Dishonesty in scientific research.

    Science.gov (United States)

    Mazar, Nina; Ariely, Dan

    2015-11-02

    Fraudulent business practices, such as those leading to the Enron scandal and the conviction of Bernard Madoff, evoke a strong sense of public outrage. But fraudulent or dishonest actions are not exclusive to the realm of big corporations or to evil individuals without consciences. Dishonest actions are all too prevalent in everyone's daily lives, because people are constantly encountering situations in which they can gain advantages by cutting corners. Whether it's adding a few dollars in value to the stolen items reported on an insurance claim form or dropping outlier data points from a figure to make a paper sound more interesting, dishonesty is part of the human condition. Here, we explore how people rationalize dishonesty, the implications for scientific research, and what can be done to foster a culture of research integrity.

  1. Lamont-Doherty's Secondary School Field Research Program: Using Goal-Oriented Applied Research as a Means of Building Comprehensive and Integrated Scientific Understanding

    Science.gov (United States)

    Bostick, B. C.; Newton, R.; Vincent, S.; Peteet, D. M.; Sambrotto, R.; Schlosser, P.; Corbett, E.

    2015-12-01

    Conventional instruction in science often proceeds from the general to the specific and from text to action. Fundamental terminologies, concepts, and ideas that are often abstract are taught first and only after such introductory processes can a student engage in research. Many students struggle to find relevance when presented information without context specific to their own experiences. This challenge is exacerbated for students whose social circles do not include adults who can validate scientific learning from their own experiences. Lamont-Doherty's Secondary School Field Research Program inverts the standard paradigm and places small groups of students in research projects where they begin by performing manageable tasks on complex applied research projects. These tasks are supplemented with informal mentoring and relevant articles (~1 per week). Quantitative metrics suggest the approach is highly successful—most participants report a dramatic increase in their enthusiasm for science, 100% attend college, and approximately 50% declare majors in science or technology. We use one project, the construction of a microbial battery, to illustrate this novel model of science learning and argue that it should be considered a best practice for project-based science education. The goal of this project was to build a rechargeable battery for a mobile phone based on a geochemical cycle, to generate and store electricity. The students, mostly from ethnic groups under-represented in the STEM fields, combined concepts and laboratory methods from biology, chemistry and physics to isolate photosynthetic bacteria from a natural salt marsh, and made an in situ device capable of powering a light bulb. The younger participants had been exposed to neither high school chemistry nor physics at the start of the project, yet they were able to use the project as a platform to deepen their science knowledge and their desire for increased participation in formal science education.

  2. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  3. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  4. Science Teaching as Educational Interrogation of Scientific Research

    Science.gov (United States)

    Ginev, Dimitri

    2013-01-01

    The main argument of this article is that science teaching based on a pedagogy of questions is to be modeled on a hermeneutic conception of scientific research as a process of the constitution of texts. This process is spelled out in terms of hermeneutic phenomenology. A text constituted by scientific practices is at once united by a hermeneutic…

  5. 1997 Scientific Report[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, P

    1998-07-01

    The 1997 Scientific Report of the Belgian Nuclear Research Centre SCK-CEN describes progress achieved in nuclear safety, radioactive waste management, radiation protection and safeguards. In the field of nuclear research, the main projects concern the behaviour of high-burnup and MOX fuel, the embrittlement of reactor pressure vessels, the irradiation-assisted stress corrosion cracking of reactor internals, and irradiation effects on materials of fusion reactors. In the field of radioactive waste management, progress in the following domains is reported: the disposal of high-level radioactive waste and spent fuel in a clay formation, the decommissioning of nuclear installations, the study of alternative waste-processing techniques. For radiation protection and safeguards, the main activities reported on are in the field of site and environmental restoration, emergency planning and response and scientific support to national and international programmes.

  6. GBF scientific progress report 1979

    International Nuclear Information System (INIS)

    1980-01-01

    The structure and style of representation of the paragraphs about scientific results are adjusted to the research and development program 1979. Since in this program an arrangement according to fields or departments resp. was chosen, the individual reports of this report on results were arranged as to departments too. In doing so, however, a survey of the aims and the development of the department as a whole precedes, and subsequently information on the results of the individual projects is given. In addition to the results of the year under report, the aims during the life of the project are summarized. Para. 2.1 puts the individual FE (research and development) projects into relation to the five research programs, which are at present dealt with by the GBF (Society for Biotechnological Research). The reports on the individual projects refer to the FE program number. For the first time, the report on the results contains a paragraph about the collecting activity and the research work of the DSM (German collection of microorganisms), which became part of the GBF at the beginning of the year under report. A separate paragraph deals with the scientific and technical infrastructure, especially with the work of the Service-Unit 'Biotechnikum' which produces natural substances, which are commercially not available. Paragraphs about further activities in the fields of scientific cooperation, results transfer etc, as well as about the staff and the economical developments of the GBF follow. (orig./AJ) [de

  7. Sergio Bertolucci - Towards dynamic scientific research

    CERN Multimedia

    2009-01-01

    Sergio Bertolucci has become Director for Research and Scientific Computing at the moment when the LHC is almost ready to deliver its first physics data. In this interview, he explains the importance of the perfect mix of collaboration and competition that will make the LHC scientific programme successful. Sergio Bertolucci’s enthusiasm for being at CERN at this historic time is evident from the first minute of the interview and has not waned after an hour speaking with us. Bertolucci’s recipe for a successful start-up of the physics delivery phase of the LHC is "Festina lente", a Latin motto that means something like ‘hasten slowly’. "The LHC is probably the biggest and most complex scientific enterprise ever undertaken by humanity," says Bertolucci. "It will certainly lead us towards a new phase of our understanding of the Universe. Nature is already giving us some indications but only the LHC will allow us to observe the ne...

  8. Supporting Scientific Research with the Energy Sciences Network

    CERN Multimedia

    CERN. Geneva; Monga, Inder

    2016-01-01

    The Energy Sciences Network (ESnet) is a high-performance, unclassified national network built to support scientific research. Funded by the U.S. Department of Energy’s Office of Science (SC) and managed by Lawrence Berkeley National Laboratory, ESnet provides services to more than 40 DOE research sites, including the entire National Laboratory system, its supercomputing facilities, and its major scientific instruments. ESnet also connects to 140 research and commercial networks, permitting DOE-funded scientists to productively collaborate with partners around the world. ESnet Division Director (Interim) Inder Monga and ESnet Networking Engineer David Mitchell will present current ESnet projects and research activities which help support the HEP community. ESnet  helps support the CERN community by providing 100Gbps trans-Atlantic network transport for the LHCONE and LHCOPN services. ESnet is also actively engaged in researching connectivity to cloud computing resources for HEP workflows a...

  9. Research governance and scientific knowledge production in The Gambia

    OpenAIRE

    Frederick U. Ozor

    2014-01-01

    Public research institutions and scientists are principal actors in the production and transfer of scientific knowledge, technologies and innovations for application in industry as well for social and economic development. Based on the relevance of science and technology actors, the aim of this study was to identify and explain factors in research governance that influence scientific knowledge production and to contribute to empirical discussions on the impact levels of different governance m...

  10. "Air Toxics under the Big Sky": Examining the Effectiveness of Authentic Scientific Research on High School Students' Science Skills and Interest

    Science.gov (United States)

    Ward, Tony J.; Delaloye, Naomi; Adams, Earle Raymond; Ware, Desirae; Vanek, Diana; Knuth, Randy; Hester, Carolyn Laurie; Marra, Nancy Noel; Holian, Andrij

    2016-01-01

    "Air Toxics Under the Big Sky" is an environmental science outreach/education program that incorporates the Next Generation Science Standards (NGSS) 8 Practices with the goal of promoting knowledge and understanding of authentic scientific research in high school classrooms through air quality research. This research explored: (1)…

  11. Department of Energy - Office of Science Early Career Research Program

    Science.gov (United States)

    Horwitz, James

    The Department of Energy (DOE) Office of Science Early Career Program began in FY 2010. The program objectives are to support the development of individual research programs of outstanding scientists early in their careers and to stimulate research careers in the disciplines supported by the DOE Office of Science. Both university and DOE national laboratory early career scientists are eligible. Applicants must be within 10 years of receiving their PhD. For universities, the PI must be an untenured Assistant Professor or Associate Professor on the tenure track. DOE laboratory applicants must be full time, non-postdoctoral employee. University awards are at least 150,000 per year for 5 years for summer salary and expenses. DOE laboratory awards are at least 500,000 per year for 5 years for full annual salary and expenses. The Program is managed by the Office of the Deputy Director for Science Programs and supports research in the following Offices: Advanced Scientific and Computing Research, Biological and Environmental Research, Basic Energy Sciences, Fusion Energy Sciences, High Energy Physics, and Nuclear Physics. A new Funding Opportunity Announcement is issued each year with detailed description on the topical areas encouraged for early career proposals. Preproposals are required. This talk will introduce the DOE Office of Science Early Career Research program and describe opportunities for research relevant to the condensed matter physics community. http://science.energy.gov/early-career/

  12. Problems of scientific research in developing countries

    International Nuclear Information System (INIS)

    Vose, P.B.; Cervellini, A.

    1983-01-01

    The paper gives a general consideration of the problems encountered in the scientific research by the developing countries. Possible optimizations in the long term as well as short term strategies are pointed out

  13. Dishonesty in scientific research

    Science.gov (United States)

    Mazar, Nina; Ariely, Dan

    2015-01-01

    Fraudulent business practices, such as those leading to the Enron scandal and the conviction of Bernard Madoff, evoke a strong sense of public outrage. But fraudulent or dishonest actions are not exclusive to the realm of big corporations or to evil individuals without consciences. Dishonest actions are all too prevalent in everyone’s daily lives, because people are constantly encountering situations in which they can gain advantages by cutting corners. Whether it’s adding a few dollars in value to the stolen items reported on an insurance claim form or dropping outlier data points from a figure to make a paper sound more interesting, dishonesty is part of the human condition. Here, we explore how people rationalize dishonesty, the implications for scientific research, and what can be done to foster a culture of research integrity. PMID:26524587

  14. Nevada Risk Assessment/Management Program scientific peer review

    International Nuclear Information System (INIS)

    Bentz, E.J. Jr.; Bentz, C.B.; O'Hora, T.D.; Chen, S.Y.

    1997-01-01

    The 1,350 square-mile Nevada Test Site and additional sites in Nevada served as the continental sites for US nuclear weapons testing from 1951 to 1992. The Nevada Risk Assessment/Management Program (NRAMP) is a currently on-going effort of the Harry Reid Center for Environmental Studies at the University of Nevada, Las Vegas (UNLV) and the firm of E. J. Bentz and Associates, Inc., in cooperation with the US Department of Energy (DOE) Environmental Management Program. Argonne National Laboratory is one of several public and private organizations supporting personnel appointed by the NRAMP to the NRAMP Scientific Peer Review Panel. The NRAMP is part of a national effort by the DOE to develop new sources of information and approaches to risk assessment, risk management, risk communication, and public outreach relevant to the ecological and human health effects of radioactive and hazardous materials management and site remediation activities. This paper describes the development, conduct, and current results of the scientific peer review process which supports the goals of the NRAMP

  15. Scientific activities 1980 Nuclear Research Center ''Democritos''

    International Nuclear Information System (INIS)

    1982-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritos for the year 1980 are presented in the form of a list of 76 projects giving title, objectives, responsible of each project, developed activities and the pertaining lists of publications. The 16 chapters of this work cover the activities of the main Divisions of the Democritos NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Scientific Directorate, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications, Radioimmunoassay and Training. (N.C.)

  16. Canadian National Consultation on Access to Scientific Research Data

    Directory of Open Access Journals (Sweden)

    Michel Sabourin

    2007-06-01

    Full Text Available In June 2004, an expert Task Force, appointed by the National Research Council Canada and chaired by Dr. David Strong, came together in Ottawa to plan a National Forum as the focus of the National Consultation on Access to Scientific Research Data. The Forum, which was held in November 2004, brought together more than seventy Canadian leaders in scientific research, data management, research administration, intellectual property and other pertinent areas. This article presents a comprehensive review of the issues, and the opportunities and the challenges identified during the Forum. Complex and rich arrays of scientific databases are changing how research is conducted, speeding the discovery and creation of new concepts. Increased access will accelerate such changes even more, creating other new opportunities. With the combination of databases within and among disciplines and countries, fundamental leaps in knowledge will occur that will transform our understanding of life, the world and the universe. The Canadian research community is concerned by the need to take swift action to adapt to the substantial changes required by the scientific enterprise. Because no national data preservation organization exists, may experts believe that a national strategy on data access or policies needs to be developed, and that a "Data Task Force" be created to prepare a full national implementation strategy. Once such a national strategy is broadly supported, it is proposed that a dedicated national infrastructure, tentatively called "Data Canada", be established, to assume overall leadership in the development and execution of a strategic plan.

  17. A social epistemology of research groups collaboration in scientific practice

    CERN Document Server

    Wagenknecht, Susann

    2016-01-01

    This book investigates how collaborative scientific practice yields scientific knowledge. At a time when most of today’s scientific knowledge is created in research groups, the author reconsiders the social character of science to address the question of whether collaboratively created knowledge should be considered as collective achievement, and if so, in which sense. Combining philosophical analysis with qualitative empirical inquiry, this book provides a comparative case study of mono- and interdisciplinary research groups, offering insight into the day-to-day practice of scientists. The book includes field observations and interviews with scientists to present an empirically-grounded perspective on much-debated questions concerning research groups’ division of labor, relations of epistemic dependence and trust.

  18. For the Anniversary Edition of the Scientific Journal European Researcher. Series A – 110 issue

    Directory of Open Access Journals (Sweden)

    Goran Rajović

    2016-09-01

    Full Text Available This article is a review of the jubilee scientific journal "European Researcher. Series A ", marked at all in 2016 – the sixth anniversary, of regular and of continuous publication. In addition to the history of the newspaper are exposed to the development phase of its program concept. The journal is the period 2010 – 2016 year, profiled in an important factor of development and the formation of professional and scientific thought. Journal “European Research. Series A” is now open forum for publicizing and stimulating innovative thinking on all aspects of the social sciences, the entire international academic community. In all this we emphasize the infinite persistence, creative energy but also authoring and management merits chief editor and founder of the Journal, DrAleksandrCherkasov for survival and development for this great publishing project.

  19. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  20. Laboratory Directed Research and Development Program annual report to the Department of Energy, December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  1. Laboratory Directed Research and Development Program. Annual report to the Department of Energy, December 1997

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Searing, J.M.

    1997-12-01

    New ideas and opportunities fostering the advancement of technology are occurring at an ever increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and develops new fundable R and D projects and programs if BNL is to carry out its primary mission and support the basic Department of Energy activities. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums

  2. Sensor equipment of the German earth scientific airplane program

    Science.gov (United States)

    Seige, P.

    1975-01-01

    The German airplane program for earth scientific research supports the work of a vast staff of earth scientists from universities and federal agencies. Due to their fields of interest, which are in oceanography, hydrology, geology, ecology, and forestry, five test areas were selected which are spread all over Germany. The sensor package, which was designed in accordance with the requirements of this group of scientists, will be installed in a DO 28 D2 type airplane. The sensor equipment consists of a series of 70-mm cameras having different film/filter combinations, a photogrammetric camera, an infrared radiometer, an 11-channel multispectral line scanner, a LANDSAT-compatible radiometer, and a complex avionic system. Along with the airplane, a truck will be equipped with a set of radiometers and other sensor devices for extensive ground-truth measurement; this also includes a cherry picker.

  3. [Health-related scientific and technological capabilities and university-industry research collaboration].

    Science.gov (United States)

    Britto, Jorge; Vargas, Marco Antônio; Gadelha, Carlos Augusto Grabois; Costa, Laís Silveira

    2012-12-01

    To examine recent developments in health-related scientific capabilities, the impact of lines of incentives on reducing regional scientific imbalances, and university-industry research collaboration in Brazil. Data were obtained from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazilian National Council for Scientific and Technological Development) databases for the years 2000 to 2010. There were assessed indicators of resource mobilization, research network structuring, and knowledge transfer between science and industry initiatives. Based on the regional distribution map of health-related scientific and technological capabilities there were identified patterns of scientific capabilities and science-industry collaboration. There was relative spatial deconcentration of health research groups and more than 6% of them worked in six areas of knowledge areas: medicine, collective health, dentistry, veterinary medicine, ecology and physical education. Lines of incentives that were adopted from 2000 to 2009 contributed to reducing regional scientific imbalances and improving preexisting capabilities or, alternatively, encouraging spatial decentralization of these capabilities. Health-related scientific and technological capabilities remain highly spatially concentrated in Brazil and incentive policies have contributed to reduce to some extent these imbalances.

  4. Research Program Overview

    Science.gov (United States)

    PEER logo Pacific Earthquake Engineering Research Center home about peer news events research products laboratories publications nisee b.i.p. members education FAQs links research Research Program Overview Tall Buildings Initiative Transportation Research Program Lifelines Program Concrete Grand

  5. AIM satellite-based research bridges the unique scientific aspects of the mission to informal education programs globally

    Science.gov (United States)

    Robinson, D.; Maggi, B.

    2003-04-01

    The Education and Public Outreach (EPO) component of the satellite-based research mission "Aeronomy of Ice In the Mesosphere" (AIM) will bridge the unique scientific aspects of the mission to informal education organizations. The informal education materials developed by the EPO will utilize AIM data and educate the public about the environmental implications associated with the data. This will assist with creating a scientifically literate workforce and in developing a citizenry capable of making educated decisions related to environmental policies and laws. The objective of the AIM mission is to understand the mechanisms that cause Polar Mesospheric Clouds (PMCs) to form, how their presence affects the atmosphere, and how change in the atmosphere affects them. PMCs are sometimes known as Noctilucent Clouds (NLCs) because of their visibility during the night from appropriate locations. The phenomenon of PMCs is an observable indicator of global change, a concern to all citizens. Recent sightings of these clouds over populated regions have compelled AIM educators to expand informal education opportunities to communities worldwide. Collaborations with informal organizations include: Museums/Science Centers; NASA Sun-Earth Connection Forum; Alaska Native Ways of Knowing Project; Amateur Noctilucent Cloud Observers Organization; National Parks Education Programs; After School Science Clubs; Public Broadcasting Associations; and National Public Radio. The Native Ways of Knowing Project is an excellent example of informal collaboration with the AIM EPO. This Alaska based project will assist native peoples of the state with photographing NLCs for the EPO website. It will also aid the EPO with developing materials for informal organizations that incorporate traditional native knowledge and science, related to the sky. Another AIM collaboration that will offer citizens lasting informal education opportunities is the one established with the United States National Parks

  6. Systems Sustainability: Implementation of Enhanced Maintenance Programs at the Kurchatov Institute, the All-Russian Research Institute of Experimental physics (VNIIEF) and the All-Russian Scientific Institute for Technical Physics (VNIITF)

    International Nuclear Information System (INIS)

    Coppinger, M.; Pikula, M.; Randolph, J.D.; Windham, M.

    1999-01-01

    Implementation of quality maintenance programs is essential to enhancing sustainable continuous operations of United States funded Materials Protection, Control and Accountability (MPC and A) equipment/systems upgrades at various Russian nuclear facilities. An effective maintenance program is expected to provide assurances to both parties for achieving maximum continuous systems operations with minimum down time. To be effective, the program developed must focus on minimum down time for any part of a system. Minimum down time is realized through the implementation of a quality maintenance program that includes preventative maintenance, necessary diagnostic tools, properly trained technical staff, and an in-house inventory of required spare parts for repairing the impacted component of the system. A centralized maintenance management program is logistically essential for the success of this effort because of the large volume of MPC and A equipment/systems installed at those sites. This paper will discuss current programs and conditions at the Russian Research Center-Kurchatov Institute, the All-Russian Scientific Institute for Technical Physics and the All-Russian Research Institute of Experimental Physics and will address those steps necessary to implement an upgraded program at those sites

  7. National Plan for Research - Development and Innovation, CERES Programme. Annual Scientific Session

    International Nuclear Information System (INIS)

    Ionescu-Bujor, Theodor; Dobrescu, Serban

    2002-01-01

    The CERES Programme is a research program organized in the frame of Institut of Atomic Physics, Bucharest, Romania. The annual scientific session held in Bucharest on December 2-3, 2002 covered the following 9 sections (projects): Mathematics (2); Physics (85); Chemistry (14); Engineering (2); Earth Sciences (13); Life Sciences (8); Economics and Social Studies (4); Culture (4); Works received after the deadline. The most numerous contributions within the INIS scope addressed subjects from the fields: theoretical and experimental nuclear physics, seismic survey and prognoses, high energy physics and quantum field theory, physical properties of materials, nuclear spectroscopic instrumentation, nuclear methods in isotopic analysis. The contributors presented their results obtained under research contracts supported by the Romanian Ministry of Education and Research in the period October 15, 2001 - October 15, 2002. Many of the reported research works were done in collaborations with international organizations or institutes from abroad

  8. Variation in the Interpretation of Scientific Integrity in Community-based Participatory Health Research

    Science.gov (United States)

    Kraemer Diaz, Anne E.; Spears Johnson, Chaya R.; Arcury, Thomas A.

    2013-01-01

    Community-based participatory research (CBPR) has become essential in health disparities and environmental justice research; however, the scientific integrity of CBPR projects has become a concern. Some concerns, such as appropriate research training, lack of access to resources and finances, have been discussed as possibly limiting the scientific integrity of a project. Prior to understanding what threatens scientific integrity in CBPR, it is vital to understand what scientific integrity means for the professional and community investigators who are involved in CBPR. This analysis explores the interpretation of scientific integrity in CBPR among 74 professional and community research team members from of 25 CBPR projects in nine states in the southeastern United States in 2012. It describes the basic definition for scientific integrity and then explores variations in the interpretation of scientific integrity in CBPR. Variations in the interpretations were associated with team member identity as professional or community investigators. Professional investigators understood scientific integrity in CBPR as either conceptually or logistically flexible, as challenging to balance with community needs, or no different than traditional scientific integrity. Community investigators interpret other factors as important in scientific integrity, such as trust, accountability, and overall benefit to the community. This research demonstrates that the variations in the interpretation of scientific integrity in CBPR call for a new definition of scientific integrity in CBPR that takes into account the understanding and needs of all investigators. PMID:24161098

  9. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Science.gov (United States)

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  10. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  11. Scientific Research in Education: A Socratic Dialogue

    Science.gov (United States)

    Boody, Robert M.

    2011-01-01

    Socrates and Admetus discuss the value of scientific research in education. They conclude that although RCTs have their place, they are not a panacea for education, and that the push for them by NCLB is not warranted.

  12. [Patents and scientific research: an ethical-legal approach].

    Science.gov (United States)

    Darío Bergel, Salvador

    2014-01-01

    This article aims to review the relationship between patents and scientific research from an ethical point of view. The recent developments in the law of industrial property led in many cases to patent discoveries, contributions of basic science, and laws of nature. This trend, which denies the central principles of the discipline, creates disturbances in scientific activity, which requires the free movement of knowledge in order to develop their potentialities.

  13. Mapping training needs for dissemination and implementation research: lessons from a synthesis of existing D&I research training programs.

    Science.gov (United States)

    Chambers, David A; Proctor, Enola K; Brownson, Ross C; Straus, Sharon E

    2017-09-01

    With recent growth in the field of dissemination and implementation (D&I) research, multiple training programs have been developed to build capacity, including summer training institutes, graduate courses, degree programs, workshops, and conferences. While opportunities for D&I research training have expanded, course organizers acknowledge that available slots are insufficient to meet demand within the scientific and practitioner community. In addition, individual programs have struggled to best fit various needs of trainees, sometimes splitting coursework between specific D&I content and more introductory grant writing material. This article, stemming from a 2013 NIH workshop, reviews experiences across multiple training programs to align training needs, career stage and role, and availability of programs. We briefly review D&I needs and opportunities by career stage and role, discuss variations among existing training programs in format, mentoring relationships, and other characteristics, identify challenges of mapping needs of trainees to programs, and present recommendations for future D&I research training.

  14. Scientometrical approach of the definition of a research domain using scientific journals

    International Nuclear Information System (INIS)

    Signogneau, A.

    1995-01-01

    The goal of this thesis is to analyse how the academic domain of a research entity can be defined by a panel of scientific journals. The aim of this work is to contribute to the creation of information tools as a help in research management. The first part gives an analysis of the scientific journals as markers of the scientific development: the production and diffusion of scientific journals and their ''scientometrical'' analysis (references, citation reports, citation indexes etc..). In the second part, a research unit is analyzed according to its related scientific journals and to its research domain. The SPAM (Photons, Atoms and Molecules Service) of the CEA was chosen for this task (main journals and co-publications network, specialization, main topics, collaborations and competition). The OST (Observatory of Sciences and Techniques) has in charge the production of scientific and technical indicators for research operators. The third part evaluates the methods used by the OST (analyses of reviews and journals) to provide a documentary corpus, taking the topic of the environment as an example. Finally the relevance of the information products obtained is evaluated. (J.S.)

  15. Humanities’ Metaphysical Underpinnings of Late Frontier Scientific Research

    Directory of Open Access Journals (Sweden)

    Alcibiades Malapi-Nelson

    2014-12-01

    Full Text Available The behavior/structure methodological dichotomy as locus of scientific inquiry is closely related to the issue of modeling and theory change in scientific explanation. Given that the traditional tension between structure and behavior in scientific modeling is likely here to stay, considering the relevant precedents in the history of ideas could help us better understand this theoretical struggle. This better understanding might open up unforeseen possibilities and new instantiations, particularly in what concerns the proposed technological modification of the human condition. The sequential structure of this paper is twofold. The contribution of three philosophers better known in the humanities than in the study of science proper are laid out. The key theoretical notions interweaving the whole narrative are those of mechanization, constructability and simulation. They shall provide the conceptual bridge between these classical thinkers and the following section. Here, a panoramic view of three significant experimental approaches in contemporary scientific research is displayed, suggesting that their undisclosed ontological premises have deep roots in the Western tradition of the humanities. This ontological lock between core humanist ideals and late research in biology and nanoscience is ultimately suggested as responsible for pervasively altering what is canonically understood as “human”.

  16. List of scientific publications of Nuclear Research Center Karlsruhe 1983

    International Nuclear Information System (INIS)

    1984-04-01

    This report contains the titles of the publications edited in the year 1983. The scientific and technical-scientific publications of the Nuclear Research Center Karlsruhe are printed as books, as original contributions in scientific or technical specialists' journals, as scripts for habilitation, thesis, scripts for diploma, as patents, as KfK-Reports (KfK=Kernforschungszentrum Karlsruhe) and are being presented as lectures on scientific meetings. No further separate abstracts of this list of publications were prepared. (orig./HBR) [de

  17. U.S. Radioecology Research Programs Initiated in the 1950s

    International Nuclear Information System (INIS)

    Auerbach, S.I.; Reichle, D.E.

    1999-01-01

    In the early postwar years, beginning in 1949 and extending to the mid-1960s, U.S. Atomic Energy Commission (AEC) research on the fate and effects of radionuclides in the environment was driven by distinct environmental concerns-- the releases of radioactive materials around production sites, fallout from nuclear weapons tests, and radiation effects from both external and internal exposures. These problem areas spawned development of the scientific field of radioecology. To understand the perspectives in the 1950s of the United States on the issues of nuclear energy and the environment, we have reviewed the early research programs. Keeping to the theme of the papers in this environmental session, we will focus on the first area of concern -- the scientific studies to understand the environmental consequences of nuclear production and fuel reprocessing at the three primary production sites: the Hanford Works in the state of Washington, Clinton Laboratories in Oak Ridge, Tennessee, and the Savannah River Plant in South Carolina. The driving environmental issue was the fate and effects of waste products from nuclear fuel production and reprocessing -- concern about entry into environmental pathways. Early operational monitoring and evaluation by health physicists led to realization that additional emphasis needed to be placed on understanding environmental fate of radionuclides. What followed was forward-thinking R and D planning and development of interdisciplinary research teams for experimentation on complex environmental systems. What follows is a review of the major U.S. AEC radioecology research programs initiated during the 1950s, the issues leading to the establishment of these programs, early results, and their legacies for environmental protection and ecological research in the following decades

  18. U.S. Radioecology Research Programs Initiated in the 1950s

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1999-10-01

    In the early postwar years, beginning in 1949 and extending to the mid-1960s, U.S. Atomic Energy Commission (AEC) research on the fate and effects of radionuclides in the environment was driven by distinct environmental concerns-- the releases of radioactive materials around production sites, fallout from nuclear weapons tests, and radiation effects from both external and internal exposures. These problem areas spawned development of the scientific field of radioecology. To understand the perspectives in the 1950s of the United States on the issues of nuclear energy and the environment, we have reviewed the early research programs. Keeping to the theme of the papers in this environmental session, we will focus on the first area of concern -- the scientific studies to understand the environmental consequences of nuclear production and fuel reprocessing at the three primary production sites: the Hanford Works in the state of Washington, Clinton Laboratories in Oak Ridge, Tennessee, and the Savannah River Plant in South Carolina. The driving environmental issue was the fate and effects of waste products from nuclear fuel production and reprocessing -- concern about entry into environmental pathways. Early operational monitoring and evaluation by health physicists led to realization that additional emphasis needed to be placed on understanding environmental fate of radionuclides. What followed was forward-thinking R and D planning and development of interdisciplinary research teams for experimentation on complex environmental systems. What follows is a review of the major U.S. AEC radioecology research programs initiated during the 1950s, the issues leading to the establishment of these programs, early results, and their legacies for environmental protection and ecological research in the following decades.

  19. Plagiarism in Scientific Research and Publications and How to Prevent It

    Science.gov (United States)

    Masic, Izet

    2014-01-01

    Quality is assessed on the basis of adequate evidence, while best results of the research are accomplished through scientific knowledge. Information contained in a scientific work must always be based on scientific evidence. Guidelines for genuine scientific research should be designed based on real results. Dynamic research and use correct methods of scientific work must originate from everyday practice and the fundamentals of the research. The original work should have the proper data sources with clearly defined research goals, methods of operation which are acceptable for questions included in the study. When selecting the methods it is necessary to obtain the consent of the patients/respondents to provide data for execution of the project or so called informed consent. Only by the own efforts can be reached true results, from which can be drawn conclusions and which finally can give a valid scholarly commentary. Text may be copied from other sources, either in whole or in part and marked as a result of the other studies. For high-quality scientific work necessary are expertise and relevant scientific literature, mostly taken from publications that are stored in biomedical databases. These are scientific, professional and review articles, case reports of disease in physician practices, but the knowledge can also be acquired on scientific and expert lectures by renowned scientists. Form of text publications must meet standards on writing a paper. If the article has already been published in a scientific journal, the same article cannot be published in any other journal with a few minor adjustments, or without specifying the parts of the first article which is used in another article. Copyright infringement occurs when the author of a new article, with or without mentioning the author, uses a substantial portion of previously published articles, including past contributions in the first article. With the permission of the publisher and the author, another journal

  20. A research education program model to prepare a highly qualified workforce in biomedical and health-related research and increase diversity.

    Science.gov (United States)

    Crockett, Elahé T

    2014-09-24

    The National Institutes of Health has recognized a compelling need to train highly qualified individuals and promote diversity in the biomedical/clinical sciences research workforce. In response, we have developed a research-training program known as REPID (Research Education Program to Increase Diversity among Health Researchers) to prepare students/learners to pursue research careers in these fields and address the lack of diversity and health disparities. By inclusion of students/learners from minority and diverse backgrounds, the REPID program aims to provide a research training and enrichment experience through team mentoring to inspire students/learners to pursue research careers in biomedical and health-related fields. Students/learners are recruited from the University campus from a diverse population of undergraduates, graduates, health professionals, and lifelong learners. Our recruits first enroll into an innovative on-line introductory course in Basics and Methods in Biomedical Research that uses a laboratory Tool-Kit (a lab in a box called the My Dr. ET Lab Tool-Kit) to receive the standard basics of research education, e.g., research skills, and lab techniques. The students/learners will also learn about the responsible conduct of research, research concept/design, data recording/analysis, and scientific writing/presentation. The course is followed by a 12-week hands-on research experience during the summer. The students/learners also attend workshops and seminars/conferences. The students/learners receive scholarship to cover stipends, research related expenses, and to attend a scientific conference. The scholarship allows the students/learners to gain knowledge and seize opportunities in biomedical and health-related careers. This is an ongoing program, and during the first three years of the program, fifty-one (51) students/learners have been recruited. Thirty-six (36) have completed their research training, and eighty percent (80%) of them have

  1. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  2. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  3. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  4. Applied Information Systems Research Program (AISRP). Workshop 2: Meeting Proceedings

    Science.gov (United States)

    1992-01-01

    The Earth and space science participants were able to see where the current research can be applied in their disciplines and computer science participants could see potential areas for future application of computer and information systems research. The Earth and Space Science research proposals for the High Performance Computing and Communications (HPCC) program were under evaluation. Therefore, this effort was not discussed at the AISRP Workshop. OSSA's other high priority area in computer science is scientific visualization, with the entire second day of the workshop devoted to it.

  5. Examining Data Processing Work as Part of the Scientific Data Lifecycle Comparing Practices Across Four Scientific Research Groups

    OpenAIRE

    Paine, Drew; Lee, Charlotte

    2015-01-01

    Slides from Charlotte P. Lee's presentation at the 2015 iConference on our paper "Examining Data Processing Work as Part of the Scientific Data Lifecycle: Comparing Practices Across Four Scientific Research Groups".

  6. An Online Student Research Institute Designed to Engage Students in Original Scientific Research Using State of the Art Technologies to Increase Participation in STEM Fields

    Science.gov (United States)

    Freed, R.

    2015-12-01

    Affordable and accessible technology has advanced tremendously in the last decade allowing educational paradigms to change dramatically to more student-centered, experiential and project-based models. Additionally, as the need to increase the number of students entering STEM fields in the United States becomes more critical it is imperative to understand the factors that determine student career pathways and to provide opportunities for students to experience, understand and pursue scientific endeavors. The Institute for Student Astronomical Research was founded in order to provide a means for high school and early undergraduate students to engage in meaningful and relevant scientific research. A major goal is to give students the experience of true-to-life scientific investigation from the planning and proposal stages to the data collection and analysis, writing up and presenting of scientific findings and finally to the publication of results. Furthermore, the Institute is designed to collect data on how involvement in the Science Research Seminars influences educational and career choices for students in longitudinal studies following participants for several years. In the first year of the online course of the Institute 10 student teams conducted original research and published their findings in peer-reviewed journals. Lessons learned from the pilot year are being applied to the Institute as efforts to scale up the program are underway.

  7. [The system of protection of scientific biomedical research participants in France and in Poland].

    Science.gov (United States)

    Czarkowski, Marek; Sieczych, Alicja

    2013-07-01

    Realizing scientific biomedical research conducted on human-beings demands obeying ample ethical rules. However, states keep independence in the means of implementing deontological guidelines to legislative acts. The aim of the article is to compare rules of law relative to protection of scientific biomedical research participants in two European Union member states--France and Poland. French regulations cover more types of scientific biomedical research than those in Poland. In France almost all types of interventional scientific biomedical research including research on human biological samples and research on cosmetics are covered by the rules of law. Polish regulations are limited to interventional research conducted by doctors and dentists. In both states projects of clinical trials of medicinal products demands double acceptance - from bioethics committee and from competent state authority. In protection of scientific biomedical research participants the role of state authority competent for personal data is more vital in France than it is in Poland. In France there is also National Ethics Advisory Committee whereas in Poland there is no such institution. The systems protecting scientific biomedical research participants differs therefore in both states in many vital aspects and French measures cover more types of scientific biomedical research, hence the level of participants protection in various types of research is more equitable.

  8. "To Be a Scientist Sometimes You Have to Break Down Stuff about Animals": Examining the Normative Scientific Practices of a Summer Herpetological Program for Children

    Science.gov (United States)

    Scott, Catherine Marie

    2016-01-01

    When studying informal science programs, researchers often overlook the opportunities enabled and constrained in each program and the practices reinforced for participants. In this case study, I examined the normative scientific practices reinforced in one-week-long "Herpetology" (the study of reptiles and amphibians) program for…

  9. A dedicated scholarly research program in an adult and pediatric neurology residency program.

    Science.gov (United States)

    Robbins, Matthew S; Haut, Sheryl R; Lipton, Richard B; Milstein, Mark J; Ocava, Lenore C; Ballaban-Gil, Karen; Moshé, Solomon L; Mehler, Mark F

    2017-04-04

    To describe and assess the effectiveness of a formal scholarly activity program for a highly integrated adult and pediatric neurology residency program. Starting in 2011, all graduating residents were required to complete at least one form of scholarly activity broadly defined to include peer-reviewed publications or presentations at scientific meetings of formally mentored projects. The scholarly activity program was administered by the associate residency training director and included an expanded journal club, guided mentorship, a required grand rounds platform presentation, and annual awards for the most scholarly and seminal research findings. We compared scholarly output and mentorship for residents graduating within a 5-year period following program initiation (2011-2015) and during the preceding 5-year preprogram baseline period (2005-2009). Participation in scholarship increased from the preprogram baseline (24 of 53 graduating residents, 45.3%) to the postprogram period (47 of 57 graduating residents, 82.1%, p Neurology.

  10. Framing of scientific knowledge as a new category of health care research.

    Science.gov (United States)

    Salvador-Carulla, Luis; Fernandez, Ana; Madden, Rosamond; Lukersmith, Sue; Colagiuri, Ruth; Torkfar, Ghazal; Sturmberg, Joachim

    2014-12-01

    The new area of health system research requires a revision of the taxonomy of scientific knowledge that may facilitate a better understanding and representation of complex health phenomena in research discovery, corroboration and implementation. A position paper by an expert group following and iterative approach. 'Scientific evidence' should be differentiated from 'elicited knowledge' of experts and users, and this latter typology should be described beyond the traditional qualitative framework. Within this context 'framing of scientific knowledge' (FSK) is defined as a group of studies of prior expert knowledge specifically aimed at generating formal scientific frames. To be distinguished from other unstructured frames, FSK must be explicit, standardized, based on the available evidence, agreed by a group of experts and subdued to the principles of commensurability, transparency for corroboration and transferability that characterize scientific research. A preliminary typology of scientific framing studies is presented. This typology includes, among others, health declarations, position papers, expert-based clinical guides, conceptual maps, classifications, expert-driven health atlases and expert-driven studies of costs and burden of illness. This grouping of expert-based studies constitutes a different kind of scientific knowledge and should be clearly differentiated from 'evidence' gathered from experimental and observational studies in health system research. © 2014 John Wiley & Sons, Ltd.

  11. Compatibility of scientific research and specialty training in general practice. A cross-sectional study.

    Science.gov (United States)

    Kötter, Thomas; Carmienke, Solveig; Herrmann, Wolfram J

    2014-01-01

    In many departments of General Practice (GP) in Germany, young doctors who are trainees also work as researchers. Often these trainees work part time at the university and part time as a trainee in clinical practice. However, little is known about the situation of the actors involved. The aim of the study was to investigate the perspectives of GP trainees, heads of departments and GP trainers regarding the combination of research and GP training. We conducted a web-based survey with the heads of all German departments of General Practice, GP trainees who also conduct research and their GP trainers. The questionnaires consisted of open and closed questions. The results were analyzed using descriptive statistics and qualitative methods. 28 heads of GP departments and 20 GP trainees responded. The trainees were mostly very satisfied with their situation as a trainee. However, the trainees considered the combination of research and GP training as difficult. The respondents name as problems the coordination of multiple jobs and the lack of credibility given to research in General Practice. They name as solutions research-enabling training programs and uniform requirements in training regarding research. The combination of GP training and scientific research activity is perceived as difficult. However, well-organized and designed programs can improve the quality of the combination.

  12. Petronas: research and scientific services

    International Nuclear Information System (INIS)

    1995-01-01

    Petroleum is one of Malaysia's major commodities. In 1993 alone, Malaysia exported about 21 million tonne crude petroleum and 3.4 million tonne of petroleum products with export value of about RM 9.2 billion. Despite the large local and export market of the fuel, our petroleum industry is facing several difficulties. The supply of petrol will inevitably deplete. The industry faces an increase in the exploration costs and decline in the discovery of large reserves. Petronas research and scientific services Sdn Bhd was established 3 years ago. The company which supports its holding company's needs in R and D started its history as an analytical laboratory in 1978. Today, it is one of the leading upstream and downstream petroleum research institute in this region

  13. Globalization: Its Impact on Scientific Research in Nigeria

    Science.gov (United States)

    Ani, Okon E.; Biao, Esohe Patience

    2005-01-01

    This article reports on a study which investigated the impact of globalization on scientific research in Nigeria. The research data were collected using a questionnaire survey which was administered to academics in science-based disciplines in four Nigerian universities: University of Calabar, University of Uyo, University of Lagos and University…

  14. REEXPORT OF SCIENTIFIC COMPETENCIES IN THE LIGHT OF THE RE-CONSTRUCTION OF A NETWORK OF SCIENTIFIC-RESEARCH BODIES

    Directory of Open Access Journals (Sweden)

    О. A. Yeremchenko

    2016-01-01

    Full Text Available One of the primary challengesRussiais currently facing is the need for diversification of the Russian economy and its increase in the share of manufacturing and exported scientific-driven work products. In this light, improving the effectiveness of the scientific-technological complex of the country is becoming increasingly important. The article considers two scalable, developed in parallel, projects for increasing effectiveness of the scientificresearch sector: restructurization of the scientific organizations network and the project for bringing back home 15 thousand Russian scientists reverse immigration. A conclusion is made about the adequacy of a refusal from a large-scale change in the personnel of scientists in circumstances of when the budget for research and development and the number of scientific-research organizations is cut. It is proposed to create comfortable conditions for scientific search for all parties involved in the process of new knowledge creation, both for the scientists returning toRussiaand those that remain working in the country. 

  15. 78 FR 13864 - Atlantic Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering...

    Science.gov (United States)

    2013-03-01

    ... Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering Permits; Letters... Permits (EFPs), Scientific Research Permits (SRPs), Display Permits, Letters of Acknowledgment (LOAs), and... scientific research, the acquisition of information and data, the enhancement of safety at sea, the purpose...

  16. 77 FR 69593 - Atlantic Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering...

    Science.gov (United States)

    2012-11-20

    ... Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering Permits; Letters... intent to issue Exempted Fishing Permits (EFPs), Scientific Research Permits (SRPs), Display Permits... public display and scientific research that is exempt from regulations (e.g., fishing seasons, prohibited...

  17. 75 FR 75458 - Atlantic Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering...

    Science.gov (United States)

    2010-12-03

    ... Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering Permits; Letters... intent to issue Exempted Fishing Permits (EFPs), Scientific Research Permits (SRPs), Display Permits... of HMS for public display and scientific research that is exempt from regulations (e.g., seasons...

  18. Interview with Warren Wiscombe on scientific programing and his contributions to atmospheric science tool making

    OpenAIRE

    Flatau, Piotr J.

    2013-01-01

    On March 11, 2013 I talked with Warren Wiscombe about his contributions to scientific computer programming, atmospheric science and radiative transfer. Our conversation is divided into three parts related to light scattering, radiative transfer and his general thoughts about scientific programming. There are some reflections on how radiative transfer parameterizations gradually sneaked in to modern climate and atmospheric Global Circulation Models. Why some software programs such as light sca...

  19. The Efficiency of Linda for General Purpose Scientific Programming

    Directory of Open Access Journals (Sweden)

    Timothy G. Mattson

    1994-01-01

    Full Text Available Linda (Linda is a registered trademark of Scientific Computing Associates, Inc. is a programming language for coordinating the execution and interaction of processes. When combined with a language for computation (such as C or Fortran, the resulting hybrid language can be used to write portable programs for parallel and distributed multiple instruction multiple data (MIMD computers. The Linda programming model is based on operations that read, write, and erase a virtual shared memory. It is easy to use, and lets the programmer code in a very expressive, uncoupled programming style. These benefits, however, are of little value unless Linda programs execute efficiently. The goal of this article is to demonstrate that Linda programs are efficient making Linda an effective general purpose tool for programming MIMD parallel computers. Two arguments for Linda's efficiency are given; the first is based on Linda's implementation and the second on a range of case studies spanning a complete set of parallel algorithm classes.

  20. Ethical conduct for research : a code of scientific ethics

    Science.gov (United States)

    Marcia Patton-Mallory; Kathleen Franzreb; Charles Carll; Richard Cline

    2000-01-01

    The USDA Forest Service recently developed and adopted a code of ethical conduct for scientific research and development. The code addresses issues related to research misconduct, such as fabrication, falsification, or plagiarism in proposing, performing, or reviewing research or in reporting research results, as well as issues related to professional misconduct, such...

  1. The Development of Creative Thinking in Graduate Students Doing Scientific Research

    Science.gov (United States)

    Truran, Peter

    2016-01-01

    The teaching of research methodology to graduate science students places an emphasis on scientific reasoning and on the generation and evaluation of evidence in support of research conclusions. Very little attention is paid to the teaching of scientific creativity, the processes for generation of new ideas, hypotheses, and theories. By contrast,…

  2. [Organisation of scientific and research work of Navy medical service].

    Science.gov (United States)

    Gavrilov, V V; Myznikov, I L; Kuz'minov, O V; Shmelev, S V; Oparin, M Iu

    2013-03-01

    The main issues of organization of scientific and research work of medical service in the North Fleet are considered in the present article. Analysis of some paragraphs of documents, regulating this work at army level is given. The authors give an example of successful experience of such work in the North Fleet, table some suggestions which allow to improve the administration of scientific and research work in the navy and also on the district scale.

  3. Research networks and scientific production in Economics: The recent spanish experience (WP)

    OpenAIRE

    Duque, Juan Carlos; Ramos Lobo, Raúl; Royuela Mora, Vicente

    2007-01-01

    This paper studies Spanish scientific production in Economics from 1994 to 2004. It focuses on aspects that have received little attention in other bibliometric studies, such as the impact of research and the role of scientific collaborations in the publications produced by Spanish universities. Our results show that national research networks have played a fundamental role in the increase in Spanish scientific production in this discipline.

  4. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  5. NOAA's Scientific Data Stewardship Program

    Science.gov (United States)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the

  6. Customizable scientific web portal for fusion research

    International Nuclear Information System (INIS)

    Abla, G.; Kim, E.N.; Schissel, D.P.; Flanagan, S.M.

    2010-01-01

    Web browsers have become a major application interface for participating in scientific experiments such as those in magnetic fusion. The recent advances in web technologies motivated the deployment of interactive web applications with rich features. In the scientific world, web applications have been deployed in portal environments. When used in a scientific research environment, such as fusion experiments, web portals can present diverse sources of information in a unified interface. However, the design and development of a scientific web portal has its own challenges. One such challenge is that a web portal needs to be fast and interactive despite the high volume of information and number of tools it presents. Another challenge is that the visual output of the web portal must not be overwhelming to the end users, despite the high volume of data generated by fusion experiments. Therefore, the applications and information should be customizable depending on the needs of end users. In order to meet these challenges, the design and implementation of a web portal needs to support high interactivity and user customization. A web portal has been designed to support the experimental activities of DIII-D researchers worldwide by providing multiple services, such as real-time experiment status monitoring, diagnostic data access and interactive data visualization. The web portal also supports interactive collaborations by providing a collaborative logbook, shared visualization and online instant messaging services. The portal's design utilizes the multi-tier software architecture and has been implemented utilizing web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services, which allows users to create a unique, personalized working environment to fit their own needs and interests. This paper describes the software

  7. Customizable scientific web portal for fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Abla, G., E-mail: abla@fusion.gat.co [General Atomics, P.O. Box 85608, San Diego, CA (United States); Kim, E.N.; Schissel, D.P.; Flanagan, S.M. [General Atomics, P.O. Box 85608, San Diego, CA (United States)

    2010-07-15

    Web browsers have become a major application interface for participating in scientific experiments such as those in magnetic fusion. The recent advances in web technologies motivated the deployment of interactive web applications with rich features. In the scientific world, web applications have been deployed in portal environments. When used in a scientific research environment, such as fusion experiments, web portals can present diverse sources of information in a unified interface. However, the design and development of a scientific web portal has its own challenges. One such challenge is that a web portal needs to be fast and interactive despite the high volume of information and number of tools it presents. Another challenge is that the visual output of the web portal must not be overwhelming to the end users, despite the high volume of data generated by fusion experiments. Therefore, the applications and information should be customizable depending on the needs of end users. In order to meet these challenges, the design and implementation of a web portal needs to support high interactivity and user customization. A web portal has been designed to support the experimental activities of DIII-D researchers worldwide by providing multiple services, such as real-time experiment status monitoring, diagnostic data access and interactive data visualization. The web portal also supports interactive collaborations by providing a collaborative logbook, shared visualization and online instant messaging services. The portal's design utilizes the multi-tier software architecture and has been implemented utilizing web 2.0 technologies, such as AJAX, Django, and Memcached, to develop a highly interactive and customizable user interface. It offers a customizable interface with personalized page layouts and list of services, which allows users to create a unique, personalized working environment to fit their own needs and interests. This paper describes the software

  8. Pre-Service Science Teachers' Perception of the Principles of Scientific Research

    Science.gov (United States)

    Can, Sendil; Kaymakci, Güliz

    2016-01-01

    The purpose of the current study employing the survey method is to determine the pre-service science teachers' perceptions of the principles of scientific research and to investigate the effects of gender, grade level and the state of following scientific publications on their perceptions. The sampling of the current research is comprised of 125…

  9. Perceptions That Influence the Maintenance of Scientific Integrity in Community-Based Participatory Research

    Science.gov (United States)

    Kraemer Diaz, Anne E.; Spears Johnson, Chaya R.; Arcury, Thomas A.

    2015-01-01

    Scientific integrity is necessary for strong science; yet many variables can influence scientific integrity. In traditional research, some common threats are the pressure to publish, competition for funds, and career advancement. Community-based participatory research (CBPR) provides a different context for scientific integrity with additional and…

  10. Strengthening Communication and Scientific Reasoning Skills of Graduate Students Through the INSPIRE Program

    Science.gov (United States)

    Pierce, Donna M.; McNeal, K. S.; Radencic, S. P.; Schmitz, D. W.; Cartwright, J.; Hare, D.; Bruce, L. M.

    2012-10-01

    Initiating New Science Partnerships in Rural Education (INSPIRE) is a five-year partnership between Mississippi State University and three nearby school districts. The primary goal of the program is to strengthen the communication and scientific reasoning skills of graduate students in geosciences, physics, chemistry, and engineering by placing them in area middle school and high school science and mathematics classrooms for ten hours a week for an entire academic year as they continue to conduct their thesis or dissertation research. Additional impacts include increased content knowledge for our partner teachers and improvement in the quality of classroom instruction using hands-on inquiry-based activities that incorporate ideas used in the research conducted by the graduate students. Current technologies, such as Google Earth, GIS, Celestia, benchtop SEM and GCMS, are incorporated into many of the lessons. Now in the third year of our program, we will present the results of our program to date, including an overview of documented graduate student, teacher, and secondary student achievements, the kinds of activities the graduate students and participating teachers have developed for classroom instruction, and the accomplishments resulting from our four international partnerships. INSPIRE is funded by the Graduate K-12 (GK-12) STEM Fellowship Program (Award No. DGE-0947419), which is part of the Division for Graduate Education of the National Science Foundation.

  11. Geochemical, hydrological and biological cycling of energy residuals. Research plan: subsurface transport program

    International Nuclear Information System (INIS)

    Wobber, F.J.

    1985-09-01

    Because natural processes associated with the release and the transport of organic compounds, trace metals, and radionuclides are incompletely understood, research in this area is critical if the long term scientific uncertainties about contaminant transport are to be resolved. The processes that control mobilization and attenuation of energy residuals in soils and geological strata, their hydrological transport to and within ground water regimes, and their accumulation in biological systems require research attention. A summary of DOE's core research program is described. It is designed to provide a base of fundamental scientific information so that the geochemical hydrological, and biophysical mechanics that contribute to the transport and long term fate of energy related contaminants in natural systems can be understood

  12. Social Science at the Center for Adaptive Optics: Synergistic Systems of Program Evaluation, Applied Research, Educational Assessment, and Pedagogy

    Science.gov (United States)

    Goza, B. K.; Hunter, L.; Shaw, J. M.; Metevier, A. J.; Raschke, L.; Espinoza, E.; Geaney, E. R.; Reyes, G.; Rothman, D. L.

    2010-12-01

    This paper describes the interaction of four elements of social science as they have evolved in concert with the Center for Adaptive Optics Professional Development Program (CfAO PDP). We hope these examples persuade early-career scientists and engineers to include social science activities as they develop grant proposals and carry out their research. To frame our discussion we use a metaphor from astronomy. At the University of California Santa Cruz (UCSC), the CfAO PDP and the Educational Partnership Center (EPC) are two young stars in the process of forming a solar system. Together, they are surrounded by a disk of gas and dust made up of program evaluation, applied research, educational assessment, and pedagogy. An idea from the 2001 PDP intensive workshops program evaluation developed into the Assessing Scientific Inquiry and Leadership Skills (AScILS) applied research project. In iterative cycles, AScILS researchers participated in subsequent PDP intensive workshops, teaching social science while piloting AScILS measurement strategies. Subsequent "orbits" of the PDP program evaluation gathered ideas from the applied research and pedagogy. The denser regions of this disk of social science are in the process of forming new protoplanets as tools for research and teaching are developed. These tools include problem-solving exercises or simulations of adaptive optics explanations and scientific reasoning; rubrics to evaluate the scientific reasoning simulation responses, knowledge regarding inclusive science education, and student explanations of science/engineering inquiry investigations; and a scientific reasoning curriculum. Another applied research project is forming with the design of a study regarding how to assess engineering explanations. To illustrate the mutual shaping of the cross-disciplinary, intergenerational group of educational researchers and their projects, the paper ends with a description of the professional trajectories of some of the

  13. Quantitative and Qualitative Evaluation of Iranian Researchers' Scientific Production in Dentistry Subfields.

    Science.gov (United States)

    Yaminfirooz, Mousa; Motallebnejad, Mina; Gholinia, Hemmat; Esbakian, Somayeh

    2015-10-01

    As in other fields of medicine, scientific production in the field of dentistry has significant placement. This study aimed at quantitatively and qualitatively evaluating Iranian researchers' scientific output in the field of dentistry and determining their contribution in each of dentistry subfields and branches. This research was a scientometric study that applied quantitative and qualitative indices of Web of Science (WoS). Research population consisted of927indexed documents published under the name of Iran in the time span of 1993-2012 which were extracted from WoS on 10 March 2013. The Mann-Whitney test and Pearson correlation coefficient were used to data analyses in SPSS 19. 777 (83. 73%) of indexed items of all scientific output in WoS were scientific articles. The highest growth rate of scientific productionwith90% belonged to endodontic sub field. The correlation coefficient test showed that there was a significant positive relationship between the number of documents and their publication age (P scientific production in various subfields of dentistry were very different. It needs to reinforce the infrastructure for more balanced scientific production in the field and its related subfields.

  14. Strategies towards Evaluation beyond Scientific Impact. Pathways not only for Agricultural Research

    Directory of Open Access Journals (Sweden)

    Birge M. Wolf

    2013-12-01

    Full Text Available Various research fields, like organic agricultural research, are dedicated to solving real-world problems and contributing to sustainable development. Therefore, systems research and the application of interdisciplinary and transdisciplinary approaches are increasingly endorsed. However, research performance depends not only on self-conception, but also on framework conditions of the scientific system, which are not always of benefit to such research fields. Recently, science and its framework conditions have been under increasing scrutiny as regards their ability to serve societal benefit. This provides opportunities for (organic agricultural research to engage in the development of a research system that will serve its needs. This article focuses on possible strategies for facilitating a balanced research evaluation that recognises scientific quality as well as societal relevance and applicability. These strategies are (a to strengthen the general support for evaluation beyond scientific impact, and (b to provide accessible data for such evaluations. Synergies of interest are found between open access movements and research communities focusing on global challenges and sustainability. As both are committed to increasing the societal benefit of science, they may support evaluation criteria such as knowledge production and dissemination tailored to societal needs, and the use of open access. Additional synergies exist between all those who scrutinise current research evaluation systems for their ability to serve scientific quality, which is also a precondition for societal benefit. Here, digital communication technologies provide opportunities to increase effectiveness, transparency, fairness and plurality in the dissemination of scientific results, quality assurance and reputation. Furthermore, funders may support transdisciplinary approaches and open access and improve data availability for evaluation beyond scientific impact. If they begin to

  15. Progress of scientific researches and project of CSR in IMP

    International Nuclear Information System (INIS)

    Jin Genming

    2004-01-01

    The article reviews the recent progress of the scientific researches including synthesis of new nuclides, investigations of the isospin effects in heavy ion collisions, studies of the nuclear structure in high spin states and the applications of heavy ion beams to other scientific researches, such as biology and material science. It also gives a brief introduction of the development of the design and progress of the new project of heavy ion cooling storage ring (CSR) of Lanzhou. (author)

  16. Final summary report of the Nordic Nuclear Safety Research Program 1994 - 1997

    International Nuclear Information System (INIS)

    Bennerstedt, T.; Lemmens, A.

    1999-11-01

    This is a summary report of the NKS research program carried out 1994 - 1997. It is basically a compilation of the executive summaries of the final reports on the nine scientific projects carried out during that period. It highlights the conclusions, recommendations and other results of the projects. (au)

  17. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shupla, C.; Shipp, S.; Allen, J.; Kring, D. A.

    2013-01-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA s Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA s and NLSI s objective to train the next generation of scientists, CLSE s High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 168 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research in person.

  18. Role of Scientific Societies in International Collaboration

    Science.gov (United States)

    Fucugauchi, J. U.

    2007-12-01

    Geophysical research increasingly requires global multidisciplinary approaches. Understanding how deeply interrelated are Earth components and processes, population growth, increased needs of mineral and energy resources, global impact of human activities, and view of our planet as an interconnected system emphasizes the need of international cooperation. International research collaboration has an immense potential and is needed for further development of Earth science research and education. The Union Session is planned to provide a forum for analysis and discussion of the status of research and education of geosciences in developing countries, international collaboration programs and new initiatives for promoting and strengthening scientific cooperation. A theme of particular relevance in the analyses and discussions is the role of scientific societies in international collaboration. Societies organize meetings, publish journals and books and promote cooperation through academic exchange activities. They may further assist communities in developing countries in providing and facilitating access to scientific literature, attendance to international meetings, short and long-term stays and student and young researcher mobility. What else can be done? This is a complex subject and scientific societies may not be seen independently from the many factors involved in research and education. Developing countries present additional challenges resulting from limited economic resources and social and political problems, while urgently requiring improved educational and research programs. Needed are in-depth analyses of infrastructure and human resources, and identification of major problems and needs. What are the major limitations and needs in research and postgraduate education in developing countries? What and how should international collaboration do? What are the roles of individuals, academic institutions, funding agencies, scientific societies? Here we attempt to

  19. Profile and scientific production of the Brazilian Council for Scientific and Technological Development (CNPq) researchers in the field of Hematology/Oncology.

    Science.gov (United States)

    Oliveira, Maria Christina Lopes Araujo; Martelli, Daniella Reis; Quirino, Isabel Gomes; Colosimo, Enrico Antônio; Silva, Ana Cristina Simões e; Martelli Júnior, Hercílio; Oliveira, Eduardo Araujo de

    2014-01-01

    several studies have examined the academic production of the researchers at the CNPq, in several areas of knowledge. The aim of this study was to evaluate the scientific production of researchers in Hematology/Oncology who hold scientific productivity grants from the Brazilian Council for Scientific and Technological Development. the Academic CVs of 28 researchers in Hematology/Oncology with active grants in the three-year period from 2006 to 2008 were included in the analysis. The variables of interest were: institution, researchers' time after doctorate, tutoring of undergraduate students, masters and PhD degree, scientific production and its impact. from a total of 411 researchers in Medicine, 28 (7%) were identified as being in the area of Hematology/Oncology. There was a slight predominance of males (53.6%) and grant holders in category 1. Three Brazilian states are responsible for approximately 90% of the researchers: São Paulo (21,75%), Rio de Janeiro (3,11%), and Minas Gerais (2, 7%). During their academic careers, the researchers published 2,655 articles, with a median of 87 articles per researcher (IQR = 52 to 122). 65 and 78% of this total were indexed on the Web of Science and Scopus databases, respectively. The researchers received 14,247 citations on the WoS database with a median of 385 citations per researcher. The average number of citations per article was 8.2. in this investigation, it was noted that researchers in the field of Hematology/Oncology have a relevant scientific output from the point of view of quantity and quality compared to other medical specialties.

  20. An undergraduate course to bridge the gap between textbooks and scientific research.

    Science.gov (United States)

    Wiegant, Fred; Scager, Karin; Boonstra, Johannes

    2011-01-01

    This article reports on a one-semester Advanced Cell Biology course that endeavors to bridge the gap between gaining basic textbook knowledge about cell biology and learning to think and work as a researcher. The key elements of this course are 1) learning to work with primary articles in order to get acquainted with the field of choice, to learn scientific reasoning, and to identify gaps in our current knowledge that represent opportunities for further research; 2) formulating a research project with fellow students; 3) gaining thorough knowledge of relevant methodology and technologies used within the field of cell biology; 4) developing cooperation and leadership skills; and 5) presenting and defending research projects before a jury of experts. The course activities were student centered and focused on designing a genuine research program. Our 5-yr experience with this course demonstrates that 1) undergraduate students are capable of delivering high-quality research designs that meet professional standards, and 2) the authenticity of the learning environment in this course strongly engages students to become self-directed and critical thinkers. We hope to provide colleagues with an example of a course that encourages and stimulates students to develop essential research thinking skills.

  1. Developing public awareness for climate change: Support from international research programs

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, F.J.; Clements, W.E.

    1998-12-31

    Developing regional and local public awareness and interest in global climate change has been mandated as an important step for increasing the ability for setting policy and managing the response to climate change. Research programs frequently have resources that could help reach regional or national goals for increasing the capacity for responding to climate change. To obtain these resources and target recipients appropriately, research investigators need clear statements of national and regional strategies or priorities as a guide. One such program, the Atmospheric Radiation Measurement (ARM) Program, has a requirement to develop local or regional education enrichment programs at their observational sites in the central US, the tropical western Pacific (TWP), and on the north slope of alaska. ARM's scientific goals will result in a flow of technical data and as well as technical expertise that can assist with regional needs to increase the technical resources needed to address climate change issues. Details of the ARM education program in the Pacific will be presented.

  2. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    Science.gov (United States)

    Gosz, J.

    2001-12-01

    estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.

  3. The globalization of health research: harnessing the scientific diaspora.

    Science.gov (United States)

    Anand, Nalini P; Hofman, Karen J; Glass, Roger I

    2009-04-01

    The scientific diaspora is a unique resource for U.S. universities. By drawing on the expertise, experience, and catalytic potential of diaspora scientists, universities can capitalize more fully on their diverse intellectual resources to make lasting contributions to global health. This article examines the unique contributions of the diaspora in international research collaborations, advantages of harnessing the diaspora and benefits to U.S. universities of fostering these collaborations, challenges faced by scientists who want to work with their home countries, examples of scientists engaging with their home countries, and specific strategies U.S. universities and donors can implement to catalyze these collaborations. The contributions of the diaspora to the United States are immense: International students enrolled in academic year 2007-2008 contributed an estimated $15 billion to the U.S. economy. As scientific research becomes increasingly global, the percentage of scientific publications with authors from foreign countries has grown from 8% in 1988 to 20% in 2005. Diaspora scientists can help build trusting relationships with scientists abroad, and international collaborations may improve the health of underserved populations at home. Although opportunities for diaspora networks are increasing, most home countries often lack enabling policies, infrastructure, and resources to effectively utilize their diaspora communities abroad. This article examines how some governments have successfully mobilized their scientific diaspora to become increasingly engaged in their national research agendas. Recommendations include specific strategies, including those that encourage U.S. universities to promote mini-sabbaticals and provide seed funding and flexible time frames.

  4. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  5. Proceedings of RIKEN BNL Research Center Workshop, Volume 91, RBRC Scientific Review Committee Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Samios,N.P.

    2008-11-17

    The ninth evaluation of the RIKEN BNL Research Center (RBRC) took place on Nov. 17-18, 2008, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Dr. Wit Busza (Chair), Dr. Miklos Gyulassy, Dr. Akira Masaike, Dr. Richard Milner, Dr. Alfred Mueller, and Dr. Akira Ukawa. We are pleased that Dr. Yasushige Yano, the Director of the Nishina Institute of RIKEN, Japan participated in this meeting both in informing the committee of the activities of the Nishina Institute and the role of RBRC and as an observer of this review. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on his/her research efforts. This encompassed three major areas of investigation, theoretical, experimental and computational physics. In addition the committee met privately with the fellows and postdocs to ascertain their opinions and concerns. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  6. 30 CFR 280.21 - What must I do in conducting G&G prospecting or scientific research?

    Science.gov (United States)

    2010-07-01

    ... scientific research? 280.21 Section 280.21 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE... prospecting or scientific research? While conducting G&G prospecting or scientific research activities under a... you are prospecting or conducting scientific research activities. (b) Consult and coordinate your G&G...

  7. Islamic Educational Transformation: A Study of Scientific and Competence Development in the Study Program of Islamic Education in State Islamic Universities

    Directory of Open Access Journals (Sweden)

    Usman

    2017-06-01

    Full Text Available The research is descriptive and evaluative about religion and modernization of education for the purpose of finding and describing new problems regarding the basic framework of scientific and curriculum development at PAI Studies Program. The purpose of this study is to describe and reveal indicators of the basic framework changes, the views and attitudes of academicians, curriculum development, and learning process that mainly based on information technology. The research was conducted on three State Islamic Universities, namely UIN Sunan Kalijaga Yogyakarta, UIN Syarif Hidayatullah Jakarta, and UIN Maulana Malik Ibrahim Malang with subject research Faculty of Tarbiyah and Teaching Sciences or PAI study program, and sampling technic was done by purposive random. The data was collected by observation method of participation, structured and in-depth interviews and questionnaire method to faculty (leader and students. Data analysis was performed through the logical interpretation and constant comparation. This research is conducted in the field by collecting data, writing and provide a logical interpretation of the data. Based on data and analysis above, it can be concluded that implementation of scientific development conducted by study programs/majors PAI to realize an integrated-interconnection approach is already reflected in the determination of the base (vision and mission majors, policies (quality objectives or quality assurance, programs, and learning process. Whole has grown, when it is understood from the meaning of modernization of education (change/development model of education management, from the old way/conventional leads to a more contemporary.

  8. To the Extremes! A Teacher Research Experience Program in the Polar Regions

    Science.gov (United States)

    Warburton, J.; Bartholow, S.

    2014-12-01

    PolarTREC-Teachers and Researchers Exploring and Collaborating, a teacher professional development program, began with the International Polar Year in 2004 and continues today in the United States. In 2007, the National Science Foundation designated PolarTREC as potentially transformative, meaning that the "research results often do not fit within established models or theories and may initially be unexpected or difficult to interpret; their transformative nature and utility might not be recognized until years later." PolarTREC brings U.S. K-12 educators and polar researchers together through an innovative teacher research experience model. Teachers spend three to six weeks in remote arctic and Antarctic field camps. Since 2007, over 100 teachers have been placed in field experiences throughout the Arctic and Antarctic and with half of them participating in field experiences in Antarctica. During their experience, teachers become research team members filling a variety of roles on the team. They also fulfil a unique role of public outreach officer, conducting live presentations about their field site and research as well as journaling, answering questions, and posting photos. Evaluation data collected over the past eight years on program participants shows that PolarTREC has clearly achieved it goals and strongly suggests programs that link teachers and researchers can have the potential to transform the nature of science education. By giving teachers the content knowledge, pedagogical tools, confidence, understanding of science in the broader society, and experiences with scientific inquiry, participating teachers are using authentic scientific research in their classrooms. Not surprisingly this has also led to increases in student interest and knowledge about the Polar Regions. In this presentation, we will highlight the best practices of teacher research experiences as well as discuss why it is vital to have teachers and researchers work together to communicate

  9. DOE (Department of Energy) Epidemiologic Research Program: Selected bibliography

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the Department of Energy (DOE) Epidemiologic Research Program is to determine the human health effects resulting from the generation and use of energy, and from the operation of DOE facilities. The program has been divided into seven general areas of activity: the Radiation Effects Research Foundation (RERF) which supports studies of survivors of the atomic weapons in Hiroshima and Nagasaki, mortality and morbidity studies of DOE workers, studies on internally deposited alpha emitters, medical/histologic studies, studies on the genetic aspects of radiation damage, community health surveillance studies, and the development of computational techniques and of databases to make the results as widely useful as possible. Excluding the extensive literature from the RERF, the program has produced 380 publications in scientific journals, contributing significantly to improving the understanding of the health effects of ionizing radiation exposure. In addition, a large number of public presentations were made and are documented elsewhere in published proceedings or in books. The purpose of this bibliograhpy is to present a guide to the research results obtained by scientists supported by the program. The bibliography, which includes doctoral theses, is classified by national laboratory and by year. Multi-authored studies are indicated only once, according to the main supporting laboratory.

  10. HR Excellence in Research as an attribute of scientific institutions’ competitiveness

    Directory of Open Access Journals (Sweden)

    Jarosławska-Sobór Sylwia

    2017-03-01

    Full Text Available What plays a major role in the process of building the competitiveness of an organization is not just the ability to adapt to the changing conditions in the environment, but also acquiring characteristics distinguishing it, which make it possible to keep, or improve its position on the market. What may be such a handicap for a scientific unit is the HR Excellence in Research (HRE logo, which is awarded by the European Commission under the strategy “Human Resources Strategy for Researchers” (HRS4R. It is awarded to scientific institutions, which implement the rules of the „European Charter for Researchers” and the „Code of Conduct for the Recruitment of Researchers”, and thanks to this create a friendly work environment and opportunities for development. In 2015 Central Mining Institute (GIG took steps aimed at getting the HR Excellence in Research logo, which is supposed to boost the attractiveness of the institute for scientists and contribute to further development of science and achieving a better position on the market. In the article the results of an internal analysis, which includes research on the opinions of scientific and research employees of GIG concerning the existing practices and rules governing research at the institute, are discussed. As a result of the research a Report together with an Action Plan were drawn up. They are supposed to support the creation of a friendly environment for scientific work and transparent rules for recruiting scientific employees. Also, the article highlights the most important challenges which the institute has to face in order to fully implement the guidelines of HRE, which stimulate economic and personal development.

  11. Effect of Initial Conditions on Reproducibility of Scientific Research

    Science.gov (United States)

    Djulbegovic, Benjamin; Hozo, Iztok

    2014-01-01

    Background: It is estimated that about half of currently published research cannot be reproduced. Many reasons have been offered as explanations for failure to reproduce scientific research findings- from fraud to the issues related to design, conduct, analysis, or publishing scientific research. We also postulate a sensitive dependency on initial conditions by which small changes can result in the large differences in the research findings when attempted to be reproduced at later times. Methods: We employed a simple logistic regression equation to model the effect of covariates on the initial study findings. We then fed the input from the logistic equation into a logistic map function to model stability of the results in repeated experiments over time. We illustrate the approach by modeling effects of different factors on the choice of correct treatment. Results: We found that reproducibility of the study findings depended both on the initial values of all independent variables and the rate of change in the baseline conditions, the latter being more important. When the changes in the baseline conditions vary by about 3.5 to about 4 in between experiments, no research findings could be reproduced. However, when the rate of change between the experiments is ≤2.5 the results become highly predictable between the experiments. Conclusions: Many results cannot be reproduced because of the changes in the initial conditions between the experiments. Better control of the baseline conditions in-between the experiments may help improve reproducibility of scientific findings. PMID:25132705

  12. Funding food science and nutrition research: financial conflicts and scientific integrity.

    Science.gov (United States)

    Rowe, Sylvia; Alexander, Nick; Clydesdale, Fergus; Applebaum, Rhona; Atkinson, Stephanie; Black, Richard; Dwyer, Johanna; Hentges, Eric; Higley, Nancy; Lefevre, Michael; Lupton, Joanne; Miller, Sanford; Tancredi, Doris; Weaver, Connie; Woteki, Catherine; Wedral, Elaine

    2009-05-01

    There has been significant public debate about the susceptibility of research to biases of various kinds. The dialogue has extended to the peer-reviewed literature, scientific conferences, the mass media, government advisory bodies, and beyond. While biases can come from myriad sources, the overwhelming focus of the discussion, to date, has been on industry-funded science. Given the critical role that industry has played and will continue to play in the research process, the International Life Sciences Institute (ILSI) North America Working Group on Guiding Principles has, in this paper, set out proposed conflict-of-interest guidelines, regarding industry funding, for protecting the integrity and credibility of the scientific record, particularly with respect to health, nutrition, and food-safety science. Eight principles are enumerated, specifying ground rules for industry-sponsored research. The paper, which issues a challenge to the broader scientific community to address all bias issues, is only a first step; the document is intended to be dynamic, prompting ongoing discussion and refinement. The Guiding Principles are as follows. In the conduct of public/private research relationships, all relevant parties shall: 1) conduct or sponsor research that is factual, transparent, and designed objectively; according to accepted principles of scientific inquiry, the research design will generate an appropriately phrased hypothesis and the research will answer the appropriate questions, rather than favor a particular outcome; 2) require control of both study design and research itself to remain with scientific investigators; 3) not offer or accept remuneration geared to the outcome of a research project; 4) prior to the commencement of studies, ensure that there is a written agreement that the investigative team has the freedom and obligation to attempt to publish the findings within some specified time-frame; 5) require, in publications and conference presentations

  13. Funding food science and nutrition research: financial conflicts and scientific integrity.

    Science.gov (United States)

    Rowe, Sylvia; Alexander, Nick; Clydesdale, Fergus M; Applebaum, Rhona S; Atkinson, Stephanie; Black, Richard M; Dwyer, Johanna T; Hentges, Eric; Higley, Nancy A; Lefevre, Michael; Lupton, Joanne R; Miller, Sanford A; Tancredi, Doris L; Weaver, Connie M; Woteki, Catherine E; Wedral, Elaine

    2009-05-01

    There has been significant public debate about the susceptibility of research to biases of various kinds. The dialogue has extended to the peer-reviewed literature, scientific conferences, the mass media, government advisory bodies, and beyond. Whereas biases can come from myriad sources, the overwhelming focus of the discussion to date has been on industry-funded science. Given the critical role that industry has played and will continue to play in the research process, the International Life Sciences Institute (ILSI) North America Working Group on Guiding Principles has, in this article, proposed conflict-of-interest guidelines regarding industry funding to protect the integrity and credibility of the scientific record, particularly with respect to health, nutrition, and food-safety science. Eight principles are enumerated, which specify the ground rules for industry-sponsored research. This article, which issues a challenge to the broader scientific community to address all bias issues, is only a first step; the document is intended to be dynamic, prompting ongoing discussion and refinement. In the conduct of public/private research relationships, all relevant parties shall 1) conduct or sponsor research that is factual, transparent, and designed objectively, and, according to accepted principles of scientific inquiry, the research design will generate an appropriately phrased hypothesis and the research will answer the appropriate questions, rather than favor a particular outcome; 2) require control of both study design and research itself to remain with scientific investigators; 3) not offer or accept remuneration geared to the outcome of a research project; 4) ensure, before the commencement of studies, that there is a written agreement that the investigative team has the freedom and obligation to attempt to publish the findings within some specified time frame; 5) require, in publications and conference presentations, full signed disclosure of all financial

  14. 75 FR 3542 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2010-01-21

    ... DEPARTMENT OF VETERANS AFFAIRS Rehabilitation Research and Development Service Scientific Merit... (Federal Advisory Committee Act) that the Rehabilitation Research and Development Service Scientific Merit... Board is to review rehabilitation research and development applications for scientific and technical...

  15. 75 FR 40036 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2010-07-13

    ... DEPARTMENT OF VETERANS AFFAIRS Rehabilitation Research and Development Service Scientific Merit... (Federal Advisory Committee Act) that the Rehabilitation Research and Development Service Scientific Merit... is to review rehabilitation research and development applications for scientific and technical merit...

  16. Council for Scientific and Industrial Research annual report 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The CSIR undertakes and manages broadly based scientific research, development and technology transfer in South Africa. The organisation is divided into four groups: Corporate Finance Management; Research Development and Implementation; Foundation for Research Development and Corporate Support Services. Research on coal is carried out by the Energy Technology Division which is part of the Research, Development and Implementation Group. This annual report reviews the work of the CSIR during 1987.

  17. The Role of Scientific Research in Modern Society

    Directory of Open Access Journals (Sweden)

    Maia GRÎU

    2016-06-01

    Full Text Available Research, development and innovation is for any country the engine of its economic and social development. Common concern of all countries for science and scientific research appears as a recognition of their role in ensuring the welfare of human civilization.The level of society development is determined mainly by performance of its education and research systems, educational level of its citizens, the quality of research activity products and equitable access of all potential users to the services and products of these systems.

  18. Research Experiences in Community College Science Programs

    Science.gov (United States)

    Beauregard, A.

    2011-12-01

    research with my community college students by partnering with a research oceanographer. Through this partnership, students have had access to an active oceanographic researcher through classroom visits, use of data in curriculum, and research/cruise progress updates. With very little research activity currently going on at the community college, this "window" into scientific research is invaluable. Another important aspect of this project is the development of a summer internship program that has allowed four community college students to work directly with an oceanographer in her lab for ten weeks. This connection of community college students with world-class scientists in the field promotes better understanding of research and potentially may encourage more students to major in the sciences. In either approach, the interaction with scientists at different stages of their careers, from undergraduate and graduate students at universities to post docs and research scientists, also provides community college students with the opportunity to gain insight into possible career pathways. For both majors and non-majors, a key outcome of such experiences will be gaining experience in using inquiry and reasoning through the scientific method and becoming comfortable with data and technology.

  19. [Investigation methodology and application on scientific and technological personnel of traditional Chinese medical resources based on data from Chinese scientific research paper].

    Science.gov (United States)

    Li, Hai-yan; Li, Yuan-hai; Yang, Yang; Liu, Fang-zhou; Wang, Jing; Tian, Ye; Yang, Ce; Liu, Yang; Li, Meng; Sun Li-ying

    2015-12-01

    The aim of this study is to identify the present status of the scientific and technological personnel in the field of traditional Chinese medicine (TCM) resource science. Based on the data from Chinese scientific research paper, an investigation regarding the number of the personnel, the distribution, their output of paper, their scientific research teams, high-yield authors and high-cited authors was conducted. The study covers seven subfields of traditional Chinese medicine identification, quality standard, Chinese medicine cultivation, harvest processing of TCM, market development and resource protection and resource management, as well as 82 widely used Chinese medicine species, such as Ginseng and Radix Astragali. One hundred and fifteen domain authority experts were selected based on the data of high-yield authors and high-cited authors. The database system platform "Skilled Scientific and Technological Personnel in the field of Traditional Chinese Medicine Resource Science-Chinese papers" was established. This platform successfully provided the retrieval result of the personnel, output of paper, and their core research team by input the study field, year, and Chinese medicine species. The investigation provides basic data of scientific and technological personnel in the field of traditional Chinese medicine resource science for administrative agencies and also evidence for the selection of scientific and technological personnel and construction of scientific research teams.

  20. Cultivating the scientific research ability of undergraduate students in teaching of genetics.

    Science.gov (United States)

    Xing, Wan-jin; Morigen, Morigen

    2016-11-20

    The classroom is the main venue for undergraduate teaching. It is worth pondering how to cultivate undergraduate's research ability in classroom teaching. Here we introduce the practices and experiences in teaching reform in genetics for training the research quality of undergraduate students from six aspects: (1) constructing the framework for curriculum framework systematicaly, (2) using the teaching content to reflect research progress, (3) explaining knowledge points with research activities, (4) explaining the scientific principles and experiments with PPT animation, (5) improving English reading ability through bilingual teaching, and (6) testing students' analysing ability through examination. These reforms stimulate undergraduate students' enthusiasm for learning, cultivate their ability to find, analyze and solve scientific problems, and improve their English reading and literature reviewing capacity, which lay a foundation for them to enter the field of scientific research.

  1. Research on the Scientific and Technological Innovation of Research University and Its Strategic Measures

    Science.gov (United States)

    Cheng, Yongbo; Ge, Shaowei

    2005-01-01

    This paper illustrates the important role that the scientific and technological innovation plays in the research university. Technological innovation is one of the main functions that the research university serves and contributes for the development of economy and society, which is the essential measure for Research University to promote…

  2. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    Science.gov (United States)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.

  3. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    International Nuclear Information System (INIS)

    Creed, R.J.; Laney, P.T.

    2002-01-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives

  4. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  5. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  6. 7. Framework Research Program

    International Nuclear Information System (INIS)

    Donghi, C.; Pieri, Alberto; Manzini, G.

    2006-01-01

    The UE it means to face the problem of the deficiency if investments in the RS field. In particular politics of research are turned to pursue three main goals: the strengthening of the scientific excellence in Europe; the increase of total investments for research; the realization of European space of research [it

  7. Modeling scientific research articles : shifting perspectives and persistent issues

    NARCIS (Netherlands)

    De Waard, Anita; Kircz, Joost

    2008-01-01

    We review over 10 years of research at Elsevier and various Dutch academic institutions on establishing a new format for the scientific research article. Our work rests on two main theoretical principles: the concept of modular documents, consisting of content elements that can exist and be

  8. Scientific Programming Using Java: A Remote Sensing Example

    Science.gov (United States)

    Prados, Don; Mohamed, Mohamed A.; Johnson, Michael; Cao, Changyong; Gasser, Jerry

    1999-01-01

    This paper presents results of a project to port remote sensing code from the C programming language to Java. The advantages and disadvantages of using Java versus C as a scientific programming language in remote sensing applications are discussed. Remote sensing applications deal with voluminous data that require effective memory management, such as buffering operations, when processed. Some of these applications also implement complex computational algorithms, such as Fast Fourier Transformation analysis, that are very performance intensive. Factors considered include performance, precision, complexity, rapidity of development, ease of code reuse, ease of maintenance, memory management, and platform independence. Performance of radiometric calibration code written in Java for the graphical user interface and of using C for the domain model are also presented.

  9. Socio-epistemic analysis of scientific knowledge production in little science research

    Directory of Open Access Journals (Sweden)

    Alberto Pepe

    2008-12-01

    Full Text Available The processes that drive knowledge production and dissemination in scientific environments are embedded within the social, technical, cultural and epistemic practices of the constituent research communities. This article presents a methodology to unpack specific social and epistemic dimensions of scientific knowledge production using, as a case study,  the Center for Embedded Networked Sensing (CENS, a National Science Foundation “little science” research center involved in theoretical and applied work in the field of wireless communication and sensor networks. By analysis of its scholarly record, I construct a social network of coauthorship, linking individuals that have coauthored scholarly artifacts (journal articles and conference papers, and an epistemic network of topic co-occurrence, linking concepts and knowledge constructs in the same scholarly artifacts. This article reports on ongoing work directed at the study of the emergence and evolution of these networks of scientific interaction. I present some preliminary results and introduce a socio-epistemic method for an historical analysis of network co-evolution. I outline a research design to support further investigations of knowledge production in scientific circles.

  10. The NASA/IPAC Teacher Archive Research Program (NITARP) at Pierce College

    Science.gov (United States)

    Mallory, Carolyn R.; Feig, M.; Mahmud, N.; Silic, T.; Rebull, L.; Hoette, V.; Johnson, C.; McCarron, K.

    2011-01-01

    Our team from Pierce Community College, Woodland Hills, CA, participated in the NASA/IPAC Teacher Archive Research Program (NITARP) this past year (2010). (NITARP is described in another poster, Rebull et al.) Our team worked with archival Spitzer, 2MASS, and optical data to look for young stars in CG4, part of the Gum Nebula; our scientific results are described in a companion poster, Johnson et al. In this poster, we describe more about what we learned and how we incorporated our NITARP experiences into the Pierce College environment. Students developed critical thinking skills and an ability to organize their data analysis and develop a mental "big picture" of what is going on in the CG4 region. The NITARP program is one of several "Active Learning" programs going on at Pierce, and the other programs are briefly summarized in this poster as well. This program was made possible through the NASA/IPAC Teacher Archive Research Project (NITARP) and was funded by NASA Astrophysics Data Program and Archive Outreach funds.

  11. 50 CFR 216.45 - General Authorization for Level B harassment for scientific research.

    Science.gov (United States)

    2010-10-01

    ... aspects of the proposed research; (ii) The species or stocks of marine mammals (common and scientific names) that are the subject of the scientific research and any other species or stock of marine mammals... this section. Annual reports must include: (i) A summary of research activities conducted; (ii...

  12. Research on the Academic Benefits of the Advanced Placement Program

    Directory of Open Access Journals (Sweden)

    Russell T. Warne

    2017-01-01

    Full Text Available With more than 3 million participants per year, the Advanced Placement (AP program is one of the most popular programs in the United States for exposing high-achieving high school students to advanced academic content. Sponsored by the College Board, the AP program provides a framework in which high school teachers can teach introductory college-level courses to high school students. These students then take one of 34 standardized tests at the end of the year, and students who score well on their course’s AP test can receive college credit from their university in which they later enroll. Despite the popularity of the AP program, remarkably little independent research has been conducted on the academic benefits of AP. In this article, I summarize the state of knowledge about the academic benefits of AP. Previous research and descriptive data indicate that AP students outperform non-AP students on a variety of academic measures, but many other aspects of the program are poorly understood, partially due to variability across AP subjects. These aspects include the causal impact of AP, which components of the program are most effective in boosting academic achievement, and how students engage with the AP program. I also conclude by making suggestions for researchers to use new methodologies to investigate new scientific and policy questions and new student populations to improve the educational scholars’ and practitioners’ understanding of the AP program.

  13. The EPA's human exposure research program for assessing cumulative risk in communities.

    Science.gov (United States)

    Zartarian, Valerie G; Schultz, Bradley D

    2010-06-01

    Communities are faced with challenges in identifying and prioritizing environmental issues, taking actions to reduce their exposures, and determining their effectiveness for reducing human health risks. Additional challenges include determining what scientific tools are available and most relevant, and understanding how to use those tools; given these barriers, community groups tend to rely more on risk perception than science. The U.S. Environmental Protection Agency's Office of Research and Development, National Exposure Research Laboratory (NERL) and collaborators are developing and applying tools (models, data, methods) for enhancing cumulative risk assessments. The NERL's "Cumulative Communities Research Program" focuses on key science questions: (1) How to systematically identify and prioritize key chemical stressors within a given community?; (2) How to develop estimates of exposure to multiple stressors for individuals in epidemiologic studies?; and (3) What tools can be used to assess community-level distributions of exposures for the development and evaluation of the effectiveness of risk reduction strategies? This paper provides community partners and scientific researchers with an understanding of the NERL research program and other efforts to address cumulative community risks; and key research needs and opportunities. Some initial findings include the following: (1) Many useful tools exist for components of risk assessment, but need to be developed collaboratively with end users and made more comprehensive and user-friendly for practical application; (2) Tools for quantifying cumulative risks and impact of community risk reduction activities are also needed; (3) More data are needed to assess community- and individual-level exposures, and to link exposure-related information with health effects; and (4) Additional research is needed to incorporate risk-modifying factors ("non-chemical stressors") into cumulative risk assessments. The products of this

  14. Accelerating Science to Action: NGOs Catalyzing Scientific Research using Philanthropic/Corporate Funding

    Science.gov (United States)

    Hamburg, S.

    2017-12-01

    While government funding of scientific research has been the bedrock of scientific advances in the US, it is seldom quick or directly responsive to societal needs. If we are to effectively respond to the increasingly urgent needs for new science to address the environmental and social challenges faced by humanity and the environment we need to deploy new scientific models to augment government-centric approaches. The Environmental Defense Fund has developed an approach that accelerates the development and uptake of new science in pursuit of science-based policy to fill the gap while government research efforts are initiated. We utilized this approach in developing the data necessary to quantify methane emissions from the oil and gas supply chain. This effort was based on five key principles: studies led by an academic researchers; deployment of multiple methods whenever possible (e.g. top-down and bottom-up); all data made public (identity but not location masked when possible); external scientific review; results released in peer-reviewed scientific journals. The research to quantify methane emissions involved > 150 scientists from 40 institutions, resulting in 35 papers published over four years. In addition to the research community companies operating along the oil and gas value chain participated by providing access to sites/vehicles and funding for a portion of the academic research. The bulk of funding came from philanthropic sources. Overall the use of this alternative research/funding model allowed for the more rapid development of a robust body of policy-relevant knowledge that addressed an issue of high societal interest/value.

  15. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  16. A Community - Centered Astronomy Research Program

    Science.gov (United States)

    Boyce, Pat; Boyce, Grady

    2017-06-01

    The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online - hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to expand their

  17. 1 Scientific research as a felt need for society

    Directory of Open Access Journals (Sweden)

    Manuel Gregorio Loza-Murguia

    2011-02-01

    Full Text Available At birth the Journal of the Andean Forest Research Society, in September 2008, seeks to make visible to researchers and research, which often are locked in libraries, which spread in tiny, not transcending beyond the laboratory , cabinet or presentation at a local conference. The publications resulting from research, experi ence, methodological reflections or opinions on relevant issues, with collective interest, should be part of an obligation on professional and scientific society. The importance of a manuscript at various stages of evaluation, to its approval, depends on the editorial board, to maintain the frequency, which helps to maintain the prestige and opens doors for writers to see the seriousness it has. At present research has become a cornerstone of the university, institute, governmental or nongovernmental organization, being this is incor porated into the training of human resources for undergraduate and graduate students who are perpet rators of social transformation and bear fruits that are translated into events that transcend borders, which in turn is why the analysis, comment and / or citation in a journal pair, as this gives pa ttern of product quality that is being offered to society. Finally I thank the editorial staff and researchers, professionals, send their manuscripts to rely on the work being done to keep this means of dissem ination of scientific information, which has no political or economic interest, in favor of ge nerating scientific knowledge, being authors, reviewers, editors, and each contributes to th e generations that are being formed with updated information and this is true, and they generate impr ovements in quality of life of our society as a whole

  18. Building a platform for scientific-research cooperation under circumstances of realized asymmetry of potential

    Directory of Open Access Journals (Sweden)

    Wiśniowski Witold

    2016-12-01

    Full Text Available Growing complexity of the environment arising both from the processes of globalization in world economy and from the development processes in Poland has become a strategic challenge for the Institute of Aviation. Significant disproportions of the potential of Poland, compared to Germany, United States, or China (especially in terms of the economic dimension and the adopted model for financing scientific research, as well as distant position of Polish universities on the scientific map of the world lead to the necessity to create a model for managing the Institute of Aviation based on internationalization of research and cooperation with leading scientific and (Ohio State University – OSU technological centres (General Electric – GE. The experiences of the Institute of Aviation show that what should be the basis of international competitiveness of research institutes is well educated scientific personnel, modern research infrastructure and competences of cooperation. A proof of this is 16-year-long strategic alliance (private-public partnership of the Institute and GE, cooperation with OSU and activities in European research consortia. The innovative dimension of scientific cooperation with OSU (2+2 formula, research internships, commission for predicting new directions of scientific research and other foreign partners allows the Institute of Aviation to achieve success in competition of international character.

  19. Customer Relationship Management in scientific and research institutions

    Directory of Open Access Journals (Sweden)

    Jaromir Matulewicz

    2013-12-01

    Full Text Available Basing on the example of a scientific institute, this article shows: – potential areas in which CRM philosophy, procedures and tools could be applied – purpose of applying CRM – outcomes to expect from CRM application The article shows the Customer Relationship Management idea exclusively, along with areas of its use in scientific and research institutions and also a proposal to determine a group of clients for these institutions. The summary of the article consists of information regarding sources of knowledge about CRM philosophy and procedures (mainly bibliographical and also about IT systems which support CRM.

  20. A Research Experiences for Undergraduates program (REU) Program Designed to Recruit, Engage and Prepare a Diverse Student Population for Careers in Ocean Sciences.

    Science.gov (United States)

    Clarkston, B. E.; Garza, C.

    2016-02-01

    The problem of improving diversity within the Ocean Sciences workforce—still underperforming relative to other scientific disciplines—can only be addressed by first recruiting and engaging a more diverse student population into the discipline, then retaining them in the workforce. California State University, Monterey Bay (CSUMB) is home to the Monterey Bay Regional Ocean Science Research Experiences for Undergraduates (REU) program. As an HSI with strong ties to multiple regional community colleges and other Predominantly Undergraduate Institutions (PUIs) in the CSU system, the Monterey Bay REU is uniquely positioned to address the crucial recruitment and engagement of a diverse student body. Eleven sophomore and junior-level undergraduate students are recruited per year from academic institutions where research opportunities in STEM are limited and from groups historically underrepresented in the Ocean Sciences, including women, underrepresented minorities, persons with disabilities, and veterans. During the program, students engage in a 10-week original research project guided by a faculty research mentor in one of four themes: Oceanography, Marine Biology and Ecology, Ocean Engineering, and Marine Geology. In addition to research, students develop scientific self-efficacy and literacy skills through rigorous weekly professional development workshops in which they practice critical thinking, ethical decision-making, peer review, writing and oral communication skills. These workshops include tangible products such as an NSF-style proposal paper, Statement of Purpose and CV modelled for the SACNAS Travel Award Application, research abstract, scientific report and oral presentation. To help retain students in Ocean Sciences, students build community during the REU by living together in the CSUMB dormitories; post-REU, students stay connected through an online facebook group, LinkedIn page and group webinars. To date, the REU has supported 22 students in two

  1. The Formation of Methodical Approach to Estimation of Scientific-Research, Scientific-Technical, and Innovative Activity of Institutions of Higher Education

    Directory of Open Access Journals (Sweden)

    Yermachenko Volodymyr Ye.

    2017-12-01

    Full Text Available The research is aimed at developing a methodical approach to the construction of an innovative system of estimation of research, scientific, technical, and innovative activities of higher education institutions (HEI on the basis of elaborate structured system of indicators. The proposed methodical approach contains five stages, the research discloses the content of each of them. Based on the results of a comparative analysis of international and national systems of HEI-rating, as well as the usage of economic and mathematical instrumentarium, a list of indicators for estimating their scientific activities in terms of the selected factors and directions of estimation was formed and substantiated. An approach to formation of cluster aggregates of HEI by the criterion of their scientific performance has been suggested. Proposals on formation of a HEI-rating within the limits of the allocated homogeneous groups by means of the system of integral indicators were developed. Prospects for further scientific researches in this direction imply formation of directions of development of managerial decisions in accordance with the obtained results of rating, which will be directed on strengthening and search for new ways of development of scientific activity of HEI, increase of its level of competitiveness and image, and also strengthening of its contribution to the solution of actual problems of economy and society.

  2. Research Devices Maintenance Programs and Safety Network Infrastructures in Nuclear Malaysia

    International Nuclear Information System (INIS)

    Zainudin Jaafar; Muhammad Zahidee Taat; Ishak Mansor

    2015-01-01

    Instrumentation and Automation Center (PIA) is responsible in carrying out maintenance work for building safety infrastructure and area for nuclear scientific and research work. Care cycle and nuclear scientific tools starting from the preparation of specifications until devices disposal- to get the maximum output from devices therefore PIA has introduced Effective and Comprehensive Maintenance Plan under Management/ Trust/ Development/ Science Fund budgets and also user, Asset Management, caring and handling of the devices. This paper also discussed more on case study related to using and handling so that it can be guidance and standard when its involving mishandling, improper maintenance, inadequacy of supervision and others including improvement suggestion programs. (author)

  3. Principal scientific and technical results. Scientific report 1994

    International Nuclear Information System (INIS)

    1995-01-01

    On January, 1, 1994, the French Bureau de Recherches Geologiques et Minieres has developed a new organization to carry out its scientific research in applied geosciences. With the exception of cartography and geologic synthesis which are dependent on the Direction of the National Geologic Service, a research management has been created with 90 engineers-searchers and 20 technicians for the execution of the research program. This report comprises two parts. The first part is a summary of the objectives and principal results for each research project of 1994, and the second part is a more detailed presentation of the main results for about a third of the projects. (J.S.). 568 refs., 54 figs., 2 tabs., 3 photos

  4. Scientific investigation in deep wells for nuclear waste disposal studies at the Meuse/Haute Marne underground research laboratory, Northeastern France

    Science.gov (United States)

    Delay, Jacques; Rebours, Hervé; Vinsot, Agnès; Robin, Pierre

    Andra, the French National Radioactive Waste Management Agency, is constructing an underground test facility to study the feasibility of a radioactive waste disposal in the Jurassic-age Callovo-Oxfordian argillites. This paper describes the processes, the methods and results of a scientific characterization program carried out from the surface via deep boreholes with the aim to build a research facility for radioactive waste disposal. In particular this paper shows the evolution of the drilling programs and the borehole set up due to the refinement of the scientific objectives from 1994 to 2004. The pre-investigation phase on the Meuse/Haute-Marne site started in 1994. It consisted in drilling seven scientific boreholes. This phase, completed in 1996, led to the first regional geological cross-section showing the main geometrical characteristics of the host rock. Investigations on the laboratory site prior to the sinking of two shafts started in November 1999. The sinking of the shafts started in September 2000 with the auxiliary shaft completed in October 2004. The experimental gallery, at a depth of 445 m in the main shaft, was in operation by end 2004. During the construction of the laboratory, two major scientific programs were initiated to improve the existing knowledge of the regional hydrogeological characteristics and to accelerate the process of data acquisition on the shales. The aim of the 2003 hydrogeological drilling program was to determine, at regional scale, the properties of groundwater transport and to sample the water in the Oxfordian and Dogger limestones. The 2003-2004 programs consisted in drilling nine deep boreholes, four of which were slanted, to achieve an accurate definition of the structural features.

  5. Anticipated Changes in Conducting Scientific Data-Analysis Research in the Big-Data Era

    Science.gov (United States)

    Kuo, Kwo-Sen; Seablom, Michael; Clune, Thomas; Ramachandran, Rahul

    2014-05-01

    A Big-Data environment is one that is capable of orchestrating quick-turnaround analyses involving large volumes of data for numerous simultaneous users. Based on our experiences with a prototype Big-Data analysis environment, we anticipate some important changes in research behaviors and processes while conducting scientific data-analysis research in the near future as such Big-Data environments become the mainstream. The first anticipated change will be the reduced effort and difficulty in most parts of the data management process. A Big-Data analysis environment is likely to house most of the data required for a particular research discipline along with appropriate analysis capabilities. This will reduce the need for researchers to download local copies of data. In turn, this also reduces the need for compute and storage procurement by individual researchers or groups, as well as associated maintenance and management afterwards. It is almost certain that Big-Data environments will require a different "programming language" to fully exploit the latent potential. In addition, the process of extending the environment to provide new analysis capabilities will likely be more involved than, say, compiling a piece of new or revised code. We thus anticipate that researchers will require support from dedicated organizations associated with the environment that are composed of professional software engineers and data scientists. A major benefit will likely be that such extensions are of higher-quality and broader applicability than ad hoc changes by physical scientists. Another anticipated significant change is improved collaboration among the researchers using the same environment. Since the environment is homogeneous within itself, many barriers to collaboration are minimized or eliminated. For example, data and analysis algorithms can be seamlessly shared, reused and re-purposed. In conclusion, we will be able to achieve a new level of scientific productivity in the

  6. Anticipated Changes in Conducting Scientific Data-Analysis Research in the Big-Data Era

    Science.gov (United States)

    Kuo, Kwo-Sen; Seablom, Michael; Clune, Thomas; Ramachandran, Rahul

    2014-01-01

    A Big-Data environment is one that is capable of orchestrating quick-turnaround analyses involving large volumes of data for numerous simultaneous users. Based on our experiences with a prototype Big-Data analysis environment, we anticipate some important changes in research behaviors and processes while conducting scientific data-analysis research in the near future as such Big-Data environments become the mainstream. The first anticipated change will be the reduced effort and difficulty in most parts of the data management process. A Big-Data analysis environment is likely to house most of the data required for a particular research discipline along with appropriate analysis capabilities. This will reduce the need for researchers to download local copies of data. In turn, this also reduces the need for compute and storage procurement by individual researchers or groups, as well as associated maintenance and management afterwards. It is almost certain that Big-Data environments will require a different "programming language" to fully exploit the latent potential. In addition, the process of extending the environment to provide new analysis capabilities will likely be more involved than, say, compiling a piece of new or revised code.We thus anticipate that researchers will require support from dedicated organizations associated with the environment that are composed of professional software engineers and data scientists. A major benefit will likely be that such extensions are of higherquality and broader applicability than ad hoc changes by physical scientists. Another anticipated significant change is improved collaboration among the researchers using the same environment. Since the environment is homogeneous within itself, many barriers to collaboration are minimized or eliminated. For example, data and analysis algorithms can be seamlessly shared, reused and re-purposed. In conclusion, we will be able to achieve a new level of scientific productivity in the Big

  7. Scientific writing seminar for early-stage investigators in substance abuse research.

    Science.gov (United States)

    Guydish, Joseph; Masson, Carmen; Flentje, Annesa; Shopshire, Michael; Sorensen, James L

    2016-01-01

    There is little information on how to increase the scientific writing productivity of early-stage investigators in the addictions field. A scientific writing seminar is presented in this article, aiming to encourage manuscript writing and dissemination of addiction research, and outcomes are reported for 14 years of the seminar. In 14 years, there were 113 postdoctoral fellow enrollments in a 6-month writing seminar. Records of submission and publication rates of manuscripts were collected for 14 cohorts. Of the 113 participant enrollments, 97 (86%) submitted a manuscript for publication, and 87 participants (77%) published their manuscript. A scientific writing seminar may benefit writing productivity, but more research is needed to compare this training model with other existing models.

  8. Design guidelines for adapting scientific research articles: An example from an introductory level, interdisciplinary program on soft matter

    Science.gov (United States)

    Langbeheim, Elon; Safran, Samuel A.; Yerushalmi, Edit

    2013-01-01

    We present design guidelines for using Adapted Primary Literature (APL) as part of current interdisciplinary topics to introductory physics students. APL is a text genre that allows students to comprehend a scientific article, while maintaining the core features of the communication among scientists, thus representing an authentic scientific discourse. We describe the adaptation of a research paper by Nobel Laureate Paul Flory on phase equilibrium in polymer-solvent mixtures that was presented to high school students in a project-based unit on soft matter. The adaptation followed two design strategies: a) Making explicit the interplay between the theory and experiment. b) Re-structuring the text to map the theory onto the students' prior knowledge. Specifically, we map the theory of polymer-solvent systems onto a model for binary mixtures of small molecules of equal size that was already studied in class.

  9. Preparation of Underrepresented Males for Scientific Careers: A Study of the Dr. John H. Hopps Jr. Defense Research Scholars Program at Morehouse College.

    Science.gov (United States)

    Thompson, Rahmelle C; Monroe-White, Thema; Xavier, Jeffrey; Howell, Courtney; Moore, Myisha Roberson; Haynes, J K

    Equal representation within higher education science, technology, engineering, and mathematics (STEM) fields and the STEM workforce in the United States across demographically diverse populations is a long-standing challenge. This study uses two-to-one nearest-neighbor matched-comparison group design to examine academic achievement, pursuit of graduate science degree, and classification of graduate institution attended by students participating in the Hopps Scholars Program (Hopps) at Morehouse College. Hopps is a highly structured enrichment program aimed at increasing participation of black males in STEM fields. Morehouse institutional records, Hopps Program records, and National Student Clearinghouse data were used to examine differences between Hopps and non-Hopps STEM graduates of Morehouse. Two-way sample t tests and chi-square tests revealed significant differences in academic achievement, likelihood of STEM degree pursuit, and the classification of graduate institutions attended by Hopps versus non-Hopps students. Hopps Scholars were significantly more likely than non-Hopps STEM graduates both to pursue STEM doctoral degrees and to attend doctoral-granting institutions with higher research activity. The Hopps Program's approach to training black male students for scientific careers is a model of success for other programs committed to increasing the number of black males pursuing advanced degrees in STEM. © 2016 R. C. Thompson et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. The scientific benefits of inertially confined fusion research

    International Nuclear Information System (INIS)

    Key, M

    1999-01-01

    A striking feature of 25 years of research into inertially confined fusion (ICF) and inertial fusion energy (IFE) has been its significant impact in other fields of science. Most ICF facilities worldwide are now being used in part to support a wider portfolio of research than simply ICF. Reasons for this trend include the high intrinsic interest of the new science coupled with the relative ease and low marginal cost of adapting the facilities particularly lasers, to carry out experiments with goals other than ICF. The availability at ICF laboratories of sophisticated theory and modeling capability and advanced diagnostics has given added impetus. The expertise of ICF specialists has also triggered more lateral scientific spin-offs leading for example to new types of lasers and to related developments in basic science. In a generic sense, the facilities developed for ICF have made possible study of new regimes of the properties of matter at extremely high-energy density and the interaction of ultraintense light with matter. This general opportunity has been exploited in numerous and diverse specific lines of research. Examples elaborated below include laboratory simulation of astrophysical phenomena; studies of the equation of state (EOS) of matter under conditions relevant to the interior of planets and stars; development of uniquely intense sources of extreme ultraviolet (EUV) to hard x-ray emission, notably the x-ray laser; understanding of the physics of strong field interaction of light and matter; and related new phenomena such as laser-induced nuclear processes and high-field-electron accelerators. Some of these developments have potential themselves for further scientific exploitation such as the scientific use of advanced light sources. There are also avenues for commercial exploitation, for example the use of laser plasma sources in EUV lithography. Past scientific progress is summarized here and projections are made for new science that may flow from the

  11. Teachers' conceptions of the nature of science: Analyzing the impact of a teacher enhancement program in changing attitudes and perceptions of science and scientific research

    Science.gov (United States)

    Govett, Aimee Lee

    The purpose of this study was to determine the efficacy of a residential science research experience in changing participants' attitudes and understanding of the nature of science and their view of themselves as science researchers. Data from interviews, journal writings, classroom observations and two pre-post instruments were used in the evaluation plan. As participants of this study, 16 inservice teachers (K--16) attended a two-week residential institute at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia. The format of the institute featured a scientific research experience designed to arm its participants with the skills needed to model their classroom teaching after scientific research. The program included lessons on the fundamentals of radio astronomy, science talks and interactions with practicing scientists, in-depth tours of the NRAO facilities, and pedagogical instruction for implementing research in the classroom. The WVU College of Education staff and the NRAO staff stressed the importance of the nature of the research experience offered to these teachers. In the Education Sessions the WVU science education staff guided participants through the steps required to turn their experience around, in order to develop student research projects for their classrooms. The results from the Research Self Assessment instrument show significant gains for all participants in being more comfortable doing research. For the Nature of Science and Science Teaching instrument there were only three items that showed significant gains for all participants both in understanding the nature of science and in their views on implementing the Green Bank constructivist learning philosophy. The women, especially the elementary teacher group, showed the greatest change in their understanding of the nature of science as reflected in the interviews as well as in their personal journals. The seven men, who were all in the secondary field, made no significant

  12. Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics

    Science.gov (United States)

    Huntress, W. T., Jr.

    1978-01-01

    A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.

  13. Research on the Construction Management and Sustainable Development of Large-Scale Scientific Facilities in China

    Science.gov (United States)

    Guiquan, Xi; Lin, Cong; Xuehui, Jin

    2018-05-01

    As an important platform for scientific and technological development, large -scale scientific facilities are the cornerstone of technological innovation and a guarantee for economic and social development. Researching management of large-scale scientific facilities can play a key role in scientific research, sociology and key national strategy. This paper reviews the characteristics of large-scale scientific facilities, and summarizes development status of China's large-scale scientific facilities. At last, the construction, management, operation and evaluation of large-scale scientific facilities is analyzed from the perspective of sustainable development.

  14. 76 FR 72678 - Atlantic Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering...

    Science.gov (United States)

    2011-11-25

    ... require scientists to report their activities associated with these tags. Examples of research conducted... stock assessments. The public display and scientific research quotas for sandbar sharks are now limited... Highly Migratory Species; Exempted Fishing, Scientific Research, Display, and Chartering Permits; Letters...

  15. On the Performance of the Python Programming Language for Serial and Parallel Scientific Computations

    Directory of Open Access Journals (Sweden)

    Xing Cai

    2005-01-01

    Full Text Available This article addresses the performance of scientific applications that use the Python programming language. First, we investigate several techniques for improving the computational efficiency of serial Python codes. Then, we discuss the basic programming techniques in Python for parallelizing serial scientific applications. It is shown that an efficient implementation of the array-related operations is essential for achieving good parallel performance, as for the serial case. Once the array-related operations are efficiently implemented, probably using a mixed-language implementation, good serial and parallel performance become achievable. This is confirmed by a set of numerical experiments. Python is also shown to be well suited for writing high-level parallel programs.

  16. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    International Nuclear Information System (INIS)

    SAMIOS, N.P.

    2005-01-01

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment

  17. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 77, RBRC SCIENTIFIC REVIEW COMMITTEE MEETING, OCTOBER 10-12, 2005

    Energy Technology Data Exchange (ETDEWEB)

    SAMIOS, N.P.

    2005-10-10

    The eighth evaluation of the RIKEN BNL Research Center (RBRC) took place on October 10-12, 2005, at Brookhaven National Laboratory. The members of the Scientific Review Committee (SRC) were Dr. Jean-Paul Blaizot, Professor Makoto Kobayashi, Dr. Akira Masaike, Professor Charles Young Prescott (Chair), Professor Stephen Sharpe (absent), and Professor Jack Sandweiss. We are grateful to Professor Akira Ukawa who was appointed to the SRC to cover Professor Sharpe's area of expertise. In addition to reviewing this year's program, the committee, augmented by Professor Kozi Nakai, evaluated the RBRC proposal for a five-year extension of the RIKEN BNL Collaboration MOU beyond 2007. Dr. Koji Kaya, Director of the Discovery Research Institute, RIKEN, Japan, presided over the session on the extension proposal. In order to illustrate the breadth and scope of the RBRC program, each member of the Center made a presentation on higher research efforts. In addition, a special session was held in connection with the RBRC QCDSP and QCDOC supercomputers. Professor Norman H. Christ, a collaborator from Columbia University, gave a presentation on the progress and status of the project, and Professor Frithjof Karsch of BNL presented the first physics results from QCDOC. Although the main purpose of this review is a report to RIKEN Management (Dr. Ryoji Noyori, RIKEN President) on the health, scientific value, management and future prospects of the Center, the RBRC management felt that a compendium of the scientific presentations are of sufficient quality and interest that they warrant a wider distribution. Therefore we have made this compilation and present it to the community for its information and enlightenment.

  18. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    Science.gov (United States)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  19. Epidemiologic research programs at the Department of Energy: Looking to the future

    International Nuclear Information System (INIS)

    1994-01-01

    The secretary of the Department of Energy (DOE) asked the National Research Council in 1989 to establish a Committee on Radiation Epidemiological Research Programs to provide scientific advice on the current status and future direction of DOE's epidemiologic research program. This report is in response to a request from the National Research Council committee to provide advice regarding the future directions of OEHS's epidemiologic research. This report begins with some of the background leading to the current activities of OEHS. In 1990, a committee (the Secretarial Panel for the Evaluation of Epidemiological Research Activities, or SPEERA) established by the secretary of the DOE recommended that DOE enter into a memorandum of understanding (MoU) with the Department of Health and Human Services that outlined the responsibilities of the two departments regarding epidemiologic research. The present report points out that the implementation of the SPEERA recommendations and the MoU by DOE have raised issues that have not been satisfactorily resolved

  20. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  1. Strategies for application of scientific findings in prevention.

    Science.gov (United States)

    Wei, S H

    1995-07-01

    Dental research in the last 50 years has accomplished numerous significant advances in preventive dentistry, particularly in the area of research in fluorides, periodontal diseases, restorative dentistry, and dental materials, as well as craniofacial development and molecular biology. The transfer of scientific knowledge to clinical practitioners requires additional effort. It is the responsibility of the scientific communities to transfer the fruits of their findings to society through publications, conferences, media, and the press. Specific programs that the International Association for Dental Research (IADR) has developed to transmit science to the profession and the public have included science transfer seminars, the Visiting Lecture Program, and hands-on workshops. The IADR Strategic Plan also has a major outreach goal. In addition, the Federation Dentaire Internationale (FDI) and the World Health Organization (WHO) have initiated plans to celebrate World Health Day and the Year of Oral Health in 1994. These are important strategies for the application of scientific findings in prevention.

  2. Overview of research in teaching/education programs of graduate in Biochemistry

    Directory of Open Access Journals (Sweden)

    D.F. Escoto et al

    2014-08-01

    Full Text Available INTRODUCTION: In Brazil, since 1980, there is a tendency among Programs Graduate(PG of specific area, such as Biochemistry, of inserting activities involving teaching /education alongside their area of expertise. In this context, various scientific events ofrelevance in the area have presented sessions dedicated to these matters in theirconferences and meetings. OBJECTIVES: This study aimed to investigate the occurrenceof research lines or areas of concentration teaching/education in 16 PG. MATERIALSAND METHODS: We analyzed 35 courses and divided among doctoral, master’sacademic and professional. Data collection occurred through websites of programs. Theanalysis was performed from the indication of the concentration areas or lines of researchprograms presented in their virtual space. Later, they were classified into two categories:those with and those without research in teaching / education. RESULTS ANDDISCUSSION: After visiting all virtual spaces, the results obtained showed that only 3 PGhave research areas and/or areas of concentration in teaching/education. On 2 PG notfound sites were and other 2 PG nor its research nor their area of concentration. From thequantitative search of PG it was still possible to characterize each line found. Basically, theactivities focus on undergraduate education and the pursuit of new teachingmethodologies, only 1 of the PG aims at continuing formation of teachers of basiceducation. CONCLUSION: These activities contribute significantly to the impact andevaluation of the PG. Perceptibly, these spaces are scarce, however, with national policiesfor the dissemination and popularization of scientific production trend is that they areleveraged.

  3. Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program: 10 Years of REU

    Science.gov (United States)

    Canterna, R.; Beck, K.; Hickman, M. A.

    1996-05-01

    The Wyoming Infrared Observatory's Summer Undergraduate Research Assistantship Program (SURAP) will complete its tenth year as an NSF REU site. Using the theme, a tutorial in research, SURAP has provided research experience for over 90 students from all regions of the United States. We will present typical histories of past students to illustrate the impact an REU experience has on the scientific careers of these students. Demographic data will be presented to show the diverse backgrounds of our SURAP students. A short film describing our science ethics seminar will be available for later presentation.

  4. From scientifically based research to evidence based learning

    Directory of Open Access Journals (Sweden)

    Rosa Cera

    2016-02-01

    Full Text Available This essay is a reflection on the peculiarities of the scientifically based research and on the distinctive elements of the EBL (evidence based learning, methodology used in the study on the “Relationship between Metacognition, Self-efficacy and Self-regulation in Learning”. The EBL method, based on the standardization of data, explains how the students’ learning experience can be considered as a set of “data” and can be used to explain how and when the research results can be considered generalizable and transferable to other learning situations. The reflections present in this study have also allowed us to illustrate the impact that its results have had on the micro and macro level of reality. They helped to fill in the gaps concerning the learning/teaching processes, contributed to the enrichment of the scientific literature on this subject and allowed to establish standards through rigorous techniques such as systematic reviews and meta-analysis.

  5. The effectiveness of domestic Scientific research on Iran development Indicators

    Directory of Open Access Journals (Sweden)

    Vahid Ehsani

    2017-06-01

    Full Text Available In recent decades, research has growth Increasingly in Iran and, consequently, the country has risen dramatically in world rankings, based on the number of scientific documents. The impressive growth of the number of Iran researches, research experts increasingly focus on "research impact", and repeated emphasize on the issue of "use of research to improve society" in Iran superior governmental documents, leaded some researchers to investigate "how much Iran researches are effective?" They showed that these researches have in general been ineffective. Therefore, their efficacy should be evaluated which is the main purpose of this study. In this regard, using the Descriptive-Analytical method and valid secondary data and statistics, the results of Citation Analysis of Iran research outcomes were compared with other countries. Central questions of this study were respectively about «the quality of Iran whole researches (1996-2014», «the quality of top researches (2005-2014», «comparing the quality of whole researches with quality of top researches», and «the quality of Iran's Persian (2011-2012 and English (2014 scientific journals». For this purpose, based on the reliable data from valid databases (Thomson Reuters, Scopus and ISC, the value and rank of Iran at different citation related indices were extracted or calculated. The results, including «few citations per paper (5/7 which is about half of the global average (10/3 and declining trend of Iran rank based on this index», «poor country rank based on the share of top papers in all documents (128», «small share of global citations (47.0%, despite a significant share in the world Scientific document (1/1%», «low h-index despite the large number of articles», «inappropriate position in the basis of self-citation (more than 50% in 2014 in addition to a declining trend», «few citations per paper (76/7 which is about half of the global average (144/9», «small share of global

  6. Selective dissemination of information of library in scientific research institution

    International Nuclear Information System (INIS)

    Liu Wenping

    2010-01-01

    Selective Dissemination of Information (SDI) Service, which is an important component of intelligence, is the intelligence researcher to select key subjects and major issues and key technology or innovation goals under the actual needs of scientific research personnel issues, using network communication technology and database technology and information retrieval technologies, sustained and in a timely manner to track all kinds of literature for the front-line services, until the completion of research topics or key problem-solving. Library of China Institute of Atomic Energy is struggling to meet the diverse needs of customers, targeted to provide a lot of useful information for scientific researchers to use less time as possible to obtain as much intelligence information, and to research workers and leading to the successful completion of research tasks, and various decisions. The implementation of SDI services to identify clients and scope, to format SDI service team, to determine the SDI service principles and service mode. SDI services Selective demand intelligence researchers have been asked to improve their quality, to improve their interpersonal communication skills. (author)

  7. Scientific Research: What it Means to Me.

    Science.gov (United States)

    Narlikar, Jayant V

    2008-01-01

    This article gives a personal perception of the author, of what scientific research means. Citing examples from the lives of all time greats like Newton, Kelvin and Maxwell he stresses the agonies of thinking up new ideas, the urge for creativity and the pleasure one derives from the process when it is completed. He then narrates instances from his own life that proved inspirational towards his research career. In his early studenthood, his parents and maternal uncle had widened his intellectual horizons while in later life his interaction with Fred Hoyle made him take up research challenges away from the beaten path. He concludes that taking up an anti-Establishment stand in research can create many logistical difficulties, but the rewards of success are all the more pleasing.

  8. On the Dichotomy of Qualitative and Quantitative Researches in Contemporary Scientific Methodology

    Directory of Open Access Journals (Sweden)

    U V Suvakovic

    2011-12-01

    Full Text Available Argumentation in favor of overcoming the long-ago-established dichotomy of qualitative and quantitative scientific research is presented in the article. Proceeding from the view of materialistic dialecticians that every scientific research must deal with a subject, the author assumes that it is impossible to conduct a quantitative research without first establishing the quality to be studied. This also concerns measuring, which is referred only to quantitative procedures in literature. By way of illustration, the author designs two instruments for measuring the successfulness of political parties - the scale and the quotient of party successfulness. On the other hand, even the qualitative analysis usually involves certain quantifications. The author concludes that to achieve methodological correctness the existing dichotomy of qualitative and quantitative research should be considered as overcome and a typology of scientific research including predominantly qualitative and predominantly quantitative studies, depending on the methodological components prevailing in them, should be used.

  9. 30 CFR 280.11 - What must I do before I may conduct scientific research?

    Science.gov (United States)

    2010-07-01

    ... Apply for a Permit or File a Notice § 280.11 What must I do before I may conduct scientific research? You may conduct G&G scientific research activities related to hard minerals on the OCS only after you... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What must I do before I may conduct scientific...

  10. Bringing scientific rigor to community-developed programs in Hong Kong

    Directory of Open Access Journals (Sweden)

    Fabrizio Cecilia S

    2012-12-01

    Full Text Available Abstract Background This paper describes efforts to generate evidence for community-developed programs to enhance family relationships in the Chinese culture of Hong Kong, within the framework of community-based participatory research (CBPR. Methods The CBPR framework was applied to help maximize the development of the intervention and the public health impact of the studies, while enhancing the capabilities of the social service sector partners. Results Four academic-community research teams explored the process of designing and implementing randomized controlled trials in the community. In addition to the expected cultural barriers between teams of academics and community practitioners, with their different outlooks, concerns and languages, the team navigated issues in utilizing the principles of CBPR unique to this Chinese culture. Eventually the team developed tools for adaptation, such as an emphasis on building the relationship while respecting role delineation and an iterative process of defining the non-negotiable parameters of research design while maintaining scientific rigor. Lessons learned include the risk of underemphasizing the size of the operational and skills shift between usual agency practices and research studies, the importance of minimizing non-negotiable parameters in implementing rigorous research designs in the community, and the need to view community capacity enhancement as a long term process. Conclusions The four pilot studies under the FAMILY Project demonstrated that nuanced design adaptations, such as wait list controls and shorter assessments, better served the needs of the community and led to the successful development and vigorous evaluation of a series of preventive, family-oriented interventions in the Chinese culture of Hong Kong.

  11. Bringing scientific rigor to community-developed programs in Hong Kong.

    Science.gov (United States)

    Fabrizio, Cecilia S; Hirschmann, Malia R; Lam, Tai Hing; Cheung, Teresa; Pang, Irene; Chan, Sophia; Stewart, Sunita M

    2012-12-31

    This paper describes efforts to generate evidence for community-developed programs to enhance family relationships in the Chinese culture of Hong Kong, within the framework of community-based participatory research (CBPR). The CBPR framework was applied to help maximize the development of the intervention and the public health impact of the studies, while enhancing the capabilities of the social service sector partners. Four academic-community research teams explored the process of designing and implementing randomized controlled trials in the community. In addition to the expected cultural barriers between teams of academics and community practitioners, with their different outlooks, concerns and languages, the team navigated issues in utilizing the principles of CBPR unique to this Chinese culture. Eventually the team developed tools for adaptation, such as an emphasis on building the relationship while respecting role delineation and an iterative process of defining the non-negotiable parameters of research design while maintaining scientific rigor. Lessons learned include the risk of underemphasizing the size of the operational and skills shift between usual agency practices and research studies, the importance of minimizing non-negotiable parameters in implementing rigorous research designs in the community, and the need to view community capacity enhancement as a long term process. The four pilot studies under the FAMILY Project demonstrated that nuanced design adaptations, such as wait list controls and shorter assessments, better served the needs of the community and led to the successful development and vigorous evaluation of a series of preventive, family-oriented interventions in the Chinese culture of Hong Kong.

  12. Practical epistemology: the role of peer review in organizing scientific research

    OpenAIRE

    Alexei V. Shestopal; Vladimir I. Konnov

    2014-01-01

    The article considers peer review as the main procedure for demarcating scientific knowledge from other kinds thereof, which do not meet the criteria set for research results. The authors examine the history of peer review, which has first been used in early scientific journals and then has become one of the key approaches to distributing funds for research in science foundations, such as the U.S. National Science Foundation. The article also considers the role of peer review in the legal pro...

  13. 78 FR 6854 - Health Services Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2013-01-31

    ... DEPARTMENT OF VETERANS AFFAIRS Health Services Research and Development Service Scientific Merit... Research and Development Service Scientific Merit Review Board will meet on February 13-14, 2013, at the... research. Applications are reviewed for scientific and technical merit. Recommendations regarding funding...

  14. Risk assessment - a research program aimed at health risks from air pollution in the general environment

    International Nuclear Information System (INIS)

    Lindahl-Kiessling, K.; Ahlborg, U.; Bylin, G.; Ehrenberg, L.; Hemminki, K.; Lindell, B.; Nilsson, Robert; Bostroem, C.E.; Swarn, U.

    1991-01-01

    The paper presents a new research program for assessment of health risks caused by air pollutants. It is important to develop general methods for quantitative risk assessments and to improve the scientific base materials. (KAE)

  15. 78 FR 18680 - Rehabilitation Research and Development Scientific Merit Review Board, Notice of Meeting

    Science.gov (United States)

    2013-03-27

    ... DEPARTMENT OF VETERANS AFFAIRS Rehabilitation Research and Development Scientific Merit Review... Service, and the Chief Research and Development Officer on the scientific and technical merit, the mission... Committee Act, 5 U.S.C. App. 2, that a meeting of the Rehabilitation Research and Development Service...

  16. Scientific discourse in educational research in Latin America: the case of Mexico

    OpenAIRE

    Sara Julia Castellanos Quintero

    2011-01-01

    In this article it is presented the state of arts of the analysis of the scientific discourse in educational research in Mexico, particularly, in the curriculum design and development research. The development of the research in the area of university curricula started seriously in the decade of 80´s.The scientific discourse was oriented towards the searching of models and methods of teaching and evaluation, of the best way of the implementation of practicum and the correspondence between the...

  17. Dynamics and structure of project performers of the «Federal target program for research and development in priority areas of development of the Russian scientific and technological complex for 2014–2020»

    Directory of Open Access Journals (Sweden)

    I. N. Chernova

    2017-01-01

    Full Text Available The article considers socio-demographic issues of research and development of the «Federal Target Program for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014–2020». Analysis based on project's documents in the Program from 2014 to 2016. We studied the dynamics in both quantitative and qualitative characteristics of project performers – applied research and experimental development, and defined trends of project R&D personnel changes, including sociodemographic characteristics: age, size and composition of performers, the proportion of researchers with academic degree, and the proportion of women-researchers. In the article it is shown that specialists under 40 years of age are the largest part of project performers. The renewal of project personnel in time of projects is 65 percent. In the article it is also shown a strong correlation between project academic personnel and academic personnel of Russia as a whole. We devised proposals for tracking quantitative and qualitative parameters of project performers and for securing growth the skill level of young specialists in projects.

  18. ATR National Scientific User Facility 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Julie A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robertson, Sarah [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    This is the 2013 Annual Report for the Advanced Test Reactor National Scientific User Facility. This report includes information on university-run research projects along with a description of the program and the capabilities offered researchers.

  19. Optimizing Communications Between Arctic Residents and IPY Scientific Researchers

    Science.gov (United States)

    Stapleton, M.; Carpenter, L.

    2007-12-01

    BACKGROUND International Polar Year, which was launched in March 2007, is an international program of coordinated, interdisciplinary scientific research on Earth's polar regions. The northern regions of the eight Arctic States (Canada, Alaska (USA), Russia, Sweden, Norway, Finland. Iceland and Greenland (Denmark) have significant indigenous populations. The circumpolar Arctic is one of the least technologically connected regions in the world, although Canada and others have been pioneers in developing and suing Information and Communication Technology (ICT) in remote areas. The people living in this vast geographic area have been moving toward taking their rightful place in the global information society, but are dependent on the outreach and cooperation of larger mainstream societies. The dominant medium of communication is radio, which is flexible in accommodating multiple cultures, languages, and factors of time and distance. The addition of newer technologies such as streaming on the Internet can increase access and content for all communities of interest, north and south. The Arctic Circle of Indigenous Communicators (ACIC) is an independent association of professional Northern indigenous media workers in the print, radio, television, film and Internet industries. ACIC advocates the development of all forms of communication in circumpolar North areas. It is international in scope. Members are literate in English, French, Russian and many indigenous languages. ACIC has proposed the establishment of a headquarters for monitoring IPY projects are in each area, and the use of community radio broadcasters to collect and disseminate information about IPY. The cooperation of Team IPY at the University of Colorado, Arctic Net at Laval University, and others, is being developed. ACIC is committed to making scientific knowledge gained in IPY accessible to those most affected - residents of the Arctic. ABSTRACT The meeting of the American Geophysical Union will be held

  20. Restrictions of comparative analysis of investing in scientific research and scientific outcomes of the countries in nanotechnology

    OpenAIRE

    Milanović, Vesna; Bučalina-Matić, Andrea; Golubović, Marina

    2016-01-01

    The aim of this paper is to provide an insight into restrictions of comparative analysis of investing in scientific research and scientific outcomes of the countries in nanotechnology, having in mind that it is a developing technology which is expected to give significant contribution to science, economy and society in the future. Using the methods of content analysis, comparative methods and relevant literature, certain restrictions of this comparative analysis have been established. They ar...

  1. Learning about the Earth through Societally-relevant Interdisciplinary Research Projects: the Honours Integrated Science Program at McMaster

    Science.gov (United States)

    Eyles, C.; Symons, S. L.; Harvey, C. T.

    2016-12-01

    Students in the Honours Integrated Science (iSci) program at McMaster University (Hamilton, Ontario, Canada) learn about the Earth through interdisciplinary research projects that focus on important societal issues. The iSci program is a new and innovative undergraduate program that emphasizes the links between scientific disciplines and focuses on learning through research and the development of scientific communication skills. The program accepts up to 60 students each year and is taught by a team of 18 instructors comprising senior and junior faculty, post-doctoral fellows, a lab coordinator, instructional assistant, a librarian and library staff, and an administrator. The program is designed around a pedagogical model that emphasizes hands-on learning through interdisciplinary research (Research-based Integrated Education: RIE) and is mostly project-based and experiential. In their freshman year students learn fundamental Earth science concepts (in conjunction with chemistry, physics, mathematics and biology) through research projects focused on environmental contamination, interplanetary exploration, the effect of drugs on the human body and environment, sustainable energy, and cancer. In subsequent years they conduct research on topics such as the History of the Earth, Thermodynamics, Plant-Animal Interactions, Wine Science, Forensics, and Climate Change. The iSci program attracts students with a broad interest in science and has been particularly effective in directing high quality students into the Earth sciences as they are introduced to the discipline in their first year of study through research projects that are interesting and stimulating. The structure of the iSci program encourages consideration of geoscientific applications in a broad range of societally relevant research projects; these projects are reviewed and modified each year to ensure their currency and ability to meet program learning objectives.

  2. Tackling the "so what" problem in scientific research: a systems-based approach to resource and publication tracking.

    Science.gov (United States)

    Harris, Paul A; Kirby, Jacqueline; Swafford, Jonathan A; Edwards, Terri L; Zhang, Minhua; Yarbrough, Tonya R; Lane, Lynda D; Helmer, Tara; Bernard, Gordon R; Pulley, Jill M

    2015-08-01

    Peer-reviewed publications are one measure of scientific productivity. From a project, program, or institutional perspective, publication tracking provides the quantitative data necessary to guide the prudent stewardship of federal, foundation, and institutional investments by identifying the scientific return for the types of support provided. In this article, the authors describe the Vanderbilt Institute for Clinical and Translational Research's (VICTR's) development and implementation of a semiautomated process through which publications are automatically detected in PubMed and adjudicated using a "just-in-time" workflow by a known pool of researchers (from Vanderbilt University School of Medicine and Meharry Medical College) who receive support from Vanderbilt's Clinical and Translational Science Award. Since implementation, the authors have (1) seen a marked increase in the number of publications citing VICTR support, (2) captured at a more granular level the relationship between specific resources/services and scientific output, (3) increased awareness of VICTR's scientific portfolio, and (4) increased efficiency in complying with annual National Institutes of Health progress reports. They present the methodological framework and workflow, measures of impact for the first 30 months, and a set of practical lessons learned to inform others considering a systems-based approach for resource and publication tracking. They learned that contacting multiple authors from a single publication can increase the accuracy of the resource attribution process in the case of multidisciplinary scientific projects. They also found that combining positive (e.g., congratulatory e-mails) and negative (e.g., not allowing future resource requests until adjudication is complete) triggers can increase compliance with publication attribution requests.

  3. Lysimeter Research Group - A scientific community network for lysimeter research

    Science.gov (United States)

    Cepuder, Peter; Nolz, Reinhard; Bohner, Andreas; Baumgarten, Andreas; Klammler, Gernot; Murer, Erwin; Wimmer, Bernhard

    2014-05-01

    A lysimeter is a vessel that isolates a volume of soil between ground surface and a certain depth, and includes a sampling device for percolating water at its bottom. Lysimeters are traditionally used to study water and solute transport in the soil. Equipped with a weighing system, soil water sensors and temperature sensors, lysimeters are valuable instruments to investigate hydrological processes in the system soil-plant-atmosphere, especially fluxes across its boundary layers, e.g. infiltration, evapotranspiration and deep drainage. Modern lysimeter facilities measure water balance components with high precision and high temporal resolution. Hence, lysimeters are used in various research disciplines - such as hydrology, hydrogeology, soil science, agriculture, forestry, and climate change studies - to investigate hydrological, chemical and biological processes in the soil. The Lysimeter Research Group (LRG) was established in 1992 as a registered nonprofit association with free membership (ZVR number: 806128239, Austria). It is organized as an executive board with an international scientific steering committee. In the beginning the LRG focused mainly on nitrate contamination in Austria and its neighboring countries. Today the main intention of the LRG is to advance interdisciplinary exchange of information between researchers and users working in the field of lysimetry on an international level. The LRG also aims for the dissemination of scientific knowledge to the public and the support of decision makers. Main activities are the organization of a lysimeter conference every two years in Raumberg-Gumpenstein (Styria, Austria), the organization of excursions to lysimeter stations and related research sites around Europe, and the maintenance of a website (www.lysimeter.at). The website contains useful information about numerous European lysimeter stations regarding their infrastructure, instrumentation and operation, as well as related links and references which

  4. African Scientific Network: A model to enhance scientific research in developing countries

    Science.gov (United States)

    Kebede, Abebe

    2002-03-01

    Africa has over 350 higher education institutions with a variety of experiences and priorities. The primary objectives of these institutions are to produce white-collar workers, teachers, and the work force for mining, textiles, and agricultural industries. The state of higher education and scientific research in Africa have been discussed in several conferences. The proposals that are generated by these conferences advocate structural changes in higher education, North-South institutional linkages, mobilization of the African Diaspora and funding. We propose a model African Scientific Network that would facilitate and enhance international scientific partnerships between African scientists and their counterparts elsewhere. A recent article by James Lamout (Financial Times, August 2, 2001) indicates that emigration from South Africa alone costs $8.9 billion in lost human resources. The article also stated that every year 23,000 graduates leave Africa for opportunities overseas, mainly in Europe, leaving only 20,000 scientists and engineers serving over 600 million people. The International Organization for Migration states that the brain drain of highly skilled professionals from Africa is making economic growth and poverty alleviation impossible across the continent. In our model we will focus on a possible networking mechanism where the African Diaspora will play a major role in addressing the financial and human resources needs of higher education in Africa

  5. Scientific Production of Research Fellows at the Zagreb University School of Medicine, Croatia

    Science.gov (United States)

    Polašek, Ozren; Kolčić, Ivana; Buneta, Zoran; Čikeš, Nada; Pećina, Marko

    2006-01-01

    Aim To evaluate scientific production among research fellows employed at the Zagreb University School of Medicine and identify factors associated with their scientific output. Method We conducted a survey among research fellows and their mentors during June 2005. The main outcome measure was publication success, defined for each fellow as publishing at least 0.5 articles per employment year in journals indexed in the Current Contents bibliographic database. Bivariate methods and binary logistic regression were used in data analysis. Results A total of 117 fellows (response rate 95%) and 83 mentors (100%) were surveyed. The highest scientific production was recorded among research fellows employed in public health departments (median 3.0 articles, interquartile range 4.0), compared with those from pre-clinical (median 0.0, interquartile range 2.0) and clinical departments (median 1.0, interquartile range 2.0) (Kruskal-Wallis, P = 0.003). A total of 36 (29%) research fellows published at least 0.5 articles per employment year and were considered successful. Three variables were associated with fellows’ publication success: mentor’s scientific production (odds ratio [OR], 3.14; 95% confidence interval [CI], 1.31-7.53), positive mentor’s assessment (OR, 3.15; 95% CI, 1.10-9.05), and fellows’ undergraduate publication in journals indexed in the Current Contents bibliographic database (OR, 4.05; 95% CI, 1.07-15.34). Conclusion Undergraduate publication could be used as one of the main criteria in selecting research fellows. One of the crucial factors in a fellow’s scientific production and career advancement is mentor’s input, which is why research fellows would benefit most from working with scientifically productive mentors. PMID:17042070

  6. Comparison of Scientific Research Projects of Education Faculties

    Science.gov (United States)

    Altunay, Esen; Tonbul, Yilmaz

    2015-01-01

    Many studies indicate that knowledge and knowledge production are the main predictors of social development, welfare and the ability to face the future with confidence. It could be argued that knowledge production is mainly carried out by universities. This study compares 1266 scientific research projects (SRPs) completed by faculties of education…

  7. Enhancing research publications and advancing scientific writing in health research collaborations: sharing lessons learnt from the trenches.

    Science.gov (United States)

    Li, Guowei; Jin, Yanling; Mbuagbaw, Lawrence; Dolovich, Lisa; Adachi, Jonathan D; Levine, Mitchell Ah; Cook, Deborah; Samaan, Zainab; Thabane, Lehana

    2018-01-01

    Disseminating research protocols, processes, methods or findings via peer-reviewed publications has substantive merits and benefits to various stakeholders. In this article, we share strategies to enhance research publication contents (ie, what to write about) and to facilitate scientific writing (ie, how to write) in health research collaborations. Empirical experience sharing. To enhance research publication contents, we encourage identifying appropriate opportunities for publications, publishing protocols ahead of results papers, seeking publications related to methodological issues, considering justified secondary analyses, and sharing academic process or experience. To advance writing, we suggest setting up scientific writing as a goal, seeking an appropriate mentorship, making full use of scientific meetings and presentations, taking some necessary formal training in areas such as effective communication and time and stress management, and embracing the iterative process of writing. All the strategies we share are dependent upon each other; and they advocate gradual academic accomplishments through study and training in a "success-breeds-success" way. It is expected that the foregoing shared strategies in this paper, together with other previous guidance articles, can assist one with enhancing research publications, and eventually one's academic success in health research collaborations.

  8. To meet new tasks of scientific research on uranium geology in new century

    International Nuclear Information System (INIS)

    Chen Zuyi

    2000-01-01

    The author analyses the new situation that the scientific research on uranium geology is facing in the coming new century, and proposes that the guiding idea of the scientific research on uranium geology is to coordinate the general policy of Bureau of Geology--to give the first priority to in-situ leachable sandstone-type uranium deposits. The specific tasks for the scientific research on uranium geology are: to implement regional evaluation and target area selection of in-situ leachable sandstone-type uranium deposits; to develop new techniques and methods of detecting buried in-situ leachable sandstone-type uranium deposits; to turn the genetic model of uranium deposit and deposit model to prospecting model; to strengthen the research on economic geology and the dynamic assessment system of uranium resources and to build up and improve the data base of Meso-Cenozoic basins and sandstone-type uranium deposits. In order to guarantee the successful implementation of the above tasks it is necessary for the Beijing Research Institute of Uranium Geology--the leading unit in scientific research on uranium geology to accelerate bringing up large numbers of young outstanding researchers; to have clear consciousness of market economy and product quality; to given play to advantages of qualified personnel, advanced equipment and modern technology

  9. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  10. Piping research program plan

    International Nuclear Information System (INIS)

    1988-09-01

    This document presents the piping research program plan for the Structural and Seismic Engineering Branch and the Materials Engineering Branch of the Division of Engineering, Office of Nuclear Regulatory Research. The plan describes the research to be performed in the areas of piping design criteria, environmentally assisted cracking, pipe fracture, and leak detection and leak rate estimation. The piping research program addresses the regulatory issues regarding piping design and piping integrity facing the NRC today and in the foreseeable future. The plan discusses the regulatory issues and needs for the research, the objectives, key aspects, and schedule for each research project, or group of projects focussing of a specific topic, and, finally, the integration of the research areas into the regulatory process is described. The plan presents a snap-shot of the piping research program as it exists today. However, the program plan will change as the regulatory issues and needs change. Consequently, this document will be revised on a bi-annual basis to reflect the changes in the piping research program. (author)

  11. The NIAID Division of AIDS enterprise information system: integrated decision support for global clinical research programs

    Science.gov (United States)

    Gupta, Nitin; Varghese, Suresh; Virkar, Hemant

    2011-01-01

    The National Institute of Allergy and Infectious Diseases (NIAID) Division of AIDS (DAIDS) Enterprise Information System (DAIDS-ES) is a web-based system that supports NIAID in the scientific, strategic, and tactical management of its global clinical research programs for HIV/AIDS vaccines, prevention, and therapeutics. Different from most commercial clinical trials information systems, which are typically protocol-driven, the DAIDS-ES was built to exchange information with those types of systems and integrate it in ways that help scientific program directors lead the research effort and keep pace with the complex and ever-changing global HIV/AIDS pandemic. Whereas commercially available clinical trials support systems are not usually disease-focused, DAIDS-ES was specifically designed to capture and incorporate unique scientific, demographic, and logistical aspects of HIV/AIDS treatment, prevention, and vaccine research in order to provide a rich source of information to guide informed decision-making. Sharing data across its internal components and with external systems, using defined vocabularies, open standards and flexible interfaces, the DAIDS-ES enables NIAID, its global collaborators and stakeholders, access to timely, quality information about NIAID-supported clinical trials which is utilized to: (1) analyze the research portfolio, assess capacity, identify opportunities, and avoid redundancies; (2) help support study safety, quality, ethics, and regulatory compliance; (3) conduct evidence-based policy analysis and business process re-engineering for improved efficiency. This report summarizes how the DAIDS-ES was conceptualized, how it differs from typical clinical trial support systems, the rationale for key design choices, and examples of how it is being used to advance the efficiency and effectiveness of NIAID's HIV/AIDS clinical research programs. PMID:21816958

  12. Scientific production of Vice Chancellors for Research in Peruvian universities with a medical school.

    Science.gov (United States)

    Herrera-Añazco, Percy; Valenzuela-Rodríguez, Germán; Pacheco-Mendoza, Josmel; Málaga, Germán

    2017-10-19

    To determine the scientific production of Research Vice-chancellors at Peruvian universities that have medical schools, as well as their academic degrees as an indirect way to evaluate their suitability for the position they hold. We searched all Peruvian universities that register medical schools. Of these, the scientific production of the universities registered in SCOPUS was identified in September of the 2016. The scientific production of the vice chancellors of investigation of these faculties of medicine was determined through the search of its scientific publications registered in SCOPUS and those reported in the National Registry of Researchers in Science and Technology. Academic degrees were obtained from the database of the National Superintendence of Higher University Education. The sample included 28 research vice chancellors. Only 4/28 had any publications. The average number of articles published by the vice chancellors of research was 1.71, the number of citations 23.1 on average and the H index 0.64. Besides, 22 Vice-chancellors of research had the degree of doctor, four had the degree of bachelor and two the degree of master. The scientific production of research vice chancellors is poor. The required academic grade requirement for the position is not met in all cases. It is likely that, having no research experience, his leadership in directing a university's research policies may be questioned.

  13. Obstacles to Scientific Research in Light of a Number of Variables

    Science.gov (United States)

    Algadheeb, Nourah A.; Almeqren, Monira A.

    2014-01-01

    The present study aimed to identify the scientific research obstacles facing faculty members in the College of Education at Princess Nora bint Abdul Rahman University (PNU) and to determine the differences in the obstacles according to age, academic rank, scientific specialty, marital status, number of completed studies, and time since the last…

  14. Contributing to research: the basic elements of a scientific manuscript

    International Nuclear Information System (INIS)

    Kurmis, A.P.

    2003-01-01

    The changing focus within medical and allied health disciplines towards evidence-based practice has resulted in an increasing acceptance of research and professional researchers. Despite the shift towards tertiary degree-based training for medical imaging and allied specialty streams, with many teaching institutions now incorporating compulsory research components into their final year curriculum, the level of active involvement in research among graduates remains low. In addition to this, many of those who completed their training before the introduction of university degree courses have had little or no exposure to hands-on research. While not overtly difficult, the process of 'writing up' the findings of a research endeavour for presentation to peers can often seem a somewhat daunting task, especially for novice researchers. The structure of a scientific manuscript however follows a relatively basic and universally accepted pattern, adherence to which can greatly simplify the writing process. To contribute to a wider understanding of research, the purpose of this paper is to provide an overview of the basic elements of a scientific research paper for journal publication. The outline provided, while not intended to be a recipe for manuscript construction, will provide a fundamental framework to assist student, junior or inexperienced researchers in their writings

  15. Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays

    DEFF Research Database (Denmark)

    Muchie, Mammo; Akpor, OB

    2010-01-01

    Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230......Akpor OB and Muchie M. (2010). Bioremediation of polluted wasewaterwater influent: phiosphorus and nitrogen removal. Scientific Research and Essays, Vol. 5(21), pp. 3222–3230...

  16. Energy research program 82

    International Nuclear Information System (INIS)

    1982-01-01

    The energy research program 82 (EFP-82) is prepared by the Danish ministry of energy in order to continue the extension of the Danish energy research and development started through the former trade ministry's programs EM-1 (1976) and EM-2 (1978), and the energy ministry's programs EFP-80 and EFP-81. The new program is a continuation of the activities in the period 1982-84 with a total budget of 100 mio.Dkr. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (BP)

  17. Scientific and technical production of IPEN - Nuclear and Energetic Research Institute, SP, Brazil. 1997-1999

    International Nuclear Information System (INIS)

    2001-01-01

    This document reports the general activities results of technical and scientific research production of the Institute for Energetic and Nuclear Researches, IPEN, Brazil, during the year of 1997-1999, listing journal articles, scientific events (complete texts, communications, abstracts and panels), thesis and dissertations, books, technical and scientific reports

  18. Astronomy in the Russian Scientific-Educational Project: "KAZAN-GEONA-2010"

    Science.gov (United States)

    Gusev, A.; Kitiashvili, I.

    2006-08-01

    The European Union promotes the Sixth Framework Programme. One of the goals of the EU Programme is opening national research and training programs. A special role in the history of the Kazan University was played by the great mathematician Nikolai Lobachevsky - the founder of non-Euclidean geometry (1826). Historically, the thousand-year old city of Kazan and the two-hundred-year old Kazan University carry out the role of the scientific, organizational, and cultural educational center of the Volga region. For the continued successful development of educational and scientific-educational activity of the Russian Federation, the Republic Tatarstan, Kazan was offered the national project: the International Center of the Sciences and Internet Technologies "GeoNa" (Geometry of Nature - GeoNa - is wisdom, enthusiasm, pride, grandeur). This is a modern complex of conference halls including the Center for Internet Technologies, a 3D Planetarium - development of the Moon, PhysicsLand, an active museum of natural sciences, an oceanarium, and a training complex "Spheres of Knowledge". Center GeoNa promotes the direct and effective channel of cooperation with scientific centers around the world. GeoNa will host conferences, congresses, fundamental scientific research sessions of the Moon and planets, and scientific-educational actions: presentation of the international scientific programs on lunar research and modern lunar databases. A more intense program of exchange between scientific centers and organizations for a better knowledge and planning of their astronomical curricula and the introduction of the teaching of astronomy are proposed. Center GeoNa will enable scientists and teachers of the Russian universities with advanced achievements in science and information technologies to join together to establish scientific communications with foreign colleagues in the sphere of the high technology and educational projects with world scientific centers.

  19. Transportable educational programs for scientific and technical professionals: More effective utilization of automated scientific and technical data base systems

    Science.gov (United States)

    Dominick, Wayne D.

    1987-01-01

    This grant final report executive summary documents a major, long-term program addressing innovative educational issues associated with the development, administration, evaluation, and widespread distribution of transportable educational programs for scientists and engineers to increase their knowledge of, and facilitate their utilization of automated scientific and technical information storage and retrieval systems. This educational program is of very broad scope, being targeted at Colleges of Engineering and Colleges of Physical sciences at a large number of colleges and universities throughout the United States. The educational program is designed to incorporate extensive hands-on, interactive usage of the NASA RECON system and is supported by a number of microcomputer-based software systems to facilitate the delivery and usage of the educational course materials developed as part of the program.

  20. [An approach to a methodology of scientific research for assistant-students].

    Science.gov (United States)

    Novak, Ivón T C; Bejarano, Paola Antón; Rodríguez, Fernando Marcos

    2007-01-01

    This work is presented from a "problematic" perspective in the attempt to establish a dialogic relationship between the educator and the student-subject, mediated by the object of knowledge. It is oriented to the integral education of the helping students departing from a closer approach to the scientific research. This work was carried out by a teacher and two hired students. This project was developed in relation with the profile required for the career of medicine in the Faculty of Medicine of the National University of Cordoba which--among other aspects- addresses the importance of "adopting a positive attitude towards research based on knowledge and the application of the scientific methodology" and towards "the development of a responsible self-learning and continuous improvements" (sic). Thus, this work tries to be aligned with this perspectives. I. Characterization of the scientific methodology. Search for bibliography and discussion of scientific works. II. Optimization of the methodology for the observation of leucocytes: blood samples donated by healthy people, non-coagulating with citrate or with EDTA (Blood reservoir of the UNC (National University of Cordoba) n = 20. a) Blood smear of full blood. b) centrifugation at 200g of plasma and aspirated leucocytes after erythro sedimentation and re suspension of the cell pellet and cyto-dispersion. Cytological and cyto-chemical techniques. I. Deeper knowledge about blood field was achieved. It generated an appropriate atmosphere to produce scientific questioning and the activities involved in the process were carried out responsibly. II. Better results were achieved using EDTA for the observation and analysis of leucocytes. It was possible to attain the objectives for an approach to a scientific research as well as for a contribution towards a responsible development in the continuous learning process.

  1. Co-authorship Network Analysis: A Powerful Tool for Strategic Planning of Research, Development and Capacity Building Programs on Neglected Diseases

    Science.gov (United States)

    Morel, Carlos Medicis; Serruya, Suzanne Jacob; Penna, Gerson Oliveira; Guimarães, Reinaldo

    2009-01-01

    Background New approaches and tools were needed to support the strategic planning, implementation and management of a Program launched by the Brazilian Government to fund research, development and capacity building on neglected tropical diseases with strong focus on the North, Northeast and Center-West regions of the country where these diseases are prevalent. Methodology/Principal Findings Based on demographic, epidemiological and burden of disease data, seven diseases were selected by the Ministry of Health as targets of the initiative. Publications on these diseases by Brazilian researchers were retrieved from international databases, analyzed and processed with text-mining tools in order to standardize author- and institution's names and addresses. Co-authorship networks based on these publications were assembled, visualized and analyzed with social network analysis software packages. Network visualization and analysis generated new information, allowing better design and strategic planning of the Program, enabling decision makers to characterize network components by area of work, identify institutions as well as authors playing major roles as central hubs or located at critical network cut-points and readily detect authors or institutions participating in large international scientific collaborating networks. Conclusions/Significance Traditional criteria used to monitor and evaluate research proposals or R&D Programs, such as researchers' productivity and impact factor of scientific publications, are of limited value when addressing research areas of low productivity or involving institutions from endemic regions where human resources are limited. Network analysis was found to generate new and valuable information relevant to the strategic planning, implementation and monitoring of the Program. It afforded a more proactive role of the funding agencies in relation to public health and equity goals, to scientific capacity building objectives and a more

  2. Co-authorship network analysis: a powerful tool for strategic planning of research, development and capacity building programs on neglected diseases.

    Directory of Open Access Journals (Sweden)

    Carlos Medicis Morel

    Full Text Available BACKGROUND: New approaches and tools were needed to support the strategic planning, implementation and management of a Program launched by the Brazilian Government to fund research, development and capacity building on neglected tropical diseases with strong focus on the North, Northeast and Center-West regions of the country where these diseases are prevalent. METHODOLOGY/PRINCIPAL FINDINGS: Based on demographic, epidemiological and burden of disease data, seven diseases were selected by the Ministry of Health as targets of the initiative. Publications on these diseases by Brazilian researchers were retrieved from international databases, analyzed and processed with text-mining tools in order to standardize author- and institution's names and addresses. Co-authorship networks based on these publications were assembled, visualized and analyzed with social network analysis software packages. Network visualization and analysis generated new information, allowing better design and strategic planning of the Program, enabling decision makers to characterize network components by area of work, identify institutions as well as authors playing major roles as central hubs or located at critical network cut-points and readily detect authors or institutions participating in large international scientific collaborating networks. CONCLUSIONS/SIGNIFICANCE: Traditional criteria used to monitor and evaluate research proposals or R&D Programs, such as researchers' productivity and impact factor of scientific publications, are of limited value when addressing research areas of low productivity or involving institutions from endemic regions where human resources are limited. Network analysis was found to generate new and valuable information relevant to the strategic planning, implementation and monitoring of the Program. It afforded a more proactive role of the funding agencies in relation to public health and equity goals, to scientific capacity building

  3. Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992

    Science.gov (United States)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities.

  4. Scientific discourse in educational research in Latin America: the case of Mexico

    Directory of Open Access Journals (Sweden)

    Sara Julia Castellanos Quintero

    2011-08-01

    Full Text Available In this article it is presented the state of arts of the analysis of the scientific discourse in educational research in Mexico, particularly, in the curriculum design and development research. The development of the research in the area of university curricula started seriously in the decade of 80´s.The scientific discourse was oriented towards the searching of models and methods of teaching and evaluation, of the best way of the implementation of practicum and the correspondence between the professional formation and employment in the national context. In the other hand, the decade of 90´s is characterized by the influence of international educational policies, the use of CIT in the teaching-learning process, the appearance of more competitive occupational market, where professionals should be inserted. The scientific discourse was oriented towards the searching of curricular models that guarantee the correspondence between the professional formation and employment in the international framework. Nowadays an integral educational reform (RIE is taking place in Mexico where the competence approach is considered the guideline of the curriculum design in primary and secondary levels. Nevertheless, at the university level, different curriculum models are being implemented. This speaks about the diversity of the scientific discourse used in the curriculum research in Mexico.

  5. Helping Students Move from Coding to Publishing - Teaching Scientific Communication to Science Interns

    Science.gov (United States)

    Batchelor, R.; Haacker-Santos, R.; Pandya, R. E.

    2012-12-01

    To help young scientists succeed in our field we should not only model scientific methods and inquiry, but also train them in the art of scientific writing - after all, poorly written proposals, reports or journal articles can be a show stopper for any researcher. Research internships are an effective place to provide such training, because they offer a unique opportunity to integrate writing with the process of conducting original research. This presentation will describe how scientific communication is integrated into the SOARS program. Significant Opportunities in Atmospheric Research and Science (SOARS) is an undergraduate-to graduate bridge program that broadens participation in the geosciences. SOARS aims to foster the next generation of leaders in the atmospheric and related sciences by helping students develop investigative expertise complemented by leadership and communication skills. Each summer, interns (called protégés) attend a weekly seminar designed to help them learn scientific writing and communication skills. The workshop is organized around the sections of a scientific paper. Workshop topics include reading and citing scientific literature, writing an introduction, preparing a compelling abstract, discussing results, designing effective figures, and writing illuminating conclusions. In addition, protégés develop the skills required to communicate their research to both scientists and non-scientists through the use of posters, presentations and informal 'elevator' speeches. Writing and communication mentors guide protégés in applying the ideas from the workshop to the protégés' required summer scientific paper, poster and presentation, while a strong peer-review component of the program gives the protégés a taste of analyzing, critiquing and collaborating within a scientific forum. This presentation will provide practical tips and lessons learned from over ten years of scientific communications workshops within the SOARS program

  6. The pedagogical possibilities in the education of scientific research methodology in information science and the scientific objects of this field: durkheim approaches

    OpenAIRE

    Francisco das Chagas de Souza

    2003-01-01

    This article results of bibliographical, exploratory and qualitative research. Its argues that three approaches are gifts in the educational process of discipline of the Scientific Research Methodology in Information Science. They are the social facts of the Information Science, the types of the research and the social theory. It sees that the pedagogical possibilities of the education of Scientific Methodology in Information Science are related with the practical one of the writing which dep...

  7. The evaluation of scientific research on the basis of estimation parameters in economics

    Directory of Open Access Journals (Sweden)

    Salvatore Lorusso

    2014-12-01

    Full Text Available Below are some considerations following on from a past Editorial entitled “The evaluation of scientific research: the result of merit-based or discretionary criteria?” published in issue No.11 (2011 of the historical-technical journal “Conservation Science in Cultural Heritage”. The Editorial looked at various tools for evaluating scientific research and expressed some reservations about the bibliometric criteria: - Impact Factor (IF, the most well-known bibliometric tool, owned by Thomson Reuters – Institute for Scientific Information (ISI, which collects data from over 14,000 journals in its web portal: an evaluation system that determines the frequency with which an article is cited in a given period; - Peer Review, a quality indicator typically used in selecting articles for publication; - Open Linking, a reference service offered by aggregators which transforms citations into hyperlinks and allows researchers to browse online from article to article regardless of the journal or publisher; - H Factor or H Index, which aims to quantify the overall scientific contribution of a researcher.

  8. PROGRAM RISET ILMIAH IMRE LAKATOS

    Directory of Open Access Journals (Sweden)

    Rizal Mustansyir

    2017-03-01

    Full Text Available The topic of this paper is related to the methodological thought of a philosopher Imre Lacatos. The methodological problem is a core problem in the area of philosophy of science. Science philosopher’s discourse shows the methodology of science as one of the scientific procedures in gaining the truth, but in fact, it caused the emergence of methodological mainstream; mono-methodology and pluri-methodology. Imre Lacatos’ tried to mediate the discourse of two fortifications by means of scientific research program. Some ideas developed by Lacatos’ in its relation to the scientific research programs are; first, Lacatos propose a sum of mathematics knowledge which is based on the heuristics idea, second, Lacatos’ criticism to Popper’s falsifiable concept, third, Lacatos’ effort in looking for a harmonious method that provides a sum of rational scientific progress, appropriately keeps its consistency with the historical fact, fourth, Lacatos’ connect the research program to scientists who protect the core of theory from falsification effort, fifth, a research program is qualified as progressive if it is signed by stunning novel facts and as deteriorative if the program is not directed to the new fact, sixth, the hard-core is determining characteristic of program, it is a general theory of hypotheses which is employed as a foundation of developed program, seventh, the negative heuristic of hard-core program is detailed program which states the basic assumption of program, eighth, the positive heuristic of hard-core program is an outline which indicates how the research program can be developed under additional assumption of new phenomenon clarification.

  9. A Community-Centered Astronomy Research Program (Abstract)

    Science.gov (United States)

    Boyce, P.; Boyce, G.

    2017-12-01

    (Abstract only) The Boyce Research Initiatives and Education Foundation (BRIEF) is providing semester-long, hands-on, astronomy research experiences for students of all ages that results in their publishing peer-reviewed papers. The course in astronomy and double star research has evolved from a face-to-face learning experience with two instructors to an online hybrid course that simultaneously supports classroom instruction at a variety of schools in the San Diego area. Currently, there are over 65 students enrolled in three community colleges, seven high schools, and one university as well as individual adult learners. Instructional experience, courseware, and supporting systems were developed and refined through experience gained in classroom settings from 2014 through 2016. Topics of instruction include Kepler's Laws, basic astrometry, properties of light, CCD imaging, use of filters for varying stellar spectral types, and how to perform research, scientific writing, and proposal preparation. Volunteer instructors were trained by taking the course and producing their own research papers. An expanded program was launched in the fall semester of 2016. Twelve papers from seven schools were produced; eight have been accepted for publication by the Journal of Double Star Observations (JDSO) and the remainder are in peer review. Three additional papers have been accepted by the JDSO and two more are in process papers. Three college professors and five advanced amateur astronomers are now qualified volunteer instructors. Supporting tools are provided by a BRIEF server and other online services. The server-based tools range from Microsoft Office and planetarium software to top-notch imaging programs and computational software for data reduction for each student team. Observations are performed by robotic telescopes worldwide supported by BRIEF. With this success, student demand has increased significantly. Many of the graduates of the first semester course wanted to

  10. NASA/MSFC FY91 Global Scale Atmospheric Processes Research Program Review

    Science.gov (United States)

    Leslie, Fred W. (Editor)

    1991-01-01

    The reports presented at the annual Marshall Research Review of Earth Science and Applications are compiled. The following subject areas are covered: understanding of atmospheric processes in a variety of spatial and temporal scales; measurements of geophysical parameters; measurements on a global scale from space; the Mission to Planet Earth Program (comprised of and Earth Observation System and the scientific strategy to analyze these data); and satellite data analysis and fundamental studies of atmospheric dynamics.

  11. Methods for structuring scientific knowledge from many areas related to aging research.

    Science.gov (United States)

    Zhavoronkov, Alex; Cantor, Charles R

    2011-01-01

    Aging and age-related disease represents a substantial quantity of current natural, social and behavioral science research efforts. Presently, no centralized system exists for tracking aging research projects across numerous research disciplines. The multidisciplinary nature of this research complicates the understanding of underlying project categories, the establishment of project relations, and the development of a unified project classification scheme. We have developed a highly visual database, the International Aging Research Portfolio (IARP), available at AgingPortfolio.org to address this issue. The database integrates information on research grants, peer-reviewed publications, and issued patent applications from multiple sources. Additionally, the database uses flexible project classification mechanisms and tools for analyzing project associations and trends. This system enables scientists to search the centralized project database, to classify and categorize aging projects, and to analyze the funding aspects across multiple research disciplines. The IARP is designed to provide improved allocation and prioritization of scarce research funding, to reduce project overlap and improve scientific collaboration thereby accelerating scientific and medical progress in a rapidly growing area of research. Grant applications often precede publications and some grants do not result in publications, thus, this system provides utility to investigate an earlier and broader view on research activity in many research disciplines. This project is a first attempt to provide a centralized database system for research grants and to categorize aging research projects into multiple subcategories utilizing both advanced machine algorithms and a hierarchical environment for scientific collaboration.

  12. National Energy Research Scientific Computing Center 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hules, John A.; Bashor, Jon; Wang, Ucilia; Yarris, Lynn; Preuss, Paul

    2008-10-23

    This report presents highlights of the research conducted on NERSC computers in a variety of scientific disciplines during the year 2007. It also reports on changes and upgrades to NERSC's systems and services aswell as activities of NERSC staff.

  13. NASA's Upper Atmosphere Research Program UARP and Atmospheric Chemistry Modeling and Analysis Program (ACMAP): Research Summaries 1994 - 1996. Report to Congress and the Environmental Protection Agency

    Science.gov (United States)

    Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)

    1997-01-01

    1996.- An Assessment Report. It consists primarily of the Executive Summary and Chapter Summaries of the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 37, Scientific Assessment of Ozone Depletion: 1994, sponsored by NASA, the National Oceanic and Atmospheric Administration (NOAA), the UK Department of the Environment, the United Nations Environment Program, and the World Meteorological Organization. Other sections of Part 11 include summaries of the following: an Atmospheric Ozone Research Plan from NASA's Office of Mission to Planet Earth; summaries from a series of Space Shuttle-based missions and two recent airborne measurement campaigns; the Executive Summary of the 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, and the most recent evaluation of photochemical and chemical kinetics data (Evaluation No. 12 of the NASA Panel for Data Evaluation) used as input parameters for atmospheric models.

  14. Energy research program 84

    International Nuclear Information System (INIS)

    1984-01-01

    The energy research program 84 (EFP-84) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82 and EFP-83. The new program is a continuation of the activities in the period 1984-86 with a total budget of 112 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  15. Energy research program 83

    International Nuclear Information System (INIS)

    1983-01-01

    The energy research program 83 (EFP-83) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81 and EFP-82. The new program is a continuation of the activities in the period 1983-85 with a total budget of 111 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  16. Energy research program 85

    International Nuclear Information System (INIS)

    1985-01-01

    The energy research program 85 (EFP-85) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, and EFP-84. The new program is a continuation of the activities in the period 1985-87 with a total budget of 110 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  17. [Scientific Research Policy for Health in Portugal: II - Facts and Suggestions].

    Science.gov (United States)

    Guerreiro, Cátia Sá; Hartz, Zulmira; Sambo, Luís; Conceição, Cláudia; Dussault, Gilles; Russo, Giuliano; Viveiros, Miguel; Silveira, Henrique; Pita Barros, Pedro; Ferrinho, Paulo

    2017-03-31

    After more than 40 years of democracy and 30 years of European integration, Portugal has bridged the research gap it had previously. However, when compared to global and European research policies, Portugal still has a long way go regarding investment in research and development. Health Research in Portugal has been managed by the Fundação para a Ciência e Tecnologia and the National Health Institute Doctor Ricardo Jorge, and it has not been a political priority, emphasized by the absence of a national scientific research plan for health, resulting in a weak coordination of actors in the field. The strategic guidelines of the 2004 - 2010 National Health Plan are what comes closest to a health research policy, but these were not implemented by the institutions responsible for scientific research for the health sector. Trusting that adopting a strategy of incentives to stimulate health research is an added-value for the Portuguese health system, the authors present five strategic proposals for research in health in Portugal.

  18. Evaluating the High School Lunar Research Projects Program

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J.; Kring, D. A.

    2012-12-01

    The Center for Lunar Science and Exploration (CLSE), a collaboration between the Lunar and Planetary Institute and NASA's Johnson Space Center, is one of seven member teams of the NASA Lunar Science Institute (NLSI). In addition to research and exploration activities, the CLSE team is deeply invested in education and outreach. In support of NASA's and NLSI's objective to train the next generation of scientists, CLSE's High School Lunar Research Projects program is a conduit through which high school students can actively participate in lunar science and learn about pathways into scientific careers. The objectives of the program are to enhance 1) student views of the nature of science; 2) student attitudes toward science and science careers; and 3) student knowledge of lunar science. In its first three years, approximately 140 students and 28 teachers from across the United States have participated in the program. Before beginning their research, students undertake Moon 101, a guided-inquiry activity designed to familiarize them with lunar science and exploration. Following Moon 101, and guided by a lunar scientist mentor, teams choose a research topic, ask their own research question, and design their own research approach to direct their investigation. At the conclusion of their research, teams present their results to a panel of lunar scientists. This panel selects four posters to be presented at the annual Lunar Science Forum held at NASA Ames. The top scoring team travels to the forum to present their research. Three instruments have been developed or modified to evaluate the extent to which the High School Lunar Research Projects meets its objectives. These three instruments measure changes in student views of the nature of science, attitudes towards science and science careers, and knowledge of lunar science. Exit surveys for teachers, students, and mentors were also developed to elicit general feedback about the program and its impact. The nature of science

  19. 75 FR 65404 - Rehabilitation Research and Development Service Scientific Merit Review Board; Notice of Meeting

    Science.gov (United States)

    2010-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Rehabilitation Research and Development Service Scientific Merit... & Regenerative Medicine Subcommittee of the Rehabilitation Research and Development Service Scientific Merit..., examination, reference to, [[Page 65405

  20. Application of the enterprise management tools Lean Six Sigma and PMBOK in developing a program of research management.

    Science.gov (United States)

    Hors, Cora; Goldberg, Anna Carla; Almeida, Ederson Haroldo Pereira de; Babio Júnior, Fernando Galan; Rizzo, Luiz Vicente

    2012-01-01

    Introduce a program for the management of scientific research in a General Hospital employing the business management tools Lean Six Sigma and PMBOK for project management in this area. The Lean Six Sigma methodology was used to improve the management of the institution's scientific research through a specific tool (DMAIC) for identification, implementation and posterior analysis based on PMBOK practices of the solutions found. We present our solutions for the management of institutional research projects at the Sociedade Beneficente Israelita Brasileira Albert Einstein. The solutions were classified into four headings: people, processes, systems and organizational culture. A preliminary analysis of these solutions showed them to be completely or partially compliant to the processes described in the PMBOK Guide. In this post facto study, we verified that the solutions drawn from a project using Lean Six Sigma methodology and based on PMBOK enabled the improvement of our processes dealing with the management of scientific research carried out in the institution and constitutes a model to contribute to the search of innovative science management solutions by other institutions dealing with scientific research in Brazil.

  1. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  2. The Researchers' View of Scientific Rigor-Survey on the Conduct and Reporting of In Vivo Research.

    Science.gov (United States)

    Reichlin, Thomas S; Vogt, Lucile; Würbel, Hanno

    2016-01-01

    Reproducibility in animal research is alarmingly low, and a lack of scientific rigor has been proposed as a major cause. Systematic reviews found low reporting rates of measures against risks of bias (e.g., randomization, blinding), and a correlation between low reporting rates and overstated treatment effects. Reporting rates of measures against bias are thus used as a proxy measure for scientific rigor, and reporting guidelines (e.g., ARRIVE) have become a major weapon in the fight against risks of bias in animal research. Surprisingly, animal scientists have never been asked about their use of measures against risks of bias and how they report these in publications. Whether poor reporting reflects poor use of such measures, and whether reporting guidelines may effectively reduce risks of bias has therefore remained elusive. To address these questions, we asked in vivo researchers about their use and reporting of measures against risks of bias and examined how self-reports relate to reporting rates obtained through systematic reviews. An online survey was sent out to all registered in vivo researchers in Switzerland (N = 1891) and was complemented by personal interviews with five representative in vivo researchers to facilitate interpretation of the survey results. Return rate was 28% (N = 530), of which 302 participants (16%) returned fully completed questionnaires that were used for further analysis. According to the researchers' self-report, they use measures against risks of bias to a much greater extent than suggested by reporting rates obtained through systematic reviews. However, the researchers' self-reports are likely biased to some extent. Thus, although they claimed to be reporting measures against risks of bias at much lower rates than they claimed to be using these measures, the self-reported reporting rates were considerably higher than reporting rates found by systematic reviews. Furthermore, participants performed rather poorly when asked to

  3. The Virtual Learning Commons: Supporting the Fuzzy Front End of Scientific Research with Emerging Technologies

    Science.gov (United States)

    Pennington, D. D.; Gandara, A.; Gris, I.

    2012-12-01

    The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of researchers to be aware of resources that might benefit them. Even when aware, it can be difficult to understand enough about those resources to become potential adopters or re-users. Often scientific data and emerging technologies have little documentation, especially about the context of their use. The VLC tackles this challenge by providing mechanisms for individuals and groups of researchers to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design research that leverages those resources; and c) develop initial work plans. The VLC aims to support the "fuzzy front end" of innovation, where novel ideas emerge and there is the greatest potential for impact on research design. It is during the fuzzy front end that conceptual collisions across disciplines and exposure to diverse perspectives provide opportunity for creative thinking that can lead to inventive outcomes. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support researchers in different ways: 1. Innovation Marketplace: supports users as they try to understand what research is being conducted, who is conducting it, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports users as they organize their

  4. List of the scientific publications of the Karlsruhe Nuclear Research Center in 1987

    International Nuclear Information System (INIS)

    1988-05-01

    The scientific and technological-scientific publications of the Kernforschungszentrum Karlsruhe appear as books, as original articles in scientific or technological periodicals, as postdoctoral theses, theses, dissertations, patents and KfK reports and are given as lectures at scientific conferences. The report KfK 4425 contains the titles of all publications from 1987. In the case of patents, all rights established or published during 1987 are indicated: patents, information sheets (DE-OS). The list of publications is ordered according to institutes. Under projects, only published project reports and publications by staff working on the particular projects are listed. Also included are publications printed in the Kernforschungszentrum from research and development plans within the Production Technology Project (PFT) and the project called 'European Research Center for the Control of Air Pollution' (PEF), which were carried out by the Kernforschungszentrum as project sponsor in cooperation with firms and institutes. The list also includes publications of the Federal Research Institute for Nutrition based at the Kernforschungszentrum. (orig./HK) [de

  5. A Glance Back at Five Decades of Scientific Research

    International Nuclear Information System (INIS)

    Sudarshan, E C G

    2007-01-01

    I review my scientific research career for the last 50 years, with emphasis on the issue of 'Poincare recurrences': I stress some ideas of mine which became so popular that they have been taken up (recurred) by others, sometimes forgetting the original source

  6. Progress report No. 2 on the Scientific Investigation Program for the Nevada Yucca Mountain Site, October 1, 1989--March 31, 1990

    International Nuclear Information System (INIS)

    1990-01-01

    In accordance with the requirements of Section 113(b)(3) of the Nuclear Waste Policy Act of 1982 (Pub. L. No. 97-425), as amended, the US Department of Energy (DOE) has prepared this report on the progress of scientific investigation activities at Yucca Mountain in southern Nevada for October 1, 1989, through March 31, 1990. This report is the second of a series of reports that are issued at intervals of approximately six months during the period of scientific investigation. The progress report presents short summaries of the status of scientific investigation activities and cites technical reports and research products that provide more detailed information on the activities. The report provides highlights of work started during the reporting period, work in progress, and work completed and documented during the reporting period. In addition, the report is the vehicle for discussing major changes, if any, to the DOE's scientific investigation program. The progress report conveys information in a convenient summary form to be used for informational purposes only. It is not intended to be the mechanism for controlling and documenting technical or policy positions regarding changes in schedules or the technical program. Such changes are controlled through rigorous DOE change-control procedures. The progress report only describes such approval changes. 49 refs., 3 tabs

  7. 77 FR 60707 - National Toxicology Program Board of Scientific Counselors; Announcement of Meeting; Request for...

    Science.gov (United States)

    2012-10-04

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Toxicology Program... announces the next meeting of the National Toxicology Program (NTP) Board of Scientific Counselors (BSC... such as toxicology, pharmacology, pathology, biochemistry, epidemiology, risk assessment...

  8. 1999 scientific evaluation at the CEA

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents a statement of the scientific and technical activity of the French atomic energy commission (CEA) for the year 1999. This evaluation is made by external and independent experts and requires some specific dispositions for the nuclear protection and safety institute (IPSN) and for the direction of military applications (DAM). The report is divided into 4 parts dealing successively with: 1)the CEA, a public research organization (strategy, research programs, new organization of the CEA activities, civil nuclear research, technology research and transfer, defence activities, transfer of knowledge) 2)the scientific evaluation at the CEA (evaluations of the civil applications of the CEA, IPSN, DAM, INSTN (national institute for nuclear sciences and techniques) 3)synthesis of the 1999 scientific and technical evaluation for each operational directions of the CEA (directions of fuel cycle, of nuclear reactors, of advanced technologies, of materials sciences, of life sciences, of military applications, of the nuclear protection and safety institute and of the national institute for nuclear sciences and techniques) 4)the corresponding members of the evaluation and the list of scientific and technical councils and members

  9. A prospective multiple case study of the impact of emerging scientific evidence on established colorectal cancer screening programs: a study protocol.

    Science.gov (United States)

    Geddie, Hannah; Dobrow, Mark J; Hoch, Jeffrey S; Rabeneck, Linda

    2012-06-01

    Health-policy decision making is a complex and dynamic process, for which strong evidentiary support is required. This includes scientifically produced research, as well as information that relates to the context in which the decision takes place. Unlike scientific evidence, this "contextual evidence" is highly variable and often includes information that is not scientifically produced, drawn from sources such as political judgement, program management experience and knowledge, or public values. As the policy decision-making process is variable and difficult to evaluate, it is often unclear how this heterogeneous evidence is identified and incorporated into "evidence-based policy" decisions. Population-based colorectal cancer screening poses an ideal context in which to examine these issues. In Canada, colorectal cancer screening programs have been established in several provinces over the past five years, based on the fecal occult blood test (FOBT) or the fecal immunochemical test. However, as these programs develop, new scientific evidence for screening continues to emerge. Recently published randomized controlled trials suggest that the use of flexible sigmoidoscopy for population-based screening may pose a greater reduction in mortality than the FOBT. This raises the important question of how policy makers will address this evidence, given that screening programs are being established or are already in place. This study will examine these issues prospectively and will focus on how policy makers monitor emerging scientific evidence and how both scientific and contextual evidence are identified and applied for decisions about health system improvement. This study will employ a prospective multiple case study design, involving participants from Ontario, Alberta, Manitoba, Nova Scotia, and Quebec. In each province, data will be collected via document analysis and key informant interviews. Documents will include policy briefs, reports, meeting minutes, media

  10. The information determinants in marketing of a research and scientific institution

    Directory of Open Access Journals (Sweden)

    Bogdan Sojkin

    2014-03-01

    Full Text Available The article deals with information – based marketing of scientific research institutes, which has been named SAVE (Solution – Access – Value – Education. A proper use of marketing instruments requires information assets which are defined in terms of the essence, the scope and the form of the defined information needs. The essence, the form and the pattern of information needs in reference to SAVE has been defined and described in the case of scientific research institute. The specification of needs for each instrument and for various market participants has been included into the description.

  11. Examining Research Questions on Germination from the Perspective of Scientific Creativity

    Science.gov (United States)

    Demir Kaçan, Sibel

    2015-01-01

    This study was conducted with the participation of 31 pre-service science teachers. Participants were asked to develop various research questions on germination. The study aims to examine research questions on the subject germination from the perspective of scientific creativity. The research questions were examined using the fluency, science…

  12. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    International Nuclear Information System (INIS)

    2000-01-01

    biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex

  13. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-18

    biodegrade or biotransform hazardous organic contaminants to environmentally safe levels in soils, subsurface materials, water, sludges, and residues.. While bioremediation technology is promising, DOE managers and non-DOE scientists have recognized that the fundamental scientific information needed to develop effective bioremediation technologies for cleanup of the legacy waste sites is lacking in many cases. DOE believes that field-based research is needed to realize the full potential of bioremediation. The Department of Energy faces a unique set of challenges associated with cleaning up waste at its former weapons production and research sites. These sites contain complex mixtures of contaminants in the subsurface, including radioactive compounds. In many cases, the fundamental field-based scientific information needed to develop safe and effective remediation and cleanup technologies is lacking. DOE needs fundamental research on the use of microorganisms and their products to assist DOE in the decontamination and cleanup of its legacy waste sites. The existing NABIR program to-date has focused on fundamental scientific research in the laboratory. Because subsurface hydrologic and geologic conditions at contaminated DOE sites cannot easily be duplicated in a laboratory, however, the DOE needs a field component to permit existing and future laboratory research results to be field-tested on a small scale in a controlled outdoor setting. Such field-testing needs to be conducted under actual legacy waste field conditions representative of those that DOE is most in need of remediating. Ideally, these field conditions should be as representative as practicable of the types of subsurface contamination conditions that resulted from legacy wastes from the nuclear weapons program activities. They should also be representative of the types of hydrologic and geologic conditions that exist across the DOE complex.

  14. Energy research program 86

    International Nuclear Information System (INIS)

    1986-01-01

    The energy research program 86 (EFP-86) is prepared by the Danish Ministry of Energy in order to continue the extension of the Danish energy research and development started through the former Trade Ministry's programs EM-1 (1976) and EM-2 (1978), and the Ministry of Energy's programs EFP-80, EFP-81, EFP-82, EFP-83, EFP-84, and EFP-85. The new program is a continuation of the activities in the period 1986-88 with a total budget of 116 mio. DKK. The program gives a brief description of background, principles, organization and financing, and a detailed description of each research area. (ln)

  15. Current Situation of Scientific Research at the University of Jordan from the Viewpoint of Graduate Students

    Directory of Open Access Journals (Sweden)

    Atif Omar Bin Tareef

    2017-05-01

    Full Text Available This study aimed to identify the current status of scientific research at the University of Jordan as perceived by graduate students and the differences between students of science and humanities faculties, and to identify their opinions regarding ways to improve scientific research at the University of Jordan. The study followed a descriptive methodology based on a survey that was developed specifically for the purpose of this study. The survey consisted of 40 items covering 5 themes, and was distributed to a sample of 104 male and female participants representing science and humanities faculties. The data were analyzed, using the two-way ANOVA, the standard deviation and means. In addition, students’ opinions and obstacles to effective participation of graduate students were categorized. The results showed significant differences between students’ assessment of the status of scientific research in science and humanities faculties, which was (3.2 for students in humanities faculties and (2.8 for students in science faculties. The difference also appeared in all the five domains of the scientific research, while there was no presence of gender effect, neither was there effect for the interaction between the variables (gender and the faculty. The study recommended to provide financial support to scientific research, and to establish a refereed scientific Journal for publishing students’ innovative ideas and research projects. Keywords: Scientific research, Graduate students.

  16. Energy research program 80

    International Nuclear Information System (INIS)

    1980-01-01

    The energy research program 80 contains an extension of the activities for the period 1980-82 within a budget of 100 mio.kr., that are a part of the goverment's employment plan for 1980. The research program is based on a number of project proposals, that have been collected, analysed, and supplemented in October-November 1979. This report consists of two parts. Part 1: a survey of the program, with a brief description of the background, principles, organization and financing. Part 2: Detailed description of the different research programs. (LN)

  17. WHY SCIENTIFIC RESEARCH OF A LECTURER IS THE «LAME HORSE» OF MODERN SCIENCE?

    Directory of Open Access Journals (Sweden)

    Maria A. Belyaeva

    2015-01-01

    Full Text Available The aim of the article is to represent reflections on the crisis of science and logical thinking (within the framework of Social Science, Humanities and higher education that has its local and global manifestations; the author focused own attention on the manifestations in order to understand its depth and possible ways of overcoming them. Methods. A number of theoretical methods have been used in the article: analysis and synthesis, induction and deduction, comparison and classification, methods of extrapolation and modeling, as well as participant observation. Results. Local manifestations of the crisis of science and logical thinking associated with human factor in the national system of higher professional education in the era of virtualization and commercialization are expressed in reducing efforts and productivity of scientific research, due to the existing contradictions between changed requirements that enumerate professional duties of a lecturer and possibilities of combining and productive implementation of traditional and new professional roles. In particular, researches turn to promoters of themselves to solve financial and organizational issues of a scientific research and promotion of ratings. Changes in the sense of scientific activity in respect to educators and their personal attitude to new requirements will eventually face the eternal problem of attitude to knowledge and to the actual problem of change of knowledge subject in non-classical model and post-non-classical model of science. Expression of a researcher’s individuality encounters many obstacles (the author has identified 10 of them and is complicated by new facets of this subjectivity, induced by «logistics turn point» in science. Scientific novelty. The author proves that it is necessary to change nonclassical subject knowledge model (where the corporate subject leaning for the general ways and collective norms of scientific activity dominates for

  18. 76 FR 59407 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-09-26

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... Administration (FDA) is announcing the availability of its report of scientific and medical literature and... Research Report of Scientific and Medical Literature and Information on Non-Standardized Allergenic...

  19. Conceptual design report for the scientific program of the super-FRS experiment collaboration

    International Nuclear Information System (INIS)

    2016-01-01

    This Conceptual Design Report (CDR) presents the plans of the Super-FRS Experiment Collaboration for a variety of experiments, which build on the versatile high-resolution separator and spectrometer performance of the Super-FRS. The characteristic feature of these experiments is the fact that they use the separator as an integral part of the measurement. These experiments build on the experience of the collaboration and their scientific program pursued at the FRS in the last 25 years, but also includes recently developed novel topics. Under these premises, the Super-FRS Experiment Collaboration has identified ten major topics of current interest and with far-reaching scientific potential. In this CDR, the scientific case is briefly recapitulated and the conceptual design of the experiments, the setups and their implementation are described. Much of the needed equipment is already available or, if not, will be realized with new, additional resources and efforts outside the FAIR Cost Books. The related R and D works and some pilot experiments can be carried out at the existing FRS of GSI in FAIR Phase-0. On the midterm, the science program of this collaboration can start at the commissioning phase of the Super-FRS and will continue on the long term with the established full performance. Accordingly, the prototype equipment and other already existing devices can be tested and used at the FRS and can later, when completed or upgraded, be moved to the Super-FRS. The related developments and organization of the Super-FRS Experiment Collaboration are described,and the collaboration partners and institutes are listed. The Super-FRS Experiment Collaboration is formally and firmly established and is a comprising part of the NUSTAR Collaboration. A large variety of modern nuclear physics experiments with new scientific possibilities and outstanding scientific potential were presented in the scientific program (GSI-Report 2014-4), which was very positively evaluated and

  20. Conceptual design report for the scientific program of the super-FRS experiment collaboration

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-11-01

    This Conceptual Design Report (CDR) presents the plans of the Super-FRS Experiment Collaboration for a variety of experiments, which build on the versatile high-resolution separator and spectrometer performance of the Super-FRS. The characteristic feature of these experiments is the fact that they use the separator as an integral part of the measurement. These experiments build on the experience of the collaboration and their scientific program pursued at the FRS in the last 25 years, but also includes recently developed novel topics. Under these premises, the Super-FRS Experiment Collaboration has identified ten major topics of current interest and with far-reaching scientific potential. In this CDR, the scientific case is briefly recapitulated and the conceptual design of the experiments, the setups and their implementation are described. Much of the needed equipment is already available or, if not, will be realized with new, additional resources and efforts outside the FAIR Cost Books. The related R and D works and some pilot experiments can be carried out at the existing FRS of GSI in FAIR Phase-0. On the midterm, the science program of this collaboration can start at the commissioning phase of the Super-FRS and will continue on the long term with the established full performance. Accordingly, the prototype equipment and other already existing devices can be tested and used at the FRS and can later, when completed or upgraded, be moved to the Super-FRS. The related developments and organization of the Super-FRS Experiment Collaboration are described,and the collaboration partners and institutes are listed. The Super-FRS Experiment Collaboration is formally and firmly established and is a comprising part of the NUSTAR Collaboration. A large variety of modern nuclear physics experiments with new scientific possibilities and outstanding scientific potential were presented in the scientific program (GSI-Report 2014-4), which was very positively evaluated and