WorldWideScience

Sample records for research laboratory strategic

  1. Education and Strategic Research Collaborations

    Science.gov (United States)

    Los Alamos National Laboratory National Security Education Center Image Search Site submit LaboratoryNational Security Education Center Menu Program Offices Energy Security Council New Mexico Consortium Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student

  2. Strategic marketing research

    NARCIS (Netherlands)

    Bijmolt, Tammo H.A.; Frambach, Ruud T.; Verhallen, Theo M.M.

    1996-01-01

    This article introduces the term “strategic marketing research” for the collection and analysis of data in support of strategic marketing management. In particular, strategic marketing research plays an important role in defining the market, analysis of the environment, and the formulation of

  3. The strategic research positioning:

    DEFF Research Database (Denmark)

    Viala, Eva Silberschmidt

    to provide new insights into ‘immigrant’ parents’ perspective on home/school partnership in Denmark. The majority of the immigrant parents came from non-Western countries, and they had already been ‘labelled’ difficult in terms of home/school partnership. This calls for what I call ‘strategic research...... positioning’, meaning critical reflections about the relationship and power balance between the researcher and the researched. The paper focus' on challenges and dilemmas linked to this position....

  4. Draft Strategic Laboratory Missions Plan. Volume II

    International Nuclear Information System (INIS)

    1996-03-01

    This volume described in detail the Department's research and technology development activities and their funding at the Department's laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B ampersand R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department's appropriation to a specific activity description and to specific R ampersand D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R ampersand D performers chosen to execute the Department's missions

  5. Draft Strategic Laboratory Missions Plan. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This volume described in detail the Department`s research and technology development activities and their funding at the Department`s laboratories. It includes 166 Mission Activity Profiles, organized by major mission area, with each representing a discrete budget function called a Budget and Reporting (B & R) Code. The activities profiled here encompass the total research and technology development funding of the laboratories from the Department. Each profile includes a description of the activity and shows how the funding for that activity is distributed among the DOE laboratories as well as universities and industry. The profiles also indicate the principal laboratories for each activity, as well as which other laboratories are involved. The information in this volume is at the core of the Strategic Laboratory Mission Plan. It enables a reader to follow funds from the Department`s appropriation to a specific activity description and to specific R & D performing institutions. This information will enable the Department, along with the Laboratory Operations Board and Congress, to review the distribution of R & D performers chosen to execute the Department`s missions.

  6. Strategic research on materials

    International Nuclear Information System (INIS)

    Williams, J.

    1987-01-01

    Strategic research is defined as that which is necessary to support not only an understanding of the phenomenon on which a new technology is based, but also the raft of other technologies needed to exploit the new phenomenon. The theme is illustrated by reference to the development of ceramics of importance to the nuclear industry and in particularly with relation to the AGR. Starting from natural uranium, the underlying and wide ranging research effort devoted to the technology of isotopic enrichment, the investigation of the uranium-oxygen binary system, fabrication of uranium dioxide fuel, interactions between the fuel and stainless steel cans, between the cans and CO 2 coolant and between the coolant and graphite moderator, is outlined. The role of ceramics in stable radioactive waste containment is also briefly mentioned. (author)

  7. The SRS analytical laboratories strategic plan

    International Nuclear Information System (INIS)

    Hiland, D.E.

    1993-01-01

    There is an acute shortage of Savannah River Site (SRS) analytical laboratory capacity to support key Department of Energy (DOE) environmental restoration and waste management (EM) programs while making the transition from traditional defense program (DP) missions as a result of the cessation of the Cold War. This motivated Westinghouse Savannah River Company (WSRC) to develop an open-quotes Analytical Laboratories Strategic Planclose quotes (ALSP) in order to provide appropriate input to SRS operating plans and justification for proposed analytical laboratory projects. The methodology used to develop this plan is applicable to all types of strategic planning

  8. Energy research strategic plan

    International Nuclear Information System (INIS)

    1995-08-01

    Research and development is an essential element of economic prosperity and a traditional source of strength for the U.S. economy. During the past two decades, the way of introducing technological developments into the national economy has changed steadily. Previously, industry did most long-term technology development and some basic research with private funding. Today, the Nation's industry relies mostly on federally-funded research to provide the knowledge base that leads to new technologies and economic growth. In the 1980s, U.S. firms lost major technology markets to foreign competition. In response, many firms increased emphasis on technology development for near term payoff while decreasing long term research for new technology. The purpose of the Office of Energy Research of the U.S. Department of Energy (DOE) is to provide basic research and technology development that triggers and drives economic development and helps maintain U.S. world leadership in science. We do so through programs of basic and applied research that support the Department's energy, environmental and national defense missions and that provide the foundation for technical advancement. We do so by emphasizing research that maintains our world leadership in science, mathematics, and engineering and through partnerships with universities, National Laboratories, and industries across the Nation

  9. Strategic Planning for Research Reactors

    International Nuclear Information System (INIS)

    2017-01-01

    This publication is a revision of IAEA-TECDOC-1212 which primarily focused on enhancing the utilization of existing research reactors. This updated version also provides guidance on how to develop and implement a strategic plan for a new research reactor project and will be of particular interest for organizations which are preparing a feasibility study to establish such a new facility. This publication will enable managers to determine more accurately the actual and potential capabilities of an existing reactor, or the intended purpose and type of a new facility. At the same time, management will be able to match these capabilities to stakeholders/users’ needs and establish the strategy of meeting such needs. In addition, several annexes are presented, including some examples as clarification to the main text and ready-to-use templates as assistance to the team drafting a strategic plan.

  10. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  11. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  12. Critical and strategic materials proceedings of the laboratory study group meeting

    International Nuclear Information System (INIS)

    1983-06-01

    These Proceedings serve to identify the appropriate role for the DOE-BES-DMS Laboratory program concerning critical and strategic materials, identify and articulate high priority DOE-BES-DMS target areas so as to maximize programmatic responsiveness to national needs concerning critical and strategic materials, and identify research, expertise, and resources (including Collaborative Research Centers) that are relevant to critical and strategic materials that is either underway or in place under the DOE-BES-DMS Laboratory program. Laboratory statements of collaborative research are given

  13. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  14. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  15. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  16. Naval Medical Research and Development Strategic Plan

    Science.gov (United States)

    2008-03-01

    the strategic planning program for action. The pros and cons of the current NMR&D organization structure, management support funding, and officer...Distribution List D-4 Naval Medical Research and Development Strategic Plan March 2008 SWE Naval Surface Warfare Enterprise SWOT Strengths

  17. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  18. Strategically using social media to communicate research

    OpenAIRE

    Rummer, Jodie; Darling, Emily

    2015-01-01

    This was a presentation given to PhD/doctoral candidates at James Cook University introducing them to developing an online presence/identity and strategically using social media to communicate their research and network within their professional communities.

  19. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  20. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  1. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  2. Factors Influencing Laboratory Information System Effectiveness Through Strategic Planning in Shiraz Teaching Hospitals.

    Science.gov (United States)

    Bahador, Fateme; Sharifian, Roxana; Farhadi, Payam; Jafari, Abdosaleh; Nematolahi, Mohtram; Shokrpour, Nasrin

    This study aimed to develop and test a research model that examined 7effective factors on the effectiveness of laboratory information system (LIS) through strategic planning. This research was carried out on total laboratory staff, information technology staff, and laboratory managers in Shiraz (a city in the south of Iran) teaching hospitals by structural equation modeling approach in 2015. The results revealed that there was no significant positive relationship between decisions based on cost-benefit analysis and LIS functionality with LIS effectiveness, but there was a significant positive relationship between other factors and LIS effectiveness. As expected, high levels of strategic information system planning result in increasing LIS effectiveness. The results also showed that the relationship between cost-benefit analysis, LIS functionality, end-user involvement, and information technology-business alignment with strategic information system planning was significant and positive.

  3. Strategic Entrepreneurship: A Review and Research Agenda

    DEFF Research Database (Denmark)

    Lassen, Astrid Heidemann; Timenes Laugen, Bjørge; Middel, Rick

    2009-01-01

    This paper argues that in order to move the emerging construct of strategic entrepreneurship beyond a theoretically appealing one, we need to improve our theoretical and analytical frameworks in several key areas. Our analysis firstly discusses several challenges for the strategic entrepreneurshi...... of research foci are proposed, which will enhance the understanding of the integration of advantage-seeking behaviour and opportunity-seeking behaviour which composes strategic entrepreneurship...... concept, next identifies a number of emerging themes in SE, and thirdly highlights three topics, which should be on the future research agenda of SE; 1) moving beyond a singlestreamed focus on SE; 2) roles and behaviors supporting SE; and 3) SE as a dynamic inter-firm concept. For each of these a number...

  4. The Strategic Electrochemical Research Center in Denmark

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Hansen, Karin Vels

    2011-01-01

    A 6-year strategic electrochemistry research center (SERC) in fundamental and applied aspects of electrochemical cells with a main emphasis on solid oxide cells was started in Denmark on January 1st, 2007 in cooperation with other Danish and Swedish Universities. Furthermore, 8 Danish companies...... are presented. ©2011 COPYRIGHT ECS - The Electrochemical Society...

  5. Institutional Research's Role in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    Institutions that have organized and centralized their data enjoy an obvious advantage in grappling with strategic planning and other issues. As the drumbeat for accountability, planning, and demonstrating effectiveness to internal and external stakeholders intensifies, the stature and importance of institutional research offices on most campuses…

  6. Strategic Transit Automation Research Plan

    Science.gov (United States)

    2018-01-01

    Transit bus automation could deliver many potential benefits, but transit agencies need additional research and policy guidance to make informed deployment decisions. Although funding and policy constraints may play a role, there is also a reasonable...

  7. Strategic planning as a competitive differential: A case study of the Sealed Sources Production Laboratory

    International Nuclear Information System (INIS)

    Vieira, Imário; Nascimento, Fernando C.; Calvo, Wilson A. Parejo

    2017-01-01

    Strategic planning has always been and continues to be one of the most important management tools for decision making. Amidst the uncertainties of the 21"s"t century, public, private and third sector organizations are steadily struggling to improve their strategic plans by using more effective results management tools such as BSC-Balanced Scorecard. Nuclear research institutes and research centers around the world have been using more and more these types of tools in their strategic planning and management. The objective of this article was to recommend the use the BSC as a strategic tool for decision making for the Sealed Sources Production Laboratory located in the Radiation Technology Center, at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in Sao Paulo, Brazil. The methodology used in this academic article was a case study, which considered the object of the study, the Sealed Sources Production Laboratory, from January 2014 to August 2016. Among the main results obtained with this study can be cited: the improvement of the information flow, the visualization and proposition to change the periodicity of analysis of the results, among others. In view of the expected results, it was possible to conclude that this study may be of value to the Sealed Sources Production Laboratory for Industrial Radiography and Industrial Process Control and also to other research centers, as it will allow and contribute with an additional management support tool. (author)

  8. Strategic planning as a competitive differential: A case study of the Sealed Sources Production Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Imário; Nascimento, Fernando C.; Calvo, Wilson A. Parejo, E-mail: imariovieira@yahoo.com, E-mail: wapcalvo@ipen.br, E-mail: fcodelo@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Faculdade SENAI de Tecnologia Ambiental, Sao Bernardo do Campo, SP (Brazil)

    2017-11-01

    Strategic planning has always been and continues to be one of the most important management tools for decision making. Amidst the uncertainties of the 21{sup st} century, public, private and third sector organizations are steadily struggling to improve their strategic plans by using more effective results management tools such as BSC-Balanced Scorecard. Nuclear research institutes and research centers around the world have been using more and more these types of tools in their strategic planning and management. The objective of this article was to recommend the use the BSC as a strategic tool for decision making for the Sealed Sources Production Laboratory located in the Radiation Technology Center, at Nuclear and Energy Research Institute (IPEN/CNEN-SP), in Sao Paulo, Brazil. The methodology used in this academic article was a case study, which considered the object of the study, the Sealed Sources Production Laboratory, from January 2014 to August 2016. Among the main results obtained with this study can be cited: the improvement of the information flow, the visualization and proposition to change the periodicity of analysis of the results, among others. In view of the expected results, it was possible to conclude that this study may be of value to the Sealed Sources Production Laboratory for Industrial Radiography and Industrial Process Control and also to other research centers, as it will allow and contribute with an additional management support tool. (author)

  9. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  10. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  11. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  12. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  13. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  14. Making Research Cyberinfrastructure a Strategic Choice

    Science.gov (United States)

    Hacker, Thomas J.; Wheeler, Bradley C.

    2007-01-01

    The commoditization of low-cost hardware has enabled even modest-sized laboratories and research projects to own their own "supercomputers." The authors argue that this local solution undermines rather than amplifies the research potential of scholars. CIOs, provosts, and research technologists should consider carefully an overall…

  15. Langley Research Center Strategic Plan for Education

    Science.gov (United States)

    Proctor, Sandra B.

    1994-01-01

    Research assignment centered on the preparation of final draft of the NASA Langley Strategic Plan for Education. Primary research activity consisted of data collection, through interviews with LaRC Office of Education and NASA Headquarters staff, university administrators and faculty, and school administrators / teachers; and documentary analysis. Pre-college and university programs were critically reviewed to assure effectiveness, support of NASA and Langley's mission and goals; National Education Goals; and educational reform strategies. In addition to these mandates, pre-college programs were reviewed to address present and future LaRC activities for teacher enhancement and preparation. University programs were reviewed with emphasis on student support and recruitment; faculty development and enhancement; and LaRC's role in promoting the utilization of educational technologies and distance learning. The LaRC Strategic Plan for Education will enable the Office of Education to provide a focused and well planned continuum of education programs for students, teachers and faculty. It will serve to direct and focus present activities and programs while simultaneously offering the flexibility to address new and emerging directions based on changing national, state, and agency trends.

  16. Strategic Nuclear Research Collaboration - FY99 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Leahy

    1999-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has created the Strategic Nuclear Research Collaboration. The SNRC brings together some of America's finest laboratory and university nuclear researchers in a carefully focused research program intended to produce ''breakthrough'' solutions to the difficult issues of nuclear economics, safety, non-proliferation, and nuclear waste. This integrated program aims to address obstacles that stand in the way of nuclear power development in the US These include fuel cycle concerns related to waste and proliferation, the need for more efficient regulatory practices, and the high cost of constructing and operating nuclear power plants. Funded at an FY99 level of $2.58M, the SNRC is focusing the efforts of scientists and engineers from the INEEL and the Massachusetts Institute of Technology to solve complex nuclear energy challenges in a carefully chosen, integrated portfolio of research topics. The result of this collaboration will be research that serves as a catalyst for future direct-funded nuclear research and technology development and which preserves and enhances the INEEL's role as America's leading national laboratory for nuclear power research. In its first year, the SNRC has focused on four research projects each of which address one or more of the four issues facing further nuclear power development (economics, safety, waste disposition and proliferation-resistance). This Annual Report describes technical work and accomplishments during the first year of the SNRC's existence.

  17. Sandia National Laboratories: Research

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD and decision-making. Materials science Leading the nation in the knowledge of materials engineering success is our foundational scientific research, which provides us with knowledge and capabilities that

  18. Korogwe Research Laboratory

    DEFF Research Database (Denmark)

    Knudsen, Jakob

    2012-01-01

    . It is a large vaccine trial programme simultaneously conducted in several countries in Africa funded by the Bill and Melinda Gates Foundation. The laboratory is an extension to a district hospital placed quite isolated and rural in the north-eastern part of Tanzania. It’s close to the equator and the climate...... and ceiling have been separated leaving a large space for natural ventilation creating a general chimney effect. To provide independent backup water supply all rainwater falling on the roof is collected and directed through a sand filter into a 100m3 subterranean water tank. All constructions, details...... and materials have been carefully selected to last a long time even in a future situation with limited maintenance. Except from the high-end lab equipment only local available materials have been used. All major spaces are reached from colonnades surrounding an inner calm and cool garden space equipped...

  19. Physical Research Laboratory

    Indian Academy of Sciences (India)

    Studies on star formation processes, active galaxies, BL Lac objects and ... photospheric and chromospheric studies and observations for the international GONG ... Research in computer science with focus on image processing and.

  20. Strategic Orientation of SMEs: Empirical Research

    Directory of Open Access Journals (Sweden)

    Jelena Minović

    2016-04-01

    Full Text Available The main objective of the paper is to identify the sources of competitive advantage of small and medium-sized enterprises in Serbia. Gaining a competitive advantage is the key priority of market-oriented enterprises regardless of their size and sector. Since business environment in Serbia is not stimulating enough for enterprises’ growth and development, the paper highlights the role of strategic orientation in business promotion and development. In order to identify the sources of competitive advantage, the empirical research is conducted by using the survey method. The research sample is created by using a selective approach, namely, the sample includes enterprises with more than ten employees, and enterprises identified to have the potential for growth and development. The research results indicate that small and medium-sized enterprises in Serbia are generally focused on costs as a source of competitive advantage, i.e., they gain competitive advantage in a selected market segment by offering low price and average quality products/services. In addition, the results of the research point out that the Serbian small and medium-sized enterprises are innovation-oriented. Organizations qualifying as middle-sized enterprises are predominantly focused on process innovations, while small businesses are primarily oriented towards product innovations. One of the limitations of the research refers to the small presence of the research sample within the category of middle-sized enterprises. The smaller sample presence than it was previously planned is mostly due to the lack of managers’ willingness to participate in the research, as well as to the fact that these enterprises account for the smaller share in the total number of enterprises in the small-and medium-sized enterprises’ sector. Taking into account that the sector of small and medium-sized enterprises generates around 30% of the country’s GDP, we consider the research results to be

  1. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  2. STRATEGIC MANAGEMENT OBJECT AS AN OBJECT OF SCIENTIFIC RESEARCH

    Directory of Open Access Journals (Sweden)

    Mykola Bondar

    2015-11-01

    Full Text Available The purpose of research is to highlight the main areas of the system of strategic management accounting, improvement of the principles on which it operates. Subject of research is theoretical and practical aspects of functioning and development of strategic management accounting. Subject area is focused on strategic management information support towards the implementation of the principle of balancing of activity of the entities. Objectives of the research is to determine the place and role of strategic management accounting in the creation of information infrastructure management in the current economic conditions; disclosure of decomposition problems and improvement of the functioning of the system of strategic management accounting, prioritization of development. Hypothesis of the research is based on the assumption that the effectiveness of entities management adapted to the needs of the market environment of complete, accurate and timely information, which is formed in properly organized system of strategic management accounting. Methodology is based on analysis of data of respondents from 125 industrial entities of Kharkiv region. Data was collected through direct surveys and in the preparation of Kharkiv Oblast Development Strategy for the period until 2020. Respondents were asked a number of questions that determine: results of the system of information support of strategic management in enterprises employing respondents; direction of the system of strategic management accounting in enterprises employing respondents. By means of expert assessments was evaluated important source of information for making strategic management decisions. General system of research methodology is based on a systematic approach. Conclusion. During the research was confirmed the role and importance of strategic management accounting information for the purpose of strategic management. According to the results outlined challenges facing the leaders of

  3. Practicalization strategic research of FBR cycle

    International Nuclear Information System (INIS)

    2000-01-01

    Practicalization strategic research of FBR cycle consists of two phases such as phase I (FY 1999-2000) and phase II (to FY 2005). In every phase, research and development plants and results are checked and reviewed. The assessment indexes are five development objects such as safety, economical efficiency, resource effective utilization, environmental load decrease and nuclear non-proliferation and technical realization, too. Reactor core, FBR plant system and fuel cycle system are investigated. We selected the research subjects of cooling materials as sodium, heavy metals (lead and lead bismuth alloy), gas (carbon dioxide and helium) and water (boiling water, power water and supercritical pressure water) and fuel types as cladding tube fuel (oxide, nitride and metal) and coated fuel particle (oxide and nitride) for helium gas cooling reactor. In FY1999, the good reactor core and FBR plant system for every cooling materials are studied. Two reprocessing (a wet reprocessing using aqueous solution and a dry method) were selected. In FY 2000, we will investigate effects of throughput, plant concept and cost and evaluate achievement of development objects and then decide the development plan. (S.Y.)

  4. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  5. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  6. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  7. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  8. Strategic research field no.4, industrial innovations

    International Nuclear Information System (INIS)

    Kato, Chisachi

    2011-01-01

    'Kei'-supercomputer is planned to start its full-scale operation in about one year and a half. With this, High Performance Computing (HPC) is most likely to contribute not only to further progress in basic and applied sciences, but also to bringing about innovations in various fields of industries. It is expected to substantially shorten design time, drastically improve performance and/or liability of various industrial products, and greatly enhance safety of large-scale power plants. In this particle, six research themes, which are currently being prepared in this strategic research field, 'industrial innovations' so as to use 'Kei'-supercomputer as soon as it starts operations, will be briefly described regarding their specific goals and break-through that they are expected to bring about in industries. It is also explained how we have determined these themes. We are also planning several measures in order to promote widespread use of HPC including 'Kei'-supercomputer in industries, which will also be elaborated in this article. (author)

  9. Strategic approach to outsourcing the research and development function

    OpenAIRE

    Firend, A.R

    2010-01-01

    This paper proposes an approach for outsourcing the R&D function. This model is to serve as a strategic approach to outsourcing that considers number of elements with strategic competitive advantage as an ultimate objective. This paper suggest that outsourcing research and development should be planed and conducted from a strategic standpoint and have positive impact on organizational competitive position by incorporating it into the overall\\ud strategy of the organization to reduce the numbe...

  10. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  11. 2016 Federal Cybersecurity Research and Development Strategic Plan

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — As part of the Presidents Cybersecurity National Action Plan (CNAP), the Administration released the 2016 Federal Cybersecurity Research and Development Strategic...

  12. How Symmetrical Assumptions Advance Strategic Management Research

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul; Hallberg, Hallberg

    2014-01-01

    We develop the case for symmetrical assumptions in strategic management theory. Assumptional symmetry obtains when assumptions made about certain actors and their interactions in one of the application domains of a theory are also made about this set of actors and their interactions in other...... application domains of the theory. We argue that assumptional symmetry leads to theoretical advancement by promoting the development of theory with greater falsifiability and stronger ontological grounding. Thus, strategic management theory may be advanced by systematically searching for asymmetrical...

  13. 78 FR 29122 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2013-05-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development... Department of Defense announces an open meeting of the Strategic Environmental Research and Development... development projects requesting Strategic Environmental Research and Development Program funds in excess of $1...

  14. Our strategic plan | IDRC - International Development Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Knowledge. Innovation. Solutions. IDRC's strategic plan, Investing in Solutions, will guide our efforts from 2015 to 2020. Building on more than four decades of experience, the plan reaffirms our vision to produce knowledge, support innovation, and generate solutions to improve lives and livelihoods in the developing world.

  15. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  16. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  17. Strategic planning for research reactors. Guidance for reactor managers

    International Nuclear Information System (INIS)

    2001-04-01

    The purpose of this publication is to provide guidance on how to develop a strategic plan for a research reactor. The IAEA is convinced of the need for research reactors to have strategic plans and is issuing a series of publications to help owners and operators in this regard. One of these covers the applications of research reactors. That report brings together all of the current uses of research reactors and enables a reactor owner or operator to evaluate which applications might be possible with a particular facility. An analysis of research reactor capabilities is an early phase in the strategic planning process. The current document provides the rationale for a strategic plan, outlines the methodology of developing such a plan and then gives a model that may be followed. While there are many purposes for research reactor strategic plans, this report emphasizes the use of strategic planning in order to increase utilization. A number of examples are given in order to clearly illustrate this function

  18. Conceptualizing strategic environmental assessment: Principles, approaches and research directions

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Bram, E-mail: b.noble@usask.ca [Department of Geography and Planning, and School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5A5 (Canada); Nwanekezie, Kelechi [Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5A5 (Canada)

    2017-01-15

    Increasing emphasis has been placed in recent years on transitioning strategic environmental assessment (SEA) away from its environmental impact assessment (EIA) roots. Scholars have argued the need to conceptualize SEA as a process designed to facilitate strategic thinking, thus enabling transitions toward sustainability. The practice of SEA, however, remains deeply rooted in the EIA tradition and scholars and practitioners often appear divided on the nature and purpose of SEA. This paper revisits the strategic principles of SEA and conceptualizes SEA as a multi-faceted and multi-dimensional assessment process. It is suggested that SEA can be conceptualized as series of approaches operating along a spectrum from less to more strategic – from impact assessment-based to strategy-based – with each approach to SEA differentiated by the specific objectives of SEA application and the extent to which strategic principles are reflected in its design and implementation. Advancing the effectiveness of SEA requires a continued research agenda focused on improving the traditional SEA approach, as a tool to assess the impacts of policies, plans and programs (PPPs). Realizing the full potential of SEA, however, requires a new research agenda — one focused on the development and testing of a deliberative governance approach to SEA that can facilitate strategic innovations in PPP formulation and drive transitions in short-term policy and initiatives based on longer-term thinking. - Highlights: • SEA facilitates strategic thinking, enabling transitions toward sustainability. • SEA is conceptualized as a spectrum of approaches, from IA-based to strategy-based. • Each approach variably emphasizes strategic principles in its design and practice. • There is no one conceptualization of SEA that is best, SEA is fit for PPP purpose. • Research is needed to advance SEA to facilitate strategic PPP transformations.

  19. Conceptualizing strategic environmental assessment: Principles, approaches and research directions

    International Nuclear Information System (INIS)

    Noble, Bram; Nwanekezie, Kelechi

    2017-01-01

    Increasing emphasis has been placed in recent years on transitioning strategic environmental assessment (SEA) away from its environmental impact assessment (EIA) roots. Scholars have argued the need to conceptualize SEA as a process designed to facilitate strategic thinking, thus enabling transitions toward sustainability. The practice of SEA, however, remains deeply rooted in the EIA tradition and scholars and practitioners often appear divided on the nature and purpose of SEA. This paper revisits the strategic principles of SEA and conceptualizes SEA as a multi-faceted and multi-dimensional assessment process. It is suggested that SEA can be conceptualized as series of approaches operating along a spectrum from less to more strategic – from impact assessment-based to strategy-based – with each approach to SEA differentiated by the specific objectives of SEA application and the extent to which strategic principles are reflected in its design and implementation. Advancing the effectiveness of SEA requires a continued research agenda focused on improving the traditional SEA approach, as a tool to assess the impacts of policies, plans and programs (PPPs). Realizing the full potential of SEA, however, requires a new research agenda — one focused on the development and testing of a deliberative governance approach to SEA that can facilitate strategic innovations in PPP formulation and drive transitions in short-term policy and initiatives based on longer-term thinking. - Highlights: • SEA facilitates strategic thinking, enabling transitions toward sustainability. • SEA is conceptualized as a spectrum of approaches, from IA-based to strategy-based. • Each approach variably emphasizes strategic principles in its design and practice. • There is no one conceptualization of SEA that is best, SEA is fit for PPP purpose. • Research is needed to advance SEA to facilitate strategic PPP transformations.

  20. Relationship between innovativeness and strategic planning: Empirical research

    Directory of Open Access Journals (Sweden)

    Mamula Tatjana

    2015-01-01

    Full Text Available This paper studies the relationship between innovativeness and strategic planning in SMEs. In introduction part, the authors attempt to consider relevant findings about this specific relationship in the literature. The paper presents how the EU policy approaches the innovation management system within SMEs and where Serbia stands in catching up the process towards the EU in terms of innovativeness and competitiveness. The main research approach is to examine the relationship between innovativeness and strategic orientation, beginning with the existence of the four key strategic business documents: strategic, marketing, business plan and procedures, and innovation strategy documents. The last part is a discussion on the findings and considerations of the intensity of the relations among strategic orientations of the company expressed through the key strategic documents and innovativeness, and the relations among the three most practiced types of innovation in representative sample of 150 Serbian small and medium enterprises (SMEs.The research has shown that there is positive correlation between strategic planning approach in marketing and firm's innovativeness but the intensity of the relationship depends on the type of the innovativeness considered.

  1. Strategic Evaluation on Communicating Research for Influence: Part I

    International Development Research Centre (IDRC) Digital Library (Canada)

    IDRC aims to support research that is not just about development, or relevant to development, but that will actually influence development. In order to do so, that research has to be effectively communicated and strategically positioned. IDRC endeavours to do this is by engaging potential research users in the research ...

  2. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  3. Strategic Performance Measurement of Research and Development

    DEFF Research Database (Denmark)

    Parisi, Cristiana; Rossi, Paola

    2015-01-01

    The paper used an in depth case study to investigate how firms can integrate the strategic performance measurement of R&D with the Balanced Scorecard. Moreover, the paper investigated the crucial role of controller in the decision making process of this integration.The literature review of R......-financial ratio as the R&D measures to introduce in the Balanced Scorecard.In choosing our case study, we have selected the pharmaceutical industry because of its relevant R&D investment. Within the sector we chose the Italian affiliate of a traditional industry leader, Eli Lilly Italia,that was characterized...

  4. Russian Minatom nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    Royen, J.

    1999-01-01

    An NEA study on safety research needs of Russian-designed reactors, carried out in 1996, strongly recommended that a strategic plan for safety research be developed with respect to Russian nuclear power plants. Such a plan was developed at the Russian International Nuclear Safety Centre (RINSC) of the Russian Ministry of Atomic Energy (Minatom). The Strategic Plan is designed to address high-priority safety-research needs, through a combination of domestic research, the application of appropriate foreign knowledge, and collaboration. It represents major progress toward developing a comprehensive and coherent safety-research programme for Russian nuclear power plants (NPPs). The NEA undertook its review of the Strategic Plan with the objective of providing independent verification on the scope, priority, and content of the research described in the Plan based upon the experience of the international group of experts. The principal conclusions of the review and the general comments of the NEA group are presented. (K.A.)

  5. Research2015. A basis for prioritizing strategic research; FORSK2015. Et prioriteringsgrundlag for strategisk forskning

    Energy Technology Data Exchange (ETDEWEB)

    2008-05-15

    This catalogue is based on a comprehensive mapping of the strategic research needs created by societal and business development. The mapping resulted in more than 300 contributions to strategic research themes from citizens, organizations, universities, businesses and scientists. The contributions have formed the basis for an extensive analysis and dialogue process, which has resulted in 21 proposals for strategic research themes divided among 6 general areas. Each theme consists of: 1) a significant challenge for society, 2) a research need created by the challenge, 3) Danish prerequisites for addressing the research need, and 4) long term perspectives for a potential strategic research effort in the area. (BA)

  6. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  7. Developing strategic plans for effective utilization of research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, Danas [International Atomic Energy Agency, Vienna (Austria). Dept. of Nuclear Sciences and Applications

    2015-12-15

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  8. Developing strategic plans for effective utilization of research reactors

    International Nuclear Information System (INIS)

    Ridikas, Danas

    2015-01-01

    Strategic plans are indispensable documents for research reactors (RRs) to ensure their efficient, optimized and well managed utilization. A strategic plan provides a framework for increasing utilization, while helping to create a positive safety culture, a motivated staff, a clear understanding of real costs and a balanced budget. A strategic plan should be seen as an essential tool for a responsible manager of any RR, from the smallest critical facility to the largest reactor. Results and lessons learned are shown from the IAEA efforts to help the RR facilities developing strategic plans, provide review and advise services, organize national and regional stakeholder/user workshops, prepare further guidance and recommendations, document and publish guidance documents and other supporting materials.

  9. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  10. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  11. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  12. Strategic establishment of an International Pharmacology Specialty Laboratory in a resource-limited setting.

    Science.gov (United States)

    Mtisi, Takudzwa J; Maponga, Charles; Monera-Penduka, Tsitsi G; Mudzviti, Tinashe; Chagwena, Dexter; Makita-Chingombe, Faithful; DiFranchesco, Robin; Morse, Gene D

    2018-01-01

    A growing number of drug development studies that include pharmacokinetic evaluations are conducted in regions lacking a specialised pharmacology laboratory. This necessitated the development of an International Pharmacology Specialty Laboratory (IPSL) in Zimbabwe. The aim of this article is to describe the development of an IPSL in Zimbabwe. The IPSL was developed collaboratively by the University of Zimbabwe and the University at Buffalo Center for Integrated Global Biomedical Sciences. Key stages included infrastructure development, establishment of quality management systems and collaborative mentorship in clinical pharmacology study design and chromatographic assay development and validation. Two high performance liquid chromatography instruments were donated by an instrument manufacturer and a contract research organisation. Laboratory space was acquired through association with the Zimbabwe national drug regulatory authority. Operational policies, standard operating procedures and a document control system were established. Scientists and technicians were trained in aspects relevant to IPSL operations. A high-performance liquid chromatography method for nevirapine was developed with the guidance of the Clinical Pharmacology Quality Assurance programme and approved by the assay method review programme. The University of Zimbabwe IPSL is engaged with the United States National Institute of Allergy and Infectious Diseases Division of AIDS research networks and is poised to begin drug assays and pharmacokinetic analyses. An IPSL has been successfully established in a resource-limited setting through the efforts of an external partnership providing technical guidance and motivated internal faculty and staff. Strategic partnerships were beneficial in navigating challenges leading to laboratory development and training new investigators. The IPSL is now engaged in clinical pharmacology research.

  13. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  14. Strategic Planning for Academic Research: A Canadian Perspective

    Science.gov (United States)

    Sa, Creso M.; Tamtik, Merli

    2012-01-01

    This paper reports on an empirical study of research planning in Canadian universities. Drawing on data compiled during interviews with senior administrators from 27 academic units in 10 universities, the paper analyses how strategic planning has been applied to the research mission over the past decade. Findings reveal variability in processes…

  15. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  16. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  17. Caltran's strategic research plan, 2008/2009

    Science.gov (United States)

    2009-08-01

    The purpose of this report is to convey the progress the Division of Research and Innovation (DRI) has made toward achieving its research goals and objectives. It provides an overview as to the management of research and a synopsis of recently comple...

  18. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  19. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  20. Strategic Research Action Plans 2016-2019

    Science.gov (United States)

    EPA's six research priorities: Air, Climate, Energy; Chemical Safety for Sustainability, Homeland Security, Human Health Risk Assessment, Sustainable and Healthy Communities, Safe and Sustainable Water Resources.

  1. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  2. Grounding Our Vision: Brain Research and Strategic Vision

    Science.gov (United States)

    Walker, Mike

    2011-01-01

    While recognizing the value of "vision," it could be argued that vision alone--at least in schools--is not enough to rally the financial and emotional support required to translate an idea into reality. A compelling vision needs to reflect substantive, research-based knowledge if it is to spark the kind of strategic thinking and insight…

  3. Strategic management of research and development: A literature search

    Science.gov (United States)

    Sterkin, Carol K. (Compiler)

    1988-01-01

    Each abstract was reviewed as to its described contents and potential applicability to the topics expected to be addressed at the 1988 National Conference on strategic management of research and development. In each section the citations are listed alphabetically by senior or corporate author. The names, addresses, and telephone numbers of organizations from which the listed material may be requested, are provided.

  4. The researcher as a (strategic) storyteller

    DEFF Research Database (Denmark)

    Schmidt, Garbi

    In Denmark – as in most other Western European countries – public and political debates over migration are heated and polarized. As scholars carrying out research of diverse cities and neighborhoods it is practically impossible to stay out of the debate. Based on 1) results from a large – both hi...... over time, can be a tool for nuancing prevalent stereotypical perceptions of ethnically diverse neighborhoods. In conclusion, I will reflect on how combining scholarly and popular communication strategies can both strengthen research and inform the public....... historical and fieldwork based - study of an ethnically and socially diverse district in Copenhagen, and 2) experiences with organizing guided walking tours in the area (based on research results), I will discuss the potential of mixing untraditional ways of research communication and cultural geographical...

  5. Scientific Computing Strategic Plan for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Whiting, Eric Todd

    2015-01-01

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory's (INL's) challenge and charge, and is central to INL's ongoing success. Computing is an essential part of INL's future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing number of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.

  6. 77 FR 49439 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2012-08-16

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION: Notice... research and development projects requesting Strategic Environmental Research and Development Program funds...

  7. 76 FR 81918 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board...

    Science.gov (United States)

    2011-12-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION... research and development projects requesting Strategic Environmental Research and Development Program...

  8. Strategic plan and strategy of the Oak Ridge National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    1995-06-01

    This report provides information about the use of an integrated strategic plan, strategy, and life-cycle baseline in the long range planning and risk process employed by the environmental restoration program at the Oak Ridge National Laboratory (ORNL). Long-range planning is essential because the ER Program encompasses hundreds of sites; will last several decades; and requires complex technology, management, and policy. Long-range planning allows a focused, cost-effective approach to identify and meet Program objectives. This is accomplished through a strategic plan, a strategy, and a life-cycle baseline. This long-range methodology is illustrated below

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  10. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  11. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  12. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  13. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  14. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  15. Biometrics Research and Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — As the Department of Defense moves forward in its pursuit of integrating biometrics technology into facility access control, the Global War on Terrorism and weapon...

  16. Subsonic Aerodynamic Research Laboratory (SARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The SARL is a unique high contraction, open circuit subsonic wind tunnel providing a test velocity up to 436 mph (0.5 Mach number) and a high quality,...

  17. 75 FR 1115 - Invitation for Public Comment on Strategic Research Direction, Research Priority Areas and...

    Science.gov (United States)

    2010-01-08

    .... The RD&T strategic planning process is collaborative, cross-modal, and forward looking, focusing on... strategic planning effort that will guide the Department's research, development, and technology activities... planning process to cover the years 2010-2015 and to address the proposed Departmental key priorities as...

  18. Strategic Plan for Light Water Reactor Research and Development

    International Nuclear Information System (INIS)

    2004-01-01

    The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R and D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R and D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R and D at addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually

  19. 76 FR 49753 - Strategic Environmental Research and Development Program Scientific Advisory Board Meeting

    Science.gov (United States)

    2011-08-11

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program Scientific Advisory Board Meeting AGENCY: Department of Defense. ACTION: Notice. SUMMARY: This... projects requesting Strategic Environmental Research and Development Program (SERDP) funds in excess of $1M...

  20. 76 FR 45542 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board

    Science.gov (United States)

    2011-07-29

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board AGENCY: Office of the Secretary, Department of Defense. ACTION... program areas. These projects are requesting Strategic Environmental Research and Development Program...

  1. 77 FR 26521 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2012-05-04

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION: Notice... development projects requesting Strategic Environmental Research and Development Program (SERDP) funds in...

  2. 76 FR 46756 - Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board

    Science.gov (United States)

    2011-08-03

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program (SERDP), Scientific Advisory Board AGENCY: Department of Defense, Office of the Secretary. ACTION... Change program areas. These projects are requesting Strategic Environmental Research and Development...

  3. 78 FR 63454 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2013-10-24

    ... Strategic Environmental Research and Development Program, Scientific Advisory Board that was to have taken... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Federal Advisory Committee Meeting; Cancellation of Meeting...

  4. Defense Coastal/Estuarine Research Program (DCERP) Strategic Plan

    Science.gov (United States)

    2007-09-01

    availability to phytoplankton in the water column, as well as to benthic microalgae, macroalgae , and seagrasses in bottom waters (Gallegos et al., 2005...further another of MCBCL’s key management objectives for meeting the requirements of the CWA. How wetlands may be utilized for water treatment ...Regulations Appendix B Prioritized list of MCBCL’s conservation and water quality needs Defense Coastal/Estuarine Research Program (DCERP) Strategic

  5. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  6. Strategic decisions on research for advanced reactors: USNRS perspective

    International Nuclear Information System (INIS)

    Johnson, M.

    2008-01-01

    This document provided a perspective on strategic decision on research for advanced reactors. He pointed out that advanced reactors are fundamentally different from LWR and that regulatory tools currently available (e.g. codes and data) will not be applicable to advanced designs. He stated that international co-operation is the only practical way to work together for identifying needed capabilities and tools, including the use of industry facilities. He proposed that, in consideration of its good experience at coordinating research, the CSNI establishes a task group to identify and prioritize research needs. (author)

  7. 78 FR 29121 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2013-05-17

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development... Department of Defense announces an open meeting of the Strategic Environmental Research and Development... requesting Strategic Environmental Research and Development Program funds in excess of $1 million over the...

  8. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  9. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  10. Naval Research Laboratory Arctic Initiatives

    Science.gov (United States)

    2011-06-01

    Campaign Code 7420 Arctic Modeling Code 7320/7500/7600 In-situ NRL, CRREL NRL boreholes Strategy Remote Sensing Synergism −Collect in-situ...Navy and Marine Corps Corporate Laboratory An array of BMFCs being prepared for deployment. Each BMFC consists of a weighted anode laid flat onto...Gas CH4 E C D CO2 BGHS Free Methane Gas Hydrates HCO3- HCO3- Seismic and geochemical data to predict deep sediment hydrates Estimate spatial

  11. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  13. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  14. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  15. Peer exchange, "strategic goals to manage research programs : building a premier research program".

    Science.gov (United States)

    2013-06-10

    The objectives of the District Department of Transportation (DDOT) Research, Development, & Technology Transfer (RDT) Branch Peer Exchange were: : 1. Receive peer input and perspective on RDT Strategic Plan. : 2. Obtain assistance in assessing validi...

  16. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  17. Environmental Scanning, Futures Research, Strategic Foresight and Organizational Future Orientation

    DEFF Research Database (Denmark)

    Rohrbeck, René; Bade, Manuel

    to adjacent research disciplines. Through such integration and linkage research should produce better recommendations for managers on how to build an organizational future orientation, drive organizational adaptation, and make their firms robust towards external discontinuous change.......In this paper we explore the current understanding on how firms explore future changes and trends as well as plan their managerial responses. We review literature in four research streams: (1) environmental scanning, (2) futures research, (3) peripheral vision, and (4) corporate/strategic foresight....... Through the analysis of more than 250 articles we (a) trace the evolution over time, (b) highlight the linkages between the different research streams, and (c) give recommendations for future research. Overall we call for more cross-fertilization of the different research streams and a stronger linkage...

  18. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  19. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  20. Market research: Determinant of successful strategic marketing in financial organizations

    Directory of Open Access Journals (Sweden)

    Domazet Ivana

    2013-01-01

    Full Text Available Market research provides an information inputs for business improvement by reducing risk of wrong strategic decisions in marketing area. Therefore, it presents significant competitive activity used as a base for the company's marketing strategies and business behavior. Business environment research and attitudes of clients above all, is particularly important in the financial services sector. Due to the specific attributes of financial services, which are reflected primarily in the intangibility (immateriality, variability (heterogeneity and volatility of services, but also on account of durability and rate of expenditure and fiduciary responsibility that feature financial institutions, market research has a special dimension in this area. Thus the aim of this paper is to analyze the concept and process of market research in the financial services industry and point out the importance of market research as the basic activity that should provide inputs for making strategic marketing decisions related to: market segmentation, targeting and positioning of specific market segment. In addition, the paper presents the results of market research and provides the opinions of car insurance service users in Serbia, where the starting hypothesis was that the main factors in selecting companies for motor insurance were the following: the reputation of the insurance company, trust that the insurer will pay the damage when it occurs and the price of services.

  1. Sandia National Laboratories: Research: Biodefense

    Science.gov (United States)

    Energy Stationary Power Earth Science Transportation Energy Energy Research Global Security WMD knowledge to counter disease Sandia conducts research into how pathogens interact and subvert a host's immune response to develop the knowledge base needed to create new novel environmental detectors, medical

  2. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  3. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  4. Research laboratories annual report 1994

    International Nuclear Information System (INIS)

    1996-01-01

    The publication is the 1994 annual report of the Israel atomic energy commission in a new format. The report includes three invited papers and a bibliographic list of publications by the commission scientific researches

  5. Research laboratories annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The publication is the 1994 annual report of the Israel atomic energy commission in a new format. The report includes three invited papers and a bibliographic list of publications by the commission scientific researches.

  6. Strategically Reviewing the Research Literature in Qualitative Research

    Science.gov (United States)

    Chenail, Ronald J.; Cooper, Robin; Desir, Charlene

    2010-01-01

    Reviewing literature in qualitative research can be challenging in terms of why, when, where, and how we should access third-party sources in our work, especially for novice qualitative researchers. As a pragmatic solution, we suggest qualitative researchers utilize research literature in four functional ways: (a) define the phenomenon in…

  7. Naval Research Laboratory 1986 Review

    Science.gov (United States)

    1986-01-01

    probabil- infinitesimal impedance elements cannot be dep- ity density, icted .) If PR (r. 1 is the joint probability den- sity function for r and 1, a...Dynamics. 1-5 Sept. 1986, finse Research. Medellin , Colombia. % Rosenblum, L.J., Chairperson, IEEE Computer Saks, N.S., Coorganizer and lecturer, IEEE

  8. Research laboratories annual report 1992

    International Nuclear Information System (INIS)

    1993-07-01

    The report book presents the various research activities within the Israel Atomic Energy Commission, during 1992 calendar year. The discipline reported here are (by chapters): theoretical physics and theoretical chemistry, optics and lasers, solid states and nuclear physics, material sciences, chemistry, radiopharmaceuticals, labelled compounds and environmental studies, radiation effects, dosimetry and protection, instrumentation and techniques

  9. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  10. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  11. Sandia National Laboratories: Research: Research Foundations: Nanodevices

    Science.gov (United States)

    Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for Mexico Small Business Assistance Program Sandia Science & Technology Park Careers Community support for research; technology advancement and maturation; and small-lot, fast-turn prototyping Our

  12. Research laboratories annual report 1993

    International Nuclear Information System (INIS)

    1994-08-01

    The 1993 annual report of the Israel Atomic Energy Commission presents, in brief and concise form, recent results and achievements of the well established program of the basic and applied research carried out by the scientists and engineers of the Israel Atomic Energy Commission in collaboration with colleagues at the other institutions in Israel and abroad. In terms of contents, the report presents the usual combination of topical basic applied research. Much of the work has been published or submitted for publication in the international scientific or technical literature. The main headings in the report are: theoretical physics and theoretical chemistry; optics and lasers; solid states and nuclear physics; materials sciences; chemistry; environmental studies and radiopharmaceuticals; radiation effects, dosimetry and radioprotection; and instrumentation and techniques

  13. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  14. Strategic Research, Post-modern Universities and Research Training

    NARCIS (Netherlands)

    Rip, Arie

    2004-01-01

    The old division of labour between fundamental and applied or problem-oriented research has almost disappeared, and with it, the functional distinctions between universities, public labs and industrial and other private research. Doctoral research training can then also become diversified in terms

  15. Strategic Planning for Research in Pediatric Critical Care.

    Science.gov (United States)

    Tamburro, Robert F; Jenkins, Tammara L; Kochanek, Patrick M

    2016-11-01

    To summarize the scientific priorities and potential future research directions for pediatric critical care research discussed by a panel of experts at the inaugural Strategic Planning Conference of the Pediatric Trauma and Critical Illness Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development. Expert opinion expressed during the Strategic Planning Conference. Not applicable. Chaired by an experienced expert from the field, issues relevant to the conduct of pediatric critical care research were discussed and debated by the invited participants. Common themes and suggested priorities were identified and coalesced. Of the many pathophysiologic conditions discussed, the multiple organ dysfunction syndrome emerged as a topic in need of more study that is most relevant to the field. Additionally, the experts offered that the interrelationship and impact of critical illness on child development and family functioning are important research priorities. Consequently, long-term outcomes research was encouraged. The expert group also suggested that multidisciplinary conferences are needed to help identify key knowledge gaps to advance and direct research in the field. The Pediatric Critical Care and Trauma Scientist Development National K12 Program and the Collaborative Pediatric Critical Care Research Network were recognized as successful and important programs supported by the branch. The development of core data resources including biorepositories with robust phenotypic data using common data elements was also suggested to foster data sharing among investigators and to enhance disease diagnosis and discovery. Multicenter clinical trials and innovative study designs to address understudied and poorly understood conditions were considered important for field advancement. Finally, the growth of the pediatric critical care research workforce was offered as a priority that could be spawned in many ways including by expanded

  16. Research laboratories annual report 1987

    International Nuclear Information System (INIS)

    1988-08-01

    The 1987 report reflects a continuation of trends and patterns established in previous years. It does not reveal novel revolutionary developments and does not open new horizons and vistas. Rather, the report represents what we believe is a sound and mature program striving to achieve a proper balance between innovative basic research and economically viable practical applications. In the field of nuclear power, six entries are devoted to an analysis of the economics, safety and vulnerability of HTGR's. Theoretical work on more advanced concepts of hybrid and fusion reactors, is also a part of our research program. In plasma physics, the highly innovative applied topic of electrothermal propulsion was added to the more familiar research on laser induced plasmas and use of cool, low density plasmas to produce coatings and other thin layers of refractory materials. Results from the airborne radiometric survey carried out in collaboration with the Geological Survey of Israel and some of the techniques developed for this purpose are shown here for the first time. Of particular interest are the anomalies found in the Gevanim Valley in the Machtesh Ramon area and their interpretation. Noteworthy achievements in radiopharmaceutics include the development of a new improved 99 Mo/ 99m Tc generator and successful clinical tests of the innovative generator of ultrashort-lived 191m Ir. The food irradiation program has reached the stage of true commercial implementation: over 50 tons of spices and condiments were treated for the food industry in 1987. In the field of non-nuclear applications, important achievements were attained in the development of surgical holmium solid state lasers and their application to gastroenterology, cardiac and vascular surgery, urology, neurosurgery and other disciplines

  17. Laboratory research in homeopathy: pro.

    Science.gov (United States)

    Khuda-Bukhsh, Anisur R

    2006-12-01

    Homeopathy is a holistic method of treatment that uses ultralow doses of highly diluted natural substances originating from plants, minerals, or animals and is based on the principle of "like cures like." Despite being occasionally challenged for its scientific validity and mechanism of action, homeopathy continues to enjoy the confidence of millions of patients around the world who opt for this mode of treatment. Contrary to skeptics' views, research on home-opathy using modern tools mostly tends to support its efficacy and advocates new ideas toward understanding its mechanism of action. As part of a Point-Counterpoint feature, this review and its companion piece in this issue by Moffett et al (Integr Cancer Ther. 2006;5:333-342) are composed of a thesis section, a response section in reaction to the companion thesis, and a rebuttal section to address issues raised in the companion response.

  18. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  19. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  20. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  1. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  2. EURADOS strategic research agenda: vision for dosimetry of ionising radiation

    International Nuclear Information System (INIS)

    Ruehm, W.; Woda, C.; Fantuzzi, E.; Harrison, R.; Schuhmacher, H.; Neumaier, S.; Vanhavere, F.; Alves, J.; Bottollier Depois, J.F.; Fattibene, P.; Knezevic, Z.; Miljanic, S.; Lopez, M. A.; Mayer, S.; Olko, P.; Stadtmann, H.; Tanner, R.

    2016-01-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS web site (www.eurados.org). (authors)

  3. A blueprint for strategic urban research: the urban piazza.

    Science.gov (United States)

    Kourtit, Karima; Nijkamp, Peter; Franklin, Rachel S; Rodríguez-Pose, Andrés

    2014-01-01

    Urban research in many countries has failed to keep up with the pace of rapidly and constantly evolving urban change. The growth of cities, the increasing complexity of their functions and the complex intra- and inter-urban linkages in this 'urban century' demand new approaches to urban analysis, which, from a systemic perspective, supersede the existing fragmentation in urban studies. In this paper we propose the concept of the urban piazza as a framework in order to address some of the inefficiencies associated with current urban analysis. By combining wealth-creating potential with smart urban mobility, ecological resilience and social buzz in this integrated and systemic framework, the aim is to set the basis for a ' New Urban World ' research blueprint, which lays the foundation for a broader and more integrated research programme for strategic urban issues.

  4. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  5. 76 FR 64327 - Office of Oceanic and Atmospheric Research Draft Strategic Plan

    Science.gov (United States)

    2011-10-18

    ...: 111003608-1608-01] Office of Oceanic and Atmospheric Research Draft Strategic Plan AGENCY: Office of Oceanic... notice announces that OAR's draft Strategic Plan (FY12- 18) is available for public review and comment... next six years. These goals and objectives will provide guidance and strategic direction for program...

  6. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  7. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  8. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  9. Research on Strategic Cooperation Between China Post and Telecoms

    Institute of Scientific and Technical Information of China (English)

    ZUO Zhen-lin; ZHANG Jing; LIANG Xiong-jian

    2005-01-01

    Firstly several aspects of the strategic cooperation between China Post and Telecoms are described in succession, which includes the necessity, the probability, the significance and the detailed contents of the strategic cooperation. With that the way to select strategic partners and the frame of the cooperated business are proposed. Lastly the obstacles of the cooperation and accordingly the solution of them are discussed.

  10. ETSON strategic orientations on research activities. ETSON research group activity

    Energy Technology Data Exchange (ETDEWEB)

    Van Dorseelaere, J.P.; Barrachin, M. [IRSN, Saint Paul les Durance (France). Centre de Cadarache; Millington, D. [Wood RSD, Warrington (United Kingdom); and others

    2018-01-15

    In 2011, ETSON published the ''Position Paper of the Technical Safety Organizations: Research Needs in Nuclear Safety for Gen 2 and Gen 3 NPPs''. This paper, published only a few months after the Fukushima-Daiichi severe accidents, presented the priorities for R and D on the main pending safety issues. It was produced by the ETSON Research Group (ERG) that has the mandate of identifying and prioritizing safety research needs, sharing information on research projects in which ETSON members are involved, defining and launching new research projects and disseminating knowledge among ETSON members. Six years after this publication, many R and D international projects finished in diverse frames, and other ones have started. In particular a lot of work was done (and is going on..) on the analysis of the Fukushima-Daiichi severe accidents. Meanwhile a roadmap on research on Gen. 2 and 3 nuclear power plants (NPP), including safety aspects, was produced by the NUGENIA association, followed by a more detailed document as ''NUGENIA global vision''. It was also demonstrated that the ETSON R and D priorities were consistent with the implementation of the 2014 Euratom Directive on safety of nuclear installations.

  11. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  12. Russian MINATOM nuclear safety research strategic plan. An international review

    International Nuclear Information System (INIS)

    1999-03-01

    The 'Safety Research Strategic Plan for Russian Nuclear Power Plants' was published in draft form at the Russian International Nuclear Safety Centre (RINSC) by a working group of fifteen senior Russian experts. The Plan consists of 12 chapters, each addressing a specific technical area and containing a number of proposed research programmes and projects to advance the state-of-knowledge in that area. In part because a strong Recommendation to undertake such a Plan was made by the 1998 OECD/NEA study, the OECD Nuclear Energy Agency was asked by the Director of RINSC and the Director of USINSC to organize an international review of the Plan when the English-language version became available in October, 1998. This report represents the results of that review. (R.P.)

  13. Evaluation of strategic research programs: The case of Danish environmental research 1993-2002

    DEFF Research Database (Denmark)

    Ingwersen, Peter Emil Rerup; Larsen, Birger

    2007-01-01

    The article reports on the mid-term and final scientometric evaluations of the Danish Strategic Environmental Research Program (SMP), which consisted of 13 virtual research centers from 1993 to 1997, nine of which are studied bibliometrically here. Citations are measured from 1993 to 2002. Central...

  14. Bioenergy Research and Strategic Planning: The Need for both Proactive and Reactive research

    Science.gov (United States)

    Public policy typically refers to governmental actions such as laws, regulatory measures, and funding decisions for a specified issue. As scientists, we should strive to provide unbiased, research information on which strategic planning and long-term goals can be based. However, research can contrib...

  15. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  16. Strategic approaches to CBRN decontamination research design and investment

    International Nuclear Information System (INIS)

    Jutro, P.

    2009-01-01

    Research funding is society's investment in its future, but in difficult economic times, investment in anything with a less than immediate payoff can be a challenge. Making federal research investment decisions for large scale issues with political, social, and economic consequences has always involved competition for available resources played out in universities, Federal executive departments and agencies, and in the authorizing and appropriating committees and subcommittees of the legislature. Designing a research program that relates to the national need for a long-term strategic approach to consequence management is a challenge in the natural and social sciences as well as in political analysis. A successful effort must involve intensive interactions by research managers with consequence managers, evaluation of the relative cost and potential effectiveness of alternative research strategies, an estimation of time to completion and potential for success of research, and having a common understanding of roles and responsibilities of national and local governments, as well as private enterprise and affected individuals. All this must be undertaken in concert with the development of risk communication strategies that are science-based but deal with managing societal expectations based on the costs and practicality of potential alternative suites of solutions.(author)

  17. Strategies to define performance specifications in laboratory medicine: 3 years on from the Milan Strategic Conference.

    Science.gov (United States)

    Panteghini, Mauro; Ceriotti, Ferruccio; Jones, Graham; Oosterhuis, Wytze; Plebani, Mario; Sandberg, Sverre

    2017-10-26

    Measurements in clinical laboratories produce results needed in the diagnosis and monitoring of patients. These results are always characterized by some uncertainty. What quality is needed and what measurement errors can be tolerated without jeopardizing patient safety should therefore be defined and specified for each analyte having clinical use. When these specifications are defined, the total examination process will be "fit for purpose" and the laboratory professionals should then set up rules to control the measuring systems to ensure they perform within specifications. The laboratory community has used different models to set performance specifications (PS). Recently, it was felt that there was a need to revisit different models and, at the same time, to emphasize the presuppositions for using the different models. Therefore, in 2014 the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) organized a Strategic Conference in Milan. It was felt that there was a need for more detailed discussions on, for instance, PS for EQAS, which measurands should use which models to set PS and how to set PS for the extra-analytical phases. There was also a need to critically evaluate the quality of data on biological variation studies and further discussing the use of the total error (TE) concept. Consequently, EFLM established five Task Finish Groups (TFGs) to address each of these topics. The TFGs are finishing their activity on 2017 and the content of this paper includes deliverables from these groups.

  18. Common strategic research agenda for radiation protection in medicine.

    Science.gov (United States)

    2017-04-01

    Reflecting the change in funding strategies for European research projects, and the goal to jointly improve medical radiation protection through sustainable research efforts, five medical societies involved in the application of ionising radiation (European Association of Nuclear Medicine, EANM; European Federation of Organizations for Medical Physics. EFOMP; European Federation of Radiographer Societies, EFRS; European Society of Radiology, ESR; European Society for Radiotherapy and Oncology, ESTRO) have identified research areas of common interest and developed this first edition of the Common Strategic Research Agenda (SRA) for medical radiation protection. The research topics considered necessary and most urgent for effective medical care and efficient in terms of radiation protection are summarised in five main themes: 1. Measurement and quantification in the field of medical applications of ionising radiation 2. Normal tissue reactions, radiation-induced morbidity and long-term health problems 3. Optimisation of radiation exposure and harmonisation of practices 4. Justification of the use of ionising radiation in medical practice 5. Infrastructures for quality assurance The SRA is a living document; thus comments and suggestions by all stakeholders in medical radiation protection are welcome and will be dealt with by the European Alliance for Medical Radiation Protection Research (EURAMED) established by the above-mentioned societies. • Overcome the fragmentation of medical radiation protection research in Europe • Identify research areas of joint interest in the field of medical radiation protection • Improve the use of ionising radiation in medicine • Collect stakeholder feedback and seek consensus • Emphasise importance of clinical translation and evaluation of research results.

  19. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  20. Research Managers at Jamaica's National University Are Strategically Deploying a Modest Research Development Fund in Support of Impactful Research

    Science.gov (United States)

    Ivey, Paul W.; Henry, Martin

    2016-01-01

    The purpose of this paper is to highlight, using examples, how the University of Technology, Jamaica (UTech, Jamaica) is strategically using a modest internal research development fund, which is managed by the research managers in its research and innovation management office, to support impactful research projects. Critical reflection and the…

  1. Strategic orientation for research and development 2007-2010

    International Nuclear Information System (INIS)

    2010-01-01

    It is now clearly apparent that the pressure exerted by human activities on the environment, essentially through the added greenhouse effect and various forms of pollution, is irreversibly changing, on the human and global scale, the conditions of life on Earth. Aware of these stakes, international and European institutions are putting into place regulatory frameworks to incite governments to develop policy responses (for example, the United Nations Framework Convention on Climate Change, directives on waste, soils, etc.). The resulting measures are aimed at reducing anthropogenic emissions and at devising lifestyles that are adapted to these new conditions, e.g. preventive policies, policies of adaptation to climate change, new industrial policies based on green technologies. In order to establish the nature, scope and dosage of these policies and actions knowledge and technology are indispensable. To some extent this knowledge is available and already mastered, but in other areas further research, development and demonstration work are required. Any eventual health or environmental risks must also be addressed to ensure competitive deployment of new technologies (second-generation biofuels, CO 2 capture and storage). ADEME's strategic research and development orientation for 2007-2010 focuses on these emerging fields of knowledge and technology, articulated in ten main R and D programmes. Of these ten programmes, seven will develop technical and organisational options to reduce the pressure that humans exert on their surroundings. The three remaining programmes aim to acquire the knowledge needed to conceive and implement effective public policies in the areas of energy management, renewable energy, waste, air quality, soils and noise pollution. Both at the European level, with for example the energy goals set for 2020, and in France, with the commitments now being implemented in the framework of the Grenelle environmental summit, ADEME is centrally placed in a

  2. The Wetland and Aquatic Research Center strategic science plan

    Science.gov (United States)

    ,

    2017-02-02

    IntroductionThe U.S. Geological Survey (USGS) Wetland and Aquatic Research Center (WARC) has two primary locations (Gainesville, Florida, and Lafayette, Louisiana) and field stations throughout the southeastern United States and Caribbean. WARC’s roots are in U.S. Fish and Wildlife Service (USFWS) and National Park Service research units that were brought into the USGS as the Biological Research Division in 1996. Founded in 2015, WARC was created from the merger of two long-standing USGS biology science Centers—the Southeast Ecological Science Center and the National Wetlands Research Center—to bring together expertise in biology, ecology, landscape science, geospatial applications, and decision support in order to address issues nationally and internationally. WARC scientists apply their expertise to a variety of wetland and aquatic research and monitoring issues that require coordinated, integrated efforts to better understand natural environments. By increasing basic understanding of the biology of important species and broader ecological and physiological processes, this research provides information to policymakers and aids managers in their stewardship of natural resources and in regulatory functions.This strategic science plan (SSP) was developed to guide WARC research during the next 5–10 years in support of Department of the Interior (DOI) partnering bureaus such as the USFWS, the National Park Service, and the Bureau of Ocean Energy Management, as well as other Federal, State, and local natural resource management agencies. The SSP demonstrates the alignment of the WARC goals with the USGS mission areas, associated programs, and other DOI initiatives. The SSP is necessary for workforce planning and, as such, will be used as a guide for future needs for personnel. The SSP also will be instrumental in developing internal funding priorities and in promoting WARC’s capabilities to both external cooperators and other groups within the USGS.

  3. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  4. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  5. EURADOS strategic research agenda: vision for dosimetry of ionising radiation.

    Science.gov (United States)

    Rühm, W; Fantuzzi, E; Harrison, R; Schuhmacher, H; Vanhavere, F; Alves, J; Bottollier Depois, J F; Fattibene, P; Knežević, Ž; Lopez, M A; Mayer, S; Miljanić, S; Neumaier, S; Olko, P; Stadtmann, H; Tanner, R; Woda, C

    2016-02-01

    Since autumn 2012, the European Radiation Dosimetry Group (EURADOS) has been developing its Strategic Research Agenda (SRA), which is intended to contribute to the identification of future research needs in radiation dosimetry in Europe. The present article summarises-based on input from EURADOS Working Groups (WGs) and Voting Members-five visions in dosimetry and defines key issues in dosimetry research that are considered important for the next decades. The five visions include scientific developments required towards (a) updated fundamental dose concepts and quantities, (b) improved radiation risk estimates deduced from epidemiological cohorts, (c) efficient dose assessment for radiological emergencies, (d) integrated personalised dosimetry in medical applications and (e) improved radiation protection of workers and the public. The SRA of EURADOS will be used as a guideline for future activities of the EURADOS WGs. A detailed version of the SRA can be downloaded as a EURADOS report from the EURADOS website (www.eurados.org). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. The Structure and Evolution of the Strategic Management Field: A Content Analysis of Twenty-six Years of Strategic Management Research

    OpenAIRE

    Furrer,Olivier; Thomas, Howard; Goussevskaia, Anna

    2014-01-01

    This paper analyses 26 years of strategic management research published in Academy of Management Journal, Academy of Management Review, Administrative Science Quarterly and Strategic Management Journal. Through a content analysis, it studies the relationships between the subfields of strategic management. A multiple correspondence analysis provides a map of keywords and authors, and a framework to track this literature over the 26-year period. A discussion of future pathways in the strategic ...

  7. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    energy deployment, and secure and modernize critical infrastructure. INL's research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL's leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE's Strategic Partnership Program.

  8. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    , enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.

  9. Toward a Dynamic, Multidimensional Research Framework for Strategic Processing

    Science.gov (United States)

    Dinsmore, Daniel L.

    2017-01-01

    While the empirical literature on strategic processing is vast, understanding how and why certain strategies work for certain learners is far from clear. The purpose of this review is to systematically examine the theoretical and empirical literature on strategic process to parse out current conceptual and methodological progress to inform new…

  10. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  11. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  12. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  13. Theory of Science Perspectives on Strategic Management Research

    DEFF Research Database (Denmark)

    Foss, Nicolai Juul

    Arguments derived from the theory of science have been present in strategic management discourse since at least the beginning of the 1970s. The field's topjournal,the Strategic Management Journal, has printed several theory of sciencebased papers. Most positions in the theory of science...... (falsificationism, instrumentalism, realism, constructivism, etc.) have been present in the methodological discourse in the field. This chapter briefly reviews theory science applications to strategic management, before a distinctive perspective on the evolution of the strategic management field is developed....... According to this perspective, science progresses when deeper level mechanisms are identified and theorized. Theoretical reduction may therefore be an independent criterion of scientific progress. Application to the strategic management field of this perspective, which in the social sciences is closely...

  14. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  15. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  16. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  17. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  18. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  19. 75 FR 5288 - Strategic Environmental Research and Development Program, Scientific Advisory Board

    Science.gov (United States)

    2010-02-02

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board AGENCY: Department of Defense (DOD). ACTION: Notice. SUMMARY: This... requesting Strategic Environmental Research and Development Program funds in excess of $1M. This meeting is...

  20. 75 FR 55778 - Strategic Environmental Research and Development Program, Scientific Advisory Board

    Science.gov (United States)

    2010-09-14

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board AGENCY: Department of Defense. ACTION: Notice. SUMMARY: This notice is... requesting Strategic Environmental Research and Development Program funds in excess of $1M. This meeting is...

  1. 77 FR 70483 - Request for Comments (RFC)-Federal Cybersecurity Research and Development Strategic Plan

    Science.gov (United States)

    2012-11-26

    ... received by December 19, 2012. SUMMARY: This Request For Comments (RFC) is issued by the Cyber Security and... plan was developed under the leadership of the Cyber Security and Information Assurance Research and... strategic plan, the strategic plan's impact in orienting private sector cybersecurity research and...

  2. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  3. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  4. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    universities, industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  5. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    , industry, and other scientific and research institutions. By keeping the Laboratory at the forefront of science and technology, the LDRD Program enables us to meet our mission challenges, especially those of our ever-evolving national security mission. The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2008 (FY08) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: A broad description of the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY08, and a list of publications that resulted from the research in FY08. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year

  6. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2016-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There is a number of such equipment in use at different institutions and are found to be very useful. (author)

  7. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2014-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There are a number of such equipment in use at different institutions and are found to be very useful. (author)

  8. Strategic Culture: the Concept and the Directions of Research

    Directory of Open Access Journals (Sweden)

    Эдуард Николаевич Ожиганов

    2012-06-01

    Full Text Available The definition and estimation of political qualification of the ruling groups and long-term prognosis of their activities is a paramount task of strategical analysis. The ruling groups have their own interests and strategical manipulations with them (both successful and poor constitute the important part of their game behavior, which effectiveness in defined periods is more or less computational. The game behavior of the ruling groups by-turn depends on the characteristics of strategic culture. This link is evident under their comparative analysis.

  9. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    support of RHIC and the Light Source and any of the Strategic Initiatives listed at the LDRD web site. These included support for NSLS-II, RHIC evolving to a quantum chromo dynamics (QCD) lab, nanoscience, translational and biomedical neuroimaging, energy and, computational sciences. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL.

  10. A summary of deliberations on strategic planning for continuous quality improvement in laboratory medicine.

    Science.gov (United States)

    Grzybicki, Dana Marie; Shahangian, Shahram; Pollock, Anne M; Raab, Stephen S

    2009-03-01

    On September 24-26, 2007, the Centers for Disease Control and Prevention convened the 2007 Institute on Critical Issues in Health Laboratory Practice: Managing for Better Health to develop an action plan for change for the immediate and long-term future. A wide variety of stakeholders, including pathologists, pathologist extenders, clinicians, and researchers, examined means to improve laboratory service communication, quality parameters, and potential future laboratory contributions to health care. In this summary document, we present the identified gaps, barriers, and proposed action plans for improvement for laboratory medicine in the 6 quality domains identified by the Institute of Medicine: safety, effectiveness, patient centeredness, timeliness, efficiency, and equity. Five major recommendations emerged from concluding discussions and included focusing on preanalytic and postanalytic processes as areas of potential quality improvement and recruiting a multidisciplinary group of nonlaboratory stakeholders to work with laboratory personnel to achieve improvement goals.

  11. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  12. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  13. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  14. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  15. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  16. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  17. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  18. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  19. Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research and Development Program

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Trustworthy Cyberspace: Strategic Plan for the Federal Cybersecurity Research and Development Program defines a set of interrelated priorities for the agencies of...

  20. Highways of the future : a strategic plan for highway infrastructure research and development

    Science.gov (United States)

    2008-07-01

    This Highways of the FutureA Strategic Plan for Highway Infrastructure Research and Development was developed in response to a need expressed by the staff of the Federal Highway Administration (FHWA) Office of Infrastructure Research and Developme...

  1. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  2. The Research in Top Management Team Strategic Decision-Making: evolution and intelectual basis

    OpenAIRE

    Bernardo Paraiso de Campos Serra; Fernando Ribeiro Serra; Patricia Tomei

    2014-01-01

    This article aims to understand the intellectual structure that connects theories and authors that research strategic decision-making on upper echelons and propose a research agenda for future research on strategic decision-making. We used a bibliometric research of articles published in international journals. A bibliometric analysis of citation and cocitation was conducted on the content studied in the articles of decision making, identifying the most referenced works and the conceptual rel...

  3. 78 FR 18674 - Invitation for Public Comment on Draft DOT Research, Development and Technology Strategic Plan...

    Science.gov (United States)

    2013-03-27

    ... and strategic process to cover the years 2013-2018, and responds to feedback from the National... administrations. Two cross-modal bodies participated in the process: the RD&T Planning Team Council (composed of...-0002] Invitation for Public Comment on Draft DOT Research, Development and Technology Strategic Plan...

  4. A Portfolio Analysis Tool for Measuring NASAs Aeronautics Research Progress toward Planned Strategic Outcomes

    Science.gov (United States)

    Tahmasebi, Farhad; Pearce, Robert

    2016-01-01

    Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. The strategic planning process for determining the community Outcomes is also briefly described. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples are also presented.

  5. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  6. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  7. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  8. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  9. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  10. An empirical research on strategic planning in public libraries of Mainland China

    Institute of Scientific and Technical Information of China (English)

    Ping KE; Yingfang HE; Wenliang ZHANG; Dongqin JIA; Tinghan LI

    2012-01-01

    Purpose:As an important issue,strategic planning in public libraries has been paid more attention in China recent years.However,a comprehensive and systematic research,especially strategic models based on empirical studies,is required in the public library strategic planning.The purpose of this research is to investigate the current practices and propose an appropriate reference and guidance of strategic planning in public libraries in Mainland China.Design/methodology/approach:A questionnaire-based survey method is carried out to collect the views of public libraries staff at different levels in Mainland China.The questionnaire is designed on the following four aspects toward strategic planning in public libraries:The attitude,the status quo,basic issues and the guides.The 882 valid questionnaires are processed by a statistic analysis to reflect the current practices of strategic planning in public libraries in Mainland China.Findings:Our research results reveal that the unclear and confused understanding of the strategic planning still exist among the public libraries staff in Mainland China.However,the majority of respondents still believe that the strategic planning in public libraries is significant and the library developments will be affected for lacking strategic planning.Moreover,it is considerable that the strategic plans are jointly made by independent agencies and public libraries,or by the public library itself.Also,guidelines and a set of softwares in strategic planning are needed.Research limitations/implications:The study was restricted to six main areas in China.A wider geographic sampling can preferable show the basic status of strategic planning in public libraries.The procedures of data collection would be another limitation.Nevertheless,case studies should be used in the further research.Originality:The importance of this research originates from a large number of first-hand data about strategic planning in public libraries in mainland China

  11. An empirical research on strategic planning in public libraries of Mainland China

    Institute of Scientific and Technical Information of China (English)

    Ping; KE; Yingfang; HE; Wenliang; ZHANG; Dongqin; JIA; Tinghan; LI

    2012-01-01

    Purpose: As an important issue, strategic planning in public libraries has been paid more attention in China recent years. However, a comprehensive and systematic research, especially strategic models based on empirical studies, is required in the public library strategic planning. The purpose of this research is to investigate the current practices and propose an appropriate reference and guidance of strategic planning in public libraries in Mainland China.Design/methodology/approach: A questionnaire-based survey method is carried out to collect the views of public libraries staff at different levels in Mainland China. The questionnaire is designed on the following four aspects toward strategic planning in public libraries: The attitude, the status quo, basic issues and the guides. The 882 valid questionnaires are processed by a statistic analysis to reflect the current practices of strategic planning in public libraries in Mainland China.Findings: Our research results reveal that the unclear and confused understanding of the strategic planning still exist among the public libraries staff in Mainland China. However, the majority of respondents still believe that the strategic planning in public libraries is significant and the library developments will be affected for lacking strategic planning. Moreover, it is considerable that the strategic plans are jointly made by independent agencies and public libraries, or by the public library itself. Also, guidelines and a set of softwares in strategic planning are needed.Research limitations/implications: The study was restricted to six main areas in China. A wider geographic sampling can preferable show the basic status of strategic planning in public libraries.The procedures of data collection would be another limitation. Nevertheless, case studies should be used in the further research.Originality: The importance of this research originates from a large number of first-hand data about strategic planning in public

  12. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  13. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  14. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  15. New working paradigms in research laboratories.

    Science.gov (United States)

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  16. Bringing ayahuasca to the clinical research laboratory.

    Science.gov (United States)

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  17. Strategic research roadmap on ICT-enabled energy efficiency in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, A.S., Email: sami.kazi@vtt.fi

    2012-06-15

    The REEB Project (The European strategic research Roadmap to ICT-enabled Energy- Efficiency in Buildings and construction projects) was a Coordination Action project funded under the European Commission's Seventh Framework Programme. Its main purpose was to provide a strategic research roadmap on information and communications technology (ICT) support for energy efficiency in the built environment and a collection of implementation actions supporting the realisation of the roadmap. (orig.)

  18. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  19. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  20. A wonderful laboratory and a great researcher

    Science.gov (United States)

    Sheikh, N. M.

    2004-05-01

    It was great to be associated with Prof. Dr. Karl Rawer. He devoted his life to make use of the wonderful laboratory of Nature, the Ionosphere. Through acquisition of the experimental data from AEROS satellites and embedding it with data from ground stations, it was possible to achieve a better empirical model, the International Reference Ionosphere. Prof. Dr. Karl Rawer has been as dynamic as the Ionosphere. His vision about the ionospheric data is exceptional and has helped the scientific and engineering community to make use of his vision in advancing the dimensions of empirical modelling. As a human being, Prof. Dr. Karl Rawer has all the traits of an angel from Heaven. In short he developed a large team of researchers forming a blooming tree from the parent node. Ionosphere still plays an important role in over the horizon HF Radar and GPs satellite data reduction.

  1. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    Science.gov (United States)

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  2. Tritium Research Laboratory safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment. (ERB)

  3. Tritium Research Laboratory safety analysis report

    International Nuclear Information System (INIS)

    Wright, D.A.

    1979-03-01

    Design and operational philosophy has been evolved to keep radiation exposures to personnel and radiation releases to the environment as low as reasonably achievable. Each experiment will be doubly contained in a glove box and will be limited to 10 grams of tritium gas. Specially designed solid-hydride storage beds may be used to store temporarily up to 25 grams of tritium in the form of tritides. To evaluate possible risks to the public or the environment, a review of the Sandia Laboratories Livermore (SLL) site was carried out. Considered were location, population, land use, meteorology, hydrology, geology, and seismology. The risks and the extent of damage to the TRL and vital systems were evaluated for flooding, lightning, severe winds, earthquakes, explosions, and fires. All of the natural phenomena and human error accidents were considered credible, although the extent of potential damage varied. However, rather than address the myriad of specific individual consequences of each accident scenario, a worst-case tritium release caused indirectly by an unspecified natural phenomenon or human error was evaluated. The maximum credible radiological accident is postulated to result from the release of the maximum quantity of gas from one experiment. Thus 10 grams of tritium gas was used in the analysis to conservatively estimate the maximum whole-body dose of 1 rem at the site boundary and a maximum population dose of 600 man-rem. Accidental release of this amount of tritium implies simultaneous failure of two doubly contained systems, an occurrence considered not credible. Nuclear criticality is impossible in this facility. Based upon the analyses performed for this report, we conclude that the Tritium Research Laboratory can be operated without undue risk to employees, the general public, or the environment

  4. Strategic planning and marketing research for older, inner-city health care facilities: a case study.

    Science.gov (United States)

    Wood, V R; Robertson, K R

    1992-01-01

    Numerous health care facilities, located in downtown metropolitan areas, now find themselves surrounded by a decaying inner-city environment. Consumers may perceive these facilities as "old," and catering to an "urban poor" consumer. These same consumers may, therefore, prefer to patronize more modern facilities located in suburban areas. This paper presents a case study of such a health care facility and how strategic planning and marketing research were conducted in order to identify market opportunities and new strategic directions.

  5. Research Laboratory of Mixed Radiation Dosimetry

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: Two main topics of the research work in the Laboratory of Mixed Radiation Dosimetry in 2001 were: development of recombination methods for dosimetry of mixed radiation fields and maintenance and development of unique in Poland reference neutron fields. Additionally research project on internal dosimetry were carried out in collaboration with Division of Radiation Protection Service. RECOMBINATION METHODS Recombination methods make use of the fact that the initial recombination of ions in the gas cavity of the ionization chamber depends on local ionization density. The later can be related to linear energy transfer (LET) and provides information on radiation quality of the investigated radiation fields. Another key feature of the initial recombination is that it does not depend of dose rate. Conditions of initial (local) recombination can be achieved in specially designed high pressure tissue-equivalent ionization chambers, called the recombination chambers. They are usually parallel-plate ionization chambers filled with a tissue-equivalent gas mixture under a pressure of order 1 MPa. The spacing between electrodes is of order of millimeters. At larger spacing, the volume recombination limits the maximum dose rate at which the chamber can be properly operated. The output of the chamber is the ionization current (or collected charge) as a function of collecting voltage. All the recombination methods require the measurement of the ionization current (or charge) at least at two values of the collecting voltage applied to the chamber. The highest voltage should provide the conditions close to saturation (but below discharge or multiplication). The ionization current measured at maximum applied voltage is proportional to the absorbed dose, D, (some small corrections for lack of saturation can be introduced when needed). Measurements at other voltages are needed for the determination of radiation quality. The total dose equivalent in a mixed radiation field is

  6. Critical role of developing national strategic plans as a guide to strengthen laboratory health systems in resource-poor settings.

    Science.gov (United States)

    Nkengasong, John N; Mesele, Tsehaynesh; Orloff, Sherry; Kebede, Yenew; Fonjungo, Peter N; Timperi, Ralph; Birx, Deborah

    2009-06-01

    Medical laboratory services are an essential, yet often neglected, component of health systems in developing countries. Their central role in public health, disease control and surveillance, and patient management is often poorly recognized by governments and donors. However, medical laboratory services in developing countries can be strengthened by leveraging funding from other sources of HIV/AIDS prevention, care, surveillance, and treatment programs. Strengthening these services will require coordinated efforts by national governments and partners and can be achieved by establishing and implementing national laboratory strategic plans and policies that integrate laboratory systems to combat major infectious diseases. These plans should take into account policy, legal, and regulatory frameworks; the administrative and technical management structure of the laboratories; human resources and retention strategies; laboratory quality management systems; monitoring and evaluation systems; procurement and maintenance of equipment; and laboratory infrastructure enhancement. Several countries have developed or are in the process of developing their laboratory plans, and others, such as Ethiopia, have implemented and evaluated their plan.

  7. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  8. Research and Progress on Virtual Cloud Laboratory

    OpenAIRE

    Zhang Jian Wei; Shang Zhi Hui; Yuan Chen; Ma Lin Lin; Cai Zeng Yu; Hu Chun Hui

    2016-01-01

    In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety,...

  9. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  10. Multidisciplinary European Low Dose Initiative (MELODI). Strategic research agenda for low dose radiation risk research

    Energy Technology Data Exchange (ETDEWEB)

    Kreuzer, M. [Federal Office for Radiation Protection, BfS, Department of Radiation Protection and Health, Neuherberg (Germany); Auvinen, A. [University of Tampere, Tampere (Finland); STUK, Helsinki (Finland); Cardis, E. [ISGlobal, Barcelona Institute for Global Health, Barcelona (Spain); Durante, M. [Institute for Fundamental Physics and Applications, TIFPA, Trento (Italy); Harms-Ringdahl, M. [Stockholm University, Centre for Radiation Protection Research, Stockholm (Sweden); Jourdain, J.R. [Institute for Radiological Protection and Nuclear Safety, IRSN, Fontenay-aux-roses (France); Madas, B.G. [MTA Centre for Energy Research, Environmental Physics Department, Budapest (Hungary); Ottolenghi, A. [University of Pavia, Physics Department, Pavia (Italy); Pazzaglia, S. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome (Italy); Prise, K.M. [Queens University Belfast, Belfast (United Kingdom); Quintens, R. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); Sabatier, L. [French Atomic Energy Commission, CEA, Paris (France); Bouffler, S. [Public Health England, PHE, Chilton (United Kingdom)

    2018-03-15

    MELODI (Multidisciplinary European Low Dose Initiative) is a European radiation protection research platform with focus on research on health risks after exposure to low-dose ionising radiation. It was founded in 2010 and currently includes 44 members from 18 countries. A major activity of MELODI is the continuous development of a long-term European Strategic Research Agenda (SRA) on low-dose risk for radiation protection. The SRA is intended to identify priorities for national and European radiation protection research programs as a basis for the preparation of competitive calls at the European level. Among those key priorities is the improvement of health risk estimates for exposures close to the dose limits for workers and to reference levels for the population in emergency situations. Another activity of MELODI is to ensure the availability of European key infrastructures for research activities, and the long-term maintenance of competences in radiation research via an integrated European approach for training and education. The MELODI SRA identifies three key research topics in low dose or low dose-rate radiation risk research: (1) dose and dose rate dependence of cancer risk, (2) radiation-induced non-cancer effects and (3) individual radiation sensitivity. The research required to improve the evidence base for each of the three key topics relates to three research lines: (1) research to improve understanding of the mechanisms contributing to radiogenic diseases, (2) epidemiological research to improve health risk evaluation of radiation exposure and (3) research to address the effects and risks associated with internal exposures, differing radiation qualities and inhomogeneous exposures. The full SRA and associated documents can be downloaded from the MELODI website (http://www.melodi-online.eu/sra.html). (orig.)

  11. Multiphase flow and phase change in microgravity: Fundamental research and strategic research for exploration of space

    Science.gov (United States)

    Singh, Bhim S.

    2003-01-01

    NASA is preparing to undertake science-driven exploration missions. The NASA Exploration Team's vision is a cascade of stepping stones. The stepping-stone will build the technical capabilities needed for each step with multi-use technologies and capabilities. An Agency-wide technology investment and development program is necessary to implement the vision. The NASA Exploration Team has identified a number of areas where significant advances are needed to overcome all engineering and medical barriers to the expansion of human space exploration beyond low-Earth orbit. Closed-loop life support systems and advanced propulsion and power technologies are among the areas requiring significant advances from the current state-of-the-art. Studies conducted by the National Academy of Science's National Research Council and Workshops organized by NASA have shown that multiphase flow and phase change play a crucial role in many of these advanced technology concepts. Lack of understanding of multiphase flow, phase change, and interfacial phenomena in the microgravity environment has been a major hurdle. An understanding of multiphase flow and phase change in microgravity is, therefore, critical to advancing many technologies needed. Recognizing this, the Office of Biological and Physical Research (OBPR) has initiated a strategic research thrust to augment the ongoing fundamental research in fluid physics and transport phenomena discipline with research especially aimed at understanding key multiphase flow related issues in propulsion, power, thermal control, and closed-loop advanced life support systems. A plan for integrated theoretical and experimental research that has the highest probability of providing data, predictive tools, and models needed by the systems developers to incorporate highly promising multiphase-based technologies is currently in preparation. This plan is being developed with inputs from scientific community, NASA mission planners and industry personnel

  12. The Scottish Government's Rural and Environmental Science and Analytical Services Strategic Research Progamme

    Science.gov (United States)

    Dawson, Lorna; Bestwick, Charles

    2013-04-01

    The Strategic Research Programme focuses on the delivery of outputs and outcomes within the major policy agenda areas of climate change, land use and food security, and to impact on the 'Wealthier', 'Healthier' and 'Greener' strategic objectives of the Scottish Government. The research is delivered through two programmes: 'Environmental Change' and 'Food, Land and People'; the core strength of which is the collaboration between the Scottish Government's Main Research Providers-The James Hutton Institute, the Moredun Research Institute, Rowett Institute of Nutrition and Health University of Aberdeen, Scotland's Rural College, Biomathematics and Statistics Scotland and The Royal Botanic Gardens Edinburgh. The research actively seeks to inform and be informed by stakeholders from policy, farming, land use, water and energy supply, food production and manufacturing, non-governmental organisations, voluntary organisations, community groups and general public. This presentation will provide an overview of the programme's interdisciplinary research, through examples from across the programme's themes. Examples will exemplify impact within the Strategic Programme's priorities of supporting policy and practice, contributing to economic growth and innovation, enhancing collaborative and multidisciplinary research, growing scientific resilience and delivering scientific excellence. http://www.scotland.gov.uk/Topics/Research/About/EBAR/StrategicResearch/future-research-strategy/Themes/ http://www.knowledgescotland.org/news.php?article_id=295

  13. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  14. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  15. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  16. 76 FR 20335 - Meeting of the Strategic Environmental Research and Development Program, Scientific Advisory Board

    Science.gov (United States)

    2011-04-12

    ... DEPARTMENT OF DEFENSE Office of the Secretary Meeting of the Strategic Environmental Research and Development Program, Scientific Advisory Board AGENCY: Department of Defense. ACTION: Notice. SUMMARY: This...-463). The topic of the meeting on June 16, 2011 is to review continuing research and development...

  17. 77 FR 51785 - Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of...

    Science.gov (United States)

    2012-08-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Strategic Environmental Research and Development Program, Scientific Advisory Board; Notice of Meeting AGENCY: Department of Defense. ACTION: Notice... Act (Pub. L. 92-463). The topic of the meeting on October 23-25, 2012 is to review new start research...

  18. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  19. Mexico City Air Quality Research Initiative; Volume 5, Strategic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    Members of the Task HI (Strategic Evaluation) team were responsible for the development of a methodology to evaluate policies designed to alleviate air pollution in Mexico City. This methodology utilizes information from various reports that examined ways to reduce pollutant emissions, results from models that calculate the improvement in air quality due to a reduction in pollutant emissions, and the opinions of experts as to the requirements and trade-offs that are involved in developing a program to address the air pollution problem in Mexico City. The methodology combines these data to produce comparisons between different approaches to improving Mexico City`s air quality. These comparisons take into account not only objective factors such as the air quality improvement or cost of the different approaches, but also subjective factors such as public acceptance or political attractiveness of the different approaches. The end result of the process is a ranking of the different approaches and, more importantly, the process provides insights into the implications of implementing a particular approach or policy.

  20. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  1. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  2. The Federal Big Data Research and Development Strategic Plan

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Summary: This Plan is an important milestone in the Administrations Big Data Research and Development (R&D) Initiative

  3. Mobile teleoperator research at Savannah River Laboratory

    International Nuclear Information System (INIS)

    Byrd, J.S.

    1985-01-01

    A Robotics Technology Group was organized at Savannah River Laboratory to employ modern automation and robotics for applications at the Savannah River site. Several industrial robots have been installed in plant processes. Other robotics systems are under development in the laboratories, including mobile teleoperators for general remote tasks and emergency response operations. This paper discusses present work on a low-cost wheeled mobile vehicle, a modular light duty manipulator arm, a large gantry telerobot system, and a high technology six-legged walking robot with a teleoperated arm

  4. Strategic Integration: The Practical Politics of Integrated Research in Context

    Directory of Open Access Journals (Sweden)

    Lorrae van Kerkhoff

    2005-01-01

    Full Text Available Designing an integrative research program requires that research leaders negotiate a balance between the scientific interest of research and the practical interests of non-scientific partners. This paper examines the ways integrated research is formally categorised, and analyses the tangible expressions of the practical politics involved in reconciling scientific and practical interests. Drawing on a comparative study of two Australian Cooperative Research Centres, I argue that categories used by the research leaders to describe the research programs embody three different strategies for structuring the relationships between researchers and their partners. These include matching research program categories to partners’ implementation program categories, reproducing existing integrative partnership models, and filling gaps in understanding with new technical approaches. These strategies offer different advantages and disadvantages. The cases suggest that the integrative approach favoured by each Centre depended on issues such as the geographic scope of policy arenas, sources of scientific credibility, and the political risks facing partners. The practical politics of research organisation offers a new lens for understanding both the practice and theory of integrated research.

  5. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  6. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  7. Strategic Academic Unit as a Synergy between Education, Research and Innovations and Its Position in Knowledge Life Cycle

    International Nuclear Information System (INIS)

    Pryakhin, A.; Tikhomirov, G.

    2016-01-01

    Full text: The strategic goal of MEPhI is to become a global leader in education, science and innovations. Influence of the world development and current trends imply flexibility of the university to respond to today’s challenges and ability to introduce new forms and organizational structures for effective and efficient education. Strategic Academic Unit (SAE) is a new academic and scientific entity engaging nuclear industry partners in processes related to knowledge breeding, handling, and transfer through education and experience. The new SAE is titled as Institute of Nuclear Physics and Engineering (INPhE). SAE comprises objects belonging to three kinds or classes: education, research, and innovations. Education objects are education programs, teachers, students. Research objects are scientific teams and related mega-science laboratories working for fundamental and applied research. Innovations are typically knowledge assets created in research groups together with industrial partners and customers, recognized by the market, and used by all involved players for the next generations in the knowledge breeding chains. The key elements representing capacity of the SAE and maturity of the university are knowledge assets which are outputs of the intellectual activity and intellectual property itself, that they create. (author

  8. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  9. NULIFE - Implementing Strategic Research of LTO and Facing Generation II and III Challenges Through Cooperative Research

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.; Prunier, V.

    2011-01-01

    The European network of excellence NULIFE (Nuclear plant life prediction) has been launched under the Euratom Framework Programme with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonised lifetime assessment methods. NULIFE will help provide a better common understanding of the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long term operation of existing nuclear power plants. In addition, NULIFE will help in the development of design criteria for future generations of nuclear power plant. NULIFE was kicked-off in October 2006 and will work over a 5-year period to create a single organization structure, capable of providing harmonised research and development (R and D) at European level to the nuclear power industry and the related safety authorities. Led by VTT (Technical Research Centre of Finland), the project has a total budget in excess of 8 million euros, with over 40 partners drawn from leading research institutions, technical support organisations, power companies and manufacturers throughout Europe. NULIFE also involves many industrial organizations and, in addition to their R and D contributions, these take part in a dedicated End User Group. The importance of the long term operation of the plants has been recognized at European level, in the strategic research agenda of SNE TP (Sustainable Nuclear Energy Technology Platform). In NULIFE, the joint EU-wide coordinated research strategy for plant life integrity management and long term operation has been defined. Based on NULIFE business plan, the discussion of long-term business plan, operational model and statutes of the future NULIFE institute has been started. NULIFE maintains the sustainability of nuclear power by focusing on the continued, 60+ years of safe operation of nuclear power

  10. NULIFE - Implementing Strategic Research of LTO and Facing Gen II / III Challenges through Cooperative Research

    International Nuclear Information System (INIS)

    Rintamaa, R.; Aho-Mantila, I.; Prunier, V.

    2011-01-01

    The European network of excellence NULIFE (Nuclear plant life prediction) has been launched under the Euratom Framework Programme with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonised lifetime assessment methods. NULIFE will help provide a better common understanding of the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long term operation of existing nuclear power plants. In addition, NULIFE will help in the development of design criteria for future generations of nuclear power plant. NULIFE was kicked-off in October 2006 and will work over a 5-year period to create a single organization structure, capable of providing harmonised research and development (R and D) at European level to the nuclear power industry and the related safety authorities. Led by VTT (Technical Research Centre of Finland), the project has a total budget in excess of 8 million euros, with over 40 partners drawn from leading research institutions, technical support organisations, power companies and manufacturers throughout Europe. NULIFE also involves many industrial organizations and, in addition to their R and D contributions, these take part in a dedicated End User Group. The importance of the long term operation of the plants has been recognized at European level, in the strategic research agenda of SNE TP (Sustainable Nuclear Energy Technology Platform). In NULIFE, the joint EU-wide coordinated research strategy for plant life integrity management and long term operation has been defined. Based on NULIFE business plan, the discussion of long-term business plan, operational model and statutes of the future NULIFE institute has been started. NULIFE maintains the sustainability of nuclear power by focusing on the continued, 60+ years of safe operation of nuclear power

  11. Strategic Research Prioritisation in Veterinary Schools: A Preliminary Investigation

    Science.gov (United States)

    Yates, Robin M.

    2018-01-01

    In step with the worldwide trend for higher educational institutes to establish areas of research emphasis,the accumulation of resources in key areas has become common practice in veterinary faculties. Although there are perceived logical benefits to research prioritisation, there have been very little critical retrospective analyses of research…

  12. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  13. Strategic niche management and sustainable innovation journeys : theory, findings, research agenda, and policy

    NARCIS (Netherlands)

    Schot, J.W.; Geels, F.W.

    2008-01-01

    This article discusses empirical findings and conceptual elaborations of the last 10 years in strategic niche management research (SNM). The SNM approach suggests that sustainable innovation journeys can be facilitated by creating technological niches, i.e. protected spaces that allow the

  14. Leadership Challenges of Strategic Research Centres in Relation to Degree of Institutionalisation

    Science.gov (United States)

    Blomqvist, Christine; Agrell, Cecilia; Sandahl, Christer

    2016-01-01

    The purpose of this study was to describe and analyse leadership challenges in the organisation of strategic research centres, focusing on the relationship between organisation and the level of institutionalisation. Four main themes of leadership challenges were identified: (1) the "changing university context," including relationships…

  15. A Tool for Measuring NASA's Aeronautics Research Progress Toward Planned Strategic Community Outcomes

    Science.gov (United States)

    Tahmasebi, Farhad; Pearce, Robert

    2016-01-01

    Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. For efficiency and speed, the tool takes advantage of a function developed in Excels Visual Basic for Applications. The strategic planning process for determining the community Outcomes is also briefly discussed. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples of using the tool are also presented.

  16. The National Artificial Intelligence Research And Development Strategic Plan

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — Executive Summary: Artificial intelligence (AI) is a transformative technology that holds promise for tremendous societal and economic benefit. AI has the potential...

  17. Research and development strategic plan : FY2013-FY2017.

    Science.gov (United States)

    2013-05-01

    This plan describes the strategy through which the Federal Railroad Administrations (FRAs) research and development (R&D) program will support the Department of Transportations (DOTs) mission and goals. Safety is the DOTs primary strat...

  18. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  19. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  20. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  1. Integrating multiple publics into the strategic plan. The best plans can be derailed without comprehensive up-front research.

    Science.gov (United States)

    Peltier, J W; Kleimenhagen, A K; Naidu, G M

    1996-01-01

    The mission of a health care organization represents its vision for the future. The authors present an approach used to develop an organizational mission for a large multispecialty physician clinic. In implementing the strategic planning process, research objectives must be clearly stated that identify in advance how the data will be used. Failure to integrate strategic data from all relevant publics will likely result in a mission statement that misses the significant interests of one or more stakeholders and reduces the effectiveness of the strategic planning process. Although costly, comprehensive research can uncover some surprising differences in perception that, if ignored, might complete defeat strategic planning efforts.

  2. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  3. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  4. Research Staff | Buildings | NREL

    Science.gov (United States)

    Research Staff Research Staff Photo of Roderick Jackson Roderick Jackson Laboratory Program Manager -related research at NREL. He works closely with senior laboratory management to set the strategic agenda for NREL's buildings portfolio, including all research, development, and market implementation

  5. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  6. Safeguards research at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Dunn, D.R.; Huebel, J.G.; Poggio, A.J.

    1980-01-01

    The LLL safeguards research program includes inspection methods, facility assessment methodologies, value-impact analysis, vulnerability analysis of accounting systems, compliance with regulations, process monitoring, etc. Each of those projects is described as are their goals and progress

  7. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  8. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  9. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  10. The evolution of strategic management research: Recent trends and current directions

    Directory of Open Access Journals (Sweden)

    Luis Ángel Guerras-Martín

    2014-04-01

    Full Text Available Strategic management is a relatively youthful discipline that has steadily matured over the past fifty years. The field has become consolidated over this period, while simultaneously expanding the range of topics analyzed and research methodologies used. Different theories and approaches, addressing different research topics, have been developed to explain the reasons underlying firms’ competitive advantage and success. In this paper, we posit the existence of two pendulums in constant motion that, on the one hand, reflect the tension that has historically existed between the focus on internal firm factors and external environmental attributes respectively and, on the other hand, the tension between a more macro level of analysis, i.e., the firm and its environment, and a more micro level one, i.e., individuals and their relations within the firm. The frontier of research in strategic management is shaped by the simultaneous movement of both pendulums.

  11. Research Review: Laboratory Student Magazine Programs.

    Science.gov (United States)

    Wheeler, Tom

    1994-01-01

    Explores research on student-produced magazines at journalism schools, including the nature of various programs and curricular structures, ethical considerations, and the role of faculty advisors. Addresses collateral sources that provide practical and philosophical foundations for the establishment and conduct of magazine production programs.…

  12. Naval Research Laboratory Fact Book 2012

    Science.gov (United States)

    2012-11-01

    markets NRL’s patented inventions, negotiates patent license agreements under which the Navy grants a licensee the right to make, use, and sell NRL...Sr. Licensing Associate Social Media Marketing Associate Licensing Associate Management Analyst Administrative Assistant (SCEP) Administrative...ADMINISTRATIVE OFFICE SENIOR SCIENTIST FOR SUN-EARTH SYSTEMS RESEARCH 7605 GEOSPACE SCIENCE AND TECHNOLOGY BRANCH 7630 SPACE TEST PROGRAM ( STP

  13. Network Science Research Laboratory (NSRL) Telemetry Warehouse

    Science.gov (United States)

    2016-06-01

    Development of an architectural framework to validate performance of a distributed trust management protocol, called trustd, required a high...all of the most popular programming languages currently in use, including Java , Python, and C#. Work is underway to provide Python bindings to the...client library. NSRL researchers plan to develop Python and Java wrappers for this library. Sensors must obtain an experiment session token in

  14. Air Force Research Laboratory Technology Milestones 2007

    Science.gov (United States)

    2007-01-01

    alertness. For more information contact7 publicaffairs@afosraf.mil , (703)696-7797 ....... F d ed Researc ers Develop New Software Model to Improve Aircraft...and replacing conventional tail control surfaces with more innovative control U effectors. m For more information contact 22 afri. rb. marketing ...City, New Jersey). U For more information contact 23 ofr1.rb, marketing @wpafb.afmi1 (937)255-2074 AFRL Researchers Perform Functionally - Graded Material

  15. Argonne National Laboratory Research Highlights 1988

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The research and development highlights are summarized. The world's brightest source of X-rays could revolutionize materials research. Test of a prototype insertion device, a key in achieving brilliant X-ray beams, have given the first glimpse of the machine's power. Superconductivity research focuses on the new materials' structure, economics and applications. Other physical science programs advance knowledge of material structures and properties, nuclear physics, molecular structure, and the chemistry and structure of coal. New programming approaches make advanced computers more useful. Innovative approaches to fighting cancer are being developed. More experiments confirm the passive safety of Argonne's Integral Fast Reactor concept. Device simplifies nuclear-waste processing. Advanced fuel cell could provide better mileage, more power than internal combustion engine. New instruments find leaks in underground pipe, measure sodium impurities in molten liquids, detect flaws in ceramics. New antibody findings may explain ability to fight many diseases. Cadmium in cigarettes linked to bone loss in women. Programs fight deforestation in Nepal. New technology could reduce acid rain, mitigate greenhouse effect, enhance oil recovery. Innovative approaches transfer Argonne-developed technology to private industry. Each year Argonne educational programs reach some 1200 students

  16. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  17. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  18. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  19. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  20. Creating research and development awareness among dental care professionals by use of strategic communication

    DEFF Research Database (Denmark)

    Morténius, Helena; Twetman, Svante

    2017-01-01

    BACKGROUND: Despite the availability of contemporary research advances, only a limited fraction is implemented into dental practice. One possible way to facilitate this process is to stimulate the research and development (R&D) awareness and interest with aid of strategic communication. METHODS......: The aim of the study was to analyse the role of a strategic communication in R&D awareness and interest among dental care professionals (DCP) over a 12-year period. A second aim was to compare the findings with those from primary care professionals (PCP). The project had a prospective design...... and the intervention was conducted through established oral, written and digital channels. The outcome was captured by two validated questionnaires submitted after 7 and 12 years, respectively. An additional Questionnaire file shows the details [see Additional file 1]. The material consisted of 599 health care...

  1. A research agenda for data and scale issues in Strategic Environmental Assessment (SEA)

    International Nuclear Information System (INIS)

    Joao, Elsa

    2007-01-01

    The way in which Strategic Environmental Assessment (SEA) succeeds in its key aim - to integrate the environment into strategic decision-making - is affected by the choice of both data and scale. The data and scale used within SEA fundamentally shape the process. However, in the past, these issues were often not discussed in an explicit or in-depth way. This article proposes a research agenda, and recommendations for future practice, on data and scale issues in SEA. Future research on data issues, spatial and temporal scales (both in terms of detail and extent), tiering, data quality and links to decision-making are recommended. The article concludes that questions of data and scale in SEA are not just technical, they are essential to identifying and understanding the issues that SEA should be addressing, and therefore are a core element of SEA

  2. Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research

    International Nuclear Information System (INIS)

    Wüstenhagen, Rolf; Menichetti, Emanuela

    2012-01-01

    This paper introduces the special issue on Strategic Choices for Renewable Energy Investment, which is a collection of best papers presented at an international research conference held in St. Gallen (Switzerland) in February 2010. Substantial private investment is needed if public policy objectives to increase the share of renewable energy and prevent dangerous anthropogenic climate change are to be achieved. The aim of this paper, and the entire special issue, is to draw scholarly attention to the processes underlying strategic choices for renewable energy investment, and how they are influenced by energy policy. We disentangle the role of risk-return perceptions, portfolio effects and path dependence in explaining energy investment decisions, and suggest that the heterogeneous universe of investors requires a segmentation of policies. The paper outlines some of the rich opportunities for further research in this emerging area.

  3. Radiotracer laboratory for agricultural research at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mhd Nasir

    2007-01-01

    Radiotracer Laboratory for agricultural research at the Malaysian Nuclear Agency was established since 1990. It accommodates three laboratories, three chemical temporary storage compartments plus one compartment for storage of pressurized gas. This facility is situated in ground floor of Block 44, Agrotechnology and Biosciences Division, Dengkil Complex. Currently it houses a liquid scintillation counter, sample oxidizer, gas liquid chromatography, high performance liquid chromatography and auxiliary equipments. A road map for this laboratory will be discussed in relation with present scenario i.e. R and D service, training and consultancy provided by this laboratory; and future requirements and direction. (Author)

  4. An action research study of collaborative strategic reading in English with Saudi medical students

    OpenAIRE

    Al-Roomy, Muhammad

    2013-01-01

    This is an investigative action research study on ways of improving the reading comprehension skills of Arabic medical school students. The study first analysed the difficulties of teaching and learning English and reading in English in a Saudi university medical college. An intervention was planned and implemented based on Collaborative Strategic Reading (CSR –Klingner and Vaughn, 1996). This involved using group work to teach explicitly a set of reading strategies to a class of students who...

  5. Mass Communication, Advertising, and Marketing Research at the Strategic and Operational Levels of War

    Science.gov (United States)

    2013-05-05

    EBSCOhost (accessed November 4, 2012): 157. 43 Ibid., 156. 44 Ibid., 163. 45 Chang, Chun-Tuan. 2011. “Guilt appeals in cause-related marketing ...Mass Communication, Advertising, and Marketing Research at the Strategic and Operational Levels of War by Colonel Ralph...Education of the Middle States Association of Colleges and Schools, 3624 Market Street, Philadelphia, PA 19104, (215) 662-5606. The Commission on

  6. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  7. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  8. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  9. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  10. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  11. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium

  12. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  13. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  14. [Strategic thinking of the construction of national schistosomiasis laboratory network in China].

    Science.gov (United States)

    Qin, Zhi-Qiang; Xu, Jing; Feng, Ting; Zhu, Hong-Qing; Li, Shi-Zhu; Xiao, Ning; Zhou, Xiao-Nong

    2013-08-01

    A schistosomiasis laboratory network and its quality assurance system have been built and will be more and more perfect in China. This paper introduces the present situation of schistosomiasis diagnosis in China and expounds the basic ideas and the progress in the construction of schistosomiasis network platform. Furthermore, the face of schistosomiasis diagnosis network platform construction and operation of the challenge and the future work will be put forward in the latter part of this paper.

  15. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  16. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  17. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  18. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  19. The balanced scorecard advantage: Driving strategic change into Canada's nuclear laboratory site operations

    International Nuclear Information System (INIS)

    Lafreniere, P.; Weeks, D.

    2001-01-01

    The challenges presented by the size, diversity, complexity and history of the Facilities and Nuclear Operations (FNO) Group at AECL's Chalk River Laboratories (CRL) required a change to the traditional management approach. As a result, a strategy was adopted that focused on integrating contemporary business practices such as process mapping, activity based management and use of the Balanced Scorecard methodology into the operational culture at CRL. In addition, revitalization of the performance management methods process was undertaken to provide a tool for assessment of business and individual performance. performance. (author)

  20. Strategic Planning for Recruitment and Retention of Older African Americans in Health Promotion Research Programs.

    Science.gov (United States)

    Dreer, Laura E; Weston, June; Owsley, Cynthia

    2014-01-01

    The purpose of this study was to 1) describe a strategic plan for recruitment and retention used in conducting eye health education research with African-Americans living in urban and rural areas of Alabama and 2) characterize recruitment and retention patterns for this community-based project. We evaluated an eye health education program tailored specifically to older African Americans. InCHARGE© was designed to promote eye disease prevention by conveying the personal benefits of annual, dilated, comprehensive eye care and teaching strategies to minimize barriers to regular eye care. The InCHARGE© program or a social contact control program was delivered at 20 senior centers in predominately African American urban and rural communities. From pooled data across three studies, 380 African Americans completed a questionnaire about knowledge and attitudes/beliefs about eye disease and eye care before the program and by telephone at either 3 or 6 months after the presentation. The project consisted of 4 phases and a total of 10 strategic objectives for recruitment as well as retention of older African Americans that were implemented in a systematic fashion. Overall, retention rates for follow-up at either 3 or 6 months were 75% and 66% respectively. African Americans from rural areas were more likely to be lost to follow-up compared to those from urban areas. We discuss the benefits of utilizing a strategic plan that serves to address problems with underrepresentation of minorities in clinical research.

  1. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations.

    Science.gov (United States)

    Baron, R M; Kenny, D A

    1986-12-01

    In this article, we attempt to distinguish between the properties of moderator and mediator variables at a number of levels. First, we seek to make theorists and researchers aware of the importance of not using the terms moderator and mediator interchangeably by carefully elaborating, both conceptually and strategically, the many ways in which moderators and mediators differ. We then go beyond this largely pedagogical function and delineate the conceptual and strategic implications of making use of such distinctions with regard to a wide range of phenomena, including control and stress, attitudes, and personality traits. We also provide a specific compendium of analytic procedures appropriate for making the most effective use of the moderator and mediator distinction, both separately and in terms of a broader causal system that includes both moderators and mediators.

  2. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  3. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  4. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  5. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  6. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  7. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  8. Tensions within an industrial research laboratory: the Philips laboratory's x-ray department between the wars

    NARCIS (Netherlands)

    Boersma, F.K.

    2003-01-01

    Tensions arose in the X-ray department of the Philips research laboratory during the interwar period, caused by the interplay among technological development, organizational culture, and individual behavior. This article traces the efforts of Philips researchers to find a balance between their

  9. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  10. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  11. 75 FR 15686 - NOAA'S Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015

    Science.gov (United States)

    2010-03-30

    ...-01] NOAA'S Office of Ocean Exploration and Research (OER) Strategic Plan FY 2011-FY 2015 AGENCY... and Atmospheric Administration (NOAA), Commerce. ACTION: Notice of availability and request for public comment. [[Page 15687

  12. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  13. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  14. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Neill, F.H.

    1980-01-01

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  15. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  16. U.S. Army Research Laboratory Annual Review 2011

    Science.gov (United States)

    2011-12-01

    bioremediation of wastewater. The researchers created a functional atomic circuit with stationary barrier. This “atom circuit” is composed of ultra...high energy content approaching jet propellant (JP)-8/ diesel fuel, are a means to address these demands. The Army Research Laboratory has

  17. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  18. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    Science.gov (United States)

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  19. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  20. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  1. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  2. nanoSTAIR: a new strategic proposal to impulse standardization in nanotechnology research

    Science.gov (United States)

    López de Ipiña, J. M.; Salvi, O.; Hazebrouck, B.; Jovanovic, A.; Carre, F.; Saamanen, A.; Brouwer, D.; Schmitt, M.; Martin, S.

    2015-05-01

    Nanotechnology is considered one of the key technologies of the 21st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the fast and easy transfer of research results to the European and international market. The development of new and improved standards requires high quality technical information, creating a fundamental interdependency between the standardization and research communities. In the frame of project nanoSTAIR (GA 319092), the present paper describes the European scenario on research and standardization in nanotechnology and presents a proposal of a European strategy (nanoSTAIR) to impulse direct “pipelines” between research and standardization. In addition, strategic actions focused on integration of standardization in the R&D projects, from the early stages of the design of a future business (Project Proposal), are also described.

  3. nanoSTAIR: a new strategic proposal to impulse standardization in nanotechnology research

    International Nuclear Information System (INIS)

    De Ipiña, J M López; Salvi, O; Hazebrouck, B; Jovanovic, A; Carre, F; Saamanen, A; Brouwer, D; Schmitt, M; Martin, S

    2015-01-01

    Nanotechnology is considered one of the key technologies of the 21 st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the fast and easy transfer of research results to the European and international market. The development of new and improved standards requires high quality technical information, creating a fundamental interdependency between the standardization and research communities. In the frame of project nanoSTAIR (GA 319092), the present paper describes the European scenario on research and standardization in nanotechnology and presents a proposal of a European strategy (nanoSTAIR) to impulse direct “pipelines” between research and standardization. In addition, strategic actions focused on integration of standardization in the R and D projects, from the early stages of the design of a future business (Project Proposal), are also described. (paper)

  4. Strategic Forecasting

    DEFF Research Database (Denmark)

    Duus, Henrik Johannsen

    2016-01-01

    Purpose: The purpose of this article is to present an overview of the area of strategic forecasting and its research directions and to put forward some ideas for improving management decisions. Design/methodology/approach: This article is conceptual but also informed by the author’s long contact...... and collaboration with various business firms. It starts by presenting an overview of the area and argues that the area is as much a way of thinking as a toolbox of theories and methodologies. It then spells out a number of research directions and ideas for management. Findings: Strategic forecasting is seen...... as a rebirth of long range planning, albeit with new methods and theories. Firms should make the building of strategic forecasting capability a priority. Research limitations/implications: The article subdivides strategic forecasting into three research avenues and suggests avenues for further research efforts...

  5. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  6. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    Science.gov (United States)

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  7. Research Collaborations Between Universities and Department of Defense Laboratories

    Science.gov (United States)

    2014-07-31

    Council – Resident Research Associateship (USAF/NRC-RRA) Program,” last accessed March 10, 2013, http://www.wpafb.af.mil/ library /factsheets...as CRAs and CTAs, could enable collaboration through university consortia designed to support DOD laboratory research. Such alliances would have the...university consortia , may be able to leverage partnerships that meet their collaborative research needs. 5. Increased Patent Filing Fees when Partnering

  8. A LITERATURE REVIEW ON CAUSE-RELATED MARKETING STRATEGIC ORIENTATION IN BUSINESS RESEARCH

    Directory of Open Access Journals (Sweden)

    Marcela Sefora Sana

    2015-07-01

    Full Text Available A long time economic and social objectives have been seen as competing, but academic researchers underline that this two directions may converge in certain situations. Companies belong to communities where they develop their activities. When the social goals of the communities are related to the main objectives of the company, sustaining a social cause could produce economic benefits, in this case corporate philanthropy and shareholders interest take the same direction. Cause-related marketing is a marketing concept that gained more interest in the last three decades and exemplifies how social and economic objectives are achieved in a strategic manner in promoting campaigns. Researches in business and non-profit organizations reveal that cause-related marketing campaigns sustain the growth of market share and sales, and help at improving brands image. More and more companies and non-profit organizations find cause-related marketing as a strategic tool suitable for building long term relations to the customers, for increasing brand awareness, for gaining a social responsible corporative image, for supporting local community or for producing transformation in sustaining causes at global or international level. The study analyses the definitions of cause-related marketing the presence and evolution of the concept in the academic literature, and marketing terms that are connected more often to this concept. Comparative to non-profit marketing concept, cause-related marketing gained a larger interest in literature. On the other side, corporate philanthropy is still a concept that gains more interest than cause-related marketing in academic literature, being a more commune way used by companies in collaboration to non-profit organizations. Tided to cause-related marketing concept literature review reveals concepts as: consumer behaviour, brand image and corporate social responsibility being more often analysed. The salience of the consumer perspective

  9. The waste management at research laboratories - problems and solutions

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto

    2011-01-01

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  10. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  11. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  12. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  13. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  14. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  15. The determinants of strategic partnerships in research and development (R&D) - a regional comparison among the German federal states

    OpenAIRE

    Maaß, Frank; Backes-Gellner, Uschi

    2002-01-01

    The systematic co-operation in R&D involving two or more enterprises or companies working with research organisations, suppliers, customers or even competitors has become a popular instrument of strategic management. As new empirical results from the IfM Bonn show, more than a quarter of all enterprises in the industrial sector and the industry-related services in Germany are participating in strategic partnerships of this kind. Strategic partnerships in R&D, which lead to new products or pro...

  16. An organizational framework and strategic implementation for system-level change to enhance research-based practice: QUERI Series

    Directory of Open Access Journals (Sweden)

    Mittman Brian S

    2008-05-01

    Full Text Available Abstract Background The continuing gap between available evidence and current practice in health care reinforces the need for more effective solutions, in particular related to organizational context. Considerable advances have been made within the U.S. Veterans Health Administration (VA in systematically implementing evidence into practice. These advances have been achieved through a system-level program focused on collaboration and partnerships among policy makers, clinicians, and researchers. The Quality Enhancement Research Initiative (QUERI was created to generate research-driven initiatives that directly enhance health care quality within the VA and, simultaneously, contribute to the field of implementation science. This paradigm-shifting effort provided a natural laboratory for exploring organizational change processes. This article describes the underlying change framework and implementation strategy used to operationalize QUERI. Strategic approach to organizational change QUERI used an evidence-based organizational framework focused on three contextual elements: 1 cultural norms and values, in this case related to the role of health services researchers in evidence-based quality improvement; 2 capacity, in this case among researchers and key partners to engage in implementation research; 3 and supportive infrastructures to reinforce expectations for change and to sustain new behaviors as part of the norm. As part of a QUERI Series in Implementation Science, this article describes the framework's application in an innovative integration of health services research, policy, and clinical care delivery. Conclusion QUERI's experience and success provide a case study in organizational change. It demonstrates that progress requires a strategic, systems-based effort. QUERI's evidence-based initiative involved a deliberate cultural shift, requiring ongoing commitment in multiple forms and at multiple levels. VA's commitment to QUERI came in the

  17. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2) study

    DEFF Research Database (Denmark)

    Thomsen, Reimar Wernich; Nielsen, Jens Steen; Ulrichsen, Sinna Pilgaard

    2012-01-01

    This paper provides an overview of the baseline data collected in the nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) project. The paper presents descriptive data from the first 580 patients enrolled in the DD2. The DD2 database will contain detailed interview data......, clinical examination data, and urine and blood samples from up to 10,000 patients newly diagnosed with type 2 diabetes each year, collected from general practitioners and hospital outpatient clinics in all of Denmark. Of the first DD2 patients enrolled, blood and urine samples have been obtained from 97...... database represents a valuable source for outcome studies in type 2 diabetes....

  18. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  19. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  20. Global climate change and human health: Information needs, research priorities, and strategic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, M.P.; Kanciruk, P. (Oak Ridge National Lab., TN (USA)); O' Hara, F.M. Jr. (O' Hara (Fred M., Jr.), Oak Ridge, TN (USA))

    1989-01-01

    The US Global Research Plan and the International Geosphere-Biosphere Programme were created to assess the effects of global climate change but have not been able to devote much attention to the consequences climate change will have on human health and welfare. Although researchers and policy makers recognize that climate change will have complex effects on resources, in general, the social and medical sciences have not received appropriate international attention under the banner of global change. To address this imbalance, the public health research community needs to launch a international coordinated effort so that the social and medical sciences are as fully represented as other scientific disciplines. This document discusses the information needs, research priorities and strategic considerations of the global change and its impact on human health.

  1. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  2. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  3. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  4. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  5. The Australian Centre for Minesite Rehabilitation Research - an initiative to meet the strategic research needs for sustainable mining rehabilitation

    International Nuclear Information System (INIS)

    Bell, L.C.

    1996-01-01

    The Australian Centre for Minesite Rehabilitation Research (ACMRR) was established through a mining industry initiative to meet the need of industry governments and the community for sustainable systems for land affected by exploration, mining and mineral processing activities. The Centre, which is a consortium of the major groups associated with mining rehabilitation research in Australia, has a focus on both strategic research and technology transfer and combines a wide range of multidisciplinary skills covering engineering and the physical and biological sciences. The paper briefly describes the goals, structure, expertise and research and technology transfer activities of the Centre. The major research program areas of waste rock dump and final void stability, acid mine drainage, tailings disposal and remediation of ecosystem reconstruction are described in the context of national priorities. 3 refs., 1 fig

  6. STRATEGIC IMPERATIVES OF THE DEVELOPMENT OF THE SCIENTIFIC LIBRARY OF THE RESEARCH UNIVERSITY

    Directory of Open Access Journals (Sweden)

    M. Sitnitskiy

    2017-09-01

    Full Text Available The article presents strategic imperatives that influence the development of scientific libraries and systematizes the criteria that the scientific library of the research university must meet in order to ensure effective development in accordance with modern trends in science and technology. Strategic imperatives for the development of the library of the research university consist in providing: modern technologies of codification and transfer of information containing knowledge; Compliance with international standards of existing information and technical infrastructure of scientific libraries; Equal access to world-class advanced science-computer databases; Timely updating of library funds; Proactive visitor system and automate the processing of relevance of their queries; The fastest and most accurate search and access to information; availability of an effective information security system contained in the cloud of scientific library; Development of adjacent commercial services, which allow to receive a "package" of information generalized by professional specialists; Creation of creative space for a comfortable visit to the library by interested persons for obtaining existing knowledge and creating new ones. The only way for Ukraine to slow down the outflow of skilled scientific and pedagogical staff and students with high intellectual potential is to preserve and balance the system of research universities and to develop within their walls powerful scientific libraries that will be able to meet the above-mentioned development imperatives.

  7. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  8. An invitation to contribute to a strategic research agenda in radioecology

    International Nuclear Information System (INIS)

    Hinton, T.G.; Garnier-Laplace, J.; Vandenhove, H.; Dowdall, M.; Adam-Guillermin, C.; Alonzo, F.; Barnett, C.; Beaugelin-Seiller, K.; Beresford, N.A.; Bradshaw, C.; Brown, J.; Eyrolle, F.; Fevrier, L.; Gariel, J.-C.; Gilbin, R.; Hertel-Aas, T.; Horemans, N.; Howard, B.J.; Ikäheimonen, T.; Mora, J.C.

    2013-01-01

    With intentions of integrating a portion of their respective research efforts into a trans-national programme that will enhance radioecology, eight European organisations recently formed the European Radioecology ALLIANCE ( (www.er-alliance.org)). The ALLIANCE is an Association open to other organisations throughout the world with similar interests in promoting radioecology. The ALLIANCE members recognised that their shared radioecological research could be enhanced by efficiently pooling resources among its partner organizations and prioritising group efforts along common themes of mutual interest. A major step in this prioritisation process was to develop a Strategic Research Agenda (SRA). An EC-funded Network of Excellence in Radioecology, called STAR (Strategy for Allied Radioecology), was formed, in part, to develop the SRA. This document is the first published draft of the SRA. The SRA outlines a suggested prioritisation of research topics in radioecology, with the goal of improving research efficiency and more rapidly advancing the science. It responds to the question: “What topics, if critically addressed over the next 20 years, would significantly advance radioecology?” The three Scientific Challenges presented within the SRA, with their 15 associated research lines, are a strategic vision of what radioecology can achieve in the future. Meeting these challenges will require a directed effort and collaboration with many organisations the world over. Addressing these challenges is important to the advancement of radioecology and in providing scientific knowledge to decision makers. Although the development of the draft SRA has largely been a European effort, the hope is that it will initiate an open dialogue within the international radioecology community and its stakeholders. This is an abbreviated document with the intention of introducing the SRA and inviting contributions from interested stakeholders. Critique and input for improving the SRA are

  9. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  10. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  11. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. Routinely collected data as a strategic resource for research: priorities for methods and workforce.

    Science.gov (United States)

    Jorm, Louisa

    2015-09-30

    In the era of 'big data', research using routinely collected data offers greater potential than ever before to drive health system effectiveness and efficiency, and population health improvement. In Australia, the policy environment, and emerging frameworks and processes for data governance and access, increasingly support the use of routinely collected data for research. Capitalising on this strategic resource requires investment in both research methods and research workforce. Priorities for methods development include validation studies, techniques for analysing complex longitudinal data, exploration of bias introduced through linkage error, and a robust toolkit to evaluate policies and programs using 'natural experiments'. Priorities for workforce development include broadening the skills base of the existing research workforce, and the formation of new, larger, interdisciplinary research teams to incorporate capabilities in computer science, partnership research, research translation and the 'business' aspects of research. Large-scale, long-term partnership approaches involving government, industry and researchers offer the most promising way to maximise returns on investment in research using routinely collected data.

  13. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  14. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  15. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  16. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  17. Sequim Marine Research Laboratory routine environmental measurements during CY-1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured

  18. Magnetic mirror fusion research at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    An overall view is given of progress and plans for pressing forward with mirror research at Livermore. No detail is given on any one subject, and many interesting investigations being carried out at University laboratories in the U.S. that augment and support efforts at Livermore are omitted

  19. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  20. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  1. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  2. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  3. Naval Arctic Research Laboratory (NARL) Subsurface Containment Berm Investigation

    Science.gov (United States)

    2015-10-01

    Degree-Days CRREL Cold Regions Research and Engineering Laboratory ERDC U.S. Army Engineer Research and Development Center FWENC Foster Wheeler ...contract with the Navy, Foster Wheeler Environmental Corporation (FWENC) constructed a subsurface containment berm at the airfield of the Naval...659J91.61 ncURE 3- 3 NAVAl.. AACnC R(Sf.ARCH l,.ASORATORY POINT 9ARROW. AlASKA AS-BUILT CONTAINMENT BERM EXTENSION AND MONITORING WELLS FOSTER W

  4. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  5. Pump and valve research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1992-01-01

    Over the last several years, the Oak Ridge National Laboratory (ORNL) has carried out several aging assessments on pumps and valves under the NRC's Nuclear Plant Aging Research (NPAR) Program. In addition, ORNL has established an Advanced Diagnostic Engineering Research and Development Center (ADEC) in order to play a key role in the field of diagnostic engineering. Initial ADEC research projects have addressed problems that were identified, at least in part, by the NPAR and other NRC-sponsored programs. This paper summarizes the pump and valve related research that has been done at ORNL and describes in more detail several diagnostic techniques developed at ORNL which are new commercially available

  6. An invitation to contribute to a strategic research agenda in radioecology.

    Science.gov (United States)

    Hinton, T G; Garnier-Laplace, J; Vandenhove, H; Dowdall, M; Adam-Guillermin, C; Alonzo, F; Barnett, C; Beaugelin-Seiller, K; Beresford, N A; Bradshaw, C; Brown, J; Eyrolle, F; Fevrier, L; Gariel, J-C; Gilbin, R; Hertel-Aas, T; Horemans, N; Howard, B J; Ikäheimonen, T; Mora, J C; Oughton, D; Real, A; Salbu, B; Simon-Cornu, M; Steiner, M; Sweeck, L; Vives i Batlle, J

    2013-01-01

    With intentions of integrating a portion of their respective research efforts into a trans-national programme that will enhance radioecology, eight European organisations recently formed the European Radioecology ALLIANCE (www.er-alliance.org). The ALLIANCE is an Association open to other organisations throughout the world with similar interests in promoting radioecology. The ALLIANCE members recognised that their shared radioecological research could be enhanced by efficiently pooling resources among its partner organizations and prioritising group efforts along common themes of mutual interest. A major step in this prioritisation process was to develop a Strategic Research Agenda (SRA). An EC-funded Network of Excellence in Radioecology, called STAR (Strategy for Allied Radioecology), was formed, in part, to develop the SRA. This document is the first published draft of the SRA. The SRA outlines a suggested prioritisation of research topics in radioecology, with the goal of improving research efficiency and more rapidly advancing the science. It responds to the question: "What topics, if critically addressed over the next 20 years, would significantly advance radioecology?" The three Scientific Challenges presented within the SRA, with their 15 associated research lines, are a strategic vision of what radioecology can achieve in the future. Meeting these challenges will require a directed effort and collaboration with many organisations the world over. Addressing these challenges is important to the advancement of radioecology and in providing scientific knowledge to decision makers. Although the development of the draft SRA has largely been a European effort, the hope is that it will initiate an open dialogue within the international radioecology community and its stakeholders. This is an abbreviated document with the intention of introducing the SRA and inviting contributions from interested stakeholders. Critique and input for improving the SRA are welcomed

  7. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  8. Implications of Theory and Research on Strategic Leadership: A Critical Review

    Directory of Open Access Journals (Sweden)

    Carlos Roberto Banzato

    2016-10-01

    Full Text Available Strategic Leadership: Theory and Research on Executives, Top Management Teams, and Boards by Finkelstein, Hambrick and Canella Jr. (2009 is one of the most important references in strategy studies. This work is a critical review of this book and attempts to answer why organizations do what they do or play the way they play. In this paper, we review all eleven chapters that make up the book. We then suggest the implications of this theory on strategy and organizations. We also consider how this book affects the development of the field of study. The book offers considerable foundations for executives and serves as a reference for researchers who wish to understand the phenomenon related to strategic leadership, considering the CEO, Board and Top Management Team.  The major contribution of this paper is that it summarizes the theory and concepts of the book in a few pages and identifies the main characteristics, antecedents and consequences of leadership in organizations. 

  9. A Strategic Knowledge Map for the Research and Development Department in a Manufacturing Company

    Directory of Open Access Journals (Sweden)

    Śliwa Małgorzata

    2016-01-01

    Full Text Available Knowledge is a corporate resource, being grounds for initiating activities, which is important in a dynamic economy. The difficulties related to obtaining tacit knowledge, related primarily to experience and observation of the knowledge employee (Mendryk, 2011, encourage the companies to use tools supporting knowledge management and location. This article attempts at designing a dedicated, strategic knowledge map for a research and development department in a manufacturing company. Based on the reference works, the detailed characteristics of specific sources of knowledge in a manufacturing company and tools supporting the process of converting the tacit knowledge into explicit one, for example, the knowledge maps, were devised. Then, a strategic knowledge map model was designed for the research and development department (hereinafter abbreviated as SKM – R&D in the manufacturing company, comprising the following components: (1 fields of knowledge, (2 internal and external processes in the R&D department, and (3 sources of knowledge. Then, a practical implementation of the SKM – R&D model was presented.

  10. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  11. [The strategic research areas of a University Hospital: proposal of a quali-quantitative method.

    Science.gov (United States)

    Iezzi, Elisa; Ardissino, Diego; Ferrari, Carlo; Vitale, Marco; Caminiti, Caterina

    2018-02-01

    This work aimed to objectively identify the main research areas at the University Hospital of Parma. To this end, a multidisciplinary working group, comprising clinicians, researchers, and hospital management, was formed to develop a shared quali-quantitative method. Easily retrievable performance indicators were selected from the literature (concerning bibliometric data and grant acquisition), and a scoring system developed to assign weights to each indicator. Subsequently, Research Team Leaders were identified from the hospital's "Research Plan", a document produced every three years which contains information on the main research themes carried out at each Department, involved staff and available resources, provided by health care professionals themselves. The selected performance indicators were measured for each Team Leader, and scores assigned, thus creating a ranking list. Through the analyses of the research themes of top Team Leaders, the Working Group identified the following five strategic research areas: (a) personalized treatment in oncology and hematology; (b) chronicization mechanisms in immunomediate diseases; (c) old and new risk factors for cardiovascular diseases; (d) nutritional disorders, metabolic and chronic-degenerative diseases; (e) molecular diagnostic and predictive markers. We have developed an objective method to identify a hospital's main research areas. Its application can guide resource allocation and can offer ways to value the work of professionals involved in research.

  12. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  13. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  14. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  15. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  16. An invitation to contribute to the agenda strategic research in Radioecology

    International Nuclear Information System (INIS)

    Hinton, T. G.; Garnier-Laplace, J.; Vandenhove, H.; Dowdall, M.; Adam-Guillermin, C.; Alonzo, F.; Barnett, C.; Beaugelin-Seiller, K.; Beresford, N. A.; Bradshaw, C.; Brown, J.; Eyrolle, F.; Fevrier, L.; Gariel, J. C.; Gilbin, R.; Hertel-Aas, T.; Horemans, N.; Howard, B. J.; Ikaheimonen, T.; Mora, J. C.; Oughton, D.; Real, A.; Salbu, B.; Simon-Cornu, M.; Steiner, M.; Sweeck, L.; Vives Batlle, J.

    2013-01-01

    With intentions of integrating a portion of their respective research efforts into a trans-national programme that will enhance radioecology, eight European organisations recently farmed the European Radioecology ALLIANCE. The Alliance is an Association open to other organisations throughout the world with similar interests in promoting radioecology. The ALLIANCE members recognised that their shared could be enhanced by efficiently pooling resources among its partner organizations and prioritising group efforts along common themes of mutual interest. A major step in this prioritisation process was to develop a Strategic Research Agenda (SRA). an EC funded Network of Excellence in Radioecology, called STAR (Strategy for Allied Radioecology), was formed, in part, to develop the SRA. This document is the first published draft of the SRA. The SRA outlines a suggested prioritisation of research topics in radioecology, with the goal of improving research efficiency and more rapidly advancing the science. It responds to the question. What topics, if critically addressed over the next 20 years, would significantly advance radioecology. The three Scientific Challenges presented within the SRA, with their 15 associated research lines, are a strategic vision of what radioecology can achieve in the future. Meeting these challenges will require a directed effort and collaboration with many organisations the world over. Addressing these challenges is important to the advancement of radioecology and in providing scientific knowledge to decision makers. Although the development of the draft SRA has largely been a European effort, the hope is that it will initiate an open dialogue within the international radioecology community and its stake holders. This is an abbreviated document with the intention of introducing the SRA and inviting contribution from interested stake holders. Critique and input for improving the SRA are welcomed via link on the STAR web site. (Author) 52 refs.

  17. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  18. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  19. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  20. Advances and Future Directions for Tuberous Sclerosis Complex Research: Recommendations From the 2015 Strategic Planning Conference.

    Science.gov (United States)

    Sahin, Mustafa; Henske, Elizabeth P; Manning, Brendan D; Ess, Kevin C; Bissler, John J; Klann, Eric; Kwiatkowski, David J; Roberds, Steven L; Silva, Alcino J; Hillaire-Clarke, Coryse St; Young, Lisa R; Zervas, Mark; Mamounas, Laura A

    2016-07-01

    On March 10 to March 12, 2015, the National Institute of Neurological Disorders and Stroke and the Tuberous Sclerosis Alliance sponsored a workshop in Bethesda, Maryland, to assess progress and new opportunities for research in tuberous sclerosis complex with the goal of updating the 2003 Research Plan for Tuberous Sclerosis (http://www.ninds.nih.gov/about_ninds/plans/tscler_research_plan.htm). In addition to the National Institute of Neurological Disorders and Stroke and Tuberous Sclerosis Alliance, participants in the strategic planning effort and workshop included representatives from six other Institutes of the National Institutes of Health, the Department of Defense Tuberous Sclerosis Complex Research Program, and a broad cross-section of basic scientists and clinicians with expertise in tuberous sclerosis complex along with representatives from the pharmaceutical industry. Here we summarize the outcomes from the extensive premeeting deliberations and final workshop recommendations, including (1) progress in the field since publication of the initial 2003 research plan for tuberous sclerosis complex, (2) the key gaps, needs, and challenges that hinder progress in tuberous sclerosis complex research, and (3) a new set of research priorities along with specific recommendations for addressing the major challenges in each priority area. The new research plan is organized around both short-term and long-term goals with the expectation that progress toward specific objectives can be achieved within a five to ten year time frame. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Use of a collaborative tool to simplify the outsourcing of preclinical safety studies: an insight into the AstraZeneca-Charles River Laboratories strategic relationship.

    Science.gov (United States)

    Martin, Frederic D C; Benjamin, Amanda; MacLean, Ruth; Hollinshead, David M; Landqvist, Claire

    2017-12-01

    In 2012, AstraZeneca entered into a strategic relationship with Charles River Laboratories whereby preclinical safety packages comprising safety pharmacology, toxicology, formulation analysis, in vivo ADME, bioanalysis and pharmacokinetics studies are outsourced. New processes were put in place to ensure seamless workflows with the aim of accelerating the delivery of new medicines to patients. Here, we describe in more detail the AstraZeneca preclinical safety outsourcing model and the way in which a collaborative tool has helped to translate the processes in AstraZeneca and Charles River Laboratories into simpler integrated workflows that are efficient and visible across the two companies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  3. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  4. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  5. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  6. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2)

    DEFF Research Database (Denmark)

    Thomsen, Reimar Wernich; Friborg, Søren; Nielsen, Jens Steen

    2012-01-01

    form the basis for recruiting diabetes patients in the DD2 project, and the data sources that these providers use in clinical practice give access to important supplementary patient data. The DD2's patient-enrollment system is designed to be fast and simple, and thus only collects primary interview......This paper provides a short overview of the Danish health care system and the organization of care for type 2 diabetes patients in Denmark. It also describes the supplementary data sources that are used for collection of baseline data in the nationwide Danish Centre for Strategic Research in Type 2...... Diabetes (DD2) Project. The Danish National Health Service provides tax-funded medical care for all 5.6 million Danish residents. The health care system is characterized by extensive individual-level registration of data used for planning, administration, quality improvement, and research. It is estimated...

  7. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  8. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Sinclair, K.

    2001-01-01

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  9. The Paradigm Shift in Strategic Human Resources. Research in the case of Romanian Organizations

    Directory of Open Access Journals (Sweden)

    Carmen NOVAC

    2016-12-01

    Full Text Available The paper presents the conditions and factors influencing the development of a strategic human capital plan, offering a framework for obtaining competitive advantage and for developing a business plan in which the Human Resources function can actually make a contribution. The authors also present the key elements of a Human Resources paradigm which will change the DNA of its function. The research was first implemented in 2009 with the purpose of identifying specific processes within Strategic Human Resources Management (SHRM. Aiming to obtain further information on HR processes currently applied within Romanian organizations, the authors applied a semi-structured interview on Human Resources specialists working in domains such as supporting services, human resources outsourcing services, telecommunications, automotive and taxi services, call center services and trade marketing. The results indicated that within organizations following the development of human resources processes, the gain of new knowledge in the business area of the company can be observed. The effects are also evident within organizations` development plans.

  10. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  11. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  12. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  13. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  14. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  15. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  16. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  17. Strategic field No.5 'the origin of matter and the universe'. Toward interdisciplinary researches in particle, nuclear and astrophysics

    International Nuclear Information System (INIS)

    Aoki, Shinya

    2011-01-01

    Four main research subjects in the strategic field No. 5 'The origin of matter and the universe', planned to be investigated on 'Kei' super computer, are explained in detail, by focusing on interdisciplinary aspect of researches among particle, nuclear and astrophysics. (author)

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  2. Federal laboratory nondestructive testing research and development applicable to industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  3. Laboratory directed research and development FY91. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. [eds.

    1991-12-31

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director`s initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  4. Air Force Research Laboratory Success Stories. A Review of 2003

    Science.gov (United States)

    2003-01-01

    or non-NBC mode. The ECU can act as either a heater or an air conditioner and can be operated with a remote control. Compared to previous models...separation system, PSC is developing a motorized activation mechanism. Once completed, this will allow for virtually unlimited testing of the actual...stories in this book or on the CD-ROM, or for other technical activities in the Air Force Research Laboratory, contact TECH CONNECT at (800) 203-6451

  5. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  6. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  7. Mission of mediation on planting underground research laboratories

    International Nuclear Information System (INIS)

    Bataille, C.

    1994-01-01

    France, who chose to have a strong nuclear industry, is confronted to the problem of management, treatment, storage and elimination of radioactive waste. The law defined an important research program with a study of underground storage in laboratories. Here is the report of this mission. A problem of people confidence arose; there is a difference between the great level of science or technology and the level of understanding of public opinion. The only answer brought by a democratic society is to develop information

  8. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  9. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  10. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  11. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  12. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  13. Research on the Scientific and Technological Innovation of Research University and Its Strategic Measures

    Science.gov (United States)

    Cheng, Yongbo; Ge, Shaowei

    2005-01-01

    This paper illustrates the important role that the scientific and technological innovation plays in the research university. Technological innovation is one of the main functions that the research university serves and contributes for the development of economy and society, which is the essential measure for Research University to promote…

  14. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  15. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  16. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  17. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  18. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  19. Environmental Research Laboratories annual report for 1979 and 1980

    International Nuclear Information System (INIS)

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included

  20. Radiation protection in a multi-disciplinary research laboratory

    International Nuclear Information System (INIS)

    O'Donovan, E.J.B.; Jenks, G.J.; Brighton, D.R.

    1993-01-01

    This paper describes the measures for the protection of personnel against the hazards of ionising and non-ionising radiation at the Materials Research Laboratory (MRL) in Victoria. The paper describes MRL safety and protection policy and management, and gives brief details of procedures and problems at the working level. A comparison of MRL average annual photon doses with all Governmental Research Institutions and industry is given. The good safety record of MRL is evident and shows that the radioactive protection issues are well handled. 4 figs

  1. A framework for strategic investments in research to reduce the global burden of preterm birth.

    Science.gov (United States)

    Gravett, Michael G; Rubens, Craig E

    2012-11-01

    Preterm birth and stillbirth are among the greatest health burdens associated with pregnancy and childbirth. Fifteen million babies are born preterm each year, causing about 1 million deaths annually and lifelong problems for many survivors; 3 million stillbirths also occur annually. Worldwide, the number of women and children who die during pregnancy and childbirth exceeds the total number of births in the United States. New approaches could provide a greater understanding of prematurity, stillbirth, and maternal complications of pregnancy and childbirth. Integrated multidisciplinary investigations of the mother, fetus, and newborn in different contexts and populations could elucidate the biological pathways that result in adverse outcomes and how to prevent them. Descriptive research can determine the burden of disease, while more mechanistic discovery research could explore the physiology and pathophysiology of pregnancy and childbirth. Together, this research can lead to the development and delivery of new and much more effective interventions, even in low-resource settings. Recent surveys of researchers and funders reveal a striking lack of consensus regarding priority areas for research and the development of interventions. While researchers enumerate unanswered questions about pregnancy and childbirth, they lack consensus on priorities. Funders are equally uncertain about research and development projects that need to be undertaken, and many are hard-pressed to support research on the complex problems of pregnancy and childbirth given competing priorities. This lack of consensus provides an opportunity to engage with funders and researchers to recognize the importance of understanding healthy pregnancies and the consequences of adverse pregnancy outcomes. A strategic alliance of funders, researchers, nongovernmental organizations, the private sector, and others could organize a set of grand challenges centered on pregnancy and childbirth that could yield a

  2. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2) study

    DEFF Research Database (Denmark)

    Nielsen, Jens Steen; Thomsen, Reimar W; Steffensen, Charlotte

    2012-01-01

    This paper aims to describe the patient enrollment system and implementation strategy for the new nationwide Danish Centre for Strategic Research in Type 2 Diabetes (DD2) project. The paper will also describe the design, current content, and pilot testing of the DD2 registration form. The challenge...... that is part of everyday clinical practice in hospital outpatient clinics and general practitioner (GP) clinics. The enrollment system is thus built on a tested, rational design where patients need only one visit and only specific limited data about physical activity, anthropometric measures, and family...... history of diabetes are collected during a brief patient interview. Later, supplemental data will be extracted by computerized linkage with existing databases. The feasibility of this strategy was verified in a pilot study. For maximum flexibility, three different ways to fill in the DD2 registration form...

  3. New national Biobank of The Danish Center for Strategic Research on Type 2 Diabetes (DD2)

    DEFF Research Database (Denmark)

    Christensen, Henry; Nielsen, Jens Steen; Sørensen, Karina Meden

    2012-01-01

    Long-term storage of biological samples from patients has become increasingly important in studies of disease control and treatment. The first nationwide Danish diabetes project, ie, The Danish Center for Strategic Research in Type II Diabetes (DD2), aims to improve treatment and the long......-term outcome of patients with newly diagnosed type 2 diabetes (T2D). The DD2 project includes establishment of a biobank with samples from 50,000 patients with newly diagnosed T2D. This paper describes how blood and urine samples from 10,000 patients per year are collected, handled, and stored. The biobank...... includes whole blood, DNA, and plasma and urine samples, all frozen at -80°C. Sampling tubes have been standardized and are sent to hospital outpatient clinics and general practitioners where samples are taken, handled, aliquoted, and returned by mail overnight in standardized cryostorage tubes. When...

  4. The Danish Centre for Strategic Research in Type 2 Diabetes (DD2) study

    DEFF Research Database (Denmark)

    Beck-Nielsen, Henning; Solomon, Thomas Pj; Lauridsen, Jørgen Trankjær

    2012-01-01

    The overall aim of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) is to near-normalize metabolic control in newly diagnosed patients with type 2 diabetes (T2D) using an individualized treatment approach. We hypothesize that this will not only prevent complications and improve...... quality of life for T2D patients but also result in increased cost efficiency compared with current treatment modalities. This paper provides an overview of the expected outcomes from DD2, focusing on the two main intervention studies. The main data for the DD2 project are collected during patient...... obtaining knowledge about predictors for the long-term outcome and identifying targets for new interventions. Further data are being collected from two intervention studies. The aim of the first intervention study is to improve T2D treatment using an individualized treatment modality optimizing medication...

  5. Strategic Responsiveness

    DEFF Research Database (Denmark)

    Pedersen, Carsten; Juul Andersen, Torben

    decision making is often conceived as ‘standing on the two feet’ of deliberate or intended strategic decisions by top management and emergent strategic decisions pursued by lower-level managers and employees. In this view, the paper proposes that bottom-up initiatives have a hard time surfacing...... in hierarchical organizations and that lowerlevel managers and employees, therefore, pursue various strategies to bypass the official strategy processes to act on emerging strategic issues and adapt to changing environmental conditions.......The analysis of major resource committing decisions is central focus in the strategy field, but despite decades of rich conceptual and empirical research we still seem distant from a level of understanding that can guide corporate practices under dynamic and unpredictable conditions. Strategic...

  6. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  7. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    Science.gov (United States)

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  9. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  10. The need for econometric research in laboratory animal operations.

    Science.gov (United States)

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  11. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    Science.gov (United States)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  12. Strategic Entrepreneurship : the promise for future entrepreneurship, family business and SME research?

    OpenAIRE

    2010-01-01

    See also on the : [http://www.kmu.unisg.ch/rencontres/Renc2010/band2010.html website of the conference] Topics and Papers submitted for the conference 2010: Topic A: Strategic Entrepreneurship Selena Aureli Exploring Entrepreneurial Orientation and Strategic Awareness among Small Business Owner-Entrepreneurs Leo W. Chini Entrepreneurship und strategische Planung - ein Widerspruch? (Entrepreneurship and Strategic Planning - A Contradiction in Terms?) Jan Degadt St...

  13. A 13-week research-based biochemistry laboratory curriculum.

    Science.gov (United States)

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Zoonoses of occupational health importance in contemporary laboratory animal research.

    Science.gov (United States)

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  15. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  16. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  17. Laboratory contamination in the early period of radiation research

    International Nuclear Information System (INIS)

    Rona, E.

    1979-01-01

    Meagre records exist of the levels of contamination and human exposure encountered by those who took part in the early research on radioactive materials. In order to throw some light on the nature and extent of the problem the author presents some recollections of the conditions of the laboratories in which she worked from 1924-1940. These include the Kaiser Wilhelm Institute, the Radium Institute of Vienna and the Curie Institute. The health, radiation injuries and causes of death of some early workers are discussed. Although the effects of acute exposure were recognised early on, there was less awareness of the possible effects of chronic exposure, and lack of prompt clinical signs of injury encouraged complacency. Laboratory contamination was often seen more as a problem affecting experimental results than as a health hazard. (author)

  18. Outline of new extra high voltage research equipment at Kumatori research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hohki, S; Ikeda, G

    1965-01-01

    Following up the construction in 1939 of an ehv research laboratory, another new research laboratory was established at Kumatori with a ground area of 142,000 square meters. As the first stage of this construction plan, the new research equipment was installed in November 1963 and began operation. The laboratory consists of comprehensive ehv research equipment and facilities relating to atomic energy. The former includes a 6000-kV impulse voltage generator, a 1650-kV alternating current testing transformer, a 300-m overhead transmission test line, a tower strength testing facility, and other various high-power test facilities. Studies on a 400- to 500-kV overhead power transmission system and other new transmission systems are currently being conducted. The details of the construction of the ehv research equipment together with the research policy for future ehv engineering are given.

  19. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  20. New national Biobank of The Danish Center for Strategic Research on Type 2 Diabetes (DD2

    Directory of Open Access Journals (Sweden)

    Christensen H

    2012-09-01

    Full Text Available Henry Christensen,1 Jens Steen Nielsen,2 Karina Meden Sørensen,3 Mads Melbye,3 Ivan Brandslund1,41Department of Clinical Biochemistry, Vejle Hospital, Vejle, Denmark; 2The Danish Centre for Strategic Research in Type 2 Diabetes (DD2, Department of Endocrinology M, Diabetes Research Centre, Odense University Hospital, Odense, Denmark; 3Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark; 4Institute of Regional Health Research, University of Southern Denmark, Odense, DenmarkAbstract: Long-term storage of biological samples from patients has become increasingly important in studies of disease control and treatment. The first nationwide Danish diabetes project, ie, The Danish Center for Strategic Research in Type II Diabetes (DD2, aims to improve treatment and the long-term outcome of patients with newly diagnosed type 2 diabetes (T2D. The DD2 project includes establishment of a biobank with samples from 50,000 patients with newly diagnosed T2D. This paper describes how blood and urine samples from 10,000 patients per year are collected, handled, and stored. The biobank includes whole blood, DNA, and plasma and urine samples, all frozen at −80°C. Sampling tubes have been standardized and are sent to hospital outpatient clinics and general practitioners where samples are taken, handled, aliquoted, and returned by mail overnight in standardized cryostorage tubes. When received at the biobank, samples are frozen without further treatment. From each patient, 24 cryostorage tubes are stored. Each tube is labeled with a barcode that links the data to other information available in a clinical databank registry. When patients are enrolled in DD2, a questionnaire is filled out and a quality monitoring system ensures that patients, samples, and questionnaires can be linked together at all times. The biobank is located at Vejle Hospital and the Danish National Biobank at Statens Serum Institut. As of the end of March 2012

  1. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey .C; Boring, Ronald L.

    2016-07-01

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation and control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.

  2. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  3. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  4. NEW IRRADIATION RESEARCH FACILITIES AT THE ARMY NATICK LABORATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R. D.; Brynjolfsson, A.

    1963-03-15

    New facilities built by the U. S. Army for research on the preservation of food by ionizing radiation consist of a food processing and packaging facility and a radiation sources laboratory with two powerful low-energy radiation sources. One is a 1.3 million-curie Co/sup 60/ source consisting of 98 tubes each containing four doubly encapsulated Co/sup 60/ slugs. The second source is an electron linear accelerator with energy variable between 2 and 32 Mev. Research with the Co/sup 60/ source is concentrated on investigation of macroscopic and microscopic dose distribution in different materials irradiated with Co/sup 60/ gamma rays. Research with the linear accelerator is concentrated on dosimetry and photonuclear reactions. (A.G.W.)

  5. Can Strategic Spatial Planning Contribute to Land Degradation Reduction in Urban Regions? State of the Art and Future Research

    Directory of Open Access Journals (Sweden)

    Eduardo Oliveira

    2018-03-01

    Full Text Available Land degradation is becoming a serious environmental issue threatening fertile agricultural soils and other natural resources. There are many driving forces behind land degradation. The expansion of artificial surfaces due to various economic activities, such as housing, industry, and transport infrastructure, known as soil sealing, constitutes one of the most intensive forms of land degradation in urban regions. Measures to halt and reverse land degradation require both strong land-use management policies, as well as effective spatial planning mechanisms. In this regard, strategic spatial planning has been increasingly practised in many urban regions worldwide, as a means to achieve sustainable land-use patterns and to guide the location of development and physical infrastructures. It is reasonable, therefore, to expect that strategic spatial planning can counteract the outlined undesired land degradation effects, specifically those resulting from soil sealing. In this paper, we review strategic spatial planning literature published between 1992 and 2017. The focus is on the phenomena causing land degradation that are addressed by strategic spatial planning literature, as well as on the mechanisms describing the role of strategic spatial planning in land degradation reduction. Results show that sustainable development and environmental concerns have become core objectives of strategic planning in recent years, yet references to the drivers of land degradation are rare. The mechanisms that exist are mainly intended to address environmental issues in general, and are not aimed at reducing particular forms of land degradation. The paper concludes by sketching future research directions, intended to support strategic spatial planning and land-use policymaking related to coping with the global phenomenon of land degradation.

  6. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  7. The Mammalian Microbiome and Its Importance in Laboratory Animal Research.

    Science.gov (United States)

    Bleich, André; Fox, James G

    2015-01-01

    In this issue are assembled 10 fascinating, well-researched papers that describe the emerging field centered on the microbiome of vertebrate animals and how these complex microbial populations play a fundamental role in shaping homeostasis of the host. The content of the papers will deal with bacteria and, because of relative paucity of information on these organisms, will not include discussions on viruses, fungus, protozoa, and parasites that colonize various animals. Dissecting the number and interactions of the 500-1000 bacterial species that can inhabit the intestines of animals is made possible by advanced DNA sequencing methods, which do not depend on whether the organism can be cultured or not. Laboratory animals, particularly rodents, have proven to be an indispensable component in not only understanding how the microbiome aids in digestion and protects the host against pathogens, but also in understanding the relationship of various species of bacteria to development of the immune system. Importantly, this research elucidates purported mechanisms for how the microbiome can profoundly affect initiation and progression of diseases such as type 1 diabetes, metabolic syndromes, obesity, autoimmune arthritis, inflammatory bowel disease, and irritable bowel syndrome. The strengths and limitations of the use of germfree mice colonized with single species of bacteria, a restricted flora, or most recently the use of human-derived microbiota are also discussed. © The Author 2015. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Laboratory directed research and development annual report 2004

    International Nuclear Information System (INIS)

    Not Available

    2005-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives

  9. Tritium research laboratory cleanup and transition project final report

    International Nuclear Information System (INIS)

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project's multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition

  10. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    International Nuclear Information System (INIS)

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  11. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  12. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  13. A design guide for energy-efficient research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  14. NULIFE - its Role in Implementing Strategic Research of LTO related to PLIM Issues in Europe

    International Nuclear Information System (INIS)

    Rintamaa, R.

    2011-01-01

    The European network of excellence NULIFE (Nuclear plant life prediction) has been launched under the Euratom Framework Programme with a clear focus on integrating safety-oriented research on materials, structures and systems and exploiting the results of this integration through the production of harmonised lifetime assessment methods. NULIFE will help provide a better common understanding of the factors affecting the lifetime of nuclear power plants which, together with associated management methods, will help facilitate safe and economic long term operation of existing nuclear power plants. In addition, NULIFE will help in the development of design criteria for future generations of nuclear power plant. NULIFE was kicked-off in October 2006 and will work over a 5-year period to create a single organization structure, capable of providing harmonised research and development (R and D) at European level to the nuclear power industry and the related safety authorities. Led by VTT (Technical Research Centre of Finland), the project has a total budget in excess of 8 million euros, with over 40 partners drawn from leading research institutions, technical support organisations, power companies and manufacturers throughout Europe. NULIFE also involves many industrial organizations and, in addition to their R and D contributions, these take part in a dedicated End User Group. The importance of the long term operation of the plants has been recognized at European level, in the strategic research agenda of SNE TP (Sustainable Nuclear Energy Technology Platform). In NULIFE, the joint EU-wide coordinated research strategy for plant life integrity management and long term operation has been defined. Based on NULIFE business plan, the discussion of long-term business plan, operational model and statutes of the future NULIFE institute has been started. NULIFE maintains the sustainability of nuclear power by focusing on the continued, 60+ years of safe operation of nuclear power

  15. Quantum information processing and communication : Strategic report on current status, visions and goals for research in Europe

    NARCIS (Netherlands)

    Kouwenhoven, L.; Mooij, J.E.

    2005-01-01

    e present an excerpt of the document “Quantum Information Processing and Communication: Strategic report on current status, visions and goals for research in Europe”, which has been recently published in electronic form at the website of FET (the Future and Emerging Technologies Unit of the

  16. Strategic Decision-Making and Social Skills: Integrating Behavioral Economics and Social Cognition Research

    Directory of Open Access Journals (Sweden)

    Johannes Leder

    2016-11-01

    Full Text Available Strategic decisions are affected by beliefs about the expectations of others and their possible decisions. Thus, strategic decisions are influenced by the social context and by beliefs about other actors’ levels of sophistication. The present study investigated whether strategic decision-making, as measured by the beauty contest game, is associated with social skills, as measured by the Autism Quotient (AQ. In line with our hypothesis, we found that social skills were positively related to successful strategic decision-making. Furthermore, results showed a curvilinear relationship between steps of reasoning in the beauty contest game and social skills, indicating that very high as well as very low scoring individuals on the social skills subscale of the AQ engaged in high-levels of strategic thinking.

  17. Assessment of three medical and research laboratories using WHO ...

    African Journals Online (AJOL)

    AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... in all three laboratories, lack of quality audit schemes by two laboratories and only one laboratory enrolled into external quality assurance schemes.

  18. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  19. Health care competition, strategic mission, and patient satisfaction: research model and propositions.

    Science.gov (United States)

    Rivers, Patrick A; Glover, Saundra H

    2008-01-01

    In all industries, competition among businesses has long been encouraged as a mechanism to increase value for patients. In other words, competition ensures the provision of better products and services to satisfy the needs of customers This paper aims to develop a model that can be used to empirically investigate a number of complex issues and relationships associated with competition in the health care industry. A literature review was conducted. A total of 50 items of literature related to the subject were reviewed. Various perspectives of competition, the nature of service quality, health system costs, and patient satisfaction in health care are examined. A model of the relationship among these variables is developed. The model depicts patient satisfaction as an outcome measure directly dependent on competition. Quality of care and health care systems costs, while also directly dependent on the strategic mission and goals, are considered as determinants of customer satisfaction as well. The model is discussed in the light of propositions for empirical research. Empirical studies based on the model proposed in this paper should help identify areas with significant impact on patient satisfaction while maintaining high quality of service at lower costs in a competitive environment. The authors develop a research model which included propositions to examine the complex issues of competition in the health care industry.

  20. Charged particle beam propagation studies at the Naval Research Laboratory

    International Nuclear Information System (INIS)

    Meger, R.A.; Hubbard, R.F.; Antoniades, J.A.; Fernsler, R.F.; Lampe, M.; Murphy, D.P.; Myers, M.C.; Pechacek, R.E.; Peyser, T.A.; Santos, J.; Slinker, S.P.

    1993-01-01

    The Plasma Physics Division of the Naval Research Laboratory has been performing research into the propagation of high current electron beams for 20 years. Recent efforts have focused on the stabilization of the resistive hose instability. Experiments have utilized the SuperIBEX e-beam generator (5-MeV, 100-kA, 40-ns pulse) and a 2-m diameter, 5-m long propagation chamber. Full density air propagation experiments have successfully demonstrated techniques to control the hose instability allowing stable 5-m transport of 1-2 cm radius, 10-20 kA total current beams. Analytic theory and particle simulations have been used to both guide and interpret the experimental results. This paper will provide background on the program and summarize the achievements of the NRL propagation program up to this point. Further details can be found in other papers presented in this conference

  1. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Camilleri, A.; Loosz, T.; Farrar, Y.

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs

  2. Radioactive waste management research at CEGB Berkeley nuclear laboratories

    International Nuclear Information System (INIS)

    Bradbury, D.

    1988-01-01

    The CEGB is the major electric utility in the United Kingdom. This paper discusses how, at the research laboratories at Berkeley (BNL), several programs of work are currently taking place in the radioactive waste management area. The theme running through all this work is the safe isolation of radionuclides from the environment. Normally this means disposal of waste in solid form, but it may also be desirable to segregate and release nonradioactive material from the waste to reduce volume or improve the solid waste characteristics (e.g., the release of liquid or gaseous effluents after treatment to convert the radioactivity to solid form). The fuel cycle and radioactive waste section at BNL has a research program into these aspects for wastes arising from the operation or decommissioning of power stations. The work is done both in-house and on contract, with primarily the UKAEA

  3. UTRaLab – Urban Traffic Research Laboratory

    Directory of Open Access Journals (Sweden)

    Karsten Kozempel

    2017-08-01

    Full Text Available The Urban Traffic Research Laboratory (UTRaLab is a research and test track for traffic detection methods and sensors. It is located at the Ernst-Ruska-Ufer, in the southeast of the city of Berlin (Germany. The UTRaLab covers 1 km of a highly-frequented urban road and is connected to a motorway. It is equipped with two gantries with distance of 850 m in between and has several outstations for data collection. The gantries contain many different traffic sensors like inductive loops, cameras, lasers or wireless sensors for traffic data acquisition. Additionally a weather station records environmental data. The UTRaLab’s main purposes are the data collection of traffic data on the one hand and testing newly developed sensors on the other hand.

  4. Environmental and effluent monitoring at Lucas Heights Research Laboratories, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, E L; Camilleri, A; Loosz, T; Farrar, Y

    1995-12-01

    Results are presented of environmental and effluent monitoring conducted in the vicinity of the Lucas Heights Research Laboratories (LHRL) during 1994. All low level liquid and gaseous effluent discharges complied with existing discharge authorisations and relevant environmental regulations. Potential effective doses to the general public from controlled airborne discharges during this period, were estimated to be less than 0.015 mSv/year for receptor locations on the 1.6 km buffer zone boundary around HIFAR. This value represents 1.5 % of the 1 mSv/year dose limit for long term exposure that is recommended by the National Health and Medical Research Council, and 5 % of the site dose constraint of 0.3 mSv/year adopted by ANSTO. 27 refs., 22 tabs., 6 figs.

  5. Tungsten alloy research at the US Army Materials Technology Laboratory

    International Nuclear Information System (INIS)

    Dowding, R.J.

    1991-01-01

    This paper reports that recent research into tungsten heavy alloys at the U. S. Army Materials Technology Laboratory (MTL) has explored many areas of processing and process development. The recrystallization and respheroidization of tungsten grains in a heavily cold worked heavy alloy has been examined and resulted in the identification of a method of grain refinement. Another area of investigation has been lightly cold worked. It was determined that it was possible to increase the strength and hardness of the tungsten grains by proper hat treatment. MTL has been involved in the Army's small business innovative research (SBIR) program and several programs have been funded. Included among these are a method of coating the tungsten powders with the alloying elements and the development of techniques of powder injection molding of heavy alloys

  6. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  7. Behavioral Economic Laboratory Research in Tobacco Regulatory Science.

    Science.gov (United States)

    Tidey, Jennifer W; Cassidy, Rachel N; Miller, Mollie E; Smith, Tracy T

    2016-10-01

    Research that can provide a scientific foundation for the United States Food and Drug Administration (FDA) tobacco policy decisions is needed to inform tobacco regulatory policy. One factor that affects the impact of a tobacco product on public health is its intensity of use, which is determined, in part, by its abuse liability or reinforcing efficacy. Behavioral economic tasks have considerable utility for assessing the reinforcing efficacy of current and emerging tobacco products. This paper provides a narrative review of several behavioral economic laboratory tasks and identifies important applications to tobacco regulatory science. Behavioral economic laboratory assessments, including operant self-administration, choice tasks and purchase tasks, can be used generate behavioral economic data on the effect of price and other constraints on tobacco product consumption. These tasks could provide an expedited simulation of the effects of various tobacco control policies across populations of interest to the FDA. Tobacco regulatory research questions that can be addressed with behavioral economic tasks include assessments of the impact of product characteristics on product demand, assessments of the abuse liability of novel and potential modified risk tobacco products (MRTPs), and assessments of the impact of conventional and novel products in vulnerable populations.

  8. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  9. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  10. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  11. A new methodology for strategic planning using technological maps and detection of emerging research fronts applied to radiopharmacy

    International Nuclear Information System (INIS)

    Didio, Robert Joseph

    2011-01-01

    This research aims the development of a new methodology to support the strategic planning, using the process of elaboration of technological maps (TRM - Technological Roadmaps), associated with application of the detection process of emerging fronts of research in databases of scientific publications and patents. The innovation introduced in this research is the customization of the process of TRM to the radiopharmacy and, specifically, its association to the technique of detection of emerging fronts of research, in order to prove results and to establish a new and very useful methodology to the strategic planning of this area of businesses. The business unit DIRF - Diretoria de Radiofarmacia - of IPEN CNEN/SP was used as base of the study and implementation of this methodology presented in this work. (author)

  12. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project (Translated document)

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Osawa, Hideaki; Nagae, Isako; Natsuyama, Ryoko; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; Nakayama, Masashi; Miyakawa, Kazuya; Ito, Hiroaki; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2016-08-01

    We have synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second mid-term research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High-quality construction techniques and field investigation methods have been developed and implemented, which will be directly applicable to the National Disposal Program (together with general assessments of hazardous natural events and processes). Acquisition of technical knowledge on decisions of partial backfilling and final closure from actual field experiments in the Mizunami/Horonobe URLs will be crucial as the main theme for the next phases. (author)

  13. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  14. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  15. Mizunami Underground Research Laboratory project. Plan for fiscal year 2017

    International Nuclear Information System (INIS)

    Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

    2017-10-01

    The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modelling technologies for mass transport' and 'Development of drift backfilling technology', based on the latest results of the synthesizing research and development (R and D). The R and D on three remaining important issues has been carrying out on the MIU Project. This report summarizes the R and D activities planned for fiscal year 2017 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase. (author)

  16. AECL's underground research laboratory: technical achievements and lessons learned

    International Nuclear Information System (INIS)

    Ohta, M.M.; Chandler, N.A.

    1997-03-01

    During the development of the research program for the Canadian Nuclear Fuel Waste Management Program in the 1970's, the need for an underground facility was recognized. AECL constructed an Underground Research Laboratory (URL) for large-scale testing and in situ engineering and performance-assessment-related experiments on key aspects of deep geological disposal in a representative geological environment. Ale URL is a unique geotechnical research and development facility because it was constructed in a previously undisturbed portion of a granitic pluton that was well characterized before construction began, and because most of the shaft and experimental areas are below the water table. The specific areas of research, development and demonstration include surface and underground characterization; groundwater and solute transport; in situ rock stress conditions; temperature and time-dependent deformation and failure characteristics of rock; excavation techniques to minimize damage to surrounding rock and to ensure safe working conditions; and the performance of seals and backfills. This report traces the evolution of the URL and summarizes the technical achievements and lessons learned during its siting, design and construction, and operating phases over the last 18 years. (author)

  17. HOTLAB: European hot laboratories research and capacities and needs. Plenary meeting 2004

    Energy Technology Data Exchange (ETDEWEB)

    Oberlaender, B.C.; Jenssen, H.K. (ed.)

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented.

  18. HOTLAB: European hot laboratories research capacities and needs. Plenary meeting 2004

    International Nuclear Information System (INIS)

    Oberlaender, B.C.; Jenssen, H.K.

    2005-01-01

    The report presents proceedings from the 2004 annual HOTLAB plenary meeting at Halden and Kjeller, Norway. The goal of the yearly plenary meeting was to: Exchange experience on analytical methods, their implementation in hot cells, the methodologies used and their application in nuclear research. Share experience on common infrastructure exploitation matters such as remote handling techniques, safety features, QA-certification, waste handling, etc. Promote normalisation and co-operation, e.g. by looking at mutual complementarities. Prospect present and future demands from the nuclear industry and to draw strategic conclusions regarding further needs. The main themes of the five topical oral sessions of the Halden plenary meeting cover: Work package leaders report and specific papers, presentation of PIE facility databases, i.e. one worldwide (IAEA) and one inside the European communities. Reports from present and future needs and on nuclear transports. Refabrication and instrumentation: Available equipment, technical characteristics such as fabrication procedures, hot-cell compatibility, and practical experiences. Post irradiation examination: Updated and new remote techniques and methodologies, new materials such as inert matrix fuels, spallation sources and neutron absorber materials. Refurbishment and decommissioning: reports on refurbishment and decommissioning of PIE facilities. Waste and transport: Hot laboratory waste characteristics and handling, spent fuel research. Several posters are presented

  19. Soil and land use research in Europe: Lessons learned from INSPIRATION bottom-up strategic research agenda setting.

    Science.gov (United States)

    Bartke, Stephan; Boekhold, Alexandra E; Brils, Jos; Grimski, Detlef; Ferber, Uwe; Gorgon, Justyna; Guérin, Valérie; Makeschin, Franz; Maring, Linda; Nathanail, C Paul; Villeneuve, Jacques; Zeyer, Josef; Schröter-Schlaack, Christoph

    2018-05-01

    We introduce the INSPIRATION bottom-up approach for the development of a strategic research agenda for spatial planning, land use and soil-sediment-water-system management in Europe. Research and innovation needs were identified by more than 500 European funders, endusers, scientists, policy makers, public administrators and consultants. We report both on the concept and on the implementation of the bottom-up approach, provide a critique of the process and draw key lessons for the development of research agendas in the future. Based on identified strengths and weaknesses we identified as key opportunities and threats 1) a high ranking and attentiveness for the research topics on the political agenda, in press and media or in public awareness, 2) availability of funding for research, 3) the resources available for creating the agenda itself, 4) the role of the sponsor of the agenda development, and 5) the continuity of stakeholder engagement as bases for identification of windows of opportunity, creating ownership for the agenda and facilitating its implementation. Our derived key recommendations are 1) a clear definition of the area for which the agenda is to be developed and for the targeted user, 2) a conceptual model to structure the agenda, 3) making clear the expected roles, tasks, input formats regarding the involvement and communication with the stakeholders and project partners, 4) a sufficient number of iterations and checks of the agenda with stakeholders to insure completeness, relevance and creation of co-ownership for the agenda, and 5) from the beginning prepare the infrastructure for the network to implement the agenda. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Laboratory Directed Research and Development Program Assessment for FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States); Barkigia, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Giacalone, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    This report provides an overview of the BNL LDRD program and a summary of the management processes, project peer review, a financial overview, and the relation of the portfolio of LDRD projects to BNL's mission, initiatives, and strategic plan. Also included are a summary of success indicators and a self-assessment.

  1. Evidence & Gap Maps: A tool for promoting evidence informed policy and strategic research agendas.

    Science.gov (United States)

    Snilstveit, Birte; Vojtkova, Martina; Bhavsar, Ami; Stevenson, Jennifer; Gaarder, Marie

    2016-11-01

    A range of organizations are engaged in the production of evidence on the effects of health, social, and economic development programs on human welfare outcomes. However, evidence is often scattered around different databases, web sites, and the gray literature and is often presented in inaccessible formats. Lack of overview of the evidence in a specific field can be a barrier to the use of existing research and prevent efficient use of limited resources for new research. Evidence & Gap Maps (EGMs) aim to address these issues and complement existing synthesis and mapping approaches. EGMs are a new addition to the tools available to support evidence-informed policymaking. To provide an accessible resource for researchers, commissioners, and decision makers, EGMs provide thematic collections of evidence structured around a framework which schematically represents the types of interventions and outcomes of relevance to a particular sector. By mapping the existing evidence using this framework, EGMs provide a visual overview of what we know and do not know about the effects of different programs. They make existing evidence available, and by providing links to user-friendly summaries of relevant studies, EGMs can facilitate the use of existing evidence for decision making. They identify key "gaps" where little or no evidence from impact evaluations and systematic reviews is available and can be a valuable resource to inform a strategic approach to building the evidence base in a particular sector. The article will introduce readers to the concept and methods of EGMs and present a demonstration of the EGM tool using existing examples. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. MELODI - Multidisciplinary European Low dose Initiative - First Draft of Strategic Research Agenda (SRA)

    International Nuclear Information System (INIS)

    Averbeck, D.; Lloyd, D.; O'Neill, P.

    2010-01-01

    The SRA Working Group of MELODI (Multidisciplinary European Low Dose Initiative) was tasked to develop a long-term strategic research agenda (SRA) to guide the coherent integration of national low dose research programmes. Priorities that need to be addressed concern fundamental mechanistic research ranging from radiation track structure and the deposition of energy in biologically important molecules; the resultant homeostatic perturbations and the steps in the cellular and tissue metabolic pathways that eventually lead to disease pathologies. In fact, the main priorities are here the step-wise elucidation of the mechanisms of radiation-induced (oxidative) stress responses and their impact on radiation-induced cancers and non cancer diseases. To achieve this a holistic approach is proposed staring with radiation-specific effects, radiation-induced molecular, biological and pathological effects involving a systems biology approach as well as molecular epidemiology and mathematical modelling in order to come up with more solid low dose health risk assessments. The pathologies considered are outlined in the report where the need is stressed for the MELODI platform to involve a constellation of classical and emerging technologies in a highly multidisciplinary approach. Elucidating the shapes of low-dose response relationships and resolving the question of thresholds is paramount to resolving questions of risk for both populations and individuals. Much is known about radiation-induced cancer in humans and animal models but this needs to be pursued particularly at low doses. More recently, the scientific community has realised that low radiation-induced health effects range well beyond cancer. The priority non-cancer areas that need to be brought into focus are cardiovascular, neurological and ophthalmic. (A.C.)

  3. Strategic management at IPEN - Institute of Nuclear and Energetic Research, S P, Brazil

    International Nuclear Information System (INIS)

    Rodrigues, Claudio; Zouain, Desiree M.

    2000-01-01

    This panel presents an overview on the strategic management of the IPEN, S P, Brazil, with emphasis on the history, the main installations, the nature of the activities and training activities of the institute

  4. The problem of formation of strategic oil-gas research alliance's in the Caspian region

    International Nuclear Information System (INIS)

    Kovalenko, V.S.; Silantiev, I.D.; Skorobogatov, V.A.

    2002-01-01

    Full text : Common information is given here concerning the Caspian region that is located in the juncture zone of two regions : European and Western Asian. While the European region is a great centre of gas consumption, the Western Asian region contains the largest gas accumulation. Gas supply from Iran, Iraq, Turkmenia in the western direction requires strategic alliances in development of hydrocarbon potential. Also project investments on PSA base are more developed. Russia uses PSA mechanisms and strategic alliance formation. Reasons for strategic alliance formation for every company are widely described. Analysis of seismic data proves existence of anomalies of hydrocarbon pool type to filter the prospect portfolio, geological information complex analysis and preparation materials for oil and gas atlas formation. Peculiarity of Caspian region determine the necessing of international strategic alliance for decision infrastructure formation and ecosystem conservation

  5. Development of excavation technologies at the Canadian underground research laboratory

    International Nuclear Information System (INIS)

    Kuzyk, Gregory W.; Martino, Jason B.

    2008-01-01

    Several countries, Canada being among them, are developing concepts for disposal of used fuel from power generating nuclear reactors. As in underground mining operations, the disposal facilities will require excavation of many kilometres of shafts and tunnels through the host rock mass. The need to maintain the stability of excavations and safety of workers will be of paramount importance. Also, excavations required for many radioactive waste repositories will ultimately need to be backfilled and sealed to maintain stability and minimize any potential for migration of radionuclides, should they escape their disposal containers. The method used to excavate the tunnels and shafts, and the rock damage that occurs due to excavation, will greatly affect the performance characteristics of repository sealing systems. The underground rock mechanics and geotechnical engineering work performed at the Canadian Underground Research Laboratory (URL) has led to the development of excavation technologies that reduce rock damage in subsurface excavations. This paper discusses the excavation methods used to construct the URL and their application in planning for the construction of similar underground laboratories and repositories for radioactive wastes. (author)

  6. Room 209 excavation response test in the underground research laboratory

    International Nuclear Information System (INIS)

    Lang, P.A.

    1989-01-01

    An in situ excavation response test was conducted at the Canadian Underground Research Laboratory (URL) in conjunction with excavation of a tunnel (Room 209) through a near-vertical water-bearing fracture oriented perpendicular to the tunnel axis. Encountering a fracture with such desirable characteristics provided a unique opportunity during construction of the URL to try out instrumentation and analytical methods for use in the Excavation Response Experiment (ERE) planned as one of the major URL experiments. The test has produced a valuable data set for validating numerical models. Four modelling groups predicted the response that would be monitored by the instruments. The predictions of the mechanical response were generally good. However, the predictions of the permeability and hydraulic pressure changes in the fracture, and the water flows into the tunnel, were poor. It is concluded that we may not understand the mechanisms that occur in the fracture in response to excavation. Laboratory testing, and development of a contracting joint code, has been initiated to further investigate this phenomenon. Preliminary results indicate that the excavation damaged zone in the walls and crown is less than 0.5 m thick and has relatively low permeability. The damaged zone in the floor is at least 1 m thick and has relatively high permeability. The damage in the floor could be reduced in future excavations by using controlled blasting methods similar to those used for the walls and crown

  7. Physical Research Laboratory radiocarbon 14C dates : CS-I

    International Nuclear Information System (INIS)

    Agrawal, D.P.; Krishnamurthy, R.V.; Kusumgar, Sheela; Pant, R.K.

    1978-01-01

    The 14 C dates of archaeological samples measured at the Radiocarbon Laboratory of the Physical Research Laboratory, Ahmedabad are presented. Samples were converted into methane and measured in gas proportional counters. Ninety-five percent activity of NBS oxalic acid was used as modern standard. The dates in years B.P. are given for each sample based on the half-life values of 5568 +- 30 years and 5730 +- 40 years, the latter within parenthesis. The dates are not calibrated for 14 C/ 12 C variations. To convert the dates into AD/BC scale, 1950 AD should be used as reference year. A number of 14 C dates (PRL-81, -83, -67, -68) now confirm that the Painted Grey Ware culture extended upto the 3rd century BC. Some of the dates from Barkhera (PRL-113), Bateshwar (PRL-200), Bhimbetka (PRL-17) and Koldihawa (PRL-100, 101) are older than normally expected, probably indicative of some hitherto unknown basal cultures in these regions. 14 C dates on in situ Megalithic materials do not seem to go beyond 200 BC. (author)

  8. Studies and researches in the underground laboratory at Pasquasia mine

    International Nuclear Information System (INIS)

    Tassoni, E.; Cautilli, F.; Polizzano, C.; Zarlenga, F.

    1989-01-01

    The reliability of the geological disposal of radioactive wastes has to be verified both by laboratory and on site researches, under both surface and underground conditions. The tests carried out under high lithostatic stress can allow extrapolations to be made having absolute value at the depths planned for the construction of the repository. An underground laboratory was excavated at the Pasquasia mine (Enna-Sicilia). On the selected area a detailed geological survey (1:5000 scale) was carried out; for the purpose of studying the effects induced by the advancement of the excavation's face into the clayey mass and over the cross section of the transversal tunnel, several geotechnical measurement stations were installed. Structural observations were made on both the fronts and the walls of the tunnel for the purpose of characterizing the mechanical behaviour of the clayey mass. The 37 cubic blocks and the 72 samples collected during the excavation were analyzed from different point of view (sedimentological, mineralogical, geotechnical, etc.). After the excavation of the tunnel and the installation of the geotechnical stations, the measurements were carried out up to March 1987. At this date the work programme was unfortunately stopped by local authorities, unfoundly suspecting Pasquasia mine would be used as waste repository

  9. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  10. A System Engineering Approach to Strategic Partnership Development: A pilot study with NASA's Orbiting Carbon Observatory-2 (OCO-2) and the National Laboratory for Agriculture and the Environment (NLAE)

    Science.gov (United States)

    Yuen, K.; Chang, G.; Basilio, R. R.; Hatfield, J.; Cox, E. L.

    2017-12-01

    The prevalence and availability of NASA remote sensing data over the last 40+ years have produced many opportunities for the development of science derived data applications. However, extending and systematically integrating the applications into decision support models and tools have been sporadic and incomplete. Despite efforts among the research communities and external partners, implementation challenges exist and still remain to be addressed. In order to effectively address the systemic gap between the research and applications communities, steps must be taken to effectively bridge that gap: specific goals, a clear plan, and a concerted and diligent effort are needed to produce the desired results. The Orbiting Carbon Observatory-2 (OCO-2) mission sponsored a pilot effort on science data applications with the specific intent of building strategic partnerships, so that organizations and individuals could effectively use OCO-2 data products for application development. The successful partnership with the USDA/ARS National Laboratory for Agriculture and the Environment (NLAE) has laid the foundation for: 1) requirements and lessons for establishing a strategic partnership for application development, 2) building opportunities and growing partnerships for new missions such as OCO-3, and 3) the development of a methodology and approach for integrating application development into a mission life cycle. This presentation will provide an overview of the OCO-2 pilot effort, deliverables, the methodology, implementation, and best practices.

  11. Performance calculations for battery power supplies as laboratory research tools

    International Nuclear Information System (INIS)

    Scanlon, J.J.; Rolader, G.E.; Jamison, K.A.; Petresky, H.

    1991-01-01

    Electromagnetic Launcher (EML) research at the Air Force Armament Laboratory, Hypervelocity Launcher Branch (AFATL/SAH), Eglin AFB, has focused on developing the technologies required for repetitively launching several kilogram payloads to high velocities. Previous AFATL/SAH experiments have been limited by the available power supply resulting in small muzzle energies on the order of 100's of kJ. In an effort to advance the development of EML's, AFATL/SAH has designed and constructed a battery power supply (BPS) capable of providing several mega-Amperes of current for several seconds. This system consists of six modules each containing 2288 automotive batteries which may be connected in two different series - parallel arrangements. In this paper the authors define the electrical characteristics of the AFATL Battery Power supply at the component level

  12. Research opportunities in a reactor-based nuclear analytical laboratory

    International Nuclear Information System (INIS)

    Robinson, L.; Brown, D.H.

    1994-01-01

    Although considered by many to be a open-quotes matureclose quotes science, neutron activation analysis (NAA) continues to be a valuable elemental analysis tool. Examples of the applicability of NAA can be found in a variety of areas including archaeology, environmental science, epidemiology, forensic science, and materials science to name a few. The major components of neutron activation are sample preparation, irradiation, counting, and data analysis. Each one of these stages provides opportunities to share numerous practical and fundamental scientific principles with high school teachers. This paper presents an overview of these opportunities. In addition, a specific example of the collaboration with a high school teacher whose research involved the automation of a gamma-ray spectroscopy counting system using a laboratory robot is discussed

  13. Laboratory research at the clinical trials of Veterinary medicinal Products

    OpenAIRE

    ZHYLA M.I.

    2011-01-01

    The article analyses the importance of laboratory test methods, namely pathomorfological at conduct of clinical trials. The article focuses on complex laboratory diagnostics at determination of clinical condition of animals, safety and efficacy of tested medicinal product.

  14. Privacy Policy | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The privacy of our users is of utmost importance to Frederick National Laboratory. The policy outlined below establishes how Frederick National Laboratory will use the information we gather about you from your visit to our website. We may coll

  15. Stimulating the development of national Streptococcus suis guidelines in Viet Nam through a strategic research partnership.

    Science.gov (United States)

    Horby, Peter; Wertheim, Heiman; Ha, Nguyen Hong; Trung, Nguyen Vu; Trinh, Dao Tuyet; Taylor, Walter; Ha, Nguyen Minh; Lien, Trinh Thi Minh; Farrar, Jeremy; Van Kinh, Nguyen

    2010-06-01

    Streptococcus suis is a common cause of adult bacterial meningitis in Viet Nam, and possibly other parts of Asia, yet this disabling infection has been largely neglected. Prevention, diagnosis and treatment are relatively straightforward and affordable but, in early 2007, no national diagnostic, case management or prevention guidelines existed in Viet Nam. Enhanced detection of S. suis infections was established in 2007 as part of a collaborative research programme between the National Hospital for Tropical Diseases, a key national hospital with very close links to the Ministry of Health, and a research group affiliated with Oxford University based in Viet Nam. The results were reported directly to policy-makers at the Ministry of Health. Viet Nam is a low-income country with a health-care system that has seen considerable improvements and increased autonomy. However, parts of the system remain fairly centralized the Ministry of Health. Following the improved detection and reporting of S. suis cases, the Ministry of Health issued guidance to all hospitals in Viet Nam on the clinical and laboratory diagnosis, treatment and prevention of S. suis. A public health laboratory diagnostic service was established at the National Institute of Hygiene and Epidemiology and training courses were conducted for clinicians and microbiologists. Ministry of Health guidance on surveillance and control of communicable diseases was updated to include a section on S. suis. Research collaborations can efficiently inform and influence national responses if they are well positioned to reach policy-makers.

  16. The Laboratory Notebook as a Research and Development Record

    Science.gov (United States)

    Bailey, Martha J.

    1972-01-01

    The literature concerning laboratory notebooks is reviewed. A procedure is described for administering laboratory notebooks. Outlined is an indexing system which provides a method for retrieving information by laboratory notebook number, by name, and by general subjects. The indexing scheme is estimated to be adequate for collections up to 5,000…

  17. Demand for Interdisciplinary Laboratories for Physiology Research by Undergraduate Students in Biosciences and Biomedical Engineering

    Science.gov (United States)

    Clase, Kari L.; Hein, Patrick W.; Pelaez, Nancy J.

    2008-01-01

    Physiology as a discipline is uniquely positioned to engage undergraduate students in interdisciplinary research in response to the 2006-2011 National Science Foundation Strategic Plan call for innovative transformational research, which emphasizes multidisciplinary projects. To prepare undergraduates for careers that cross disciplinary…

  18. Evolving the US Army Research Laboratory (ARL) Technical Communication Strategy

    Science.gov (United States)

    2016-10-01

    communication strategy. However, if the goal is to build support for Army S&T within the general public, then community outreach, mass media , and concise...Content into Popular Media 14 2.3 Leveraging Established S&T Audiences 15 3. Prong 2: Improve Workforce Technical and Strategic Communications Skills 16... community organization, STEM-related, activities (FIRST, Scouts, Citizen School), videos Permanent exhibit at a museum, quarterly for media

  19. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    International Nuclear Information System (INIS)

    Rosenthal, Murray Wilford

    2009-01-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  20. Monitoring and information management system at the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Strobel, G.S.; Chernis, P.J.; Bushman, A.T.; Spinney, M.H.; Backer, R.J.

    1996-01-01

    Atomic Energy of Canada Limited (AECL) has developed a customer oriented monitoring and information management system at the Underground Research Laboratory (URL) near Lac du Bonnet, Manitoba. The system is used to monitor instruments and manage, process, and distribute data. It consists of signal conditioners and remote loggers, central schedule and control systems, computer aided design and drafting work centres, and the communications linking them. The monitoring and communications elements are designed to meet the harsh demands of underground conditions while providing accurate monitoring of sensitive instruments to rigorous quality assured specifications. These instruments are used for testing of the concept for the deep geological disposal of nuclear fuel waste as part of the Canadian Nuclear Fuel Waste Management Program. Many of the tests are done in situ and at full-scale. The monitoring and information management system services engineering, research, and support staff working to design, develop, and demonstrate and present the concept. Experience gained during development of the monitoring and information management system at the URL, can be directly applied at the final disposal site. (author)