WorldWideScience

Sample records for research laboratory introduction

  1. Special-Study Modules in a Problem-Based Learning Medical Curriculum: An Innovative Laboratory Research Practice Supporting Introduction to Research Methodology in the Undergraduate Curriculum

    Science.gov (United States)

    Guner, Gul Akdogan; Cavdar, Zahide; Yener, Nilgun; Kume, Tuncay; Egrilmez, Mehtap Yuksel; Resmi, Halil

    2011-01-01

    We describe the organization of wet-lab special-study modules (SSMs) in the Central Research Laboratory of Dokuz Eylul Medical School, Izmir, Turkey with the aim of discussing the scientific, laboratory, and pedagogical aspects of this educational activity. A general introduction to the planning and functioning of these SSMs is given, along with…

  2. Introduction | Center for Cancer Research

    Science.gov (United States)

    Introduction In order to meet increasing demands from both NIH intramural and extramural communities for access to a small angle X-ray scattering (SAXS) resource, the Center for Cancer Research (CCR) under the leadership of Jeffrey Strathern and Bob Wiltrout established a partnership user program (PUP) with the Argonne National Laboratory Photon Source in October 2008.

  3. Between Landscape and Laboratory – an Introduction

    DEFF Research Database (Denmark)

    A written introduction to a bi-lingual anthology Field_Notes - From Landscape to Laboratory - Maisemasta Laboratorioon. "Every second year the Finnish Society of Bioart invites a significant group of artists and scientists to the Kilpisjärvi Biological Station in Lapland/Finland to work for one w......, Laura Beloff, Tarja Knuuttila amongst others explore the field and laboratory as sites for art&science practices"...

  4. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  5. Genre analysis of linguistics research introductions

    Directory of Open Access Journals (Sweden)

    Anthony Porras

    2017-12-01

    Full Text Available The emergence of exploring genre analysis has been a trend in Applied Linguistics, not only for its interesting factor, but also because of its pedagogical implications. This study aimed to determine the overall structure, specifically the presence and conformity of moves and steps of the research introductions in the field of Linguistics. Twelve (12 available research introductions were analyzed using Create-A-Research-Space (CARS model. The findings revealed that moves and steps across the research introductions are present. Majority of the research introductions conformed to the CARS model, but did not necessarily follow the suggested sequence. Results imply that teachers of research writing should acknowledge and introduce the CARS model as a basis for teaching the method of writing research introductions effectively.

  6. The uncertainty in physical measurements an introduction to data analysis in the physics laboratory

    CERN Document Server

    Fornasini, Paolo

    2008-01-01

    All measurements of physical quantities are affected by uncertainty. Understanding the origin of uncertainty, evaluating its extent and suitably taking it into account in data analysis is essential for assessing the degree of accuracy of phenomenological relationships and physical laws in both scientific research and technological applications. The Uncertainty in Physical Measurements: An Introduction to Data Analysis in the Physics Laboratory presents an introduction to uncertainty and to some of the most common procedures of data analysis. This book will serve the reader well by filling the gap between tutorial textbooks and highly specialized monographs. The book is divided into three parts. The first part is a phenomenological introduction to measurement and uncertainty: properties of instruments, different causes and corresponding expressions of uncertainty, histograms and distributions, and unified expression of uncertainty. The second part contains an introduction to probability theory, random variable...

  7. How Work Positions Affect the Research Activity and Information Behaviour of Laboratory Scientists in the Research Lifecycle: Applying Activity Theory

    Science.gov (United States)

    Kwon, Nahyun

    2017-01-01

    Introduction: This study was conducted to investigate the characteristics of research and information activities of laboratory scientists in different work positions throughout a research lifecycle. Activity theory was applied as the conceptual and analytical framework. Method: Taking a qualitative research approach, in-depth interviews and field…

  8. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  9. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  10. Spectroscopy 101: A Practical Introduction to Spectroscopy and Analysis for Undergraduate Organic Chemistry Laboratories

    Science.gov (United States)

    Morrill, Lucas A.; Kammeyer, Jacquelin K.; Garg, Neil K.

    2017-01-01

    An undergraduate organic chemistry laboratory that provides an introduction to various spectroscopic techniques is reported. Whereas organic spectroscopy is most often learned and practiced in the context of reaction analyses, this laboratory experiment allows students to become comfortable with [superscript 1]H NMR, [superscript 13]C NMR, and IR…

  11. Interdisciplinary Research on Healthy Aging: Introduction

    NARCIS (Netherlands)

    Willekens, F.J.; Carey, James; Li, Qiang

    2018-01-01

    Background: This is an introduction to a Special Collection of Demographic Research on Interdisciplinary Research on Healthy Aging. The collection is an outcome of an international conference in China on biodemography and multistate modeling in healthy aging research. Causal analysis is the common

  12. Requirement analysis for an electronic laboratory notebook for sustainable data management in biomedical research.

    Science.gov (United States)

    Menzel, Julia; Weil, Philipp; Bittihn, Philip; Hornung, Daniel; Mathieu, Nadine; Demiroglu, Sara Y

    2013-01-01

    Sustainable data management in biomedical research requires documentation of metadata for all experiments and results. Scientists usually document research data and metadata in laboratory paper notebooks. An electronic laboratory notebook (ELN) can keep metadata linked to research data resulting in a better understanding of the research results, meaning a scientific benefit [1]. Besides other challenges [2], the biggest hurdles for introducing an ELN seem to be usability, file formats, and data entry mechanisms [3] and that many ELNs are assigned to specific research fields such as biology, chemistry, or physics [4]. We aimed to identify requirements for the introduction of ELN software in a biomedical collaborative research center [5] consisting of different scientific fields and to find software fulfilling most of these requirements.

  13. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  14. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  15. Laboratories for the 21st Century: An Introduction to Low-Energy Design (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-01

    This booklet is an introduction to several new strategies for designing, developing, and retrofitting energy-efficient laboratories. It is the result of a collaboration among staff at the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP), several national laboratories, and their contractors. They are collaborating to meet the goals of a joint EPA-DOE initiative, 'Laboratories for the 21st Century,' which was established to help government and private-sector laboratory designers, engineers, owners, and operators work together to increase operating efficiency and reduce costs. This booklet describes many energy-efficient strategies that can be done during laboratory planning and programming; design; engineering; and commissioning, operation, and maintenance. There is also a discussion of on-site power generation and clean sources of electricity from renewable energy.

  16. Introduction to plasma physics with space, laboratory and astrophysical applications

    CERN Document Server

    Gurnett, Donald A

    2017-01-01

    Introducing basic principles of plasma physics and their applications to space, laboratory and astrophysical plasmas, this new edition provides updated material throughout. Topics covered include single-particle motions, kinetic theory, magnetohydrodynamics, small amplitude waves in hot and cold plasmas, and collisional effects. New additions include the ponderomotive force, tearing instabilities in resistive plasmas and the magnetorotational instability in accretion disks, charged particle acceleration by shocks, and a more in-depth look at nonlinear phenomena. A broad range of applications are explored: planetary magnetospheres and radiation belts, the confinement and stability of plasmas in fusion devices, the propagation of discontinuities and shock waves in the solar wind, and analysis of various types of plasma waves and instabilities that can occur in planetary magnetospheres and laboratory plasma devices. With step-by-step derivations and self-contained introductions to mathematical methods, this book...

  17. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  18. 94-1 Research and development project lead laboratory support. Status report, January 1--March 31, 1996

    International Nuclear Information System (INIS)

    Dinehart, M.

    1996-09-01

    This document reports status and technical progress for Los Alamos National Laboratories 94-1 Research and Development projects. An introduction to the project structure and an executive summary are included. Projects described include Electrolytic Decontamination, Combustibles, Detox, Sand, Slag, and Crucible, Surveillance, and Core Technology

  19. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  20. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  1. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  2. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  3. Law in the laboratory a guide to the ethics of federally funded science research

    CERN Document Server

    Charrow, Robert P

    2010-01-01

    The National Institutes of Health and the National Science Foundation together fund more than $40 billon of research annually in the United States and around the globe. These large public expenditures come with strings, including a complex set of laws and guidelines that regulate how scientists may use NIH and NSF funds, how federally funded research may be conducted, and who may have access to or own the product of the research. Until now, researchers have had little instruction on the nature of these laws and how they work. But now, with Robert P. Charrow’s Law in the Laboratory, they have a readable and entertaining introduction to the major ethical and legal considerations pertaining to research under the aegis of federal science funding. For any academic whose position is grant funded, or for any faculty involved in securing grants, this book will be an essential reference manual. And for those who want to learn how federal legislation and regulations affect laboratory research, Charrow’s primer wil...

  4. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  5. [The "Instituto de Salud Carlos III" and the public health in Spain. Origin of laboratory medicine and of the central laboratories and research in public health].

    Science.gov (United States)

    Nájera Morrondo, Rafael

    2006-01-01

    The "Instituto de Salud Carlos III" is the Central Public Health Laboratory in Spain with an important component of scientific research in health related areas, such as cancer, cardiovascular diseases, infectious diseases and environmental health. The article describes the development of the Public Health Institutes. arising from the introduction and development of scientific and laboratory based medicine and the introduction of vaccination and sanitation with the control of water and food. At about the same time, the discoveries in microbiology and immunology were produced, being the research activities incardinated with the practical advances in the control of products. To cope with the practical needs, Institutions were created with the responsibility of providing smallpox vaccine but incorporating very soon production of sera and other vaccines and water and sanitation control and foods control. At the same time. colonization of countries specially in Africa, South East Asia and explorations in Central America confront the Europeans with new diseases and the need of laboratories where to study them. These circumstances gave rise to the birth of the Central Public Health Laboratories and the National institutes of Health at the beginning of the XX century in many countries. In Spain, the Spanish Civil War was a breaking point in the development of such an institution that finally was reinvented with the creation of the Instituto de Salud Carlos III, in 1986, incorporating research and epidemiological surveillance and control of diseases and also the responsibilities of the Food and Drug Control, lately separated from it.

  6. Laboratory training manual on the use of nuclear and associated techniques in pesticide research

    International Nuclear Information System (INIS)

    1991-01-01

    Most laboratories studying pesticide metabolism or other aspects of pesticides use isotope techniques. This manual is aimed at scientists who use or intended to use radioisotopes in pesticide research. It contains a theoretical introduction on the properties of radionuclides and radiation, a description of radioactivity measuring instruments, guidelines for radiation protection and general recommendations on experimental design and performance. A large part of the manual is devoted to laboratory exercises in which detailed protocols for applications of isotope techniques in pesticide research are presented. These are intended to demonstrate concepts or denote representative means of conducting particular types of experiment, and it is hoped that the information gained through the performance of the exercises will serve as a basis for modifications to suit other specialized needs. 36 figs

  7. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  8. Introduction to quantitative research methods an investigative approach

    CERN Document Server

    Balnaves, Mark

    2001-01-01

    Introduction to Quantitative Research Methods is a student-friendly introduction to quantitative research methods and basic statistics. It uses a detective theme throughout the text and in multimedia courseware to show how quantitative methods have been used to solve real-life problems. The book focuses on principles and techniques that are appropriate to introductory level courses in media, psychology and sociology. Examples and illustrations are drawn from historical and contemporary research in the social sciences. The multimedia courseware provides tutorial work on sampling, basic statistics, and techniques for seeking information from databases and other sources. The statistics modules can be used as either part of a detective games or directly in teaching and learning. Brief video lessons in SPSS, using real datasets, are also a feature of the CD-ROM.

  9. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    International Nuclear Information System (INIS)

    Smith, M.H.

    1996-01-01

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory's research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL)

  10. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  11. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  12. Undergraduate ESL Students’ Difficulties in Writing the Introduction for Research Reports

    Directory of Open Access Journals (Sweden)

    Mirrah Diyana Binti Maznun

    2017-02-01

    Full Text Available This study was conducted to investigate the difficulties encountered by undergraduate ESL students in writing the introduction section of their project reports. Five introduction sections of bachelor of arts students, majoring in English language, were analyzed and a lecturer was interviewed regarding the areas of the students’ weaknesses. Swales’ create-a-research-space (cars model was used as the analytical framework of the study. The results revealed that students confronted problems in writing their introduction for each move especially for move 2, which consists of counter claiming, indicating research gap, raising questions from previous research and continuing tradition. It was also found that the students had difficulty in writing the background of the study, theoretical framework, and statement of the problem which indicated their unawareness of the appropriate rhetorical structure of the introduction section.

  13. Biomass Program 2007 Accomplishments - Report Introduction

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    The Office of Energy Efficiency and Renewable Energy's (EERE’s) Biomass Program works with industry, academia and its national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. This document provides the introduction to the 2007 Program Accomplishments Report.

  14. Formative research to shape HPV vaccine introduction strategies in Peru.

    Science.gov (United States)

    Bartolini, Rosario M; Drake, Jennifer Kidwell; Creed-Kanashiro, Hilary M; Díaz-Otoya, Margarita M; Mosqueira-Lovón, Nelly Rocío; Penny, Mary E; Winkler, Jennifer L; LaMontagne, D Scott; Bingham, Allison

    2010-01-01

    To understand the sociocultural environment, health systems' capacities, and policy processes related to cervical cancer and HPV vaccines in order to inform HPV vaccine introduction. Mixed-method formative research using qualitative and quantitative data collection techniques. Participants included girls, parents, community leaders, health and education officials, and policymakers. Respondents, including policymakers, generally supported HPV vaccine introduction, due partly to appreciation for the benefits of vaccination and the desire to prevent cancer. Community-level concerns regarding safety and quality of services will need to be addressed. The immunization system in Peru is strong and has capacity for including the HPV vaccine. Formative research provides key insights to help shape an effective program for HPV vaccine introduction.

  15. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  16. The good and the bad of poisonous plants: an introduction to the USDA-ARS Poisonous Plant Research Laboratory.

    Science.gov (United States)

    Welch, Kevin D; Panter, Kip E; Gardner, Dale R; Stegelmeier, Bryan L

    2012-06-01

    This article provides an overview of the Poisonous Plant Research Laboratory (PPRL), about the unique services and activities of the PPRL and the potential assistance that they can provide to plant poisoning incidences. The PPRL is a federal research laboratory. It is part of the Agricultural Research Service, the in-house research arm of the U.S. Department of Agriculture. The mission of the PPRL is to identify toxic plants and their toxic compounds, determine how the plants poison animals, and develop diagnostic and prognostic procedures for poisoned animals. Furthermore, the PPRL's mission is to identify the conditions under which poisoning occurs and develop management strategies and treatments to reduce losses. Information obtained through research efforts at the PPRL is mostly used by the livestock industry, natural resource managers, veterinarians, chemists, plant and animal scientists, extension personnel, and other state and federal agencies. PPRL currently has 9 scientists and 17 support staff, representing various disciplines consisting of toxicology, reproductive toxicology, veterinary medicine, chemistry, animal science, range science, and plant physiology. This team of scientists provides an interdisciplinary approach to applied and basic research to develop solutions to plant intoxications. While the mission of the PPRL primarily impacts the livestock industry, spinoff benefits such as development of animal models, isolation and characterization of novel compounds, elucidation of biological and molecular mechanisms of action, national and international collaborations, and outreach efforts are significant to biomedical researchers. The staff at the PPRL has extensive knowledge regarding a number of poisonous plants. Although the focus of their knowledge is on plants that affect livestock, oftentimes, these plants are also poisonous to humans, and thus, similar principles could apply for cases of human poisonings. Consequently, the information provided

  17. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  18. An Introduction to Advertising Research; A Report from the Communications Research Center.

    Science.gov (United States)

    Haskins, Jack B.

    The purpose of this volume is to present, in nontechnical language, most of the basic concepts of advertising research. Since the volume is intended to be comprehensible to the lay person, discussion does not go too deeply into the technical details of advertising or research methodology. However, used as an introduction and outline to be…

  19. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  20. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  1. Plasma Physics An Introduction to Laboratory, Space, and Fusion Plasmas

    CERN Document Server

    Piel, Alexander

    2010-01-01

    Plasma Physics gives a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The new fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a brief introduction to plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. T...

  2. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  3. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  4. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  5. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  6. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  7. IAEA Laboratory Activities. The IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics, Trieste, the Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo. Fifth Report

    International Nuclear Information System (INIS)

    1968-01-01

    This fifth report describes development and work during the year 1967. It includes activities of the IAEA Laboratories at Vienna and Seibersdorf, the International Laboratory of Marine Radioactivity at Monaco, the International Centre for Theoretical Physics at Trieste, and the Middle Eastern Regional Radioisotope Centre for the Arab Countries at Cairo. Contents: The IAEA Laboratories at Vienna and Seibersdorf: Introduction; Standardization of measurement and of analytical methods related to peaceful applications of nuclear energy; Services to Member States and International Organizations; Chemical and physico-chemical investigations relevant to the Agency's programme; Nuclear techniques in hydrology; Nuclear techniques in medicine; Nuclear techniques in agriculture; Nuclear electronics service and development; Administrative matters. — The International Laboratory of Marine Radioactivity at Monaco: Introduction; Research; Administrative matters. — The International Centre for Theoretical Physics, Trieste: Assistance to developing countries; Research activities; Administrative matters; Annexes. — The Middle Eastern Regional Radioisotope Centre for the Arab Countries, Cairo: Introduction; The scientific programme of the Centre; Publications on work done at the Centre; Finance; Annex. Entirely in English. (author)

  8. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  9. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  10. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  11. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  12. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    Science.gov (United States)

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  13. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    International Nuclear Information System (INIS)

    Bossart, P.; Bernier, F.; Birkholzer, J.

    2017-01-01

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  14. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); Bernier, F. [Federal Agency for Nuclear Control FANC, Brussels (Belgium); Birkholzer, J. [Lawrence Berkeley National Laboratory, Berkeley (United States); and others

    2017-04-15

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  15. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  16. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  17. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  18. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  19. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  20. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  1. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  2. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  3. Outline of new extra high voltage research equipment at Kumatori research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hohki, S; Ikeda, G

    1965-01-01

    Following up the construction in 1939 of an ehv research laboratory, another new research laboratory was established at Kumatori with a ground area of 142,000 square meters. As the first stage of this construction plan, the new research equipment was installed in November 1963 and began operation. The laboratory consists of comprehensive ehv research equipment and facilities relating to atomic energy. The former includes a 6000-kV impulse voltage generator, a 1650-kV alternating current testing transformer, a 300-m overhead transmission test line, a tower strength testing facility, and other various high-power test facilities. Studies on a 400- to 500-kV overhead power transmission system and other new transmission systems are currently being conducted. The details of the construction of the ehv research equipment together with the research policy for future ehv engineering are given.

  4. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  5. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  6. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  7. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  8. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  9. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  10. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  11. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  12. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  13. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  14. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  15. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  16. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  17. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  18. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  19. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  20. Introduction to Artificial Vision through Laboratory Guides Using Matlab

    OpenAIRE

    Verónica Londoño-Osorio; Jhovana Marín-Pineda; Eliana I. Arango-Zuluaga

    2013-01-01

    This paper presents the design of two laboratory guides in artificial vision for a course which aims to introduce students to the different areas of specialization of his career. Therefore, the designed practices motivate and provide relevant content to the student, and to encourage research in the area of image processing. The first guide presents an introductory practice that explores the basic commands for image processing by programming a GUI in Matlab, and a second practice in which you ...

  1. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  2. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  3. Empirical research in business process management: introduction to the special issue

    NARCIS (Netherlands)

    Recker, Jan; Mutschler, B.B.; Wieringa, Roelf J.

    In this editorial letter, we provide the readers of Information Systems and e-Business Management with an introduction to Business Process Management and the challenges of empirical research in this field. We then briefly describe selected examples of current research efforts in this field and how

  4. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  5. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  6. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  7. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  8. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  9. Introduction to Artificial Vision through Laboratory Guides Using Matlab

    Directory of Open Access Journals (Sweden)

    Verónica Londoño-Osorio

    2013-11-01

    Full Text Available This paper presents the design of two laboratory guides in artificial vision for a course which aims to introduce students to the different areas of specialization of his career. Therefore, the designed practices motivate and provide relevant content to the student, and to encourage research in the area of image processing. The first guide presents an introductory practice that explores the basic commands for image processing by programming a GUI in Matlab, and a second practice in which you use an image recognition algorithm, which compares the color characteristics of facial or objects images. The discussion of the results, challenges and recommendations for the development of each practice session are explained. The survey answers of the students are displayed. This survey allows checking their level of acceptance for the design and content of practice and motivation to continue studying in the image processing area. Finally, comparisons with laboratory guides that were designed in other universities are made.

  10. Introduction to modern magnetohydrodynamics

    CERN Document Server

    Galtier, Sébastien

    2016-01-01

    Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.

  11. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  12. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  13. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  14. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  15. Introduction of research and development in Image Information Science Laboratory; Image joho kagaku kenkyusho ni okeru kenkyu kaihatsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-10

    This paper introduces research and development at the Image Information Science Laboratory. This is a joint industry-university research institution for the purpose of making a computer recognize human non-language information, expressing and transmitting it, with the research conducted at two centers, Kanto and Kansai. The following studies are being made at the Kansai research center: man/machine interface making natural communication possible between a man and a machine, with emphasis placed on visual information; sensing technology for measuring human activity, technology for analyzing/forming human sensitivity, and technology of expression; technology by which a work is done by a computer in place of a man and reproduced on the computer, with the skill transferred to a man; and development of a spatial expression media system such as a three-dimensional display device. The Tokyo research center is participating in the following projects: committee for promoting joint industry-university research and development of virtual reality (VR); joint industry-university research, development and implementation project of advanced VR; survey on physiological psychological effect in VR system and the like; and research and development of human media. (NEDO)

  16. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  17. Laboratory Medicine is Faced with the Evolution of Medical Practice

    Directory of Open Access Journals (Sweden)

    Collinson Paul

    2017-09-01

    Full Text Available Laboratory medicine and clinical medicine are co-dependent components of medicine. Laboratory medicine functions most effectively when focused through a clinical lens. Me dical practice as a whole undergoes change. New drugs, treatments and changes in management strategies are introduced. New techniques, new technologies and new tests are developed. These changes may be either clinically or laboratory initiated, and so their introduction requires dialogue and interaction between clinical and laboratory medicine specialists. Treatment monitoring is integral to laboratory medicine, varying from direct drug measurement to monitoring cholesterol levels in response to treatment. The current trend to »personalised medicine« is an extension of this process with the development of companion diagnostics. Technological innovation forms part of modern laboratory practice. Introduction of new technology both facilitates standard laboratory approaches and permits introduction of new tests and testing strategies previously confined to the research laboratory only. The revolution in cardiac biomarker testing has been largely a laboratory led change. Flexibility in service provision in response to changing clinical practice or evolving technology provides a significant laboratory management challenge in the light of increasing expectations, shifts in population demographics and constraint in resource availability. Laboratory medicine practitioners are adept at meeting these challenges. One thing remains constant, that there will be a constant need laboratory medicine to meet the challenges of novel clinical challenges from infectious diseases to medical conditions developing from lifestyle and longevity.

  18. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  19. An introduction to the Transport Properties Research Laboratory at the British Geological Survey and its 50+ years' experience in geological disposal research

    Energy Technology Data Exchange (ETDEWEB)

    Zihms, S.G.; Shaw, R.P.; Harrington, J.F.; Cuss, R.J.; Graham, C.C.; Wiseall, A.; McEvoy, F. [British Geological Survey, Nickerhill Keyworth (United Kingdom)

    2015-07-01

    The Transport Properties Research Laboratory (TPRL) is one of the leading centers in Europe for the study of fluid movement in ultra-low permeability media. The facility is well known for long-term high quality experimental work and process-based interpretation. Focus is on multi-phase flow in natural and engineered, low permeability geomaterials (e.g. caprocks, well bore cements and engineered clays), and their associated deformation behavior. Measurements include: saturation and consolidation properties; intrinsic permeability (or transmissivity); anisotropy; specific storage; coupled flow parameters (e.g. osmotic permeability); capillary entry, breakthrough and threshold pressures; gas permeability function; drained and undrained compressibilities; and rheological (creep) properties. Laboratory experiments are performed under simulated in-situ conditions (stress, pore pressure, temperature and chemical environment). Three key areas explored are: (i) baseline characterization of hydromechanical properties, (ii) influence of stress path and stress history on transport properties and (iii) transmissivity of fractures, faults and discontinuities (e.g., wellbore interfaces). Tests are designed to provide quantitative data for mathematical modeling of ultra-low permeability materials, together with process understanding of key transport mechanisms. Key equipment includes: high pressure isotropic permeameters (70 MPa); constant volume permeameters (70 MPa); high pressure triaxial permeameter (70 MPa); heavy-duty, high-precision shear-rigs; high temperature, high pressure geochemical flow reactor (130 MPa at 140 C); and novel tracer systems (nanoparticle injection or radiological tagging of gas) to characterize and identify potential migration pathways. The key achievements from the TPRL at the BGS include generation of new conceptual models applied throughout Europe, transfer of skills and knowledge to other complex geoscience problems (e.g. shale gas, CCS). The TPRL

  20. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, huge detectors and accelerators. With the termination of the LHC, CERN will in fact become the world’s largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. Monday 5.12.2005 Introduction: From History to Modern Refrigeration Cycles (Goran Perinic) Tuesday 6.12.2005 Refrigerants, Standard Cryostats, Cryogenic Des...

  1. 42 CFR 493.1200 - Introduction.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 5 2010-10-01 2010-10-01 false Introduction. 493.1200 Section 493.1200 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Introduction. (a) Each laboratory that performs nonwaived testing must establish and maintain written policies...

  2. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  3. A Gentle Introduction to Bayesian Analysis : Applications to Developmental Research

    NARCIS (Netherlands)

    Van de Schoot, Rens; Kaplan, David; Denissen, Jaap; Asendorpf, Jens B.; Neyer, Franz J.; van Aken, Marcel A G

    2014-01-01

    Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First,

  4. A gentle introduction to Bayesian analysis : Applications to developmental research

    NARCIS (Netherlands)

    van de Schoot, R.; Kaplan, D.; Denissen, J.J.A.; Asendorpf, J.B.; Neyer, F.J.; van Aken, M.A.G.

    2014-01-01

    Bayesian statistical methods are becoming ever more popular in applied and fundamental research. In this study a gentle introduction to Bayesian analysis is provided. It is shown under what circumstances it is attractive to use Bayesian estimation, and how to interpret properly the results. First,

  5. "The Purpose of This Study Is to": Connecting Lexical Bundles and Moves in Research Article Introductions

    Science.gov (United States)

    Cortes, Viviana

    2013-01-01

    This article presents a group of lexical bundles identified in a corpus of research article introductions as the first step in the analysis of these expressions in the different sections of the research article. A one-million word corpus of research article introductions from various disciplines was compiled and the lexical bundles identified in…

  6. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  7. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  8. Introduction in Indonesian Social Sciences and Humanities Research Articles: How Indonesian Writers Justify Their Research Projects

    Science.gov (United States)

    Arsyad, Safnil; Wardhana, Dian Eka Chandra

    2014-01-01

    The introductory part of a research article (RA) is very important because in this section writers must argue about the importance of their research topic and project so that they can attract their readers' attention to read the whole article. This study analyzes RA introductions written by Indonesian writers in social sciences and humanities…

  9. Government-industry-uUniversity and rResearch lLaboratories cCoordination for new product development: Session 2. Government research laboratory perspective

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1997-01-01

    This talk is the second in an expanded series of presentations on the Government-Industry-University and Research Laboratories Coordination for new product development, which is a timely and important public policy issue. Such interactions have become particularly timely in light of the present decline in funding for research and development (R ampersand D) in the nation''s budget and in the private sector. These interactions, at least in principle, provide a means to maximize benefits for the greater good of the nation by pooling the diminishing resources. National laboratories, which traditionally interacted closely with the universities in educational training, now are able to also participate closely with industry in joint R ampersand D thanks to a number of public laws legislated since the early 80s. A review of the experiences with such interactions at Argonne National Laboratory, which exemplifies the national laboratories, shows that, despite differences in their traditions and the missions, the national laboratory-industry-university triangle can work together

  10. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  11. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  12. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  13. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  14. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  15. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  16. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2016-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There is a number of such equipment in use at different institutions and are found to be very useful. (author)

  17. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2014-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There are a number of such equipment in use at different institutions and are found to be very useful. (author)

  18. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  19. Implementation science: the laboratory as a command centre.

    Science.gov (United States)

    Boeras, Debrah I; Nkengasong, John N; Peeling, Rosanna W

    2017-03-01

    Recent advances in point-of-care technologies to ensure universal access to affordable quality-assured diagnostics have the potential to transform patient management, surveillance programmes, and control of infectious diseases. Decentralization of testing can put tremendous stresses on fragile health systems if the laboratory is not involved in the planning, introduction, and scale-up strategies. The impact of investments in novel technologies can only be realized if these tests are evaluated, adopted, and scaled up within the healthcare system with appropriate planning and understanding of the local contexts in which these technologies will be used. In this digital age, the laboratory needs to take on the role of the Command Centre for technology introduction and implementation. Implementation science is needed to understand the political, cultural, economic, and behavioural context for technology introduction. The new paradigm should include: building a comprehensive system of laboratories and point-of-care testing sites to provide quality-assured diagnostic services with good laboratory-clinic interface to build trust in test results and linkage to care; building and coordinating a comprehensive national surveillance and communication system for disease control and global health emergencies; conducting research to monitor the impact of new tools and interventions on improving patient care.

  20. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  1. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  2. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  3. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  4. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  5. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  6. Ethical and methodological standards for laboratory and medical biological rhythm research.

    Science.gov (United States)

    Portaluppi, Francesco; Touitou, Yvan; Smolensky, Michael H

    2008-11-01

    The main objectives of this article are to update the ethical standards for the conduct of human and animal biological rhythm research and recommend essential elements for quality chronobiological research information, which should be especially useful for new investigators of the rhythms of life. A secondary objective is to provide for those with an interest in the results of chronobiology investigations, but who might be unfamiliar with the field, an introduction to the basic methods and standards of biological rhythm research and time series data analysis. The journal and its editors endorse compliance of all investigators to the principles of the Declaration of Helsinki of the World Medical Association, which relate to the conduct of ethical research on human beings, and the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, which relate to the conduct of ethical research on laboratory and other animals. The editors and the readers of the journal expect the authors of submitted manuscripts to have adhered to the ethical standards dictated by local, national, and international laws and regulations in the conduct of investigations and to be unbiased and accurate in reporting never-before-published research findings. Authors of scientific papers are required to disclose all potential conflicts of interest, particularly when the research is funded in part or in full by the medical and pharmaceutical industry, when the authors are stock-holders of the company that manufactures or markets the products under study, or when the authors are a recent or current paid consultant to the involved company. It is the responsibility of the authors of submitted manuscripts to clearly present sufficient detail about the synchronizer schedule of the studied subjects (i.e., the sleep-wake schedule, ambient light-dark cycle, intensity and spectrum of ambient light exposure, seasons when the research was

  7. Introduction to Medical Research Council Delivery Plan during 2009 to 2014

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Introduction The Medical Research Foundation is the Medical Research Council's (MRC) independently managed charity.It receives funds from the giving public to support medical research, training, public engagement and dissemination of knowledge.Since it was first established in 1920, the MRC has been able to accept charitable bequests, endowments and donations from the public to contribute towards the costs of the research that it undertakes.The MRC registered these charitable funds with the Charity Commission in the late 1960's and its charity - the Medical Research Foundation-has been successfully supporting medical research for over 80 years.

  8. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  9. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  10. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  11. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  12. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  13. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  14. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  15. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  16. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  17. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  18. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  19. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  20. Pathways over Time: Functional Genomics Research in an Introductory Laboratory Course.

    Science.gov (United States)

    Reeves, Todd D; Warner, Douglas M; Ludlow, Larry H; O'Connor, Clare M

    2018-01-01

    National reports have called for the introduction of research experiences throughout the undergraduate curriculum, but practical implementation at many institutions faces challenges associated with sustainability, cost, and large student populations. We describe a novel course-based undergraduate research experience (CURE) that introduces introductory-level students to research in functional genomics in a 3-credit, multisection laboratory class. In the Pathways over Time class project, students study the functional conservation of the methionine biosynthetic pathway between divergent yeast species. Over the five semesters described in this study, students ( N = 793) showed statistically significant and sizable growth in content knowledge ( d = 1.85) and in self-reported research methods skills ( d = 0.65), experimental design, oral and written communication, database use, and collaboration. Statistical analyses indicated that content knowledge growth was larger for underrepresented minority students and that growth in content knowledge, but not research skills, varied by course section. Our findings add to the growing body of evidence that CUREs can support the scientific development of large numbers of students with diverse characteristics. The Pathways over Time project is designed to be sustainable and readily adapted to other institutional settings. © 2018 T. D. Reeves et al. CBE—Life Sciences Education © 2018 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  2. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  3. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  4. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  5. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  7. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  8. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  9. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  10. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  11. Report on interlaboratory comparisons of 14C measurements organized by the environmental research branch, Chalk River Laboratories

    International Nuclear Information System (INIS)

    Milton, G.M.; Kramer, S.J.; Cooper, E.L.; Rao, R.R.; Milton, J.C.D.

    1996-02-01

    The need for increased quality assurance for measurements performed by the monitoring laboratories at nuclear stations has spurred the introduction of a number of laboratory intercomparisons. This report provides details of two intercomparisons of 14 C measurements, including the preparation of potential secondary reference materials, the range of analytical techniques in use at the participating laboratories, and a statistical analysis of the results reported. The agreement evident in the two sets of materials - milk and vegetation - was good. (author)

  12. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  13. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  14. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  15. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  16. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  17. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  18. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  19. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  20. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  1. Plasma physics an introduction to laboratory, space, and fusion plasmas

    CERN Document Server

    Piel, Alexander

    2017-01-01

    The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple a...

  2. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  3. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  4. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  5. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  6. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  7. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  8. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  9. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  10. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  11. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  12. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    Science.gov (United States)

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  13. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  14. U.S. Army Research Laboratory Annual Review 2011

    Science.gov (United States)

    2011-12-01

    bioremediation of wastewater. The researchers created a functional atomic circuit with stationary barrier. This “atom circuit” is composed of ultra...high energy content approaching jet propellant (JP)-8/ diesel fuel, are a means to address these demands. The Army Research Laboratory has

  15. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  16. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  17. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  18. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  19. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  20. An overview of Quality Management System implementation in a research laboratory

    Science.gov (United States)

    Molinéro-Demilly, Valérie; Charki, Abdérafi; Jeoffrion, Christine; Lyonnet, Barbara; O'Brien, Steve; Martin, Luc

    2018-02-01

    The aim of this paper is to show the advantages of implementing a Quality Management System (QMS) in a research laboratory in order to improve the management of risks specific to research programmes and to increase the reliability of results. This paper also presents experience gained from feedback following the implementation of the Quality process in a research laboratory at INRA, the French National Institute for Agronomic Research and details the various challenges encountered and solutions proposed to help achieve smoother adoption of a QMS process. The 7Ms (Management, Measurement, Manpower, Methods, Materials, Machinery, Mother-nature) methodology based on the Ishikawa `Fishbone' diagram is used to show the effectiveness of the actions considered by a QMS, which involve both the organization and the activities of the laboratory. Practical examples illustrate the benefits and improvements observed in the laboratory.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  2. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  3. The need for a quality standard for assurance in medical research laboratories

    Directory of Open Access Journals (Sweden)

    S Cohen

    2014-01-01

    Full Text Available The objective of this article is to show the results of a research study conducted to evaluate the need for a quality standard specific for medical research laboratories based on the shortfalls of ISO 15189 when used for this purpose. A qualitative research methodology was used, which comprised of collecting data from 20 well-qualified and experienced medical laboratory personnel by means of interviews based on a framework developed from a literature review. The data were analysed by means of a thematic technique and the results were verified by a team of medical researchers. The seven themes arising from the analyses were inflexibility; ambiguity; unfair requirements; inappropriate focus; inadequacy for research; renewal; and acceptance for accreditation. The results indicated that the ISO 15189 standard in its present content does not totally suit medical research laboratories and shows support for the development of a standard specific for research laboratories.

  4. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  5. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  6. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  7. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  8. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  9. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  10. Introduction to Plasma Physics: With Space and Laboratory Applications

    International Nuclear Information System (INIS)

    Browning, P K

    2005-01-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, 'with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfven wave theory, observations of Alfven waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects - a large subject! - are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  11. Open- and closed-formula laboratory animal diets and their importance to research.

    Science.gov (United States)

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-11-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.

  12. Interior Architectural Requirements for Electronic Circuits and its Applications Research Laboratory

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    This paper discusses the pivotal role of the Interior Architecture As one of the scientific disciplines minute to complete the Architectural Sciences, which relied upon the achievement and development of facilities containing scientific research laboratories, in terms of planning and design, particularly those containing biological laboratories using radioactive materials, adding to that, the application of the materials or raw materials commensurate with each discipline of laboratory and its work nature, and by the discussion the processing of design techniques and requirements of interior architecture dealing with Research Laboratory for electronic circuits and their applications with the making of its prototypes

  13. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  14. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  15. Accreditation - Its relevance for laboratories measuring radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, S E [Icelandic Radiation Protection Inst. (Iceland)

    2001-11-01

    Accreditation is an internationally recognised way for laboratories to demonstrate their competence. Obtaining and maintaining accreditation is, however, a costly and time-consuming procedure. The benefits of accreditation also depend on the role of the laboratory. Accreditation may be of limited relevance for a research laboratory, but essential for a laboratory associated with a national authority and e.g. issuing certificates. This report describes work done within the NKSBOK-1.1 sub-project on introducing accreditation to Nordic laboratories measuring radionuclides. Initially the focus was on the new standard ISO/IEC 17025, which was just in a draft form at the time, but which provides now a new framework for accreditation of laboratories. Later the focus was widened to include a general introduction to accreditation and providing through seminars a forum for exchanging views on the experience laboratories have had in this field. Copies of overheads from the last such seminar are included in the appendix to this report. (au)

  16. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  17. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  18. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  19. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  20. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  1. Heavy Ion Laboratory - Warsaw University - Annual Report 2003

    International Nuclear Information System (INIS)

    Pienkowski, L.; Zielinska, M.

    2004-01-01

    In the presented report the research activities of Heavy Ion Laboratory (HIL) of the Warsaw University in year of 2003 are described. The report is divided into four parts: Laboratory Overview, Experiments and Experimental Set-ups, Experiments using outside facilities and General information on HIL activities which contain the lists of personnel, seminars held at the HIL as well as external ones, the list of published papers and conference contributions. A summary of the (HIL) activities is briefly presented in ''Introduction'' written by HIL director prof. J. Jastrzebski

  2. Sandia National Laboratories focus issue: introduction.

    Science.gov (United States)

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  3. Tensions within an industrial research laboratory: the Philips laboratory's x-ray department between the wars

    NARCIS (Netherlands)

    Boersma, F.K.

    2003-01-01

    Tensions arose in the X-ray department of the Philips research laboratory during the interwar period, caused by the interplay among technological development, organizational culture, and individual behavior. This article traces the efforts of Philips researchers to find a balance between their

  4. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  5. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  6. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  7. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  8. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  9. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  10. Progress report from the Studsvik Neutron Research Laboratory 1987-89

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1993-01-01

    The present publication contains information from activities at the Studsvik Neutron Research Laboratory (NFL) and the Department of Neutron Research. NFL is the base for the research activities at the Studvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and departments at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universitites and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1989 been performed by groups from Uppsala University, Royal Institute of Technology in Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research program of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry and nuclear physics, and neutron capture radiography. The program for subatomic physics, especially neutron physics, at the Department for Neutron Research, Uppsala University has also staff permanently placed at NFL but they are in their research using the facilities at the The Svedberg Laboratory, Uppsala. In addition to supporting research NFL has also put substantial efforts on creating facilities for training of undergraduate students. Thus a facility for practical exercises in neutron physics, activation analysis and radiography has recently been installed at the R2-0 reactor as a collaboration between NFL, Dept. of Neutron Research, Upppsala and Department for Reactor Physics, KTH

  11. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study.

    Directory of Open Access Journals (Sweden)

    Kate Birnie

    Full Text Available To compare the validity of diagnosis of urinary tract infection (UTI through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory.We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard, was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test", separately according to whether samples were obtained by clean catch or nappy (diaper pads.251 (5.2% and 88 (1.8% children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43, and better for clean catch (0.54; 0.45, 0.63 than nappy pad samples (0.20; 0.12, 0.28. In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80 than the research laboratory (0.86; 0.79, 0.92. Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively than clean catch samples.The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples could be due to contamination. Health service laboratories should consider adopting procedures used

  12. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    Science.gov (United States)

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  13. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  14. The waste management at research laboratories - problems and solutions

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto

    2011-01-01

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  15. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  16. Progress report from the Studsvik Neutron Research Laboratory 1990-91

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1992-01-01

    The Studsvik Neutron Research Laboratory (NFL) is the base for the research activities at the Studsvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and department at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universities and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1990 and 1991 been performed by groups form Uppsala University, Royal Institute of Technology, Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research programme of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry/nuclear physics, and neutron capture radiography

  17. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  18. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  19. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    Science.gov (United States)

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  20. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  1. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  2. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  3. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  4. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  5. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  6. Public values: core or confusion? Introduction to the centrality and puzzlement of public values research

    NARCIS (Netherlands)

    Beck Jørgensen, T.; Rutgers, M.R.

    2015-01-01

    This article provides the introduction to a symposium on contemporary public values research. It is argued that the contribution to this symposium represent a Public Values Perspective, distinct from other specific lines of research that also use public value as a core concept. Public administration

  7. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  8. Fall Protection Introduction, #33462

    Energy Technology Data Exchange (ETDEWEB)

    Chochoms, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-23

    The proper use of fall prevention and fall protection controls can reduce the risk of deaths and injuries caused by falls. This course, Fall Protection Introduction (#33462), is designed as an introduction to various types of recognized fall prevention and fall protection systems at Los Alamos National Laboratory (LANL), including guardrail systems, safety net systems, fall restraint systems, and fall arrest systems. Special emphasis is given to the components, inspection, care, and storage of personal fall arrest systems (PFASs). This course also presents controls for falling object hazards and emergency planning considerations for persons who have fallen.

  9. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  10. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  11. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  12. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  13. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  14. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  15. Book review: Introduction to Social Research: Quantitative and Qualitative Approaches, Third Edition, by Keith F Punch

    NARCIS (Netherlands)

    Lecheler, S.

    2014-01-01

    In Introduction to Social Research, Keith F. Punch wants to ‘demystify’ and ‘simplify’ the research process, in an attempt to show that quality research can always be achieved. With its straightforward language, an intuitive structure, and well-defined learning objectives, this book does just that,

  16. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  17. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  18. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  19. Radiotracer laboratory for agricultural research at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mhd Nasir

    2007-01-01

    Radiotracer Laboratory for agricultural research at the Malaysian Nuclear Agency was established since 1990. It accommodates three laboratories, three chemical temporary storage compartments plus one compartment for storage of pressurized gas. This facility is situated in ground floor of Block 44, Agrotechnology and Biosciences Division, Dengkil Complex. Currently it houses a liquid scintillation counter, sample oxidizer, gas liquid chromatography, high performance liquid chromatography and auxiliary equipments. A road map for this laboratory will be discussed in relation with present scenario i.e. R and D service, training and consultancy provided by this laboratory; and future requirements and direction. (Author)

  20. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  1. New working paradigms in research laboratories.

    Science.gov (United States)

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  2. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  3. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  4. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  6. Using an ePortfolio System as an Electronic Laboratory Notebook in Undergraduate Biochemistry and Molecular Biology Practical Classes

    Science.gov (United States)

    Johnston, Jill; Kant, Sashi; Gysbers, Vanessa; Hancock, Dale; Denyer, Gareth

    2014-01-01

    Despite many apparent advantages, including security, back-up, remote access, workflow, and data management, the use of electronic laboratory notebooks (ELNs) in the modern research laboratory is still developing. This presents a challenge to instructors who want to give undergraduate students an introduction to the kinds of data curation and…

  7. 1. Introduction. 2. Laboratory experiments. 3. Field experiments. 4. Integrated field-laboratory experiments. 5. Panel recommendations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented

  8. [How do hospital clinical laboratories and laboratory testing companies cooperate and build reciprocal relations?].

    Science.gov (United States)

    Kawano, Seiji

    2014-12-01

    As the 2nd Joint Symposium of the Japanese Society of Laboratory Medicine and the Japanese Association of Laboratory Pathologists, the symposium on clinical test out-sourcing and branch laboratories was held at the 60th General Meeting of the Japanese Society of Laboratory Medicine on November 2nd, 2013 in Kobe. For the symposium, we conducted a questionnaire survey on the usage of clinical test out-sourcing and the introduction of branch laboratories to clinical laboratories of Japanese university hospitals, both private and public, between July 25th and August 20th, 2013. Seventy-two hospitals responded to the questionnaire survey, consisting of 41 public medical school hospitals and 31 private ones. According to the survey, the selection of each clinical test for out-sourcing was mainly determined by the capacities of hospital clinical laboratories and their equipment, as well as the profitability of each test. The main concerns of clinical laboratory members of university hospitals involved the continuity of measurement principles, traceability, and standardization of reference values for each test. They strongly requested the interchangeability and computerization of test data between laboratory testing companies. A branch laboratory was introduced to six hospitals, all of which were private medical college hospitals, out of 72 university hospitals, and eight of the other hospitals were open to its introduction. The merits and demerits of introducing a branch laboratory were also discussed. (Review).

  9. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  10. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  11. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  12. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  13. Research Collaborations Between Universities and Department of Defense Laboratories

    Science.gov (United States)

    2014-07-31

    Council – Resident Research Associateship (USAF/NRC-RRA) Program,” last accessed March 10, 2013, http://www.wpafb.af.mil/ library /factsheets...as CRAs and CTAs, could enable collaboration through university consortia designed to support DOD laboratory research. Such alliances would have the...university consortia , may be able to leverage partnerships that meet their collaborative research needs. 5. Increased Patent Filing Fees when Partnering

  14. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  15. Cryptosporidiosis outbreak at an academic animal research laboratory-Colorado, 2014.

    Science.gov (United States)

    Hancock-Allen, Jessica; Alden, Nisha B; Cronquist, Alicia B

    2017-02-01

    After cryptosporidiosis was reported in three workers caring for preweaned calves at an academic research laboratory, we sought to identify cases, determine risk factors, and implement control measures. A cryptosporidiosis case was defined as diarrhea duration ≥72 hr, abdominal cramps, or vomiting in an animal research laboratory worker during July 14-July 31. A confirmed case had laboratory evidence of Cryptosporidium infection. Staff were interviewed regarding illness, potential exposures, training, and personal protective equipment (PPE) standard operating procedures (SOPs). The cryptosporidiosis attack rate (AR) was 74% (20/27); five were laboratory-confirmed. Median job training was 2 hr including respiratory-fit testing. No SOPs existed for doffing PPE. AR for workers who removed their gloves first was 84% (16/19) compared with 20% (1/5) for workers who removed gloves last (risk ratio = 4.2; P importance of adequate training, enforced proper PPE procedures, and promoting a culture of safety. Am. J. Ind. Med. 60:208-214, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  17. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  18. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  19. Introduction

    International Nuclear Information System (INIS)

    Raeder, J.

    1975-01-01

    The introduction to this monography gives a brief survey of the history of the MHD generator, outlines the fundamental questioning of the research concerned and then deals with the combustion gas MHD generator research programme of the working society MPI for plasma physics (IPP)/Maschinenfabrik Augsburg-Nuernberg AG (M.A.N.). (GG/LH) [de

  20. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project (Translated document)

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Osawa, Hideaki; Nagae, Isako; Natsuyama, Ryoko; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; Nakayama, Masashi; Miyakawa, Kazuya; Ito, Hiroaki; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2016-08-01

    We have synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second mid-term research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High-quality construction techniques and field investigation methods have been developed and implemented, which will be directly applicable to the National Disposal Program (together with general assessments of hazardous natural events and processes). Acquisition of technical knowledge on decisions of partial backfilling and final closure from actual field experiments in the Mizunami/Horonobe URLs will be crucial as the main theme for the next phases. (author)

  1. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  2. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  3. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  4. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  5. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  6. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  7. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  8. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey .C; Boring, Ronald L.

    2016-07-01

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation and control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.

  9. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  10. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Neill, F.H.

    1980-01-01

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  11. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    Science.gov (United States)

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  12. Teaching Laboratory and Research Skills as Preparation for Careers in Science and Education

    Science.gov (United States)

    Thoms, Brian

    2007-03-01

    Recipients of bachelor's degrees in physics have identified lab skills, team work, and research skills as abilities necessary for success in their jobs. However, they also report having received less than adequate preparation in these areas during their college careers. We report on the redesign of a junior physics-major modern physics laboratory course into an inquiry-based, research-like laboratory course. The overall strategy was such as to require the students to approach the experiments in a research-like fashion. In addition, experiments which explore materials properties which can't be looked up in textbooks, e.g. Hall Effect, have been added to further emphasize a research-like approach to the investigations. Laboratory reporting requirements were written to closely reproduce current practices in scientific journals. Assessment of the redesign was performed through surveys of current and graduated students and through comparison of laboratory reports.

  13. The Risoe National Laboratory, Denmark

    International Nuclear Information System (INIS)

    Majborn, B.

    2001-01-01

    The Risoe National Laboratory of Denmark started as a nuclear research centre, under the Atomic Energy Commission in 1955, with research reactors, an accelerator and related facilities. The research component, aimed at the introduction of nuclear power plants in Denmark, was wound up in 1985 with the country deciding to forego nuclear power in its energy planning. From 1993 the centre is under the jurisdiction of the Ministry of Research with three main areas of work: i) research on high international level; ii) train researchers; and iii) provide service to industry. The centre is funded up to 53% by the Danish Government and 47% by contract earnings. Some areas of current research include: i) materials science; ii) optics and sensor systems; iii) plant production and ecology; and iv) systems analysis. The nuclear component of the research centre is related to the operation of the nuclear facilities and for maintaining national expertise in nuclear safety and radiation protection. (author)

  14. Laboratory directed research and development: Annual report to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  15. Management of water hyacinth. Report from India (Regional Research Laboratory, Jorhat, Assam)

    International Nuclear Information System (INIS)

    Baruah, J.N.

    1981-01-01

    The main objective of the project is the development of an environmentally sound management scheme for water hyacinth infestation through its various utilization potentials. Such an approach is considered desirable from the point ov view of economic viability and environmental protection. Accordingly various aspects of the problem have been studied in India in three different laboratories. Regional Research Laboratory, Jorhat, which is the lead laboratory, is concerned with the study of various factors involved in the growth of this weed, production of biogas, paper and board from water hyacinth, screening of compounds and organisms with commercial potential in this plant and utilization of this weed for mushroom cultivation. Developmental and engineering aspects of biogas production from water hyacinth are studied at Central Mechanical Engineering Research Institute, Durgapur, and Nagarjuna Sagar Engineering College, J N Technological University, Hyderabad. Pilot plant investigation on the production of handmade paper and board is being investigated at Regional Research Laboratory, Hyderabad

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  17. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  18. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  19. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  20. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  1. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  2. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  3. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  4. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  5. A 13-week research-based biochemistry laboratory curriculum.

    Science.gov (United States)

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  6. Laboratory training manual on the use of nuclear techniques in pesticide research

    International Nuclear Information System (INIS)

    1983-01-01

    This is a laboratory training manual on the use of nuclear techniques, and in particular radioisotopes in pesticide research. It is designed to give the scientists involved in pesticide research the basic terms and principles for understanding ionizing radiation: detection and measurement its hazards and safety measures, and some of the more common applications. Laboratory exercises representing the types of experiments that are valuable in pesticide research programmes and field tests which demonstrate the use of radiolabelled pesticides are included

  7. Introduction to computers: Reference guide

    Energy Technology Data Exchange (ETDEWEB)

    Ligon, F.V.

    1995-04-01

    The ``Introduction to Computers`` program establishes formal partnerships with local school districts and community-based organizations, introduces computer literacy to precollege students and their parents, and encourages students to pursue Scientific, Mathematical, Engineering, and Technical careers (SET). Hands-on assignments are given in each class, reinforcing the lesson taught. In addition, the program is designed to broaden the knowledge base of teachers in scientific/technical concepts, and Brookhaven National Laboratory continues to act as a liaison, offering educational outreach to diverse community organizations and groups. This manual contains the teacher`s lesson plans and the student documentation to this introduction to computer course.

  8. Method to Increase Undergraduate Laboratory Student Confidence in Performing Independent Research

    Directory of Open Access Journals (Sweden)

    Colton E. Kempton

    2017-05-01

    Full Text Available The goal of an undergraduate laboratory course should be not only to introduce the students to biology methodologies and techniques, but also to teach them independent analytical thinking skills and proper experiment design.  This is especially true for advanced biology laboratory courses that undergraduate students typically take as a junior or senior in college.  Many courses achieve the goal of teaching techniques, but fail to approach the larger goal of teaching critical thinking, experimental design, and student independence.  Here we describe a study examining the application of the scaffolding instructional philosophy in which students are taught molecular techniques with decreasing guidance to force the development of analytical thinking skills and prepare undergraduate students for independent laboratory research. This method was applied to our advanced molecular biology laboratory class and resulted in an increase of confidence among the undergraduate students in their abilities to perform independent research.

  9. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  10. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  11. Introducing Students to Psychological Research: General Psychology as a Laboratory Course

    Science.gov (United States)

    Thieman, Thomas J.; Clary, E. Gil; Olson, Andrea M.; Dauner, Rachel C.; Ring, Erin E.

    2009-01-01

    For 6 years, we have offered an integrated weekly laboratory focusing on research methods as part of our general psychology course. Through self-report measures and controlled comparisons, we found that laboratory projects significantly increase students' knowledge and comfort level with scientific approaches and concepts, sustain interest in…

  12. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  13. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  14. Zoonoses of occupational health importance in contemporary laboratory animal research.

    Science.gov (United States)

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  15. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  16. Laboratory of research for environmental radiation and its dosimetry in the ININ

    International Nuclear Information System (INIS)

    Chavez S, B.M.

    2003-01-01

    The objectives of this work are to learn on the methodology that should be continued for the investigation of such a specialized topic as it is a radiation laboratory and to develop the executive project of a building that contains laboratories focused to the investigation of the radiation levels in the environment and their dosimetry. The National Institute of Nuclear Research (ININ), is the place where are carried out many of the investigations related to the field of the physics and chemistry in Mexico besides being the center of nuclear research more important of Latin America and it is for that reason that here is proposed the Laboratory of Low Radiation and its Dosimetry, since the Institute accounts with the whole infrastructure and necessary safety for this type of laboratories. (Author)

  17. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  18. Hertelendi Laboratory of Environmental Studies

    International Nuclear Information System (INIS)

    Svingor, E.; Molnar, M.; Palcsu, L.; Futo, I.; Rinyu, L.; Mogyorosi, M.; Major, Z.; Bihari, A.; Vodila, G.; Janovics, R.; Papp, L.; Major, I.

    2010-01-01

    1. Introduction. The Hertelendi Laboratory for Environmental Studies (HEKAL) belongs to the Section of Environmental and Earth Sciences. It is a multidisciplinary laboratory dedicated to environmental research, to the development of nuclear analytical methods and to systems technology. During its existence of more than 15 years it has gained some reputation as a prime laboratory of analytical techniques, working with both radio- and stable isotopes. It has considerable expertise in isotope concentration measurements, radiocarbon dating, tritium measurements, in monitoring radioactivity around nuclear facilities and in modelling the movement of radionuclides in the environment. Many of its projects are within the scope of interest of the Paks Nuclear Power Plant. Our research activity is mainly concerned with the so-called environmental isotopes. This term denotes isotopes, both stable and radioactive, that are present in the natural environment either as a result of natural processes or of human activities. In environmental research isotopes are generally applied either as tracers or as age indicators. An ideal tracer is defined as a substance that behaves in the system studied exactly as the material to be traced as far as the examined parameters are concerned, but has at least one property that distinguishes it from the traced material. The mass number of an isotope is such an ideal indicator. In 2007 the laboratory assumed the name of Dr. Ede Hertelendi to honour the memory of the reputed environmental physicist who founded the group and headed it for many years. The current core of the laboratory staff is made up of his pupils and coworkers. This team was like a family to him. The group owes it to his fatherly figure that it did not fall apart after his death, but advanced with intense work and tenacity during the last decade. One of his first pupils, Mihaly Veres returned to the laboratory as a private entrepreneur and investor in 2005, and in the framework of

  19. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  20. Academic Training: Introduction to cryogenic Engineering

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 5, 6, 7, 8 and 9 December from 11:00 to 12:00 - Main Auditorium, bldg. 500 Introduction to cryogenic Engineering by G. Perinic - CERN-AT Cryogenic engineering is one of the key technologies at CERN. It is widely used in research and has many applications in industry and last but not least in medicine. In research cryogenic engineering and its applications are omnipresent from the smallest laboratories to fusion reactors, hughe detectors and accelerators. With the termination of the LHC, CERN will in fact become the world's largest cryogenic installation. This series of talks intends to introduce the non-cryogenist to the basic principles and challenges of cryogenic engineering and its applications. The course will also provide a basis for practical application as well as for further learning. From history to modern refrigeration cycles (1/5) Refrigerants, standard cryostats, cryogenic design (2/5) Heat transfer and insulation (3/5) Safety in cryoge...

  1. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  2. Radiation protection in a multi-disciplinary research laboratory

    International Nuclear Information System (INIS)

    O'Donovan, E.J.B.; Jenks, G.J.; Brighton, D.R.

    1993-01-01

    This paper describes the measures for the protection of personnel against the hazards of ionising and non-ionising radiation at the Materials Research Laboratory (MRL) in Victoria. The paper describes MRL safety and protection policy and management, and gives brief details of procedures and problems at the working level. A comparison of MRL average annual photon doses with all Governmental Research Institutions and industry is given. The good safety record of MRL is evident and shows that the radioactive protection issues are well handled. 4 figs

  3. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  4. History of the discovery and clinical introduction of chlorpromazine.

    Science.gov (United States)

    López-Muñoz, Francisco; Alamo, Cecilio; Cuenca, Eduardo; Shen, Winston W; Clervoy, Patrick; Rubio, Gabriel

    2005-01-01

    The historical process of discovery and clinical introduction of chlorpromazine, one of the greatest advances of 20th century medicine and history of psychiatry, is analyzed. In this review, we have studied the original works of pioneers in the discovery and clinical use of chlorpromazine, as well as the contributions of prestigious researchers (historians, pharmacologists, psychiatrists, etc.) about this topic. The discovery of phenothiazines, the first family of antipsychotic agents has its origin in the development of German dye industry, at the end of the 19th century (Graebe, Liebermann, Bernthsen). Up to 1940 they were employed as antiseptics, antihelminthics and antimalarials (Ehrlich, Schulemann, Gilman). Finally, in the context of research on antihistaminic substances in France after World War II (Bovet, Halpern, Ducrot) the chlorpromazine was synthesized at Rhône-Poulenc Laboratories (Charpentier, Courvoisier, Koetschet) in December 1950. Its introduction in anaesthesiology, in the antishock area (lytic cocktails) and "artificial hibernation" techniques, is reviewed (Laborit), and its further psychiatric clinical introduction in 1952, with initial discrepancies between the Parisian Val-de-Grâce (Laborit, Hamon, Paraire) and Sainte-Anne (Delay, Deniker) hospital groups. The first North-American publications on chlorpromazine took place in 1954 (Lehmann, Winkelman, Bower). The introduction of chlorpromazine in the USA (SKF) was more difficult due to their strong psychoanalytic tradition. The consolidation of the neuroleptic therapy took place in 1955, thanks to a series of scientific events, which confirmed the antipsychotic efficacy of the chlorpromazine. The discovery of the antipsychotic properties of chlorpromazine in the 1950s was a fundamental event for the practice of psychiatry and for the genesis of the so-called "psychopharmacological revolution."

  5. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  6. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  7. Environmental Psychology: An Introduction

    NARCIS (Netherlands)

    Steg, L.; Berg, van den A.E.; Groot, de J.I.M.

    2012-01-01

    Environmental Psychology: An Introduction offers a research-based introduction to the psychological relationship between humans and their built and natural environments and discusses how sustainable environments can be created to the benefit of both people and nature •Explores the environment's

  8. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  9. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  10. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  11. Introduction to imprecise probabilities

    CERN Document Server

    Augustin, Thomas; de Cooman, Gert; Troffaes, Matthias C M

    2014-01-01

    In recent years, the theory has become widely accepted and has been further developed, but a detailed introduction is needed in order to make the material available and accessible to a wide audience. This will be the first book providing such an introduction, covering core theory and recent developments which can be applied to many application areas. All authors of individual chapters are leading researchers on the specific topics, assuring high quality and up-to-date contents. An Introduction to Imprecise Probabilities provides a comprehensive introduction to imprecise probabilities, includin

  12. Introduction

    DEFF Research Database (Denmark)

    Peder Pedersen, Claus; Dehs, Jørgen

    2013-01-01

    Introduction to When Architects and Designers Write / Draw / Build / ? This anthology highlights the potentials and challenges for research in architecture and design. The included essays are based on papers given at a symposium held at the Aarhus School of Architecture in 2011 and contain a number...... of topical positions ranging from the activist and academic to practice-based and artistically-based research by international and Danish researchers. The anthology is aimed at architects and designers, as well as others with an interest in the discussion of the concept of research in the fields...

  13. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    International Nuclear Information System (INIS)

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  14. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    Science.gov (United States)

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  15. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  16. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  17. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  18. Design study of underground facility of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU is consisted of surface and underground facilities down to the depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program which includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed last year, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  19. Developing Research Skills for Undergraduate Business Students: Experiential Learning on Introduction to Personnel Administration and Industrial Relations Course

    Science.gov (United States)

    Figueroa, Carmen I.; González, Cándida

    2014-01-01

    This paper reports on research into developing research skills in human resources management of apprentices through experiential learning. The target groups were undergraduate business students registered in the Introduction to Personnel and Industrial Relations course. The research identified the appreciation level of importance and satisfaction…

  20. Introduction to dusty plasma physics

    CERN Document Server

    Shukla, PK

    2001-01-01

    Introduction to Dusty Plasma Physics contains a detailed description of the occurrence of dusty plasmas in our Solar System, the Earth''s mesosphere, and in laboratory discharges. The book illustrates numerous mechanisms for charging dust particles and provides studies of the grain dynamics under the influence of forces that are common in dusty plasma environments.

  1. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  2. Award for Distinguished Professional Contributions to Applied Research: Luciano L'Abate

    Science.gov (United States)

    American Psychologist, 2009

    2009-01-01

    Luciano L'Abate, recipient of the Award for Distinguished Professional Contributions to Applied Research, contributed to applied research through the introduction of the laboratory method in clinical psychology assessment and intervention, leading to the development of the first automated playroom, linking play therapy with research in child…

  3. General introduction to glucosinolates

    DEFF Research Database (Denmark)

    Halkier, Barbara Ann

    2016-01-01

    will be presented a general introduction to glucosinolates ranging from the evolution of glucosinolates to the many roles glucosinolates have for humans as well as an overview of the current knowledge on the orchestration of the glucosinolate biosynthetic pathway. The latter includes an introduction to the genes...... to the plasma membrane. Examples of how the knowledge gained from basic research has been translated into applied glucosinolate research through pathway and transport engineering will be presented....

  4. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  5. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  6. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  7. US Army Research Laboratory Lightweight and Specialty Metals Branch Research and Development (FY14)

    Science.gov (United States)

    2015-04-01

    2014 Feb. Report No.: ARL-TR- 6807. 8) Grendahl SM, Kellogg F, Nguyen H. Effect of cleanliness on hydrogen toler- ance in high-strength steel...SJ, Kellogg F, Nguyen H, Runk D. Ul- trasonic shot peening for aviation components. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2013...M. Grendahl Weapons and Materials Research Directorate, ARL Franklyn Kellogg and Hoang Nguyen Bowhead Technical Services

  8. BOOK REVIEW: Introduction to Plasma Physics: With Space and Laboratory Applications

    Science.gov (United States)

    Browning, P. K.

    2005-07-01

    A new textbook on plasma physics must be very welcome, as this will encourage the teaching of courses on the subject. This book is written by two experts in their fields, and is aimed at advanced undergraduate and postgraduate courses. There are of course many other plasma physics textbooks available. The niche which this particular book fills is really defined by its subtitle: that is, `with space and laboratory applications'. This differs from most other books which tend to emphasise either space or fusion applications (but not both) or to concentrate only on general theory. Essentially, the emphasis here is on fundamental plasma physics theory, but applications are given from time to time. For example, after developing Alfvén wave theory, observations of Alfvén waves in the solar wind and in the Jovian magnetosphere are presented; whilst ion acoustic cylcotron waves are illustrated by data from a laboratory Q machine. It is fair to say that examples from space seem to predominate. Nevertheless, the approach of including a broad range of applications is very good from an educational point of view, and this should help to train a generation of students with a grasp of fundamental plasma physics who can work in a variety of research fields. The subject coverage of the book is fairly conventional and there are no great surprises. It begins, inevitably, with a discussion of plasma parameters (Debye length etc) and of single particle motions. Both kinetic theory and magnetohydrodynamics are introduced. Waves are quite extensively discussed in several chapters, including both cold and hot plasmas, magnetised and unmagnetised. Nonlinear effects—a large subject!—are briefly discussed. A final chapter deals with collisions in fully ionised plasmas. The choice of contents of a textbook is always something of a matter of personal choice. It is easy to complain about what has been left out, and everyone has their own favourite topics. With that caveat, I would question

  9. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    In this annual report, the activities of research and education and the state of operation of the research facilities in this Laboratory in fiscal year 1990 are summarized. There are four large research facilities in this Laboratory, that is, the fast neutron source reactor 'Yayoi', the electron beam linear accelerator, the nuclear fusion reactor blanket experiment device and the heavy ion irradiation research facility. Those are used to execute research and education in the wide fields of atomic energy engineering, and put to the common utilization by universities in whole Japan. The results of the research with these facilities have been reported in the separate reports. The research aims at developing the most advanced and new fields in nuclear reactor engineering, and includes the engineering of the first wall and the fuel cycle for nuclear fusion reactors, electromagnetic structure engineering, AI and robotics, quantum beam engineering, the design of new type reactors, the basic process of radiochemistry and so on. The report on the course of the large scale facilities, research activities, the publication of research, education and the events in the Laboratory in the year are described. (K.I.)

  10. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    Science.gov (United States)

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  11. Pollution prevention for cleaner air: EPA's air and energy engineering research laboratory

    International Nuclear Information System (INIS)

    Shaver, E.M.

    1992-01-01

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribute to air quality problems. The Laboratory has successfully developed and demonstrated cost-effective sulfur dioxide, nitrogen oxides, and particulate control technologies for fossil fuel combustion sources. More recently, it has expanded its research activities to include indoor air quality, radon, organic control, stratospheric ozone depletion, and global warming. AEERL also develops inventories of air emissions of many types. Over the last several years, it has made substantial efforts to expand research on pollution prevention as the preferred choice for air emissions reduction

  12. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  13. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  14. Introduction

    NARCIS (Netherlands)

    Dieci, R.; He, X.-Z.; Hommes, C.; Dieci, R.; He, X.-Z.; Hommes, C.

    2014-01-01

    This introduction summarises the main contributions of 18 chapters in this book, in addition to two articles (Part I) reflecting Carl's view on a broad range of research-related issues originally published in Italian. The contributed chapters cover the latest developments in Nonlinear Economic

  15. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  16. Introduction to ISO 15189: a blueprint for quality systems in veterinary laboratories.

    Science.gov (United States)

    Freeman, Kathleen P; Bauer, Natali; Jensen, Asger L; Thoresen, Stein

    2006-06-01

    A trend in human and veterinary medical laboratory management is to achieve accreditation based on international standards. The International Organization for Standardization (ISO) 15189 standard is the first developed especially for accreditation of medical laboratories, and emphasizes the laboratory-client interface. European veterinary laboratories seeking to train candidates for the certification examination of the European College of Veterinary Clinical Pathology (ECVCP) require approval by the ECVCP Laboratory Standards Committee, which bases its evaluation in part on adherence to quality systems described in the ISO 15189 standards. The purpose of this article was to introduce the latest ISO quality standard and describe its application to veterinary laboratories in Europe, specifically as pertains to accreditation of laboratories involved in training veterinary clinical pathologists. Between 2003 and 2006, the Laboratory Standards Committee reviewed 12 applications from laboratories (3 commercial and 9 university) involved in training veterinary clinical pathologists. Applicants were asked to provide a description of the facilities for training and testing, current methodology and technology, health and safety policy, quality assurance policy (including internal quality control and participation in an external quality assurance program), written standard operating procedures (SOPs) and policies, a description of the laboratory information system, and personnel and training. Also during this time period multiple informal and formal discussions among ECVCP diplomates took place as to current practices and perceived areas of concern with regard to laboratory accreditation requirements. Areas in which improvement most often was needed in veterinary laboratories applying for ECVCP accreditation were the written quality plan, defined quality requirements for the tests performed, written SOPs and policies, training records, ongoing audits and competency

  17. Report of the research results with University of Tokyo Nuclear Engineering Research Laboratory's facilities in fiscal 1975

    International Nuclear Information System (INIS)

    1976-08-01

    Results of the research works by educational institutions using fast neutron source reactor 'Yayoi' etc. of Nuclear Engineering Research Laboratory in fiscal 1975 are reported in individual summaries. Fields of research are the following: shielding benchmark experiment, research on medical irradiation, irradiation experiments, experiments by small research groups, fast neutron streaming experiment, and so on. (Mori, K.)

  18. A design guide for energy-efficient research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  19. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  20. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  1. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  2. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  3. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  4. Naval Arctic Research Laboratory (NARL) Subsurface Containment Berm Investigation

    Science.gov (United States)

    2015-10-01

    Degree-Days CRREL Cold Regions Research and Engineering Laboratory ERDC U.S. Army Engineer Research and Development Center FWENC Foster Wheeler ...contract with the Navy, Foster Wheeler Environmental Corporation (FWENC) constructed a subsurface containment berm at the airfield of the Naval...659J91.61 ncURE 3- 3 NAVAl.. AACnC R(Sf.ARCH l,.ASORATORY POINT 9ARROW. AlASKA AS-BUILT CONTAINMENT BERM EXTENSION AND MONITORING WELLS FOSTER W

  5. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  6. Radiological safety considerations in the design and operation of the ORNL Transuranium Research Laboratory (TRL)

    International Nuclear Information System (INIS)

    Haynes, C.E.

    1976-01-01

    The Transuranium Research Laboratory (TRL) is the central facility at Oak Ridge National Laboratory (ORNL) for chemical and physical research involving transuranium elements. Transuranium Research Laboratory investigations are about equally divided between studies of inorganic and structural chemistry of the heavy elements and nuclear structure and properties of their isotopes. Elements studied include neptunium, plutonium, americium, curium, berkelium, californium, and einsteinium, each in microgram-to-gram quantities depending upon availability and experimental requirements. This paper describes an eight-step safety procedure followed in planning and approving individual research projects. This procedure should provide an optimum margin of safety and should permit the accomplishment of successful research

  7. Air Force Research Laboratory Integrated Omics Research

    Science.gov (United States)

    2015-10-01

    fuel exposures and cognitive fatigue. 15. SUBJECT TERMS biomonitoring, omics, metabonomics, proteomics, genomics, epigenetics, biomarker, toxin...biomarker discovery in a number of toxicology and human performance projects, including jet fuel exposures and cognitive fatigue. INTRODUCTION One of...chemical exposure for U.S. and NATO military personnel46; inhalation and dermal have been shown to represent the primary routes of exposure47 This

  8. Introduction to HACCP.

    Science.gov (United States)

    Introduction to HACCP Deana R. Jones, Ph.D. Egg Safety and Quality Research Unit USDA-Agricultural Research Service Russell Research Center Athens, GA Deana.Jones@ars.usda.gov HACCP is an acronym for Hazard Analysis and Critical Control Point and was initially developed by the Pillsbury Company a...

  9. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  10. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  11. Researching the life stages of medicines: Introduction

    NARCIS (Netherlands)

    van der Geest, S.; Chamberlain, K.

    2011-01-01

    This introduction presents the concept of ‘biography’ or ‘life stages’ of medicines as an ordering principle and analytical tool for the study of medicines as social, commercial and symbolic objects. The first stages, production and marketing, which have been largely neglected by social scientists,

  12. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    Science.gov (United States)

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  13. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  14. Behavioral Economic Laboratory Research in Tobacco Regulatory Science.

    Science.gov (United States)

    Tidey, Jennifer W; Cassidy, Rachel N; Miller, Mollie E; Smith, Tracy T

    2016-10-01

    Research that can provide a scientific foundation for the United States Food and Drug Administration (FDA) tobacco policy decisions is needed to inform tobacco regulatory policy. One factor that affects the impact of a tobacco product on public health is its intensity of use, which is determined, in part, by its abuse liability or reinforcing efficacy. Behavioral economic tasks have considerable utility for assessing the reinforcing efficacy of current and emerging tobacco products. This paper provides a narrative review of several behavioral economic laboratory tasks and identifies important applications to tobacco regulatory science. Behavioral economic laboratory assessments, including operant self-administration, choice tasks and purchase tasks, can be used generate behavioral economic data on the effect of price and other constraints on tobacco product consumption. These tasks could provide an expedited simulation of the effects of various tobacco control policies across populations of interest to the FDA. Tobacco regulatory research questions that can be addressed with behavioral economic tasks include assessments of the impact of product characteristics on product demand, assessments of the abuse liability of novel and potential modified risk tobacco products (MRTPs), and assessments of the impact of conventional and novel products in vulnerable populations.

  15. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  16. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  17. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  18. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  19. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  20. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  1. Magnetic mirror fusion research at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    An overall view is given of progress and plans for pressing forward with mirror research at Livermore. No detail is given on any one subject, and many interesting investigations being carried out at University laboratories in the U.S. that augment and support efforts at Livermore are omitted

  2. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  3. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry

  4. Introduction

    International Nuclear Information System (INIS)

    Jacquinot, J.

    1997-01-01

    An introduction to the symposium on nuclear fusion and the CEA researches on magnetic confinement, is presented, with a review of the future energy capacities that fusion could deliver, the technological developments on superconductors, robots, etc. that will assist fusion development, and the european and international cooperation programs on the subject

  5. [The 1, 2, 3 of laboratory animal experimentation].

    Science.gov (United States)

    Romero-Fernandez, Wilber; Batista-Castro, Zenia; De Lucca, Marisel; Ruano, Ana; García-Barceló, María; Rivera-Cervantes, Marta; García-Rodríguez, Julio; Sánchez-Mateos, Soledad

    2016-06-01

    The slow scientific development in Latin America in recent decades has delayed the incorporation of laboratory animal experimentation; however, this situation has started to change. Today, extraordinary scientific progress is evident, which has promoted the introduction and increased use of laboratory animals as an important tool for the advancement of biomedical sciences. In the aftermath of this boom, the need to provide the scientific community with training and guidance in all aspects related to animal experimentation has arisen. It is the responsibility of each country to regulate this practice, for both bioethical and legal reasons, to ensure consideration of the animals' rights and welfare. The following manuscript is the result of papers presented at the International Workshop on Laboratory Animal Testing held at the Technical University of Ambato, Ecuador; it contains information regarding the current state of affairs in laboratory animal testing and emphasizes critical aspects such as main species used, ethical and legal principles, and experimental and alternative designs for animal use. These works aim to ensure good practices that should define scientific work. This document will be relevant to both researchers who aim to newly incorporate animal testing into their research and those who seek to update their knowledge.

  6. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  7. Review: Keith F. Punch (2005). Introduction to Social Research – Quantitative & Qualitative Approaches

    OpenAIRE

    Phellas, Constantinos N.

    2006-01-01

    Introduction to Social Research enthält insgesamt zwölf sehr detaillierte und gut zugängliche Kapitel über quantitative, qualitative und mixed-method Ansätze und richtet sich an Personen, die gerade beginnen, sich mit den Sozialwissenschaften zu befassen. In die nun vorgelegte 2. Auflage wurden zahlreiche illustrative Anwendungsbeispiele aufgenommen, die es Studierenden ermöglichen, die Grundlagen sozialwissenschaftlicher Forschung zu verstehen. Ich selbst werde dieses Buch neuen Studentinnen...

  8. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  9. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  10. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  11. A method for Effect Modifier Assessment in ergonomic intervention research – The EMA method

    DEFF Research Database (Denmark)

    Edwards, Kasper; Winkel, Jørgen

    2016-01-01

    Introduction: Ergonomic intervention research includes studies in which researchers arrange (or follow) changes in working conditions to determine the effects in risk factors and/or health. Often this research takes place at workplaces and not in a controlled environment of a laboratory. The effe......Introduction: Ergonomic intervention research includes studies in which researchers arrange (or follow) changes in working conditions to determine the effects in risk factors and/or health. Often this research takes place at workplaces and not in a controlled environment of a laboratory...... of the literature revealed lack of or poor consideration of effect modifiers in ergonomic intervention research. We present a method that has been developed over the course of several years parallel to intervention studies in healthcare. Material and methods: The EMA method is a type of group interview including 3...... sources. Conclusion: The EMA method seems to offer a feasible procedure to obtain significant knowledge on potential effect modifiers in ergonomic intervention research. However, further development and validation is suggested....

  12. UTRaLab – Urban Traffic Research Laboratory

    Directory of Open Access Journals (Sweden)

    Karsten Kozempel

    2017-08-01

    Full Text Available The Urban Traffic Research Laboratory (UTRaLab is a research and test track for traffic detection methods and sensors. It is located at the Ernst-Ruska-Ufer, in the southeast of the city of Berlin (Germany. The UTRaLab covers 1 km of a highly-frequented urban road and is connected to a motorway. It is equipped with two gantries with distance of 850 m in between and has several outstations for data collection. The gantries contain many different traffic sensors like inductive loops, cameras, lasers or wireless sensors for traffic data acquisition. Additionally a weather station records environmental data. The UTRaLab’s main purposes are the data collection of traffic data on the one hand and testing newly developed sensors on the other hand.

  13. Introduction

    DEFF Research Database (Denmark)

    Barwell, Richard; Clarkson, Philip; Halai, Anjum

    2016-01-01

    This chapter provides the introduction to this ICMI Study 21 volume. It includes: a discussion of the place of this study and its topic within ICME; a discussion of what is meant by the study title; and a brief historical account of research on this topic in mathematics education. The chapter also...

  14. A DOE University-national laboratory waste-management education and research consortium (WERC)

    International Nuclear Information System (INIS)

    Bhada, R.K.; Morgan, J.D.; Townsend, J.S.

    1991-01-01

    This paper presents the results and current status of a consortium of three universities and two national laboratories working closely with industry for an Education and Research program on waste-management and environmental restoration. The program sponsored by the US Department of Energy has been in effect for 18 months and has achieved significant progress towards establishing: undergraduate, graduate and associate degree programs involving environmental management, interactive TV courses from the consortium members transmitted throughout the United States, Mexico ampersand Canada, a satellite TV network, a professional development teleconference series, research programs at the leading edge of technology training multi-disciplinary students, research laboratories for analyses, testing, and student training, technology transfer programs, including a TV series on research applications, outreach programs, including pre-college and minority education, community monitoring

  15. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  16. Adverse pregnancy outcomes in offspring of fathers working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Magnusson, Linda L; Bodin, Lennart; Wennborg, Helena

    2006-01-01

    BACKGROUND: Laboratory work may constitute a possible health hazard for workers as well as for their offspring, and involves a wide range of exposures, such as organic solvents, carcinogenic agents, ionizing radiation, and/or microbiological agents. Adverse pregnancy outcomes in the offspring...... exposed, and of non-laboratory employees unexposed (n = 1,909). Exposure data were obtained by questionnaires to research group leaders. Logistic regression analysis estimated odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Paternal laboratory work in general showed no statistically...

  17. Assessment of laboratory logistics management information system ...

    African Journals Online (AJOL)

    Introduction: Logistics management information system for health commodities remained poorly implemented in most of developing countries. To assess the status of laboratory logistics management information system for HIV/AIDS and tuberculosis laboratory commodities in public health facilities in Addis Ababa. Methods: ...

  18. AN INTRODUCTION TO WINDOWS 2000 AT CERN

    CERN Document Server

    2001-01-01

    A demonstration of the new supported Windows environment for all the CERN personal computers (PC) will be given which is based on Windows 2000. This presentation will assume little or no familiarity with the PC, or NICE, and will concentrate on the services being offered to the users of PCs at CERN. How NICE 2000 can facilitate the work of all users, eventually becoming the key access point to all activities in the laboratory will be demonstrated. Date Title Language Location Speaker Fri 1/6 10:00 Une introduction à Windows 2000 au CERN F IT Auditorium (31/3-004) Alberto Pace Tue 5/6 10:00 Une introduction à Windows 2000 au CERN F LHC Auditorium (30/7th floor) Frederic Hemmer Tue 5/6 14:00 Une introduction à Windows 2000 au CERN F SL Auditorium (864/1s floor) Michel Bornand Tue 5/6 14:00 An introduction to Windows 2000 at CERN E IT Auditorium (31/3-004) Andreas Wagner Wed 6/6 14:00 Une introduction à Windows 2000 au CERN F SL ...

  19. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  2. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  3. Horonobe Underground Research Laboratory project. Investigation report for the 2010 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sawada, Sumiyuki; Sugita, Yutaka

    2011-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2010 fiscal year (2010/2011). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2010 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  4. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  5. Savannah River Ecology Laboratory Annual Technical Progress Report of Ecological Research, June 30, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, Paul M.; Janecek, Laura; Rosier, Brenda

    2001-06-30

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA) and has been conducting ecological research on the Savannah River Site (SRS) in South Carolina for 50 years. The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts fundamental and applied ecological research, as well as education and outreach programs, under a Cooperative Agreement with the U.S. Department of Energy (DOE) SRS near Aiken, South Carolina. The Laboratory's research mission during the 2001 fiscal year was fulfilled with the publication of one book and 83 journal articles and book chapters by faculty, technical staff, students, and visiting scientists. An additional 77 journal articles have been submitted or are in press. Other noteworthy events took place as faculty members and graduate students received awards. These are described in the section Special Accomplishments of Faculty, Staff, Students, and Administration on page 54. Notable scientific accomplishments include work conducted on contaminant transport, global reptile decline, phytoremediation, and radioecology. Dr. Domy Adriano authored the second edition of his book ''Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals'', which was recently published by Springer-Verlag. The book provides a comprehensive treatment of many important aspects of trace elements in the environment. The first edition of the book, published in 1986, has become a widely acclaimed and cited reference. International attention was focused on the problem of reptile species decline with the publication of an article on this topic in the journal ''Bioscience'' in August, 2000. The article's authors included Dr. Whit Gibbons and a number of other SREL herpetologists who researched the growing worldwide problem of decline of reptile species. Factors related

  6. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory.

  7. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    International Nuclear Information System (INIS)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory

  8. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  9. [Biological research and security institutes].

    Science.gov (United States)

    Darsie, G; Falczuk, A J; Bergmann, I E

    2006-04-01

    The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.

  10. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  11. Annual Technical Report, Materials Research Laboratory July 1, 1979 - June 30, 1980.

    Science.gov (United States)

    1980-06-30

    TeO2 in the glasses contributes to the formation of four-coordinated boron atoms. There is an apparent change in the coordination of tellurium atoms... Glasses , W. M. Risen, Jr., and Chemisorption and Related Surface Interactions, P. J. Estrup. Since many of the research areas are interrelated, cross...8 IInorganic Glasses .................................................................. 24 Introduction

  12. Laboratory Experiences in an Introduction to Natural Science Course.

    Science.gov (United States)

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  13. Perspective on One Decade of Laser Propulsion Research at the Air Force Research Laboratory, November 1995-2005 (DVD)

    National Research Council Canada - National Science Library

    2007-01-01

    .... PHYSICAL DESCRIPTION: 1 DVD-ROM and 1 CD-ROM; 4 3/4 in.; 395 MB. ABSTRACT: A short film and presentation on laser propulsion research at the Air Force Research Laboratory, spanning November 1995 through October 2005...

  14. Fusion: introduction

    International Nuclear Information System (INIS)

    Decreton, M.

    2006-01-01

    The article gives an overview and introduction to the activities of SCK-CEN's research programme on fusion. The decision to construct the ITER international nuclear fusion experiment in Cadarache is highlighted. A summary of the Belgian contributions to fusion research is given with particular emphasis on studies of radiation effects on diagnostics systems, radiation effects on remote handling sensing systems, fusion waste management and socio-economic studies

  15. Overview of environmental research at the Savannah River Laboratory

    International Nuclear Information System (INIS)

    Harvey, R.S.

    1977-01-01

    Research in the environmental sciences by the Savannah River Laboratory (SRL) has the general objective of improving our understanding of transport through ecosystems and functional processes within ecosystems. With increased understanding, the basis for environmental assessments can be improved for releases from the Savannah River Plant or from the power industry of the southeastern United States

  16. Designing an undergraduate laboratory course in general chemistry

    Directory of Open Access Journals (Sweden)

    Vianna José F.

    1999-01-01

    Full Text Available From an analysis of a learning model based on the theory of information processing four hypothesis were developed for improving the design of laboratory courses. Three of these hypotheses concerned specific procedures to minimise the load on students' working memories (or working spaces and the fourth hypothesis was concerned with the value of mini-projects in enhancing meaningful learning of the knowledge and skills underpinning the set experiments. A three-year study of a first year undergraduate chemistry laboratory course at a Scottish university has been carried out to test these four hypotheses. This paper reports the results of the study relevant to the three hypotheses about the burden on students' working spaces. It was predicted from the learning model that the load on students working space should be reduced by appropriate changes to the written instructions and the laboratory organisation and by the introduction of prelab-work and prelab-training in laboratory techniques. It was concluded from research conducted over the three years period that all these hypothesised changes were effective both in reducing the load on students' working spaces and in improving their attitudes to the laboratory course.

  17. Second-language acquisition research in the laboratory: possibilities and limitations

    NARCIS (Netherlands)

    Hulstijn, J.H.

    1997-01-01

    This paper discusses some possibilities and limitations of laboratory research methods for testing theories of second language acquisition. The paper includes a review of 20 experimental lab studies. The review focuses on the motivation for conducting lab studies, the use of artificial or

  18. Horonobe Underground Research Laboratory project. Investigation report for the 2006 fiscal year

    International Nuclear Information System (INIS)

    Matsui, Hiroya; Nakayama, Masashi; Sanada, Hiroyuki

    2008-05-01

    The Horonobe Underground Research Laboratory is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2006 fiscal year (2006/2007), the second year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2006 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in, collaboration with experts from domestic and overseas research organisation. (author)

  19. Horonobe Underground Research Laboratory project. Investigation report for the 2007 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sanada, Hiroyuki; Sugita, Yutaka

    2008-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period of 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2007 fiscal year (2007/2008), the 3rd year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on the geological disposal of high-level radioactive waste (HLW)', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2007 Fiscal Year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. JAEA proceeded with the project in collaboration with experts from domestic and overseas research organisation. (author)

  20. Horonobe Underground Research Laboratory project investigation report for the 2008 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sano, Michiaki; Sanada, Hiroyuki; Sugita, Yutaka

    2009-11-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations' 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2008 fiscal year (2008/2009), the 4th year of the Phase 2 investigations. The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2008 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  1. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  2. A university hot laboratory for teaching and research

    International Nuclear Information System (INIS)

    Heinonen, O.; Miettinen, J.K.

    1976-01-01

    In small countries which have limited material and capital resources there is more need for studying and teaching reactor chemistry in universities than there is in countries with special nuclear research and training centres. A new 150-m 2 laboratory of reactor chemistry was added to the premises of the Department of Radiochemistry, University of Helsinki, in October 1975. It contains a hot area with low-pressure air-conditioning, a sanitary room, a low-activity area, and an office area. The main instrument is a mass-spectrometer MI-1309 equipped with an ion counter which is particularly useful for plutonium analysis. The laboratory can handle samples up-to 10Ci gamma-acitivity - which equals one pellet of a fuel rod - in a sealed lead cell which has an interchangeable box for alpha-active work. Pretreated samples are submitted to chemical separations in glove-boxes. Samples for alpha and mass spectroscopy are also prepared in glove-boxes. Also the laboratory is provided with fume hoods suitable for building lead shields. Radiation protection and special features typical to the university environment are discussed. Methods for verfication of contamination and protection against internal and external contamination are applied. These include air monitoring, analysis of excreta, and whole-body counting. (author)

  3. Robotics research at Electrotechnical Laboratory-R and D program for advanced robot technology

    Energy Technology Data Exchange (ETDEWEB)

    Wakamatsu, S; Akahori, H; Shirai, Y; Kakikura, M

    1983-01-01

    The purposes of this paper are both to introduce the outline of robotics researches at Electrotechnical Laboratory and to describe the relation between those researches and the national project so called robotics for critical work. The authors first describe the robotics researches and related topics historically which have been continued from the latter half of 1960s as a part of researches on artificial intelligence at Electrotechnical Laboratory. Secondly, they mention the present aspects of our researches, its relation with past results, and changes of basic concepts on robotics systems. Finally, as an extension of our researches, they propose some approaches to establish the following techniques which make very important roles for the success of the national project; (1) manipulation techniques, (2) sensor techniques, (3) autonomous robot control techniques, (4) advanced tele-operation techniques and, (5) system totalizing techniques. 15 references.

  4. Research with radioisotopes in clinical and laboratory medicine: a bibliographic review

    International Nuclear Information System (INIS)

    Metz, J.; Van der Walt, L.A.; Malan, J.M.

    1985-01-01

    This bibliography is restricted mainly to AEC-supported projects which are considered to amply reflect the widespread use of radioisotopes in clinical and laboratory medicine in South Africa and which describe research with radioisotopes of some direct relevance to diagnostic-clinical or laboratory medicine, or both, but excluding therapy with isotopes. General information is given in this review on oncology, endocrinology, metabolism and nutrition, haematology, neurology, angiocardiology, pulmonology, gastroenterology, gynaecology and obstetrics, nephrology, immunology and transplantation, microbiology and parasitology

  5. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  6. Multi-modal virtual environment research at Armstrong Laboratory

    Science.gov (United States)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  7. Materials Behavior Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to evaluate mechanical properties of materials including metals, intermetallics, metal-matrix composites, and ceramic-matrix composites under typical...

  8. Engines for experiment: laboratory revolution and industrial labor in the nineteenth-century city.

    Science.gov (United States)

    Dierig, Sven

    2003-01-01

    This article brings together what until now have been separate fields of nineteenth-century history: the development of experimental physiology, the growth of mechanized industry, and the city, where their threads intertwined. The main argument is that the laboratory in the city employed the same technological and organizational approaches to modernize that the city used to industrialize. To bring the adoption of technology into focus, the article discusses laboratory research as it developed after the introduction of small-scale power engines. With its machines, the industrialized city provided not only the key metaphor of the nineteenth-century life sciences but also a key technology that shifted experimental practices in animal research from a kind of preindustrial craft to a more mechanized production of knowledge. With its "factory-laboratories," the late-nineteenth-century city became the birthplace for the first living, data-producing hybird---part animal and part machine.

  9. About the Director of EPA's National Health and Environmental Effects Research Laboratory (NHEERL)

    Science.gov (United States)

    Dr. Wayne Cascio serves as Acting Director for the National Health and Environmental Effects Research Laboratory (NHEERL) within the U.S. Environmental Protection Agency's Office of Research and Development (ORD).

  10. 21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.

    Science.gov (United States)

    2010-04-01

    ... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...

  11. Evaluation of the implementation of a quality system in a basic research laboratory: viability and impacts.

    Science.gov (United States)

    Fraga, Hilda Carolina de Jesus Rios; Fukutani, Kiyoshi Ferreira; Celes, Fabiana Santana; Barral, Aldina Maria Prado; Oliveira, Camila Indiani de

    2012-01-01

    To evaluate the process of implementing a quality management system in a basic research laboratory of a public institution, particularly considering the feasibility and impacts of this improvement. This was a prospective and qualitative study. We employed the norm "NIT DICLA 035--Princípios das Boas Práticas de Laboratório (BPL)" and auxiliary documents of Organisation for Economic Co-operation and Development to complement the planning and implementation of a Quality System, in a basic research laboratory. In parallel, we used the PDCA tool to define the goals of each phase of the implementation process. This study enabled the laboratory to comply with the NIT DICLA 035 norm and to implement this norm during execution of a research study. Accordingly, documents were prepared and routines were established such as the registration of non-conformities, traceability of research data and equipment calibration. The implementation of a quality system, the setting of a laboratory focused on basic research is feasible once certain structural changes are made. Importantly, impacts were noticed during the process, which could be related to several improvements in the laboratory routine.

  12. The need for econometric research in laboratory animal operations.

    Science.gov (United States)

    Baker, David G; Kearney, Michael T

    2015-06-01

    The scarcity of research funding can affect animal facilities in various ways. These effects can be evaluated by examining the allocation of financial resources in animal facilities, which can be facilitated by the use of mathematical and statistical methods to analyze economic problems, a discipline known as econometrics. The authors applied econometrics to study whether increasing per diem charges had a negative effect on the number of days of animal care purchased by animal users. They surveyed animal numbers and per diem charges at 20 research institutions and found that demand for large animals decreased as per diem charges increased. The authors discuss some of the challenges involved in their study and encourage research institutions to carry out more robust econometric studies of this and other economic questions facing laboratory animal research.

  13. 15 CFR 256.1 - Introduction.

    Science.gov (United States)

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false Introduction. 256.1 Section 256.1 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade NATIONAL INSTITUTE OF... PROGRAM § 256.1 Introduction. This part states policies and procedures concerning the Research Associate...

  14. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  15. International research laboratory on the moon: a proposal for a national commitment

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.; Gelfand, E.M.

    1982-01-01

    To demonstrate its leadership in space, the US could focus its space program on an exciting and achievable goal: to establish a self-sustaining international research laboratory on the Moon before the year 2000. Scientists from all over the world would use the laboratory for basic and applied programs in natural and social sciences. The knowledge gained would benefit everyone. The lunar research facility would be built with a broadly based infrastructure of stations, vehicles, and programs that can be envisioned as a pyramid resting on the Earth and reaching to the Moon. The first element of the infrastructure is the reusable Space Shuttle; the second is a manned low-Earth-orbit platform. Next is an orbital transfer vehicle for hauling cargoes between low Earth orbit and low lunar orbit. The final element is the manned self-sustaining international research laboratory. A key feature of this proposal is that each element can be economically useful at the same time as it is promoting international cooperation on Earth. A vigorous civilian program like that proposed here is our best guarantee that outer space will be used to strengthen our economy and address basic problems on Earth.

  16. Introduction

    International Nuclear Information System (INIS)

    Van Walle, E.

    2007-01-01

    The introduction to the annual report 2006 of the Belgian Nuclear Research Centre SCK-CEN highlights the reorganisation of SCK-CEN that became effective in 2006. An overview is given of the principal activities of Institute for Nuclear Materials Science, the Institute for Advanced Nuclear Systems, the Institute for Environment, Health and Safety and the Institute for Communication, Services and Administration

  17. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  18. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  19. The Implementation of Service Pass-Through Delivery System (SPTDS) to use in laboratories with Highly Containment Environment

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    Interior Architecture as one of the scientific disciplines minute to complete the Science Architecture, plays a pivotal role in the completion and modernization of facilities containing coefficient scientific research laboratories, particularly those containing plants with interior environment requiring a highly dedicated isolation and sterilization level(s), and using for radioactive materials. These laboratory types form one of the main tools for the introduction of advanced technology and its generation locally, and in which it is considered as a tool to create development and scientific renaissance in Egypt, rather than being imported only from abroad. The research introduces a design concept which can be applied over the maintenance and replacement services feeding ongoing research activities taking place in laboratories without prejudice the highly sterilization level of interior environment, and which does not affect the ongoing lab work, and by the minimum amount of inconvenience

  20. Pump and valve research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1992-01-01

    Over the last several years, the Oak Ridge National Laboratory (ORNL) has carried out several aging assessments on pumps and valves under the NRC's Nuclear Plant Aging Research (NPAR) Program. In addition, ORNL has established an Advanced Diagnostic Engineering Research and Development Center (ADEC) in order to play a key role in the field of diagnostic engineering. Initial ADEC research projects have addressed problems that were identified, at least in part, by the NPAR and other NRC-sponsored programs. This paper summarizes the pump and valve related research that has been done at ORNL and describes in more detail several diagnostic techniques developed at ORNL which are new commercially available

  1. Bringing ayahuasca to the clinical research laboratory.

    Science.gov (United States)

    Riba, Jordi; Barbanoj, Manel J

    2005-06-01

    Since the winter of 1999, the authors and their research team have been conducting clinical studies involving the administration of ayahuasca to healthy volunteers. The rationale for conducting this kind of research is twofold. First, the growing interest of many individuals for traditional indigenous practices involving the ingestion of natural psychotropic drugs such as ayahuasca demands the systematic study of their pharmacological profiles in the target species, i.e., human beings. The complex nature of ayahuasca brews combining a large number of pharmacologically active compounds requires that research be carried out to establish the safety and overall pharmacological profile of these products. Second, the authors believe that the study of psychedelics in general calls for renewed attention. Although the molecular and electrophysiological level effects of these drugs are relatively well characterized, current knowledge of the mechanisms by which these compounds modify the higher order cognitive processes in the way they do is still incomplete, to say the least. The present article describes the development of the research effort carried out at the Autonomous University of Barcelona, commenting on several methodological aspects and reviewing the basic clinical findings. It also describes the research currently underway in our laboratory, and briefly comments on two new studies we plan to undertake in order to further our knowledge of the pharmacology of ayahuasca.

  2. Music and Public Health - An introduction

    DEFF Research Database (Denmark)

    Bonde, Lars Ole; Theorell, Töres

    2018-01-01

    Introduction to Music and Public Health as a new research field. The history of the field in the Nordic countries is presented, and the 13 contributions to the book are briefly reviewed.......Introduction to Music and Public Health as a new research field. The history of the field in the Nordic countries is presented, and the 13 contributions to the book are briefly reviewed....

  3. Editors' Introduction to the Thematic Issue: Mad about Methods? Teaching Research Methods in Political Science

    Science.gov (United States)

    Adriaensen, Johan; Kerremans, Bart; Slootmaeckers, Koen

    2015-01-01

    The contributors to this special issue all seek to address the challenge of teaching research methods to political science students. This introduction aims to provide a concise framework for the various innovations presented throughout this issue, situating them in the wider literature. Particular emphasis is placed on the factors that distinguish…

  4. Annual report of Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo, fiscal year 1994

    International Nuclear Information System (INIS)

    1995-08-01

    This annual report is the summary of the research and education activities, the state of operating research facilities and others in fiscal year 1994 in this Research Laboratory. In this Research Laboratory, there are four main installations, namely the fast neutron source reactor 'Yayoi', the electron linear accelerator, the basic experiment facility for the design of nuclear fusion reactor blanket and the heavy irradiation research facility. The former two are put to the joint utilization by all Japanese universities, the blanket is to that within Faculty of Engineering, and the HIT is to that within this university. The fast neutron science research facility, the installation of which was approved in 1993 as the ancillary equipment of the Yayoi, has been put to the joint utilization for all Japan, and achieved good results. In this report, the management and operation of these main installations, research activities, the publication of research papers,graduation and degree theses, the publication of research papers, graduation and degree theses, the events in the Laboratory for one year, the list of the visitors to the Laboratory, the list of the records of official trips to foreign countries and others, and the list of UTNL reports are described. (K.I.)

  5. Introduction: perspectives on Porter

    NARCIS (Netherlands)

    F.A.J. van den Bosch (Frans)

    1997-01-01

    textabstractIntroduction. Relevance of Strategy research: focus on Michael Porter's contributions Strategy is a fascinating field of enquiry, both for managers looking for a sustainable competitive advantage and for academic researchers looking for the reasons behind superior firm performance.

  6. Solid modeling research at Lawrence Livermore National Laboratory: 1982-1985

    International Nuclear Information System (INIS)

    Kalibjian, J.R.

    1985-01-01

    The Lawrence Livermore National Laboratory has sponsored solid modeling research for the past four years to assess this new technology and to determine its potential benefits to the Nuclear Weapons Complex. We summarize here the results of five projects implemented during our effort. First, we have installed two solid modeler codes, TIPS-1 (Technical Information Processing System-1) and PADL-2 (Part and Assembly Description Language), on the Laboratory's CRAY-1 computers. Further, we have extended the geometric coverage and have enhanced the graphics capabilities of the TIPS-1 modeler. To enhance solid modeler performance on our OCTOPUS computer system, we have also developed a method to permit future use of the Laboratory's network video system to provide high-resolution, shaded images at users' locations. Finally, we have begun to implement code that will link solid-modeler data bases to finite-element meshing codes

  7. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  8. The intellectual contribution of laboratory medicine professionals to research papers on laboratory medicine topics published in high-impact general medicine journals.

    Science.gov (United States)

    Escobar, Pedro Medina; Nydegger, Urs; Risch, Martin; Risch, Lorenz

    2012-03-01

    An author is generally regarded as an individual "who has made substantial intellectual academic contributions to a published study". However, the extent of the contribution that laboratory medicine professionals have made as authors of research papers in high-impact medical journals remains unclear. From 1 January 2004 to 31 March 2009, 4837 original research articles appeared in the: New England Journal of Medicine, Lancet, Annals of Internal Medicine, JAMA and BMJ. Using authorship as an indicator of intellectual contribution, we analyzed articles that included laboratory medicine parameters in their titles in an observational cross-sectional study. We also extracted data regarding radiological topics that were published during the same time within the same journals. Out of 481 articles concerning laboratory medicine topics, 380 provided information on the affiliations of the authors. At least one author from an institution within the field of laboratory medicine was listed in 212 articles (55.8%). Out of 3943 co-authors, only 756 (19.2%) were affiliated with laboratory medicine institutions. Authors from laboratory medicine institutions were listed as the first, last or corresponding authors in 99 articles (26.1%). The comparative proportions for author affiliation from 55 radiology articles were significantly higher, as 72.7% (p=0.026) of articles and 24.8% (p=0.001) of authors indicated an affiliation with a radiology institution. Radiology professionals from 72.7% of the articles were listed as either the first, last or corresponding authors (pgeneral medicine journals.

  9. Mission of mediation on planting underground research laboratories

    International Nuclear Information System (INIS)

    Bataille, C.

    1994-01-01

    France, who chose to have a strong nuclear industry, is confronted to the problem of management, treatment, storage and elimination of radioactive waste. The law defined an important research program with a study of underground storage in laboratories. Here is the report of this mission. A problem of people confidence arose; there is a difference between the great level of science or technology and the level of understanding of public opinion. The only answer brought by a democratic society is to develop information

  10. Introduction to magnetochemistry

    CERN Document Server

    Earnshaw, Alan

    2013-01-01

    Introduction to Magnetochemistry provides an introduction to the more important aspects of magnetochemistry. The measurement of magnetic moment has been one of the most consistently useful to coordination chemists. For teaching purposes it provides a simple method of illustrating the ideas of electronic structure, and in research it can provide fundamental information about the bonding and stereochemistry of complexes. The book contains six chapters covering topics such as free atoms and ions, transition metal complexes, crystal field theory, second and third row transition metal complexes, a

  11. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  12. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  13. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  14. Laboratory contamination in the early period of radiation research

    International Nuclear Information System (INIS)

    Rona, E.

    1979-01-01

    Meagre records exist of the levels of contamination and human exposure encountered by those who took part in the early research on radioactive materials. In order to throw some light on the nature and extent of the problem the author presents some recollections of the conditions of the laboratories in which she worked from 1924-1940. These include the Kaiser Wilhelm Institute, the Radium Institute of Vienna and the Curie Institute. The health, radiation injuries and causes of death of some early workers are discussed. Although the effects of acute exposure were recognised early on, there was less awareness of the possible effects of chronic exposure, and lack of prompt clinical signs of injury encouraged complacency. Laboratory contamination was often seen more as a problem affecting experimental results than as a health hazard. (author)

  15. Research Laboratory of Mixed Radiation Dosimetry

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: Two main topics of the research work in the Laboratory of Mixed Radiation Dosimetry in 2001 were: development of recombination methods for dosimetry of mixed radiation fields and maintenance and development of unique in Poland reference neutron fields. Additionally research project on internal dosimetry were carried out in collaboration with Division of Radiation Protection Service. RECOMBINATION METHODS Recombination methods make use of the fact that the initial recombination of ions in the gas cavity of the ionization chamber depends on local ionization density. The later can be related to linear energy transfer (LET) and provides information on radiation quality of the investigated radiation fields. Another key feature of the initial recombination is that it does not depend of dose rate. Conditions of initial (local) recombination can be achieved in specially designed high pressure tissue-equivalent ionization chambers, called the recombination chambers. They are usually parallel-plate ionization chambers filled with a tissue-equivalent gas mixture under a pressure of order 1 MPa. The spacing between electrodes is of order of millimeters. At larger spacing, the volume recombination limits the maximum dose rate at which the chamber can be properly operated. The output of the chamber is the ionization current (or collected charge) as a function of collecting voltage. All the recombination methods require the measurement of the ionization current (or charge) at least at two values of the collecting voltage applied to the chamber. The highest voltage should provide the conditions close to saturation (but below discharge or multiplication). The ionization current measured at maximum applied voltage is proportional to the absorbed dose, D, (some small corrections for lack of saturation can be introduced when needed). Measurements at other voltages are needed for the determination of radiation quality. The total dose equivalent in a mixed radiation field is

  16. Experimental facility of innovative types as the laboratory analog of research reactor experimental device

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Zabud'ko, A.N.; Kremenetskij, A.K.; Nikolaev, A.N.; Trykov, L.A.

    1991-01-01

    The paper analyses capability of creating laboratory analogs of complex experimental facilities at research reactors utilizing power radionuclide neutron sources fabricated in industrial conditions. Some experimental and calculational investigations of neutron-physical characteristics are presented, which have been attained at the RIZ research reactor laboratory analog. Experimental results are supplemented by calculational investigations, fulfilled by means of the BRAND three-dimensional computational complex and the ROZ-6 one-dimensional program. 4 refs.; 3 figs

  17. Introduction - Chadwick discovers the neutron

    International Nuclear Information System (INIS)

    Hendry, J.

    1984-01-01

    The background to Chadwick's discovery in 1932 of the neutron predicted by Rutherford is chronicled. In the same year Cockcroft and Walton split the atom, and the story of this event is told. 1932 also saw the demonstration by Blackett and Occhialini of the existence of the positron. These important contributions to nuclear physics were all made at the Cavendish Laboratory in Cambridge. Photographs, extracts from experimental notebooks and circuit diagrams illustrate this introduction. (UK)

  18. NEW IRRADIATION RESEARCH FACILITIES AT THE ARMY NATICK LABORATORIES

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R. D.; Brynjolfsson, A.

    1963-03-15

    New facilities built by the U. S. Army for research on the preservation of food by ionizing radiation consist of a food processing and packaging facility and a radiation sources laboratory with two powerful low-energy radiation sources. One is a 1.3 million-curie Co/sup 60/ source consisting of 98 tubes each containing four doubly encapsulated Co/sup 60/ slugs. The second source is an electron linear accelerator with energy variable between 2 and 32 Mev. Research with the Co/sup 60/ source is concentrated on investigation of macroscopic and microscopic dose distribution in different materials irradiated with Co/sup 60/ gamma rays. Research with the linear accelerator is concentrated on dosimetry and photonuclear reactions. (A.G.W.)

  19. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  20. Introduction

    Science.gov (United States)

    Kirby, Evan N.

    2018-06-01

    Dwarf galaxies are excellent laboratories of chemical evolution. Many dwarf galaxies have simple star formation histories with very low average star formation rates. These conditions simplify models of chemical evolution and facilitate the identification of sites of nucleosynthesis. Dwarf galaxies also host extremely metal-poor stars, which sample the ejecta of the first generations of supernovae in the universe. This meeting-in-a-meeting, "Stellar Abundances in Dwarf Galasxies," will recognize the importance of dwarf galaxies in learning about the creation and evolution of the elements. Topics include: * the most metal-poor stars * the connection between dwarf galaxies and the Milky Way halo * dwarf galaxies as the paragons of r-process nucleosynthesis * modern techniques in stellar abundance measurements * recent advances in chemical evolution modelingI will give a very brief introduction to set the stage for the meeting.

  1. Data survey about radiation protection and safety of radiation sources in research laboratories

    International Nuclear Information System (INIS)

    Paura, Clayton L.; Dantas, Ana Leticia A.; Dantas, Bernardo M.

    2005-01-01

    In Brazil, different types of research using unsealed sources are developed with a variety of radioisotopes. In such activities, professionals and students involved are potentially exposed to internal contamination by 14 C, 45 Ca, 51 Cr, 3 H, 125 I, 32 P, 33 P, 35 S, 90 Sr and 99m Tc. The general objective of this work is to evaluate radiological risks associated to these practices in order to supply information for planning actions aimed to improve radiation protection conditions in research laboratories. The criteria for risk evaluation and the safety aspects adopted in this work were based on CNEN Regulation 6.02 and in IAEA and NRPB publications. The survey of data was carried out during visits to laboratories in public Universities located in the city of Rio de Janeiro where unsealed radioactive sources are used in biochemistry, biophysics and genetic studies. According to the criteria adopted in this work, some practices developed in the laboratories require evaluation of risk of internal contamination depending on the conditions of source manipulation. It was verified the need for training of users of radioactive materials in this type of laboratory. This can be facilitated by the use of basic guides for the classification of areas, radiation protection, safety and source security in research laboratories. It was also observed the need for optimization of such practices in order to minimize the contact with sources. It is recommended to implement more effective source and access controls as a way to reduce risks of individual radiation exposure and loss of radioactive materials (author)

  2. AN INTRODUCTION TO WINDOWS 2000 AT CERN

    CERN Multimedia

    2001-01-01

    A demonstration of the new supported Windows environment for all the CERN personal computers (PC) will be given which is based on Windows 2000. This presentation will assume little or no familiarity with the PC, or NICE, and will concentrate on the services being offered to the users of PCs at CERN. How NICE 2000 can facilitate the work of all users, eventually becoming the key access point to all activities in the laboratory will be demonstrated. Information: http://winservices.web.cern.ch/winservices/Seminars/Tutorials/ Date Title Language Location Speaker Fri 1/6 10:00 Une introduction à Windows 2000 au CERN F IT Auditorium (31/3-004) Alberto Pace Tue 5/6 10:00 Une introduction à Windows 2000 au CERN F LHC Auditorium (30/7th floor) Frederic Hemmer Tue 5/6 14:00 Une introduction à Windows 2000 au CERN F SL Auditorium (864/1s floor) Michel Bornand Tue 5/6 14:00 An introduction to Windows 2000 at CERN E IT Auditorium (31/3-004) Andreas Wagner ...

  3. 1997 Laboratory directed research and development. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P. [comps.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  4. Report on a Workshop on mobile laboratories for monitoring environmental radiation

    International Nuclear Information System (INIS)

    Andrasi, A,; Nemeth, I.; Zombori, P.; Urban, J.

    1992-01-01

    The international Workshop organized by the Health Physics Department of the Central Research Institute for Physics and by the Radiation Protection Department of the Paks Nuclear Power Plant was presented in this paper. The aims of the Workshop were the introduction of the mobile laboratories and the demonstration of the applied methods for monitoring environmental radiation in accidental situation. The intercomparison measurements showed that the results given by different participating laboratories (9 institutions from the middle and east European region) agreed well within an acceptable error margin. The demonstration, measurements and discussions were very useful for the participants and this could be a good basis for further developments and cooperations among the participating institutions. (author) 7 figs.; 2 tabs

  5. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research

    International Nuclear Information System (INIS)

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development

  6. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  7. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  8. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  9. Past, present and future of dust research at the Elliot Lake Laboratory

    International Nuclear Information System (INIS)

    Grenier, M.; Bigu, J.

    1985-12-01

    A brief history of the dust research work at the Elliot Lake Laboratory is given. Two decades of dust research work are studied and reviewed. This review clearly shows where, when, and with what intensity various components of dust research were performed. From the data presented here, it is suggested that a major portion of the future efforts be aimed at research directed towards the control and suppression of dust in underground mines

  10. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  11. Laboratory directed research and development FY91. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. [eds.

    1991-12-31

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director`s initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  12. HTGR safety research at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stroh, K.R.; Anderson, C.A.; Kirk, W.L.

    1982-01-01

    This paper summarizes activities undertaken at the Los Alamos National Laboratory as part of the High-Temperature Gas-Cooled Reactor (HTGR) Safety Research Program sponsored by the US Nuclear Regulatory Commission. Technical accomplishments and analysis capabilities in six broad-based task areas are described. These tasks are: fission-product technology, primary-coolant impurities, structural investigations, safety instrumentation and control systems, accident delineation, and phenomena modeling and systems analysis

  13. Laboratory Directed Research and Development 1998 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  14. Laboratory-directed research and development: FY 1996 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  15. Laboratory-directed research and development: FY 1996 progress report

    International Nuclear Information System (INIS)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects' principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences

  16. Environmental Research Laboratories annual report for 1979 and 1980

    International Nuclear Information System (INIS)

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included

  17. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  18. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  19. Laboratory experiments in innovation research: A methodological overview and a review of the current literature

    OpenAIRE

    Brüggemann, Julia; Bizer, Kilian

    2016-01-01

    Innovation research has developed a broad set of methodological approaches in recent decades. In this paper, we propose laboratory experiments as a fruitful methodological addition to the existing methods in innovation research. Therefore, we provide an overview of the existing methods, discuss the advantages and limitations of laboratory experiments, and review experimental studies dealing with different fields of innovation policy, namely intellectual property rights, financi...

  20. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2000.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2000-12-31

    The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and I exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, ,projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The LDRD Annual Report contains summaries of all research activities funded during Fiscal Year 2000. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums. All FY 2000 projects are listed and tabulated in the Project Funding Table. Also included in this Annual Report in Appendix A is a summary of the proposed projects for FY 2001. The BNL LDRD budget authority by DOE in FY 2000 was $6 million. The.actual allocation totaled $5.5 million. The following sections in this report contain the management processes, peer

  1. Annual report of ecological research at the Savannah River Ecology Laboratory

    International Nuclear Information System (INIS)

    1984-09-01

    This report summarizes research conducted at the Savannah River Ecology Laboratory (SREL) during the annual period ending August 1, 1984. SREL is a regional research facility at the Savannah River Plant operated by the University of Georgia through a contract with the Department of Energy. It is part of the University of Georgia's Institute of Ecology. The overall goal of the research is to develop an understanding of the impact of various energy technologies and management practices on the ecosystems of the southeastern United States. SREL research is conducted by interdisciplinary research teams organized under three major divisions: (1) Biogeochemical Ecology, (2) Wetlands Ecology, and (3) Stress and Wildlife Ecology

  2. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    Science.gov (United States)

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  3. Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. F.; Kreml, S. A.; Wildung, R. E.; Hefty, M. G.; Perez, D. A.; Chase, K. K.; Elderkin, C. E.; Owczarski, E. L.; Toburen, L. H.; Parnell, K. A.; Faust, L. G.; Moraski, R. V.; Selby, J. M.; Hilliard, D. K.; Tenforde, T. S.

    1991-02-01

    This report summarizes progress in the environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environment Research in FY 1990. Research is directed toward developing the knowledge needed to guide government policy and technology development for two important environmental problems: environmental restoration and global change. The report is organized by major research areas contributing to resolution of these problems. Additional sections summarize exploratory research, educational institutional interactions, technology transfer, and publications. The PNL research program continues make contributions toward defining and quantifying processes that effect the environment at the local, regional, and global levels. Each research project forms a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. This approach is providing system-level insights into critical environmental processes. University liaisons continue to be expanded to strengthen the research and to use PNL resources to train the scientists needed to address long-term environmental problems.

  4. Strengthening LLNL Missions through Laboratory Directed Research and Development in High Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Willis, D. K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-01

    High performance computing (HPC) has been a defining strength of Lawrence Livermore National Laboratory (LLNL) since its founding. Livermore scientists have designed and used some of the world’s most powerful computers to drive breakthroughs in nearly every mission area. Today, the Laboratory is recognized as a world leader in the application of HPC to complex science, technology, and engineering challenges. Most importantly, HPC has been integral to the National Nuclear Security Administration’s (NNSA’s) Stockpile Stewardship Program—designed to ensure the safety, security, and reliability of our nuclear deterrent without nuclear testing. A critical factor behind Lawrence Livermore’s preeminence in HPC is the ongoing investments made by the Laboratory Directed Research and Development (LDRD) Program in cutting-edge concepts to enable efficient utilization of these powerful machines. Congress established the LDRD Program in 1991 to maintain the technical vitality of the Department of Energy (DOE) national laboratories. Since then, LDRD has been, and continues to be, an essential tool for exploring anticipated needs that lie beyond the planning horizon of our programs and for attracting the next generation of talented visionaries. Through LDRD, Livermore researchers can examine future challenges, propose and explore innovative solutions, and deliver creative approaches to support our missions. The present scientific and technical strengths of the Laboratory are, in large part, a product of past LDRD investments in HPC. Here, we provide seven examples of LDRD projects from the past decade that have played a critical role in building LLNL’s HPC, computer science, mathematics, and data science research capabilities, and describe how they have impacted LLNL’s mission.

  5. Quality control tests in dose calibrators used in research laboratories of IPEN

    International Nuclear Information System (INIS)

    Kuahara, Lilian T.; Junior, Amaury C.R.; Martins, Elaine W.; Dias, Carla R.; Correa, Eduardo de L.; Potiens, Maria da Penha A.

    2013-01-01

    The aim of this study was to do the intercomparison between two dose calibrators used in research laboratories at IPEN-CNEN / SP, one being the Capinted NPL-CRC, of the Laboratorio de Calibracao de Instrumentos (LCI) do IPEN, and the other Capintec CRC-15R of the Centro de Radiofarmacia (CR). The standard sources used for carrying out the comparing tests between the two laboratories were 57 Co, 133 Ba and the 13 7 C s

  6. GLOBAL MULTIREGIONAL INPUT-OUTPUT FRAMEWORKS : AN INTRODUCTION AND OUTLOOK INTRODUCTION

    NARCIS (Netherlands)

    Tukker, Arnold; Dietzenbacher, Erik

    2013-01-01

    This review is the introduction to a special issue of Economic Systems Research on the topic of global multiregional inputoutput (GMRIO) tables, models, and analysis. It provides a short historical context of GMRIO development and its applications (many of which deal with environmental extensions)

  7. Bridging the Gap between Instructional and Research Laboratories: Teaching Data Analysis Software Skills through the Manipulation of Original Research Data

    Science.gov (United States)

    Hansen, Sarah J. R.; Zhu, Jieling; Karch, Jessica M.; Sorrento, Cristina M.; Ulichny, Joseph C.; Kaufman, Laura J.

    2016-01-01

    The gap between graduate research and introductory undergraduate teaching laboratories is often wide, but the development of teaching activities rooted within the research environment offers an opportunity for undergraduate students to have first-hand experience with research currently being conducted and for graduate students to develop…

  8. Market introduction of renewable energy technologies

    International Nuclear Information System (INIS)

    1997-01-01

    On 11 and 12 November 1997 the VDI Society for Energy Technology (VDI-GET) held a congress in Neuss on the ''Market introduction of renewable energy technologies'' The focal topics of the congress were as follows: market analyses for renewable energy technologies, the development of markets at home and abroad, and the framework conditions governing market introduction. Specifically it dealt with the market effects of national and international introduction measures, promotion programmes and their efficiency, the legal framework conditions governing market introduction, advanced and supplementary training, market-oriented research (e.g., for cost reduction), and improved marketing [de

  9. Annual Report FY2011: Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2011-12-21

    This project is aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an open laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) thermochemical methods for the deconstruction of lignin. Highlights from these activities include a detailed study of bio-oil production from the fast pyrolysis of microalgae (Scenedesmus sp.) and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  10. Status of Zircaloy deformation and oxidation research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Chapman, R.H.; Cathcart, J.V.; Hobson, D.O.

    1976-01-01

    The U.S. Nuclear Regulatory Commission sponsors a broad range of research on the response of nuclear fuel assemblies to normal, off-normal, and accident conditions in light-water reactors. The paper reviews the current status of three Zircaloy cladding research programs in progress at the Oak Ridge National Laboratory and presents some preliminary results from each

  11. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  12. Laboratory challenges in the scaling up of HIV, TB, and malaria programs: The interaction of health and laboratory systems, clinical research, and service delivery.

    Science.gov (United States)

    Birx, Deborah; de Souza, Mark; Nkengasong, John N

    2009-06-01

    Strengthening national health laboratory systems in resource-poor countries is critical to meeting the United Nations Millennium Development Goals. Despite strong commitment from the international community to fight major infectious diseases, weak laboratory infrastructure remains a huge rate-limiting step. Some major challenges facing laboratory systems in resource-poor settings include dilapidated infrastructure; lack of human capacity, laboratory policies, and strategic plans; and limited synergies between clinical and research laboratories. Together, these factors compromise the quality of test results and impact patient management. With increased funding, the target of laboratory strengthening efforts in resource-poor countries should be the integrating of laboratory services across major diseases to leverage resources with respect to physical infrastructure; types of assays; supply chain management of reagents and equipment; and maintenance of equipment.

  13. Status of Avian Research at the National Renewable Energy Laboratory

    International Nuclear Information System (INIS)

    Sinclair, K.

    2001-01-01

    As the use of wind energy expands across the United States, concerns about the impacts of commercial wind farms on bird and bat populations are frequently raised. Two primary areas of concern are (1) possible litigation resulting from the killing of even one bird if it is protected by the Migratory Bird Treaty Act, the Endangered Species Act, or both; and (2) the effect of avian mortality on bird populations. To properly address these concerns, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) supports scientifically based avian/wind power interaction research. In this paper I describe NREL's field-based research projects and summarize the status of the research. I also summarize NREL's other research activities, including lab-based vision research to increase the visibility of moving turbine blades and avian acoustic research, as well as our collaborative efforts with the National Wind Coordinating Committee's Avian Subcommittee

  14. Critical examination of the ANDRA program on researches performed in Bure underground laboratory and on the transposition zone to define a ZIRA

    International Nuclear Information System (INIS)

    2011-01-01

    After an introductive chapter which notably presents the definition criteria for a ZIRA (area of interest for extended reconnaissance), an area chosen to study its potential use as intermediate and high level long life radioactive waste deep storage. The second chapter reports the collection of seismic data, investigations, researches and analyses for the selection of a ZIRA, a deeper investigation on earthquakes (seismic risk, seismic history, maximum possible earthquake, site response to earthquakes). The third chapter reports the characterization and properties of the concerned geological formations which may influence contaminant transportation in geological media and long term storage performance. The fourth chapter reports a rock mechanics analysis: possible non-homogeneities of mechanical properties, comparison of in situ stress with interstitial pressure parameters between the ZIRA and the underground laboratory, and so on. The fifth chapter addresses thermal aspects: thermal response of the host formation, rock thermal properties, and review of thermal models and of thermal effects. The last chapter compares six programs of underground researches aimed at the selection of ZIRA

  15. Using Independent Research Projects to Foster Learning in the Comparative Vertebrate Anatomy Laboratory

    Science.gov (United States)

    Ghedotti, Michael J.; Fielitz, Christopher; Leonard, Daniel J.

    2005-01-01

    This paper presents a teaching methodology involving an independent research project component for use in undergraduate Comparative Vertebrate Anatomy laboratory courses. The proposed project introduces cooperative, active learning in a research context to comparative vertebrate anatomy. This project involves pairs or groups of three students…

  16. Experience with an accrediated INAA service laboratory at a University - will research be next?

    International Nuclear Information System (INIS)

    Bode, P.

    1993-01-01

    Quality assurance, total quality management, and accreditation are the recognizable attributes of an attitude and consideration of a work process that is being introduced to industry, utilities, and (industrial) laboratories. International reference documents-the International Standard Organization (ISO)- IEC guides - have been developed to harmonize the ways of implementing and evaluating QA practices in connection with accreditation. The life-styles of working under quality practices and working at a university demonstrate a large contrast. Many of the basic principles of quality practices, such as full documentation, written procedures and instructions, and careful consideration of the conditions under which work will be performed, are characteristically absent at universities. Universities nowadays also have a mission to teach quality practices to the present and future generations of scientists. Within a few years, society may call for academics who are not only knowledgeable on the principles of quality practices but who also have been educated, trained, and practiced in such an environment. Conflicts will be avoided when such academics occupy leading positions in organizations that already use quality practices or when they become responsible for the introduction of quality practices. The neutron activation analysis (NAA) laboratory and associated analysis systems at the Interfaculty Reactor Institute (IRI) of the Delft University of Technology has been reorganized and brought into accord with the requirements of EN45001 and ISO guide 25. After an audit by the official accreditation body in the Netherlands, STERLAB, the laboratory received its accreditation in early 1993, making it the first accredited laboratory of both kinds (university and instrumental (INAA)) in the Netherlands and possibly in the world

  17. Description of the EDF research and development laboratory's radiographic picture processing system

    International Nuclear Information System (INIS)

    Brillault, B.

    1985-01-01

    A digital radiographic picture processing system has been developed at the EDF Research and Development Laboratory to be supplied to EDF radiography experts. We describe it in pointing out the difficulties of radiograph digitization but also the numerous processing possibilities. The final goal of the Laboratory work is to extract the information from industrial radiographs by digital means. Our study is divided into three parts: digitization by a microdensitometer; display, processing and quantization of flaws; and, digital storing. 5 refs

  18. Thirty-Two Years of Forest Service Research at the Southern Forest Fire Laboratory in Macon, GA

    Science.gov (United States)

    USDA Forest Service

    1991-01-01

    When completed in 1959, the Southern Forest Fire Laboratory was the world?s first devoted entirely to the study of forest fires, Since then the scientists at the Laboratory have: 1) performed basic and applied research on critical fire problems of national interest, 2) conducted special regional research on fire problems peculiar to the 13 Southern States, and 3)...

  19. Health, Safety and Environmental Risk Assessment in Laboratory Sites

    Directory of Open Access Journals (Sweden)

    2012-05-01

    Full Text Available Introduction: ”Exposing to danger” or in other words, “risk” is a process which is led to an uncertain result in every field. Project risks are uncertain contingent events or situations that if they occur will have positive or negative effects on project’s objectives. Todays, research and educational process and more complicated and the professional risk management become much more difficult, as a result. .Material and Method: In this research, the health and safety issues have been studied and analyzed using ISO 14121 and the environmental issues by EMEA to determine the risk level separately for research laboratories and to prioritize corrective measure in each field (school. .Result: The finding in this study showed that from all the main risks within the rage of 38-86 percent have been decreased. Moreover average of the risk level for the health, safety and environment cases showed a significant decrease (Pvalue<0.0001 by implement controlling and protective countermeasures compariy to the priority state without any measures. . Conclusion: The risk assessment with hazards control strategy based on ISO 14121 is a compatible method in laboratory site as universities and other reasearch sites.

  20. Introduction

    International Nuclear Information System (INIS)

    Jastrzebski, J.

    2004-01-01

    Full text: The year 2003 was a consecutive period of a regular activity of the Heavy Ion Laboratory. The Cyclotron was delivering the heavy ion beams ranging from 11 B to 40 Ar to ten different experiments during more than 2000 hours. A few teams were able to finalize their previous years data collection by papers published in high-ranked journals. Other teams published in the proceedings of the international conferences their invited talks or oral contributions. Thirteen publication in ISI listed journals appeared last year basing on the data obtained using Warsaw machine. A similar number was published by the Laboratory staff using external facilities. The modest technical upgrades presented in this Report were achieved almost with no cost above the salaries. The 15 % decrease of the previous years running subvention from the Ministry of Science and Informatics accompanied by a consecutive refusal to fund the new ECR ion source makes the status of the Laboratory as the nuclear physics center in a very precarious position. The situation looks much more promising with the new project: the creation of an interdisciplinary Laboratory - the Warsaw Positron Emission Tomography Centre, launched by the Heavy Ion Laboratory and the Nuclear Medicine Department at the Clinical Hospital of the Warsaw Academy of Medicine in 2001. In 2003 the Warsaw Consortium for PET Collaboration (WCPC) was created and presently it takes an active role in the project preparation. The WCPC will dispose of a single radiopharmaceuticals production unit located at HIL and equipped with a commercial proton/deuteron cyclotron, chemical units and quality control laboratory. The PET CT, PET or adapted SPECT scanners will be successively located in the Warsaw hospital centers, starting with the medical unit closest (500 m) to the radiopharmaceutical production place. The participation in the WCPC of numerous University and Academy of Sciences units will promote the Warsaw Centre activity in research

  1. Argonne National Laboratory: An example of a US nuclear research centre

    International Nuclear Information System (INIS)

    Bhattacharyya, S.

    2001-01-01

    The nuclear era was ushered in 1942 with the demonstration of a sustained nuclear chain reaction in Chicago Pile 1 facility. The USA then set up five large national multi disciplinary laboratories for developing nuclear technology for civilian use and three national laboratories for military applications. Reactor development, including prototype construction, was the main focus of the Argonne National Laboratory. More than 100 power reactors operating in the USA have benefited from R and D in the national laboratories. However, currently the support for nuclear power has waned. With the end of the cold war there has also been a need to change the mission of laboratories involved in military applications. For all laboratories of the Department of Energy (DOE) the mission, which was clearly focused earlier on high risk, high payoff long term R and D has now become quite diffused with a number of near term programmes. Cost and mission considerations have resulted in shutting down of many large facilities as well as auxiliary facilities. Erosion of infrastructure has also resulted in reduced opportunities for research which means dwindling of interest in nuclear science and engineering among the younger generation. The current focus of nuclear R and D in the DOE laboratories is on plant life extension, deactivation and decommissioning, spent fuel management and waste management. Advanced aspects include space nuclear applications and nuclear fusion R and D. At the Argonne National Laboratory, major initiatives for the future would be in the areas of science, energy, environment and non-proliferation technologies. International collaboration would be useful mechanisms to achieve cost effective solutions for major developmental areas. These include reactor operation and safety, repositories for high level nuclear waste, reactor system decommissioning, large projects like a nuclear fusion reactor and advanced power reactors. The IAEA could have a positive role in these

  2. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  3. Report of the research results with University of Tokyo, Nuclear Engineering Research Laboratory's Facilities in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This is the report of the results of research carried out by the common utilization of the reactor 'Yayoi' and an electron accelerator in the Nuclear Engineering Research Laboratory in fiscal year 1989. In fiscal year 1989, the research themes using the reactor Yayoi or related to it were 15, and those using the linear accelerator reached 12, thus the common utilization attracted the strong interest of users. The Yayoi has been operated satisfactorily without trouble. The results of the research carried out by the common utilization of the Yayoi and a linac and the reports of 12 Yayoi research meetings in fiscal year 1989 are collected. (J.P.N.)

  4. Sequim Marine Research Laboratory routine environmental measurements during CY-1978

    International Nuclear Information System (INIS)

    Houston, J.R.; Blumer, P.J.

    1979-03-01

    Environmental data collected during 1978 in the vicinity of the Marine Research Laboratory show continued compliance with all applicable state and federal regulations and furthermore show no detectable change from conditions that existed in previous years. Samples collected for radiological analysis included soil, drinking water, bay water, clams, and seaweed. Radiation dose rates at 1 meter aboveground were also measured

  5. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  6. New ways of organizing product introductions.

    Science.gov (United States)

    Berglund, Martina; Harlin, Ulrika; Gustavsson, Maria; Säfsten, Kristina

    2012-01-01

    The aim of this paper is to describe and reflect on an interactive research approach used to address the challenges on how to improve product introductions, the part of the product realization process associated with the transfer of a product from product development to serial production. In the interactive research approach, research results as well as improvement of practice are given equal importance. The collaboration between researchers and practitioners therefore addresses both the focus and the process of the change. The approach includes four main iterative steps: 1) mapping/diagnosis, 2) feedback of results, 3) participation in development activities, and 4) follow-up/evaluation. The paper reports findings from interactive research in one company within office product industry and one company group, consisting of three company units within the engine industry. Preliminary findings indicate that the participating companies afterwards work in a more structured way with product introductions and that the employees have gained deeper knowledge about product introductions as well as experienced the advantages of working across functional boundaries. Furthermore, the interactive research approach is suitable to run projects from an ergonomics perspective as it focuses on developing both practice and theory, it is human-centered, and it emphasizes broad participation from practitioners.

  7. The Chemistry of Perfume: A Laboratory Course for Nonscience Majors

    Science.gov (United States)

    Logan, Jennifer L.; Rumbaugh, Craig E.

    2012-01-01

    "The Chemistry of Perfume" is a lab-only course for nonscience majors. Students learn fundamental concepts of chemistry through the context of fragrance, a pervasive aspect of daily life. The course consists of laboratories pertaining to five units: introduction, extraction, synthesis, characterization, and application. The introduction unit…

  8. Justification of parameters artificial soil for laboratory research of cutting edge wear

    Directory of Open Access Journals (Sweden)

    I. V. Liskin

    2017-01-01

    Full Text Available For soil cultivation with the cutting tools of agricultural machines we can allocate three main types of shavings: shift, separation and continuous chip. The shift is most accurately expressed on sandy soils, a separation - on clay and loamy, continuous chip - on humid soils with the high content of clay particles. In field conditions researches of regularities of cutting edges wear are complicated because of heterogeneity of physic and mechanical properties of the soil and the changing climatic conditions. At laboratory modeling of soil conditions we can make experiments independent of weather and season. For development of the artificial soil and depend modeling of edges wear we considered conditions of creation of model with use mechanics of abrasive wear. Have allocated The major factors defining character and intensity of wear were allocated. The wearing-out ability of abrasive particles is defined by the radius of the curve of their sharp ledges. This radius depends on the particle size. The hardness of the soil influences wear of the cutting details and characterizes penetration into it of the cutting elements, and degree of fixedness of abrasive particles defines shaving type. We conseeder the soil as the abrasive environment with the particles which are in a condition of non-rigid fixing and have an opportunity to move relatively each other or to turn on itself under the influence of normal and tangential stress. Type of shaving when soil layer destruction depends on a ratio of the normal and tangential stress characterizing degree of fixedness of firm particles. We conducted researches of physic and mechanical properties of the artificial soil on the basis of quartz sand and paraffin. Injection of the petrolatum into structure of the artificial soil reduces the hardness and degree of fixedness of firm particles, but the ceresin increases these indicators. The mechanical structure was changed due to introduction of dust-like cement and

  9. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  10. Report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1980-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1978 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  11. Report on operation utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1982-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1980 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  12. Report on operation, utilization and technical development of Research Reactors and Hot Laboratory

    International Nuclear Information System (INIS)

    1984-10-01

    Activities of the Division of Research Reactor Operation in fiscal 1981 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  13. Fiscal 1974-1975 Sunshine Project research report. Hydrogen energy research results (National laboratories and institutes); 1974, 1975 nendo suiso energy kenkyu seika hokokushu. Kokuritsu shiken kenkyusho kankei

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-10-01

    This report summarizes the 21 research results on hydrogen energy promoted by 3 national laboratories and 2 national institutes. (1) Tokyo National Industrial Research Institute (TNIRI): Ca-I system, Mn system, S system and hybrid cycles, and water decomposition reaction by CO as thermochemical hydrogen production technique. (2) Osaka National Industrial Research Institute (ONIRI): Fe system, Cu system and ammonia system cycles, and high-temperature high-pressure water electrolysis. (3) Electrotechnical Laboratory: high- temperature direct thermolysis hydrogen production technique. (4) TNIRI: Mg-base and transition metal-base hydrogen solidification technique. (5) ONIRI: Ti-base and rare metal- base hydrogen solidification technique. (6) Mechanical Engineering Laboratory: hydrogen-fuel engines. (7) Electrotechnical Laboratory and ONIRI: fuel cell. (8) TNIRI: disaster preventive technology for gaseous and liquid hydrogen. (9) Chugoku National Industrial Research Institute: preventing materials from embrittlement due to hydrogen. (10) Electrotechnical Laboratory: hydrogen energy system. (NEDO)

  14. US Department of Energy reservior research activities Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    The US Department of Energy (DOE) does not directly manage large reservoirs, but DOE laboratories conduct research on reservoir monitoring, assessment, and enhancement under several activities. These activities include (1) studies and remedial actions for reservoirs affected by releases from DOE facilities, (2) industry- sponsored research on reservoir and stream fish, (3) climate change research, (4) hydropower impact assessment studies conducted for the Federal Energy Regulatory Commission (FERC), and (5) the DOE hydropower program. These activities fall under DOE's missions of providing support for environmentally sound energy technologies and managing the legacies of past waste disposal practices at DOE facilities. 9 refs

  15. D and D of a plutonium research laboratory and related auxiliary systems

    International Nuclear Information System (INIS)

    Diaz Arocas, P.; Martinez Ortega, A.; Sama Colao, J.; Garcia Diaz, A.; Torre Rodriguez, J.; Diaz Diaz, J.L.; Argiles, E.; Garrido, C.

    2010-01-01

    CIEMAT, former Junta de Energia Nuclear (JEN) started nuclear research at the 60. decade, focussed on the development of pacific uses of Nuclear Energy. At that time, CIEMAT research and pilot plants developed involved the whole nuclear fuel cycle steps. It means from the uranium recovery to the spent fuel reprocessing. With this scope a plutonium research laboratory was constructed and operated from 1961 to the 90's focussed on chemistry of plutonium studies, separation processes and radiochemical analyses, in order to assist the working pilot plants at the Centre. Thereafter, as the result of the changes on the research objectives of CIEMAT, the plutonium laboratory suffered several modifications and finally it was safety stopped due to the obsolescence of its equipments and auxiliary systems. Present paper shows the D and D activities performed and techniques developed to avoid alpha emitter contamination. In every dismantling phase there were established the measures of operational radiological protection adapted to the radiological risk. Dosimetric controls realized during dismantlement showed that incorporation of radionuclides was not detected. Radiological final control was performed applying the derived levels of declassification to request the installation decommissioning. (authors)

  16. The Mont Terri rock laboratory: International research in the Opalinus Clay

    International Nuclear Information System (INIS)

    Bossart, P.

    2015-01-01

    This article reports on a visit made to the rock laboratory in Mont Terri, Switzerland, where research is being done concerning rock materials that can possibly be used for the implementation of repositories for nuclear wastes. Emphasis is placed on the project’s organisation, rock geology and on-going experiments. International organisations also involved in research on nuclear waste repositories are listed. The research facilities in tunnels built in Opalinus Clay at the Mont Terri site are described. The geology of Opalinus Clay and the structures found in the research tunnels are discussed, as is the hydro-geological setting. The research programme and various institutions involved are listed and experiments carried out are noted. The facilities are now also being used for research on topics related to carbon sequestration

  17. Controlled drill ampersand blast excavation at AECL's Underground Research Laboratory

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Onagi, D.P.; Thompson, P.M.

    1996-01-01

    A controlled drill and blast method has been developed and used to excavate the Underground Research Laboratory, a geotechnical facility constructed by Atomic Energy of Canada Limited (AECL) in crystalline rock. It has been demonstrated that the method can effectively reduce the excavation disturbed zone (EDZ) and is suitable for the construction of a used fuel disposal vault in the plutonic rock of the Canadian Shield

  18. Research and Progress on Virtual Cloud Laboratory

    OpenAIRE

    Zhang Jian Wei; Shang Zhi Hui; Yuan Chen; Ma Lin Lin; Cai Zeng Yu; Hu Chun Hui

    2016-01-01

    In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety,...

  19. Research and Development Program for transportation packagings at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Sorenson, K.B.

    1995-01-01

    This document contains information about the research and development programs dealing with waste transport at Sandia National Laboratories. This paper discusses topics such as: Why new packaging is needed; analytical methodologies and design codes;evaluation of packaging components; materials characterization; creative packaging concepts; packaging engineering and analysis; testing; and certification support

  20. Development and Assessment of Green, Research-Based Instructional Materials for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.

    2010-01-01

    This research entails integrating two novel approaches for enriching student learning in chemistry into the context of the general chemistry laboratory. The first is a pedagogical approach based on research in cognitive science and the second is the green chemistry philosophy. Research has shown that inquiry-based approaches are effective in…