WorldWideScience

Sample records for research laboratories participated

  1. Participation in college laboratory research apprenticeships among students considering careers in medicine

    Directory of Open Access Journals (Sweden)

    Dorothy A. Andriole

    2015-06-01

    Full Text Available Objective: We sought to determine the prevalence of college laboratory research apprenticeship (CLRA participation among students considering medical careers and to examine the relationship between CLRA participation and medical-school acceptance among students who applied to medical school. Methods: We used multivariate logistic regression to identify predictors of: 1 CLRA participation in a national cohort of 2001–2006 Pre-Medical College Admission Test (MCAT Questionnaire (PMQ respondents and 2 among those PMQ respondents who subsequently applied to medical school, medical-school acceptance by June 2013, reporting adjusted odds ratios (aOR and 95% confidence intervals (95% CI. Results: Of 213,497 PMQ respondents in the study sample (81.2% of all 262,813 PMQ respondents in 2001–2006, 72,797 (34.1% reported CLRA participation. Each of under-represented minorities in medicine (URM race/ethnicity (vs. white, aOR: 1.04; 95% CI: 1.01–1.06, Asian/Pacific Islander race/ethnicity (vs. white, aOR: 1.20; 95% CI: 1.17–1.22, and high school summer laboratory research apprenticeship (HSLRA participation (aOR: 3.95; 95% CI: 3.84–4.07 predicted a greater likelihood of CLRA participation. Of the 213,497 PMQ respondents in the study sample, 144,473 (67.7% had applied to medical school and 87,368 (60.5% of 144,473 medical-school applicants had been accepted to medical school. Each of female gender (vs. male, aOR: 1.19; 95% CI: 1.16–1.22, URM race/ethnicity (vs. white, aOR: 3.91; 95% CI: 3.75–4.08, HSLRA participation (aOR: 1.11; 95% CI: 1.03–1.19, CLRA participation (aOR: 1.12; 95% CI: 1.09–1.15, college summer academic enrichment program participation (aOR: 1.26; 95% CI: 1.21–1.31, and higher MCAT score (per point increase, aOR: 1.31; 95% CI: 1.30–1.31 predicted a greater likelihood of medical-school acceptance. Conclusions: About one-third of all PMQ respondents had participated in CLRAs prior to taking the MCAT, and such participation

  2. Final Report National Laboratory Professional Development Workshop for Underrepresented Participants

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Valerie [Texas Engineering Experiment Station, College Station, TX (United States)

    2016-11-07

    The 2013 CMD-IT National Laboratories Professional Development Workshop for Underrepresented Participants (CMD-IT NLPDev 2013) was held at the Oak Ridge National Laboratory campus in Oak Ridge, TN. from June 13 - 14, 2013. Sponsored by the Department of Energy (DOE) Advanced Scientific Computing Research Program, the primary goal of these workshops is to provide information about career opportunities in computational science at the various national laboratories and to mentor the underrepresented participants through community building and expert presentations focused on career success. This second annual workshop offered sessions to facilitate career advancement and, in particular, the strategies and resources needed to be successful at the national laboratories.

  3. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.

    1997-08-01

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  4. U.S. Department of Energy student research participation programs. Underrepresented minorities in U.S. Department of Energy student research participation programs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The purpose of this study was to identify those particular aspects of US Department of Energy (DOE) research participation programs for undergraduate and graduate students that are most associated with attracting and benefiting underrepresented minority students and encouraging them to pursue careers in science, engineering, and technology. A survey of selected former underrepresented minority participants, focus group analysis, and critical incident analysis serve as the data sources for this report. Data collected from underrepresented minority participants indicate that concerns expressed and suggestions made for conducting student research programs at DOE contractor facilities are not remarkably different from those made by all participants involved in such student research participation programs. With the exception of specific suggestions regarding recruitment, the findings summarized in this report can be interpreted to apply to all student research participants in DOE national laboratories. Clearly defined assignments, a close mentor-student association, good communication, and an opportunity to interact with other participants and staff are those characteristics that enhance any educational program and have positive impacts on career development.

  5. Virtual laboratory for fusion research in Japan

    International Nuclear Information System (INIS)

    Tsuda, K.; Nagayama, Y.; Yamamoto, T.; Horiuchi, R.; Ishiguro, S.; Takami, S.

    2008-01-01

    A virtual laboratory system for nuclear fusion research in Japan has been developed using SuperSINET, which is a super high-speed network operated by National Institute of Informatics. Sixteen sites including major Japanese universities, Japan Atomic Energy Agency and National Institute for Fusion Science (NIFS) are mutually connected to SuperSINET with the speed of 1 Gbps by the end of 2006 fiscal year. Collaboration categories in this virtual laboratory are as follows: the large helical device (LHD) remote participation; the remote use of supercomputer system; and the all Japan ST (Spherical Tokamak) research program. This virtual laboratory is a closed network system, and is connected to the Internet through the NIFS firewall in order to keep higher security. Collaborators in a remote station can control their diagnostic devices at LHD and analyze the LHD data as they were at the LHD control room. Researchers in a remote station can use the supercomputer of NIFS in the same environment as NIFS. In this paper, we will describe detail of technologies and the present status of the virtual laboratory. Furthermore, the items that should be developed in the near future are also described

  6. Simula Research Laboratory

    CERN Document Server

    Tveito, Aslak

    2010-01-01

    The Simula Research Laboratory, located just outside Oslo in Norway, is rightly famed as a highly successful research facility, despite being, at only eight years old, a very young institution. This fascinating book tells the history of Simula, detailing the culture and values that have been the guiding principles of the laboratory throughout its existence. Dedicated to tackling scientific challenges of genuine social importance, the laboratory undertakes important research with long-term implications in networks, computing and software engineering, including specialist work in biomedical comp

  7. Government-industry-uUniversity and rResearch lLaboratories cCoordination for new product development: Session 2. Government research laboratory perspective

    International Nuclear Information System (INIS)

    Kuzay, T.M.

    1997-01-01

    This talk is the second in an expanded series of presentations on the Government-Industry-University and Research Laboratories Coordination for new product development, which is a timely and important public policy issue. Such interactions have become particularly timely in light of the present decline in funding for research and development (R ampersand D) in the nation''s budget and in the private sector. These interactions, at least in principle, provide a means to maximize benefits for the greater good of the nation by pooling the diminishing resources. National laboratories, which traditionally interacted closely with the universities in educational training, now are able to also participate closely with industry in joint R ampersand D thanks to a number of public laws legislated since the early 80s. A review of the experiences with such interactions at Argonne National Laboratory, which exemplifies the national laboratories, shows that, despite differences in their traditions and the missions, the national laboratory-industry-university triangle can work together

  8. Full-participation of students with physical disabilities in science and engineering laboratories.

    Science.gov (United States)

    Jeannis, Hervens; Joseph, James; Goldberg, Mary; Seelman, Katherine; Schmeler, Mark; Cooper, Rory A

    2018-02-01

    To conduct a literature review identifying barriers and facilitators students with physical disabilities (SwD-P) may encounter in science and engineering (S&E) laboratories. Publications were identified from 1991 to 2015 in ERIC, web of science via web of knowledge, CINAHL, SCOPUS, IEEEXplore, engineering village, business source complete and PubMed databases using search terms and synonyms for accommodations, advanced manufacturing, additive manufacturing, assistive technology (AT), barriers, engineering, facilitators, instructor, laboratory, STEM education, science, students with disabilities and technology. Twenty-two of the 233 publications that met the review's inclusion criteria were examined. Barriers and facilitators were grouped based on the international classification of functioning, disability and health framework (ICF). None of the studies directly found barriers or facilitators to SwD-P in science or engineering laboratories within postsecondary environments. The literature is not clear on the issues specifically related to SwD-P. Given these findings, further research (e.g., surveys or interviews) should be conducted to identify more details to obtain more substantial information on the barriers that may prevent SwD-P from fully participating in S&E instructional laboratories. Implications for Rehabilitation Students with disabilities remain underrepresented going into STEM careers. A need exist to help uncover barriers students with disabilities encounter in STEM laboratory. Environments. Accommodations and strategies that facilitate participation in STEM laboratory environments are promising for students with disabilities.

  9. Current safety practices in nano-research laboratories in China.

    Science.gov (United States)

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  10. Revealing all: misleading self-disclosure rates in laboratory-based online research.

    Science.gov (United States)

    Callaghan, Diana E; Graff, Martin G; Davies, Joanne

    2013-09-01

    Laboratory-based experiments in online self-disclosure research may be inadvertently compromising the accuracy of research findings by influencing some of the factors known to affect self-disclosure behavior. Disclosure-orientated interviews conducted with 42 participants in the laboratory and in nonlaboratory settings revealed significantly greater breadth of self-disclosure in laboratory interviews, with message length and intimacy of content also strongly related. These findings suggest that a contrived online setting with a researcher presence may stimulate motivation for greater self-disclosure than would occur naturally in an online environment of an individual's choice. The implications of these findings are that researchers should consider the importance of experimental context and motivation in self-disclosure research.

  11. Clinical verification of genetic results returned to research participants: findings from a Colon Cancer Family Registry.

    Science.gov (United States)

    Laurino, Mercy Y; Truitt, Anjali R; Tenney, Lederle; Fisher, Douglass; Lindor, Noralane M; Veenstra, David; Jarvik, Gail P; Newcomb, Polly A; Fullerton, Stephanie M

    2017-11-01

    The extent to which participants act to clinically verify research results is largely unknown. This study examined whether participants who received Lynch syndrome (LS)-related findings pursued researchers' recommendation to clinically verify results with testing performed by a CLIA-certified laboratory. The Fred Hutchinson Cancer Research Center site of the multinational Colon Cancer Family Registry offered non-CLIA individual genetic research results to select registry participants (cases and their enrolled relatives) from 2011 to 2013. Participants who elected to receive results were counseled on the importance of verifying results at a CLIA-certified laboratory. Twenty-six (76.5%) of the 34 participants who received genetic results completed 2- and 12-month postdisclosure surveys; 42.3% of these (11/26) participated in a semistructured follow-up interview. Within 12 months of result disclosure, only 4 (15.4%) of 26 participants reported having verified their results in a CLIA-certified laboratory; of these four cases, all research and clinical results were concordant. Reasons for pursuing clinical verification included acting on the recommendation of the research team and informing future clinical care. Those who did not verify results cited lack of insurance coverage and limited perceived personal benefit of clinical verification as reasons for inaction. These findings suggest researchers will need to address barriers to seeking clinical verification in order to ensure that the intended benefits of returning genetic research results are realized. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  12. Community-Engaged Strategies to Increase Diversity of Participants in Health Education Research.

    Science.gov (United States)

    Khubchandani, Jagdish; Balls-Berry, Joyce; Price, James H; Webb, Fern J

    2016-05-01

    Minorities have historically been underrepresented in health-related research. Several strategies have been recommended to increase the participation of minorities in health-related research. However, most of the recommendations and guidelines apply to research in clinical or laboratory contexts. One of the more prominent methods to enhance minority participation in health-related research that has recently come to the fore is the use of community-engaged strategies. The purpose of this article is to summarize community-engaged outreach efforts that can be translated into useable strategies for health education research teams seeking to diversify the pool of research participants. Also, we provide a succinct overview of the various components of a research endeavor that may influence minority participation in health-related research. Finally, we analyze how health education specialists and SOPHE (Society of Public Health Education) can play a leading role in helping enhance minority participation in health-related research. © 2016 Society for Public Health Education.

  13. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  14. Aquatic Research Laboratory (ARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Columbia River and groundwater well water sources are delivered to the Aquatic Research Laboratory (ARL), where these resources are used to conduct research on fish...

  15. Do Research Participants Trust Researchers or Their Institution?

    Science.gov (United States)

    Guillemin, Marilys; Barnard, Emma; Allen, Anton; Stewart, Paul; Walker, Hannah; Rosenthal, Doreen; Gillam, Lynn

    2018-07-01

    Relationships of trust between research participants and researchers are often considered paramount to successful research; however, we know little about participants' perspectives. We examined whom research participants trusted when taking part in research. Using a qualitative approach, we interviewed 36 research participants, including eight Indigenous participants. Thematic analysis was used to analyze the data. This article focuses on findings related to non-Indigenous participants. In contrast to Indigenous participants, non-Indigenous participants placed their trust in research institutions because of their systems of research ethics, their reputation and prestige. Researchers working in non-Indigenous contexts need to be cognizant that the trust that participants place in them is closely connected with the trust that participants have in the institution.

  16. eParticipation Research

    DEFF Research Database (Denmark)

    Medaglia, Rony

    2012-01-01

    Research on the use of information technology to support democratic decision-making (eParticipation) is experiencing ongoing growth, stimulated by an increasing attention from both practitioner and research communities. This study provides the first longitudinal analysis of the development of the e......Participation field based on a shared framework, capturing the directions that the research field of eParticipation is taking in recent developments. Drawing on a literature search covering the period from April 2006 to March 2011, this study identifies, analyzes, and classifies 122 research articles within...... also suggests new analytical categories of research. Drawing on the analysis, inputs for a research agenda are suggested. These include the need to move beyond a technological perspective, encouraging the ongoing shift of research focus from government to citizens and other stakeholders, and the need...

  17. [Standardization in laboratory hematology by participating in external quality assurance programs].

    Science.gov (United States)

    Nazor, Aida; Siftar, Zoran; Flegar-Mestrić, Zlata

    2011-09-01

    Since 1985, Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, has been participating in the International External Quality Assessment Scheme for Hematology (IEQAS-H) organized by the World Health Organization (WHO). Owing to very good results, in 1987 the Department received a certificate of participation in this control scheme. Department has been cooperating in the external quality assessment program in laboratory hematology which has been continuously performed in Croatia since 1986 by the Committee for External Quality Assessment Schemes under the auspices of the Croatian Society of Medical Biochemists and School of Pharmacy and Biochemistry, University of Zagreb. Nowadays, 186 medical biochemical laboratories are included in the National External Quality Assessment program, which is performed three times per year. Our Department has participated in the international projects of the European Committee for External Quality Assurance Programs in Laboratory Medicine (EQALM).

  18. NASA's Propulsion Research Laboratory

    Science.gov (United States)

    2004-01-01

    The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.

  19. Arguments pro and contra the European laboratory in the participating countries

    International Nuclear Information System (INIS)

    Hermann, A.

    1989-01-01

    This chapter looks at how the decisions to participate in CERN, the European high energy particle physics laboratory founded in the 1950s, were made by certain participating countries, namely the United Kingdom, France, Italy and Germany. The idea of a united Europe was given high priority in France, Italy and Germany, all of which lacked accelerators and lagged behind the United Kingdom (UK), with its 400MeV Liverpool synchrocyclotron, in nuclear physics research. The UK thus remained as observer only until CERN was officially founded in September 1954. The French were particularly anxious to gain national prestige by influencing the development of the organization. All agreed that from the political point of view, developed science guarantees a high level of war technology. (UK)

  20. The participating researcher

    DEFF Research Database (Denmark)

    Hansen, Louise Ejgod

    2014-01-01

    and abilities. The cases will be analyzed with focus on the strategy of participation and the value implications of this for each of them. The second part of the paper will address the role of the researcher as a part of each of these participatory cultural projects as designer, applied researcher, consultant......My paper will focus on the self-reflection of my role as participating researcher in three different art projects all of which have participation as a key element. The paper will begin with a presentation of the three cases: Theatre Talks (Teatersamtaler), Stepping Stones (Trædesten) and Art...... or evaluator. The role of me as a researcher with regard to the development and evaluation of the projects will be analyzed, trying to answer the question: What are the methodological differences between the approaches and how does that affect the research process and results. These differences...

  1. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  2. Text Messaging Improves Participation in Laboratory Testing in Adolescent Liver Transplant Patients.

    Science.gov (United States)

    McKenzie, Rebecca B; Berquist, William E; Foley, Megan A; Park, K T; Windsheimer, Jered E; Litt, Iris F

    In solid organ transplant patients, non-participation in all aspects of the medical regimen is a prevalent problem associated with adverse consequences particularly in the adolescent and young adult (AYA) age group. This study is the first to evaluate the feasibility, utility and impact of a text messaging (TM) intervention to improve participation in laboratory testing in adolescent liver transplant patients. AYA patients, aged 12 to 21 years, were recruited for a prospective pilot trial evaluating a TM intervention delivered over a 1-year period. The intervention involved automated TM reminders with feedback administered according to a prescribed laboratory testing frequency. Participation rate in laboratory testing after the intervention was compared to the year prior. Patient responses and feedback by text and survey were used to assess feasibility, acceptability and use of the intervention. Forty-two patients were recruited and 33 patients remained enrolled for the study duration. Recipients of the TM intervention demonstrated a significant improvement in participation rate in laboratory testing from 58% to 78% (Prate was also significantly higher than in non-intervention controls (P=.003). There was a high acceptability, response rate and a significant correlation with reported versus actual completion of laboratory tests by TM. TM reminders significantly improved participation in laboratory testing in AYA liver transplant patients. The intervention demonstrated feasibility, acceptability, and use with a high proportion of patients who engaged in and perceived a benefit from using this technology.

  3. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    Science.gov (United States)

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  4. Small-Engine Research Laboratory (SERL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Small-Engine Research Laboratory (SERL) is a facility designed to conduct experimental small-scale propulsion and power generation systems research....

  5. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  6. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  7. eParticipation Research

    DEFF Research Database (Denmark)

    Medaglia, Rony

    2011-01-01

    This paper provides an update of the existing eParticipation research state of the art, and a longitudinal analysis of the development of the eParticipation field based on a shared framework of analysis. Drawing on a literature search covering the period from April 2006 to March 2011 included, 123......, sometimes in counterintuitive directions. Drawing on the analysis, the conclusion section provides inputs for a research agenda. These include the need to move beyond a technological perspective, and encouraging the ongoing shift of research focus from government to citizens and other stakeholders....

  8. 'What do I know? Should I participate?' Considerations on participation in HIV related research among HIV infected adults in Bangalore, South India.

    Science.gov (United States)

    Rodrigues, Rashmi J; Antony, Jimmy; Krishnamurthy, Shubha; Shet, Anita; De Costa, Ayesha

    2013-01-01

    India has the highest number of HIV infected persons in the world after South Africa. Much HIV related behavioral, clinical and laboratory based research is ongoing in India. Yet little is known on Indian HIV patients' knowledge of research, their processes of decision making and motives for participation. We aimed to explore these areas among HIV infected individuals to understand their reasons for participating in research. This is a cross sectional survey among 173 HIV infected adults at a tertiary level hospital in Bangalore, India, done between October 2010 and January 2011. A pre-tested questionnaire was administered to the participants by trained research assistants to assess their knowledge regarding research, willingness to participate, decision making and determinants of participation. Participants were presented with five hypothetical HIV research studies. Each study had a different level of intervention and time commitment. Of respondents, 103(60%), said that research meant 'to discover something new' and 138(80%) were willing to participate in research. A third of the respondents were unaware of their right to refuse participation. Willingness to participate in research varied with level of intervention. It was the lowest for the hypothetical study involving sensitive questions followed by the hypothetical drug trial; and was the highest for the hypothetical cross sectional questionnaire based study (pWomen were less likely to make autonomous decisions for participation in interventional studies. Despite a majority willing to participate, over a third of respondents did not have any knowledge of research or the voluntary nature of participation. This has ethical implications. Researchers need to focus on enabling potential research participants understand the concepts of research, promote autonomous decisions, especially by women and restrict therapeutic misconception.

  9. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Zaidi, M.K.

    2005-01-01

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  10. Reactor safety research and development in Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Nitheanandan, T. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Atomic Energy of Canada Limited's Chalk River Laboratories provides three different services to stakeholders and customers. The first service provided by the laboratory is the implementation of Research and Development (R&D) programs to provide the underlying technological basis of safe nuclear power reactor designs. A significant portion of the Canadian R&D capability in reactor safety resides at Atomic Energy of Canada Limited's Chalk River Laboratories, and this capability was instrumental in providing the science and technology required to aid in the safety design of CANDU power reactors. The second role of the laboratory has been in supporting nuclear facility licensees to ensure the continued safe operation of nuclear facilities, and to develop safety cases to justify continued operation. The licensing of plant life extension is a key industry objective, requiring extensive research on degradation mechanisms, such that safety cases are based on the original safety design data and valid and realistic assumptions regarding the effect of ageing and management of plant life. Recently, Chalk River Laboratories has been engaged in a third role in research to provide the technical basis and improved understanding for decision making by regulatory bodies. The state-of-the-art test facilities in Chalk River Laboratories have been contributing to the R&D needs of all three roles, not only in Canada but also in the international community, thorough Canada's participation in cooperative programs lead by International Atomic Energy Agency and the OECD's Nuclear Energy Agency. (author)

  11. 'What do I know? Should I participate?' Considerations on participation in HIV related research among HIV infected adults in Bangalore, South India.

    Directory of Open Access Journals (Sweden)

    Rashmi J Rodrigues

    Full Text Available BACKGROUND: India has the highest number of HIV infected persons in the world after South Africa. Much HIV related behavioral, clinical and laboratory based research is ongoing in India. Yet little is known on Indian HIV patients' knowledge of research, their processes of decision making and motives for participation. We aimed to explore these areas among HIV infected individuals to understand their reasons for participating in research. METHODOLOGY/PRINCIPAL FINDINGS: This is a cross sectional survey among 173 HIV infected adults at a tertiary level hospital in Bangalore, India, done between October 2010 and January 2011. A pre-tested questionnaire was administered to the participants by trained research assistants to assess their knowledge regarding research, willingness to participate, decision making and determinants of participation. Participants were presented with five hypothetical HIV research studies. Each study had a different level of intervention and time commitment. Of respondents, 103(60%, said that research meant 'to discover something new' and 138(80% were willing to participate in research. A third of the respondents were unaware of their right to refuse participation. Willingness to participate in research varied with level of intervention. It was the lowest for the hypothetical study involving sensitive questions followed by the hypothetical drug trial; and was the highest for the hypothetical cross sectional questionnaire based study (p<0.0015. Individual health benefits and altruism were the primary motives for participation in research and indicate the presence of therapeutic misconception. Women were less likely to make autonomous decisions for participation in interventional studies. CONCLUSIONS/SIGNIFICANCE: Despite a majority willing to participate, over a third of respondents did not have any knowledge of research or the voluntary nature of participation. This has ethical implications. Researchers need to focus on

  12. Research and service capabilities of the National Nuclear Forensic Research Laboratory

    International Nuclear Information System (INIS)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C.

    2016-09-01

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  13. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    Science.gov (United States)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  14. Public Engagement Through Shared Immersion: Participating in the Processes of Research.

    Science.gov (United States)

    Tang, Jessica Janice; Maroothynaden, Jason; Bello, Fernando; Kneebone, Roger

    2013-10-01

    Recently, the literature has emphasized the aims and logistics of public engagement, rather than its epistemic and cultural processes. In this conceptual article, we use our work on surgical simulation to describe a process that has moved from the classroom and the research laboratory into the public sphere. We propose an innovative shared immersion model for framing the relationship between engagement activities and research. Our model thus frames the public engagement experience as a participative encounter, which brings visitor and researcher together in a shared (surgical) experience mediated by experts from a range of domains.

  15. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  16. Laboratory for Large Data Research

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: The Laboratory for Large Data Research (LDR) addresses a critical need to rapidly prototype shared, unified access to large amounts of data across both the...

  17. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  18. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  19. Fuel Combustion Laboratory | Transportation Research | NREL

    Science.gov (United States)

    Fuel Combustion Laboratory Fuel Combustion Laboratory NREL's Fuel Combustion Laboratory focuses on designs, using both today's technology and future advanced combustion concepts. This lab supports the combustion chamber platform for fuel ignition kinetics research, was acquired to expand the lab's

  20. Network Science Research Laboratory (NSRL) Discrete Event Toolkit

    Science.gov (United States)

    2016-01-01

    ARL-TR-7579 ● JAN 2016 US Army Research Laboratory Network Science Research Laboratory (NSRL) Discrete Event Toolkit by...Laboratory (NSRL) Discrete Event Toolkit by Theron Trout and Andrew J Toth Computational and Information Sciences Directorate, ARL...Research Laboratory (NSRL) Discrete Event Toolkit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Theron Trout

  1. Public and biobank participant attitudes toward genetic research participation and data sharing.

    Science.gov (United States)

    Lemke, A A; Wolf, W A; Hebert-Beirne, J; Smith, M E

    2010-01-01

    Research assessing attitudes toward consent processes for high-throughput genomic-wide technologies and widespread sharing of data is limited. In order to develop a better understanding of stakeholder views toward these issues, this cross-sectional study assessed public and biorepository participant attitudes toward research participation and sharing of genetic research data. Forty-nine individuals participated in 6 focus groups; 28 in 3 public focus groups and 21 in 3 NUgene biorepository participant focus groups. In the public focus groups, 75% of participants were women, 75% had some college education or more, 46% were African-American and 29% were Hispanic. In the NUgene focus groups, 67% of participants were women, 95% had some college education or more, and the majority (76%) of participants was Caucasian. Five major themes were identified in the focus group data: (a) a wide spectrum of understanding of genetic research; (b) pros and cons of participation in genetic research; (c) influence of credibility and trust of the research institution; (d) concerns about sharing genetic research data and need for transparency in the Policy for Sharing of Data in National Institutes of Health-Supported or Conducted Genome-Wide Association Studies; (e) a need for more information and education about genetic research. In order to increase public understanding and address potential concerns about genetic research, future efforts should be aimed at involving the public in genetic research policy development and in identifying or developing appropriate educational strategies to meet the public's needs.

  2. Research participation registers can increase opportunities for patients and the public to participate in health services research.

    Science.gov (United States)

    Leach, Verity; Redwood, Sabi; Lasseter, Gemma; Walther, Axel; Reid, Colette; Blazeby, Jane; Martin, Richard; Donovan, Jenny

    2016-07-01

    Members of the public and patients repeatedly indicate their willingness to take part in research, but current United Kingdom research governance involves complex rules about gaining consent. Research participation registers that seek consent from participants to be approached about future studies have several potential benefits, including: increased research participation across clinical and healthy populations; simplified recruitment to health care research; support for people's autonomy in decision making; and improved efficiency and generalizability of research. These potential benefits have to be balanced against ethical and governance considerations. With appropriate processes in place, seeking prospective consent from patients and members of the public to be approached about future studies could potentially increase public participation in health research without compromising informed consent and other ethical principles. © The Author(s) 2016.

  3. NAS Human Factors Safety Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory conducts an integrated program of research on the relationship of factors concerning individuals, work groups, and organizations as employees perform...

  4. Remote participation technologies in the EFDA Laboratories - status and prospects

    International Nuclear Information System (INIS)

    Schmidt, V.; How, J.A.

    2003-01-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  5. Remote participation technologies in the EFDA Laboratories - status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V. [Associazione EURATOM-ENEA sulla Fusione, Consorzio RFX, Padova (Italy); How, J.A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    More than 25 laboratories of the European Fusion Development Agreement (EFDA) have been increasingly using remote participation (RP) technologies for collaborative work on several experiments. We present an overview of the technologies that are employed to provide remote data access, remote computer access, and tele-conference. We also deal with computer network requirements, and support and documentation needs. The biggest application of these tools has been the joint scientific exploitation of the JET Facilities. Increasingly other experiments are operated as shared facilities, and the RP tools are being used in this context. For remote data access there is a clear trend towards MDSplus as common data access layer for multi-experiment data access. Secure Remote Computer access is converging on two different solutions. Video-conference is also converging on two partially inter-operable solutions, whereas the sharing of presentation material is converging on one solution. Remote Control Room participation is being used in two laboratories. Network monitoring has been developed and is now in routine use. The RP work is being done at many laboratories and is co-ordinated by EFDA. A number of items in several fields need still to be tackled and an overview of these is presented. (authors)

  6. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  7. Laboratory Technology Research: Abstracts of FY 1996 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  8. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  9. The underground research laboratories

    International Nuclear Information System (INIS)

    1997-06-01

    This educational booklet is a general presentation of the selected sites for the installation of underground research laboratories devoted to the feasibility studies of deep repositories for long-life radioactive wastes. It describes the different type of wastes and their management, the management of long life radioactive wastes, the site selection and the 4 sites retained, the preliminary research studies, and the other researches carried out in deep disposal facilities worldwide. (J.S.)

  10. Research in organizational participation and cooperation

    DEFF Research Database (Denmark)

    Jeppesen, Hans Jeppe; Jønsson, Thomas; Rasmussen, Thomas

    2005-01-01

    This article discusses some different perspectives on organizational participation and presents conducted and ongoing research projects by the research unit SPARK at Department of Psychology, University of Aarhus.......This article discusses some different perspectives on organizational participation and presents conducted and ongoing research projects by the research unit SPARK at Department of Psychology, University of Aarhus....

  11. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  12. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  13. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  14. Promoting research participation: why not advertise altruism?

    Science.gov (United States)

    Williams, Brian; Entwistle, Vikki; Haddow, Gill; Wells, Mary

    2008-04-01

    Participation rates have a major impact on the quality, cost and timeliness of health research. There is growing evidence that participation rates may be falling and that new research governance structures and procedures may be increasing the likelihood of recruitment bias. It may be possible to encourage public reflection about research participation and enhance recruitment by providing information about the potential benefits of research to others as well as to research participants and by stimulating debate and influencing social expectations about involvement. Publicly funded and charitable bodies use various forms of advertising to encourage altruistic behaviour and generate social expectations about donating money, blood and organs for the benefit of others. Consideration should be given to the use of similar persuasive communications to promote wider participation in health research generally.

  15. Laboratory animal science course in Switzerland: participants' points of view and implications for organizers.

    Science.gov (United States)

    Crettaz von Roten, Fabienne

    2018-02-01

    Switzerland has implemented a mandatory training in laboratory animal science since 1999; however a comprehensive assessment of its effects has never been undertaken so far. The results from the analysis of participants in the Swiss Federation of European Laboratory Animal Science Associations (FELASA) Category B compulsory courses in laboratory animal science run in 2010, 2012, 2014 and 2016 showed that the participants fully appreciated all elements of the course. The use of live animals during the course was supported and explained by six arguments characterized with cognitive, emotional and forward-looking factors. A large majority considered that the 3R (replacement, reduction and refinement) principles were adequately applied during the course. Responses to an open question offered some ideas for improvements. This overall positive picture, however, revealed divergent answers from different subpopulations in our sample (for example, scientists with more hindsight, scientists trained in biology, or participants from Asian countries).

  16. Participant dropout as a function of survey length in internet-mediated university studies: implications for study design and voluntary participation in psychological research.

    Science.gov (United States)

    Hoerger, Michael

    2010-12-01

    Internet-mediated research has offered substantial advantages over traditional laboratory-based research in terms of efficiently and affordably allowing for the recruitment of large samples of participants for psychology studies. Core technical, ethical, and methodological issues have been addressed in recent years, but the important issue of participant dropout has received surprisingly little attention. Specifically, web-based psychology studies often involve undergraduates completing lengthy and time-consuming batteries of online personality questionnaires, but no known published studies to date have closely examined the natural course of participant dropout during attempted completion of these studies. The present investigation examined participant dropout among 1,963 undergraduates completing one of six web-based survey studies relatively representative of those conducted in university settings. Results indicated that 10% of participants could be expected to drop out of these studies nearly instantaneously, with an additional 2% dropping out per 100 survey items included in the study. For individual project investigators, these findings hold ramifications for study design considerations, such as conducting a priori power analyses. The present results also have broader ethical implications for understanding and improving voluntary participation in research involving human subjects. Nonetheless, the generalizability of these conclusions may be limited to studies involving similar design or survey content.

  17. The external quality assessment scheme: Five years experience as a participating laboratory

    Directory of Open Access Journals (Sweden)

    Chaudhary Rajendra

    2010-01-01

    Full Text Available Background and Aim : Quality assurance in blood banking includes active participation in the external quality program. Such a program offers valuable benefits to patient care, their safety, and an overall quality of laboratory practices. In the year 2002, we participated in the External Quality Assessment Scheme (EQAS under the World Health Organization (WHO, Bureau of Laboratory Quality Standards, Thailand. Materials and Methods: In the current study we evaluated our EQAS test result of the past five years, from 2003 to 2007. Test results of all blood samples such as ABO grouping, D typing, antibody screening, antibody identification, and transfusion transmitted infection (TTI testing were analyzed and documented. Results: Discordant results in one or more instances were observed with antibody identification, weak D testing, and tests for anti-HIV1/2 and HBsAg. Twice we failed to detect the ′anti-Mia′ antibody in the issued sample and that could be attributed to the absence of the corresponding antigen in the used cell panel. HBsAg was missed due to its critically low titer in the serum and the comparatively low sensitivity of our Enzyme-Linked Immunosorbent Assay (ELISA test kit. Conclusion: All these failures in the last five years have helped us to significantly improve our transfusion service in terms of performance evaluation, patient care and safety issues, and the overall quality of laboratory practices. We therefore recommend all laboratories and hospitals to participate in the EQAS program, which will definitely help them to improve from what they learn.

  18. A training course on laboratory animal science: an initiative to implement the Three Rs of animal research in India.

    Science.gov (United States)

    Pratap, Kunal; Singh, Vijay Pal

    2016-03-01

    There is a current need for a change in the attitudes of researchers toward the care and use of experimental animals in India. This could be achieved through improvements in the provision of training, to further the integration of the Three Rs concept into scientific research and into the regulations of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA). A survey was performed after participants undertook the Federation of European Laboratory Animal Science Associations (FELASA) Category C-based course on Laboratory Animal Science (in 2013 and 2015). It revealed that the participants subsequently employed, in their future research, the practical and theoretical Three Rs approaches that they had learned. This is of great importance in terms of animal welfare, and also serves to benefit their research outcomes extensively. All the lectures, hands-on practical sessions and supplementary elements of the courses, which also involved the handling of small animals and procedures with live animals, were well appreciated by the participants. Insight into developments in practical handling and welfare procedures, norms, directives, and ethical use of laboratory animals in research, was also provided, through the comparison of results from the 2013 and 2015 post-course surveys. 2016 FRAME.

  19. The Swedish Research Councils' Laboratory progress report for 1975

    International Nuclear Information System (INIS)

    Rudstam, G.

    1976-01-01

    The Swedish Research Councils' Laboratory herewith presents its progress report for 1975. The report summarizes the current projects carried out by the research groups working at the laboratory. The very efficient assistance of the staff of the laboratory is greatfully acknowledged. The laboratory has been financially supported by the Atomic Research Council, the Medical Research Council, the Natural Science Research Council, and the Board of Technical Development. Valuable support in various ways has also been given by the Atomic Energy Company (AB Atomenergi). (author)

  20. Argonne Research Library | Argonne National Laboratory

    Science.gov (United States)

    Argonne Argonne Research Library The Argonne Research Library supports the scientific and technical research needs of Argonne National Laboratory employees. Our library catalog is available via the Research questions or concerns, please contact us at librarians@anl.gov. Contact the Library Argonne Research Library

  1. Public and Biobank Participant Attitudes toward Genetic Research Participation and Data Sharing

    OpenAIRE

    Lemke, A.A.; Wolf, W.A.; Hebert-Beirne, J.; Smith, M.E.

    2010-01-01

    Research assessing attitudes toward consent processes for high-throughput genomic-wide technologies and widespread sharing of data is limited. In order to develop a better understanding of stakeholder views toward these issues, this cross-sectional study assessed public and biorepository participant attitudes toward research participation and sharing of genetic research data. Forty-nine individuals participated in 6 focus groups; 28 in 3 public focus groups and 21 in 3 NUgene biorepository pa...

  2. Comparing the Impact of Course-Based and Apprentice-Based Research Experiences in a Life Science Laboratory Curriculum†

    Science.gov (United States)

    Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.

    2015-01-01

    This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568

  3. ParticipACTION: Overview and introduction of baseline research on the "new" ParticipACTION

    Directory of Open Access Journals (Sweden)

    Craig Cora L

    2009-12-01

    Full Text Available Abstract Background This paper provides a brief overview of the Canadian physical activity communications and social marketing organization "ParticipACTION"; introduces the "new" ParticipACTION; describes the research process leading to the collection of baseline data on the new ParticipACTION; and outlines the accompanying series of papers in the supplement presenting the detailed baseline data. Methods Information on ParticipACTION was gathered from close personal involvement with the organization, from interviews and meetings with key leaders of the organization, from published literature and from ParticipACTION archives. In 2001, after nearly 30 years of operation, ParticipACTION ceased operations because of inadequate funding. In February 2007 the organization was officially resurrected and the launch of the first mass media campaign of the "new" ParticipACTION occurred in October 2007. The six-year absence of ParticipACTION, or any equivalent substitute, provided a unique opportunity to examine the impact of a national physical activity social marketing organization on important individual and organizational level indicators of success. A rapid response research team was established in January 2007 to exploit this natural intervention research opportunity. Results The research team was successful in obtaining funding through the new Canadian Institutes of Health Research Intervention Research (Healthy Living and Chronic Disease Prevention Funding Program. Data were collected on individuals and organizations prior to the complete implementation of the first mass media campaign of the new ParticipACTION. Conclusion Rapid response research and funding mechanisms facilitated the collection of baseline information on the new ParticipACTION. These data will allow for comprehensive assessments of future initiatives of ParticipACTION.

  4. Physics Research at the Naval Research Laboratory

    Science.gov (United States)

    Coffey, Timothy

    2001-03-01

    The United States Naval Research Laboratory conducts a broad program of research into the physical properties of matter. Studies range from low temperature physics, such as that associated with superconducting systems to high temperature systems such as laser produced or astrophysical plasmas. Substantial studies are underway on surface science and nanoscience. Studies are underway on the electronic and optical properties of materials. Studies of the physical properties of the ocean and the earth’s atmosphere are of considerable importance. Studies of the earth’s sun particularly as it effects the earth’s ionosphere and magnetosphere are underway. The entire program involves a balance of laboratory experiments, field experiments and supporting theoretical and computational studies. This talk will address NRL’s funding of physics, its employment of physicists and will illustrate the nature of NRL’s physics program with several examples of recent accomplishments.

  5. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  6. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    Science.gov (United States)

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  7. Laboratory technology research - abstracts of FY 1997 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  8. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    Science.gov (United States)

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  9. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    Directory of Open Access Journals (Sweden)

    Joseph Mumba Zulu

    Full Text Available Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent.Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views.Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention.Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  10. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  11. Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  12. Evaluating a Research Training Programme for People with Intellectual Disabilities Participating in Inclusive Research: The Views of Participants.

    Science.gov (United States)

    Fullana, Judit; Pallisera, Maria; Català, Elena; Puyalto, Carolina

    2017-07-01

    This article presents the results of evaluating a research training programme aimed at developing the skills of people with intellectual disabilities to actively participate in inclusive research. The present authors opted for a responsive approach to evaluation, using a combination of interviews, questionnaires and focus groups to gather information on the views of students, trainers and members of the research team regarding how the programme progressed, the learning achieved and participants' satisfaction with the programme. The evaluation showed that most of the participants were satisfied with the programme and provided guidelines for planning contents and materials, demonstrating the usefulness of these types of programme in constructing the research group and empowering people with intellectual disabilities to participate in research. The evaluation revealed that the programme had been a positive social experience that fostered interest in lifelong learning for people with intellectual disabilities. © 2016 John Wiley & Sons Ltd.

  13. Shedding light on research participation effects in behaviour change trials: a qualitative study examining research participant experiences.

    Science.gov (United States)

    MacNeill, Virginia; Foley, Marian; Quirk, Alan; McCambridge, Jim

    2016-01-29

    The sequence of events in a behaviour change trial involves interactions between research participants and the trial process. Taking part in such a study has the potential to influence the behaviour of the participant, and if it does, this can engender bias in trial outcomes. Since participants' experience has received scant attention, the aim of this study is thus to generate hypotheses about which aspects of the conduct of behaviour change trials might matter most to participants, and thus have potential to alter subsequent behaviours and bias trial outcomes Twenty participants were opportunistically screened for a health compromising behaviour (unhealthy diet, lack of exercise, smoking or alcohol consumption) and recruited if eligible. Semi structured face to face interviews were conducted, after going through the usual processes involved in trial recruitment, baseline assessment and randomisation. Participants were given information on the contents of an intervention or control condition in a behaviour change trial, which was not actually implemented. Three months later they returned to reflect on these experiences and whether they had any effect on their behaviour during the intervening period. Data from the latter interview were analysed thematically using a modified grounded theory approach. The early processes of trial participation raised awareness of unhealthy behaviours, although most reported having had only fleeting intentions to change their behaviour as a result of taking part in this study, in the absence of interventions. However, careful examination of the accounts revealed evidence of subtle research participation effects, which varied according to the health behaviour, and its perceived social acceptability. Participants' relationships with the research study were viewed as somewhat important in stimulating thinking about whether and how to make lifestyle changes. These participants described no dramatic impacts attributable to taking part in

  14. Occupational radiation exposures in research laboratories

    International Nuclear Information System (INIS)

    Vaccari, S.; Papotti, E.; Pedrazzi, G.

    2006-01-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ( 57 Co in Moessbauer application) and unsealed form ( 3 H, 14 C, 32 P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  15. Motivational factors for participation in biomedical research: evidence from a qualitative study of biomedical research participation in Blantyre District, Malawi.

    Science.gov (United States)

    Mfutso-Bengo, Joseph; Manda-Taylor, Lucinda; Masiye, Francis

    2015-02-01

    Obtaining effective informed consent from research participants is a prerequisite to the conduct of an ethically sound research. Yet it is believed that obtaining quality informed consent is generally difficult in settings with low socioeconomic status. This is so because of the alleged undue inducements and therapeutic misconception among participants. However, there is a dearth of data on factors that motivate research participants to take part in research. Hence, this study was aimed at filling this gap in the Malawian context. We conducted 18 focus group discussions with community members in urban and rural communities of Blantyre in Malawi. Most participants reported that they accepted the invitation to participate in research because of better quality treatment during study also known as ancillary care, monetary and material incentives given to participants, and thorough medical diagnosis. © The Author(s) 2014.

  16. Great Lakes Environmental Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — NOAA-GLERL and its partners conduct innovative research on the dynamic environments and ecosystems of the Great Lakes and coastal regions to provide information for...

  17. Research report 1987-1989: Environmental Quality Laboratory and Environmental Engineering Science, W. M. Keck Laboratories

    OpenAIRE

    Brooks, Norman H.

    1990-01-01

    This research biennial report for 1987-89 covers the activities of both the Environmental Engineering Science program and the Environmental Quality Laboratory for the period October 1987-November 1989. Environmental Engineering Science is the degree-granting academic program housed in the Keck Laboratories, with associated research projects. The Environmental Quality Laboratory is a research center focusing on large scale problems of environmental quality and natural resources. All the facult...

  18. Older adolescents' views regarding participation in Facebook research.

    Science.gov (United States)

    Moreno, Megan A; Grant, Alison; Kacvinsky, Lauren; Moreno, Peter; Fleming, Michael

    2012-11-01

    Facebook continues to grow in popularity among adolescents as well as adolescent researchers. Guidance on conducting research using Facebook with appropriate attention to privacy and ethics is scarce. To inform such research efforts, the purpose of this study was to determine older adolescents' responses after learning that they were participants in a research study that involved identification of participants using Facebook. Public Facebook profiles of older adolescents aged 18-19 years from a large state university were examined. Profile owners were then interviewed. During the interview, participants were informed that they were identified by examining publicly available Facebook profiles. Participants were asked to discuss their views on this research method. A total of 132 participants completed the interview (70% response rate); the average age was 18.4 years (SD = .5); and our sample included 64 male participants (48.5%). Participant responses included endorsement (19.7%), fine (36.4%), neutral (28.8%), uneasy (9.1%), and concerned (6.1%). Among participants who were uneasy or concerned, the majority voiced confusion regarding their current profile security settings (p = .00). The majority of adolescent participants viewed the use of Facebook for research positively. These findings are consistent with the approach taken by many U.S. courts. Researchers may consider these findings when developing research protocols involving Facebook. Copyright © 2012 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  19. Occupational radiation exposures in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Vaccari, S.; Papotti, E. [Parma Univ., Health Physics (Italy); Pedrazzi, G. [Parma Univ., Dept. of Public Health (Italy)

    2006-07-01

    Radioactive sources are widely used in many research activities at University centers. In particular, the activities concerning use of sealed form ({sup 57}Co in Moessbauer application) and unsealed form ({sup 3}H, {sup 14}C, {sup 32}P in radioisotope laboratories) are analyzed. The radiological impact of these materials and potential effective doses to researchers and members of the public were evaluated to show compliance with regulatory limits. A review of the procedures performed by researchers and technicians in the research laboratories with the relative dose evaluations is presented in different situations, including normal operations and emergency situations, for example the fire. A study of the possible exposure to radiation by workers, restricted groups of people, and public in general, as well as environmental releases, is presented. (authors)

  20. Advancing public participation in scientific research: A framework for leveraging public participation in environmental health and emergency response research

    Science.gov (United States)

    This research paper uses case analysis methods to understand why participants engage in this innovative approach public participation in scientific research, and what they hope that will mean for their community. The research questions that guide this analysis are: 1) what factor...

  1. Research System Integration Laboratory (SIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The VEA Research SIL (VRS) is essential to the success of the TARDEC 30-Year Strategy. The vast majority of the TARDEC Capability Sets face challenging electronics...

  2. Outline of new extra high voltage research equipment at Kumatori research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hohki, S; Ikeda, G

    1965-01-01

    Following up the construction in 1939 of an ehv research laboratory, another new research laboratory was established at Kumatori with a ground area of 142,000 square meters. As the first stage of this construction plan, the new research equipment was installed in November 1963 and began operation. The laboratory consists of comprehensive ehv research equipment and facilities relating to atomic energy. The former includes a 6000-kV impulse voltage generator, a 1650-kV alternating current testing transformer, a 300-m overhead transmission test line, a tower strength testing facility, and other various high-power test facilities. Studies on a 400- to 500-kV overhead power transmission system and other new transmission systems are currently being conducted. The details of the construction of the ehv research equipment together with the research policy for future ehv engineering are given.

  3. Sharing Research Findings with Research Participants and Communities

    Directory of Open Access Journals (Sweden)

    LE Ferris

    2011-06-01

    Full Text Available In occupational and environmental health research, individual, group and community research participants have a unique and vested interest in the research findings. The ethical principles of autonomy, non-maleficence and beneficence are helpful in considering the ethical issues in the disclosure of research findings in occupational and environmental health research. Researchers need to include stakeholders, such as groups and communities, in these discussions and in planning for the dissemination of research findings. These discussions need to occur early in the research process.

  4. Participant Action Research and Environmental Education

    Directory of Open Access Journals (Sweden)

    Yasmin Coromoto Requena Bolívar

    2018-02-01

    Full Text Available The committed participation of the inhabitants in diverse Venezuelan communities is fundamental in the search of solution to environmental problems that they face in the daily life; in the face of this reality, studies based on Participant Action Research were addressed, through a review and documentary analysis of four works related to community participation, carried out in the state of Lara. For this, the following question was asked: ¿What was the achievement in the solution of environmental problems in the communities, reported through the master's degree works oriented under participant action research and presented to Yacambú University in 2011-2013? A qualitative approach is used, approaching the information according to the stages suggested by Arias (2012: Search of sources, initial reading of documents, preparation of the preliminary scheme, data collection, analysis and interpretation of the information, formulation of the final scheme, introduction and conclusions, final report. It begins with the definition of the units of analysis and inquiry of the literature, through theoretical positions, concepts and contributions on: participant action research, participation and environmental education, to culminate with the analysis and interpretation of the information and the conclusions of this investigation. For the collection of the data, the bibliographic records were used with the purpose of organizing the information on the researches consulted, and of summary for the synthesis of the documents. It was concluded that, in the analyzed degree works, the purpose of the IAP was fulfilled, which consisted in the transformation of the problem-situation, which allowed the IAP to become the propitious scenario to promote environmental participation and education not formal.

  5. Older adolescents’ views regarding participation in Facebook research

    Science.gov (United States)

    Moreno, Megan A; Grant, Alison; Kacvinsky, Lauren; Moreno, Peter; Fleming, Michael

    2012-01-01

    Purpose Facebook continues to grow in popularity among adolescents as well as adolescent researchers. Guidance on conducting this research with appropriate attention to privacy and ethics is scarce. To inform such research efforts, the purpose of this study was to determine older adolescents’ responses after learning that they were participants in a research study that involved identification of participants using Facebook. Methods Public Facebook profiles of older adolescents age 18 to 19 years from a large state university were examined. Profile owners were then interviewed. During the interview participants were informed that they were identified by examining publicly available Facebook profiles. Participants were asked to discuss their views on this research method. Results A total of 132 participants completed the interview (70% response rate), the average age was 18.4 years (SD=0.5) and our sample included 64 males (48.5%). Participant responses included: endorsement (19.7%), fine (36.4%), neutral (28.8%), uneasy (9.1%) and concerned (6.1%). Among participants who were uneasy or concerned, the majority voiced confusion regarding their current profile security settings (p=0.00). Conclusion The majority of adolescent participants viewed the use of Facebook for research positively. These findings are consistent with the approach taken by many US courts. Researchers may consider these findings when developing research protocols involving Facebook. PMID:23084164

  6. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  7. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  8. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  9. Laboratory Directed Research and Development FY-10 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  10. Reactions to Participating in Dating Violence Research: Are Our Questions Distressing Participants?

    Science.gov (United States)

    Shorey, Ryan C.; Cornelius, Tara L.; Bell, Kathryn M.

    2011-01-01

    In recent years, there has been increased research focus on dating violence, producing important information for reducing these violent relationships. Yet Institutional Review Boards (IRBs) are often hesitant to approve research on dating violence, citing emotional distress of participants as a possible risk of participation. However, no known…

  11. Status of the remote participation technical co-ordination in the EFDA Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, V. [Associatione Euratom-ENEA sulla Fusione, Padova (Italy); How, J.A. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    2003-07-01

    This series of 26 slides is dedicated to the status of the remote participation in the EFDA (European fusion development agreement). The main aims of remote participation is to enable fusion scientists and engineers to collaborate as if they were in the same place whatever place it might be: an office, a meeting room, a laboratory or an experiment control room. The different issues that are addressed are: -) remote data access, -) remote computer access, -) tele-conference and -) network issues.

  12. Status of the remote participation technical co-ordination in the EFDA Laboratories

    International Nuclear Information System (INIS)

    Schmidt, V.; How, J.A.

    2003-01-01

    This series of 26 slides is dedicated to the status of the remote participation in the EFDA (European fusion development agreement). The main aims of remote participation is to enable fusion scientists and engineers to collaborate as if they were in the same place whatever place it might be: an office, a meeting room, a laboratory or an experiment control room. The different issues that are addressed are: -) remote data access, -) remote computer access, -) tele-conference and -) network issues

  13. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  14. Research laboratories annual report 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The 1990-1991 activities, of the Israel Atomic Energy Commission's research laboratories, are presented in this report. The main fields of interest are chemistry and material sciences, life and environmental sciences, nuclear physics and technology

  15. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  16. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  17. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  18. An international marine-atmospheric 222Rn measurement intercomparison in Bermuda. Part 2: Results for the participating laboratories

    International Nuclear Information System (INIS)

    Colle, R.; Unterweger, M.P.; Hutchinson, J.M.R.

    1996-01-01

    As part of an international measurement intercomparison of instruments used to measure atmospheric 222 Rn, four participating laboratories made nearly simultaneous measurements of 222 Rn activity concentration in commonly sampled, ambient air over approximately a 2 week period, and three of these four laboratories participated in the measurement comparison of 14 introduced samples with known, but undisclosed (blind) 222 Rn activity concentration. The exercise was conducted in Bermuda in October 1991. The 222 Rn activity concentrations in ambient Bermudian air over the course of the intercomparison ranged from a few hundredths of a Bq · m -3 to about 2 Bq · m -3 , while the standardized sample additions covered a range from approximately 2.5 Bq · m -3 to 35 Bq · m -3 . The overall uncertainty in the latter concentrations was in the general range of 10%, approximating a 3 standard deviation uncertainty interval. The results of the intercomparison indicated that two of the laboratories were within very good agreement with the standard additions, and almost within expected statistical variations. These same two laboratories, however, at lower ambient concentrations, exhibited a systematic difference with an averaged offset of roughly 0.3 Bq · m -3 . The third laboratory participating in the measurement of standardized sample additions was systematically low by about 65% to 70%, with respect to the standard addition which was also confirmed in their ambient air concentration measurements. The fourth laboratory, participating in only the ambient measurement part of the intercomparison, was also systematically low by at least 40% with respect to the first two laboratories

  19. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  20. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  1. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  2. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  3. Researching participation in adult education

    DEFF Research Database (Denmark)

    Kondrup, Sissel

    It is a widespread perception that the challenge of increasing participation in adult education and training has intensified due to the transformation from industrial to knowledge based societies and the transformation implies that it becomes pivotal to increase the supply of highly qualified...... labour. This has fostered an interest in examining why and how people engage in adult education, how participation and especially non-participation in adult education can be explained and how participation rates can be increased. In this paper I outline different traditions within research on recruitment...... to and participation in adult education and training focusing primarily on unskilled and low skilled workers. I present how the traditions contribute to the perception of what effects participation and argue that the existing traditions must be extended and a new framework must be applied in order to understand how...

  4. Research and Progress on Virtual Cloud Laboratory

    Directory of Open Access Journals (Sweden)

    Zhang Jian Wei

    2016-01-01

    Full Text Available In recent years, cloud computing technology has experienced continuous development and improvement, and has gradually expanded to the education sector. First, this paper will introduce the background knowledge of the current virtual cloud laboratory; by comparing the advantages and disadvantages between traditional laboratory and virtual cloud laboratory, and comparing the application, advantages and disadvantages, and development trend of OpenStack technology and VMWare technology in safety, performance, design, function, use case, and value of virtual cloud laboratory, this paper concludes that application based on OpenStack virtual cloud laboratory in universities and research institutes and other departments is essential.

  5. Retention of minority participants in clinical research studies.

    Science.gov (United States)

    Keller, Colleen S; Gonzales, Adelita; Fleuriet, K Jill

    2005-04-01

    Recruitment of minority participants for clinical research studies has been the topic of several analytical works. Yet retention of participants, most notably minority and underserved populations, is less reported and understood, even though these populations have elevated health risks. This article describes two related, intervention-based formative research projects in which researchers used treatment theory to address issues of recruitment and retention of minority women participants in an exercise program to reduce obesity. Treatment theory incorporates a model of health promotion that allows investigators to identify and control sources of extraneous variables. The authors' research demonstrates that treatment theory can improve retention of minority women participants by considering critical inputs, mediating processes, and substantive participant characteristics in intervention design.

  6. Relative solidarity: Conceptualising communal participation in genomic research among potential research participants in a developing Sub-Saharan African setting.

    Science.gov (United States)

    Ogunrin, Olubunmi; Woolfall, Kerry; Gabbay, Mark; Frith, Lucy

    2018-01-01

    As genomic research gathers momentum in sub-Saharan Africa, it has become increasingly important to understand the reasons why individuals wish to participate in this kind of medical research. Against the background of communitarianism conceived as typical of African communities, it is often suggested that individuals consent to participate on the grounds of solidarity and to further the common good. In this paper, we seek to explore this contention by presenting data from focus groups with potential research participants about what would influence their decisions to participate in genomic research. These focus groups were conducted as part of a larger qualitative study with a purposively selected group of participants from a community situated in south west Nigeria. We conducted fifteen focus group sessions comprising 50 participants organized by age and sex, namely: 1) adult (>30 years) males, 2) adult females, 3) youth (18-30 years) males, and 4) youth females. A mixed age-group was conducted to probe different views between the age groups. There was discordance and clear division between the adults and youths regarding the decision to participate in genomic research based on commitment to communal values. Adults based their decision to participate on altruism and furthering the common good while youths based their decisions on personal benefits and preferences and also took into account the views and welfare of family members and neighbours. This discordance suggests a 'generational shift' and we advance a model of 'relative solidarity' among the youths, which is different from the communal solidarity model typical of African communitarianism. Our findings suggest the need for a closer look at strategies for implementation of community engagement and informed consent in genomic research in this region, and we recommend further studies to explore this emerging trend.

  7. Shedding light on research participation effects in behaviour change trials: a qualitative study examining research participant experiences

    Directory of Open Access Journals (Sweden)

    Virginia MacNeill

    2016-01-01

    Full Text Available Abstract Background The sequence of events in a behaviour change trial involves interactions between research participants and the trial process. Taking part in such a study has the potential to influence the behaviour of the participant, and if it does, this can engender bias in trial outcomes. Since participants’ experience has received scant attention, the aim of this study is thus to generate hypotheses about which aspects of the conduct of behaviour change trials might matter most to participants, and thus have potential to alter subsequent behaviours and bias trial outcomes Methods Twenty participants were opportunistically screened for a health compromising behaviour (unhealthy diet, lack of exercise, smoking or alcohol consumption and recruited if eligible. Semi structured face to face interviews were conducted, after going through the usual processes involved in trial recruitment, baseline assessment and randomisation. Participants were given information on the contents of an intervention or control condition in a behaviour change trial, which was not actually implemented. Three months later they returned to reflect on these experiences and whether they had any effect on their behaviour during the intervening period. Data from the latter interview were analysed thematically using a modified grounded theory approach. Results The early processes of trial participation raised awareness of unhealthy behaviours, although most reported having had only fleeting intentions to change their behaviour as a result of taking part in this study, in the absence of interventions. However, careful examination of the accounts revealed evidence of subtle research participation effects, which varied according to the health behaviour, and its perceived social acceptability. Participants’ relationships with the research study were viewed as somewhat important in stimulating thinking about whether and how to make lifestyle changes. Conclusion These

  8. 1995 Laboratory-Directed Research and Development Annual report

    International Nuclear Information System (INIS)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-01-01

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy

  9. 1995 Laboratory-Directed Research and Development Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  10. Reflexivity: The Creation of Liminal Spaces--Researchers, Participants, and Research Encounters.

    Science.gov (United States)

    Enosh, Guy; Ben-Ari, Adital

    2016-03-01

    Reflexivity is defined as the constant movement between being in the phenomenon and stepping outside of it. In this article, we specify three foci of reflexivity--the researcher, the participant, and the encounter--for exploring the interview process as a dialogic liminal space of mutual reflection between researcher and participant. Whereas researchers' reflexivity has been discussed extensively in the professional discourse, participants' reflexivity has not received adequate scholarly attention, nor has the promise inherent in reflective processes occurring within the encounter. © The Author(s) 2015.

  11. Social Media Resources for Participative Design Research

    OpenAIRE

    Qaed, Fatema; Briggs, Jo; Cockton, Gilbert

    2016-01-01

    We present our experiences of novel value from online social media for Participative Design (PD) research. We describe how particular social media (e.g. Facebook, Pinterest, WhatsApp and Twitter) were used during a five-year project on learning space design by the researcher and interested teachers across all research phases (contextual review, user studies, PD action research). Social media were used to source and share comments, photographs and video documentation, supporting participation ...

  12. 2001 activity report of the development and research line in controlled thermonuclear fusion of the Plasma Associated Laboratory

    International Nuclear Information System (INIS)

    Ludwig, Gerson Otto

    2002-01-01

    The year 2001 activities of the controlled thermonuclear fusion research line of the Plasma Associated Laboratory at the National Institute for Space Research - Brazil are reported. The report approaches the staff, participation in congresses, goals for the year 2002 and papers on Tokamak plasmas, plasma diagnostic, bootstraps, plasma equilibrium and diagnostic

  13. Safe handling of plutonium in research laboratories

    International Nuclear Information System (INIS)

    1976-01-01

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ''Protection of Workers'' at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  14. Safe handling of plutonium in research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-12-31

    The training film illustrates the main basic requirements for the safe handling of small amounts of plutonium. The film is intended not only for people setting up plutonium research laboratories but also for all those who work in existing plutonium research laboratories. It was awarded the first prize in the category ``Protection of Workers`` at the international film festival organized by the 4th World Congress of the International Radiation Protection Association (IRPA) in Paris in April 1977

  15. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  16. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  17. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  18. Senior Laboratory Animal Technician | Center for Cancer Research

    Science.gov (United States)

    PROGRAM DESCRIPTION The Laboratory Animal Sciences Program (LASP) provides exceptional quality animal care and technical support services for animal research performed at the National Cancer Institute at the Frederick National Laboratory for Cancer Research. LASP executes this mission by providing a broad spectrum of state-of-the-art technologies and services that are focused

  19. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Science.gov (United States)

    Davies, Gail F; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G W; Applebee, Ken; Bellingan, Laura C; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J; Jayne, Kimberley; Johnson, Adam M; Johnson, Elizabeth R; Konold, Timm; Leach, Matthew C; Leonelli, Sabina; Lewis, David I; Lilley, Elliot J; Longridge, Emma R; McLeod, Carmen M; Miele, Mara; Nelson, Nicole C; Ormandy, Elisabeth H; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J; Scudamore, Cheryl L; Smith, Jane A; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs'), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  20. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare

    Science.gov (United States)

    Davies, Gail F.; Greenhough, Beth J; Hobson-West, Pru; Kirk, Robert G. W.; Applebee, Ken; Bellingan, Laura C.; Berdoy, Manuel; Buller, Henry; Cassaday, Helen J.; Davies, Keith; Diefenbacher, Daniela; Druglitrø, Tone; Escobar, Maria Paula; Friese, Carrie; Herrmann, Kathrin; Hinterberger, Amy; Jarrett, Wendy J.; Jayne, Kimberley; Johnson, Adam M.; Johnson, Elizabeth R.; Konold, Timm; Leach, Matthew C.; Leonelli, Sabina; Lewis, David I.; Lilley, Elliot J.; Longridge, Emma R.; McLeod, Carmen M.; Miele, Mara; Nelson, Nicole C.; Ormandy, Elisabeth H.; Pallett, Helen; Poort, Lonneke; Pound, Pandora; Ramsden, Edmund; Roe, Emma; Scalway, Helen; Schrader, Astrid; Scotton, Chris J.; Scudamore, Cheryl L.; Smith, Jane A.; Whitfield, Lucy; Wolfensohn, Sarah

    2016-01-01

    Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the ‘3Rs’), work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, ‘cultures of care’, harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving communication across

  1. Developing a Collaborative Agenda for Humanities and Social Scientific Research on Laboratory Animal Science and Welfare.

    Directory of Open Access Journals (Sweden)

    Gail F Davies

    Full Text Available Improving laboratory animal science and welfare requires both new scientific research and insights from research in the humanities and social sciences. Whilst scientific research provides evidence to replace, reduce and refine procedures involving laboratory animals (the '3Rs', work in the humanities and social sciences can help understand the social, economic and cultural processes that enhance or impede humane ways of knowing and working with laboratory animals. However, communication across these disciplinary perspectives is currently limited, and they design research programmes, generate results, engage users, and seek to influence policy in different ways. To facilitate dialogue and future research at this interface, we convened an interdisciplinary group of 45 life scientists, social scientists, humanities scholars, non-governmental organisations and policy-makers to generate a collaborative research agenda. This drew on methods employed by other agenda-setting exercises in science policy, using a collaborative and deliberative approach for the identification of research priorities. Participants were recruited from across the community, invited to submit research questions and vote on their priorities. They then met at an interactive workshop in the UK, discussed all 136 questions submitted, and collectively defined the 30 most important issues for the group. The output is a collaborative future agenda for research in the humanities and social sciences on laboratory animal science and welfare. The questions indicate a demand for new research in the humanities and social sciences to inform emerging discussions and priorities on the governance and practice of laboratory animal research, including on issues around: international harmonisation, openness and public engagement, 'cultures of care', harm-benefit analysis and the future of the 3Rs. The process outlined below underlines the value of interdisciplinary exchange for improving

  2. Genuine participation in participant-centred research initiatives: the rhetoric and the potential reality.

    Science.gov (United States)

    Feeney, Oliver; Borry, Pascal; Felzmann, Heike; Galvagni, Lucia; Haukkala, Ari; Loi, Michele; Nordal, Salvör; Rakic, Vojin; Riso, Brígida; Sterckx, Sigrid; Vears, Danya

    2018-04-01

    The introduction of Web 2.0 technology, along with a population increasingly proficient in Information and Communications Technology (ICT), coupled with the rapid advancements in genetic testing methods, has seen an increase in the presence of participant-centred research initiatives. Such initiatives, aided by the centrality of ICT interconnections, and the ethos they propound seem to further embody the ideal of increasing the participatory nature of research, beyond what might be possible in non-ICT contexts alone. However, the majority of such research seems to actualise a much narrower definition of 'participation'-where it is merely the case that such research initiatives have increased contact with participants through ICT but are otherwise non-participatory in any important normative sense. Furthermore, the rhetoric of participant-centred initiatives tends to inflate this minimalist form of participation into something that it is not, i.e. something genuinely participatory, with greater connections with both the ICT-facilitated political contexts and the largely non-ICT participatory initiatives that have expanded in contemporary health and research contexts. In this paper, we highlight that genuine (ICT-based) 'participation' should enable a reasonable minimum threshold of participatory engagement through, at least, three central participatory elements: educative, sense of being involved and degree of control. While we agree with criticisms that, at present, genuine participation seems more rhetoric than reality, we believe that there is clear potential for a greater ICT-facilitated participatory engagement on all three participatory elements. We outline some practical steps such initiatives could take to further develop these elements and thereby their level of ICT-facilitated participatory engagement.

  3. Payment of research participants: current practice and policies of Irish research ethics committees.

    Science.gov (United States)

    Roche, Eric; King, Romaine; Mohan, Helen M; Gavin, Blanaid; McNicholas, Fiona

    2013-09-01

    Payment of research participants helps to increase recruitment for research studies, but can pose ethical dilemmas. Research ethics committees (RECs) have a centrally important role in guiding this practice, but standardisation of the ethical approval process in Ireland is lacking. Our aim was to examine REC policies, experiences and concerns with respect to the payment of participants in research projects in Ireland. Postal survey of all RECs in Ireland. Response rate was 62.5% (n=50). 80% of RECs reported not to have any established policy on the payment of research subjects while 20% had refused ethics approval to studies because the investigators proposed to pay research participants. The most commonly cited concerns were the potential for inducement and undermining of voluntary consent. There is considerable variability among RECs on the payment of research participants and a lack of clear consensus guidelines on the subject. The development of standardised guidelines on the payment of research subjects may enhance recruitment of research participants.

  4. Researchers' perspectives on pediatric obesity research participant recruitment.

    Science.gov (United States)

    Parikh, Yasha; Mason, Maryann; Williams, Karen

    2016-12-01

    Childhood obesity prevalence has tripled over the last three decades. Pediatric obesity has important implications for both adult health as well as the United States economy. In order to combat pediatric obesity, exploratory studies are necessary to create effective interventions. Recruitment is an essential part of any study, and it has been challenging for all studies, especially pediatric obesity studies. The objective of this study was to understand barriers to pediatric obesity study recruitment and review facilitators to overcome recruitment difficulties. Twenty four childhood obesity researchers were contacted. Complete data for 11 researchers were obtained. Interviews were transcribed and analyzed using content analysis. Grounded Theory methodological approach was used, as this was an exploratory study. Investigators YP and MM coded the interviews using 28 codes. Barriers to recruitment included: family and study logistics, family economics, lack of provider interest, invasive protocols, stigma, time restraints of clinicians, lack of patient motivation/interest, groupthink of students in a classroom, and participants who do not accept his or her own weight status. Facilitators to enhance recruitment practices included accommodating participants outside of regular clinic hours, incentivizing participants, cultivating relationships with communities, schools and clinics prior to study recruitment, emphasizing benefits of a study for the patient, and shifting language to focus on health rather than obesity. Pediatric obesity researchers face many standard and some unique challenges to recruitment, reflecting challenges common to clinical research as well as some specific to pediatrics and some specific to obesity research. Both pediatric studies as well as obesity studies are an added challenge to the already-difficult task of general study recruitment. Our findings can be used to make researchers more aware of potential difficulties, approaches and on

  5. Child Participant Roles in Applied Linguistics Research

    Science.gov (United States)

    Pinter, Annamaria

    2014-01-01

    Children's status as research participants in applied linguistics has been largely overlooked even though unique methodological and ethical concerns arise in projects where children, rather than adults, are involved. This article examines the role of children as research participants in applied linguistics and discusses the limitations of…

  6. Progress report for (1974-1984) of Nuclear Research Laboratory, Srinagar, Kashmir

    International Nuclear Information System (INIS)

    Kaul, P.K.; Razdan, H.

    1985-01-01

    The Nuclear Research Laboratory, established at Srinagar in 1974, serves as a base laboratory to organise research activities at the High Altitude Research Laboratory at Gulmarg. Space physics, nuclear physics, radiation and atmospheric chemistry, and technical physics: are the fields in which the research facilities are established at the Laboratory, over the past ten years. The highlights of the various research programmes undertaken at the Laboratory during the period 1974-1984 are presented in the form of summaries. A list of papers published in various journals and presented at different conferences, symposia etc. is given at the end. (M.G.B.)

  7. 1999 LDRD Laboratory Directed Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  9. Summary of nuclear plant aging research at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1991-01-01

    Oak Ridge National Laboratory (ORNL) has been a major contributor to the Nuclear Regulatory Commission (NRC) Nuclear Plant Aging Research Program since its inception. The research at ORNL has consisted primarily of the preparation of comprehensive aging assessments and other studies of safety related and other components and systems. The components and systems have been identified and prioritized based on risk considerations, as well as by operating experience. In each case, ORNL has been preparing a Phase 1 assessment which summarizes design features, operating conditions, and stressors which lead to degradation and failure; identified parameters which could be used to detect, trend and differentiate the degradations; and proposed potential inspection, surveillance, and monitoring methods which could be applied to the parameters. Where appropriate, Phase 2 assessments have been prepared, which verify and recommend inspection, surveillance and monitoring methods based on vendor information, laboratory and field tests, and in-situ inspections and tests. Finally, Phase 3 assessments are prepared which provide recommendations regarding implementing the inspection, surveillance and monitoring methods, and provide recommendations regarding criteria to be applied. Other activities include providing assistance to NRC/Nuclear Regulatory Research and regional offices as requested, and participation in ASME and IEEE codes and standards

  10. Laboratory technology research: Abstracts of FY 1998 projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  11. Cancer Research Participation Beliefs and Behaviors of a Southern Black Population: A Quantitative Analysis of the Role of Structural Factors in Cancer Research Participation.

    Science.gov (United States)

    Farr, Deeonna E; Brandt, Heather M; Comer, Kimberly D; Jackson, Dawnyéa D; Pandya, Kinjal; Friedman, Daniela B; Ureda, John R; Williams, Deloris G; Scott, Dolores B; Green, Wanda; Hébert, James R

    2015-09-01

    Increasing the participation of Blacks in cancer research is a vital component of a strategy to reduce racial inequities in cancer burden. Community-based participatory research (CBPR) is especially well-suited to advancing our knowledge of factors that influence research participation to ultimately address cancer-related health inequities. A paucity of literature focuses on the role of structural factors limiting participation in cancer research. As part of a larger CBPR project, we used survey data from a statewide cancer needs assessment of a Black faith community to examine the influence of structural factors on attitudes toward research and the contributions of both structural and attitudinal factors on whether individuals participate in research. Regression analyses and non-parametric statistics were conducted on data from 727 adult survey respondents. Structural factors, such as having health insurance coverage, experiencing discrimination during health care encounters, and locale, predicted belief in the benefits, but not the risks, of research participation. Positive attitudes toward research predicted intention to participate in cancer research. Significant differences in structural and attitudinal factors were found between cancer research participants and non-participants; however, directionality is confounded by the cross-sectional survey design and causality cannot be determined. This study points to complex interplay of structural and attitudinal factors on research participation as well as need for additional quantitative examinations of the various types of factors that influence research participation in Black communities.

  12. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  13. Cyber Defense Research and Monitoring Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This facility acts as a fusion point for bridging ARL's research in tactical and operational Information Assurance (IA) areas and the development and assessment of...

  14. Researchers' participation in and motivations for engaging with research information management systems.

    Directory of Open Access Journals (Sweden)

    Besiki Stvilia

    Full Text Available This article examined how researchers participated in research information management systems (RIMSs, their motivations for participation, and their priorities for those motivations. Profile maintenance, question-answering, and endorsement activities were used to define three cumulatively increasing levels of participation: Readers, Record Managers, and Community Members. Junior researchers were more engaged in RIMSs than were senior researchers. Postdocs had significantly higher odds of endorsing other researchers for skills and being categorized as Community Members than did full and associate professors. Assistant professors were significantly more likely to be Record Managers than were members of any other seniority categories. Finally, researchers from the life sciences showed a significantly higher propensity for being Community Members than Readers and Record Managers when compared with researchers from engineering and the physical sciences, respectively.When performing activities, researchers were motivated by the desire to share scholarship, feel competent, experience a sense of enjoyment, improve their status, and build ties with other members of the community. Moreover, when researchers performed activities that directly benefited other members of a RIMS, they assigned higher priorities to intrinsic motivations, such as perceived self-efficacy, enjoyment, and building community ties. Researchers at different stages of their academic careers and disciplines ranked some of the motivations for engaging with RIMSs differently. The general model of research participation in RIMSs; the relationships among RIMS activities; the motivation scales for activities; and the activity, seniority, and discipline-specific priorities for the motivations developed by this study provide the foundation for a framework for researcher participation in RIMSs. This framework can be used by RIMSs and institutional repositories to develop tools and design

  15. Researchers' participation in and motivations for engaging with research information management systems.

    Science.gov (United States)

    Stvilia, Besiki; Wu, Shuheng; Lee, Dong Joon

    2018-01-01

    This article examined how researchers participated in research information management systems (RIMSs), their motivations for participation, and their priorities for those motivations. Profile maintenance, question-answering, and endorsement activities were used to define three cumulatively increasing levels of participation: Readers, Record Managers, and Community Members. Junior researchers were more engaged in RIMSs than were senior researchers. Postdocs had significantly higher odds of endorsing other researchers for skills and being categorized as Community Members than did full and associate professors. Assistant professors were significantly more likely to be Record Managers than were members of any other seniority categories. Finally, researchers from the life sciences showed a significantly higher propensity for being Community Members than Readers and Record Managers when compared with researchers from engineering and the physical sciences, respectively. When performing activities, researchers were motivated by the desire to share scholarship, feel competent, experience a sense of enjoyment, improve their status, and build ties with other members of the community. Moreover, when researchers performed activities that directly benefited other members of a RIMS, they assigned higher priorities to intrinsic motivations, such as perceived self-efficacy, enjoyment, and building community ties. Researchers at different stages of their academic careers and disciplines ranked some of the motivations for engaging with RIMSs differently. The general model of research participation in RIMSs; the relationships among RIMS activities; the motivation scales for activities; and the activity, seniority, and discipline-specific priorities for the motivations developed by this study provide the foundation for a framework for researcher participation in RIMSs. This framework can be used by RIMSs and institutional repositories to develop tools and design mechanisms to increase

  16. Paternalism and utilitarianism in research with human participants.

    Science.gov (United States)

    Resnik, David B

    2015-03-01

    In this article I defend a rule utilitarian approach to paternalistic policies in research with human participants. Some rules that restrict individual autonomy can be justified on the grounds that they help to maximize the overall balance of benefits over risks in research. The consequences that should be considered when formulating policy include not only likely impacts on research participants, but also impacts on investigators, institutions, sponsors, and the scientific community. The public reaction to adverse events in research (such as significant injury to participants or death) is a crucial concern that must be taken into account when assessing the consequences of different policy options, because public backlash can lead to outcomes that have a negative impact on science, such as cuts in funding, overly restrictive regulation and oversight, and reduced willingness of individuals to participate in research. I argue that concern about the public reaction to adverse events justifies some restrictions on the risks that competent, adult volunteers can face in research that offers them no significant benefits. The paternalism defended here is not pure, because it involves restrictions on the rights of investigators in order to protect participants. It also has a mixed rationale, because individual autonomy may be restricted not only to protect participants from harm but also to protect other stakeholders. Utility is not the sole justification for paternalistic research policies, since other considerations, such as justice and respect for individual rights/autonomy, must also be taken into account.

  17. GaInSn usage in the research laboratory

    International Nuclear Information System (INIS)

    Morley, N. B.; Burris, J.; Cadwallader, L. C.; Nornberg, M. D.

    2008-01-01

    GaInSn, a eutectic alloy, has been successfully used in the Magneto-Thermofluid Research Laboratory at the University of California-Los Angeles and at the Princeton Plasma Physics Laboratory for the past six years. This paper describes the handling and safety of GaInSn based on the experience gained in these institutions, augmented by observations from other researchers in the liquid metal experimental community. GaInSn is an alloy with benign properties and shows considerable potential in liquid metal experimental research and cooling applications

  18. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    Science.gov (United States)

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  19. Design study of underground facility of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Hibiya, Keisuke; Akiyoshi, Kenji; Ishizuka, Mineo; Anezaki, Susumu

    1998-03-01

    Geoscientific research program to study deep geological environment has been performed by Power Reactor and Nuclear Fuel Development Corporation (PNC). This research is supported by 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. An Underground Research Laboratory is planned to be constructed at Shoma-sama Hora in the research area belonging to PNC. A wide range of geoscientific research and development activities which have been previously studied at the Tono Area is planned in the laboratory. The Underground Research Laboratory is consisted of Surface Laboratory and Underground Research Facility located from the surface down to depth between several hundreds and 1,000 meters. Based on the results of design study in last year, the design study performed in this year is to investigate the followings in advance of studies for basic design and practical design: concept, design procedure, design flow and total layout. As a study for the concept of the underground facility, items required for the facility are investigated and factors to design the primary form of the underground facility are extracted. Continuously, design methods for the vault and the underground facility are summarized. Furthermore, design procedures of the extracted factors are summarized and total layout is studied considering the results to be obtained from the laboratory. (author)

  20. The Laboratories at Seibersdorf: Multi-disciplinary research and support centre

    International Nuclear Information System (INIS)

    Danesi, P.R.

    1987-01-01

    The main research activities performed at the IAEA laboratories at Seibersdorf in the Agriculture Laboratory, Physics-Chemistry-Instrumentation Laboratory and Safeguards Analytical Laboratory, as well as the training activities are briefly described

  1. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  2. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  3. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  4. Participation in HIV research: the importance of clinic contact factors.

    Science.gov (United States)

    Worthington, Catherine A; Gill, M John

    2008-08-01

    Recruiting minority populations living with HIV to many types of clinic-based HIV research is a concern. This study examined an expanded range of predictors of HIV research participation (clinic contact, clinical, and personal characteristics) to investigate observed ethnocultural differences in HIV research participation. Research participation was defined as participation in any of diagnostic, pathogenesis, drug trial or survey research. Logistic regression modeling was used to predict research participation of 657 eligible patients (93% of the patient population) who began care between January 1997 and the end of September 2003 at a regional outpatient HIV care program in Calgary, Canada. Approximately one third (32%) were non-white, including 18% Aboriginal, 9% black, 4% Asian, and 1% Hispanic individuals. Twenty-nine percent (187/657) of the patients participated in at least one study of any kind. Multivariate analysis indicated that the strongest predictors of any research participation (including diagnostic, pathogenesis, drug trial, or survey studies) are clinical (including nadir CD4 count [odds ratio {OR} = 0.132, p percentage of appointments kept [OR = 1.022, p service use shown by these groups that may influence research participation. To attract under researched populations, attention should shift from the "who" of research participation to the "how" of clinical interactions.

  5. Understanding participation by African Americans in cancer genetics research.

    Science.gov (United States)

    McDonald, Jasmine A; Barg, Frances K; Weathers, Benita; Guerra, Carmen E; Troxel, Andrea B; Domchek, Susan; Bowen, Deborah; Shea, Judy A; Halbert, Chanita Hughes

    2012-01-01

    Understanding genetic factors that contribute to racial differences in cancer outcomes may reduce racial disparities in cancer morbidity and mortality. Achieving this goal will be limited by low rates of African American participation in cancer genetics research. We conducted a qualitative study with African American adults (n = 91) to understand attitudes about participating in cancer genetics research and to identify factors that are considered when making a decision about participating in this type of research. Participants would consider the potential benefits to themselves, family members, and their community when making a decision to participate in cancer genetics research. However, concerns about exploitation, distrust of researchers, and investigators' motives were also important to participation decisions. Individuals would also consider who has access to their personal information and what would happen to these data. Side effects, logistical issues, and the potential to gain knowledge about health issues were also described as important factors in decision making. African Americans may consider a number of ethical, legal, and social issues when making a decision to participate in cancer genetics research. These issues should be addressed as part of recruitment efforts.

  6. Research at the Oak Ridge National Laboratory (ORNL)

    International Nuclear Information System (INIS)

    Postma, H.

    1980-01-01

    The Oak Ridge National Laboratory is a large (5300 people), US-government-funded laboratory, which performs research in many disciplines and in many technological areas. Programs and organization of ORNL are described for the People's Republic of China

  7. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2016-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There is a number of such equipment in use at different institutions and are found to be very useful. (author)

  8. Laboratory research irradiators with enhanced security features

    International Nuclear Information System (INIS)

    Srivastava, Piyush

    2014-01-01

    Over the years BRIT has developed state of art technology for laboratory research irradiators which are suited most for carrying out research and development works in the fields of radiation processing. These equipment which house radioactive sources up to 14 kCi are having a number of features to meet users requirements. They are manufactured as per the national and International standards of safety codes. The paper deals with design, development and application aspects of laboratory research irradiator called Gamma Chamber and also the new security features planned for incorporation in the equipment. Equipment are being regularly manufactured, supplied and installed by BRIT in India and Abroad. There are a number of such equipment in use at different institutions and are found to be very useful. (author)

  9. Participant views and experiences of participating in HIV research in sub-Saharan Africa: a qualitative systematic review.

    Science.gov (United States)

    Nalubega, Sylivia; Evans, Catrin

    2015-06-12

    Human immunodeficiency virus clinical trials are increasingly being conducted in sub-Saharan Africa. There is a tension between the pressure to increase levels of research participation and the need to ensure informed consent and protection of participants' rights. Researchers need to be aware of the particular ethical issues that underpin Human immunodeficiency virus research conduct in low income settings. This necessitates hearing from those who have participated in research and who have direct experience of the research process. This review aimed to synthesize and present the best available evidence in relation to Human immunodeficiency virus research participation in sub-Saharan Africa, based on the views and experiences of research participants. The review included studies whose participants were current or former adult Human immunodeficiency virus research participants from sub-Saharan African countries. Views, experiences, attitudes, understandings, perceptions and perspectives of Human immunodeficiency virus research participants in sub-Saharan Africa. Types of studies: This review considered studies that focused on qualitative data, including, but not limited to, designs such as phenomenology, ethnography, grounded theory, action research and feminist research. A three-step search strategy was utilized. Seven databases (CINAHL, Ovid MEDLINE (R) 1946, ASSIA, PsychInfo, Web of Science, EMBASE, and African Index Medicus) were searched with no limitation to years of publication, followed by hand searching of reference lists. Only studies published in the English language were considered. Methodological quality was assessed using the Qualitative Assessment and Review Instrument developed by the Joanna Briggs Institute. Qualitative findings were extracted using the Joanna Briggs Institute Qualitative Assessment and Review Instrument. Qualitative research findings were pooled using a pragmatic meta-aggregative approach and the Joanna Briggs Institute Qualitative

  10. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  11. Using a Mobile Laboratory to Study Mental Health, Addictions and Violence: A Research Plan

    Directory of Open Access Journals (Sweden)

    Samantha Wells

    2011-01-01

    Full Text Available This paper describes an innovative new research program, Researching Health in Ontario Communities (RHOC, designed to improve understanding, treatment and prevention of co-occurring mental health, addictions, and violence problems. RHOC brings together a multi-disciplinary team of investigators to implement an integrated series of research studies (including pilot studies and full studies. The project involves use a mobile research laboratory to collect a wide range of biological, behavioral and social data in diverse communities across Ontario, Canada, including remote and rural communities, areas experiencing poverty and social disorganization, urban areas, and Aboriginal communities. This paper describes the project background and research plan as well as the anticipated contributions of the project to participating Ontario communities and to broader scientific knowledge.

  12. Laboratory Directed Research and Development FY2008 Annual Report

    International Nuclear Information System (INIS)

    Kammeraad, J.E.; Jackson, K.J.; Sketchley, J.A.; Kotta, P.R.

    2009-01-01

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  13. Laboratory Directed Research and Development annual report, fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  14. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  15. NASA Ames Fluid Mechanics Laboratory research briefs

    Science.gov (United States)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  16. Welded rupture disc assemblies for use in Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Faltings, R.E.

    1976-01-01

    Welded rupture disc assemblies were investigated and developed in various ranges for probable use by experimenters in their activities in the Tritium Research Laboratory at Sandia Laboratories, Livermore. This study indicates that currently welded rupture disc assemblies with appropriate testing and installation by certified pressure installers may be used in pressure systems in the Tritium Research Laboratory and other areas at SLL

  17. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  18. Genomic research and wide data sharing: views of prospective participants.

    Science.gov (United States)

    Trinidad, Susan Brown; Fullerton, Stephanie M; Bares, Julie M; Jarvik, Gail P; Larson, Eric B; Burke, Wylie

    2010-08-01

    Sharing study data within the research community generates tension between two important goods: promoting scientific goals and protecting the privacy interests of study participants. This study was designed to explore the perceptions, beliefs, and attitudes of research participants and possible future participants regarding genome-wide association studies and repository-based research. Focus group sessions with (1) current research participants, (2) surrogate decision-makers, and (3) three age-defined cohorts (18-34 years, 35-50, >50). Participants expressed a variety of opinions about the acceptability of wide sharing of genetic and phenotypic information for research purposes through large, publicly accessible data repositories. Most believed that making de-identified study data available to the research community is a social good that should be pursued. Privacy and confidentiality concerns were common, although they would not necessarily preclude participation. Many participants voiced reservations about sharing data with for-profit organizations. Trust is central in participants' views regarding data sharing. Further research is needed to develop governance models that enact the values of stewardship.

  19. MSU-DOE Plant Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  20. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  2. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  3. Laboratory Directed Research and Development annual report, Fiscal year 1993

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER ampersand D, as well as other discretionary research and development activities not provided for in a DOE program.'' Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL's LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  4. Laboratory Directed Research and Development annual report, Fiscal year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  5. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  6. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  7. Encouraging Volunteer Participation in Health Research: The Role ...

    African Journals Online (AJOL)

    Health research mainly relies on volunteers to generate data. Volunteer participants not only help provide necessary information to solve problems but also contribute to free participation which in turn helps the research wheel to continue. People mainly contribute to different nonprofit organizations by giving money for ...

  8. Laboratory Directed Research and Development FY2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with

  9. Sandia, California Tritium Research Laboratory transition and reutilization project

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, T.B. [Sandia National Lab., Albuquerque, NM (United States)

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  10. Laboratory and cyclotron requirements for PET research

    International Nuclear Information System (INIS)

    Schlyer, D.J.

    1993-01-01

    The requirements for carrying out PET research can vary widely depending on the type of basic research being carried out and the extent of a clinical program at a particular center. The type of accelerator and laboratory facilities will, of course, depend on the exact mix. These centers have been divided into four categories. 1. Clinical PET with no radionuclide production facilities, 2. clinical PET with some radionuclide production facilities, 3. clinical PET with research support, and 4. a PET research facility developing new tracers and exploring clinical applications. Guidelines for the choice of an accelerator based on these categories and the practical yields of the common nuclear reactions for production of PET isotopes have been developed and are detailed. Guidelines as to the size and physical layout of the laboratory space necessary for the synthesis of various radiopharmaceuticals have also been developed and are presented. Important utility and air flow considerations are explored

  11. Laboratory directed research and development annual report: Fiscal year 1992

    International Nuclear Information System (INIS)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ''research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ''core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project

  12. Building leadership among laboratory-based and clinical and translational researchers: the University of California, San Francisco experience.

    Science.gov (United States)

    Wides, Cynthia; Mertz, Elizabeth; Lindstaedt, Bill; Brown, Jeanette

    2014-02-01

    In 2005 the University of California, San Francisco (UCSF) implemented the Scientific Leadership and Management (SLM) course, a 2-day leadership training program to assist laboratory-based postdoctoral scholars in their transition to independent researchers managing their own research programs. In 2011, the course was expanded to clinical and translational junior faculty and fellows. The course enrollment was increased from approximate 100 to 123 participants at the same time. Based on course evaluations, the number and percent of women participants appears to have increased over time from 40% (n = 33) in 2007 to 53% (n = 58) in 2011. Course evaluations also indicated that participants found the course to be relevant and valuable in their transition to academic leadership. This paper describes the background, structure, and content of the SLM and reports on participant evaluations of the course offerings from 2007 through 2011. © 2014 Wiley Periodicals, Inc.

  13. Engineered nanomaterials: toward effective safety management in research laboratories.

    Science.gov (United States)

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  14. Emotion displays and participation in a research workshop

    DEFF Research Database (Denmark)

    Steensig, Jakob

    2013-01-01

    . The researchers were supposed to make observations and, simultaneously, build the same structure with the toys as they saw on the video. Research in the field of participatory innovation has suggested that the use of objects may facilitate emotional reactions and that these may enhance participation...... emotions and surprise, in order to see how this affects participation. The analyses confirm that objects provoke emotional reactions, but that this does not necessarily lead to enhanced participation or joint sense making....

  15. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Zaidi Mohammed, K.

    2006-01-01

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  16. Interview and recollection-based research with child disaster survivors: Participation-related changes in emotion and perceptions of participation

    Science.gov (United States)

    Hambrick, Erin P.; O’Connor, Bridget M.; Vernberg, Eric M.

    2015-01-01

    Objective Research suggests that some types of trauma research can be conducted safely with children ages 10 and older. The aim of this project was to learn more about potential risks or benefits of conducting research with younger children or with child disaster survivors, specifically about research that includes children providing trauma recollections. Method Fifty 8- to 12-year-old children who experienced a devastating tornado participated in an in-person interview that included both individual and joint (mother-child) recollections of their tornado experiences one year following exposure. These 50 children also rated three emotions at three timepoints and rated their perceptions (e.g., benefit and regret) of research post-participation. Children (N = 28) also participated in phone surveys three months later to assess persistent participation-related emotions and perceptions. Results Child reported emotions worsened from pre- to during participation; however, reports of emotions returned to pre-participation levels post-participation and remained so at the 3-month follow-up. Sixty-four percent of children reported at least some participation benefit and no participation regret immediately post-participation, as did 89.3% at the 3-month follow-up. Four percent of children reported some participation regret (no benefit) post-participation, and 0% three months later. No children requested to stop participating, and none required post-research connection with crisis services. Posttraumatic stress symptom severity, tornado exposure, and age were largely unrelated to child-reported emotions and perceptions of research. Conclusions Results indicate that carefully planned and executed disaster-related research that includes children providing recollections research can be conducted with preadolescents with little risk and some benefit. PMID:26390107

  17. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Ticianelli, Regina B.; Figueiredo, Ana Maria G.

    2007-01-01

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  18. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  19. A novice researcher's reflection on recruiting participants for qualitative research.

    Science.gov (United States)

    Marks, Anne; Wilkes, Lesley; Blythe, Stacy; Griffiths, Rhonda

    2017-09-19

    This paper is a reflection by a PhD candidate on her qualitative study involving parents, diabetes educators and school teachers who were caring for a child with type 1 diabetes using intensive insulin therapy in primary school. To reflect on a novice researcher's experience of recruiting research participants from community, health and education settings in Australia. Participants were successfully recruited for the study using internet communication tools: Facebook support groups; the Australian Diabetes Educators Association (ADEA) e-newsletter; and emails sent to school principals. These methods were successful as Facebook and online support groups are popular, the study topic was of interest, the ADEA has many members, and numerous emails were sent to schools. Potential barriers to recruitment were a lack of access to those who did not use Facebook or the internet, gatekeepers, the high workloads of diabetes educators and teachers, and the time needed to obtain ethics approval and send a large number of emails to schools. Internet communication tools were successful in recruiting participants from community, health and education settings. However, different approaches were required for each type of participant. Lessons learned from this experience were: the importance of taking time to plan recruitment, including an in-depth understanding of potential participants and recruitment tools, the benefit of being an insider, and the need to work closely with gatekeepers. An understanding of recruitment is essential for ensuring access to appropriate participants and timely collection of data. The experience of the novice researcher may provide insight to others planning to use internet communication tools for recruitment. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  20. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  1. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  2. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  3. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  4. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  5. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  7. Regional labour market research on participation rates

    NARCIS (Netherlands)

    Elhorst, J.P.

    1996-01-01

    This article reviews the methodology of 17 empirical studies in which the participation rate has been estimated with the help of regional data. After defining and pointing our the orientation of regional labour market research on participation rates, three methodological issues dominate the

  8. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  9. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  10. Nurses as participants in research: an evaluation of recruitment techniques.

    Science.gov (United States)

    Luck, Lauretta; Chok, Harrison Ng; Wilkes, Lesley

    2017-09-19

    Recruitment and retention of participants, as well as response rates, can be challenging in nursing research. This can be because of the questions asked; the choice of methodology; the methods used to collect data; the characteristics of potential participants; the sample size required; and the duration of the study. Additionally, conducting research with nurses as participants presents several issues for them, including the time needed to participate in the research, the competing commitments for clinical practice, the political and environmental climate, and recruitment itself. To report on research studies conducted by the authors at a tertiary teaching hospital, to show the lessons learned when recruiting nurses to participate in nursing research. The authors discuss factors that supported recruitment of nurses in these studies, including the use of the personal touch and multiple recruitment strategies in a single study. Videos and photography facilitate interdisciplinary research and can be a valuable means of non-verbal data collection, especially with participants affected by disabilities, and can support research methods, such as the use of questionnaires. Recruiting nurses for research can be challenging. We suggest that researchers consider using more than one recruitment strategy when recruiting nurse participants. Recruitment is more successful if researchers align the aim(s) of the research with nurse's concerns and contexts. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  11. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  12. 2014 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W., editor

    2016-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  13. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  14. Laboratory directed research and development annual report: Fiscal year 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  15. Challenges of youth participation in participatory action research

    DEFF Research Database (Denmark)

    Wattar, Laila; Fanous, Sandrine; Berliner, Peter

    2012-01-01

    Paamiut Youth Voice (PYV) is a Participatory Action Research (PAR) project, exploring youth perceptions, experiences, and the promotion of well-being in Paamiut, Greenland. Active youth participation remained a key challenge in the development of the local community through the locally initiated...... community mobilisation programme Paamiut Asasara. The challenges of youth participation in PYV are investigated in order to explore the implications of youth participation in PAR projects. The discussion of challenges is based on a methodological account of experiences from the research process clarifying...

  16. Customizable Electronic Laboratory Online (CELO): A Web-based Data Management System Builder for Biomedical Research Laboratories

    Science.gov (United States)

    Fong, Christine; Brinkley, James F.

    2006-01-01

    A common challenge among today’s biomedical research labs is managing growing amounts of research data. In order to reduce the time and resource costs of building data management tools, we designed the Customizable Electronic Laboratory Online (CELO) system. CELO automatically creates a generic database and web interface for laboratories that submit a simple web registration form. Laboratories can then use a collection of predefined XML templates to assist with the design of a database schema. Users can immediately utilize the web-based system to query data, manage multimedia files, and securely share data remotely over the internet. PMID:17238541

  17. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  18. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  19. Recruiting Transcultural Qualitative Research Participants: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Phyllis Eide

    2005-06-01

    Full Text Available Working with diverse populations poses many challenges to the qualitative researcher who is a member of the dominant culture. Traditional methods of recruitment and selection (such as flyers and advertisements are often unproductive, leading to missed contributions from potential participants who were not recruited and researcher frustration. In this article, the authors explore recruitment issues related to the concept of personal knowing based on experiences with Aboriginal Hawai'ian and Micronesian populations, wherein knowing and being known are crucial to successful recruitment of participants. They present a conceptual model that incorporates key concepts of knowing the other, cultural context, and trust to guide other qualitative transcultural researchers. They also describe challenges, implications, and concrete suggestions for recruitment of participants.

  20. Improving medical students’ participation in research

    Directory of Open Access Journals (Sweden)

    Menon R

    2018-01-01

    Full Text Available Rahul Menon, Vishnou Mourougavelou, Arjun MenonFaculty of Medicine, Imperial College London, London, UKWe read with great interest the review by Siddaiah-Subramanya et al1 regarding the difficulty for medical students to participate in research, in developing countries. From our own experience as medical students, we agree that organizational factors, adequacy of knowledge, and variability in “attitudes” may all contribute to difficulty in participating in research. Nevertheless, we propose that the introduction of research projects, which may be part of an intercalated degree, could help improve medical students’ involvement in research.Author's replyManjunath Siddaiah-Subramanya,1,2 Harveen Singh,3 Kor Woi Tiang1,21Department of Surgery, Logan Hospital, Meadowbrook, 2Department of Medicine, Griffith University, Nathan, 3Department of Gastroenterology, Lady Cilento Children’s Hospital, Brisbane, QLD, Australia We would like to thank Menon et al for the letter in response to our article.1 We note that an overarching theme in the letter is the situation in countries where research at medical school could be improved. In the letter, Menon et al have brought out a couple of important issues: one is that the problem is multifactorial, and the other is the fact that opportunities and encouragement need to be provided to the students so that they could get more involved in research.View the original paper by Siddaiah-Subramanya and colleagues.

  1. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  2. Proceedings (slides, posters) of the 7. IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research

    International Nuclear Information System (INIS)

    2009-01-01

    The main objective of this meeting is to present and discuss new developments and perspectives in the areas of control, data acquisition and remote participation for nuclear research around the world. The following topics have been covered: 1) plasma control, 2) machine control, monitoring, safety and remote manipulation, 3) data acquisition and signal processing, 4) database techniques for information storage and retrieval, 5) advanced computing and massive data analysis, 6) remote participation and virtual laboratory, 7) fast network technology and its application, and 8) ITER

  3. Environmental survey at Lucas Heights Research Laboratories, 1989

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Arthur, J.

    1990-09-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1989. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 17 tabs., 2 figs

  4. Environmental survey at Lucas Heights Research Laboratories, 1990

    International Nuclear Information System (INIS)

    Hoffmann, E.L.

    1991-10-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1990. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 11 refs., 16 tabs., 2 figs

  5. Environmental survey at Lucas Heights Research Laboratories, 1987

    International Nuclear Information System (INIS)

    Giles, M.S.; Foy, J.J.; Hoffmann, E.L.

    1989-12-01

    Results are presented of an environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1987. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorized limits. The maximum possible annual dose to the general public from airborne waste during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council. 9 refs., 18 tabs., 2 figs

  6. Environmental survey at Lucas Heights Research Laboratories, 1984

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1986-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1984. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is one per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  7. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  8. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    International Nuclear Information System (INIS)

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research

  9. Shaft extension design at the Underground Research Laboratory, Pinawa, Manitoba

    International Nuclear Information System (INIS)

    Kuzyk, G.W.; Ball, A.E.

    1991-01-01

    AECL Research has constructed an underground laboratory for the research and development required for the Canadian Nuclear Fuel Waste Management Program. The experimental program in the laboratory will contribute to the assessment of the feasibility and safety of nuclear fuel waste disposal deep in stable plutonic rock. In 1988, AECL extended the shaft of the Underground Research Laboratory (URL) from the existing 255 m depth to a depth of 443 m in cooperation with the United States Department of Energy. The project, which involved carrying out research activities while excavation and construction work was in progress, required careful planning. To accommodate the research programs, full-face blasting with a burn cut was used to advance the shaft. Existing facilities at the URL had to be modified to accommodate an expanded underground facility at a new depth. This paper discusses the design criteria, shaft-sinking methods and approaches used to accommodate the research work during this shaft extension project. (11 refs., 11 figs.)

  10. Participation in environmental health research by placenta donation - a perception study.

    Science.gov (United States)

    Lind, Uffe; Mose, Tina; Knudsen, Lisbeth E

    2007-11-22

    Much environmental health research depends on human volunteers participating with biological samples. The perception study explores why and how people participate in a placenta perfusion study in Copenhagen. The participation implies donation of the placenta after birth and some background information but no follow up. Nineteen semi-structured qualitative interviews were conducted with participants in the placenta perfusion study after donation of placenta. Observation studies were made of recruitment sessions. The interviewed participants are generally in favour of medical research. They participated in the placenta perfusion study due to a belief that societal progress follows medical research. They also felt that participating was a way of giving something back to the Danish health care system. The participants have trust in medical science and scientists, but trust is something which needs to be created through "trust-work". Face-to-face interaction, written information material and informed consent forms play important parts in creating trusting relationships in medical research. Medical research ethics do not only amount to specific types of written information material but should also be seen as a number of trust making performances involving researchers as well as research participants.

  11. Understanding Ethical Issues of Research Participation from the Perspective of Participating Children and Adolescents: A Systematic Review

    Science.gov (United States)

    Broome, Marion E.

    2017-01-01

    Background The past twenty years have seen distinct shifts in the way the participation of children and adolescents in research is viewed. This has been emphasized by the growing pediatric research enterprise. Additional information on children’s and adolescents’ experiences during research participation is needed to better inform researchers on the ethical conduct of research with this vulnerable population. Aims The objective of this analysis was to examine ethical issues in research with children and adolescents from their perspective as participants, including: assent, parental consent, risk perception, impact of research participation, and incentives. Methods This systematic review was conducted per the Long et al. framework by means of an iterative searching process. Using the key words ‘research ethics’ and ‘child or pediatric or adolescent’, PubMed, CINAHL, and EBSCOhost databases were searched to identify articles. Limitations placed on the original searches were: English language, year of publication between 2003–2014, humans, abstract available, and age birth–18 years. Findings Twenty-three empiric studies were identified and formed the sample. Included studies represented a diverse range of areas of research, methods, settings, sample demographics, authors, and journals. Discussion Even young children demonstrated the ability to understand essential elements of research, although there is variability in children’s level of understanding. Trust was a significant contributing factor to children’s and adolescents’ participation in research, and also shaped their assessments of risk. Research participation was mainly beneficial for children and adolescents. Incentives were mainly viewed positively, although concerns of possible undue influence were expressed. Linking Evidence to Action This systematic review highlights the importance of including the perspectives of children and adolescents and provides researchers and nurse clinicians

  12. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  13. Safety Design Requirements for The Interior Architecture of Scientific Research Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.The paper discusses one of the primary objectives of interior architecture design of research laboratories (specially those using radioactive materials) where it should provide a safe, accessible environment for laboratory personnel to conduct their work. A secondary objective is to allow for maximum flexibility for safe research. Therefore, health and safety hazards must be anticipated and carefully evaluated so that protective measures can be incorporated into the interior architectural design of these facilities wherever possible. The interior architecture requirements discussed in this paper illustrate some of the basic health and safety design features required for new and remodeled laboratories.

  14. Laboratory-directed research and development

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Caughran, A.B.

    1992-05-01

    This report summarizes progress from the Laboratory-Directed Research and Development (LDRD) program during fiscal year 1991. In addition to a programmatic and financial overview, the report includes progress reports from 230 individual R ampersand D projects in 9 scientific categories: atomic and molecular physics; biosciences; chemistry; engineering and base technologies; geosciences; space sciences, and astrophysics; materials sciences; mathematics and computational sciences; nuclear and particle physics; and plasmas, fluids, and particle beams

  15. National Renewable Energy Laboratory 2004 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  16. Monitoring laboratory data across manufacturers and laboratories--A prerequisite to make "Big Data" work.

    Science.gov (United States)

    Goossens, Kenneth; Van Uytfanghe, Katleen; Twomey, Patrick J; Thienpont, Linda M

    2015-05-20

    "The Percentiler" project provides quasi real-time access to patient medians across laboratories and manufacturers. This data can serve as "clearinghouse" for electronic health record applications, e.g., use of laboratory data for global health-care research. Participants send their daily outpatient medians to the Percentiler application. After 6 to 8weeks, the laboratory receives its login information, which gives access to the user interface. Data is assessed by peer group, i.e., 10 or more laboratories using the same test system. Participation is free of charge. Participation is global with, to date, >120 laboratories and >250 instruments. Up to now, several reports have been produced that address i) the general features of the project, ii) peer group observations; iii) synergisms between "The Percentiler" and dedicated external quality assessment surveys. Reasons for long-term instability and bias (calibration- or lot-effects) have been observed for the individual laboratory and manufacturers. "The Percentiler" project has the potential to build a continuous, global evidence base on in vitro diagnostic test comparability and stability. As such, it may be beneficial for all stakeholders and, in particular, the patient. The medical laboratory is empowered for contributing to the development, implementation, and management of global health-care policies. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. U.S. Army Research Laboratory Annual Review 2011

    Science.gov (United States)

    2011-12-01

    bioremediation of wastewater. The researchers created a functional atomic circuit with stationary barrier. This “atom circuit” is composed of ultra...high energy content approaching jet propellant (JP)-8/ diesel fuel, are a means to address these demands. The Army Research Laboratory has

  18. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  19. Laboratory directed research development annual report. Fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  20. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  1. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  2. An overview of Quality Management System implementation in a research laboratory

    Science.gov (United States)

    Molinéro-Demilly, Valérie; Charki, Abdérafi; Jeoffrion, Christine; Lyonnet, Barbara; O'Brien, Steve; Martin, Luc

    2018-02-01

    The aim of this paper is to show the advantages of implementing a Quality Management System (QMS) in a research laboratory in order to improve the management of risks specific to research programmes and to increase the reliability of results. This paper also presents experience gained from feedback following the implementation of the Quality process in a research laboratory at INRA, the French National Institute for Agronomic Research and details the various challenges encountered and solutions proposed to help achieve smoother adoption of a QMS process. The 7Ms (Management, Measurement, Manpower, Methods, Materials, Machinery, Mother-nature) methodology based on the Ishikawa `Fishbone' diagram is used to show the effectiveness of the actions considered by a QMS, which involve both the organization and the activities of the laboratory. Practical examples illustrate the benefits and improvements observed in the laboratory.

  3. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  4. Location | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research campus is located 50 miles northwest of Washington, D.C., and 50 miles west of Baltimore, Maryland, in Frederick, Maryland. Satellite locations include leased and government facilities extending s

  5. Participants' safety versus confidentiality: A case study of HIV research.

    Science.gov (United States)

    Leyva-Moral, Juan Manuel; Feijoo-Cid, Maria

    2017-05-01

    Background When conducting qualitative research, participants usually share lots of personal and private information with the researcher. As researchers, we must preserve participants' identity and confidentiality of the data. Objective To critically analyze an ethical conflict encountered regarding confidentiality when doing qualitative research. Research design Case study. Findings and discussion one of the participants in a study aiming to explain the meaning of living with HIV verbalized his imminent intention to commit suicide because of stigma of other social problems arising from living with HIV. Given the life-threatening situation, the commitment related to not disclosing the participant's identity and/or the content of the interview had to be broken. To avoid or prevent suicide, the therapist in charge of the case was properly informed about the participant's intentions. One important question arises from this case: was it ethically appropriate to break the confidentiality commitment? Conclusion confidentiality could be broken if a life-threatening event is identified during data collection and participants must know that. This has to be clearly stated in the informed consent form.

  6. Nurses' experiences of participation in a research and development programme

    DEFF Research Database (Denmark)

    Jensen, Kirsten Pryds; Bäck-Pettersson, Siv; Kýlén, Sven

    2013-01-01

    To describe clinical nurses' experience of participating in a Research and Development (R&D) programme and its influence on their research interest and ability to conduct and apply nursing research......To describe clinical nurses' experience of participating in a Research and Development (R&D) programme and its influence on their research interest and ability to conduct and apply nursing research...

  7. Heuristic decision-making about research participation in children with cystic fibrosis.

    Science.gov (United States)

    Christofides, Emily; Dobson, Jennifer A; Solomon, Melinda; Waters, Valerie; O'Doherty, Kieran C

    2016-08-01

    Traditional perspectives on informed consent assume that when faced with decisions about whether to participate in research, individuals behave according to principles of classical rationality, taking into account all available information to weigh risks and benefits to come to a decision that is optimal for them. However, theoretical and empirical research in psychology suggests that people may not make decisions in this way. Less is known about decision-making processes as they pertain to participating in biomedical research, particularly when the participants are children. We sought to better understand research decision processes especially in children who tend to participate extensively in research due to chronic illness. To learn more about children's decision-making in this context, we interviewed 19 young patients with cystic fibrosis (male n = 7; female n = 12) aged 8-18 years (M = 13 years) at a children's hospital in Canada between April and August 2013. We found that participants generally had a default approach to participation decisions, which they attributed to their parents' attitudes to research, experiences of having grown up participating in research, trusting the researchers, and wanting to help. Most of our participants made the decision to participate in research based on a heuristic with a baseline to say "yes", subject to change based on aspects of the research or particular preferences. In particular, concerns with the procedure, unwillingness to talk about cystic fibrosis, logistical challenges, and perceptions of risk all influenced the decision, as did the perceived importance or personal relevance of the research. Our study illustrates that rather than conducting risk/benefit analyses, participants tended to adopt a heuristic-like approach, consistent with decision theories that view heuristic decision-making as ecologically rational. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Applying Equity Theory to Students' Perceptions of Research Participation Requirements

    Science.gov (United States)

    Miles, Shannon R.; Cromer, Lisa DeMarni; Narayan, Anupama

    2015-01-01

    Human subject pools have been a valuable resource to universities conducting research with student participants. However, the costs and benefits to student participants must be carefully weighed by students, researchers, and institutional review board administrators in order to avoid coercion. Participant perceptions are pivotal in deciding…

  9. The need for a quality standard for assurance in medical research laboratories

    Directory of Open Access Journals (Sweden)

    S Cohen

    2014-01-01

    Full Text Available The objective of this article is to show the results of a research study conducted to evaluate the need for a quality standard specific for medical research laboratories based on the shortfalls of ISO 15189 when used for this purpose. A qualitative research methodology was used, which comprised of collecting data from 20 well-qualified and experienced medical laboratory personnel by means of interviews based on a framework developed from a literature review. The data were analysed by means of a thematic technique and the results were verified by a team of medical researchers. The seven themes arising from the analyses were inflexibility; ambiguity; unfair requirements; inappropriate focus; inadequacy for research; renewal; and acceptance for accreditation. The results indicated that the ISO 15189 standard in its present content does not totally suit medical research laboratories and shows support for the development of a standard specific for research laboratories.

  10. Physician participation in clinical research and trials: issues and approaches

    Directory of Open Access Journals (Sweden)

    Sami F Shaban

    2011-03-01

    Full Text Available Sayeeda Rahman1, Md Anwarul Azim Majumder1, Sami F Shaban2, Nuzhat Rahman3, Moslehuddin Ahmed4, Khalid Bin Abdulrahman5, Urban JA D’Souza61Department of Clinical Sciences, School of Life Sciences, University of Bradford, West Yorkshire, Bradford, UK; 2Department of Medical Education, Faculty of Medicine and Health Sciences, UAE University, Al-Ain, United Arab Emirates; 3Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA; 4Department of Community Medicine, Uttara Adhunik Medical College, Dhaka, Bangladesh; 5Department of Family Medicine and Medical Education, College of Medicine, Al-Imam University, Riyadh, Saudi Arabia; 6Department of Post Graduate Studies, School of Medicine, University Malaysia Sabah, Kota Kinabalu, Sabah, MalaysiaAbstract: The rapid development of new drugs, therapies, and devices has created a dramatic increase in the number of clinical research studies that highlights the need for greater participation in research by physicians as well as patients. Furthermore, the potential of clinical research is unlikely to be reached without greater participation of physicians in research. Physicians face a variety of barriers with regard to participation in clinical research. These barriers are system- or organization-related as well as research- and physician-related. To encourage physician participation, appropriate organizational and operational infrastructures are needed in health care institutes to support research planning and management. All physicians should receive education and training in the fundamentals of research design and methodology, which need to be incorporated into undergraduate medical education and postgraduate training curricula and then reinforced through continuing medical education. Medical schools need to analyze current practices of teaching–learning and research, and reflect upon possible changes needed to develop a ‘student-focused teaching–learning and

  11. Laboratory Directed Research and Development FY 1998 Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  12. Laboratory directed research and development: FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  13. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  14. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  15. DESALINATION AND WATER TREATMENT RESEARCH AT SANDIA NATIONAL LABORATORIES.

    Energy Technology Data Exchange (ETDEWEB)

    Rigali, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, James E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Altman, Susan J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Biedermann, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brady, Patrick Vane. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kuzio, Stephanie P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nenoff, Tina M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rempe, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    Water is the backbone of our economy - safe and adequate supplies of water are vital for agriculture, industry, recreation, and human consumption. While our supply of water today is largely safe and adequate, we as a nation face increasing water supply challenges in the form of extended droughts, demand growth due to population increase, more stringent health-based regulation, and competing demands from a variety of users. To meet these challenges in the coming decades, water treatment technologies, including desalination, will contribute substantially to ensuring a safe, sustainable, affordable, and adequate water supply for the United States. This overview documents Sandia National Laboratories' (SNL, or Sandia) Water Treatment Program which focused on the development and demonstration of advanced water purification technologies as part of the larger Sandia Water Initiative. Projects under the Water Treatment Program include: (1) the development of desalination research roadmaps (2) our efforts to accelerate the commercialization of new desalination and water treatment technologies (known as the 'Jump-Start Program),' (3) long range (high risk, early stage) desalination research (known as the 'Long Range Research Program'), (4) treatment research projects under the Joint Water Reuse & Desalination Task Force, (5) the Arsenic Water Technology Partnership Program, (6) water treatment projects funded under the New Mexico Small Business Administration, (7) water treatment projects for the National Energy Technology Laboratory (NETL) and the National Renewable Energy Laboratory (NREL), (8) Sandia- developed contaminant-selective treatment technologies, and finally (9) current Laboratory Directed Research and Development (LDRD) funded desalination projects.

  16. Laboratory directed research and development annual report. Fiscal year 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  17. Open- and closed-formula laboratory animal diets and their importance to research.

    Science.gov (United States)

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-11-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of 'standard reference diets' in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient-concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research.

  18. Interior Architectural Requirements for Electronic Circuits and its Applications Research Laboratory

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    This paper discusses the pivotal role of the Interior Architecture As one of the scientific disciplines minute to complete the Architectural Sciences, which relied upon the achievement and development of facilities containing scientific research laboratories, in terms of planning and design, particularly those containing biological laboratories using radioactive materials, adding to that, the application of the materials or raw materials commensurate with each discipline of laboratory and its work nature, and by the discussion the processing of design techniques and requirements of interior architecture dealing with Research Laboratory for electronic circuits and their applications with the making of its prototypes

  19. FY2007 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  20. Practicing participative management in the clinical laboratory. Foster a productive and satisfying staff.

    Science.gov (United States)

    Boissoneau, R; McPherson, J

    1991-01-01

    Employee participation and involvement are at the leading edge of management thinking today. Not only behaviorally oriented managers, but managers of all styles include personnel in decision-making. The purpose of this article is to communicate to clinical laboratory managers some recent developments in people management. Several suggestions for team building and the desired outcome of worker participation are included. Although employee participation has been a major issue in management for 10 years, many business schools still emphasize only the traditional quantitative subjects of accounting, finance, statistics, and systems engineering. Obviously, these subjects are important, but modern managers must learn qualitative or behavioral material as well. Students are affected by the lack of a notable behavioral emphasis. Unfortunately, some students think that learning in the behavioral domain is unimportant. Too often, these students encounter problems later in their careers with employees and can only wish for greater knowledge.

  1. Considering Actionability at the Participant's Research Setting Level for Anticipatable Incidental Findings from Clinical Research.

    Science.gov (United States)

    Ortiz-Osorno, Alberto Betto; Ehler, Linda A; Brooks, Judith

    2015-01-01

    Determining what constitutes an anticipatable incidental finding (IF) from clinical research and defining whether, and when, this IF should be returned to the participant have been topics of discussion in the field of human subject protections for the last 10 years. It has been debated that implementing a comprehensive IF-approach that addresses both the responsibility of researchers to return IFs and the expectation of participants to receive them can be logistically challenging. IFs have been debated at different levels, such as the ethical reasoning for considering their disclosure or the need for planning for them during the development of the research study. Some authors have discussed the methods for re-contacting participants for disclosing IFs, as well as the relevance of considering the clinical importance of the IFs. Similarly, other authors have debated about when IFs should be disclosed to participants. However, no author has addressed how the "actionability" of the IFs should be considered, evaluated, or characterized at the participant's research setting level. This paper defines the concept of "Actionability at the Participant's Research Setting Level" (APRSL) for anticipatable IFs from clinical research, discusses some related ethical concepts to justify the APRSL concept, proposes a strategy to incorporate APRSL into the planning and management of IFs, and suggests a strategy for integrating APRSL at each local research setting. © 2015 American Society of Law, Medicine & Ethics, Inc.

  2. A 50-year research journey. From laboratory to clinic.

    Science.gov (United States)

    Ross, John

    2009-01-01

    Prior important research is not always cited, exemplified by Oswald Avery's pioneering discovery that DNA is the genetic transforming factor; it was not cited by Watson and Crick 10 years later. My first laboratory research (National Institutes of Health 1950s) resulted in the clinical development of transseptal left heart catheterization. Laboratory studies on cardiac muscle mechanics in normal and failing hearts led to the concept of afterload mismatch with limited preload reserve. At the University of California, San Diego in La Jolla (1968) laboratory experiments on coronary artery reperfusion after sustained coronary occlusion showed salvage of myocardial tissue, a potential treatment for acute myocardial infarction proven in clinical trials of thrombolysis 14 years later. Among 60 trainees who worked with me in La Jolla, one-third were Japanese and some of their important laboratory experiments are briefly recounted, beginning with Sasayama, Tomoike and Shirato in the 1970 s. Recently, we developed a method for cardiac gene transfer, and subsequently we showed that gene therapy for the defect in cardiomyopathic hamsters halted the progression of advanced disease. Cardiovascular research and medicine are producing continuing advances in technologies for gene transfer and embryonic stem cell transplantation, targeting of small molecules, and tissue and organ engineering.

  3. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  4. Cross-cultural perspectives on research participation and informed consent.

    Science.gov (United States)

    Barata, Paula C; Gucciardi, Enza; Ahmad, Farah; Stewart, Donna E

    2006-01-01

    This study examined Portuguese Canadian and Caribbean Canadian immigrants' perceptions of health research and informed consent procedures. Six focus groups (three in each cultural group) involving 42 participants and two individual interviews were conducted. The focus groups began with a general question about health research. This was followed by three short role-plays between the moderator and the assistant. The role-plays involved a fictional health research study in which a patient is approached for recruitment, is read a consent form, and is asked to sign. The role-plays stopped at key moments at which time focus group participants were asked questions about their understanding and their perceptions. Focus group transcripts were coded in QSR NUDIST software using open coding and then compared across cultural groups. Six overriding themes emerged: two were common in both the Portuguese and Caribbean transcripts, one emphasized the importance of trust and mistrust, and the other highlighted the need and desire for more information about health research. However, these themes were expressed somewhat differently in the two groups. In addition, there were four overriding themes that were specific to only one cultural group. In the Portuguese groups, there was an overwhelming positive regard for the research process and an emphasis on verbal as opposed to written information. The Caribbean participants qualified their participation in research studies and repeatedly raised images of invasive research.

  5. Environmental survey at Lucas Heights Research Laboratories, 1993

    International Nuclear Information System (INIS)

    Hoffmann, E.L.; Looz, T.

    1995-04-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1993. No activity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne discharges during this period is estimated to be less than 0.01 mSv, which is one per cent of the dose limit for long term exposure that is recommended by the National Health and Medical Research Council. A list of previous environmental survey reports is attached. 22 refs., 21 tabs., 4 figs

  6. Study of the comprehension of the scientific method by members of a university health research laboratory.

    Science.gov (United States)

    Burlamaque-Neto, A C; Santos, G R; Lisbôa, L M; Goldim, J R; Machado, C L B; Matte, U; Giugliani, R

    2012-02-01

    In Brazil, scientific research is carried out mainly at universities, where professors coordinate research projects with the active participation of undergraduate and graduate students. However, there is no formal program for the teaching/learning of the scientific method. The objective of the present study was to evaluate the comprehension of the scientific method by students of health sciences who participate in scientific projects in an academic research laboratory. An observational descriptive cross-sectional study was conducted using Edgar Morin complexity as theoretical reference. In a semi-structured interview, students were asked to solve an abstract logical puzzle - TanGram. The collected data were analyzed using the hermeneutic-dialectic analysis method proposed by Minayo and discussed in terms of the theoretical reference of complexity. The students' concept of the scientific method is limited to participation in projects, stressing the execution of practical procedures as opposed to scientific thinking. The solving of the TanGram puzzle revealed that the students had difficulties in understanding questions and activities focused on subjects and their processes. Objective answers, even when dealing with personal issues, were also reflected on the students' opinions about the characteristics of a successful researcher. Students' difficulties concerning these issues may affect their scientific performance and result in poorly designed experiments. This is a preliminary study that should be extended to other centers of scientific research.

  7. Ethical issues in the qualitative researcher--participant relationship.

    Science.gov (United States)

    Eide, Phyllis; Kahn, David

    2008-03-01

    Qualitative research poses ethical issues and challenges unique to the study of human beings. In developing the interpersonal relationship that is critical to qualitative research, investigator and participant engage in a dialogic process that often evokes stories and memories that are remembered and reconstituted in ways that otherwise would not occur. Ethical issues are raised when this relationship not only provides qualitative research data, but also leads to some degree of therapeutic interaction for the participant. The purpose of this article is to examine some of the controversies inherent in the researcher's dilemma when this occurs, set within the context of a nursing caring theory (Swanson), and the International Council of Nurses Code of ethics for nurses, which provides guidance on global nursing practice.

  8. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  9. Solar Radiation Research Laboratory | Energy Systems Integration Facility |

    Science.gov (United States)

    Solar Radiation Research Laboratory (SRRL) has been collecting continuous measurements of basic solar continuous operation. More than 75 instruments contribute to the Baseline Measurement System by recording

  10. Nuclear physics and heavy element research at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Stoyer, Mark A; Ahle, L E; Becker, J A; Bernshein, L A; Bleuel, D L; Burke, J T; Dashdorj, D; Henderson, R A; Hurst, A M; Kenneally, Jacqueline M; Lesher, S R; Moody, K J; Nelson, S L; Norman, E B; Pedretti, M; Scielzo, N D; Shaughnessy, D A; Sheets, S A; Stoeffl, W; Stoyer, N J [Lawrence Livermore National Laboratory, University of California, Livermore (United States)

    2009-12-31

    This paper highlights some of the current basic nuclear physics research at Lawrence Livermore National Laboratory (LLNL). The work at LLNL concentrates on investigating nuclei at the extremes. The Experimental Nuclear Physics Group performs research to improve our understanding of nuclei, nuclear reactions, nuclear decay processes and nuclear astrophysics; an expertise utilized for important laboratory national security programs and for world-class peer-reviewed basic research.

  11. Research Opportunities at Storm Peak Laboratory

    Science.gov (United States)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  12. Summary of microsatellite instability test results from laboratories participating in proficiency surveys: proficiency survey results from 2005 to 2012.

    Science.gov (United States)

    Boyle, Theresa A; Bridge, Julia A; Sabatini, Linda M; Nowak, Jan A; Vasalos, Patricia; Jennings, Lawrence J; Halling, Kevin C

    2014-03-01

    The College of American Pathologists surveys are the largest laboratory peer comparison programs in the world. These programs allow laboratories to regularly evaluate their performance and improve the accuracy of the patient test results they provide. Proficiency testing is offered twice a year to laboratories performing microsatellite instability testing. These surveys are designed to emulate clinical practice, and some surveys have more challenging cases to encourage the refinement of laboratory practices. This report summarizes the results and trends in microsatellite instability proficiency testing from participating laboratories from the inception of the program in 2005 through 2012. We compiled and analyzed data for 16 surveys of microsatellite instability proficiency testing during 2005 to 2012. The number of laboratories participating in the microsatellite instability survey has more than doubled from 42 to 104 during the 8 years analyzed. An average of 95.4% of the laboratories correctly classified each of the survey test samples from the 2005A through 2012B proficiency challenges. In the 2011B survey, a lower percentage of laboratories (78.4%) correctly classified the specimen, possibly because of overlooking subtle changes of microsatellite instability and/or failing to enrich the tumor content of the specimen to meet the limit of detection of their assay. In general, laboratories performed well in microsatellite instability testing. This testing will continue to be important in screening patients with colorectal and other cancers for Lynch syndrome and guiding the management of patients with sporadic colorectal cancer.

  13. Tensions within an industrial research laboratory: the Philips laboratory's x-ray department between the wars

    NARCIS (Netherlands)

    Boersma, F.K.

    2003-01-01

    Tensions arose in the X-ray department of the Philips research laboratory during the interwar period, caused by the interplay among technological development, organizational culture, and individual behavior. This article traces the efforts of Philips researchers to find a balance between their

  14. "That is why I have trust": unpacking what 'trust' means to participants in international genetic research in Pakistan and Denmark.

    Science.gov (United States)

    Sheikh, Zainab; Hoeyer, Klaus

    2018-06-01

    Trust features prominently in a number of policy documents that have been issued in recent years to facilitate data sharing and international collaboration in medical research. However, it often remains unclear what is meant by 'trust'. By exploring a concrete international collaboration between Denmark and Pakistan, we develop a way of unpacking trust that shifts focus from what trust 'is' to what people invest in relationships and what references to trust do for them in these relationships. Based on interviews in both Pakistan and Denmark with people who provide blood samples and health data for the same laboratory, we find that when participants discuss trust they are trying to shape their relationship to researchers while simultaneously communicating important hopes, fears and expectations. The types of trust people talk about are never unconditional, but involve awareness of uncertainties and risks. There are different things at stake for people in different contexts, and therefore it is not the same to trust researchers in Pakistan as it is in Denmark, even when participants donate to the same laboratory. We conclude that casual references to 'trust' in policy documents risk glossing over important local differences and contribute to a de-politicization of basic inequalities in access to healthcare.

  15. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  16. Research laboratories annual report. 1973 and 1974

    International Nuclear Information System (INIS)

    1975-02-01

    This report presents brief summaries of the research carried out at the Israel A.E.C. laboratories during the two years 1973 and 1974 in the following fields: theoretical physics and chemistry, neutron and reactor physics, solid state physics and metallurgy, laser-induced plasma research, nuclear physics and chemistry, radiation chemistry and applications of radiation and radioisotopes, physical and inorganic chemistry, analytical chemistry, health physics, environmental studies, instrumentation and techniques. (B.G.)

  17. The Horonobe Underground Research Laboratory (Tentative name) Project. A program on survey and research performed from earth surface

    International Nuclear Information System (INIS)

    2001-03-01

    The Horonobe Underground Research Laboratory (Tentative name) Project under planning at Horonobe-machi by the Japan Nuclear Cycle Development Institute (JNC) is a research facility on deep underground shown in the Long-term program on research, development and application of nuclear energy (June, 1994)' (LPNE), where some researches on the deep underground targeted at sedimentary rocks are carried out. The plan on The Horonobe Underground Research Laboratory performed at Horonobe-machi' is an about 20 years plan ranging from beginning to finishing of its survey and research, which is carried out by three steps such as 'Survey and research performed from earth surface', 'Survey and research performed under excavation of road', and Survey and research performed by using the road'. The Horonobe Underground Research Laboratory is one of research facilities on deep underground shown its importance in LPNE, and carries out some researches on the deep underground at a target of the sedimentary rocks. And also The Horonobe Underground Research Laboratory confirms some technical reliability and support on stratum disposal shown in the 'Technical reliability on stratum disposal of the high level radioactive wastes. The Second Progress Report of R and D on geological disposal' summarized on November, 1999 by JNC through actual tests and researches at the deep stratum. The obtained results are intended to reflect to disposal business of The Horonobe Underground Research Laboratory and safety regulation and so on performed by the government, together with results of stratum science research, at the Tono Geoscience Center, of geological disposal R and D at the Tokai Works, or of international collaborations. For R and D at the The Horonobe Underground Research Laboratory after 2000, following subjects are shown: 1) Survey technique on long-term stability of geological environment, 2) Survey technique on geological environment, 3) Engineering technique on engineered barrier and

  18. Moving beyond 'not enough time': factors influencing paediatric clinicians' participation in research.

    Science.gov (United States)

    Paget, Simon P; Caldwell, Patrina H Y; Murphy, Joyce; Lilischkis, Kimberley J; Morrow, Angie M

    2017-03-01

    Increasing the amount of clinical research that occurs in healthcare settings has been identified as an important mechanism to improve healthcare outcomes. While clinicians are key persons in achieving this aim, research participation amongst clinicians is generally limited. To identify the factors (barriers and facilitators) influencing clinician research participation and determine how professional culture impacts on these factors. Forty clinicians working at a tertiary children's hospital participated in six discipline-specific focus groups. Thematic analysis was performed using an inductive process based in grounded theory. Four major themes (cultural factors, personal factors, resources and solutions) and 16 subthemes were identified. Participants described how the current health system discourages clinician research. They reported that their research participation requires personal sacrifice of their own time; income or career progression. Research participation was seen to compete with other priorities in clinicians' workload and is disadvantaged because of the primacy of clinical work and the lack of immediate tangible benefit from research projects. Solutions suggested by our participants included better alignment of clinical and research goals, improved availability of research mentors and collaborative opportunities. Nurses and allied health professionals reported a changing professional culture that values research. Only doctors identified research participation to be important for career progression. For clinician research participation to flourish, significant changes in healthcare structure and priorities will be required that result in research becoming more embedded in healthcare delivery. Initiatives to improve collaboration between clinicians and universities may also support these aims. © 2016 Royal Australasian College of Physicians.

  19. Measurement of radionuclides in contaminated environmental matrices: participation in quality assessment programme of U.S. Department of energy's environmental monitoring laboratory

    International Nuclear Information System (INIS)

    SIDDIQUE, N.; Rahman, A.; Waheed, S.; Wasim, M.; Daud, M.; Ahmad, S.

    2006-03-01

    A Quality Assessment Programme (QAP) was initiated by the US, Department of Energy (DOE) in 1998 to establish credibility of radionuclide measurements in contaminated environmental samples, i.e. soil, vegetation and air filters. In this context best-known and pertinent laboratories around the world were identified and invited to participate in this programme. To evaluate the performance of these prestigious laboratories, the Miniature Neutron Source Reactor (MNSR) Neutron Activation Analysis (NAA) Laboratory at NCD, PINSTECH, which is an IAEA declared Regional Resource Unit (IAEA-RRU), along with 76 other laboratories were asked to take part in a regular proficiency exercise. In this report, the performance of the NAA Laboratory throughout the QAP programme (1998-2004) is presented is detail, describing the procedures employed, the problems encountered and the improvement and expertise gained from participating in this assessment programme. (author)

  20. Laboratory services series: the utilization of scientific glassblowing in a national research and development laboratory

    International Nuclear Information System (INIS)

    Farnham, R.M.; Poole, R.W.

    1976-04-01

    Glassblowing services at a national research and development laboratory provide unique equipment tailored for specific research efforts, small-scale process items for flowsheet demonstrations, and solutions for unusual technical problems such as glass-ceramic unions. Facilities, equipment, and personnel necessary for such services are described

  1. Demand artifact: objectively detecting biased participants in advertising research.

    Science.gov (United States)

    Miller, Felicia; Schertzer, Susan

    2014-12-01

    Detecting and reducing the effect of biased participants continues to be an important task for researchers. However, the lack of objective measures to assess demand artifact has made it difficult to effectively address this issue. This paper reports two experiments that apply a theory-based post-experimental inquiry that can systematically identify biased participants in consumer research. The results demonstrate how easily and effectively researchers can incorporate this tool into experimental studies of all types and reduce the likelihood of systematic error.

  2. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  3. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1989

    International Nuclear Information System (INIS)

    1990-01-01

    This report summerizes the research and educational activities at the Nuclear Engineering Research Laboratory, Faculty of Engineering, University of Tokyo. The Laboratory holds four main facilities, which are Yayoi reactor, an electron accelerator, fusion blanket research facility, and heavy ion irradiation research facility. And they are open to the researchers both inside and outside the University. The application of the facilities are described. The activities and achievements of the Laboratory staffs, and theses for graduate, master, and doctor degrees are also summerized. (J.P.N.)

  4. Participation of the research institutes in the safety aspects of the Laguna Verde nuclear power plant

    International Nuclear Information System (INIS)

    Sanchez G, J.

    1991-01-01

    The main activities undertaken by two research institutes of Mexico, the Instituto de Investigaciones Electricas and the Instituto Nacional de Investigaciones Nucleares, related to the safety of the Laguna Verde Nuclear Power Plant, are described. Among these activities, the development of a system for data acquisition and analysis during pre-operational tests, the design and construction of a full-scope simulator, the in-core fuel management and the establishment of an equipment qualification laboratory, stand out. It is considered that there exists a large potential for further participation. (author)

  5. Progress report from the Studsvik Neutron Research Laboratory 1987-89

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1993-01-01

    The present publication contains information from activities at the Studsvik Neutron Research Laboratory (NFL) and the Department of Neutron Research. NFL is the base for the research activities at the Studvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and departments at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universitites and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1989 been performed by groups from Uppsala University, Royal Institute of Technology in Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research program of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry and nuclear physics, and neutron capture radiography. The program for subatomic physics, especially neutron physics, at the Department for Neutron Research, Uppsala University has also staff permanently placed at NFL but they are in their research using the facilities at the The Svedberg Laboratory, Uppsala. In addition to supporting research NFL has also put substantial efforts on creating facilities for training of undergraduate students. Thus a facility for practical exercises in neutron physics, activation analysis and radiography has recently been installed at the R2-0 reactor as a collaboration between NFL, Dept. of Neutron Research, Upppsala and Department for Reactor Physics, KTH

  6. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study.

    Directory of Open Access Journals (Sweden)

    Kate Birnie

    Full Text Available To compare the validity of diagnosis of urinary tract infection (UTI through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory.We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard, was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC for UTI predicted by pre-specified symptoms, signs and dipstick test results (the "index test", separately according to whether samples were obtained by clean catch or nappy (diaper pads.251 (5.2% and 88 (1.8% children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43, and better for clean catch (0.54; 0.45, 0.63 than nappy pad samples (0.20; 0.12, 0.28. In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80 than the research laboratory (0.86; 0.79, 0.92. Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively than clean catch samples.The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples could be due to contamination. Health service laboratories should consider adopting procedures used

  7. Comparison of microbiological diagnosis of urinary tract infection in young children by routine health service laboratories and a research laboratory: Diagnostic cohort study

    Science.gov (United States)

    Birnie, Kate; Hay, Alastair D.; Wootton, Mandy; Howe, Robin; MacGowan, Alasdair; Whiting, Penny; Lawton, Michael; Delaney, Brendan; Downing, Harriet; Dudley, Jan; Hollingworth, William; Lisles, Catherine; Little, Paul; O’Brien, Kathryn; Pickles, Timothy; Rumsby, Kate; Thomas-Jones, Emma; Van der Voort, Judith; Waldron, Cherry-Ann; Harman, Kim; Hood, Kerenza; Butler, Christopher C.; Sterne, Jonathan A. C.

    2017-01-01

    Objectives To compare the validity of diagnosis of urinary tract infection (UTI) through urine culture between samples processed in routine health service laboratories and those processed in a research laboratory. Population and methods We conducted a prospective diagnostic cohort study in 4808 acutely ill children aged <5 years attending UK primary health care. UTI, defined as pure/predominant growth ≥105 CFU/mL of a uropathogen (the reference standard), was diagnosed at routine health service laboratories and a central research laboratory by culture of urine samples. We calculated areas under the receiver-operator curve (AUC) for UTI predicted by pre-specified symptoms, signs and dipstick test results (the “index test”), separately according to whether samples were obtained by clean catch or nappy (diaper) pads. Results 251 (5.2%) and 88 (1.8%) children were classified as UTI positive by health service and research laboratories respectively. Agreement between laboratories was moderate (kappa = 0.36; 95% confidence interval [CI] 0.29, 0.43), and better for clean catch (0.54; 0.45, 0.63) than nappy pad samples (0.20; 0.12, 0.28). In clean catch samples, the AUC was lower for health service laboratories (AUC = 0.75; 95% CI 0.69, 0.80) than the research laboratory (0.86; 0.79, 0.92). Values of AUC were lower in nappy pad samples (0.65 [0.61, 0.70] and 0.79 [0.70, 0.88] for health service and research laboratory positivity, respectively) than clean catch samples. Conclusions The agreement of microbiological diagnosis of UTI comparing routine health service laboratories with a research laboratory was moderate for clean catch samples and poor for nappy pad samples and reliability is lower for nappy pad than for clean catch samples. Positive results from the research laboratory appear more likely to reflect real UTIs than those from routine health service laboratories, many of which (particularly from nappy pad samples) could be due to contamination. Health service

  8. Adverse reproduction outcomes among employees working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Wennborg, H.; Bonde, Jens Peter; Stenbeck, M.

    2002-01-01

    Objectives The aim of the study was to investigate reproductive outcomes such as birthweight, preterm births, and postterm births among women working in research laboratories while pregnant. Methods Female university personnel were identified from a source cohort of Swedish laboratory employees...

  9. The waste management at research laboratories - problems and solutions

    International Nuclear Information System (INIS)

    Dellamano, Jose Claudio; Vicente, Roberto

    2011-01-01

    The radioactive management in radioactive installations must be planned and controlled. However, in the case of research laboratories, that management is compromised due to the common use of materials and installations, the lack of trained personnel and the nonexistence of clear and objective orientations by the regulator organism. Such failures cause an increasing of generated radioactive wastes and the imprecision or nonexistence of record of radioactive substances, occasioning a financial wastage, and the cancelling of licences for use of radioactive substances. This paper discusses and proposes solutions for the problems found at radioactive waste management in research laboratories

  10. Environmental survey at the Lucas Heights Research Laboratories. 1983

    International Nuclear Information System (INIS)

    Giles, M.S.; Dudaitis, A.

    1985-12-01

    Results are presented of the environmental survey conducted in the neighbourhood of the Lucas Heights Research Laboratories during 1983. These results are satisfactory. No radioactivity which could have originated from these laboratories was found in samples collected from possible human food chains. All low-level liquid and gaseous waste discharges were within authorised limits. The maximum possible annual dose to the general public from airborne waste discharges during this period is estimated to be less than 0.01 millisieverts, which is 1 per cent of the limit for long-term exposure that is recommended by the National Health and Medical Research Council

  11. Progress report from the Studsvik Neutron Research Laboratory 1990-91

    International Nuclear Information System (INIS)

    Dahlborg, U.; Ebbsjoe, I.; Holmqvist, B.

    1992-01-01

    The Studsvik Neutron Research Laboratory (NFL) is the base for the research activities at the Studsvik reactors. It is administrated by the University of Uppsala and is established to facilitate reactor based research. The laboratory is intended to, in co-operation with institutes and department at universities in Sweden, develop, construct and maintain experimental equipment for this kind of research and to make it available for scientists at Swedish universities and, if possible, also to scientists outside the universities. The research at the Studsvik facilities has during 1990 and 1991 been performed by groups form Uppsala University, Royal Institute of Technology, Stockholm, Chalmers Technical University, Gothenburg, and by scientists at NFL. The research programme of the groups is divided into three main areas, scattering of thermal neutrons, nuclear chemistry/nuclear physics, and neutron capture radiography

  12. Increasing global participation in genetics research through DNA barcoding.

    Science.gov (United States)

    Adamowicz, Sarah J; Steinke, Dirk

    2015-12-01

    DNA barcoding--the sequencing of short, standardized DNA regions for specimen identification and species discovery--has promised to facilitate rapid access to biodiversity knowledge by diverse users. Here, we advance our opinion that increased global participation in genetics research is beneficial, both to scientists and for science, and explore the premise that DNA barcoding can help to democratize participation in genetics research. We examine publication patterns (2003-2014) in the DNA barcoding literature and compare trends with those in the broader, related domain of genomics. While genomics is the older and much larger field, the number of nations contributing to the published literature is similar between disciplines. Meanwhile, DNA barcoding exhibits a higher pace of growth in the number of publications as well as greater evenness among nations in their proportional contribution to total authorships. This exploration revealed DNA barcoding to be a highly international discipline, with growing participation by researchers in especially biodiverse nations. We briefly consider several of the challenges that may hinder further participation in genetics research, including access to training and molecular facilities as well as policy relating to the movement of genetic resources.

  13. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  14. Laboratory directed research and development FY98 annual report; TOPICAL

    International Nuclear Information System (INIS)

    Al-Ayat, R; Holzrichter, J

    1999-01-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs

  15. Why do pregnant women participate in research? A patient participation investigation using Q-Methodology.

    Science.gov (United States)

    Meshaka, Riwa; Jeffares, Stephen; Sadrudin, Farah; Huisman, Nicole; Saravanan, Ponnusamy

    2017-04-01

    Patient participation in study design is paramount to design studies that are acceptable to patients. Despite an increase in research involving pregnant women, relatively little is known about the motivational factors that govern their decision to be involved in a clinical trial, compared to other patient groups. To better understand the viewpoints of pregnant women who take part in clinical trials. We chose to use Q-Methodology, a method of exploring the structure of opinions surrounding a topic. We developed a set of 40 statements that encompassed the reasons why pregnant women might want to take part in research and 30 research participants from the PRiDE study (an observational trial investigating the role of micronutrients in gestational diabetes) were asked to rank them in order of agreement. The finished matrices from each participant were compared and analysed to produce capturing viewpoints. About 30 women aged 19-40 involved in the PRiDE study completed the questionnaire. There were two overarching motivators that emerged: a willingness to help medical research and improve our knowledge of medical science, and having a personal connection to the disease, therefore a potential fear of being affected by it. A third, less significant viewpoint, was that of a lack of inconvenience being a motivating factor. Understanding what motivates pregnant women to decide to take part in a research study is valuable and helps researchers maximize their uptake and retention rates when designing a trial involving pregnant women. © 2016 The Authors. Health Expectations Published by John Wiley & Sons Ltd.

  16. Monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, CA

    International Nuclear Information System (INIS)

    Wall, W.R.; Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-11-01

    Automated tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia-designed accessories, have been combined with a PDP 11/40 computer to automatically read and record tritium concentrations of room air, containment, and cleanup systems. Each individual monitoring system, in addition to a local display in the area of interest, has a visible/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from μCi/m 3 levels for room air monitoring to kCi/m 3 levels for glove box and cleanup systems monitoring. In this report the overall monitoring system and its capabilities are discussed, with detailed descriptions given of monitors and their components

  17. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking

    Directory of Open Access Journals (Sweden)

    Brittany J. Gasper

    2013-02-01

    Full Text Available Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.

  18. Factors associated with willingness to participate in biospecimen research among Chinese Americans.

    Science.gov (United States)

    Gao, Wanzhen; Ma, Grace X; Tan, Yin; Fang, Carolyn; Weaver, JoEllen; Jin, Ming; Lai, Philip

    2014-04-01

    A paucity of information exists on the recruitment of Asian Americans for biospecimen research. Although studies show that Chinese Americans are at high risk for hepatitis B virus (HBV) infection, little is known about their willingness to participate in HBV-related biospecimen research and how knowledge, attitudes, and cultural factors impact their willingness to participate. The study was guided by Community-Based Participatory Research principles. Data were derived from an assessment study on HBV-related biospecimen research participation among Chinese Americans in the Philadelphia region. The assessment was conducted with 415 Chinese Americans recruited from eight Chinese community-based organizations. Cultural beliefs, knowledge, and attitudes toward biospecimen research were examined for associations with their willingness to participate in biospecimen banking research. Overall, 192 (46.3%) of 415 participants who completed the assessment indicated they were willing to participate if they were invited to donate blood to be frozen and stored for future HBV biospecimen studies. Cultural variables significant in bivariate analysis included collectivism, knowledge about biospecimen research, and Yin-Yang beliefs. Fatalism and individualism were not associated with participation willingness. In multivariate analysis, age, health care attitudes, and trust were significantly associated with willingness to participate in biospecimen banking research. Asian American communities have little knowledge of biospecimen banking and will benefit from educational campaigns that emphasize collective benefits and attitudes towards and trust in the health care system. Understanding cultural factors is important for improving Chinese Americans' knowledge, awareness, and intentions of participation in biospecimen research. Similar efforts need to be undertaken to develop culturally appropriate educational intervention programs to increase participation in biospecimen research

  19. Factors Associated with Willingness to Participate in Biospecimen Research Among Chinese Americans

    Science.gov (United States)

    Gao, Wanzhen; Tan, Yin; Fang, Carolyn; Weaver, JoEllen; Jin, Ming; Lai, Philip

    2014-01-01

    A paucity of information exists on the recruitment of Asian Americans for biospecimen research. Although studies show that Chinese Americans are at high risk for hepatitis B virus (HBV) infection, little is known about their willingness to participate in HBV-related biospecimen research and how knowledge, attitudes, and cultural factors impact their willingness to participate. The study was guided by Community-Based Participatory Research principles. Data were derived from an assessment study on HBV-related biospecimen research participation among Chinese Americans in the Philadelphia region. The assessment was conducted with 415 Chinese Americans recruited from eight Chinese community-based organizations. Cultural beliefs, knowledge, and attitudes toward biospecimen research were examined for associations with their willingness to participate in biospecimen banking research. Overall, 192 (46.3%) of 415 participants who completed the assessment indicated they were willing to participate if they were invited to donate blood to be frozen and stored for future HBV biospecimen studies. Cultural variables significant in bivariate analysis included collectivism, knowledge about biospecimen research, and Yin-Yang beliefs. Fatalism and individualism were not associated with participation willingness. In multivariate analysis, age, health care attitudes, and trust were significantly associated with willingness to participate in biospecimen banking research. Asian American communities have little knowledge of biospecimen banking and will benefit from educational campaigns that emphasize collective benefits and attitudes towards and trust in the health care system. Understanding cultural factors is important for improving Chinese Americans' knowledge, awareness, and intentions of participation in biospecimen research. Similar efforts need to be undertaken to develop culturally appropriate educational intervention programs to increase participation in biospecimen research

  20. Industry Participation in Defence Research and Development,

    Science.gov (United States)

    1983-12-01

    Research and Development: Proposals for Additional Incentives. ASTEC , 1990. K . Interaction between Industry, Higher Education and Government Laboratories...Incentives for Innovation in Australian Industry. ASTEC , 1983. P. Bibliography. Distribution Document Control Data Sheet AWA I A& I 14l2 p/O)OIP (02... ASTEC and the Senate Committee on Science and the Environment. My Department is already preparing advice for me in this regard and I shall ask them to

  1. A partnership model for a reflective narrative for researcher and participant.

    Science.gov (United States)

    Murphy, Gill; Peters, Kath; Wilkes, Lesley; Jackson, Debra

    2016-09-01

    Background Conceptual frameworks are important to ensure a clear underpinning research philosophy. Further, the use of conceptual frameworks can support structured research processes. Aim To present a partnership model for a reflective narrative for researcher and participant. Discussion This paper positions the underpinning philosophical framework of the model in social constructionism (the idea that jointly constructed understandings form the basis for shared assumptions) and narrative enquiry. The model has five stages - study design, invitation to share a research space and partnership, a metaphorical research space, building a community story, and reading the community story to others. Core principles of the partnership model are continual reflection by the researcher, potential reflections by participants, reciprocal sharing, and partnership in research. Conclusion A 'trajectory of self' for both participants and researchers can be enhanced within reflective partnerships. Implications for practice This model can be applied to studies that use narrative enquiry and are seeking a humanistic approach with participant engagement.

  2. Financial remuneration for clinical and behavioral research participation: ethical and practical considerations.

    Science.gov (United States)

    Permuth-Wey, Jennifer; Borenstein, Amy R

    2009-04-01

    Although the practice of providing payment to clinical research participants has been ongoing for more than a century, it remains an ethically controversial topic among members of the research community. The aims of this commentary are to summarize ethical and practical considerations regarding financial remuneration of research participants and to make recommendations for researchers contemplating this practice. A PubMed search was conducted to explore the ethical implications surrounding financial remuneration and review the body of empiric data on this topic. Financial remuneration is perceived to be ethically acceptable by many researchers and research participants and can be helpful in the recruitment process. It is recommended that when investigators are contemplating whether to offer payment to research participants, they should consider the nature of the study and the potential benefits and risks to the participants, institutional or organizational guidelines, and cultural and societal norms specific to the population being studied. Financial remuneration has the ability to serve as a sign of appreciation for the contributions of research participants and a way to facilitate clinical and behavioral research.

  3. Participant Action Research in Political, Psychological, and Gender Studies

    Directory of Open Access Journals (Sweden)

    Olga Lucia Obando-Salazar

    2006-09-01

    Full Text Available Qualitative methodology is used in social and intervention research because it facilitates a deeper analysis of causal factors and development of alternative solutions to social problems. Based on the findings of three studies in the field of political and gender psychology, this article focuses on Participant Action Research (PAR as a useful qualitative approach to deal with social phenomena, such as racism, violence against women, and the problem of children and youth who have been dislocated as the result of armed conflict and sheltered by the Colombian government's program for persons relocated to civil society. This article is composed of three parts. The first part offers historical and theoretical background to the Action Research (AR paradigm, its validation criteria and their meaning for the development of the Latin American rendering of Participant Action Research (PAR. The second part synthesizes trends in the AR approach in the United States and Germany, discusses feminist research and compares these to trends in PAR in Latin America. The third part is a description of Participant Action Research as an intervention method, including features, models, goals, and concepts. URN: urn:nbn:de:0114-fqs060438

  4. Space Station life science research facility - The vivarium/laboratory

    Science.gov (United States)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  5. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  6. The Role of High School Research Experiences in Shaping Students' Research Self-Efficacy and Preparation for Undergraduate Research Participation

    Science.gov (United States)

    Swan, Amy K.; Inkelas, Karen Kurotsuchi; Jones, Jill N.; Pretlow, Joshua; Keller, Tierney F.

    2018-01-01

    The effects of undergraduate research participation are well documented, but less is known about students' pathways into undergraduate research participation. This mixed-methods study explored the role of an International Baccalaureate research project in students' development of research self-efficacy in high school, and how this development…

  7. Payment of research participants: current practice and policies of Irish research ethics committees.

    LENUS (Irish Health Repository)

    Roche, Eric

    2013-09-01

    Payment of research participants helps to increase recruitment for research studies, but can pose ethical dilemmas. Research ethics committees (RECs) have a centrally important role in guiding this practice, but standardisation of the ethical approval process in Ireland is lacking.

  8. Eighteenth annual risk reduction engineering laboratory research symposium

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The Eighteenth Annual Risk Reduction Engineering Laboratory Research Symposium was held in Cincinnati, Ohio, April 14-16, 1992. The purpose of this Symposium was to present the latest significant research findings from ongoing and recently completed projects funded by the Risk Reduction Engineering Laboratory (RREL). These Proceedings are organized into two sections. Sessions A and B, which contain extended abstracts of the paper presentations. A list of poster displays is also included. Subjects include remedial action, treatment, and control technologies for waste disposal, landfill liner and cover systems, underground storage tanks, and demonstration and development of innovative/alternative treatment technologies for hazardous waste. Alternative technology subjects include thermal destruction of hazardous wastes, field evaluations, existing treatment options, emerging treatment processes, waste minimization, and biosystems for hazardous waste destruction

  9. Pharmacists' views on involvement in pharmacy practice research: Strategies for facilitating participation.

    Science.gov (United States)

    Armour, Carol; Brillant, Martha; Krass, Ines

    2007-01-01

    In order for community pharmacy practice to continue to evolve, pharmacy practice research on potential new services is essential. This requires the active participation of community pharmacists. At present the level of involvement of community pharmacists in pharmacy practice research is minimal. To ascertain the attitudes of a group of research-experienced community pharmacists towards participating in research; to investigate the barriers and facilitators to participation; to identify potential strategies to increase the involvement of community pharmacists in research. A focus group was conducted with a purposive sample of 11 research-experienced community pharmacists. A pharmacist academic moderated the focus group using a semi-structured interview guide. The participants were asked about their attitudes towards research, previous involvement in research, barriers to their involvement and strategies to overcome these barriers. The session was audio-taped and notes were taken by an observer. Thematic analysis of the notes and audio-tape transcripts was conducted. Three themes emerged around pharmacists' attitudes towards research: pharmacists' perception of the purpose of research, pharmacists' motivation for involvement in research, and pharmacists' desired role in research. Barriers to research participation were grouped into four themes: pharmacists' mindset, communication, infrastructure (time, money and staff), and skills/knowledge. Strategies to address each of these barriers were suggested. Participants recognised the importance of research towards advancing their profession and this was a motivating factor for involvement in research. They perceived their role in research primarily as data collection. A series of practical strategies to overcome the barriers to participation were offered that researchers may wish to consider when promoting research outcomes and designing research projects.

  10. Pharmacists’ views on involvement in pharmacy practice research: Strategies for facilitating participation.

    Directory of Open Access Journals (Sweden)

    Armour C

    2007-06-01

    Full Text Available In order for community pharmacy practice to continue to evolve, pharmacy practice research on potential new services is essential. This requires the active participation of community pharmacists. At present the level of involvement of community pharmacists in pharmacy practice research is minimal. Objectives: To ascertain the attitudes of a group of research-experienced community pharmacists towards participating in research; to investigate the barriers and facilitators to participation; to identify potential strategies to increase the involvement of community pharmacists in research. Methods: A focus group was conducted with a purposive sample of 11 research-experienced community pharmacists. A pharmacist academic moderated the focus group using a semi-structured interview guide. The participants were asked about their attitudes towards research, previous involvement in research, barriers to their involvement and strategies to overcome these barriers. The session was audio-taped and notes were taken by an observer. Thematic analysis of the notes and audio-tape transcripts was conducted.Results: Three themes emerged around pharmacists’ attitudes towards research: pharmacists’ perception of the purpose of research, pharmacists’ motivation for involvement in research, and pharmacists’ desired role in research. Barriers to research participation were grouped into four themes: pharmacists’ mindset, communication, infrastructure (time, money and staff, and skills/knowledge. Strategies to address each of these barriers were suggested.Conclusions: Participants recognised the importance of research towards advancing their profession and this was a motivating factor for involvement in research. They perceived their role in research primarily as data collection. A series of practical strategies to overcome the barriers to participation were offered that researchers may wish to consider when promoting research outcomes and designing research

  11. Conference scene: Summary of the 6th Conference of the Romanian Association of Medical Laboratories with international participation.

    Science.gov (United States)

    Carasevici, Eugen

    2011-10-01

    The Romanian Association of Medical Laboratories (RAML) conferences have acquired a reputation for standing out as the most prominent and efficient meetings in the national community of laboratory medicine, being a landmark of the development in this field in Romania and an active affiliation to international forums. This year, the conference setting was Piatra Neamt, in the northeast part of Romania, which produced a friendly and stimulating professional environment. As in previous years, leading experts in the fields of laboratory medicine attended the event. This year, we enjoyed the opportunity to have such distinguished guests as the members of the executive board of International Federation of Clinical Chemistry and Laboratory Medicine (IFCC); Graham Beastall, IFCC President; Päivi Hannele Laitinen, IFCC secretary; and Grazyna Sypniewska, IFCC Communication and Publication Division, and editor of the electronic journal of the IFCC. As usual, the conference program included all aspects of clinical laboratory activity, with a special focus on technology development, instrumentation and laboratory management. Fully aware of the fact that the complexity and depth of laboratory practice have undergone an impressive and rapid evolution, the specific goals of the event were to increase knowledge in the fundamentals of new molecular investigation, areas which show the tendency to become routine in our daily activity. In addition, laboratory management and the place of medical laboratories in the process of translational medicine were subjects of focus. The 6th Conference of the Romanian Association of Medical Laboratories was held from Wednesday 1st to Saturday 4th of June 2011. A total of 273 participants from all local branches of the Association attended. The scientific program included seven plenary sessions where 22 lectures and 18 short communications were delivered, and three poster sessions with 44 poster presentations. Session topics covered issues of

  12. Global Impact | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Through its direct support of clinical research, Frederick National Laboratory activities are not limited to national programs. The labis actively involved in more than 400 domestic and international studies related to cancer; influenza, HIV, E

  13. Development of a Research-Oriented Inorganic Chemistry Laboratory Course

    Science.gov (United States)

    Vallarino, L. M.; Polo, D. L.; Esperdy, K.

    2001-02-01

    We report the development of a research-oriented, senior-level laboratory course in inorganic chemistry, which is a requirement for chemistry majors who plan to receive the ACS-approved Bachelor of Science degree and is a recommended elective for other chemistry majors. The objective of this course is to give all students the advantage of a research experience in which questions stemming from the literature lead to the formulation of hypotheses, and answers are sought through experiment. The one-semester Inorganic Chemistry Laboratory is ideal for this purpose, since for most students it represents the last laboratory experience before graduation and can assume the role of "capstone" course--a course where students are challenged to recall previously learned concepts and skills and put them into practice in the performance of an individual, original research project. The medium chosen for this teaching approach is coordination chemistry, a branch of chemistry that involves the interaction of inorganic and organic compounds and requires the use of various synthetic and analytical methods. This paper presents an outline of the course organization and requirements, examples of activities performed by the students, and a critical evaluation of the first five years' experience.

  14. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  15. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  16. The monitoring system of the Tritium Research Laboratory, Sandia Laboratories, Livermore, California

    International Nuclear Information System (INIS)

    Hafner, R.S.; Westfall, D.L.; Ristau, R.D.

    1978-01-01

    Computerized tritium monitoring is now in use at the Tritium Research Laboratory (TRL). Betatec 100 tritium monitors, along with several Sandia designed accessories, have been combined with a PDP 11/40 computer to provide maximum personnel and environmental protection. Each individual monitoring system, in addition to a local display in the area of interest, has a visual/audible display in the control room. Each system is then channeled into the PDP 11/40 computer, providing immediate assessment of the status of the entire laboratory from a central location. Measurement capability ranges from uCi/m 3 levels for room air monitoring to KCi/m 3 levels for glove box and process system monitoring. The overall monitoring system and its capabilities will be presented

  17. The Los Alamos Scientific Laboratory - An Isolated Nuclear Research Establishment

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Norris E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-23

    Early in his twenty-five year career as the Director of the Los Alamos Scientific Laboratory, Norris Bradbury wrote at length about the atomic bomb and the many implications the bomb might have on the world. His themes were both technical and philosophical. In 1963, after nearly twenty years of leading the nation’s first nuclear weapons laboratory, Bradbury took the opportunity to broaden his writing. In a paper delivered to the International Atomic Energy Agency’s symposium on the “Criteria in the Selection of Sites for the Construction of Reactors and Nuclear Research Centers,” Bradbury took the opportunity to talk about the business of nuclear research and the human component of operating a scientific laboratory. This report is the transcript of his talk.

  18. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  19. 2015 Fermilab Laboratory Directed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    The Fermi National Accelerator Laboratory (FNAL) is conducting a Laboratory Directed Research and Development (LDRD) program. Fiscal year 2015 represents the first full year of LDRD at Fermilab and includes seven projects approved mid-year in FY14 and six projects approved in FY15. One of the seven original projects has been completed just after the beginning of FY15. The implementation of LDRD at Fermilab is captured in the approved Fermilab 2015 LDRD Annual Program Plan. In FY15, the LDRD program represents 0.64% of Laboratory funding. The scope of the LDRD program at Fermilab will be established over the next couple of years where a portfolio of about 20 on-going projects representing approximately between 1% and 1.5% of the Laboratory funding is anticipated. This Annual Report focuses on the status of the current projects and provides an overview of the current status of LDRD at Fermilab.

  20. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    Science.gov (United States)

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time.

  1. Participants' perceptions of research benefits in an African genetic epidemiology study.

    Science.gov (United States)

    Appiah-Poku, John; Newton, Sam; Kass, Nancy

    2011-12-01

      Both the Council for International Organization of Medical Sciences and the Helsinki Declaration emphasize that the potential benefits of research should outweigh potential harms; consequently, some work has been conducted on participants' perception of benefits in therapeutic research. However, there appears to be very little work conducted with participants who have joined non-therapeutic research. This work was done to evaluate participants' perception of benefits in a genetic epidemiological study by examining their perception of the potential benefits of enrollment.   In-depth interviews lasting between 45 and 60 minutes were conducted with a convenient sample of 25 ill patients and 25 healthy accompanying relatives enrolled in a genetic epidemiological study of tuberculosis. Recorded interviews were transcribed and analyzed using content analysis.   Participants perceived that research was beneficial and some of the benefits included the generation of new knowledge, finding the cause of diseases, as well as the control, eradication and prevention of disease. Some thought that research was risky whilst others thought that the benefits outweighed the risks.   Participants perceived research to be beneficial and most of them thought that, though it was risky, the benefits outweighed the risks. It is our view that researchers need to give serious consideration to participant's perception of benefits in designing their consent forms, to see to the fulfillment of achievable goals. © 2011 Blackwell Publishing Ltd.

  2. Risk perception and decision processes underlying informed consent to research participation.

    Science.gov (United States)

    Reynolds, William W; Nelson, Robert M

    2007-11-01

    According to the rational choice model, informed consent should consist of a systematic, step-by-step evaluation of all information pertinent to the treatment or research participation decision. Research shows that people frequently deviate from this normative model, however, employing decision-making shortcuts, or heuristics. In this paper we report findings from a qualitative study of 32 adolescents and (their) 31 parents who were recruited from two Northeastern US hospitals and asked to consider the risks of and make hypothetical decisions about research participation. The purpose of this study was to increase our understanding of how diabetic and at-risk adolescents (i.e., those who are obese and/or have a family history of diabetes) and their parents perceive risks and make decisions about research participation. Using data collected from adolescents and parents, we identify heuristic decision processes in which participant perceptions of risk magnitude, which are formed quickly and intuitively and appear to be based on affective responses to information, are far more prominent and central to the participation decision than are perceptions of probability. We discuss participants' use of decision-making heuristics in the context of recent research on affect and decision processes, and we consider the implications of these findings for researchers.

  3. Access, entry and researcher-participant position

    DEFF Research Database (Denmark)

    Louw, Arnt Vestergaard

    2015-01-01

    This article reports on methodological experiences obtained in an anthropologically inspired qualitative study among students of carpentry in Denmark. On the one hand the article deals with methodological issues of doing anthropological research among students of carpentry, while on the other...... it deals with the research findings that such a research design produced. As well as the methodological issues of researcher access, entry and participant position in the field, this article reports on the following questions: What kinds of implicit expectations of the students are embedded in the way...... the school introduces and initiates the programme? What kinds of effects does this have on the motivation of the students? How do the terms and professional language of the profession work on the individual students in including and excluding ways? These specific descriptions of classroom pedagogy, inspired...

  4. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  5. Radioisotope research and development at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Peterson, E.J.

    1993-01-01

    Throughout its fifty year history, Los Alamos National Laboratory has conducted research and development in the production, isolation, purification, and application of radioactive isotopes. Initially this work supported the weapons development mission of the Laboratory. Over the years the work has evolved to support basic and applied research in many diverse fields, including nuclear medicine, biomedical studies, materials science, environmental research and the physical sciences. In the early 1970s people in the Medical Radioisotope Research Program began irradiating targets at the Los Alamos Meson Physics Facility (LAMPF) to investigate the production and recovery of medically important radioisotopes. Since then spallation production using the high intensity beam at LAMPF has become a significant source of many important radioisotopes. Los Alamos posesses other facilities with isotope production capabilities. Examples are the Omega West Reactor (OWR) and the Van de Graaf Ion Beam Facility (IBF). Historically these facilities have had limited availability for radioisotope production, but recent developments portend a significant radioisotope production mission in the future

  6. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  7. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  8. Radiotracer laboratory for agricultural research at the Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Nashriyah Mat; Misman Sumin; Maizatul Akmam Mhd Nasir

    2007-01-01

    Radiotracer Laboratory for agricultural research at the Malaysian Nuclear Agency was established since 1990. It accommodates three laboratories, three chemical temporary storage compartments plus one compartment for storage of pressurized gas. This facility is situated in ground floor of Block 44, Agrotechnology and Biosciences Division, Dengkil Complex. Currently it houses a liquid scintillation counter, sample oxidizer, gas liquid chromatography, high performance liquid chromatography and auxiliary equipments. A road map for this laboratory will be discussed in relation with present scenario i.e. R and D service, training and consultancy provided by this laboratory; and future requirements and direction. (Author)

  9. Political Ideology, Confidence in Science, and Participation in Alzheimer Disease Research Studies.

    Science.gov (United States)

    Gabel, Matthew; Gooblar, Jonathan; Roe, Catherine M; Selsor, Natalie J; Morris, John C

    2018-01-18

    Americans' confidence in science varies based on their political ideology. This ideological divide has potentially important effects on citizens' engagement with and participation in clinical studies of Alzheimer disease (AD). A probability sample of 1583 Americans was surveyed about their willingness to participate in longitudinal AD research and about their political attitudes. These survey results were compared with a survey of 382 participants in a longitudinal AD study at the Knight Alzheimer Disease Research Center. Among Americans, more conservative ideology decreases willingness to participate in a hypothetical longitudinal cohort study of AD both directly and through its negative effect on confidence in science. The Knight Alzheimer Disease Research Center study participants expressed more liberal ideology and greater confidence in science than Americans in general. Of the survey respondents opposed to participation, over a quarter changed to neutral or positive if the study returned their research results to them. Clinical studies of AD are likely biased toward participants who are more liberal and have higher confidence in science than the general population. This recruitment bias may be reduced by lowering the trust demanded of participants through measures such as returning research results to participants.

  10. Mapping the Use of Engineered NM in Quebec's Industries and Research Laboratories

    International Nuclear Information System (INIS)

    Ostiguy, Claude; Emond, Claude; Dossa, Inès; Plavski, Anton; Malki, Yasmina; Boily, Chantale; Roughley, David; Endo, Charles-Anica

    2013-01-01

    Engineered NanoMaterials (NM) offer an opportunity to develop a wide variety of new products with unique properties but many studies have shown potential OHS risks specific to NM. Addressing these risks requires knowledge about release of NM into the workplaces. This research aimed to map the state of nanotechnology OHS practices in Quebec through a questionnaire following a first contact by telephone when possible and by compiling the type and volumes of NM used as well as gathering information related to the working conditions and OHS aspects. This survey was conducted among 1310 Quebec industries and 653 researchers working in different specialties potentially involved in the development/production/distribution/integration of NM and use of NM containing products. Overall, 90 questionnaires, including 51 from the industries, were completed. These showed that NM are mainly used into the powder form, in many different sectors and deserve a wide range of markets. The prevention measures implemented vary widely from a workplace to another but about one third of the participants report that they have implemented NP adapted prevention measures but they remain worried on some specific operations. More than 50% of the participants request more information about the safe laboratory/plant design, toxicity, regulation, good work practices and prevention measures, efficiency of personal protective equipment and environmental impacts.

  11. Mapping the Use of Engineered NM in Quebec's Industries and Research Laboratories

    Science.gov (United States)

    Ostiguy, Claude; Emond, Claude; Dossa, Inès; Malki, Yasmina; Boily, Chantale; Roughley, David; Plavski, Anton; Endo, Charles-Anica

    2013-04-01

    Engineered NanoMaterials (NM) offer an opportunity to develop a wide variety of new products with unique properties but many studies have shown potential OHS risks specific to NM. Addressing these risks requires knowledge about release of NM into the workplaces. This research aimed to map the state of nanotechnology OHS practices in Quebec through a questionnaire following a first contact by telephone when possible and by compiling the type and volumes of NM used as well as gathering information related to the working conditions and OHS aspects. This survey was conducted among 1310 Quebec industries and 653 researchers working in different specialties potentially involved in the development/production/distribution/integration of NM and use of NM containing products. Overall, 90 questionnaires, including 51 from the industries, were completed. These showed that NM are mainly used into the powder form, in many different sectors and deserve a wide range of markets. The prevention measures implemented vary widely from a workplace to another but about one third of the participants report that they have implemented NP adapted prevention measures but they remain worried on some specific operations. More than 50% of the participants request more information about the safe laboratory/plant design, toxicity, regulation, good work practices and prevention measures, efficiency of personal protective equipment and environmental impacts.

  12. Worldwide Research, Worldwide Participation: Web-Based Test Logger

    Science.gov (United States)

    Clark, David A.

    1998-01-01

    Thanks to the World Wide Web, a new paradigm has been born. ESCORT (steady state data system) facilities can now be configured to use a Web-based test logger, enabling worldwide participation in tests. NASA Lewis Research Center's new Web-based test logger for ESCORT automatically writes selected test and facility parameters to a browser and allows researchers to insert comments. All data can be viewed in real time via Internet connections, so anyone with a Web browser and the correct URL (universal resource locator, or Web address) can interactively participate. As the test proceeds and ESCORT data are taken, Web browsers connected to the logger are updated automatically. The use of this logger has demonstrated several benefits. First, researchers are free from manual data entry and are able to focus more on the tests. Second, research logs can be printed in report format immediately after (or during) a test. And finally, all test information is readily available to an international public.

  13. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  14. New working paradigms in research laboratories.

    Science.gov (United States)

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  15. Laboratory training manual on the use of isotopes and radiation in soil-plant relations research

    International Nuclear Information System (INIS)

    1964-01-01

    The International Atomic Energy Agency (IAEA) and the Food and Agriculture Organization of the United Nations (FAO) in co-operation with local authorities in various countries have jointly sponsored international laboratory training courses on the use of isotopes and radiation in specialized fields of agriculture. Outstanding scientists from various countries have given lectures and devised and conducted the laboratory exercises; research workers from all over the world have attended these courses. In addition, under the United Nations Expanded Programme of Technical Assistance the IAEA in co-operation with host governments has conducted similar regional courses. This laboratory manual is a natural outgrowth of these activities. The contents represents the efforts not only of the IAEA and FAO Secretariats but also of the various instructors who have participated in the courses, a Special Consultant, Victor Middelboe, and a panel of scientists who met in Vienna from 3 to 7 September 1962 and revised the initial version assembled by Hans Broeshart and Chai Moo Cho of the IAEA Secretariat. The present manual consists of two parts: a basic part which contains general information and laboratory exercises on the properties of radiation and the principles of use of radioactive tracers, and a second part which contains a series of detailed laboratory exercises in the field of soil-plant relationships. It is intended to publish at least four additional parts on the subjects of the use of isotopes and radiation in animal science, agricultural biochemistry, entomology and plant pathology. This manual, dealing with an important aspect of the peaceful application and use of atomic energy, should prove helpful not only to those working with the IAEA and FAO training programmes but to other research scientists dealing with the development and use of new information in agricultural science all over the world

  16. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1992

    International Nuclear Information System (INIS)

    1993-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1992 are summarized. In this Laboratory, there are four large research facilities, that are, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of research by using respective research facilities have been summarized in separate reports. The course of the management and operation of each research facility is described, and the research activities, the theses for doctorate and graduation these of teachers, personnel and graduate students in the Laboratory are summarized. (J.P.N.)

  17. Laboratory directed research and development 2006 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  18. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  19. Participation in environmental health research by placenta donation - a perception study

    DEFF Research Database (Denmark)

    Lind, Uffe; Mose, Tina; Knudsen, Lisbeth E

    2007-01-01

    background information but no follow up. METHODS: Nineteen semi-structured qualitative interviews were conducted with participants in the placenta perfusion study after donation of placenta. Observation studies were made of recruitment sessions. RESULTS: The interviewed participants are generally in favour......, but trust is something which needs to be created through "trust-work". Face-to-face interaction, written information material and informed consent forms play important parts in creating trusting relationships in medical research. CONCLUSION: Medical research ethics do not only amount to specific types......BACKGROUND: Much environmental health research depends on human volunteers participating with biological samples. The perception study explores why and how people participate in a placenta perfusion study in Copenhagen. The participation implies donation of the placenta after birth and some...

  20. Is a "wage-payment" model for research participation appropriate for children?

    Science.gov (United States)

    Bagley, Stephen J; Reynolds, William W; Nelson, Robert M

    2007-01-01

    Our goal was to evaluate the applicability of a "wage-payment" model to inducements for children to participate in research. We interviewed 42 children and adolescents between the ages of 4 and 16 years who had diabetes, asthma, seizures, or no chronic medical condition. The interview explored hypothetical participation decisions for up to 4 research scenarios. To evaluate factors that would influence children and adolescents' decision-making for research participation, we probed for the impact of monetary and other incentives. The interviews were transcribed and coded for specific themes related to money or other rewards and incentives. Older children, mainly those >9 years of age, showed an appreciation for the role and value of money through (a) an accurate concept of the material value of money in society or (b) asking for a realistic amount of money in exchange for their research participation. Younger children, primarily those payment model for compensating older children (>9 years of age) and adolescents for the time and effort of research participation is appropriate because they generally understand the meaning and value of a wage.

  1. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001

    International Nuclear Information System (INIS)

    FOX, K.J.

    2001-01-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about$450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R and D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  2. Decision-making and motivation to participate in biomedical research in southwest Nigeria.

    Science.gov (United States)

    Osamor, Pauline E; Kass, Nancy

    2012-08-01

    Motivations and decision-making styles that influence participation in biomedical research vary across study types, cultures, and countries. While there is a small amount of literature on informed consent in non-western cultures, few studies have examined how participants make the decision to join research. This study was designed to identify the factors motivating people to participate in biomedical research in a traditional Nigerian community, assess the degree to which participants involve others in the decision-making process, and examine issues of autonomy in decision-making for research. A descriptive cross-sectional study was conducted with 100 adults (50 men, 50 women) in an urban Nigerian community who had participated in a biomedical research study. Subjects were interviewed using a survey instrument. Two-thirds of the respondents reported participating in the biomedical study to learn more about their illness, while 30% hoped to get some medical care. Over three-quarters (78%) of participants discussed the enrollment decision with someone else and 39% reported obtaining permission from a spouse or family member to participate in the study. Women were more than twice as likely as men to report obtaining permission from someone else before participating. More specifically, half of the female participants reported seeking permission from a spouse before enrolling. The findings suggest that informed consent in this community is understood and practised as a relational activity that involves others in the decision making process. Further studies are needed in non-Western countries concerning autonomy, decision-making, and motivation to participate in research studies. © 2012 Blackwell Publishing Ltd.

  3. Personal epistemological growth in a college chemistry laboratory environment

    Science.gov (United States)

    Keen-Rocha, Linda S.

    The nature of this study was to explore changes in beliefs and lay a foundation for focusing on more specific features of reasoning related to personal epistemological and NOS beliefs in light of specific science laboratory instructional pedagogical practices (e.g., pre- and post-laboratory activities, laboratory work) for future research. This research employed a mixed methodology, foregrounding qualitative data. The total population consisted of 56 students enrolled in several sections of a general chemistry laboratory course, with the qualitative analysis focusing on the in-depth interviews. A quantitative NOS and epistemological beliefs measure was administered pre- and post-instruction. These measures were triangulated with pre-post interviews to assure the rigor of the descriptions generated. Although little quantitative change in NOS was observed from the pre-post NSKS assessment a more noticeable qualitative change was reflected by the participants during their final interviews. The NSKS results: the mean gain scores for the overall score and all dimensions, except for amoral were found to be significant at p ≤ .05. However there was a more moderate change in the populations' broader epistemological beliefs (EBAPS) which was supported during the final interviews. The EBAPS results: the mean gain scores for the overall score and all dimensions, except for the source of ability to learn were found to be significant at p ≤ .05. The participants' identified the laboratory work as the most effective instructional feature followed by the post-laboratory activities. The pre-laboratory was identified as being the least effective feature. The participants suggested the laboratory work offered real-life experiences, group discussions, and teamwork which added understanding and meaning to their learning. The post-laboratory was viewed as necessary in tying all the information together and being able to see the bigger picture. What one cannot infer at this point is

  4. Ultra-Short-Pulse Laser Effects Research and Analysis Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Enables research into advanced laser countermeasure techniques.DESCRIPTION: This laser facility has a capability to produce very high peak power levels of...

  5. The Genomics Education Partnership: Successful Integration of Research into Laboratory Classes at a Diverse Group of Undergraduate Institutions

    Science.gov (United States)

    Shaffer, Christopher D.; Alvarez, Consuelo; Bailey, Cheryl; Barnard, Daron; Bhalla, Satish; Chandrasekaran, Chitra; Chandrasekaran, Vidya; Chung, Hui-Min; Dorer, Douglas R.; Du, Chunguang; Eckdahl, Todd T.; Poet, Jeff L.; Frohlich, Donald; Goodman, Anya L.; Gosser, Yuying; Hauser, Charles; Hoopes, Laura L.M.; Johnson, Diana; Jones, Christopher J.; Kaehler, Marian; Kokan, Nighat; Kopp, Olga R.; Kuleck, Gary A.; McNeil, Gerard; Moss, Robert; Myka, Jennifer L.; Nagengast, Alexis; Morris, Robert; Overvoorde, Paul J.; Shoop, Elizabeth; Parrish, Susan; Reed, Kelynne; Regisford, E. Gloria; Revie, Dennis; Rosenwald, Anne G.; Saville, Ken; Schroeder, Stephanie; Shaw, Mary; Skuse, Gary; Smith, Christopher; Smith, Mary; Spana, Eric P.; Spratt, Mary; Stamm, Joyce; Thompson, Jeff S.; Wawersik, Matthew; Wilson, Barbara A.; Youngblom, Jim; Leung, Wilson; Buhler, Jeremy; Mardis, Elaine R.; Lopatto, David

    2010-01-01

    Genomics is not only essential for students to understand biology but also provides unprecedented opportunities for undergraduate research. The goal of the Genomics Education Partnership (GEP), a collaboration between a growing number of colleges and universities around the country and the Department of Biology and Genome Center of Washington University in St. Louis, is to provide such research opportunities. Using a versatile curriculum that has been adapted to many different class settings, GEP undergraduates undertake projects to bring draft-quality genomic sequence up to high quality and/or participate in the annotation of these sequences. GEP undergraduates have improved more than 2 million bases of draft genomic sequence from several species of Drosophila and have produced hundreds of gene models using evidence-based manual annotation. Students appreciate their ability to make a contribution to ongoing research, and report increased independence and a more active learning approach after participation in GEP projects. They show knowledge gains on pre- and postcourse quizzes about genes and genomes and in bioinformatic analysis. Participating faculty also report professional gains, increased access to genomics-related technology, and an overall positive experience. We have found that using a genomics research project as the core of a laboratory course is rewarding for both faculty and students. PMID:20194808

  6. Aespoe hard rock laboratory. Current research projects 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a `dress rehearsal` for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book `Aespoe Hard Rock Laboratory - 10 years of Research` published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  7. Aespoe hard rock laboratory. Current research projects 1998

    International Nuclear Information System (INIS)

    1998-01-01

    In 1986 SKB decided to construct the Aespoe Hard Rock Laboratory (HRL) in order to provide an opportunity for research, development and demonstration in a realistic and undisturbed underground rock environment down to the depth planned for the future deep repository. The focus of current and future work is on development and testing of site characterization methods, verification of models describing the function of the natural and engineered barriers and development, testing, and demonstration of repository technology. The program has been organised so that all important steps in the development of a repository are covered, in other words the Aespoe HRL constitutes a 'dress rehearsal' for the Swedish deep geological repository for spent fuel and other long-lived waste. Geoscientific investigations on Aespoe and nearby islands began in 1986. Aespoe was selected as the site for the laboratory in 1988. Construction of the facility, which reaches a depth of 460 m below the surface, began in 1990 and was completed in 1995. A major milestone had been reached in 1996 with the completion of the pre-investigation and construction phases of the Aespoe HRL. The comprehensive research conducted has permitted valuable development and verification of site characterization methods applied from the ground surface, boreholes, and underground excavations. The results of this research are summarised in the book 'Aespoe Hard Rock Laboratory - 10 years of Research' published by SKB in 1996. The Operating Phase of the Aespoe HRL began in 1995 and is expected to continue for 15-20 years, that is until the first stage of the development of the Swedish deep geological repository for spent nuclear fuel is expected to be completed. A number of research projects were initiated at the start of the Operating Phase. Most of these projects have made substantial progress since then and important results have been obtained. The purpose of this brochure is to provide a brief presentation of the

  8. Laboratory Directed Research and Development LDRD-FY-2011

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  9. Report on the International Society for Laboratory Hematology Survey on guidelines to support clinical hematology laboratory practice.

    Science.gov (United States)

    Hayward, C P M; Moffat, K A; George, T I; Proytcheva, M; Iorio, A

    2016-05-01

    Given the importance of evidence-based guidelines in health care, we surveyed the laboratory hematology community to determine their opinions on guideline development and their experience and interest in developing clinical hematology laboratory practice guidelines. The study was conducted using an online survey, distributed to members of the International Society for Laboratory Hematology (ISLH) in 2015, with analysis of collected, anonymized responses. A total of 245 individuals participated. Most worked in clinical and/or research laboratories (83%) or industry (11%). 42% felt there were gaps in current guidelines. The majority (58%) recommended that ISLH engages its membership in guideline development. Participants differed in their familiarity with, and use of, different organizations' guidelines. Participants felt it was important to follow best practice recommendations on guideline development, including engagement of experts, statement about conflict of interests and how they were managed, systematic review and grading evidence for recommendations, identifying recommendations lacking evidence or consensus, and public input and peer review of the guideline. Moreover, it was considered important to provide guidelines free of charge. Industry involvement in guidelines was considered less important. The clinical laboratory hematology community has high expectations of laboratory practice guidelines that are consistent with recent recommendations on evidence-based guideline development. © 2016 John Wiley & Sons Ltd.

  10. Research Collaborations Between Universities and Department of Defense Laboratories

    Science.gov (United States)

    2014-07-31

    Council – Resident Research Associateship (USAF/NRC-RRA) Program,” last accessed March 10, 2013, http://www.wpafb.af.mil/ library /factsheets...as CRAs and CTAs, could enable collaboration through university consortia designed to support DOD laboratory research. Such alliances would have the...university consortia , may be able to leverage partnerships that meet their collaborative research needs. 5. Increased Patent Filing Fees when Partnering

  11. Why female sex workers participate in HIV research: the illusion of voluntariness.

    Science.gov (United States)

    Reed, Elizabeth; Fisher, Celia B; Blankenship, Kim M; West, Brooke S; Khoshnood, Kaveh

    2017-07-01

    The purpose of this study was to examine factors influencing the motivation for and perceived voluntariness of participation in non-intervention HIV research among female sex workers (FSW) in India. FSW (n = 30) who participated in non-intervention HIV studies in the previous three years were recruited from a local community-based organization. Semi-structured qualitative interviews focused on women's personal and economic motivations for participation and their perceptions of the informed consent process. Interviews were audio-recorded, translated, transcribed, and reviewed for common themes. Content analysis indicated that while many women reported willing participation, reports of obligatory participation were also a common theme. Obligations included money-related pressures and coercion by other FSW, social pressures, not wanting to disappoint the researchers, and perceiving that they had a contractual agreement to complete participation as a result of signing the consent form. Findings suggest a need for additional efforts during and following informed consent to prevent obligatory participation in HIV research studies among FSW. Findings emphasize the importance of integrating ongoing participant feedback into research ethics practices to identify issues not well addressed via standard ethics protocols when conducting HIV research among vulnerable populations.

  12. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  13. Ethical Considerations in Research Participation Virality.

    Science.gov (United States)

    Ellis-Barton, Carol

    2016-07-01

    This article seeks to commence and encourage discussion around the upcoming ethical challenges of virality in network structures. When the call for participation in a research project on lupus in Ireland went from an advertisement in a newsletter to a meme (unit of transmissible information) on a closed Facebook page, the ethical considerations of virality were raised. The article analyzes the Association of Internet Researchers guidelines, Facebook policies, and the context of privacy in relation to virality. Virality creates the leverage for methodological pluralism. The nature of the inquiry can determine the method rather than the other way around. Viral ethical considerations are evolving due to the cyber world becoming the primary meme of communication, with flexibility in the researcher's protocol providing opportunities for efficient, cost-effective, and diverse recruitment. © The Author(s) 2016.

  14. Cryptosporidiosis outbreak at an academic animal research laboratory-Colorado, 2014.

    Science.gov (United States)

    Hancock-Allen, Jessica; Alden, Nisha B; Cronquist, Alicia B

    2017-02-01

    After cryptosporidiosis was reported in three workers caring for preweaned calves at an academic research laboratory, we sought to identify cases, determine risk factors, and implement control measures. A cryptosporidiosis case was defined as diarrhea duration ≥72 hr, abdominal cramps, or vomiting in an animal research laboratory worker during July 14-July 31. A confirmed case had laboratory evidence of Cryptosporidium infection. Staff were interviewed regarding illness, potential exposures, training, and personal protective equipment (PPE) standard operating procedures (SOPs). The cryptosporidiosis attack rate (AR) was 74% (20/27); five were laboratory-confirmed. Median job training was 2 hr including respiratory-fit testing. No SOPs existed for doffing PPE. AR for workers who removed their gloves first was 84% (16/19) compared with 20% (1/5) for workers who removed gloves last (risk ratio = 4.2; P importance of adequate training, enforced proper PPE procedures, and promoting a culture of safety. Am. J. Ind. Med. 60:208-214, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Tritium monitoring at the Sandia Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Devlin, T.K.

    1978-10-01

    Sandia Laboratories at Livermore, California, is presently beginning operation of a Tritium Research Laboratory (TRL). The laboratory incorporates containment and cleanup facilities such that any unscheduled tritium release is captured rather than vented to the atmosphere. A sophisticated tritium monitoring system is in use at the TRL to protect operating personnel and the environment, as well as ensure the safe and effective operation of the TRL decontamination systems. Each monitoring system has, in addition to a local display, a display in a centralized control room which, when coupled room which, when coupled with the TRL control computer, automatically provides an immediate assessment of the status of the entire facility. The computer controls a complex alarm array status of the entire facility. The computer controls a complex alarm array and integrates and records all operational and unscheduled tritium releases

  16. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  17. Protecting vulnerable research participants: a Foucault-inspired analysis of ethics committees.

    Science.gov (United States)

    Juritzen, Truls I; Grimen, Harald; Heggen, Kristin

    2011-09-01

    History has demonstrated the necessity of protecting research participants. Research ethics are based on a concept of asymmetry of power, viewing the researcher as powerful and potentially dangerous and establishing ethics committees as external agencies in the field of research. We argue in favour of expanding this perspective on relationships of power to encompass the ethics committees as one among several actors that exert power and that act in a relational interplay with researchers and participants. We employ Michel Foucault's ideas of power as an omnipresent force which is dynamic and unstable, as well as the notion that knowledge and power are inextricably intertwined. The article discusses how research ethics committees may affect academic freedom. In addition it is pointed out that research participants could be harmed - not only by unfortunate research practices, but also by being subjected to the protective efforts of ethics monitoring bodies.

  18. Regulating hematology/oncology research involving human participants.

    Science.gov (United States)

    Kapp, Marshall B

    2002-12-01

    The conduct of hematology/oncology research, particularly clinical trials involving human participants, is an extensively regulated enterprise. Professionals in the specialty of hematology/oncology have important stakes in the success of biomedical research endeavors. Knowledge about and compliance strategies regarding the pertinent regulatory parameters are essential for avoiding negative legal repercussions for involved professionals. At the same time, there is a need to be aware of and actively resist the danger that strong [legal] protectionism might inadvertently result in undermining physician investigators' sense of personal moral responsibility in the conduct of human experiments. For all the limitations of that virtue in the protection of human subjects, it is surely not one that we would want medical scientists to be without [47]. Members of the potential participant pool, financial sponsors, and the general public must be convinced that everyone involved in the research enterprise is committed to operating within acceptable legal and ethical boundaries if the atmosphere of confidence and trust that is indispensable to the continued process and progress of investigation aimed at extending and improving quality of life for all of us in the future is to continue and flourish [48].

  19. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  20. Synthesized research report in the second mid-term research phase. Mizunami Underground Research Laboratory project, Horonobe Underground Research Laboratory project and geo-stability project (Translated document)

    International Nuclear Information System (INIS)

    Hama, Katsuhiro; Sasao, Eiji; Iwatsuki, Teruki; Onoe, Hironori; Sato, Toshinori; Yasue, Kenichi; Asamori, Koichi; Niwa, Masakazu; Osawa, Hideaki; Nagae, Isako; Natsuyama, Ryoko; Fujita, Tomoo; Sasamoto, Hiroshi; Matsuoka, Toshiyuki; Takeda, Masaki; Aoyagi, Kazuhei; Nakayama, Masashi; Miyakawa, Kazuya; Ito, Hiroaki; Ohyama, Takuya; Senba, Takeshi; Amano, Kenji

    2016-08-01

    We have synthesized the research results from the Mizunami/Horonobe Underground Research Laboratories (URLs) and geo-stability projects in the second mid-term research phase. This report can be used as a technical basis for the Nuclear Waste Management Organization of Japan/Regulator at each decision point from siting to beginning of disposal (Principal Investigation to Detailed Investigation Phase). High-quality construction techniques and field investigation methods have been developed and implemented, which will be directly applicable to the National Disposal Program (together with general assessments of hazardous natural events and processes). Acquisition of technical knowledge on decisions of partial backfilling and final closure from actual field experiments in the Mizunami/Horonobe URLs will be crucial as the main theme for the next phases. (author)

  1. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  2. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  3. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  4. Planning an Automatic Fire Detection, Alarm, and Extinguishing System for Research Laboratories

    Directory of Open Access Journals (Sweden)

    Rostam Golmohamadi

    2014-04-01

    Full Text Available Background & Objectives: Educational and research laboratories in universities have a high risk of fire, because they have a variety of materials and equipment. The aim of this study was to provide a technical plan for safety improvement in educational and research laboratories of a university based on the design of automatic detection, alarm, and extinguishing systems . Methods : In this study, fire risk assessment was performed based on the standard of Military Risk Assessment method (MIL-STD-882. For all laboratories, detection and fire alarm systems and optimal fixed fire extinguishing systems were designed. Results : Maximum and minimum risks of fire were in chemical water and wastewater (81.2% and physical agents (62.5% laboratories, respectively. For studied laboratories, we designed fire detection systems based on heat and smoke detectors. Also in these places, fire-extinguishing systems based on CO2 were designed . Conclusion : Due to high risk of fire in studied laboratories, the best control method for fire prevention and protection based on special features of these laboratories is using automatic detection, warning and fire extinguishing systems using CO2 .

  5. Researchers’ participation in and motivations for engaging with research information management systems

    Science.gov (United States)

    Wu, Shuheng; Lee, Dong Joon

    2018-01-01

    Researchers’ participation in online RIMSs This article examined how researchers participated in research information management systems (RIMSs), their motivations for participation, and their priorities for those motivations. Profile maintenance, question-answering, and endorsement activities were used to define three cumulatively increasing levels of participation: Readers, Record Managers, and Community Members. Junior researchers were more engaged in RIMSs than were senior researchers. Postdocs had significantly higher odds of endorsing other researchers for skills and being categorized as Community Members than did full and associate professors. Assistant professors were significantly more likely to be Record Managers than were members of any other seniority categories. Finally, researchers from the life sciences showed a significantly higher propensity for being Community Members than Readers and Record Managers when compared with researchers from engineering and the physical sciences, respectively. Researchers’ motivations to participate in RIMSs When performing activities, researchers were motivated by the desire to share scholarship, feel competent, experience a sense of enjoyment, improve their status, and build ties with other members of the community. Moreover, when researchers performed activities that directly benefited other members of a RIMS, they assigned higher priorities to intrinsic motivations, such as perceived self-efficacy, enjoyment, and building community ties. Researchers at different stages of their academic careers and disciplines ranked some of the motivations for engaging with RIMSs differently. The general model of research participation in RIMSs; the relationships among RIMS activities; the motivation scales for activities; and the activity, seniority, and discipline-specific priorities for the motivations developed by this study provide the foundation for a framework for researcher participation in RIMSs. This framework can be

  6. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  7. Laboratory Directed Research and Development FY2011 Annual Report

    International Nuclear Information System (INIS)

    Craig, W.; Sketchley, J.; Kotta, P.

    2012-01-01

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  8. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DOE - DECEMBER 2001.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2001-12-01

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2, ''Laboratory Directed Research and Development,'' March 5, 1997, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 4 13.2. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas

  9. Using the Human Systems Simulation Laboratory at Idaho National Laboratory for Safety Focused Research

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Jeffrey .C; Boring, Ronald L.

    2016-07-01

    Under the United States (U.S.) Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) program, researchers at Idaho National Laboratory (INL) have been using the Human Systems Simulation Laboratory (HSSL) to conduct critical safety focused Human Factors research and development (R&D) for the nuclear industry. The LWRS program has the overall objective to develop the scientific basis to extend existing nuclear power plant (NPP) operating life beyond the current 60-year licensing period and to ensure their long-term reliability, productivity, safety, and security. One focus area for LWRS is the NPP main control room (MCR), because many of the instrumentation and control (I&C) system technologies installed in the MCR, while highly reliable and safe, are now difficult to replace and are therefore limiting the operating life of the NPP. This paper describes how INL researchers use the HSSL to conduct Human Factors R&D on modernizing or upgrading these I&C systems in a step-wise manner, and how the HSSL has addressed a significant gap in how to upgrade systems and technologies that are built to last, and therefore require careful integration of analog and new advanced digital technologies.

  10. Current Sandia programs and laboratory facilities for tritium research

    International Nuclear Information System (INIS)

    Swansiger, W.A.; West, L.A.

    1975-01-01

    Currently envisioned fusion reactor systems will contain substantial quantities of tritium. Strict control of the overall tritium inventory and environmental safety considerations require an accurate knowledge of the behavior of this isotope in the presence of Controlled Thermonuclear Reactor (CTR) materials. A 14,000 ft 2 laboratory for tritium research is currently under construction at Sandia Laboratories in Livermore. Details about the laboratory in general are provided. Results from studies of hydrogen isotope diffusion in surface-characterized metals will be presented. Details of two permeation systems (one for hydrogen and deuterium, the other for tritium) will be discussed. Data will also be presented concerning the gettering of hydrogen isotopes and application to CTR collector designs. (auth)

  11. Integrated management system best practices in radioecological laboratories

    International Nuclear Information System (INIS)

    Carvalho, Claudia Aparecida Zerbinatti de

    2010-01-01

    The research aims to study the best practices to support a conceptual proposal for IMS - Integrated Management System (quality, environment, safety and health) applicable to Radioecology laboratories. The research design is organized into the following steps: in a first step, it was developed the bibliographic and documentary research in IMS, survey and study of standards (QMS ISO 9000 (2005), ISO 9001 (2008), ISO 9004 (2000), EMS ISO 14001 (2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)), identification and characterization of processes in Radioecology Laboratories and study of best practices methodology and benchmarking; in the second stage of the research it was developed a case study (qualitative research, with questionnaires via e-mail and interviews, when possible), preceded by a survey and selection of international and national radioecology laboratories and then these laboratories were contacted and some of them agreed to participate in this research; in the third stage of the research it was built the framework of best practices that showed results that could support the conceptual proposal for the IMS Radioecology Laboratory; the fourth and final stage of research consisted in the construction of the proposed conceptual framework of SGI for Radioecology Laboratory, being then achieved the initial objective of the research. (author)

  12. Quality assurance in a large research and development laboratory

    International Nuclear Information System (INIS)

    Neill, F.H.

    1980-01-01

    Developing a quality assurance program for a large research and development laboratory provided a unique opportunity for innovative planning. The quality assurance program that emerged has been tailored to meet the requirements of several sponsoring organizations and contains the flexibility for experimental programs ranging from large engineering-scale development projects to bench-scale basic research programs

  13. Nuclear fuel cycle safety research at Sandia Laboratories

    International Nuclear Information System (INIS)

    Ericson, D.M. Jr.

    1978-11-01

    This paper provides a brief introduction to Sandia Laboratories and an overview of Nuclear Regulatory Commission sponsored safety research with particular emphasis on light water reactor related activities. Several experimental and analytical programs are highlighted and the range of activities of a typical staff member illustrated

  14. A Hybrid Integrated Laboratory and Inquiry-Based Research Experience: Replacing Traditional Laboratory Instruction with a Sustainable Student-Led Research Project

    Science.gov (United States)

    Hartings, Matthew R.; Fox, Douglas M.; Miller, Abigail E.; Muratore, Kathryn E.

    2015-01-01

    The Department of Chemistry at American University has replaced its junior- and senior-level laboratory curriculum with two, two-semester long, student-led research projects as part of the department's American Chemical Society-accredited program. In the first semester of each sequence, a faculty instructor leads the students through a set of…

  15. Teaching Laboratory and Research Skills as Preparation for Careers in Science and Education

    Science.gov (United States)

    Thoms, Brian

    2007-03-01

    Recipients of bachelor's degrees in physics have identified lab skills, team work, and research skills as abilities necessary for success in their jobs. However, they also report having received less than adequate preparation in these areas during their college careers. We report on the redesign of a junior physics-major modern physics laboratory course into an inquiry-based, research-like laboratory course. The overall strategy was such as to require the students to approach the experiments in a research-like fashion. In addition, experiments which explore materials properties which can't be looked up in textbooks, e.g. Hall Effect, have been added to further emphasize a research-like approach to the investigations. Laboratory reporting requirements were written to closely reproduce current practices in scientific journals. Assessment of the redesign was performed through surveys of current and graduated students and through comparison of laboratory reports.

  16. Let's Play it Safe: Ethical Considerations from Participants in a Photovoice Research Project

    Directory of Open Access Journals (Sweden)

    Karin Hannes PhD

    2014-02-01

    Full Text Available The use of images and other visual data in qualitative research projects poses new ethical challenges, particularly in the context of participatory research projects that engage research participants in conducting fieldwork. Little is known about how research participants deal with the ethical challenges involved in conducting fieldwork, or whether they succeed in making balanced ethical judgments in collecting images of identifiable people and places. This study aims to increase our understanding of these ethical challenges. From an inductive analysis of interview data generated from nine participants recently involved in a photovoice research project we conclude that raising awareness about ethical aspects of conducting visual research increases research participants' sensitivity toward ethical issues related to privacy, anonymity, and confidentiality of research subjects. However, personal reasons (e.g., cultural, emotional and cautions about potential ethical dilemmas also prompt avoidance behavior. While ethics sessions may empower participants by equipping them with the knowledge of research ethics, ethics sessions may also have an unintentional impact on research.

  17. Laboratory directed research and development: Annual report to the Department of Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    As one of the premier scientific laboratories of the DOE, Brookhaven must continuously foster the development of new ideas and technologies, promote the early exploration and exploitation of creative and innovative concepts, and develop new fundable R and D projects and programs. At Brookhaven National Laboratory one such method is through its Laboratory Directed Research and Development Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is a major factor in achieving and maintaining staff excellence and a means to address national needs within the overall mission of the DOE and BNL. The Project Summaries with their accomplishments are described in this report. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals and presentations at meetings and forums.

  18. Management of water hyacinth. Report from India (Regional Research Laboratory, Jorhat, Assam)

    International Nuclear Information System (INIS)

    Baruah, J.N.

    1981-01-01

    The main objective of the project is the development of an environmentally sound management scheme for water hyacinth infestation through its various utilization potentials. Such an approach is considered desirable from the point ov view of economic viability and environmental protection. Accordingly various aspects of the problem have been studied in India in three different laboratories. Regional Research Laboratory, Jorhat, which is the lead laboratory, is concerned with the study of various factors involved in the growth of this weed, production of biogas, paper and board from water hyacinth, screening of compounds and organisms with commercial potential in this plant and utilization of this weed for mushroom cultivation. Developmental and engineering aspects of biogas production from water hyacinth are studied at Central Mechanical Engineering Research Institute, Durgapur, and Nagarjuna Sagar Engineering College, J N Technological University, Hyderabad. Pilot plant investigation on the production of handmade paper and board is being investigated at Regional Research Laboratory, Hyderabad

  19. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    Energy Technology Data Exchange (ETDEWEB)

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  20. Lawrence Livermore National Laboratory FY 2016 Laboratory Directed Research and Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gard, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sketchley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Watkins, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    The LDRD annual report for FY2016 consists of two parts: The Overview. This section contains a broad description of the LDRD Program, highlights of recent accomplishments and awards, Program statistics, and the LDRD portfolio-management processes. Project Reports. Project reports are submitted by all principal investigators at the end of the fiscal year. The length and depth of the report depends on the project’s lifecycle. For projects that will be continuing the following year, the principal investigator submits a continuing project report, which is a brief update containing descriptions of the goals, scope, motivation, relevance (to DOE/NNSA and Livermore mission areas), and technical progress achieved in FY16, as well as a list of selected publications and presentations that resulted from the research. For projects that concluded in FY16, a more detailed final report is provided that is technical in nature and includes the background, objectives, scientific approach, accomplishments, and impacts on the Laboratory missions, as well as a list of publications and presentations that resulted from the research. Project reports are listed under their research topics and organized by year and type, such as exploratory research (ER), feasibility study (FS), laboratory-wide competition (LW), and strategic initiative (SI). Each project is assigned a unique tracking code, an identifier that consists of three elements. The first is the fiscal year in which the project began, the second represents the project type, and the third identifies the serial number of the project for that fiscal year. For example, 16-ERD-100 means the project is an exploratory research project that began in FY16. The three-digit number (100) represents the serial number for the project.

  1. Environmental Quality Laboratory Research Report, 1985-1987

    OpenAIRE

    Brooks, Norman H.

    1988-01-01

    The Environmental Quality Laboratory at Caltech is a center for research on large-scale systems problems of natural resources and environmental quality. The principal areas of investigation at EQL are: 1. Air quality management. 2. Water resources and water quality management. 3. Control of hazardous substances in the environment. 4. Energy policy, including regulation, conservation and energy-environment tradeoffs. 5. Resources policy (other than energy); residuals m...

  2. Laboratory directed research and development FY91

    International Nuclear Information System (INIS)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K.

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator

  3. Participation of the IPEN/CNEN/SP Environmental Diagnostic Division on programs of laboratory intercomparisons in environmental samples

    International Nuclear Information System (INIS)

    Cotrim, Marycel Barboza; Sato, Ivone Mulako; Salvador, Vera Lucia R.; Dantas, Elizabeth Sonoda Keiko; Cantagallo, Maria Ines; Lemes, Marcos Jose L.; Scapin, Marcos Antonio; Sisti, Cristina; Silveira, Elias Santana; Furusawa, Helio Akira; Pires, Maria Aparecida Faustino

    2003-01-01

    The present work presents the participation of the Environmental Diagnostic Division Laboratories (MQA) at the intercomparison national and international laboratories, (PI/SABESP - Interlaboratory Sao Paulo, Brazil, Program; Program for Interlaboratorial Analytic Quality Control of Metals in Water (CBM/COMETRO); Programa para La Calidad de las Mediciones Quimicas (PCQM/INTI) - Argentine, and the Commission d'Etablissement des Methodes d'Analyse, France (CETAMA/CEA). Those essay providers have using statistical tests such as the t-Student, Zscore and Cochran and Grubbs for the data evaluations. The obtained results are presented involving the analytical such as atomic absorption spectrometry: flame, graphite oven and hydride generation (AAS), emission spectrometry with induced plasma (ICP-OES), X-ray fluorescence WD-XRFS), ion chromatography and voltametry (VRA). The elements such as B, Al, K, Mg, Ca, Cr, Fe, Co, Cu, Zn and Pb, and the anions such as Cl-, NO 3 - , SO 4 2- and F - , were determined at trace level (mgL -1 ), and the elements such as Cr, As, Cd, Pb e Hg, at the trace level (μgL -1 ) in water matrices. The evaluation of analytical results, in the period 1997 to 2002, demonstrate a continuous improvement evidencing the importance of Laboratories participation at those type of exercises

  4. Laboratory directed research and development program FY 1997

    International Nuclear Information System (INIS)

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized

  5. Laboratory directed research and development program FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  6. Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education

    International Nuclear Information System (INIS)

    Woodall, D.M.; Dolan, T.J.; Stephens, A.G.

    1990-01-01

    The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs

  7. Earth System Research Laboratory Long-Term Surface Aerosol Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Aerosol measurements began at the NOAA Earth System Research Laboratory (ESRL) Global Monitoring Division (GMD) baseline observatories in the mid-1970's with the...

  8. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1991

    International Nuclear Information System (INIS)

    1992-07-01

    In this annual report, the activities of education and research, the state of operation of research facilities and others in Nuclear Engineering Research Laboratory, University of Tokyo in fiscal year 1991 are summarized. In this Laboratory, there are four large research facilities, that is, the fast neutron source reactor 'Yayoi', the electron beam linac, the nuclear fusion reactor blanket experiment facility and the heavy irradiation research facility. Those are used for carrying out education and research in the wide fields of nuclear engineering, and are offered also for joint utilization. The results of the research by using respective research facilities were summarized in separate reports. In this annual report, the course of the management and operation of respective research facilities is described, and the research activities, the theses for doctorate and graduation theses of the teachers, personnel and graduate students in the Laboratory are summarized. In the research, those on first wall engineering for fusion reactors, fuel cycle engineering, electromagnetic structure engineering, AI and robotics, quantum beam engineering, new type reactor design and so on are included. (K.I.)

  9. A 13-week research-based biochemistry laboratory curriculum.

    Science.gov (United States)

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  10. Laboratory training manual on the use of nuclear techniques in pesticide research

    International Nuclear Information System (INIS)

    1983-01-01

    This is a laboratory training manual on the use of nuclear techniques, and in particular radioisotopes in pesticide research. It is designed to give the scientists involved in pesticide research the basic terms and principles for understanding ionizing radiation: detection and measurement its hazards and safety measures, and some of the more common applications. Laboratory exercises representing the types of experiments that are valuable in pesticide research programmes and field tests which demonstrate the use of radiolabelled pesticides are included

  11. Office of Energy Research collaborative research programs administered by Oak Ridge Associated Universities: Annual report, FY 1987

    International Nuclear Information System (INIS)

    1988-02-01

    The US Department of Energy's (DOE) Office of Energy Research (OER) sponsors programs designed to encourage and support interaction between US colleges and universities and DOE research facilities. Faculty members, graduate students, undergraduates, and recent postgraduates participate in research and receive advanced training at DOE laboratories. Staff members from DOE laboratories visit campuses to deliver energy-related lectures and participate in seminars and classroom discussions. Oak Ridge Associated Universities (ORAU) has been involved in the developemnt and administration of these collaborative research programs since their inception. During FY 1987, ORAU administered appointments for the Office of Energy Research under the following two umbrella programs: University/DOE Laboratory Cooperative Program (Lab Co-op); Science and Engineering Research Semester (SERS). In addition, ORAU participated in a project to collect and assess information from individuals who had held research appointment as undergraduate students during a four-year period from 1979 to 1982. All of these activities are summarized in this report

  12. Method to Increase Undergraduate Laboratory Student Confidence in Performing Independent Research

    Directory of Open Access Journals (Sweden)

    Colton E. Kempton

    2017-05-01

    Full Text Available The goal of an undergraduate laboratory course should be not only to introduce the students to biology methodologies and techniques, but also to teach them independent analytical thinking skills and proper experiment design.  This is especially true for advanced biology laboratory courses that undergraduate students typically take as a junior or senior in college.  Many courses achieve the goal of teaching techniques, but fail to approach the larger goal of teaching critical thinking, experimental design, and student independence.  Here we describe a study examining the application of the scaffolding instructional philosophy in which students are taught molecular techniques with decreasing guidance to force the development of analytical thinking skills and prepare undergraduate students for independent laboratory research. This method was applied to our advanced molecular biology laboratory class and resulted in an increase of confidence among the undergraduate students in their abilities to perform independent research.

  13. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  14. Laboratories new to the ICRM

    International Nuclear Information System (INIS)

    Karam, Lisa; Anagnostakis, Marios J.; Gudelis, Arunas; Marsoem, Pujadi; Mauring, Alexander; Wurdiyanto, Gatot; Yücel, Ülkü

    2012-01-01

    The Scientific Committee of the ICRM decided, for the 2011 Conference, to present laboratories that are at a key developmental stage in establishing, expanding or applying radionuclide metrology capabilities. The expansion of radionuclide metrology capabilities is crucial to meet evolving and emerging needs in health care, environmental monitoring, and nuclear energy. Five laboratories (from Greece, Lithuania, Indonesia, Norway and Turkey) agreed to participate. Each laboratory is briefly introduced, and examples of their capabilities and standardization activities are discussed. - Highlights: ► Four laboratories in radionuclide metrology are described. ► Health, environment, and energy applications are motivators. ► Facilities and resources supporting research activities are discussed. ► Activities in primary and secondary standardizations are also discussed.

  15. Laboratory directed research and development. FY 1995 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Prono, J. [comps.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  16. Participation of the Laboratorio de Radiotoxicologia of IPEN, SP, Brazil, in laboratory inter-comparison programs

    International Nuclear Information System (INIS)

    Mesquita, Sueli Alexandra de; Carneiro, Janete Cristina G.

    2005-01-01

    The Radiotoxicology Laboratory (LRT) of IPEN/CNEN-SP has as mission to assess internal internal contamination from individuals through qualitative and quantitative analysis of radionuclides present in biological samples. The LRT is able to meet the demand for in vitro monitoring and radiological and nuclear emergencies, both in the case of occupational exposures, as individuals. With the purpose of increasing the reliability of the test results, and keeping it up to date on new analytical techniques, the LRT participates annually in two laboratory inter-comparison programs: a national, the PNI (Programa Nacional de Intercomparacao), promoted by IRD/CNEN and an international from PROCORAD (Association for the Promotion of Quality Controls in Radiotoxicological Bioassay). The present work shows the performance of the LRT by means of the results obtained in the exercises for the quantification of natural uranium and uranium isotopes, promoted by both the inter-comparison programs in the year of 2004. The analysis of the obtained results demonstrates the good performance achieved by LRT, and confirms the sustainability of its quality system, required in calibration and testing laboratories

  17. Introducing Students to Psychological Research: General Psychology as a Laboratory Course

    Science.gov (United States)

    Thieman, Thomas J.; Clary, E. Gil; Olson, Andrea M.; Dauner, Rachel C.; Ring, Erin E.

    2009-01-01

    For 6 years, we have offered an integrated weekly laboratory focusing on research methods as part of our general psychology course. Through self-report measures and controlled comparisons, we found that laboratory projects significantly increase students' knowledge and comfort level with scientific approaches and concepts, sustain interest in…

  18. 2014 Fermilab Laboratory Directoed Research & Development Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-26

    After initiation by the Fermilab Laboratory Director, a team from the senior Laboratory leadership and a Laboratory Directed Research and Development (LDRD) Advisory Committee developed an implementation plan for LDRD at Fermilab for the first time. This implementation was captured in the approved Fermilab 2014 LDRD Program Plan and followed directions and guidance from the Department of Energy (DOE) order, DOE O 413.2B, a “Roles, Responsibilities, and Guidelines, …” document, and examples of best practices at other DOE Office of Science Laboratories. At Fermilab, a FY14 midyear Call for Proposals was issued. A LDRD Selection Committee evaluated those proposals that were received and provided a recommendation to the Laboratory Director who approved seven LDRD projects. This Annual Report focuses on the status of those seven projects and provides an overview of the current status of LDRD at Fermilab. The seven FY14 LDRD approved projects had a date of initiation late in FY14 such that this report reflects approximately six months of effort approximately through January 2015. The progress of these seven projects, the subsequent award of six additional new projects beginning in FY15, and preparations for the issuance of the FY16 Call for Proposals indicates that LDRD is now integrated into the overall annual program at Fermilab. All indications are that LDRD is improving the scientific and technical vitality of the Laboratory and providing new, novel, or cutting edge projects carried out at the forefront of science and technology and aligned with the mission and strategic visions of Fermilab and the Department of Energy.

  19. Laboratory directed research and development FY91

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.E.; Hedman, I.; Kirvel, R.D.; McGregor, C.K. (eds.)

    1991-01-01

    This review of research programs at Lawrence Livermore National Laboratory is composed of individual papers on various subjects. Broad topics of interest are: chemistry and materials science, computation, earth sciences, engineering, nuclear physics, and physics, and biology. Director's initiatives include the development of a transgenic mouse, accelerator mass spectrometry, high-energy physics detectors, massive parallel computing, astronomical telescopes, the Kuwaiti oil fires and a compact torus accelerator. (GHH)

  20. Low participation rates amongst Asian women: implications for research in reproductive medicine.

    Science.gov (United States)

    Talaulikar, V S; Hussain, S; Perera, A; Manyonda, I T

    2014-03-01

    The last two decades have witnessed tremendous advances in the field of reproductive medicine, especially assisted reproductive technology and stem cell research. As research continues in future, it is vital to ensure that individuals from all ethnic backgrounds are represented in the study populations so that the findings of the research can be generalised for the benefit of all. Many studies, however, have noted a trend of low participation rates amongst Asian women in reproductive research. Inequalities in the ethnicity of research participants can be a source of substantial bias, and have major ethical and scientific ramifications. Several factors such as educational status, fear of wrong-doing, communication barriers, and socio-cultural beliefs have been suggested to play a role. There is a need for further exploration of the factors influencing Asian women's decision to accept or decline participation in reproductive research and for development of effective targeted strategies for research recruitment with the aim of encouraging research participation as well as donation of cryopreserved embryos or other reproductive tissues. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Improving of Quality Control and Quality Assurance in 14C and 3H Laboratory; Participation in the IAEA Model Project

    International Nuclear Information System (INIS)

    Obelic, B.

    2001-01-01

    Full text: Users of laboratory's analytical results are increasingly requiring demonstrable proofs of the reliability and credibility of the results using internationally accepted standards, because the economic, ecological, medical and legal decisions based on laboratory results need to be accepted nationally and internationally. Credibility, respect and opportunities of the laboratories are improved when objective evidence on the reliability and quality of the results can be given. This is achieved through inculcation of a quality culture through definition of well-defined procedures and controls and operational checks characteristic of quality assurance and quality control (Q A/QC). IAEA launched in 1999 a two-and-a-half year model project entitled Quality Control and Quality Assurance of Nuclear Analytical Techniques with participation of laboratories using alpha, beta and/or gamma spectrometry from CEE and NIS countries. The project started to introduce and implement QA principles in accordance with the ISO-17025 guide, leading eventually to a level at which the QA system is self-sustainable and might be appropriate for formal accreditation or certification by respective national authorities. Activities within the project consist of semi-annual reports, two training workshops, two inspection visits of the laboratories by IAEA experts and proficiency tests. The following topics were considered: organisation requirements, acceptance criteria and non-conformance management of QC, internal and external method validation, statistical analyses and uncertainty evaluation, standard operation procedures and quality manual documentation. 14 C and 3 H Laboratory of the Rudjer Boskovic Institute has been one of ten laboratories participating in the Project. In the Laboratory all the procedures required in the quality control were included implicitly, while during the Model Project much effort has been devoted to elaboration of explicit documentation. Since the beginning

  2. Zoonoses of occupational health importance in contemporary laboratory animal research.

    Science.gov (United States)

    Hankenson, F Claire; Johnston, Nancy A; Weigler, Benjamin J; Di Giacomo, Ronald F

    2003-12-01

    In contemporary laboratory animal facilities, workplace exposure to zoonotic pathogens, agents transmitted to humans from vertebrate animals or their tissues, is an occupational hazard. The primary (e.g., macaques, pigs, dogs, rabbits, mice, and rats) and secondary species (e.g., sheep, goats, cats, ferrets, and pigeons) of animals commonly used in biomedical research, as classified by the American College of Laboratory Animal Medicine, are established or potential hosts for a large number of zoonotic agents. Diseases included in this review are principally those wherein a risk to biomedical facility personnel has been documented by published reports of human cases in laboratory animal research settings, or under reasonably similar circumstances. Diseases are listed alphabetically, and each section includes information about clinical disease, transmission, occurrence, and prevention in animal reservoir species and humans. Our goal is to provide a resource for veterinarians, health-care professionals, technical staff, and administrators that will assist in the design and on-going evaluation of institutional occupational health and safety programs.

  3. The hot cell laboratories for material investigations of the Institute for Safety Research

    Energy Technology Data Exchange (ETDEWEB)

    Viehrig, H W

    1998-10-01

    Special facilities for handling and testing of irradiated specimens are necessary, to perform the investigation of activated material. The Institute for Safety Research has two hot cell laboratories: - the preparation laboratory and - the materials testing laboratory. This report is intended to give an overview of the available facilities and developed techniques in the laboratories. (orig.)

  4. Communication of Biobanks' Research Results : What Do (Potential) Participants Want?

    NARCIS (Netherlands)

    Meulenkamp, Tineke M.; Gevers, Sjef K.; Bovenberg, Jasper A.; Koppelman, Gerard H.; Vlieg, Astrid van Hylckama; Smets, Ellen M. A.

    2010-01-01

    The aim of this study was to investigate (potential) research participants' (a) information preferences with regard to receiving biobanks' genetic research results, and (b) attitudes towards the duties of researchers to communicate research results. A total group of 1,678 was analyzed, consisting of

  5. Communication of Biobanks' Research Results: What Do (Potential) Participants Want?

    NARCIS (Netherlands)

    Meulenkamp, Tineke M.; Gevers, Sjef K.; Bovenberg, Jasper A.; Koppelman, Gerard H.; van Hylckama Vlieg, Astrid; Smets, Ellen M. A.

    2010-01-01

    The aim of this study was to investigate (potential) research participants' (a) information preferences with regard to receiving biobanks' genetic research results, and (b) attitudes towards the duties of researchers to communicate research results. A total group of 1,678 was analyzed, consisting of

  6. Communication of biobanks’ research results: what do (potential) participants want?

    NARCIS (Netherlands)

    Meulenkamp, T.M.; Gevers, S.K.; Bovenberg, J.A.; Koppelman, G.H.; Hylckama Vlieg, A. van; Smets, E.M.A.

    2010-01-01

    The aim of this study was to investigate (potential) research participants' (a) information preferences with regard to receiving biobanks' genetic research results, and (b) attitudes towards the duties of researchers to communicate research results. A total group of 1,678 was analyzed, consisting of

  7. Research and service capabilities of the National Nuclear Forensic Research Laboratory; Capacidades de investigacion y servicio del Laboratorio Nacional de Investigacion en Forense Nuclear, Lanafonu

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Hernandez M, H.; Flores C, J.; Paredes G, L. C., E-mail: elizabeth.romero@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    According to the recommendations of the International Atomic Energy Agency, Mexico is taking steps to combat illicit trafficking in nuclear material. The creation of a National Nuclear Forensic Research Laboratory (Lanafonu, acronym in Spanish) has been assigned to the Instituto Nacional de Investigaciones Nucleares (ININ, Mexico) in 2014. The objectives of this Laboratory are: to combat illicit trafficking in nuclear materials, to optimize scientific processes and techniques used to analyze nuclear materials (orphans or radioactive sources), environmental and potential biological sources as a result of the handling, transport and final storage. At present, the Lanafonu facilities are focused on the optimization of emergency and routine protocols for measuring radioisotopes in environmental and biological samples using inductive coupling mass spectrometer with magnetic sector. The main activities are: i) optimization of the methods for measuring the isotopes of Pu by alpha-spectrometry, Icp-SFMS and AMS (accelerator mass spectrometry), ii) development or radiochemical methods for routine situations and nuclear emergencies, iii) participation in the scientific technical commission on nuclear forensic science, iv) participation in international intercomparison exercises to optimize and validate methods, and v) consolidation of Lanafonu in Mexico and the IAEA. (Author)

  8. Laboratory of research for environmental radiation and its dosimetry in the ININ

    International Nuclear Information System (INIS)

    Chavez S, B.M.

    2003-01-01

    The objectives of this work are to learn on the methodology that should be continued for the investigation of such a specialized topic as it is a radiation laboratory and to develop the executive project of a building that contains laboratories focused to the investigation of the radiation levels in the environment and their dosimetry. The National Institute of Nuclear Research (ININ), is the place where are carried out many of the investigations related to the field of the physics and chemistry in Mexico besides being the center of nuclear research more important of Latin America and it is for that reason that here is proposed the Laboratory of Low Radiation and its Dosimetry, since the Institute accounts with the whole infrastructure and necessary safety for this type of laboratories. (Author)

  9. Accessing Fellow Academics as Research Participants: Constraints, Collegiality, and “Academic Citizenship”

    Directory of Open Access Journals (Sweden)

    Yongyan Li

    2015-06-01

    Full Text Available In this paper I discuss some constraints and implications in accessing fellow academics as research participants, a topic that has rarely been addressed thus far in the literature. I will point out that a lack of cooperation from fellow academics may defeat our research purposes, and will survey some studies involving U.S., European, and Chinese academics as research participants to illustrate education researchers’ efforts to work with fellow academics against the odds. By referencing my personal experience of engaging with Chinese academics, I will then discuss the role of personal contacts in research and reflect upon various constraints in accessing fellow academics as research participants. I will suggest that, when we do participate in a fellow researcher’s project, the incentive is a desire to support our peers in the spirit of “academic citizenship.”

  10. Metallurgical Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to increase basic knowledge of metallurgical processing for controlling the microstructure and mechanical properties of metallic aerospace alloys and...

  11. Participants' perception of pharmaceutical clinical research: a cross-sectional controlled study

    Directory of Open Access Journals (Sweden)

    González-Saldivar G

    2016-04-01

    Full Text Available Gerardo González-Saldivar,1 René Rodríguez-Gutiérrez,2 José Luis Viramontes-Madrid,3 Alejandro Salcido-Montenegro,2 Kevin Erick Gabriel Carlos-Reyna,2 Andrés Marcelo Treviño-Alvarez,2 Neri Alejandro Álvarez-Villalobos,4 José Gerardo González-González2 1Ophthalmology Department, 2Endocrinology Division, Hospital Universitario “Dr. José E. González”, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 3Instituto Nacional de Salud Pública, Cuernavaca, Morelos, 4Medical Statistics Department, Hospital Universitario “Dr. José E. González”, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico Background: There is scarce scientific information assessing participants’ perception of pharmaceutical research in developed and developing countries concerning the risks, safety, and purpose of clinical trials.Methods: To assess the perception that 604 trial participants (cases and 604 nonparticipants (controls of pharmaceutical clinical trials have about pharmaceutical clinical research, we surveyed participants with one of four chronic diseases from 12 research sites throughout Mexico.Results: Participation in clinical trials positively influences the perception of pharmaceutical clinical research. More cases (65.4% than controls (50.7% perceived that the main purpose of pharmaceutical research is to cure more diseases and to do so more effectively. In addition, more cases considered that there are significant benefits when participating in a research study, such as excellent medical care and extra free services, with this being the most important motivation to participate for both groups (cases 52%, controls 54.5%. We also found a sense of trust in their physicians to deal with adverse events, and the perception that clinical research is a benefit to their health, rather than a risk. More controls believed that clinical trial participants’ health is put at risk

  12. Establishment of a Laboratory for Biofuels Research at the University of Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Crofcheck, Czarena [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research; Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2013-03-29

    This project was aimed at the development of the biofuels industry in Kentucky by establishing a laboratory to develop improved processes for biomass utilization. The facility is based at the University of Kentucky Center for Applied Energy Research and the Department of Biosystems and Agricultural Engineering, and constitutes an “open” laboratory, i.e., its equipment is available to other Kentucky researchers working in the area. The development of this biofuels facility represents a significant expansion of research infrastructure, and will provide a lasting resource for biobased research endeavors at the University of Kentucky. In order to enhance the laboratory's capabilities and contribute to on-going biofuels research at the University of Kentucky, initial research at the laboratory has focused on the following technical areas: (i) the identification of algae strains suitable for oil production, utilizing flue gas from coal-fired power plants as a source of CO2; (ii) the conversion of algae to biofuels; and (iii) the development of methods for the analysis of lignin and its deconstruction products. Highlights from these activities include the development of catalysts for the upgrading of lipids to hydrocarbons by means of decarboxylation/decarbonylation (deCOx), a study of bio-oil production from the fast pyrolysis of algae (Scenedesmus), and the application of pyrolytic gas chromatography coupled with mass spectrometry (Py-GC-MS) to the characterization of high lignin biomass feedstocks.

  13. CNR LARA project, Italy: Airborne laboratory for environmental research

    Science.gov (United States)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  14. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  15. Radiation protection in a multi-disciplinary research laboratory

    International Nuclear Information System (INIS)

    O'Donovan, E.J.B.; Jenks, G.J.; Brighton, D.R.

    1993-01-01

    This paper describes the measures for the protection of personnel against the hazards of ionising and non-ionising radiation at the Materials Research Laboratory (MRL) in Victoria. The paper describes MRL safety and protection policy and management, and gives brief details of procedures and problems at the working level. A comparison of MRL average annual photon doses with all Governmental Research Institutions and industry is given. The good safety record of MRL is evident and shows that the radioactive protection issues are well handled. 4 figs

  16. Laboratory directed research and development annual report: 2005

    International Nuclear Information System (INIS)

    2006-01-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2005 for Sandia National Laboratories. In addition to a programmatic and financial overview, the report includes progress reports from 410 individual R and D projects in 19 categories. The categories and subheadings are: Science, Technology and Engineering (Advanced Components and Certification Engineering; Advanced Manufacturing; Biotechnology; Chemical and Earth Sciences; Computational and Information Sciences; Electronics and Photonics; Engineering Sciences; Materials Science and Technology; Pulsed Power Sciences and High Energy Density Sciences; Science and Technology Strategic Objectives); Mission Technologies (Energy and Infrastructure Assurance; Homeland Security; Military Technologies and Applications; Nonproliferation and Assessments; Grand Challanges); and Corporate Objectives (Advanced Concepts; Seniors' Council; University Collaborations)

  17. Laboratory Directed Research and Development FY2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High

  18. A Personal Touch: The Most Important Strategy for Recruiting Latino Research Participants.

    Science.gov (United States)

    García, Alexandra A; Zuñiga, Julie A; Lagon, Czarina

    2017-07-01

    People from non-White racial groups and other underserved populations, including Latinos, are frequently reluctant to participate in research. Yet their participation into research is foundational to producing information that researchers and health care providers need to address health disparities. The purpose of this article is to describe challenges we have encountered along with culturally relevant strategies we used in five research studies to recruit Mexican American participants from community settings, some of whom were also of low socioeconomic status. We found that the most effective recruitment strategies reflect the common cultural values of personalismo, simpátia, confianza, respeto, and familismo.

  19. Virtual reality studies outside the laboratory

    DEFF Research Database (Denmark)

    Mottelson, Aske; Hornbæk, Kasper

    2017-01-01

    virtual reality (VR) studies outside laboratories remains unclear because these studies often use expensive equipment, depend critically on the physical context, and sometimes study delicate phenomena concerning body awareness and immersion. To investigate, we explore pointing, 3D tracing, and body......Many user studies are now conducted outside laboratories to increase the number and heterogeneity of participants. These studies are conducted in diverse settings, with the potential to give research greater external validity and statistical power at a lower cost. The feasibility of conducting......-illusions both in-lab and out-of-lab. The in-lab study was carried out as a traditional experiment with state-of-the-art VR equipment; 31 completed the study in our laboratory. The out-of-lab study was conducted by distributing commodity cardboard VR glasses to participants; 57 completed the study anywhere...

  20. Protection of the human research participant: A structured review

    African Journals Online (AJOL)

    related or social-science research involves a human participant. This ... quantitative studies, as well as review articles, were included, to enhance ... In the study by Gremillion et al.,[7] comparison was made between .... research stakeholders, who took part in interviews and focus- .... Contact persons ... Face to face.

  1. Interviewing Objects: Including Educational Technologies as Qualitative Research Participants

    Science.gov (United States)

    Adams, Catherine A.; Thompson, Terrie Lynn

    2011-01-01

    This article argues the importance of including significant technologies-in-use as key qualitative research participants when studying today's digitally enhanced learning environments. We gather a set of eight heuristics to assist qualitative researchers in "interviewing" technologies-in-use (or other relevant objects), drawing on concrete…

  2. National Renewable Energy Laboratory 2003 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    2004-04-01

    In-depth articles on several NREL technologies and advances, including: production of hydrogen using renewable resources and technologies; use of carbon nanotubes for storing hydrogen; enzymatic reduction of cellulose to simple sugars as a platform for making fuel, chemicals, and materials; and the potential of electricity from wind energy to offset carbon dioxide emissions. Also covered are NREL news, awards and honors received by the Laboratory, and patents granted to NREL researchers.

  3. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  4. Laboratory Directed Research and Development Annual Report for 2010

    International Nuclear Information System (INIS)

    Hughes, Pamela J.

    2011-01-01

    This report documents progress made on all LDRD-funded projects during fiscal year 2010. The projects supported by LDRD funding all have demonstrable ties to DOE missions. In addition, many of the LDRD projects are relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff needed to serve the highest priority DOE mission objectives. The flexibility provided by the LDRD program allows us to make rapid decisions about projects that address emerging scientific challenges so that PNNL remains a modern research facility well into the 21st century. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline. Though multidisciplinary, each project in this report appears under one of the following primary research categories: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; and (6) Engineering and Manufacturing Processes.

  5. Inter-Laboratory Comparison for Calibration of Relative Humidity Devices Among Accredited Laboratories in Malaysia

    Science.gov (United States)

    Hussain, F.; Khairuddin, S.; Othman, H.

    2017-01-01

    An inter-laboratory comparison in relative humidity measurements among accredited laboratories has been coordinated by the National Metrology Institute of Malaysia. It was carried out to determine the performance of the participating laboratories. The objective of the comparison was to acknowledge the participating laboratories competencies and to verify the level of accuracies declared in their scope of accreditation, in accordance with the MS ISO/IEC 17025 accreditation. The measurement parameter involved was relative humidity for the range of 30-90 %rh at a nominal temperature of 50°C. Eight accredited laboratories participated in the inter-laboratory comparison. Two units of artifacts have been circulated among the participants as the transfer standards.

  6. Secondary standard dosimetry laboratory Saraykoy Nuclear Research and Training Center Ankara, Turkey

    International Nuclear Information System (INIS)

    Okruhlica, P.

    2014-01-01

    Turkish Saraykoy Nuclear Research and Training Center (SANA) was founded in 2005. In 2014 the company PTW Freiburg in cooperation with VF Cerna Hora started the construction of a comprehensive national metrology laboratories of ionizing radiation 'Secondary Standard Dosimetry Laboratory' (SSDL). The laboratory will be located in the area of 'Saraykoy Nuclear Research and Training Center' in Ankara in Turkey. SSDL will be equipped with metrology departments for calibration and measurement of standard required quantities of metrology of ionizing radiation: - Neutron workplace; Gamma workplace (low-energy X-ray, gamma Standard Cs-137 and high dose rate, Co-60); - Beta workplace; - Control system of metrology laboratories and irradiation VF DARS; - Radiation monitoring system VF RMS; - Camera and security system; - Measuring instruments (ionization chambers, electrometers, monitors for environmental measurements ...) with the appropriate phantoms and other systems.

  7. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    Science.gov (United States)

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  8. Laboratory Directed Research and Development FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A. [eds.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  9. Laboratory Directed Research and Development FY 1992

    International Nuclear Information System (INIS)

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-01-01

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation's only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible

  10. Design study of the underground facilities, the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on the deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at the Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU consisted of surface and underground facilities excavated to a depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program, includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed in 1998, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  11. Design study of underground facility of the Mizunami Underground Research Laboratory

    International Nuclear Information System (INIS)

    Ishizuka, Mineo; Noda, Masaru; Shiogama, Yukihiro; Adachi, Tetsuya

    1999-02-01

    Geoscientific research on deep geological environment has been performed by Japan Nuclear Cycle Development Institute (JNC). This research is supported by the 'Long-Term Program for Research, Development and Utilization of Nuclear Energy'. The Mizunami Underground Research Laboratory (MIU) is planned to be constructed at Shobasama-bora site belonging to JNC. A wide range of geoscientific research and development activities which have been previously performed in and around the Tono mine is planned to be expanded in the laboratory. The MIU is consisted of surface and underground facilities down to the depth of about 1,000 meters. In this design study, the overall layout and basic design of the underground facility and the composition of the overall research program which includes the construction of the underground facility are studied. Based on the concept of the underground facility which have been developed last year, the research activities which will be performed in the MIU are selected and the overall research program is revised in this year. The basic construction method and the construction equipment are also estimated. (author)

  12. Understanding stakeholder participation in research as part of sustainable development.

    Science.gov (United States)

    Bell, Simon; Morse, Stephen; Shah, Rupesh A

    2012-06-30

    Participation is often presented as a 'good' thing and a fairer way to represent views and opinions outside narrow confines of interest and expertise. However, the roots of participatory approaches within research contexts are deep and numerous twists and turns demonstrate a confused and possibly confusing morphology with significant gaps and weaknesses. In this paper 'via the medium' of the POINT (Policy Influence of Indicators) research project we trace elements of the recent history of group participation in sustainable development and the emergence of focus on four areas, most significantly how participatory methods are used. In the absence of strong evidence to contrary we suggest that the issue of how participants engage in participation remains a significant weakness for the field. In order to counter the apparent gap we suggest that a certain degree of structure and process can provide the oeuvre of participatory approaches with a higher degree of transparency in the research process and, by focus on the use of a method called Triple Task, group participatory events can be encouraged to yield greater insights into the workings of groups of all kinds. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Geocentrifuge Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The geocentrifuge subjects a sample to a high-gravity field by spinning it rapidly around a central shaft. In this high-gravity field, processes, such as fluid flow,...

  14. 1996 Laboratory directed research and development annual report

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P. [comp.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  15. Laboratory Directed Research and Development Program, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  16. Laboratory Directed Research and Development Program, FY 1992

    International Nuclear Information System (INIS)

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology

  17. US Army Research Laboratory Lightweight and Specialty Metals Branch Research and Development (FY14)

    Science.gov (United States)

    2015-04-01

    2014 Feb. Report No.: ARL-TR- 6807. 8) Grendahl SM, Kellogg F, Nguyen H. Effect of cleanliness on hydrogen toler- ance in high-strength steel...SJ, Kellogg F, Nguyen H, Runk D. Ul- trasonic shot peening for aviation components. Aberdeen Proving Ground (MD): Army Research Laboratory (US); 2013...M. Grendahl Weapons and Materials Research Directorate, ARL Franklyn Kellogg and Hoang Nguyen Bowhead Technical Services

  18. Ethics is for human subjects too: participant perspectives on responsibility in health research.

    Science.gov (United States)

    Cox, Susan M; McDonald, Michael

    2013-12-01

    Despite the significant literature as well as energy devoted to ethical review of research involving human subjects, little attention has been given to understanding the experiences of those who volunteer as human subjects. Why and how do they decide to participate in research? Is research participation viewed as a form of social responsibility or as a way of obtaining individual benefits? What if anything do research subjects feel they are owed for participation? And what do they feel that they owe the researcher? Drawing on in-depth individual interviews conducted in 2006 and 2007 with 41 subjects who participated in a variety of types of health research in Canada, this paper focuses on subject perspectives on responsibility in research. Highlighting the range of ways that subjects describe their involvement in research and commitments to being a 'good' subject, we present a typology of narratives that sheds new light on the diverse meanings of research participation. These narratives are not mutually exclusive or prescriptive but are presented as ideal types typifying a set of circumstances and values. As such, they collectively illuminate a range of motivations expressed by human subjects as well as potential sources of vulnerability. The typology adds a new dimension to the literature in this area and has significant implications for researchers seeking more human-subject centred approaches to research recruitment and retention, as well as research ethics boards trying to better anticipate the perspectives of prospective participants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Annual report of Nuclear Engineering Research Laboratory, University of Tokyo in fiscal 1990

    International Nuclear Information System (INIS)

    1991-01-01

    In this annual report, the activities of research and education and the state of operation of the research facilities in this Laboratory in fiscal year 1990 are summarized. There are four large research facilities in this Laboratory, that is, the fast neutron source reactor 'Yayoi', the electron beam linear accelerator, the nuclear fusion reactor blanket experiment device and the heavy ion irradiation research facility. Those are used to execute research and education in the wide fields of atomic energy engineering, and put to the common utilization by universities in whole Japan. The results of the research with these facilities have been reported in the separate reports. The research aims at developing the most advanced and new fields in nuclear reactor engineering, and includes the engineering of the first wall and the fuel cycle for nuclear fusion reactors, electromagnetic structure engineering, AI and robotics, quantum beam engineering, the design of new type reactors, the basic process of radiochemistry and so on. The report on the course of the large scale facilities, research activities, the publication of research, education and the events in the Laboratory in the year are described. (K.I.)

  20. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    Science.gov (United States)

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  1. Surrogate receptivity to participation in critical illness genetic research: aligning research oversight and stakeholder concerns.

    Science.gov (United States)

    Freeman, Bradley D; Butler, Kevin; Bolcic-Jankovic, Dragana; Clarridge, Brian R; Kennedy, Carie R; LeBlanc, Jessica; Chandros Hull, Sara

    2015-04-01

    Collection of genetic biospecimens as part of critical illness investigations is increasingly commonplace. Oversight bodies vary in restrictions imposed on genetic research, introducing inconsistencies in study design, potential for sampling bias, and the possibility of being overly prohibitive of this type of research altogether. We undertook this study to better understand whether restrictions on genetic data collection beyond those governing research on cognitively intact subjects reflect the concerns of surrogates for critically ill patients. We analyzed survey data collected from 1,176 patients in nonurgent settings and 437 surrogates representing critically ill adults. Attitudes pertaining to genetic data (familiarity, perceptions, interest in participation, concerns) and demographic information were examined using univariate and multivariate techniques. We explored differences among respondents who were receptive (1,333) and nonreceptive (280) to genetic sample collection. Whereas factors positively associated with receptivity to research participation were "complete trust" in health-care providers (OR, 2.091; 95% CI, 1.544-2.833), upper income strata (OR, 2.319; 95% CI, 1.308-4.114), viewing genetic research "very positively" (OR, 3.524; 95% CI, 2.122-5.852), and expressing "no worry at all" regarding disclosure of results (OR, 2.505; 95% CI, 1.436-4.369), black race was negatively associated with research participation (OR, 0.410; 95% CI, 0.288-0.585). We could detect no difference in receptivity to genetic sample collection comparing ambulatory patients and surrogates (OR, 0.738; 95% CI, 0.511-1.066). Expressing trust in health-care providers and viewing genetic research favorably were associated with increased willingness for study enrollment, while concern regarding breach of confidentiality and black race had the opposite effect. Study setting had no bearing on willingness to participate.

  2. Pollution prevention for cleaner air: EPA's air and energy engineering research laboratory

    International Nuclear Information System (INIS)

    Shaver, E.M.

    1992-01-01

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribute to air quality problems. The Laboratory has successfully developed and demonstrated cost-effective sulfur dioxide, nitrogen oxides, and particulate control technologies for fossil fuel combustion sources. More recently, it has expanded its research activities to include indoor air quality, radon, organic control, stratospheric ozone depletion, and global warming. AEERL also develops inventories of air emissions of many types. Over the last several years, it has made substantial efforts to expand research on pollution prevention as the preferred choice for air emissions reduction

  3. Guidelines for euthanasia of laboratory animals used in biomedical research

    Directory of Open Access Journals (Sweden)

    Adina Baias,

    2012-06-01

    Full Text Available Laboratory animals are used in several fields of science research, especially in biology, medicine and veterinary medicine. The majority of laboratory animals used in research are experimental models that replace the human body in study regarding pharmacological or biological safety products, studies conducted for a betterunderstanding of oncologic processes, toxicology, genetic studies or even new surgical techniques. Experimental protocols include a stage in which animals are euthanized in order to remove organs and tissues,or for no unnecessary pain and suffering of animals (humane endpoints or to mark the end of research. The result of euthanasia techniques is a rapid loss of consciousness followed by cardiac arrest, respiratory arrest and disruption of brain activity. Nowadays, the accepted euthanasia techniques can use chemicals (inhalant agents like: carbon dioxide, nitrogen or argon, overdoses of injectable anesthetics or physical methods (decapitation, cervical spine dislocation, stunning, gunshot, pitching.

  4. Savannah River Ecology Laboratory. Annual technical progress report of ecological research

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.H.

    1996-07-31

    The Savannah River Ecology Laboratory (SREL) is a research unit of the University of Georgia (UGA). The overall mission of the Laboratory is to acquire and communicate knowledge of ecological processes and principles. SREL conducts basic and applied ecological research, as well as education and outreach programs, under a contract with the U.S. Department of Energy (DOE) at the Savannah River Site (SRS) near Aiken, South Carolina. Significant accomplishments were made during the past year in the areas of research, education and service. The Laboratory`s research mission was fulfilled with the publication of two books and 143 journal articles and book chapters by faculty, technical and students, and visiting scientists. An additional three books and about 80 journal articles currently are in press. Faculty, technician and students presented 193 lectures, scientific presentations, and posters to colleges and universities, including minority institutions. Dr. J Vaun McArthur organized and conducted the Third Annual SREL Symposium on the Environment: New Concepts in Strewn Ecology: An Integrative Approach. Dr. Michael Newman conducted a 5-day course titled Quantitative Methods in Ecotoxicology, and Dr. Brian Teppen of The Advanced Analytical Center for Environmental Sciences (AACES) taught a 3-day short course titled Introduction to Molecular Modeling of Environmental Systems. Dr. I. Lehr Brisbin co-hosted a meeting of the Crocodile Special Interest Group. Dr. Rebecca Sharitz attended four symposia in Japan during May and June 1996 and conducted meetings of the Executive Committee and Board of the International Association for Ecology (ENTECOL).

  5. NDE Acoustic Microscopy Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The purpose is to develop advanced, more effective high-resolution micro-NDE materials characterization methods using scanning acoustic microscopy. The laboratory's...

  6. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  7. Report of the research results with University of Tokyo Nuclear Engineering Research Laboratory's facilities in fiscal 1975

    International Nuclear Information System (INIS)

    1976-08-01

    Results of the research works by educational institutions using fast neutron source reactor 'Yayoi' etc. of Nuclear Engineering Research Laboratory in fiscal 1975 are reported in individual summaries. Fields of research are the following: shielding benchmark experiment, research on medical irradiation, irradiation experiments, experiments by small research groups, fast neutron streaming experiment, and so on. (Mori, K.)

  8. Public Libraries, Museums and User Participation - An outline of a research projeckt

    DEFF Research Database (Denmark)

    Jochumsen, Henrik; Rasmussen, Casper Hvenegaard

    2013-01-01

    The aim of this paper is to sketch a research project on user participation in public libraries and museums. For several years’ user participation, participatory culture and user driven innovation have been “buzzwords” in the ongoing development of cultural institutions in general and in museums...... of the research project. The case of Roskilde is particularly illustrative as it not only contains user participation, libraries and museums but also illustrate how the development of user participation actually blurs the borders of the two institutions. After a definition of the concept of user participation...... and a brief discussion of the institutional and political relevance of doing research into the field, we will pinpoint some challenges that both libraries and museums are facing so as to emphasize the importance of studying how the increasing focus on user development is expressed in both institutions...

  9. “I Just Don't Think There's any other Image that Tells the Story like [This] Picture Does”: Researcher and Participant Reflections on the Use of Participant-Employed Photography in Social Research

    Directory of Open Access Journals (Sweden)

    Meridith Burles PhD

    2014-02-01

    Full Text Available The incorporation of visual forms of expression has become common in qualitative research over the past two decades, with participant-employed photography being most prevalent. Visual methods such as photovoice have been used in community-based studies and with individuals to explore their lived experiences, particularly because of their participatory nature. Despite widespread support for visual approaches in existing research, there has been insufficient attention paid to how photography can enhance understanding of the phenomenon under study. Additionally, the existing literature is somewhat bereft of discussion of what individuals think about their participation in studies that incorporate participant-employed photography, or researchers' perspectives of carrying out this type of research. In this article, we describe a photovoice study carried out with young adult women affected by serious illness and provide examples of participants' photographs to illustrate how participant-employed photography can enhance the depth of research data. Specifically, the examples highlight how the photographs enriched participants' verbal descriptions of their lived experiences, which generated a better understanding of their personal embodied realities. We also discuss the young adult women's inclusion of previously taken photographs and reflections on their participation in the study. Finally, we examine the need to consider the intended audience of photographs, and specific ethical and methodological considerations for researchers contemplating the incorporation of participant-employed photography. In doing so, we provide insight into the advantages and challenges of photo-methods, which can inform other researchers contemplating the incorporation of participant-employed photography into social research.

  10. A design guide for energy-efficient research laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Wishner, N.; Chen, A.; Cook, L. [eds.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  11. Retrospect over past 25 years at Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

    International Nuclear Information System (INIS)

    Aoki, Shigebumi

    1983-01-01

    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, was established on April 1, 1956, with the aims of the investigation on the peaceful use of nuclear energy and of the education of scientists and engineers in this field. This report reviews the history of the Laboratory during 25 years and traces the process of growth concerning research divisions, buildings, large-scale experimental facilities and the education in the graduate course for nuclear engineering. In addition, considering what the Laboratory has to be and what the future plan will be, it is mentioned that the research interest should be extended to the field of nuclear fusion reactor, especially the blanket engineering, as a long-term future project of the Research Laboratory. (author)

  12. From Research to Policy: Roma Participation through Communicative Organization

    Science.gov (United States)

    Munte, Ariadna; Serradell, Olga; Sorde, Teresa

    2011-01-01

    For centuries, Roma people's social exclusion has been reinforced through research that has legitimized stereotypes rather than helping to overcome them. This has led Roma people to refuse to participate in the kind of research that has contributed to discrimination against them. We describe how the critical communicative methodology, used in the…

  13. Frederick National Laboratory Rallies to Meet Demand for Zika Vaccine | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Frederick National Laboratory for Cancer Research is producing another round of Zika vaccine for ongoing studies to determine the best delivery method and dosage. This will lay the groundwork for additional tests to see if the vaccine prevents i

  14. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  15. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  16. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  17. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    Energy Technology Data Exchange (ETDEWEB)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  18. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    International Nuclear Information System (INIS)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects

  19. Naval Arctic Research Laboratory (NARL) Subsurface Containment Berm Investigation

    Science.gov (United States)

    2015-10-01

    Degree-Days CRREL Cold Regions Research and Engineering Laboratory ERDC U.S. Army Engineer Research and Development Center FWENC Foster Wheeler ...contract with the Navy, Foster Wheeler Environmental Corporation (FWENC) constructed a subsurface containment berm at the airfield of the Naval...659J91.61 ncURE 3- 3 NAVAl.. AACnC R(Sf.ARCH l,.ASORATORY POINT 9ARROW. AlASKA AS-BUILT CONTAINMENT BERM EXTENSION AND MONITORING WELLS FOSTER W

  20. Fermilab a laboratory at the frontier of research

    CERN Document Server

    Gillies, James D

    2002-01-01

    Since its foundation in 1967, creeping urbanization has taken away some of Fermilab's remoteness, but the famous buffalo still roam, and farm buildings evocative of frontier America dot the landscape - appropriately for a laboratory at the high-energy frontier of modern research. Topics discussed are the Tevatron, detector upgrades, the neutrino programme, Fermilab and the LHC and the non-accelerator programme.

  1. Radiological safety considerations in the design and operation of the ORNL Transuranium Research Laboratory (TRL)

    International Nuclear Information System (INIS)

    Haynes, C.E.

    1976-01-01

    The Transuranium Research Laboratory (TRL) is the central facility at Oak Ridge National Laboratory (ORNL) for chemical and physical research involving transuranium elements. Transuranium Research Laboratory investigations are about equally divided between studies of inorganic and structural chemistry of the heavy elements and nuclear structure and properties of their isotopes. Elements studied include neptunium, plutonium, americium, curium, berkelium, californium, and einsteinium, each in microgram-to-gram quantities depending upon availability and experimental requirements. This paper describes an eight-step safety procedure followed in planning and approving individual research projects. This procedure should provide an optimum margin of safety and should permit the accomplishment of successful research

  2. Developing Research-Ready Skills: Preparing Early Academic Students for Participation in Research Experiences

    Science.gov (United States)

    Charlevoix, D. J.; Morris, A. R.

    2015-12-01

    Engaging lower-division undergraduates in research experiences is a key but challenging aspect of guiding talented students into the geoscience research pipeline. UNAVCO conducted a summer internship program to prepare first and second year college students for participation in authentic, scientific research. Many students in their first two years of academic studies do not have the science content knowledge or sufficient math skills to conduct independent research. Students from groups historically underrepresented in the geosciences may face additional challenges in that they often have a less robust support structure to help them navigate the university environment and may be less aware of professional opportunities in the geosciences.UNAVCO, manager of NSF's geodetic facility, hosted four students during summer 2015 internship experience aimed to help them develop skills that will prepare them for research internships and skills that will help them advance professionally. Students spent eight weeks working with UNAVCO technical staff learning how to use equipment, prepare instrumentation for field campaigns, among other technical skills. Interns also participated in a suite of professional development activities including communications workshops, skills seminars, career circles, geology-focused field trips, and informal interactions with research interns and graduate student interns at UNAVCO. This presentation will outline the successes and challenges of engaging students early in their academic careers and outline the unique role such experiences can have in students' academic careers.

  3. Institute of Laboratory Animal Research

    National Research Council Canada - National Science Library

    Dell, Ralph

    2000-01-01

    ...; and reports on specific issues of humane care and use of laboratory animals. ILAR's mission is to help improve the availability, quality, care, and humane and scientifically valid use of laboratory animals...

  4. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    Science.gov (United States)

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs.

  5. Growing a garden without water: Graduate teaching assistants in introductory science laboratories at a doctoral/research university

    Science.gov (United States)

    Luft, Julie A.; Kurdziel, Josepha P.; Roehrig, Gillian H.; Turner, Jessica

    2004-03-01

    Graduate teaching assistants (GTAs) in the sciences are a common feature of U.S. universities that have a prominent mission of research. During the past 2 decades, increased attention has been paid to the professional development of GTAs as instructors. As a result, universities have created training programs to assist GTAs in selecting instructional methods, curricular formats, and assessments when they serve as laboratory, lecture, or discussion group instructors. Unfortunately, few studies explore the educational and instructional environment of GTAs in these reformed settings. This study was conducted to address this specific need. As a constructivist inquiry, qualitative methods were used to collect and analyze the data to elucidate the educational and instructional environment of science GTAs at a doctoral/research university in which various training programs existed. We found that GTAs worked autonomously, that traditional practices and curricula existed in laboratories, and that instructors frequently held limited views of undergraduates' abilities and motivation. Findings in this initial study about GTAs suggest that developers of GTA training programs draw on the literature regarding science teacher education, and that reward systems be instituted that recognize faculty and staff for their participation in GTA training programs.

  6. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    Science.gov (United States)

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  7. Key Stakeholders' Perceptions of Motivators for Research Participation Among Individuals Who Are Incarcerated.

    Science.gov (United States)

    Hanson, Bridget L; Faulkner, Sherilyn A; Brems, Christiane; Corey, Staci L; Eldridge, Gloria D; Johnson, Mark E

    2015-10-01

    Understanding motivations of research participants is crucial for developing ethical research protocols, especially for research with vulnerable populations. Through interviews with 92 institutional review board members, prison administrators, research ethicists, and researchers, we explored key stakeholders' perceptions of what motivates incarcerated individuals to participate in research. Primary motivators identified were a desire to contribute to society, gaining knowledge and health care, acquiring incentives, and obtaining social support. The potential for undue influence or coercion were also identified as motivators. These results highlight the need for careful analysis of what motivates incarcerated individuals to participate in research as part of developing or reviewing ethically permissible and responsible research protocols. Future research should expand this line of inquiry to directly include perspectives of incarcerated individuals. © The Author(s) 2015.

  8. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  9. Schools as Sites for Recruiting Participants and Implementing Research.

    Science.gov (United States)

    Bartlett, Robin; Wright, Tiffany; Olarinde, Tia; Holmes, Tara; Beamon, Emily R; Wallace, Debra

    2017-01-01

    Schools can be a valuable resource for recruitment of participants for research involving children, adolescents, and parents. Awareness of the benefits and challenges of working with schools can assist researchers in developing effective school partnerships. This article discusses the advantages of conducting research within the school system as well as the challenges that may also arise. Such challenges include developing key contacts, building relationships, logistical arrangements, and facilitating trust in the research topic and team. Suggestions for strategies to forge successful collaborative relationships with schools are provided.

  10. Quantitative valuation placed by children and teenagers on participation in two hypothetical research scenarios.

    Science.gov (United States)

    Funnell, Dan; Fertleman, Caroline; Carrey, Liz; Brierley, Joe

    2012-11-01

    For paediatric medicine to advance, research must be conducted specifically with children. Concern about poor recruitment has led to debate about payments to child research participants. Although concerns about undue influence by such 'compensation' have been expressed, it is useful to determine whether children can relate the time and inconvenience associated with participation to the value of payment offered. This study explores children's ability to determine fair remuneration for research participation, and reviews payments to children participating in research. Forty children were interviewed before outpatient visits at two London Hospitals: Great Ormond Street Children's Hospital and the Whittington Hospital District General Hospital. Children were asked to value their involvement in two hypothetical research scenarios - the first an 'additional blood sample', the second also involving daily oral oil capsules taken for a fortnight before further venesection. Background knowledge about familiarity with money, and experience with hospitalisation was assessed. The mean valuation of involvement in the second scenario (£13.18) was higher than in the first (£2.84) (pfair valuation for participation in medical research. The monetary sums are influenced by the time and inconvenience involved in the research, and by the extent of recent experience with hospital procedures. The authors review current ethical thinking regarding payments to child research participants and suggest that a fair wage model might be an ethically acceptable way to increase participation of children in research.

  11. Behavioral Economic Laboratory Research in Tobacco Regulatory Science.

    Science.gov (United States)

    Tidey, Jennifer W; Cassidy, Rachel N; Miller, Mollie E; Smith, Tracy T

    2016-10-01

    Research that can provide a scientific foundation for the United States Food and Drug Administration (FDA) tobacco policy decisions is needed to inform tobacco regulatory policy. One factor that affects the impact of a tobacco product on public health is its intensity of use, which is determined, in part, by its abuse liability or reinforcing efficacy. Behavioral economic tasks have considerable utility for assessing the reinforcing efficacy of current and emerging tobacco products. This paper provides a narrative review of several behavioral economic laboratory tasks and identifies important applications to tobacco regulatory science. Behavioral economic laboratory assessments, including operant self-administration, choice tasks and purchase tasks, can be used generate behavioral economic data on the effect of price and other constraints on tobacco product consumption. These tasks could provide an expedited simulation of the effects of various tobacco control policies across populations of interest to the FDA. Tobacco regulatory research questions that can be addressed with behavioral economic tasks include assessments of the impact of product characteristics on product demand, assessments of the abuse liability of novel and potential modified risk tobacco products (MRTPs), and assessments of the impact of conventional and novel products in vulnerable populations.

  12. Technical Service Agreement (TSA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Frederick National Laboratory for Cancer Research (FNLCR) scientists provide services and solutions to collaborators through the Technical Services Program, whose portfolio includes more than 200 collaborations with more than 80 partners. The Frederi

  13. Bulletin of the Research Laboratory for Nuclear Reactors

    International Nuclear Information System (INIS)

    Aritomi, Masanori

    2008-01-01

    The bulletin consists of two parts. The first part includes General Research Report. The Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology has three engineering divisions such as Energy Engineering, Mass Transmutation Engineering, and System and Safety Engineering. In this part, 17 reports of Energy Engineering division, 8 reports of Mass transmutation Engineering division, 11 reports of System and Safety Engineering division are described as their activities. In addition, 3 reports of Cooperative Researches are also summarized. The second part is Special Issue about COE-INES RESEARCH REPORT 2007. In this part, 3 reports of Innovative Reactor Group, 2 reports of Innovative Nuclear Energy Utilization System Group, 3 reports of Innovative Transmutation/Separation Group, 2 reports of Relationship between Nuclear and Society Group, 1 report of RA Students in the COE-INES Captainship Educational Program are described as results to their researches. (J.P.N.)

  14. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  15. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  16. Planning Today for Tomorrow’s Research: Analysis of Factors Influencing Participation in a Pediatric Cancer Research Biorepository

    Directory of Open Access Journals (Sweden)

    Rania M. Labib

    2018-01-01

    Full Text Available BackgroundBiobanks have become a powerful tool that fosters biomedical research. The success of biobanks depends upon people’s perception and willingness to donate their samples for research. This is the first biorepository in Egypt, hence, little is known about the beliefs and attitudes of parents toward participation.AimTo investigate the level of willingness of Egyptians to donate samples of their children and themselves for research and the different factors influencing participation.Materials and methodsA structured questionnaire was designed covering multiple items expected to affect the enrollment decision. This was conducted in-person, and data collected included demographic data, socioeconomic, and educational level. In addition, in the case of refusal, participants were asked about reasons behind their decision.ResultsOnly about 3.1% of patients have not been enrolled in the project, and 0.3% have withdrawn. Three demographic factors were found having disparate trends in the decision-making process to participate or not: father’s education (p = 0.0001, mother’s education (p = 0.0001, and father’s age (p = 0.034.ConclusionEgyptian parents were willing to donate their samples as well as their children’s samples in our research biorepository. The idea of participation was presented in an interview during which the consent form was explained in a comprehensive transparent way allowing participants the right to refuse or withdraw at any time. Still, different communication approaches are needed with older, more highly educated parents to encourage them to participate.

  17. New model for public participation at Sandia National Laboratories: What comes after environmental restoration?

    International Nuclear Information System (INIS)

    KEENER R, WILLIAM; BACA, STEPHEN S.; BACA, MAUREEN R.; STOTTS, AL; TOOPS, TAMI; WOLFF, THEODORE A.

    2000-01-01

    As the Sandia National Laboratories' Environmental Restoration (ER) project moves toward closure, the project's experiences--including a number of successes in the public participation arena--suggest it is time for a new, more interactive model for future government-citizen involvement. This model would strive to improve the quality of public interaction with the Department of Energy (DOE) and Sandia, by using subject-specific working groups and aiming for long-term trustful relationships with the community. It would make use of interactive techniques, fewer formal public forums, and a variety of polling and communication technologies to improve information gathering and exchange

  18. Education and research at the Ohio State University nuclear reactor laboratory

    International Nuclear Information System (INIS)

    Miller, D.W.; Myser, R.D.; Talnagi, J.W.

    1989-01-01

    The educational and research activities at the Ohio State University Nuclear Reactor Laboratory (OSUNRL) are discussed in this paper. A brief description of an OSUNRL facility improvement program and its expected impact on research is presented. The overall long-term goal of the OSUNRL is to support the comprehensive education, research, and service mission of OSU

  19. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    International Nuclear Information System (INIS)

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected

  20. Initial experience with a group presentation of study results to research participants

    Directory of Open Access Journals (Sweden)

    Bent Stephen

    2008-03-01

    Full Text Available Abstract Background Despite ethical imperatives, informing research participants about the results of the studies in which they take part is not often performed. This is due, in part, to the costs and burdens of communicating with each participant after publication of the results. Methods Following the closeout and publication of a randomized clinical trial of saw palmetto for treatment of symptoms of benign prostatic hyperplasia, patients were invited back to the research center to participate in a group presentation of the study results. Results Approximately 10% of participants attended one of two presentation sessions. Reaction to the experience of the group presentation was very positive among the attendees. Conclusion A group presentation to research participants is an efficient method of communicating study results to those who desire to be informed and was highly valued by those who attended. Prospectively planning for such presentations and greater scheduling flexibility may result in higher attendance rates. Trial Registration Number Clinicaltrials.gov #NCT00037154

  1. Recruitment and Participation of Older Lesbian and Bisexual Women in Intervention Research.

    Science.gov (United States)

    Wood, Susan F; Brooks, Jacquetta; Eliason, Michele J; Garbers, Samantha; McElroy, Jane A; Ingraham, Natalie; Haynes, Suzanne G

    2016-07-07

    Very little research has addressed issues of recruitment and participation of lesbian and bisexual (LB) women, aged 40 and older, into research studies. This study is based on a larger cross-site intervention study that recruited women from five geographic regions in the United States for culturally specific LB healthy weight programs, lasting 12 or 16 weeks. Principal investigators (PIs) of the five intervention programs completed a questionnaire on recruitment and participation strategies and barriers. Participant data on completion and sociodemographic variables were compiled and analyzed. The recruitment strategies the programs' PIs identified as most useful included word-of-mouth participant referrals, emails to LB participants' social networks, and use of electronic health records (at the two clinic-based programs) to identify eligible participants. Flyers and web postings were considered the least useful. Once in the program, participation and completion rates were fairly high (approximately 90%), although with varying levels of engagement in the different programs. Women who were younger or single were more likely to drop out. Women with disabilities had a lower participation/completion rate (82%) than women without any disability (93%). Dropouts were associated with challenges in scheduling (time of day, location) and changes in health status. Implementation of key strategies can improve both recruitment and participation, but there is a great need for further study of best practices to recruit and promote participation of LB women for health intervention research. Copyright © 2016 Jacobs Institute of Women's Health. All rights reserved.

  2. Integrated management system best practices in radioecological laboratories

    International Nuclear Information System (INIS)

    Carvalho, Claudia Aparecida Zerbinatti de

    2009-01-01

    This paper presents a Master dissertation advancements with the target of studying the best practices, in order to give support to an IMS conceptual model ?Integrated Management System (quality, environment, work safety and health), applied to radioecological laboratories. The planning of the proposed research comprises the following stages: first stage - the bibliographic and documental survey in IMS; a survey and study of the applied standards (QMS NBR ISO 9000 (2005), NBR ISO 9001 (2008), NBR ISO 9004 (2000), EMS 14001(2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)); identification and characterization in radioecological laboratories processes; a methodological study of better practices and benchmarking is carried out. In the second stage of the research, the development of a case study is forecast (qualitative research, with electronic questionnaires and personal interviews, when possible), preceded by a survey and selection of international and national radioecological laboratories to be studied and, in sequence, these laboratories should be contacted and agree to participate in the research; in a third stage, the construction of a matrix of better practices, which incur in the results able to subside an IMS conceptual model proposition for radioecological laboratories; the fourth and last stage of the research comprises the construction of a conceptual proposal of an IMS structure for radioecological laboratories. The first stage of the research results are presented concisely, as well as a preliminary selection of laboratories to be studied. (author)

  3. Integrated management system best practices in radioecological laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Claudia Aparecida Zerbinatti de [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). Dept. da Qualidade], e-mail: clau.zerbina@gmail.com; Zouain, Desiree Moraes [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: dmzouain@ipen.br

    2009-07-01

    This paper presents a Master dissertation advancements with the target of studying the best practices, in order to give support to an IMS conceptual model ?Integrated Management System (quality, environment, work safety and health), applied to radioecological laboratories. The planning of the proposed research comprises the following stages: first stage - the bibliographic and documental survey in IMS; a survey and study of the applied standards (QMS NBR ISO 9000 (2005), NBR ISO 9001 (2008), NBR ISO 9004 (2000), EMS 14001(2004) and OHSMS OHSAS 18001 (2007) and OHSAS 18002 (2008)); identification and characterization in radioecological laboratories processes; a methodological study of better practices and benchmarking is carried out. In the second stage of the research, the development of a case study is forecast (qualitative research, with electronic questionnaires and personal interviews, when possible), preceded by a survey and selection of international and national radioecological laboratories to be studied and, in sequence, these laboratories should be contacted and agree to participate in the research; in a third stage, the construction of a matrix of better practices, which incur in the results able to subside an IMS conceptual model proposition for radioecological laboratories; the fourth and last stage of the research comprises the construction of a conceptual proposal of an IMS structure for radioecological laboratories. The first stage of the research results are presented concisely, as well as a preliminary selection of laboratories to be studied. (author)

  4. Magnetic mirror fusion research at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Post, R.F.

    1979-01-01

    An overall view is given of progress and plans for pressing forward with mirror research at Livermore. No detail is given on any one subject, and many interesting investigations being carried out at University laboratories in the U.S. that augment and support efforts at Livermore are omitted

  5. Using Facebook and participant information clips to recruit emergency nurses for research.

    Science.gov (United States)

    Child, Rebekah Jay Howerton; Mentes, Janet C; Pavlish, Carol; Phillips, Linda R

    2014-07-01

    To examine the use of social networking sites in recruiting research participants. Workplace violence is an important issue for staff and patients. One workplace that reports the highest levels of violence is the emergency department. The ability to research issues such as workplace violence in real time is important in addressing them expeditiously, and social media can be used to advertise and recruit research subjects, implement studies and disseminate information. The experience of recruiting subjects through social networks, specifically Facebook, and the use of participant information clips (PICs) for advertising. A brief discussion of the history of advertising and communication using the internet is presented to provide an understanding of the trajectory of social media and implications for recruitment in general. The paper then focuses on the lead author's experience of recruiting subjects using Facebook, including its limitations and advantages, and her experience of using participant information clips. The low cost of advertising and recruiting participants this way, as well as the convenience provided to participants, resulted in almost half the study's total participants being obtained within 72 hours. Using Facebook to target a younger age range of nurses to participate in a study was successful and yielded a large number of completed responses in a short time period at little cost to the researcher. Recording the PIC was cheap, and posting it and a link to the site on pre-existing group pages was free, providing valuable viral marketing and snowball recruiting. Future researchers should not overlook using social network sites for recruitment if the demographics of the desired study population and subject matter permit it.

  6. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    Science.gov (United States)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    highest expenses in beef cattle production. Senior research investigating the impact of livestock integration and multi-species cover crop grown within the crop rotation is studying changes in soil attributes resulting from the crop-animal integration by measuring bulk density and in-season soil fertility in the crop rotation. These responses are further contrasted with results from within the crop rotation and responses from perennial native range. Students that become engaged in the research represent a broad cross section of the consuming public and include high school junior and senior students, college undergraduate students that conduct research projects, postdoctoral research scientists engaged in senior level research, agricultural extension educators, and finally, farmer and rancher businessmen. The integrated nature of the research provides a wealth of learning opportunities for these various groups. For the high school students, visits to the living laboratory increase awareness and introduces students to a potential career path in agriculture, natural resource fields, and the many allied vocational fields that support agriculture. When college undergraduate students visit the living laboratory, they seek to address a researchable question or a problem in agriculture, while fulfilling requirements for graduation by conducting a research project. Because postdoctoral students want to be actively engaged in research and advanced learning, they are interested in conducting research in the living laboratory that can be published in peer reviewed journals. Agricultural extension educators, who advise farmers and ranchers, are looking for research results from the living laboratory that can be convey to their constituents. Farmers and ranchers participate in workshop events that give them face-to-face learning opportunities that they can use to effect change in their farm and ranch businesses. Each of these demographic groups are unique in their interest in the

  7. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  8. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    International Nuclear Information System (INIS)

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry

  9. Teachers' participation in research programs improves their students' achievement in science.

    Science.gov (United States)

    Silverstein, Samuel C; Dubner, Jay; Miller, Jon; Glied, Sherry; Loike, John D

    2009-10-16

    Research experience programs engage teachers in the hands-on practice of science. Program advocates assert that program participation enhances teachers' skills in communicating science to students. We measured the impact of New York City public high-school science teachers' participation in Columbia University's Summer Research Program on their students' academic performance in science. In the year before program entry, students of participating and nonparticipating teachers passed a New York State Regents science examination at the same rate. In years three and four after program entry, participating teachers' students passed Regents science exams at a rate that was 10.1% higher (P = 0.049) than that of nonparticipating teachers' students. Other program benefits include decreased teacher attrition from classroom teaching and school cost savings of U.S. $1.14 per $1 invested in the program.

  10. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  11. Ethical issues in identifying and recruiting participants for familial genetic research.

    Science.gov (United States)

    Beskow, Laura M; Botkin, Jeffrey R; Daly, Mary; Juengst, Eric T; Lehmann, Lisa Soleymani; Merz, Jon F; Pentz, Rebecca; Press, Nancy A; Ross, Lainie Friedman; Sugarman, Jeremy; Susswein, Lisa R; Terry, Sharon F; Austin, Melissa A; Burke, Wylie

    2004-11-01

    Family-based research is essential to understanding the genetic and environmental etiology of human disease. The success of family-based research often depends on investigators' ability to identify, recruit, and achieve a high participation rate among eligible family members. However, recruitment of family members raises ethical concerns due to the tension between protecting participants' privacy and promoting research quality, and guidelines for these activities are not well established. The Cancer Genetics Network Bioethics Committee assembled a multidisciplinary group to explore the scientific and ethical issues that arise in the process of family-based recruitment. The group used a literature review as well as expert opinion to develop recommendations about appropriate approaches to identifying, contacting, and recruiting family members. We conclude that there is no single correct approach, but recommend a balanced approach that takes into account the nature of the particular study as well as its recruitment goals. Recruitment of family members should be viewed as part of the research protocol and should require appropriate informed consent of the already-enrolled participant. Investigators should inform prospective participants why they are being contacted, how information about them was obtained, and what will happen to that information if they decide not to participate. The recruitment process should also be sensitive to the fact that some individuals from families at increased genetic risk will have no prior knowledge of their risk status. These recommendations are put forward to promote further discussion about the advantages and disadvantages of various approaches to family-based recruitment. They suggest a framework for considering alternative recruitment strategies and their implications, as well as highlight areas in need of further empirical research. (c) 2004 Wiley-Liss, Inc.

  12. Public Participation Plan for Waste Area Group 7 Operable Unit 7-13/14 at the Idaho National Laboratory Site

    International Nuclear Information System (INIS)

    B. G. Meagher

    2007-01-01

    This Public Participation Plan outlines activities being planned to: (1) brief the public on results of the remedial investigation and feasibility study, (2) discuss the proposed plan for remediation of Operable Unit 7-13/14 with the public, and (3) encourage public participation in the decision-making process. Operable Unit 7-13/14 is the Comprehensive Remedial Investigation/Feasibility Study for Waste Area Group 7. Analysis focuses on the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the Idaho National Laboratory (Site). This plan, a supplement to the Idaho National Laboratory Community Relations Plan (DOE-ID 2004), will be updated as necessary. The U.S. Department of Energy (DOE), Idaho Department of Environmental Quality (DEQ), and U.S. Environmental Protection Agency (EPA) will participate in the public involvement activities outlined in this plan. Collectively, DOE, DEQ, and EPA are referred to as the Agencies. Because history has shown that implementing the minimum required public involvement activities is not sufficient for high-visibility cleanup projects, this plan outlines additional opportunities the Agencies are providing to ensure that the public's information needs are met and that the Agencies can use the public's input for decisions regarding remediation activities

  13. The Plant Genetic Engineering Laboratory For Desert Adaptation

    Science.gov (United States)

    Kemp, John D.; Phillips, Gregory C.

    1985-11-01

    The Plant Genetic Engineering Laboratory for Desert Adaptation (PGEL) is one of five Centers of Technical Excellence established as a part of the state of New Mexico's Rio Grande Research Corridor (RGRC). The scientific mission of PGEL is to bring innovative advances in plant biotechnology to bear on agricultural productivity in arid and semi-arid regions. Research activities focus on molecular and cellular genetics technology development in model systems, but also include stress physiology investigations and development of desert plant resources. PGEL interacts with the Los Alamos National Laboratory (LANL), a national laboratory participating in the RGRC. PGEL also has an economic development mission, which is being pursued through technology transfer activities to private companies and public agencies.

  14. Sexuality educators: taking a stand by participating in research

    African Journals Online (AJOL)

    Sexuality educators: taking a stand by participating in research ... and Sexually Transmitted Infections (STIs) (United Nations Educational, Scientific, .... assimilates new ideas which could assist in keeping up with what learners need from.

  15. INR participation in the IAEA research project investigating the influence of hydrogen absorption on zirconium alloy behavior

    International Nuclear Information System (INIS)

    Roth, Maria; Radu, Vasile; Dobrea, Dumitru; Pitigoi, Vasile

    2003-01-01

    The paper summarizes the results obtained at INR Pitesti from its participation in the research project coordinated by IAEA Vienna in cooperation with Chalk River and AECL Canada, titled 'Hydrogen and Hydride Induced Degradation of the Mechanical and Physical Properties of Zirconium-based Alloys'. Evidenced is the contribution of INR Pitesti in the works of this project as well as the benefits of this participation for Romania as owner of CANDU type reactor. In the frame this project new results concerning the propagation rate of DHC type cracks in pressure tubes in CANDU reactors were obtained. The same method used to investigate the DHC project was adapted for determination of other quantities of interest related to structural integrity of the materials. The methodology was applied for testing the pressure tubes in Cernavoda NPP Unit 1. The contribution of INR team to statistical processing of data obtained in all the laboratories participating in this project is also highlighted. Opportunity afforded by IAEA to INR Pitesti to bring its contribution to the development of this project of international cooperation together with other well-known institutions and the support from RAAN are acknowledged. These opened ways for other fruitful international cooperation

  16. Online Facebook Focus Group Research of Hard-to-Reach Participants

    Directory of Open Access Journals (Sweden)

    Anastasia Aldelina Lijadi

    2015-12-01

    Full Text Available Conducting discovery-oriented qualitative research about the life experiences of hard-to-reach individuals posed several challenges for recruiting participants and collecting rich textual data. In a study pertaining the experiences of Third Culture Kids (TCKs, we explored the benefits of the social media, such as Facebook as a platform to collect data. TCKs are individuals who define their sense of belonging to the third culture trailing their parents moving across borders during their developmental years. Adult TCKs live in many different countries, and accessing and interviewing respondents could be a difficult and costly endeavor. In this article, the authors share their experience conducting online, asynchronous focus groups using a Facebook platform. We reflect upon the process of setting up a secret Facebook focus group for research purposes, recruiting participants, rapport building between facilitator and participants, monitoring and keeping track of participants’ responses, and the dynamics emerging within an online focus group. We also discuss the novelty, limitations, and benefits of the Facebook focus group as an emerging mode for collecting qualitative data from hard-to-reach participants.

  17. Meeting report: batch-to-batch variability in estrogenic activity in commercial animal diets--importance and approaches for laboratory animal research.

    Science.gov (United States)

    Heindel, Jerrold J; vom Saal, Frederick S

    2008-03-01

    We report information from two workshops sponsored by the National Institutes of Health that were held to a) assess whether dietary estrogens could significantly impact end points in experimental animals, and b) involve program participants and feed manufacturers to address the problems associated with measuring and eliminating batch-to-batch variability in rodent diets that may lead to conflicting findings in animal experiments within and between laboratories. Data were presented at the workshops showing that there is significant batch-to-batch variability in estrogenic content of commercial animal diets, and that this variability results in differences in experimental outcomes. A combination of methods were proposed to determine levels of total estrogenic activity and levels of specific estrogenic constituents in soy-containing, casein-containing, and other soy-free rodent diets. Workshop participants recommended that researchers pay greater attention to the type of diet being used in animal studies and choose a diet whose estrogenic activity (or lack thereof) is appropriate for the experimental model and end points of interest. Information about levels of specific phytoestrogens, as well as estrogenic activity caused by other contaminants and measured by bioassay, should be disclosed in scientific publications. This will require laboratory animal diet manufacturers to provide investigators with information regarding the phytoestrogen content and other estrogenic compounds in commercial diets used in animal research.

  18. UTRaLab – Urban Traffic Research Laboratory

    Directory of Open Access Journals (Sweden)

    Karsten Kozempel

    2017-08-01

    Full Text Available The Urban Traffic Research Laboratory (UTRaLab is a research and test track for traffic detection methods and sensors. It is located at the Ernst-Ruska-Ufer, in the southeast of the city of Berlin (Germany. The UTRaLab covers 1 km of a highly-frequented urban road and is connected to a motorway. It is equipped with two gantries with distance of 850 m in between and has several outstations for data collection. The gantries contain many different traffic sensors like inductive loops, cameras, lasers or wireless sensors for traffic data acquisition. Additionally a weather station records environmental data. The UTRaLab’s main purposes are the data collection of traffic data on the one hand and testing newly developed sensors on the other hand.

  19. Why families choose not to participate in research: feedback from non-responders.

    Science.gov (United States)

    Levickis, Penny; Naughton, Geraldine; Gerner, Bibi; Gibbons, Kay

    2013-01-01

    Subjects who did not respond to an invitation to participate in a community-based randomised controlled trial for childhood obesity in Melbourne, Australia were approached to investigate reasons for non-participation. Between January and September 2007, 305 families were sent a brief questionnaire and invited to take part in the current study. Thirty-seven questionnaires were returned and 12 parents agreed to a follow-up interview. Questionnaire data were quantitatively analysed. The interviews were conducted via the telephone and provided detailed qualitative information on non-participation. Lack of time was cited as a main reason for non-participation. Different aspects of time were discussed including lack of time to dedicate to a topic seen as low priority, overestimated perception of time for study commitments and the inappropriate timing of the request. Other major reasons for non-participation included risk of negative experiences and the impact of the initial contact with the study. This study illustrates the experiences of potential participants during the recruitment process, their perceptions of study commitments and how their previous experiences impact on their decision to participate in research. These findings provide insight into the decision not to participate in health research and could be used to modify recruitment procedures for future health research as a way of improving the recruitment experience for potential participants as well as enhancing recruitment rates. © 2012 The Authors. Journal of Paediatrics and Child Health © 2012 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  20. A DOE University-national laboratory waste-management education and research consortium (WERC)

    International Nuclear Information System (INIS)

    Bhada, R.K.; Morgan, J.D.; Townsend, J.S.

    1991-01-01

    This paper presents the results and current status of a consortium of three universities and two national laboratories working closely with industry for an Education and Research program on waste-management and environmental restoration. The program sponsored by the US Department of Energy has been in effect for 18 months and has achieved significant progress towards establishing: undergraduate, graduate and associate degree programs involving environmental management, interactive TV courses from the consortium members transmitted throughout the United States, Mexico ampersand Canada, a satellite TV network, a professional development teleconference series, research programs at the leading edge of technology training multi-disciplinary students, research laboratories for analyses, testing, and student training, technology transfer programs, including a TV series on research applications, outreach programs, including pre-college and minority education, community monitoring

  1. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  2. Participation in the 2001 IAEA interlaboratory comparison on geothermal water chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Kih Soo; Choi, Kwang Soon; Han, Sun Ho; Suh, Moo Yul; Jeon, Young Shin; Choi, Ke Chun; Pyo, Hyung Yul; Kim, Yong Bok; Kim, Jong Gu; Kim, Won Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-04-01

    Korea Atomic Energy Research Institute Analytical laboratory participated in the 2001 IAEA Interlaboratory Comparison on chemical analysis of Geothermal Water containing high salinity organized by IAEA Hydrology Laboratory(INT/0/060). 14 items such as pH, electroconductivity, HCO{sub 3}, Cl, F, SO{sub 4}, SiO{sub 2}, B, Li, Na, K, Ca, Mg were analyzed. The result of this program showed that Korea Atomic Energy Research Institute laboratory was ranked within 15% range from top level. Major analytical methods were applied for this activity such as ICP-AES, AAS, IC, pH meter, conductometer and acid titration. 8 refs., 48 figs., 9 tabs. (Author)

  3. Adverse pregnancy outcomes in offspring of fathers working in biomedical research laboratories

    DEFF Research Database (Denmark)

    Magnusson, Linda L; Bodin, Lennart; Wennborg, Helena

    2006-01-01

    BACKGROUND: Laboratory work may constitute a possible health hazard for workers as well as for their offspring, and involves a wide range of exposures, such as organic solvents, carcinogenic agents, ionizing radiation, and/or microbiological agents. Adverse pregnancy outcomes in the offspring...... exposed, and of non-laboratory employees unexposed (n = 1,909). Exposure data were obtained by questionnaires to research group leaders. Logistic regression analysis estimated odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS: Paternal laboratory work in general showed no statistically...

  4. Family and physician influence on asthma research participation decisions for adolescents: the effects of adolescent gender and research risk.

    Science.gov (United States)

    Brody, Janet L; Scherer, David G; Annett, Robert D; Turner, Charles; Dalen, Jeanne

    2006-08-01

    There is considerable ethical and legal ambiguity surrounding the role of adolescents in the decision-making process for research participation. Depending on the nature of the study and the regulations involved, adolescents may have independent responsibility for providing informed consent, they may be asked to provide their assent, or they may be completely excluded from the decision-making process. This study examined parent and adolescent perceptions of decision-making authority and sources of influence on adolescent research participation decisions, and examined whether perceptions of influence differed based on adolescent gender and level of research risk. Adolescents (n = 36) with asthma and their parents reviewed 9 pediatric research protocols, decided whether they would choose to participate, rated the extent they would be responsible for the actual decision, and indicated the ability of family and physician to influence their decisions. Multivariate analyses of variance were used to evaluate differences in perceptions of decision-making authority and sources of influence on the decisions. Adolescents were less willing to cede decision making authority to parents than parents anticipated. Parents and adolescents acknowledged a greater openness to influence from physicians than from family for above minimal risk studies. Parents were more willing to consider opinions from male adolescents. Adolescents desire responsibility for research participation decisions, though parents may not share these views. Physicians' views on research participation are important to families, especially for above minimal risk studies. Parents may grant more decision-making autonomy to adolescent males than to females. Researchers, physicians, and institutions play a key role in facilitating the ethical enrollment of adolescents into biomedical research. Educational, policy, and oversight processes that support both adolescent autonomy and parental responsibility for research

  5. Opportunity to Participate in ESSE 21: The 2003 Call for Participation

    Science.gov (United States)

    Ruzek, M.; Johnson, D. R.

    2003-12-01

    Earth System Science Education for the 21st Century (ESSE 21), sponsored by NASA through the Universities Space Research Association (USRA), is a collaborative undergraduate/graduate education program offering small grants to colleges and universities to engage a diverse interdisciplinary community of faculty and scientists in the development of courses, curricula and degree programs and sharing of learning resources focused on the fundamental understanding and application of Earth system principles for the classroom and laboratory. Through an expanded focus including partnerships with minority institutions, ESSE 21 is further developing broadly based courses, educational resources, electronic learning materials and degree programs that extend Earth system science concepts in both undergraduate and graduate classrooms and laboratories. These resources emphasizing the fundamentals of Earth system science advance the nation's broader agenda for improving science, technology, engineering and mathematics competency. The thrust to establish Earth system and global change science within the classrooms of colleges and universities is critical to laying and extending the foundation for knowledge-based decision making in the 21st century by both scientists and society in an effort to achieve sustainability. ESSE 21 released a Call for Participation (CFP) in the Fall of 2002 soliciting proposals from undergraduate institutions to create and adopt undergraduate and graduate level Earth system science content in courses, curricula and degree programs. In February 2003, twelve college and university teams were competitively selected through the CFP as the Year 1 and Year 2 Program participants. Eight of the participating teams are from minority institutions. The goal for all is to effect systemic change through developing Earth system science learning materials, courses, curricula, degree tracks or programs, and departments that are self-sustaining in the coming decades. ESSE

  6. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Habte, Aron; Wilcox, Stephen; Stoffel, Thomas

    2015-12-23

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  7. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2004

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2004-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $460 million. There are about 2,800 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 13.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  8. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2003

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2003-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 41 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  9. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  10. Motivational assessment of non-treatment buprenorphine research participation in heroin dependent individuals.

    Science.gov (United States)

    Papke, Gina; Greenwald, Mark K

    2012-06-01

    Heroin abuse remains an important public health problem, particularly in economically disadvantaged areas. Insight into this problem is gained from interviewing addicted individuals. However, we lack systematic data on factors that motivate heroin users to participate in non-treatment research that offers both financial incentives (compensation) and non-financial incentives (e.g., short-term medication). To better understand the relative importance of several types of personal motivations to participate in non-treatment buprenorphine research, and to relate self-motivations to social, economic, demographic and drug use factors. Heroin dependent volunteers (N=235 total; 57 female and 178 male; 136 African American, 86 Caucasian, and 13 Other) applied for non-therapeutic buprenorphine research in an urban outpatient setting from 2004 to 2008. We conducted a semi-structured behavioral economic interview, after which participants ranked 11 possible motivations for research participation. Although the study was repeatedly described as non-treatment research involving buprenorphine, participants often ranked some treatment-related motivations as important (wanting to reduce/stop heroin use, needing a medication to get stabilized/detoxify). Some motivations correlated with income, heroin use, and years since marketing of buprenorphine. Two dimensions emerged from principal component analysis of motivation rankings: (1) treatment motivation vs. greater immediate needs and (2) commitment to trying alternatives vs. a more accepting attitude toward traditional interventions. In summary, heroin addicts' self-motivations to engage in non-therapeutic research are complex--they value economic gain but not exclusively or primarily--and relate to variables such as socioeconomic factors and drug use. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Horonobe Underground Research Laboratory project. Investigation report for the 2010 fiscal year

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Sawada, Sumiyuki; Sugita, Yutaka

    2011-09-01

    The Horonobe Underground Research Laboratory Project is planned to extend over a period 20 years. The investigations will be conducted in three phases, namely 'Phase 1: Surface-based investigations', 'Phase 2: Construction Phase' (investigations during construction of the underground facilities) and 'Phase 3: Operation phase' (research in the underground facilities). This report summarizes the results of the investigations for the 2010 fiscal year (2010/2011). The investigations, which are composed of 'Geoscientific research' and 'R and D on geological disposal technology', were carried out according to 'Horonobe Underground Research Laboratory Project Investigation Program for the 2010 Fiscal year'. The results of these investigations, along with the results which were obtained in other departments of Japan Atomic Energy Agency (JAEA), are properly offered to the implementations and the safety regulations. For the sake of this, JAEA has proceeded with the project in collaboration with experts from domestic and overseas research organisations. (author)

  12. Employees' perspectives on ethically important aspects of genetic research participation: a pilot study.

    Science.gov (United States)

    Roberts, Laura Weiss; Warner, Teddy D; Geppert, Cynthia M A; Rogers, Melinda; Green Hammond, Katherine A

    2005-01-01

    Insights from genetic research may greatly improve our understanding of physical and mental illnesses and assist in the prevention of disease. Early experience with genetic information suggests that it may lead to stigma, discrimination, and other psychosocial harms, however, and this may be particularly salient in some settings, such as the workplace. Despite the importance of these issues, little is known about how healthy adults, including workers, perceive and understand ethically important issues in genetic research pertaining to physical and mental illness. We developed, pilot tested, and administered a written survey and structured interview to 63 healthy working adults in 2 settings. For this paper, we analyzed a subset of items that assessed attitudes toward ethically relevant issues related to participation in genetic research on physical and mental illness, such as its perceived importance, its acceptability for various populations, and appropriate motivations for participation. Our respondents strongly endorsed the importance of physical and mental illness genetic research. They viewed participation as somewhat to very acceptable for all 12 special population groups we asked about, including persons with mental illness. They perceived more positives than negatives in genetic research participation, giving neutral responses regarding potential risks. They affirmed many motivations for participation to varying degrees. Men tended to affirm genetic research participation importance, acceptability, and motivations more strongly than women. Healthy working persons may be willing partners in genetic research related to physical and mental illnesses in coming years. This project suggests the feasibility and value of evidence-based ethics inquiry, although further study is necessary. Evidence regarding stakeholders' perspectives on ethically important issues in science may help in the development of research practices and policy.

  13. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  14. Children's participation in research

    DEFF Research Database (Denmark)

    Broström professor m.so., Stig

    2012-01-01

    In (post) modern society children are seen as active subjects and participants who have a legitimate basis in the United Nations Convention of the Rights of the Child. As a consequence of this, children are able to play an active role in the 10 planning of/and participation in both education...

  15. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory.

  16. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    International Nuclear Information System (INIS)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory

  17. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  18. Children's Decision-Making Involvement About Research Participation: Associations With Perceived Fairness and Self-Efficacy.

    Science.gov (United States)

    Miller, Victoria A; Feudtner, Chris; Jawad, Abbas F

    2017-04-01

    The primary objective of this study was to examine the associations of children's involvement in decisions about research participation with their perceptions of the decision-making process and self-efficacy. Participants were children (ages 8-17) who enrolled in research studies in the prior 2 months. Children completed a questionnaire that yielded three decision-making involvement subscales: Researcher Engages Child, Researcher Supports Autonomy, and Child Participates. Children reported on fairness of the decision-making process and health-related decision self-efficacy. After adjusting for age, higher scores on Researcher Engages Child were associated with greater self-efficacy, and higher scores on Researcher Supports Autonomy were associated with greater perceived fairness. These data underscore the potential importance of researcher-child interactions about research participation when assent is sought, including proactively involving children in the decision by asking for their opinions and communicating their central role in the decision, which are likely to be more meaningful to children than receiving information or signing a form.

  19. Master plan of Mizunami underground research laboratory

    International Nuclear Information System (INIS)

    1999-04-01

    In June 1994, the Atomic Energy Commission of Japan reformulated the Long-Term Programme for Research, Development and Utilisation of Nuclear Energy (LTP). The LTP (item 7, chapter 3) sets out the guidelines which apply to promoting scientific studies of the deep geological environment, with a view to providing a sound basis for research and development programmes for geological disposal projects. The Japan Nuclear Cycle Development Institute (JNC) has been conducting scientific studies of the deep geological environment as part of its Geoscientific Research Programme. The LTP also emphasised the importance of deep underground research facilities in the following terms: Deep underground research facilities play an important role in research relating to geological disposal. They allow the characteristics and features of the geological environment, which require to be considered in performance assessment of disposal systems, to be investigated in situ and the reliability of the models used for evaluating system performance to be developed and refined. They also provide opportunities for carrying out comprehensive research that will contribute to an improved overall understanding of Japan's deep geological environment. It is recommended that more than one facility should be constructed, considering the range of characteristics and features of Japan's geology and other relevant factors. It is important to plan underground research facilities on the basis of results obtained from research and development work already carried out, particularly the results of scientific studies of the deep geological environment. Such a plan for underground research facilities should be clearly separated from the development of an actual repository. JNC's Mizunami underground research laboratory (MIU) Project will be a deep underground research facility as foreseen by the above provisions of the LTP. (author)

  20. The evolution of research participant protections in South Africa

    African Journals Online (AJOL)

    The legislative basis for scientific research was first promulgated in 1945. However, there was ... for participant protections, the protections in the Bill of Rights of the SA .... human beings;. • improved methods for the provision of health services;.