WorldWideScience

Sample records for research institute jaeri

  1. Technical development of high intensity proton accelerators in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Mizumoto, Motoharu

    1995-01-01

    Science and Technology Agency decided 'Options making extra gains of actinides and fission products (OMEGA)' and to promote the related researches. Also in JAERI, the research on the group separation method for separating transuranic elements, strontium and cesium from high level radioactive wastes has been carried out since the beginning of 1970s. Also the concept of the fast reactors using minor actinide mixture fuel is being established, and the accelerator annihilation treatment utilizing the nuclear spallation reaction by high energy protons has been examined. In this report, from the viewpoint of the application of accelerators to atomic energy field, the annihilation treatment method by the nuclear spallation reaction utilizing high intensity proton accelerators, the plan of the various engineering utilization of proton beam, and the development of accelerators in JAERI are described. The way of thinking on the annihilation treatment of radioactive waste, the system using fast neutrons, the way of thinking on the development of high intensity proton accelerator technology, the steps of the development, the research and development for constructing the basic technology accelerator, 2 MeV beam acceleration test, the basic technology accelerator utilization facility and so on are reported. (K.I.)

  2. Report of evaluation on socio-economic effects of R and D results in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    2002-08-01

    Japan Atomic Energy Research Institute (JAERI), as a core organization devoted to comprehensive nuclear energy research, has steadily promoted nuclear energy research aiming at long-term and stable supply of energy supporting the basis of national existence, advanced nuclear science and engineering leading to increase in Japanese industrial competitive power, etc. Through these undertaking, JAERI has produced a lot of remarkable achievements to contribute the national requests mentioned above. In total, about 1.8 trillion-yen of national funds and over 60,000 person · years of researchers and technical staffs have been invested in the R and D's for the past 45 years. Recently it has been argued and recognized to evaluate how the profits of R and D results in public research institutes supported by national funds are returned to the Japanese people as taxpayers and society as part of an administrative and financial reform. Then, seeing its 45th anniversary, JAERI has tried to evaluate the effects of the R and D achievements on the Japanese society and economy apart from the reviews on the management of the organization and research results by the ex-house experts from the viewpoints of specialty and technical aspects. In order to execute the aforementioned evaluation, JAERI established the in-house Ad hoc Committee for Evaluation of R and D Achievements where decision of the evaluation plan is made, in July 2001, and executed the evaluation followed by assembling the necessary database collected from individual branches. Results obtained from these activities were finally summarized in the Ad hoc Committee. Because a methodology for quantitative evaluation of the economical effects, i.e. cost-benefit effects of R and D's was not established yet, the evaluation was prudently carried out with the assistance of three think tanks and under advices by three ex-house experts. R and D's in JAERI are not limited to the ones where benefits corresponding to profits can be

  3. Evaluation of socio-economic effects of R and D results at Japan Atomic Energy Research Institute. 2. Socio-economic evaluation of the basic research at JAERI

    International Nuclear Information System (INIS)

    2003-11-01

    The Japan Atomic Energy Research Institute (JAERI), as a core organization devoted to comprehensive nuclear energy research, has steadily promoted various types of research and development (R and D) studies since its establishment in June 1956. Research activities are aimed at performing (1) R and D for nuclear energy, (2) the utilization and application of radiation-based technologies, and (3) the establishment of basic and fundamental research in the nuclear field. Last year, the socio-economic effects on items (1) and (2) were qualitatively and quantitatively evaluated. The quantitative evaluation of item (3) from the viewpoint of a socio-economic effect, however, calls for a different concept and methodology than previously used cost-benefit approach. Achievements obtained from the activities conducted over the last 10 years implied that socio-economics in basic research funded by the public could contribute to the (1) increase in useful intellectual stocks, (2) upbringing of highly skilled college graduates, (3) construction of new scientific facilities and creation of methodologies, (4) stimulation and promotion of social interrelations by networking, (5) increase of one's ability to solve scientific problems, and (6) establishment of venture companies. In this study, we focused on item (4) for the analysis because it assumed that the external economic effect has a link with the socio-economic effects accompanying the networking formation. For the criteria of socio-economic effects we assume that the external effect becomes significant in proportion to the width of networking and/or the magnitude of cooperation measured by numbers of co-writing studies between JAERI and the research bodies, namely private and governmental sectors and universities. Taking these criteria into consideration, the subsequent four items are prepared for quantitative study. They are (1) to clarify the basic research fields where JAERI has been established a significant effort to

  4. Measurement of thermal neutron spectra using LINAC in Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Akino, Fujiyoshi

    1982-01-01

    The exact grasp of thermal neutron spectra in a core region is very important for obtaining accurate thermal neutron group constants in the calculation for the nuclear design of a reactor core. For the accurate grasp of thermal neutron spectra, the capability of thermal neutron spectra to describe the moderator cross-sections for thermal neutron scattering is a key factor. Accordingly, 0 deg angular thermal neutron spectra were measured by the time of flight (TOF) method using the JAERI LINAC as a pulsed neutron source, for light water system added with Cd and In, high temperature graphite system added with boron, and light water-natural uranium heterogeneous multiplication system among the reactor moderators of light water or graphite systems. First, the equations to give the time of flight and neutron flux by TOF method were analyzed, and several corrections were investigated, such as those for detector efficiency, background, the transmission coefficient of air and the Al window of a flight tube, mean emission time of neutrons, and the distortion effect of re-entrant hole on thermal neutron spectra. Then, the experimental system, results and calculation were reported for the experiments on the above three moderator systems. Finally, the measurement of fast neutron spectra in natural uranium system and that of the efficiency of a 6 Li glass scintillator detector are described. (Wakatsuki, Y.)

  5. Long-term nuclear knowledge management (NKM) of innovative nuclear energy systems (INES). A case study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Bezdek, Roger H.; Sawada, Tetsuo

    2008-01-01

    Within JAERI, funds invested in a 45-year study of LWR totaled 4.2b$ for research and 3.4b$ (34,718 man years) for personnel. The benefits to taxpayers from this JAERI work were estimated to be about 6.3b$ , resulting in a favorable cost-benefit ratio of 1.5 (6.3/4.2). JAERI is a national research institute and this figure may be regarded as sufficiently high, and many high risk and complex tasks were completed successfully. Funds invested in the 32-year study of HTGR were 1.5b$ for R and D and 0.3b$ (2966 man years) for personnel. Commercialized HTGR will result in a cost reduction of electricity during power generation. Retail cost is 0.36b$/year and the share of JAERI (MCP) is 0.018b$/year. Funds invested in the 32-year study of FR were 5.4b$ for R and D and 0.6b$ (6331 man years) for personnel. Estimate is that after commercialization in 2050, a FR will generate revenue from electricity as high as 1687b$ during the period 2050-2100, or 34b$/year - which is greater than that of LWR. However, there is substantial uncertainty in these estimates. To achieve long-term INES, it is necessary to develop the sustainable scenarios and the long-term robust NKM, as shown in the present study. (author)

  6. Cylindrical core reflood test facility (CCTF) and slab core reflood test facility (SCTF) for Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    1981-01-01

    IHI has designed and constructed the CCTF at JAERI to be used in the safety analysis research on the loss of coolant accident in a PWR plant. This test facility is planned so that reflood phenomenon in the PWR plant (a phenomenon is that the bared and overheated core is reflooded by the emergency core cooling system when the coolant loss accident occurred) is simulated under various test conditions. The CCTF is the largest-scale test plant in the world, composed of approximately 2000 simulated fuel rods (electric heaters), 1 simulated pressure vessel, 4 primary cooling loops, 2 simulated steam generators, emergency core cooling system, and so on. The test conditions are controlled, and the test steps are sequentially progressed by the computing system, and test data are collected by the data acquisition system. Furthermore, IHI is now designing and constructing the SCTF in accordance with the JAERI research plan. The SCTF is similar to the CCTF in scale. Main feature of the SCTF is the form of the simulated core and the simulated pressure vessel, which is of slab construction to be representative of the radial section of the PWR reactor. Reliable and various data for safety analysis are expected by the CCTF and the SCTF. (author)

  7. Annual report of the research works with joint-use JAERI facilities for fiscal 1974

    International Nuclear Information System (INIS)

    1975-01-01

    Results of the research works by national universities with JAERI's (Japan Atomic Energy Research Institute) joint-use facilities for fiscal 1974 are described. Facilities are research reactors, Co-60, Linac, etc. Research results are presented in individual summaries, covering radiation damage and solid state physics, activation analysis and nuclear chemistry, irradiation effects, etc. Results of the joint works with JAERI are also presented similarly. (Mori, K.)

  8. Summaries of research and development activities by using JAERI computer system in FY2003. April 1, 2003 - March 31, 2004

    International Nuclear Information System (INIS)

    2005-03-01

    Center for Promotion of Computational Science and Engineering (CCSE) of Japan Atomic Energy Research Institute (JAERI) installed large computer system included super-computers in order to support research and development activities in JAERI. CCSE operates and manages the computer system and network system. This report presents usage records of the JAERI computer system and big user's research and development activities by using the computer system in FY2003 (April 1, 2003 - March 31, 2004). (author)

  9. Summaries of research and development activities by using JAERI computer system in FY2004 (April 1, 2004 - March 31, 2005)

    International Nuclear Information System (INIS)

    2005-08-01

    Center for Promotion of Computational Science and Engineering (CCSE) of Japan Atomic Energy Research Institute (JAERI) installed large computer systems including super-computers in order to support research and development activities in JAERI. CCSE operates and manages the computer system and network system. This report presents usage records of the JAERI computer system and the big users' research and development activities by using the computer system in FY2004 (April 1, 2004 - March 31, 2005). (author)

  10. Overview of severe accident research at JAERI

    International Nuclear Information System (INIS)

    Sugimoto, Jun

    1999-01-01

    Severe accident research at JAERI aims at the confirmation of the safety margin, the quantification of the associated risk, and the evaluation of the effectiveness of the accident management measures of the nuclear power reactors, in accordance with the government five-year nuclear safety research program. JAERI has been conducting a wide range of severe accident research activities both in experiment and analysis, such as melt coolant interactions, fission product behaviors in coolant system, containment integrity and assessment of accident management measures. Molten core/coolant interaction and in-vessel molten coolability have been investigated in ALPHA Program. MUSE experiments in ALPHA Program has been conducted for the precise energy measurement due to steam explosion in melt jet and stratified geometries. In VEGA Program, which aims at FP release from irradiated fuels at high temperature and high pressure under various atmospheric conditions, the facility construction is almost completed. In WIND Program the revaporization of aerosols due to decay heating and also the integrity of the piping from this heat source are being investigated. Code development activities are in progress for an integrated source term analysis with THALES, fission product behaviors with ART, steam explosion with JASMINE, and in-vessel debris behaviors with CAMP. The experimental analyses and reactor application have made progress by participating international standard problem and code comparison exercises, along with the use of introduced codes, such as SCDAP/RELAP5 and MELCOR. The outcome of the severe accident research will be utilized for the evaluation of more reliable severe accident scenarios, detailed implementation of the accident management measures, and also for the future reactor development, basically through the sophisticated use of verified analytical tools. (author)

  11. JAERI RERTR program

    International Nuclear Information System (INIS)

    Sato, M.

    1983-01-01

    In 1979, Japan Atomic Energy Research Institute (JAERI) has started a five year program for the utilization of reduced enrichment uranium fuel, in place of currently used highly enriched uranium fuel for the JAERI Research and Test Reactors (RERTR), such as the JRR-2 (10 MWt), the JRR-4 35 MWt), the JMTR(50 MWO and the JMTRC (100 Wt, nuclear mockup of the JMTR), for contributing to the reduction of proliferation concerns. In order to assess the feasibility of converting the JAERI reactors to use of fuel with reduced enrichment uranium, ANL and JAERI have embarked on a joint study program since January 1980. This document provides outlines of the JAERI RERTR Program and of the ANL-JAERI Joint Study, and main results of JAERI's Phase A report which was made under the joint study

  12. Report of the JAERI's Institution Evaluation Committee on general organizational managements

    International Nuclear Information System (INIS)

    1999-11-01

    In accordance with the National Guidelines on the Method of Evaluation for Government R and D, the Institution Evaluation Committee of JAERI conducted the extensive review on overall aspects in the JAERI's organizational management, starting with the Committee Meeting held in December 1998. This report describes the results of the review on 'JAERI's organizational management in view of the National Guidelines', 'Summary of evaluation of R and D themes' and 'Recommendations by the Committee and its Members', The contents, reported to news agencies in March 1999, are also available in the JAERI's internet home page. (author)

  13. Present status of decommissioning materials reuse research at JAERI

    International Nuclear Information System (INIS)

    Fujiki, Kazuo; Nakamura, Hisashi; Kanazawa, Katsuo

    1991-01-01

    Rational treatment and disposal of a large volume of the dismantling wastes resulting from the reactor dismantling are the key to success to carry out the decommissioning smoothly. From this viewpoint, the Japan Atomic Energy Research Institute (JAERI) has been conducting development of the recycling technology for metal waste and a investigation study on the rational recycling system for the dismantling wastes recycling. With respect to the development of the recycling technology, melting tests using non-contaminated metals have been conducted and the basic characteristics of experimental facility and material balances understood. In the investigation study on the rational recycling system, review and discussion were made on the amount of waste arising from decommissioning a nuclear power plant, a scenario of recycling the wastes, and the necessary processing facilities. (author)

  14. Report of the research results with JAERI's facilities in fiscal 1975

    International Nuclear Information System (INIS)

    1976-07-01

    Results of the research works by educational institutions using facilities of the Japan Atomic Energy Research Institute in fiscal 1975 are reported in individual summaries. Facilities utilized are research reactors, Co-60 irradiation facilities, hot laboratory, Linac and electron accelerators. Fields of research are the following: nuclear physics, radiation damage/solid-state physics, positron annihilation, activation analysis/nuclear chemistry, hot atom chemistry, irradiation effects, biology, and neutron diffraction; and, cooperative works to JAERI. (Mori, K.)

  15. Research and development of radiation utilizations in 1981 at JAERI

    International Nuclear Information System (INIS)

    1981-01-01

    There is the field of radiation utilization such as the application of the effect of radiation on matters and the techniques of measurement and analysis utilizing the properties of radiation, in addition to the use of atomic energy as heat or electric power. The fields of application of radiation utilization are very wide, and are closely related to the health and daily life of people. The Japan Atomic Energy Research Institute has performed the research and development on radiation utilization regarding radiochemistry, the application of irradiation, and the production and industrial utilization of radioisotopes. Also, the research of the radiation resistance of organic materials used for nuclear facilities, the development of organic materials, and the production of tritium have become necessary. In this booklet, the recent results of radiation utilization in the JAERI are summarized. The research and development of ion exchange membranes, organic glasses, the fixation of living body activators and water paints, the techniques of utilizing irradiation, the techniques of radioisotope productions and utilization, and the techniques related to the development of atomic energy are reported. (Kako, I.)

  16. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  17. Publish literature on the research activities using the JMRT (II). Publication as JAERI research reports

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, Yoshiharu; Ishii, Tadahiko; Niimi, Motoji; Fujiki, Kazuo; Takahashi, Hidetake (eds.) [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2002-11-01

    The published reports on the research and development activities using the JMTR since 1971 to date have been surveyed by the search of literature database and questionnaire survey. This report compiles the title lists and abstracts of reports published by JAERI and survey the trend of the research and development in JAERI using the JMTR. (author)

  18. Published literature on the research activities using the JMRT (II). Publication as JAERI research reports

    International Nuclear Information System (INIS)

    Nagao, Yoshiharu; Ishii, Tadahiko; Niimi, Motoji; Fujiki, Kazuo; Takahashi, Hidetake

    2002-11-01

    The published reports on the research and development activities using the JMTR since 1971 to date have been surveyed by the search of literature database and questionnaire survey. This report compiles the title lists and abstracts of reports published by JAERI and survey the trend of the research and development in JAERI using the JMTR. (author)

  19. Workshop of Advanced Science Research Center, JAERI. Nuclear physics and nuclear chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Nishio, Katsuhisa; Nishinaka, Ichiro; Ikezoe, Hiroshi; Nagame, Yuichiro

    2004-03-01

    A liquid drop model predicts that the fission barrier of a nucleus whose atomic number (Z) is larger than 106 disappears, so that such heavier nuclei as Z > 106 cannot exist. The shell effect, however, drastically changes structure of the fission barrier and stabilizes nucleus against fission, predicting the presence of super heavy element (SHE, Z=114-126) with measurable half-life. In the SHE region, a wave function of outermost electron of an atom, which controls chemical properties of an elements, is disturbed or changed by relativistic effects compared to the one from the non-relativistic model. This suggests that the SHEs have different chemical properties from those of lighter elements belonging to the same family. The chemistry of SHEs requires event by event analysis to reveal their chemical properties, thus is called 'atom-at-a-time chemistry'. Japan Atomic Energy Research Institute (JAERI) has been investigating fusion mechanism between heavy nuclei to find out favorable reactions to produce SHE by using JAERI-tandem and booster accelerator. In the JAERI-tandem facility, isotopes of Rf and Db are produced by using actinide targets such as 248 Cm in order to investigate their chemical properties. The present workshop was held in Advanced Science Research Center of JAERI at February 27-28 (2003) in order to discuss current status and future plans for the heavy element research. The workshop also included topics of the radioactive nuclear beam project forwarded by the JAERI-KEK cooperation and the nuclear transmutation facility of J-PARC. Also included is the nuclear fission process as a decay characteristic of heavy elements. There were sixty participants in the workshop including graduate and undergraduate eleven students. We had guests from Germany and Hungary. Through the workshop, we had a common knowledge that researches on SHE in Japan should fill an important role in the world. (author)

  20. Progress report on JAERI-ORNL cooperative neutron scattering research

    International Nuclear Information System (INIS)

    Iizumi, Masashi

    1985-08-01

    One year activities done under the JAERI-DOE(ORNL) cooperative neutron scattering program are summarized. This period just followed the completion of the wide-angle neutron diffractometer dedicated to the cooperative research. The report contains results of the performance test of the instrument and early research activities. The latter part includes the time-resolved measurements of the transition kinetics in tin and Ni-Mn alloy as well as the single-crystal diffraction by the flat-cone method. (author)

  1. Application of JAERI research reactors to education

    International Nuclear Information System (INIS)

    Ogawa, Shigeru; Morozumi, Minoru

    1987-01-01

    At the dawning of the atomic age in Japan, training on reactor operation and reactor engineering experiments has been started in 1958 using JRR-1 (a 50 kW water boiler type reactor with liquid fuel), which was the first research reactor in Japan. The role of the training has been transferred to JRR-4 (a 3500 kW swimming pool type reactor with ETR type fuel) since 1969 due to the decommission of JRR-1. The training courses which have been held are: JRR-1 Short-Term Course for Operation (1958 ∼ 1963) General Course (1961 ∼ ) Reactor Engineering Course (1976 ∼ ) Training Course in Nuclear Technology (International course)(1986 ∼ ). And individual training concerning research reactors for the participants of scientist exchange program sponsored by Science and Technology Agency and of bilateral agreement have been initiated in 1985. The graduates of these courses work as staff members in various fields in nuclear industry. (author)

  2. An outcome of nuclear safety research in JAERI. Case study for LOCA, FP, criticality and reprocessing

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Ito, Keishiro; Kawashima, Kei; Katsuki, Chisato; Shirabe, Masashi

    2009-09-01

    An outcome of nuclear safety research done by JAERI was case studied by the bibliometric method. (1) For LOCA (loss-of-coolant accident) a domestic share of JAERI in monoclinic research paper was 63% at the past (20) 1978-1982 but was decreased to 40% at the present 1998-2002. For co-authored papers a domestic share between JAERI and PS (public sectors) is almost zero at past (20) but increased to 4% at the present. Research cooperation is active between Tokyo University and JAERI or between JAERI and Nagoya University. (2) Project-type research is to have a large monopolization in papers and that of basic-type research is to have a large development of research networking (DRN). (3) For FP, a share of co-authored paper is high due to an enhanced cooperation among JAERI-PO (Public Organization)-PS. For criticality, research activity was enhanced after JCO accident, especially at NUCEF. (4) For reprocessing, PS had a monopolistic position with a domestic share of 71% and a share of JAERI was about 20%. (5) LOCA and RIA outputs born by NSR-JAERI coincided partly to those of the Safety Licensing Guidelines but a share of contribution done by JAERI was ambiguous due to the lack of necessary information. (author)

  3. Research in JAERI on the backend of nuclear fuel cycle

    International Nuclear Information System (INIS)

    Maeda, Mitsuru; Takeshita, Isao

    1999-01-01

    Japan's policy of the backend of nuclear fuel cycle is to reprocess spent fuels and recycle recovered plutonium and uranium, under the principle of no surplus plutonium. High-level radioactive waste separated during reprocessing will be disposed of after solidification in vitrified form, followed by the storage for 30 to 50 years and finally by ultimate disposal in a deep geological formation. The role of JAERI and the effective utilization of NUCEF would become more important. The current status of JAERI's research on backend cycle is reviewed together with the future research direction with emphases on NUCEF utilization. (1) Major objectives of safety research is to develop safety criteria and establish technical bases for licensing, to improve the safety of current or near future technology and to clarify the safety margin of licensed technology. (2) The present goal of fundamental research is to show or clarify the chemical or scientific feasibility of advanced system such as for recycling minor actinides or for incinerating long-lived nuclides. (3) Supporting research for nuclear material control is also conducted mainly for international contribution to strengthened safeguards by IAEA and to frame working of international monitoring system for CTBT. (J.P.N.)

  4. Present status and future perspective of research and test reactors in JAERI

    International Nuclear Information System (INIS)

    Baba, Osamu; Kaieda, Keisuke

    1999-01-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  5. Present status and future perspective of research and test reactors in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Osamu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Kaieda, Keisuke

    1999-08-01

    Since 1957, Japan Atomic Energy Research Institute (JAERI) has constructed several research and test reactors to fulfil a major role in the study of nuclear energy and fundamental research. At present, four reactors, the Japan Research Reactor No. 3 and No. 4 (JRR-3M and JRR-4 respectively), the Japan Materials Testing Reactor (JMTR) and the Nuclear Safety Research Reactor (NSRR), are in operation, and a new High Temperature Engineering Test Reactor (HTTR) has reached first criticality and is waiting for the power-up test. This paper introduce these reactors and describe their present operational status. The recent tendency of utilization and future perspectives are also reported. (author)

  6. An outcome of nuclear safety research in JAERI. Predominance of research

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Kawashima, Kei; Ito, Keishiro; Katsuki, Chisato

    2010-02-01

    Bibliometric study by means of research papers revealed the followings; (1) Nuclear Safety Research (NSR) performed in Japan is the 2nd highest in the world followed by USA. The share of JAERI for safety paper publication is about 25% in Japan (2) During past 25 years, JAERI is predominant at 39 safety fields out of 97, that is, 40% to the total. This is the fact revealed from comparison of published number of research papers with those of other organizations. (3) JAERI is recently changing its stress point from reactor-oriented accidents to the down stream of nuclear fuel cycling. There existed impact of TMI-2 accident on NSR-JAERI, especially in the field of thermal hydraulics, LOCA, severe accident and risk analysis. (author)

  7. Nuclear Safety Research Reactor (NSRR) program in JAERI

    International Nuclear Information System (INIS)

    Ishikawa, M.; Hoshi, T.; Ohnishi, N.; Fujishiro, T.; Inabe, T.

    1974-01-01

    An experimental research program, named Nuclear Safety Research Reactor (NSRR) Program, has been progressing in Japan Atomic Energy Research Institute (JAERI) using a modified TRIGA-ACPR. This paper is prepared to describe the outline of the NSRR program. The purpose of the NSRR program is to examine the behaviors of fuel rods under various accidental conditions of power reactors so as to establish realistic safety criteria and to develop analytical models for prediction of fuel failures. We expect to contribute finally to the improvement of reactor design and fuel fabrication techniques based on these experimental results. The NSRR experiments will be performed in the large central experimental tube, which is one of the most excellent features of this reactor, using specially designed capsules or loops which can accommodate up to 49 BWR type test fuels. Many types of test fuels in various conditions will be examined by the NSRR program, such as BWR, PWR and FBR type fuels from the beginning of life to the end of life with and without simulated reactor internal structures. The experiments will be continued for more than 10 years divided into three phases. The first phase of the program will be devoted to the experiments pertaining to reactivity initiated accidents (RIA). In these experiments we will make use of the excellent pulsing capability of ACPR, which is expected to generate 100 MW-sec prompt energy release with 1.3 msec of minimum reactor period by 4.7 dollar reactivity insertion and to yield more than 280 cal/g-UO 2 heat deposit even in an approximately 10% enriched BWR type test fuel. (280 cal/g-UO 2 is believed enough heat deposit to cause fuel failure.) In general, heat flow behaviors from fuel meat to clad and from clad to coolant are very complex phenomena, but they are the key point in analyzing transient response of fuels. In the sudden heat transient conditions brought by pulsing, however, it will be possible to examine each phenomenon separately

  8. Nuclear Safety Research Reactor (NSRR) program in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, M; Hoshi, T; Ohnishi, N; Fujishiro, T; Inabe, T [Japan Atomic Energy Research Institute (Japan)

    1974-07-01

    An experimental research program, named Nuclear Safety Research Reactor (NSRR) Program, has been progressing in Japan Atomic Energy Research Institute (JAERI) using a modified TRIGA-ACPR. This paper is prepared to describe the outline of the NSRR program. The purpose of the NSRR program is to examine the behaviors of fuel rods under various accidental conditions of power reactors so as to establish realistic safety criteria and to develop analytical models for prediction of fuel failures. We expect to contribute finally to the improvement of reactor design and fuel fabrication techniques based on these experimental results. The NSRR experiments will be performed in the large central experimental tube, which is one of the most excellent features of this reactor, using specially designed capsules or loops which can accommodate up to 49 BWR type test fuels. Many types of test fuels in various conditions will be examined by the NSRR program, such as BWR, PWR and FBR type fuels from the beginning of life to the end of life with and without simulated reactor internal structures. The experiments will be continued for more than 10 years divided into three phases. The first phase of the program will be devoted to the experiments pertaining to reactivity initiated accidents (RIA). In these experiments we will make use of the excellent pulsing capability of ACPR, which is expected to generate 100 MW-sec prompt energy release with 1.3 msec of minimum reactor period by 4.7 dollar reactivity insertion and to yield more than 280 cal/g-UO{sub 2} heat deposit even in an approximately 10% enriched BWR type test fuel. (280 cal/g-UO{sub 2} is believed enough heat deposit to cause fuel failure.) In general, heat flow behaviors from fuel meat to clad and from clad to coolant are very complex phenomena, but they are the key point in analyzing transient response of fuels. In the sudden heat transient conditions brought by pulsing, however, it will be possible to examine each phenomenon

  9. Proceedings of second JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2004-08-01

    The second JAERI-JNC Joint Conference on Nuclear Safety Research was held on February 6, 2004 in Tokyo for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety in the New Organization. A total of 259 people participated in the conference mainly from the nuclear industries and regulatory organizations and the number was much larger than that in the last conference of 188. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Higashi, the Nuclear Safety Commissioner, made a special lecture on the radiation protection from the high-level radioactive waste disposal. Finally, a panel discussion was conducted with the title of ''how to conduct efficiently the nuclear safety research in the New Organization'' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from the regulatory organizations, nuclear industry, JAERI and JNC discussed the subject together with the participants on the floor. The panelists not from JAERI and JNC expressed their views and opinions on how to conduct efficiently the nuclear safety research in the New Organization that were valuable inputs for developing

  10. Sludge pasteurization and upgrading by radiation. Bilateral research cooperation between OAEP and JAERI

    International Nuclear Information System (INIS)

    1995-07-01

    The research cooperation between office of Atomic Energy for Peace, Thailand (OAEP) and Japan Atomic Energy Research Institute (JAERI) on 'Sludge Pasteurization and Upgrading by Radiation' was carried out for 4 years starting from March 1990. This cooperation was performed through information exchange meetings (Steering Committee Meeting), held in Takasaki and Bangkok, and experiments and discussions by scientist exchange, Many useful results were obtained on radiation inactivation effect of pathogen and parasites, upgrading of irradiated sludges to fertilizer, animal feeds and biological pesticides. This report includes the main results of the research cooperation reported at the First to Fifth Steering Committee Meetings as the progress reports. (author)

  11. Ex-post evaluation. Research independency of the basic science study of JAERI

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki; Takahashi, Shoji

    2010-06-01

    A research independency was defined here as the continuity and the development of a corresponding research field with an evolution of history. The authors took three fields as research parameters for the ex-post evaluation. They were all belonged to the basic science field studied in the Japan Atomic Energy Research Institute (JAERI). The first parameter was actinides, which was situated in the center of research networking from the viewpoint of socio-economy. The second parameter was positron, which was situated in the periphery of research networking and the third one was neutron, which had competition with other research organizations in Japan. The three were supported and promoted financially by the JAERI. The target year was covered from 1978 to 2002, a 25-years. INIS (International Nuclear Information Systems) operated by the International Atomic Energy Agency (IAEA) was used as the tool for the present bibliometric study. It was revealed that important factors that led the sustainable success of the research independency were the constant efforts to accomplish their mission, the education of their successors to instructing the explicit and tacit research findings and the construction of intellectual networking with learned circles and industries, those were in good collaboration with JAERI. These were quantitatively clarified. Conversely, main factors that impeded the development of the research independency were discontinuance of research caused by a retirement, a change of post or that of occupation, and an unexpected accident (death) of the core researchers. Among three parameters, the authors confirmed that there occurred the time-dependent stage of germination, development and declination of the research independency attributing to the interaction between the succession factors and impeded factors. For this kind of ex-post evaluation, the support of field research laboratory was inevitable. (author)

  12. The heavy water accountancy for research reactors in JAERI

    International Nuclear Information System (INIS)

    Yoshijima, Tetsuo; Tanaka, Sumitoshi; Nemoto, Denjirou

    1998-11-01

    The three research reactors have been operated by the Department of Research Reactor and used about 41 tons heavy water as coolant, moderator and reflector of research reactors. The JRR-2 is a tank type research reactor of 10MW in thermal power and its is used as moderator, coolant and reflector about 16 tons heavy water. The JRR-3M is a light water cooled and moderated pool type research reactor with a thermal power of 20MW and its is used as reflector about 7.3 tons heavy water. In the JRR-4, which is a light water cooled swimming pool type research reactor with the maximum thermal power of 3.5MW, about 1 ton heavy water is used to supply fully thermalized neutrons with a neutron beam experiment of facility. The heavy water was imported from U.S.A., CANADA and Norway. Parts of heavy water is internationally controlled materials, therefore management of heavy water is necessary for materials accountancy. This report described the change of heavy water inventories in each research reactors, law and regulations for accounting of heavy water in JAERI. (author)

  13. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1992

    International Nuclear Information System (INIS)

    1993-08-01

    The results of the joint researches by utilizing the facilities of JAERI in 1992 fiscal year were summarized. The number of research themes in 1992 was 247 cases. In this book, 166 reports are collected. (J.P.N.)

  14. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1993

    International Nuclear Information System (INIS)

    1994-07-01

    The results of the joint researches by utilizing the facilities of JAERI in 1993 fiscal year were summarized. The number of research themes in 1993 was 228 cases. In this book, 243 reports are collected. (J.P.N.)

  15. Electron beam flue gas treatment. Research cooperation among JAERI, IAEA and INCT

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The research co-operation is conducted among Japan Atomic Energy Research Institute (JAERI), International Atomic Energy Agency (IAEA) and Institute of Nuclear Chemistry and Technology in Poland (INCT) on Electron Beam Flue Gas Treatment from January 1993 to March 1997. The first phase of the cooperation was carried out for 3 years from January 1993 to March 1995. This cooperation was performed through information exchange meetings (Coordination Meetings), held in Takasaki and Warsaw, and experiments and discussions by exchange scientists. Many useful results were obtained on electron beam treatment of flue gas from coal-combustion heat generation plant in Kaweczyn within the frame work of the research co-operation. This report includes the main results of the tripartite research cooperation. (author)

  16. Proceedings of the 7th symposium on JAERI's Reimei Research Program

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    2004-02-01

    The Reimei (Dawn) Research Program is a research project based on public application to be conducted within the framework of the Reimei Research Promotion Project of Japan Atomic Energy Research Institute. The objective of the system is to encourage often vague or unique ideas in the field of fundamental nuclear science and nuclear energy. The symposium on JAERI's Reimei Research Program carried out at the 2002 fiscal year was held at Tokai Research Establishment on 1st and 2nd of July 2003. Each report of 51 papers was carried out by short presentation and poster, and the active discussion was carried out by about 120 attendees. Those presented papers are compiled in the proceedings. We hope that many new researches grow and develop by the help of Reimei Research Promotion Project. The 36 of the presented papers are indexed individually. (J.P.N.)

  17. Proceedings of the 8th symposium on JAERI's Reimei research program

    International Nuclear Information System (INIS)

    Shibata, Takemasa

    2004-12-01

    The Reimei (Dawn) Research Program is a research project based on public application to be conducted within the framework of the Reimei Research Promotion Project of the Japan Atomic Energy Research Institute. The objective of the system is to encourage often vague and/or unique ideas in the field of fundamental nuclear science and nuclear energy. The symposium on JAERI's Reimei Research Program carried out in the 2003 fiscal year was held at Tokai Research Establishment on 29th and 30th of June 2004. 42 papers were reported through the short presentation followed by the poster presentation, and the active discussions was carried out by about 120 attendees. Those presented papers are compiled in the proceedings. We hope that new researches will be grown and developed by the help of Reimei Research Promotion Project. The 40 of the presented papers are indexed individually. (J.P.N.)

  18. Proceedings of the 9th symposium on JAERI's Reimei Research Program

    International Nuclear Information System (INIS)

    Yamashita, Toshiyuki

    2005-09-01

    The Reimei (Dawn) Research Program is a research project based on public application to be conducted within the framework of the Reimei Research Promotion project of the Japan Atomic Energy Research Institute. The objective of the program is to encourage original and/or unique ideas in the field of fundamental nuclear science and nuclear energy. The Symposium on JAERI's Reimei Research Program carried out in the 2004 fiscal year was held at Tokai Research Establishment on 28th and 29th of June 2005. 38 papers were reported through the short presentation followed by the poster presentation, and animated discussions were carried out by about 120 attendees. These presented papers were compiled in the proceedings. We hope that new researches will be grown and developed by the help of Reimei Research Promotion project. The 37 of the presented papers are indexed individually. (J.P.N.)

  19. JNC-JAERI united research report. A study on degradation of structural materials under irradiation environment in nuclear reactors

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Takaya, Shigeru; Nagae, Yuji; Aoto, Kazumi; Abe, Yasuhiro; Nakamura, Yasuo; Ueno, Fumiyoshi; Nemoto, Yoshiyuki; Miwa, Yukio; Tsukada, Takashi; Ohmi, Masao; Saito, Junichi; Shimizu, Michio

    2004-10-01

    Japan Nuclear Cycle Development Institute (JNC) and Japan Atomic Energy Research Institute (JAERI) have started a JNC-JAERI united research program cooperatively in fiscal year 2003, which has been aimed for efficient progress and synergistic effect on the research activities of both Institutes in order to lead the facing task of unification between JNC and JAERI. This study has been chosen one of the united research themes because it has been common objective for both Institutes in the research field of structural materials such as Fast Breeder Reactor and Light Water Reactors components. The purpose of the study is to clarify damage mechanism of structural materials under irradiation, and then to develop the methods for damage evaluation and detection in earlier stage of progressing process of damage along grain boundaries. In fiscal year 2003, magnetic flux density distribution (JNC) and micro-corrosion (JAERI) measurement apparatus were newly developed and equipped in Hot Facilities in two Institutes, respectively. The former apparatus, supersensitive Flux Gate sensor was installed, could detector leaked magnetic flux from material damaged by neutron irradiation. The latter one, Atomic Force Microscope was installed, could detect grain boundary corrosion loss after an electrochemical corrosion test of irradiated material. These apparatus were designed and produced in consideration of radiation resistance and remote-controlled operation to equip in hot cells. As the results of preliminary studies using Ni ion irradiated specimen, damage detection by corrosion property in grain boundary was possible but magnetic property change could not detect. We will start the study on neutron irradiation damage by employing the two apparatus as the next step. (author)

  20. Proceedings of third JAERI-JNC joint conference on nuclear safety research

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Oikawa, Tetsukuni; Araya, Fumimasa; Suzuki, Tsugio

    2006-03-01

    The present report is the proceedings of the third JAERI-JNC joint conference on nuclear safety research held on July 29, 2005 in Tokyo before integration of JAERI and JNC to JAEA. The conference was held for those who are relevant to nuclear industries and regulatory organizations, and general public. The nuclear safety research has been conducted in both institutes according to the Five-Year Program for Nuclear Safety Research established periodically by the Nuclear Safety Commission (NSC) and needs from the regulatory organizations. The objectives of the conference are to present its recent results and to collect views and opinions from the participants for its future program through the discussion after each presentation and panel discussion on how to conduct efficiently the nuclear safety research in the new organization. A total of 234 people participated in the conference mainly from the nuclear industries and regulatory organizations. The conference consisted of presentations on the safety research results, a special lecture and a panel discussion. First, the overview of safety research results was presented from each institute. Then, the results in the field of nuclear installations, environmental radioactivity and radioactive waste were presented from each institute. Then, Dr. Suzuki, deputy chairperson of NSC, made a special lecture on recent trends in nuclear safety regulation and expectation for the new organization. Finally, a panel discussion was conducted with the title of 'how to conduct efficiently the nuclear safety research in the new organization' chaired by Prof. Kimura, the chairperson of Standing Committee on Nuclear Safety Research under the NSC. The panelists from JAERI and JNC presented and discussed the subject together with the participants on the floor. Through vigorous exchange of views in the panel discussion and descriptions on the questionnaires, it was obviously expressed that expectation to the safety research of the new

  1. Proceedings of JAERI-JNC joint conference on nuclear safety research. March 7, 2003, Tokyo

    International Nuclear Information System (INIS)

    Sugimoto, Jun; Anoda, Yoshinari; Araya, Fumimasa; Yamaguchi, Toshio

    2003-08-01

    The JAERI-JNC Joint Conference on Nuclear Safety Research was held on March 7, 2003 in Tokyo with 188 participants, ahead of planned unification of JAERI and JNC in 2005. The objectives of the conference are to present recent results of safety research conducted in both institutes in accordance with the Five-Year Safety Research Plan by the Nuclear Safety Commission (NSC), and to reflect suggestions from the participants for future research program. Prof. Matsubara, Vice Chairperson of NSC, first presented a special lecture entitled 'Expectation on Future Nuclear Safety Research in Japan'. Twelve papers were then presented on the overview of research results and those of individual research activities in the fields of nuclear facilities, radioactive waste and environmental radioactivity. In the final session, a panel discussion was conducted with a title of 'Expectation on Future Nuclear Safety Research' chaired by Prof. Kimura, Chairperson of Special Committee on Nuclear Safety Research under NSC. Through the presentations and discussions, consensus has almost been obtained among participants for several key issues on safety research to be conducted by a unified new organization, such as giving priority to safety research as one of major missions, assurance of independence of safety research with the governmental funds, assurance of transparency of the planning process of safety research, separation and harmonization between safety research and developmental research, importance of maintaining fundamental research and research facilities, promotion of cooperation with relevant organizations considering the needs from industries, and importance of dissemination of research results and personnel training. The present report compiles the summaries of special lecture, papers, questions and comments, panel discussions, and OHPs presented in the conference. (author)

  2. Research activities at JAERI on core material behaviour under severe accident conditions

    International Nuclear Information System (INIS)

    Uetsuka, H.; Katanashi, S.; Ishijima, K.

    1996-01-01

    At the Japan Atomic Energy Research Institute (JAERI), experimental studies on physical phenomena under the condition of a severe accident have been conducted. This paper presents the progress of the experimental studies on fuel and core materials behaviour such as the thermal shock fracture of fuel cladding due to quenching, the chemical interaction of core materials at high temperatures and the examination of TMI-2 debris. The mechanical behaviour of fuel rod with heavily embrittled cladding tube due to the thermal shock during delayed reflooding have been investigated at the Nuclear Safety Research Reactor (NSSR) of JAERI. A test fuel rod was heated in steam atmosphere by both electric and nuclear heating using the NSSR, then the rod was quenched by reflooding at the test section. Melting of core component materials having relatively low melting points and their eutectic reaction with other materials significantly influence on the degradation and melt down of fuel bundles during severe accidents. Therefore basic information on the reaction of core materials is necessary to understand and analyze the progress of core melting and relocation. Chemical interactions have been widely investigated at high temperatures for various binary systems of core component materials including absorber materials such as Zircaloy/Inconel, Zircaloy/stainless steel, Zircaloy/(Ag-In-Cd), stainless steel B 4 C and Zircaloy/B 4 C. It was found that the reaction generally obeyed a parabolic rate law and the reaction rate was determined for each reaction system. Many debris samples obtained from the degraded core of TMI-2 were transported to JAERI for numerous examinations and analyses. The microstructural examination revealed that the most part of debris was ceramic and it was not homogeneous in a microscopic sense. The thermal diffusivity data was also obtained for the temperature range up to about 1800K. The data from the large scale integral experiments were also obtained through the

  3. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    In 1988, this system called 'Common utilization of JAERI facilities' so far was changed to 'Joint research utilizing JAERI facilities', and by evaluating more positively the function of the General Research Center for Nuclear Energy, it has been emphasized to promote and coordinate the joint research among universities centering around the utilization of JAERI facilities. The total number of the research subjects in fiscal year 1988 reached 138, but the results of 120 of them are collected in this book. General joint research is the standard form of the utilization of various facilities that JAERI has opened to common utilization. Cooperation research is to be carried out by concluding research cooperation contracts between university researchers and JAERI researchers, and the facilities which are not opened to common utilization can be used. In the general joint research, the utilization of irradiation such as activation analysis, radiochemistry, irradiation effect, neutron diffraction and so on and the research using beams are mostly carried out, but in the cooperation research, reactor engineering, reactor materials,, nuclear physics measurement and so on are the main subjects. The total number of visitors in one year was 3829 man-day. (K.I.)

  4. Research and Development programs for HTGRs in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Nishiguchi, Isoharu; Saito, Sinzo [Department of HTTR Project, Japan Atomic Energy Research Institute (Japan)

    1990-07-01

    Since 1969, JAERI has conducted research and development (R and D) programs for High-Temperature Gas-Cooled Reactors (HTGR). And the High Temperature engineering Test Reactor (HTTR), which will be the first High Temperature Gas Cooled Reactor (HTGR) in Japan, is under licensing process now. In this paper, some of the results of R and D are outlined in the following fields which are closely connected with the HTTR design, that is: i) fuel; ii) nuclear design; iii) thermal-hydraulic design; iv) graphite structure and v) high temperature metal structure. In the field of fuel, extensive investigations have been performed to develop the fabrication technology of coated particle fuel (cpf). In parallel, data of coated fuel particle failure and fission product release in in- and ex-reactor experiments as well as mechanical properties data were obtained and irradiation tests have been done using the Oarai Gas Loop No.1 (OGL-1) to verify the integrity of mass-produced fuel. Concerning the nuclear design, critical experiments were conducted using the Very High-Temperature Reactor Critical Assembly (VHTRC). Also carried out were hydrodynamical and thermal experiments using the Helium Engineering Demonstration Loop (HENDEL). On the graphite structures which compose the reactor internals, design criteria have been developed based on ASME BandPV Code Section III Div.2, subsection CE and design data have been accumulated on a domestic graphite material. High temperature metal structure is also one of major subjects of R and D for HTGRs. Hastelloy XR, which is a modified version of Hastelloy X, was developed and various tests have been conducted which include creep tests, creep-fatigue tests, etc. to establish design criteria and allowables. Component tests of the Intermediate Heat Exchanger (IHX) have been also performed. (author)

  5. Research and Development programs for HTGRs in JAERI

    International Nuclear Information System (INIS)

    Nishiguchi, Isoharu; Saito, Sinzo

    1990-01-01

    Since 1969, JAERI has conducted research and development (R and D) programs for High-Temperature Gas-Cooled Reactors (HTGR). And the High Temperature engineering Test Reactor (HTTR), which will be the first High Temperature Gas Cooled Reactor (HTGR) in Japan, is under licensing process now. In this paper, some of the results of R and D are outlined in the following fields which are closely connected with the HTTR design, that is: i) fuel; ii) nuclear design; iii) thermal-hydraulic design; iv) graphite structure and v) high temperature metal structure. In the field of fuel, extensive investigations have been performed to develop the fabrication technology of coated particle fuel (cpf). In parallel, data of coated fuel particle failure and fission product release in in- and ex-reactor experiments as well as mechanical properties data were obtained and irradiation tests have been done using the Oarai Gas Loop No.1 (OGL-1) to verify the integrity of mass-produced fuel. Concerning the nuclear design, critical experiments were conducted using the Very High-Temperature Reactor Critical Assembly (VHTRC). Also carried out were hydrodynamical and thermal experiments using the Helium Engineering Demonstration Loop (HENDEL). On the graphite structures which compose the reactor internals, design criteria have been developed based on ASME BandPV Code Section III Div.2, subsection CE and design data have been accumulated on a domestic graphite material. High temperature metal structure is also one of major subjects of R and D for HTGRs. Hastelloy XR, which is a modified version of Hastelloy X, was developed and various tests have been conducted which include creep tests, creep-fatigue tests, etc. to establish design criteria and allowables. Component tests of the Intermediate Heat Exchanger (IHX) have been also performed. (author)

  6. Present status of research activities conducted by research group for heavy elements microbiology in JAERI

    International Nuclear Information System (INIS)

    Ohnuki, Toshihiko; Ozaki, Takuo; Yoshida, Takahiro

    2004-01-01

    It has been recognized that microbial transformations of radionuclides and toxic metals could be significant in the environment, but there is a paucity of information on the mechanisms of biotransformation of radionuclides by the microorganisms. An understanding at the fundamental level the mechanisms of mobilization, immobilization and bioavailability of radioactive elements in particular the actinides is important from the standpoint of mobility of actinides in the environment, disposal of radioactive wastes in deep geological formation, remediation of contaminated soils and materials, and development of strategies for the long-term stewardship of the contaminated sites. The microbiology research group in Japan Atomic Energy Research Institute (JAERI) is conducting basic scientific research on microbial interactions with actinides. Fundamental research on microbial transformations of actinides include elucidation of the mechanisms of dissolution and precipitation of various chemical forms such as ionic, oxides, organic and inorganic complexes of actinides by aerobic or anaerobic microorganisms under relevant microbial process conditions. State-of-the-art analytical techniques are used to determine the interaction of actinides with microorganisms at the molecular level to understand the structure function relationship. These techniques include time-resolved laser fluorescence spectroscopy (TRLFS) to determine the coordination number, oxidation states and the nearest neighbor by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) at the Synchrotron Light Source, identification of functional groups by nuclear magnetic resonance (NMR), determination of chemical forms by transmission electron microscopy (TEM), and genomic (DNA) manipulation by molecular techniques. We here report the present status of our research activities on accumulation of lanthanides(III) by microorganisms, application of micro-particle induced X

  7. Report on the progress of researches using JAERI facilities in common, fiscal 1979

    International Nuclear Information System (INIS)

    1980-01-01

    The utilization of the facilities in the Japan Atomic Energy Research Institute in common in 1979 has finished in active state, and the results of the researches have reached the stage of publication. The subjects of the researches spread over wide fields, and in 1979 also, extremely diversified researches were carried out. In this report, these results were collected in one book, and it is desirable to utilize it actively. It is expected that the research activities using the JAERI facilities in common will be promoted more and more widely and powerfully, but there are many problems in the manpower, equipment, space and so on required for maintaining and promoting such activities, and it is necessary to improve and strengthen the environment of researches. The number of the research themes is 125. In the field of general researches, the researches on radio-chemistry, the utilization of radiation and the effects of irradiation were mostly carried out, while in cooperative researches, the researches were mainly concerned with nuclear reactor engineering and nuclear reactor materials. The total number of visitors was 3863. The facilities offered to the common utilization were JRR-2, JRR-3, JRR-4, Co-60 irradiation facility, hot laboratory, linear accelerator, No. 1 and No. 2 electron accelerators. The abstracts of the papers are reported. (Kako, I.)

  8. Plan and progress of a cooperative research program on field migration test between CIRP and JAERI

    International Nuclear Information System (INIS)

    Li Shushen; Wang Zhiming; Li Zhentang

    1999-01-01

    As the main parts of a cooperative research project on safety assessment method for shallow land disposal of low level radioactive wastes between the China Institute for radiation Protection (CIRP) and the Japan Atomic Energy Research Institute (JAERI), field migration tests investigating the migration of radionuclides 90 Sr, 237 Np and 238 Pu and stable elements Sr, Ce, and Nd in both aerated zone and aquifer are carried out. 3 H and Br are used as tracers to obtain the water flow velocity in the aquifer and the movement of moisture water in the aerated zone for radioactive and non-radioactive tests, respectively. The aerated zone migration tests are carried out with media including soil, bentonite, cement block and mortar in both natural rainfall condition and artificial rainfall condition. The aquifer migration tests are carried out with assemblies (Type I), experimental frame (Type II) and injection tube (Type III), respectively, in and Underground Research Facility (URF). The aerated zone migration tests were started in May, 1997, while the aquifer migration tests started in August 1997. (author)

  9. JAERI-KEK joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2000-01-01

    Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Organization (KEK) are promoting the joint project integrating both the Neutron Science Project (NSP) of JAERI and the Japan Hadron Facility Project (JHF) of KEK for comprehensive studies on basic science and technology using high-intensity proton accelerator. This paper describes the joint project prepared by the Joint Project Team of JAERI and KEK to construct accelerators and research facilities necessary both for the NSP and the JHF at the site of JAERI Tokai Establishment. (author)

  10. The JAERI and Universities joint project research reports on the 4th joint research project between JAERI and Universities on backend chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-02-01

    In the Joint Research Project between JAERI and Universities on Backend Chemistry, the 4th-term researches of it were performed on sixteen themes from April of 1999 to March of 2001 under the four categories, i.e. Nuclear-chemistry and physical-chemistry properties of actinides', 'Solid state chemistry and nuclear fuel engineering of actinides', 'Solution chemistry and technologies for separation and analysis of actinides' and Treatment of radioactive waste and environmental chemistry'. The present report compiled the papers contributed to the Joint Research Project. (author)

  11. Research and development of radiation utilization in 1986 at JAERI

    International Nuclear Information System (INIS)

    1986-01-01

    In the peaceful utilization of atomic energy, in addition to the method of utilizing the energy obtained by nuclear fission and nuclear fusion as electric power or heat source, there is the field of utilizing radiation, in which the effect that radiation exerts on substances and the properties of radiation are used for measurement, analysis and others. The fields of utilizing radiation are diverse such as medicine, technology and agriculture, and those directly related to the health and daily life of people are many. Japan Atomic Energy Research Institute has positively advanced the research and development on radiation utilization, which are related to the utilization of irradiation and the production and use of radioisotopes. The former is carried out in Takasaki Radiation Chemistry Research Establishment, and the latter in the Isotope Division, Tokai Research Establishment. Also, the research and development on the radiation-withstanding properties of organic materials and the production techniques for tritium are advanced, and it is expected to begin the highly advanced scientific and technological research using ion beam. The research and development of polymer materials, the techniques of using irradiation, the production and utilization of radioisotopes and others are reported. (Kako, I.)

  12. Review of research institute library activity through the contributed papers. The case of the Japan Atomic Energy Research Institute Library

    International Nuclear Information System (INIS)

    Ikeda, Kiyoshi; Habara, Tadashi; Ishikawa, Masashi; Itabashi, Keizo; Yonezawa, Minoru

    2007-03-01

    The Japan Atomic Energy Research Institute (JAERI) Library had contributed 312 papers through the library activities in half-century. We made the bibliography of these papers as well as categorized them into general', 'library functions', 'management and promotion of research results' and 'international exchange of information' and explained them under the four categories. A subject index, an author index of these papers and chronology of JAERI library activities were also compiled for reference. (author)

  13. Research and development plan of fusion technologies in JAERI toward DEMO reactors

    International Nuclear Information System (INIS)

    Nishitani, Takeo; Hayashi, Takumi; Abe, Tetsuya; Akiba, Masato; Isono, Takaaki; Inoue, Takashi; Enoeda, Mikio; Okuno, Kiyoshi; Koizumi, Norikiyo; Sakamoto, Keishi; Sato, Satoshi; Jitsukawa, Shiro; Sugimoto, Masayoshi; Suzuki, Satoshi; Seki, Shogo; Takatsu, Hideyuki; Tanzawa, Sadamitsu; Tsuchiya, Kunihiko; Nishi, Masataka; Hayashi, Kimio; Matsui, Hideki; Yamanishi, Toshihiko; Watanabe, Kazuhiro

    2005-03-01

    In accordance with the 'Third Phase Basic Program on Fusion Research and Development' established by the Fusion Council of the Japan Atomic Energy Commission, research and development (R and D) of fusion technologies aim at realization of two elements: development of ITER key components and their improvement for higher performances; and construction of sound technical basis of fusion nuclear technologies essential for fusion energy utilization. JAERI has been assigned in the Third Phase Basic Program as a responsible institute for developing the above two elements, and accordingly has been implementing technology R and Ds categorized in the following three areas: R and D for ITER construction and operation; R and D for ITER utilization (blanket testing in ITER) and toward DEMO; and R and D on basic fusion technologies. The present report reviews the status and the plan of fusion technology R and Ds in the latter two areas, and presents the technical objectives, technical issues, status of R and D and near-term R and D plans for: breeding blankets; structural materials; the IFMIF program; improvements of the key ITER components for higher performances toward DEMO; and basic fusion technologies. (author)

  14. Environmental monitoring data around the Chernobyl nuclear power plant used in the cooperative research project between JAERI and CHESCIR (Ukraine). Cooperative research

    International Nuclear Information System (INIS)

    Ueno, Takashi; Matsunaga, Takeshi; Amano, Hikaru

    2003-01-01

    This report is a compilation of the shared data derived from the environmental monitoring by RADEK (The state Enterprise for Region Monitoring of Environment and Dosimetric Control of Ukraine) and the record of environmental characteristics derived from field observations during a research project (1992-1999) between JAERI (Japan Atomic Energy Research Institute) and CHESCIR (Chernobyl Science and Technology Centre for International Research). The compiled data in this report are especially related to one particular research subject (Subject-3) of the project on the migration of radionuclides released into the terrestrial and aquatic environments after a nuclear accident. The present report shows the basis of published works concerning Subject-3. (author)

  15. Japan Atomic Energy Research Institute in the 21st century

    International Nuclear Information System (INIS)

    Sato, Y.

    2001-01-01

    Major nuclear research institutes in Japan are the Japan Atomic Energy Research Institute (JAERI), Nuclear Cycle Development Institute (JNC), National Research Institute of Radiological Science (NIRS), and the Institute of Physical and Chemical Research (RIKEN). In the 50s and 60s JAERI concentrated on the introduction of nuclear technology from overseas. Energy security issues led to the development of a strong nuclear power programme in the next two decades resulting in Japan having 50 light water cooled nuclear power plants in operation. Japan also worked on other reactor concepts. The current emphasis of JAERI is on advanced reactors and nuclear fusion. Its budget of 270 million US$ supports five research establishments. JAERI has strong collaboration with industry and university system on nuclear and other advanced research topics (neutron science, photon science). In many areas Japan has strong international links. JAERI has also been transferring know-how on radioisotope and radiation applications to the developing countries particularly through IAEA-RCA mechanisms. (author)

  16. JAERI's activities in JCO accident

    International Nuclear Information System (INIS)

    2000-09-01

    The Japan Atomic Energy Research Institute (JAERI) was actively involved in a variety of technical supports and cooperative activities, such as advice on terminating the criticality condition, contamination checks of the residents and consultation services for the residents, as emergency response actions to the criticality accident at the uranium processing facility operated by the JCO Co. Ltd., which occurred on September 30, 1999. These activities were carried out in collaborative ways by the JAERI staff from the Tokai Research Establishment, Naka Fusion Research Establishment, Oarai Research Establishment, and Headquarter Office in Tokyo. As well, the JAERI was engaged in the post-accident activities such as identification of accident causes, analyses of the criticality accident, and dose assessment of exposed residents, to support the Headquarter for Accident Countermeasures of the Science and Technology Agency (STA), the Accident Investigation Committee and the Health Control Committee of the Nuclear Safety Commission of Japan (NSC). This report compiles the activities, that the JAERI has conducted to date, including the discussions on measures for terminating the criticality condition, evaluation of the fission number, radiation monitoring in the environment, dose assessment, analyses of criticality dynamics. (author)

  17. Proceeding of the second steering conference relating to the 'agreement on the Implementation of Research at the Chernobyl Center for International Research' between CHECIR and JAERI

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Togawa, Orihiko; Moriuchi, Shigeru; Rybalko, S.I.; Sukhoruchkin, A.K.; Kazakov, S.V.

    1994-11-01

    On June, 1992, JAERI and CHECIR concluded an agreement on the Implementation of Research at the Chernobyl Center for International Research (CHECIR). Based on the agreement, JAERI started 'Study on Assessment and Analysis of Environmental Radiological Consequences and Verification of an Assessment System.' CHECIR and JAERI make it a rule to hold steering conference twice a year in order to ensure mutual understanding and exchange of opinion because it its indispensable for smooth and effective implementation of this project. The first steering conference in Japan was held in February of 1994, and three research leaders of CHECIR side were invited from Ukraine. At that time, they gave lectures concerning the environmental Headquarter of JAERI. Progress reports on subject-1 and subject-2 were given from JAERI side at the steering conference. The 5 of presented papers are indexed individually. (author)

  18. Modular programming method at JAERI

    International Nuclear Information System (INIS)

    Asai, Kiyoshi; Katsuragi, Satoru

    1982-02-01

    In this report the histories, concepts and a method for the construction and maintenance of nuclear code systems of Japan Atomic Energy Research Institute (JAERI) are presented. The method is mainly consisted of novel computer features. The development process of the features and experiences with them which required many man-months and efforts of scientists and engineers of JAERI and a computer manufacturer are also described. One of the features is a file handling program named datapool. The program is being used in code systems which are under development at JAERI. The others are computer features such as dynamic linking, reentrant coding of Fortran programs, interactive programming facility, document editor, quick system output viewer and editor, flexible man-machine interactive Fortran executor, and selective use of time-sharing or batch oriented computer in an interactive porgramming environment. In 1980 JAERI has replaced its two old computer systems by three FACOM M-200 computer systems and they have such features as mentioned above. Since 1981 most code systems, or even big single codes can be changed to modular code systems even if the developers or users of the systems will not recognize the fact that they are using modular code systems. The purpose of this report is to describe our methodology of modular programming from aspects of computer features and some of their applications to nuclear codes to get sympathetic understanding of it from persons of organizations who are concerned with the effective use of computers, especially, in nuclear research fields. (author)

  19. Proceeding of the workshop on the results of the cooperative research between JAERI and CHESCIR concerning the study on assessment and analysis of environmental radiological consequences and verification of an assessment system

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Hikaru; Saito, Kimiaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    This workshop was organized and sponsored by the Japan Atomic Energy Research Institute (JAERI) and Chernobyl Science and Technology Center for International Research (CHESCIR). JAERI and CHESCIR have conducted 8 years research cooperation from 1992 to 1999 concerning the study on assessment and analysis of environmental radiological consequences and verification of an assessment system, focusing on the Chernobyl contaminated area. It contained 3 research subjects. Subject-1 initiated at 1992 and focused the study on measurements and evaluation of environmental external exposure after nuclear accident. Subject-2 initiated at 1992 and focused the study on the validation of assessment models in an environmental consequence assessment methodology for nuclear accidents. Subject-3 initiated at 1995 and focused on the study on migration of radionuclides released into terrestrial and aquatic environment after nuclear accidents. This workshop was held to summarize the research cooperation between JAERI and CHESCIR, and to discuss future research needs in this field. (author)

  20. The 33 years of research reactors in JAERI

    International Nuclear Information System (INIS)

    1990-11-01

    The development and utilization of atomic energy in Japan began with the installation of JRR-1 reactor which attained the criticality in August, 1957, thus the third fire was lighted for the first time in Japan. JRR-2 was constructed as a full scale versatile research reactor, which attained the criticality in October, 1960, and since 1962, it has accomplished the role of the reactor for joint utilization. JRR-3 is the first reactor made in Japan by concentrating Japanese technologies in it, to develop and improve Japanese atomic energy technology. It attained the criticality in September, 1962, and has been used as a versatile research reactor. In 1960, Research Reactor Management Department was founded. JRR-4 was constructed as the research reactor for shielding for developing a nuclear-powered ship, which attained the criticality in January, 1965. The first hot laboratory in Japan for carrying out the post-irradiation test on the fuel and materials irradiated in these research reactors was installed in 1961. The JRR-1 was stopped in September, 1968, and is used as the commemorative exhibition hall. The JRR-3 was reconstructed, and attained the criticality in March, 1990, using 20 % enriched uranium fuel. The course of the research reactors for 33 years is reported. (K.I.)

  1. Neutron scattering research at JAERI reactors - past, present and future -

    International Nuclear Information System (INIS)

    Funahashi, Satoru; Morii, Yukio; Minakawa, Nobuaki

    1992-01-01

    It was in 1961 that the first neutron scattering experiment was performed in Japan at JRR-2. The start of JRR-3 in 1964 accelerated the neutron scattering activities in Japan. The research in this field in Japan grew up by using these two research reactors. Among them JRR-2 has played an important role because its neutron flux was about seven times higher than that of the old JRR-3. The completion of the new JRR-3M in 1990 made an epoch to the neutron scattering activities in Japan. The long-waited JRR-3M came up to the expectations of the scientists of Japan. It is a realization of the ideal reactor with tangential beam holes, cold source and neutron guides in a large guide hall. The flux at the neutron scattering instruments is about five times higher than that of JRR-2. Utilization of JRR-3M has just started. Twelve neutron scattering machines are running there. The number will increase up to close twenty in a couple of years. (author)

  2. Annual report of the Division of Thermonuclear Fusion Research, JAERI

    International Nuclear Information System (INIS)

    1977-02-01

    The JFT-2 operating regime was extended to higher toroidal field of 18 kG. Plasma confinements were studied on impurities, instabilities, plasma-wall interaction. Properties of a plasma with a separatrix magnetic surface and plasma behaviour in the scrape-off layer were studied in JFT-2a. In the diagnostics, a grazing-incidence vacuum ultra-violet spectrometer for studies on impurities was completed and put into operation. Several minor improvement and remodelling on the JFT-2 and JFT-2a tokamaks were carried out for the convenience of operation. In the plasma heating, constructions of the JFT-2 neutral injection system and the injector test stand ITS-2 for development of the higher energy ion source were started. The design of 200 kW RF power source for the plasma heating in JFT-2 was also made. Research in surface effects in fusion devices started at April 1, 1975. Experimental apparatus was designed and constructed in this fiscal year. A group for superconducting magnet development for fusion device was set up in January, 1976. Theoretical works continued in the analyses on transport processes, plasma heating, and mhd stabilities with an increasing effort on computational studies. A preliminary design of the 100 MW sub(t) tokamak experimental fusion reactor has been started in April, 1975. At the same time a conceptual design of the 2000 MW sub(t) power reactor was further improved. In the development of large tokamak device of next generation, programs on JT-60 and JT-4 are being carried out. Research and development works and detailed design studies on JT-60 are started based on the preliminary design studies made in the previous year. Preliminary design studies on JT-4 are completed. (auth.)

  3. The Universities and JAERI joint research project. The achievements and prospects

    International Nuclear Information System (INIS)

    Ohashi, Hiroshi; Nakamura, Takashi; Yamaguchi, Sadaei

    1999-01-01

    The universities and JAERI joint research project has been carried out since 13 years ago on an equivalent basis with the universities and JAERI and co-ownership of the results. This paper consists of the history and results of research project and evaluation. The significance, characteristics, themes and problems of the project are arranged. The main results and the future of the project are explained. Two large projects such as the backend chemical project and the high-degree application of radiation project have been studied. The backend chemical project consisted of four themes; the nuclear chemical researches for TRU recycle, the solid chemical research of nuclear fuel and waste, new separation method for reprocessing and waste disposal and the fundamental chemical researches for disposal waste. The high-degree application of radiation project have eight themes; effects of ion beam on organism, slow positron generation and its application to materials, ion irradiation effects on polymer materials, nuclear spectroscopy and nuclear physics of isotope using online isotope separator, shield and behavior of accelerator radiation, materials analysis by ion beam, effects of nuclear transformation product by nuclear fusion reactor radiation damage and biofunction analysis of plant using positron release nuclide. (S.Y.)

  4. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    International Nuclear Information System (INIS)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of 36 Cl and 129 I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  5. Studies on groundwater flow and radionuclide migration at underground environments. Final report of collaboration research between JAERI and AECL

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Hiromichi; Nagao, Seiya; Yamaguchi, Tetsuji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) conducted a collaboration program Phase II with the Atomic Energy of Canada Limited (AECL) from 1994 to 1998. The program was started to contribute the establishment of safety assessment methodology for the geological disposal of high-level radioactive wastes on the basis of the results from the Phase I program (1987-1993). The Phase II program consisted of following experimental items: (1) radionuclide migration experiments for quarried blocks (1m x 1m x 1m) of granite with natural fracture under in-situ geochemical conditions at 240 m level of Underground Research Laboratory of AECL; (2) study on the effects of dissolved organic materials extracted from natural groundwaters on radionuclide migration; (3) study on groundwater flow using environmental isotopes at two different geologic environments; (4) development of groundwater flow and radionuclide transport model for heterogeneous geological media. The mobility of radionuclides was retarded in the fracture by the deep geological conditions and the fracture paths. The groundwater humic substances with high molecular size were enhanced for the mobility of radionuclides in the sand and granitic media due to the complexation. The application of {sup 36}Cl and {sup 129}I for the analysis on the long-term groundwater flow can be validated on the basis of investigation at the URL site. Moreover, the geostatistical model for the analysis on groundwater flow and radionuclide migration was developed, and was able to describe the groundwater flow and the migration of environmental tracers at AECL sites. This report summaries the results of the Phase II program between JAERI and AECL. (author)

  6. Free-electron laser research-and-development and utilization program at Tokai, JAERI

    International Nuclear Information System (INIS)

    Kawarasaki, Yuuki

    1992-01-01

    The free-electron laser (FEL) research and development (R and D) and utilization program now underway at the Linac Laboratory, Tokai Research Establishment, JAERI, is presented together with the current status of the R and D. Specific feature of this program is at the points that the R and D period will range over a long time, around a decade, tentatively divided into three developmental phases, aiming at the final utilization in a field of nuclear energy industry and the FEL here under R and D is based on a superconducting (SC) linear accelerator (linac) which will in later phases be incorporated with addition of more SC-cavity modules for beam energy increase and with adoption of rather novel accelerator technique: beam recirculation both for further energy increase and for power economy by beam energy recovery. Application scheme is additionally discussed. (author)

  7. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal, 1991

    International Nuclear Information System (INIS)

    1992-08-01

    The results of the joint researches by utilizing the facilities of JAERI in 1991 fiscal year were summarized, and this report was able to be completed. Many researchers in whole Japan took part in many themes, and the very significant results were obtained. Now this joint research has reached the great turnabout period. The reconstructed JRR-3M was offered for joint utilization since April, 1991, and the utilization for neutron diffraction and scattering increased largely. As for the ion irradiation facility in Takasaki Research Establishment, the partial operation will be started in the next year, and the joint utilization is expected to begin. Accompanying the diversification of the utilization of facilities, in order to properly meet the needs of users, the thorough revision of the system seems necessary. The number of research themes in 1991 was 222 cases. JRR-3M accomplished the joint utilization operation of 8 cycles as expected, but JRR-2 caused a trouble during 5th cycle, and the operation thereafter was canceled. In this book, 159 reports are collected. (K.I.)

  8. JAERI TANDEM annual report 2004. April 1, 2004 - March 31, 2005

    International Nuclear Information System (INIS)

    Ishii, Tetsuro; Takeuchi, Suehiro; Oshima, Masumi; Nagame, Yuichiro; Chiba, Satoshi; Sataka, Masao

    2006-01-01

    This annual report describes research activities, which have been performed with the JAERI tandem accelerator and its energy booster from April 1, 2004 to March 31, 2005. Summary reports of 48 papers, and lists of publication, personnel and cooperative research with universities are contained. The JAERI (Japan Atomic Energy Research Institute) have been unified with JNC (Japan Nuclear Fuel Cycle Development Institute) and became JAEA (Japan Atomic Energy Agency) on October 1st, 2005. (author)

  9. A review of research and development on accelerator-driven system for transmutation of long-lived nuclear waste at JAERI

    International Nuclear Information System (INIS)

    Oigawa, H.

    2004-01-01

    The dedicated transmutation system using the accelerator driven subcritical system (ADS) has been studied in the Japan Atomic Energy Research Institute (JAERI) to reduce the burden of the final disposal of the nuclear waste. A subcritical reactor with the thermal power of 800 MW is proposed, where 250 kg of minor actinide (MA) can be transmuted annually. A superconducting linear accelerator (LINAC) with the beam power of 20-30 MW is necessary for this ADS. Lead-bismuth eutectic (LBE) is used for both the spallation target and the core coolant. Many research and development activities including the design study are under way and planned at JAERI to examine the feasibility of the ADS. In the design study, optimization of the ADS design is under way in terms of neutronics and structural feasibility. In the field of the proton accelerator, a superconducting LINAC is being developed. In the field of the LBE technology, material compatibility, thermal-hydraulics and polonium behavior are being studied. The irradiation effect of structural material to be used for the beam window is also being studied. In the field of the reactor physics of the subcritical core fueled with MA, the reliability of nuclear data is examined and the subcriticality monitoring technique is being investigated. Moreover, in the framework of J-PARC project (Japan Proton Accelerator Research Complex), JAERI plans to construct the Transmutation Experimental Facility (TEF) to demonstrate the feasibility of the ADS with using high-energy proton beam, to accumulate valuable knowledge about reactor physics and operation of ADS, and to establish a database for LBE spallation target and relevant materials. (author)

  10. Main research activities at the Institute of Energy Process Engineering Research Centre Juelich Germany

    International Nuclear Information System (INIS)

    Achenbach, E.

    1995-06-01

    This report summarizes four lectures been held during the author's seven-week stay at the Department of High Temperature Engineering in the period from February 2nd to March 23rd in 1995 under the JAERI foreign researcher inviting program. Though the Institute of Energy Process Engineering(IEV) in the Research Centre Juelich(KFA), has recently changed the subject of research from nuclear technology of high-temperature gas-cooled reactors(HTGRs) to fuel cell technology, there are many common items of research. In particular, the following topics presented in the lectures are of mutual interest: 1)Methane-steam reforming used at JAERI as HTGR heat utilization system and applied at KFA to internal reforming in the high temperature Solid Oxide Fuel Cell(SOFC), 2)Technology and modeling of high temperature electrolysis at JAERI as the inverse process of the SOFC developed at KFA, 3)Flow simulation of branched systems treated at JAERI for the development of high temperature heat exchangers and performed at KFA with respect to the SOFC manifold system, 4)Fundamental aspects of heat and mass transfer. The report should help to create a basis of discussing the above mentioned problems and to stimulate the research work at JAERI. (author)

  11. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  12. Research on radionuclide migration under subsurface geochemical conditions. JAERI/AECL Phase II Collaborative Program Year 1 (joint research)

    International Nuclear Information System (INIS)

    1998-11-01

    A radionuclide migration experiment program for fractured rocks was performed under the JAERI/AECL Phase-II Collaborative Program on research and development in radioactive waste management. The program started in the fiscal year 1993, as a five-year program consists of Quarried block radionuclide migration program, Speciation of long-lived radionuclides in groundwater, Isotopic hydrogeology and Groundwater flow model development. During the first year of the program (Program Year 1: March 18, 1994 - September 30, 1994), a plan was developed to take out granite blocks containing part of natural water-bearing fracture from the wall of the experimental gallery at the depth of 240 m, and literature reviews were done in the area of the speciation of long-lived radionuclides in groundwater, isotopic hydrogeology and the groundwater flow model development to proceed further work for the Program Year 2. (author)

  13. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1985-01-01

    The Act for Japan Atomic Energy Research Institute has been promulgated anew. Contents are the following : general rules, officials, advisors and personnel, duties, financial affairs and accounts, supervision, miscellaneous rules, penal provisions, and additional rules. (In the additional rules, the merger into JAERI of Japan Nuclear Ship Research and Development Agency is treated.) Japan Atomic Energy Research Institute conducts research etc. for the development of atomic energy comprehensively and efficiently, thereby contributing to the promotion of atomic energy research, development and utilization, according to the Atomic Energy Fundamental Act. Duties are atomic energy basic and application research, reactor relation, training of the personnel, RIs relation, etc. (Mori, K.)

  14. Practice of producing cement packages for sea dumping and their quality control in Tokai Research Establishment, JAERI

    International Nuclear Information System (INIS)

    Hattori, Yoshiro; Fujisaki, Setsuo; Usami, Jun; Morishita, Satoru; Komatsu, Shigeru

    1980-07-01

    The production of cement packages for the exploratory sea dumping has been carried out at Waste Disposal and Decontamination Section, Tokai Research Establishment, JAERI. And around 1,000 packages were completed until 1979. The production practice were conducted based on NEA guideline and domestic regulation. In order to meet the guideline and regulation, consistent quality control is necessary to the production procedure. This Report describes about the procedure and quality control that were practiced from 1977 to 1979 in Tokai Research Establishment. (author)

  15. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  16. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  17. Development and operation of nuclear material accounting system of JAERI

    International Nuclear Information System (INIS)

    Obata, Takashi; Numata, Kazuyoshi; Namiki, Shinji; Yamauchi, Takahiro

    2003-01-01

    For the nuclear material accounting system, the mainframe computer had been used in Japan Atomic Energy Research Institute (JAERI). For the purpose of more flexible use and easy operation, the PC base accounting system has been developed since 1999, and operation started from October, 2002. This system consists of the server with the database software and the client PC with original application software. The functions of this system are the input and edit of data, the creation of inspection correspondence data, and creation of a report to the states. Furthermore, it is also possible to create the Web application which used accounting data on a user level by using the programming language. Now, this system is being specialized in JAERI, but it is during a plan to develop as a system which can be also used at other institutions and organization. In the paper, the outline and operating situation of the nuclear material accounting system of JAERI are presented. (author)

  18. Status and Future Plans of JAERI Eergy-Recovery Linac FEL

    CERN Document Server

    Hajima, R; Kikuzawa, N; Minehara, E J; Nagai, R; Nishimori, N; Nishitani, T; Sawamura, M; Yamauchi, T

    2005-01-01

    An energy-recovery linac for a high-power free-electron laser is in operation at Japan Atomic Energy Research Institute (JAERI). In this paper, we report results of research activities and future plans of JAERI ERL-FEL, which are the construction of FEL transport line, the operation of newly-installed RF controller and IOTs, the development of super-lattice photo cathode.

  19. Development of several data bases related to reactor safety research including probabilistic safety assessment and incident analysis at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Kensuke; Oikawa, Tetsukuni; Watanabe, Norio; Izumi, Fumio; Higuchi, Suminori

    1986-01-01

    Presented are several databases developed at JAERI for reactor safety research including probabilistic safety assessment and incident analysis. First described are the recent developments of the databases such as 1) the component failure rate database, 2) the OECD/NEA/IRS information retrieval system, 3) the nuclear power plant database and so on. Then several issues are discussed referring mostly to the operation of the database (data input and transcoding) and to the retrieval and utilization of the information. Finally, emphasis is given to the increasing role which artifitial intelligence techniques such as natural language treatment and expert systems may play in improving the future capabilities of the databases. (author)

  20. Proceedings of the third JAERI-KAERI joint seminar on post irradiation examination technology

    International Nuclear Information System (INIS)

    1999-09-01

    Between the Department of JMTR of the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Cycle Research Group of the Korea Atomic Energy Research Institute (KAERI), it has been periodically carried out the collaboration on technical information exchange by specialists and scientists, under the Arrangement of the Implementation of Cooperative Research Program in the Field of Peaceful Uses of Nuclear between JAERI and KAERI. And JAERI-KAERI joint seminar has been held every three years. The 1st and 2nd JAERI-KAERI Joint Seminars were held in November 1992 at JAERI and in September 1995 at KAERI, respectively. The 3rd JAERI-KAERI Joint Seminar was held on 25 and 26 March, 1999 at the Oarai Research Establishment of JAERI. In this seminar, total participants of 84 were joined from JAERI, KAERI, Hanyang University, Japan Nuclear Cycle Development Institute, Oarai Branch of Institute for Materials Research (IMR) of Tohoku University, Nippon Nuclear Fuel Development Co., Ltd., Nuclear Development Corporation and others. Contributed presentations were in three sessions; Current status and future perspectives on PIE, PIE techniques and Evaluation of PIE data. Re-assembling technique for JOYO fuel, Nd-YAG laser welding technique, grain boundary analysis using FEG-TEM, lift time estimation of PWR Rod Cluster Control Assembly (RCCA) rodlet and failure analysis of Korea Nuclear Power Plant (KNP) fuel have been widely noticed as topic items on PIE. And some comments from PIE user, were pointed out that the nano-PIE technique, the flexibility to ad-hoc demands on testing space or utilization, and the international collaboration were very important for the next generation's PIE. The 34 of the present papers are indexed individually. (J.P.N.)

  1. Proceedings of the third JAERI-KAERI joint seminar on post irradiation examination technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    Between the Department of JMTR of the Japan Atomic Energy Research Institute (JAERI) and the Nuclear Fuel Cycle Research Group of the Korea Atomic Energy Research Institute (KAERI), it has been periodically carried out the collaboration on technical information exchange by specialists and scientists, under the Arrangement of the Implementation of Cooperative Research Program in the Field of Peaceful Uses of Nuclear between JAERI and KAERI. And JAERI-KAERI joint seminar has been held every three years. The 1st and 2nd JAERI-KAERI Joint Seminars were held in November 1992 at JAERI and in September 1995 at KAERI, respectively. The 3rd JAERI-KAERI Joint Seminar was held on 25 and 26 March, 1999 at the Oarai Research Establishment of JAERI. In this seminar, total participants of 84 were joined from JAERI, KAERI, Hanyang University, Japan Nuclear Cycle Development Institute, Oarai Branch of Institute for Materials Research (IMR) of Tohoku University, Nippon Nuclear Fuel Development Co., Ltd., Nuclear Development Corporation and others. Contributed presentations were in three sessions; Current status and future perspectives on PIE, PIE techniques and Evaluation of PIE data. Re-assembling technique for JOYO fuel, Nd-YAG laser welding technique, grain boundary analysis using FEG-TEM, lift time estimation of PWR Rod Cluster Control Assembly (RCCA) rodlet and failure analysis of Korea Nuclear Power Plant (KNP) fuel have been widely noticed as topic items on PIE. And some comments from PIE user, were pointed out that the nano-PIE technique, the flexibility to ad-hoc demands on testing space or utilization, and the international collaboration were very important for the next generation's PIE. The 34 of the present papers are indexed individually. (J.P.N.)

  2. LOCA and RIA studies at JAERI

    International Nuclear Information System (INIS)

    Sugiyama, Tomoyuki; Nagase, Fumihisa; Nakamura, Jinichi; Fuketa, Toyoshi

    2004-01-01

    To provide a data base for the regulatory guide of light water reactors, behavior of reactor fuels during off-normal and postulated accident conditions such as loss-of-coolant accident (LOCA) and reactivity-initiated accident (RIA) is being studied at the Japan Atomic Energy Research Institute (JAERI). The LOCA program consists of integral thermal shock tests and other separate tests for oxidation rate and mechanical property of fuel claddings. Prior to the tests on irradiated claddings, the tests have been conducted on non-irradiated claddings to examine separate effects of corrosion and hydrogen absorption during reactor operation. The tests on irradiated claddings have recently been started and results have been obtained. As for an RIA study, a series of experiments with high burnup fuel rods is being performed by using pulse irradiation capability of the NSRR. This paper presents recent results obtained from the LOCA and RIA studies at JAERI. (Author)

  3. Development and operation of the JAERI superconducting energy recovery linacs

    Science.gov (United States)

    Minehara, Eisuke J.

    2006-02-01

    The Japan Atomic Energy Research Institute free-electron laser (JAERI FEL) group at Tokai, Ibaraki, Japan has successfully developed one of the most advanced and newest accelerator technologies named "superconducting energy recovery linacs (ERLs)" and some applications in near future using the ERLs. In the text, the current operation and high power JAERI ERL-FEL 10 kW upgrading program, ERL-light source design studies, prevention of the stainless-steel cold-worked stress-corrosion cracking failures and decommissioning of nuclear power plants in nuclear energy industries were reported and discussed briefly as a typical application of the ERL-FEL.

  4. JAERI contribution to the 19th IAEA Fusion Energy Conference

    International Nuclear Information System (INIS)

    2003-03-01

    This report compiles the contributed papers and presentation materials from JAERI to the 19th IAEA Fusion Energy Conference held at Lyon, France, from October 14th to 19th, 2002. The papers describe the recent progress in the experimental research in JT-60U and JFT-2M tokamaks, theoretical studies, fusion technology and R and D for ITER and fusion reactors. Total 32 papers consist of 1 overview talk, 14 oral and 17 poster presentations. Eight papers written by authors from other institutes and universities under collaboration with JAERI are also included. The 40 of the presented papers are indexed individually. (J.P.N.)

  5. Fuel irradiation research of Japan at Halden reactor. Achievement of cooperative researches between JAERI and several organizations in the period from 2000 to 2002 (Joint research)

    International Nuclear Information System (INIS)

    2004-03-01

    JAERI has performed cooperative researches with several Japanese organizations utilizing the Halden Boiling Heavy Water Reactor(HBWR) which is located at Halden in Norway. These researches are carried out based on the contracts of the cooperative researches, which are revised every three years, in accordance with the renewal of the participation of JAERI to the OECD Halden Reactor Project. This report summarizes the objectives, contents and outlines of the achievements of the cooperative researches during the three years from 2000 January to 2002 December. During the period, seven cooperative researches had been carried out. Two of them had been completed and other five researches have been continued to the next three-year period. Most of them are irradiation test researches of advanced fuel and cladding in order to prepare the higher burnup utilization and introduction of LWR fuel and MOX fuel in LWRs of Japan. As the researches of fuel irradiation usually take long time for preparing test and irradiation, three years are usually not enough to obtain some achievements from the irradiation tests. Therefore, five cooperative researches have been continued to the next three-year period. In this report, the achievements of the researches continued to the next period are not final one but a kind of progress report. (author)

  6. Report on JAERI's Reimei Research Program. April 1, 2005 - March 31, 2006

    International Nuclear Information System (INIS)

    Ikezoe, Hiroshi

    2007-02-01

    The Reimei (Dawn) Research Program is a research project based on public application to be conducted within the framework of the Reimei Research Promotion project of the Japan Atomic Energy Research Institute. The objective of the program is to encourage original and/or unique ideas in the field of fundamental nuclear science and nuclear energy. The number of the research subjects accepted in the fiscal year 2005 was 38 and the summaries of these research subjects were compiled in this report. We hope that new researches will be grown and developed by the help of Reimei Research Promotion project. (author)

  7. Development of seismic PSA methodology at JAERI

    International Nuclear Information System (INIS)

    Muramatsu, K.; Ebisawa, K.; Matsumoto, K.; Oikawa, T.; Kondo, M.

    1995-01-01

    The Japan Atomic Energy Research Institute (JAERI) is developing a methodology for seismic probabilistic safety assessment (PSA) of nuclear power plants, aiming at providing a set of procedures, computer codes and data suitable for performing seismic PSA in Japan. In order to demonstrate the usefulness of JAERI's methodology and to obtain better understanding on the controlling factors of the results of seismic PSAs, a seismic PSA for a BWR is in progress. In the course of this PSA, various improvements were made on the methodology. In the area of the hazard analysis, the application of the current method to the model plant site is being carried out. In the area of response analysis, the response factor method was modified to consider the non-linear response effect of the building. As for the capacity evaluation of components, since capacity data for PSA in Japan are very scarce, capacities of selected components used in Japan were evaluated. In the systems analysis, the improvement of the SECOM2 code was made to perform importance analysis and sensitivity analysis for the effect of correlation of responses and correlation of capacities. This paper summarizes the recent progress of the seismic PSA research at JAERI with emphasis on the evaluation of component capacity and the methodology improvement of systems reliability analysis. (author)

  8. Report on progress of researches by common utilization of JAERI nuclear facilities, for fiscal 1982

    International Nuclear Information System (INIS)

    1983-01-01

    The utilization of the facilities in the Japan Atomic Energy Research Institute in common in 1982 has finished in active state, and the results of the researches have reached the stage of publication. The subjects of the researches spread over wide fields, and in 1982 also, extremely diversified researches were carried out. In this report, theses results were collected in one book, and it is desirable to utilize it actively. The number of the research themes is 131. In the field of general researches, the researches on radiochemistry, the utilization of radiation and the effects of irradiation were mostly carried out, while in cooperative researches, the researches were mainly concerned with nuclear reactor engineering and nuclear reactor materials. The total number of visitors was 3025. The facilities offered to the common utilization were JRR-2, JRR-3, JRR-4, Co-60 irradiation facility and others. The abstracts of the papers are reported. (J.P.N.)

  9. Next generation neutron scattering at Neutron Science Center project in JAERI

    International Nuclear Information System (INIS)

    Yamada, Yasusada; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Katano, Susumu; Aizawa, Kazuya; Suzuki, Jun-ichi; Koizumi, Satoshi; Osakabe, Toyotaka.

    1997-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted neutron scattering researches by means of research reactors in Tokai Research Establishment, and proposes 'Neutron Science Research Center' to develop the future prospect of the Tokai Research Establishment. The scientific fields which will be expected to progress by the neutron scattering experiments carried out at the proposed facility in the Center are surveyed. (author)

  10. Future perspective of nuclear energy utilization and expected role of HTGR. JAERI's energy systems analysis research

    International Nuclear Information System (INIS)

    Sato, Osamu

    1996-01-01

    Studies have been made in JAERI in order to assess the possibility of using nuclear energy symbiotically with fossil and biomass fuels, and to evaluate its implications for the environment. The application system of high temperature nuclear heat has been designed for this purpose with various technology options. The core of the system is a set of technologies for hydrogen production and its application to produce clean and convenient fuels from fossil or biomass sources. The results of analytical studies using the MARKAL model have indicated sufficient possibilities of combining nuclear energy effectively with fossil or biomass fuels via hydrogen produced by high temperature nuclear heat. In addition to providing clean and convenient liquid fuels on a large scale, the combined system will contribute to the substantial reduction of long-term CO 2 emissions. The relatively high cost of this system will be well justified when CO 2 emission penalties are taken into account. (J.P.N.)

  11. Laser isotope separation studies in JAERI

    International Nuclear Information System (INIS)

    Arisawa, Takashi; Shiba, Koreyuki

    1986-01-01

    For uranium enrichment, Japan Atomic Energy Research Institute (JAERI) has been studying atomic vapor laser isotope separation since 1976, in addition to such separation methods as gas diffusion, chemical exchange and gas-dynamic techniques. Studies carried out to date in JAERI is briefly summarized in the first part of the report. Then, some major separation techniques which have been studied in JAERI are outlined, and typical results obtained are presented. A large part is devoted to the multiple-photon photoionization technique, which is commonly known as the atomic laser isotope separation method for uranium enrichment. It has such advantages as 1) very high spectral selectivity for the relevant isotope and 2) highly improved photoionizing effect by means of two- and three-step resonance photoionization processes. Here, the atomic laser isotope separation method is discussed in detail with respect to the evaporation process, energy levels, photoionization, selectivity, photoionization schemes, ion recovery, separation in macroscopic amounts, and separation of trace amounts of isotopes. Typical observed and claculated results related to these subjects are shown. In addition, the report briefly describes some other separation processes including laser induced chemical reaction, multiple photo-dissociation, multiple-photo excitation and UV dissociation, laser induced thermal diffusion, and laser centrifugation. (Nogami, K.)

  12. Fuel irradiation research of Japan at OECD Halden Reactor Project. Achievement of joint researches between JAERI and other organizations in the period from 1994 to 1996

    International Nuclear Information System (INIS)

    Uetsuka, Hiroshi; Nakamura, Jinichi; Kinoshita, Motoyasu

    1998-01-01

    JAERI has performed cooperative researches with many Japanese agencies and companies by means of the Halden Boiling Heavy Water Reactor (HBWR) which is located at Halden in Norway. These cooperative researches are carried out based on the contracts of the cooperative researches, which are revised every three years, in accordance with the renewal of the participation of JAERI to the OECD Halden Reactor Project. This report summaries the objectives, contents and the outlines of the achievements of the cooperative researches during the three years from 1994 January to 1996 December. During the period, ten cooperative researches had been carried out, and two of them had finished during the period and other eight researches has been continued to the next three year period. There are many research items, and most of them are irradiation test researches of advanced fuel and cladding concerned with the high burnup utilization of LWR fuel or MOX fuel irradiation researches to prepare for the introduction of Plutonium utilization in LWRs. The researches of fuel irradiation usually take long time because of the characteristics of these kind of research work, and three years are usually not enough to obtain some achievements from the irradiation tests. Therefore, eight tests have been continued after the three year period. In this report, the achievements of the continued researches to the next three year period are not final one but a kind of progress report. (author) kind of progress report. (author)

  13. JAERI's activities in JCO accident

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The Japan Atomic Energy Research Institute (JAERI) was actively involved in a variety of technical supports and cooperative activities, such as advice on terminating the criticality condition, contamination checks of the residents and consultation services for the residents, as emergency response actions to the criticality accident at the uranium processing facility operated by the JCO Co. Ltd., which occurred on September 30, 1999. These activities were carried out in collaborative ways by the JAERI staff from the Tokai Research Establishment, Naka Fusion Research Establishment, Oarai Research Establishment, and Headquarter Office in Tokyo. As well, the JAERI was engaged in the post-accident activities such as identification of accident causes, analyses of the criticality accident, and dose assessment of exposed residents, to support the Headquarter for Accident Countermeasures of the Science and Technology Agency (STA), the Accident Investigation Committee and the Health Control Committee of the Nuclear Safety Commission of Japan (NSC). This report compiles the activities, that the JAERI has conducted to date, including the discussions on measures for terminating the criticality condition, evaluation of the fission number, radiation monitoring in the environment, dose assessment, analyses of criticality dynamics. (author)

  14. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  15. Radiation processing of silk protein (Bilateral research cooperation OAEP and JAERI. December 1998 - December 2002)

    International Nuclear Information System (INIS)

    2003-01-01

    Thailand's production of silk, about 1,200 ton per year, also gives about 10% of silk waste which is expected to be recycled into new material (non-textile application) and to avoid environmental pollution. For this purpose, cooperative program 'radiation processing of silk protein' was conducted between OAEP (Thailand) and JAERI. Among the results already obtained are: radiation degradation of silk protein (fibroin) with gamma rays at 160 kGy, production of fine silk milled powder (<90 microns) by electron beam irradiation at 250-1000 kGy (dry method) using electron accelerator (1 MeV, 1 mA), use of antioxidant effect of silk protein on lipid peroxidation and antibacterial activity of irradiated silk protein powder, and wound dressing hydrogel mixed with silk protein and use of antibacterial activity of cross-linked silk protein/PVA hydrogel. Other topics of interest are gamma irradiation of anionic natural polymer solution for use as latex protein scavenger and gamma radiation degradation of chitosan for use as plant growth promoter and fungicide. (S. Ohno)

  16. JAERI tandem annual report, 1982

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Maruyama, Michio; Ozawa, Kunio; Shikazono, Naomoto; Tamura, Tsutomu; Tanaka, Shigeya

    1983-06-01

    This annual report describes research activities which have been performed with JAERI tandem accelerator from September 1, 1981 to March 31, 1983. Summary reports of 38 papers, publications, personnel and a list of co-operative researches with universities are contained. (author)

  17. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  18. Proceedings of the seminar on the joint research project between JAERI and Universities. 'Actinide researches for 21st century - fusion between chemistry and engineering'. August 20-21, 1999, Japan Atomic Energy Research Inst., Tokai, Japan

    International Nuclear Information System (INIS)

    2000-06-01

    The Seminar on the Joint Research Project between JAERI and Universities was held in Tokai, August 20-21, 1999, to discuss future perspectives of the actinide researches for the nuclear fuel cycle. The papers related to the Joint Research Project on the Backend Chemistry were presented and discussed. The present report complies the papers contributed to the Seminar. (author)

  19. Transactinide nuclear chemistry at JAERI

    International Nuclear Information System (INIS)

    Nagame, Y.; Haba, H.; Tsukada, K.

    2002-01-01

    Nuclear chemistry study of trans actinide elements in Japan is currently being in progress at JAERI (Japan Atomic Energy Research Institute). We have developed new experimental apparatuses: a beam-line safety system for the usage of the gas-jet coupled radioactive 248 Cm target chamber, a rotating wheel catcher apparatus for the measurement of α and spontaneous fission decay of the transactinides, MANON (Measurement system for Alpha particles and spontaneous fission events ON line), and an automated rapid chemical separation apparatus based on the high performance liquid chromatography, AIDA (Automated Ion exchange separation system coupled with the Detection apparatus for Alpha spectroscopy). The transactinide nuclei, 261 Rf and 262 Db, have been successfully produced via the reactions of 248 Cm( 18 O,5n) and 248 Cm( 19 F,5n), respectively, and the excitation functions for each reaction have been measured to evaluate the optimum irradiation condition for the production of these nuclei. The maximum cross sections in each reaction were 13 nb at the 18 O beam energy of 94-MeV and 1.5 Nb at the 103-MeV 19 F beam energy. On-line ion exchange experiments of Rf together with the lighter homologues Zr and Hf in the HCl, HNO 3 and HF solutions with AIDA have been carried out, and the results clearly show that the behavior of Rf is typical of the group-4 element. Relativistic molecular orbital calculations of the chloride and nitrate complexes of tetravalent Rf are also being performed to gain an understanding of the complex chemistry. Prospects and some recent experimental results for the nuclear chemistry study of the transactinide elements at JAERI are discussed. (author)

  20. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  1. Accounting control of tritium at the tritium process laboratory (TPL) of JAERI. Results of 15-year operation and research activity

    International Nuclear Information System (INIS)

    Nishi, Masataka; Yamanishi, Toshihiko; Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi

    2003-01-01

    Research and development work of fuel processing technology and tritium safe-handling technology necessary for fusion reactors has been performed at the Tritium Process Laboratory (TPL) of JAERI. TPL is the first facility in Japan permitted to handle tritium of more than 1g (about 0.36PBq), and its operation itself is also important for the development of fusion reactor facility in the viewpoint of tritium control. Various experiments have been carried out at TPL safely since 1988 controlling 22PBq of tritium as the maximum observing regulations. In addition to the regulatory accounting and control, detailed independent control in TPL was planned and was established through its 15-year safe-operation. For future fusion fuel facility where kilo-grams of tritium will be handled, method of tritium accounting has been researched and some new technologies have been developed at TPL. Results of TPL operation and of the research activity in it contributed the completion of the engineering design of ITER. Further research activity on tritium accounting and control is in progress in TPL for the future fusion reactors. (author)

  2. JAERI Tandem annual report 1983

    International Nuclear Information System (INIS)

    Harada, Kichinosuke; Maruyama, Michio; Okashita, Hiroshi; Ozawa, Kunio; Shikazono, Naomoto; Tanaka, Shigeya

    1984-07-01

    This annual report describes research activities which have been performed with JAERI tandem accelerator from April 1, 1983 to March 31, 1984. Summary reports of 32 papers, publications, personnel and a list of co-operative reserches with universities are contained. (author)

  3. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Kukita; Ohnuki, Akira

    1997-01-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission's research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment

  4. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  5. Danish Space Research Institute

    International Nuclear Information System (INIS)

    1991-01-01

    The present report presents a description of the activities and finances of the Danish Space Reserach Institute during 1989 and 1990. The research deals with infrared astronomy (ISOPHOT), X-ray astronomy (EXPECT/SODART), hard X-ray astronomy (WATCH), satellite projects and sounding rocket experiments. (CLS)

  6. Annual report on major results and progress of Naka Fusion Research Establishment of JAERI from April 1 to September 30, 2005 and Fusion Research and Development Directorate of JAEA from October 1, 2005 to March 31, 2006

    International Nuclear Information System (INIS)

    Yoshida, Hidetoshi; Oasa, Kazumi; Hayashi, Takao; Nakamura, Hiroo; Ogawa, Hiroaki

    2006-09-01

    This annual report provides an overview of major results and progress on research and development (R and D) activities at Naka Fusion Research Establishment of Japan Atomic Energy Research Institute (JAERI) during the period from April 1 to September 30, 2005 and at Fusion Research and Development Directorate of Japan Atomic Energy Agency (JAEA) from October 1, 2005 to March 31, 2006, including those performed in collaboration with other research establishments of JAERI, research institutes, and universities. In JT-60, ferritic steel tiles (FSTs) were installed inside the vacuum vessel of JT-60U to reduce the toroidal field ripple. After the installation of FSTs, a high normalized beta plasma at β N ∼2.3 was sustained for 28.6s with ELMy H-mode confinement as required for an ITER hybrid operation scenario. National Centralized Tokamak was placed as the ITER satellite tokamak in collaboration with the EU fusion community, and the facility design was modified strongly in support of ITER. In theoretical and analytical researches, studies on H-mode confinement, ITB in reversed shear plasmas, aspect ratio effects on external MHD modes and magnetic island evolution in a rotating plasma were progressed. Progress was also made in the NEXT project in which the behaviors of collisionless MHD modes and the dynamics of zonal flows were simulated. In fusion reactor technologies, R and Ds for ITER and fusion DEMO plants have been carried out. For ITER, a steady state operation of the 170GHz gyrotron up to 1000 s with 0.2 MW was demonstrated. Also current density of the neutral beam injector has been extended to 134A/m 2 at 0.75MeV. In the ITER Test Blanket Module (TBM), designs of Water and Helium Cooled Solid Breeder TBMs and R and Ds of tritium breeder/multiplier materials were progressed. Tritium processing technology for breeding blankets was also progressed. For the DEMO reactors, high temperature superconductor such as Bi2212 has been examined. In plasma facing

  7. JAERI 20 MV tandem accelerator

    International Nuclear Information System (INIS)

    Tsukada, Kineo; Harada, Kichinosuke

    1977-01-01

    Accelerators have been developed as the experimental apparatuses for the studies on nuclei and elementary particles. One direction of the development is the acceleration of protons and electrons to more and more high energy, and another direction is the acceleration of heavy ions up to uranium to several MeV up to several hundreds MeV. However recently, accelerators are used as the useful tools for the studies in wider fields. There are electrostatic acceleration and high frequency acceleration in ion acceleration, and at present, super-large accelerators are high frequency acceleration type. In Japan Atomic Energy Research Institute, it was decided in 1975 to construct an electrostatic accelerator of tandem type in order to accelerate heavy ions. In case of the electrostatic acceleration, the construction is relatively simple, the acceleration of heavy ions is easy, the property of the ion beam is very good, and the energy is stable. Especially, the tandem type is convenient for obtaining high energy. The tandem accelerator of 20 MV terminal voltage was ordered from the National Electrostatics Corp., USA, and is expected to be completed in 1978. The significance of heavy ion acceleration in the development and research of atomic energy, tandem van de Graaff accelerators, the JAERI 20MV tandem accelerator, and the research project with this accelerator are described. (Kako, I.)

  8. Summary and statistical analysis of environmental monitoring data in the Oarai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Tamura, Katsuhiro; Kitano, Kyoshiro; Sibanuma, Yukio; Takasaki, Koichi; Ohhata, Tsutomu

    1998-03-01

    In the Oarai Research Establishment, Japan Atomic Energy Research Institute (JAERI), the environmental monitoring has been conducted for about 29 years since April 1968. The results are discussed for evaluation of long-term and short-term fluctuation in the radiological conditions in the Oarai area. This report summarises the data of the environmental monitoring in Oarai, and statistical analyses were made of the data collected from 1985 through 1994. (author)

  9. Present status of spallation target development. JAERI/KEK Joint Project

    International Nuclear Information System (INIS)

    Hino, R.; Kaminaga, M.; Haga, K.

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) and the High Energy Accelerator Research Organization (KEK) are promoting a plan to construct a neutron scattering facility under the JAERI/KEK Joint Project. Design and R and D works are being carried out vigorously for realizing the mercury target system consisting of the mercury target, moderators and reflectors working as a spallation neutron source, as well as a remote handling system for exchanging such components which will be highly irradiated. This report introduces an outline of the present status of design and development activities on the spallation target system. (author)

  10. Annual report of the Japan Atomic Energy Research Institute for fiscal 2000

    International Nuclear Information System (INIS)

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) promotes some researches such as neutron science research, light quantum/synchrotron radiation science research, radiation application research, science research, advanced basic research, and so on, based on nuclear energy R and D and contributing to general development on scientific technology, along the Long-term program on research, development and application of nuclear energy' established on June, 1994, as a general organization on nuclear energy R and D in Japan. And, as an R and D on advanced energy system bringing breakthrough on nuclear energy technology, JAERI also promotes research on future type energy system, R and D on nuclear fusion, and trial research on high temperature engineering. Furthermore, JAERI progresses research on safety and health physics, as occupying both fields of general nuclear energy science and nuclear energy. In addition, by carrying out not only interdisciplinary cooperation in Japan but also versatile international one, various research assisting business and effective R and D are promoted. Here were described in details in fiscal year 2000, on 6 items on the neutron science research (SR), 13 items on light quantum/radiation light SR, 13 items on radiation application SR, 6 items on matter SR, 3 items on environment SR, 19 items on advanced basic SR, and so on. (G.K.)

  11. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  12. Production of radioisotopic gamma radiation sources in JAERI

    International Nuclear Information System (INIS)

    Katoh, Hisashi; Kogure, Hiroto; Suzuki, Kyohei

    1980-04-01

    The present state of production of gamma radiation sources in Japan Atomic Energy Research Institute (JAERI) is described. Sources of 192 Ir, 60 Co and 170 Tm for industrial and 198 Au and 192 Ir for medical applications are produced and delivered routinely by JAERI. Prefabricated assembly targets are irradiated in JRR-2, JRR-3, JRR-4 or JMTR. The irradiated targets are disassembled in a heavy density concrete cave or a lead-shielded cell, depending on the level of radioactivity. The yield of radioactivity in each target is measured with the aid of an ionization chamber. Where necessary, irradiated targets are encapsulated hermetically in capsules of aluminium, stainless steel or other material. The yield of radioactivity is estimated in relation with the burn-up of target nuclide and product nuclide. (author)

  13. Investigation regarding the amount of disused components and the radioactive inventory at Mutsu Establishment, JAERI

    International Nuclear Information System (INIS)

    Hatanaka, Kazuo; Ooeda, Etsurou; Watanabe, Masaaki

    2003-01-01

    About 200 tons of the disused components, which were used for fuel removal, are stored in Mutsu Establishment, Japan Atomic Energy Research Institute (JAERI). In order to settle the decommissioning plan, RANDEC made an investigation regarding the amount of disused components and the radioactive inventory in Mutsu Establishment under a contract with JAERI. This report describes the estimation results of radioactive inventory and weight of radioactive wastes regarding the disused equipment such as an ion-exchange resin tank, a injection pump and equipment for fuel removal. (author)

  14. Recent status of research activities for development of CTBT-related technologies in JAERI

    International Nuclear Information System (INIS)

    Hirota, Naoki; Houkida, Takanori; Inoue, Yoji

    2003-08-01

    This report describes research activities of the R and D Group for Non-Proliferation Technology related to the Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification regime. The main subjects of this report are (1) an overview of the CTBT verification regime, (2) preparation of the National Data Center for radionuclide data, (3) construction and operation of the radionuclide monitoring stations at Takasaki and Okinawa and the certified radionuclide laboratory at Tokai in Japan. We have participated in an intercomparison test internationally organized for the certified laboratories and the test results are given here. Scientific application of the CTBT-related technologies to environmental researches is also depicted. (author)

  15. Present status of nuclear fusion research and development in JAERI. 1984 ed.

    International Nuclear Information System (INIS)

    1984-01-01

    This year is the 10th year in the ''Second stage nuclear fusion research and development project'', and the main plan to construct a critical plasma testing apparatus, JT-60, is about to be completed. The test of the power source and control system, and the assembling of the main body were finished, and the final general test is about to be started. In foreign countries, already experiment was begun with the TFTR and the JET, and the formation of the plasma at 20 million deg with the containment time of about 0.3 sec was accomplished. The results of heating experiment by incorporating heating devices are anxiously waited for. As the next generation projects, the conceptual design of the burning core experiment aiming at the attainment of self ignition condition was started in USA, and the next European torus is to be developed in EC before reaching the prototype DEMO. In Japan, it is intended to advanced to the attainment of self ignition condition and an experimental reactor for verifying nuclear fusion technology. In USSR, the construction of a superconducting tokamak T-15 is likely to be completed in 1986. The international cooperation is expected because of the financial condition of respective countries. (Kako, I.)

  16. From neutron science project to J-PARC. From the viewpoint of JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    2006-01-01

    Japan Atomic Energy Research Institute (JAERI), at present Japan Atomic Energy Agency (JAEA), has been developing particle accelerators since its establishment in 1956 for obtaining basic data on the neutron. Also reactor-based neutron sciences have been developed at JAERI/JAEA. Under the so-called omega project which was started in 1988, JAERI/JAEA has been conducting researches on Engineering Test Accelerator for the nuclear transmutation and has built a Basic Test Accelerator. In 1996, a special team for neutron science promotion was organized and pushed R and D works on proton accelerators, targets, neutron engineering, radiation safety and so on. Integration of proton accelerator projects at JAERI and KEK (Institute for High Energy Physics) was proposed in 1998, and both institutes agreed to establish a unified proton accelerator facility, J-PARC. JAEA is promoting the industrial application of neutrons. Also the research on nuclear transmutation at J-PARC, which is not endorsed yet, is an essential objective for JAEA. (K.Y.)

  17. Institutional Support : Ethiopian Development Research Institute ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Ethiopian Development Research Institute (EDRI) was established in 1999 and became operational in 2003 as a semi-autonomous organization accountable to ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: ...

  18. Burnup credit implementation plan and preparation work at JAERI

    International Nuclear Information System (INIS)

    Nomura, Y.; Itahara, K.

    2001-01-01

    Application of the burnup credit concept is considered to be very effective to the design of spent fuel transport and storage facilities. This technology is all the more important when considering construction of the intermediate spent fuel storage facility, which is to be commissioned by 2010 due to increasing amount of accumulated spent fuel in Japan. Until reprocessing and recycling all the spent fuel arising, they will be stored as an energy stockpile until such time as they can be reprocessed. On the other hand, the burnup credit has been partly taken into account for the spent fuel management at Rokkasho Reprocessing Plant, which is to be commissioned in 2005. They have just finished the calibration tests for their burnup monitor with initially accepted several spent fuel assemblies. Because this monitoring system is employed with highly conservative safety margin, it is considered necessary to develop the more rational and simplified method to confirm burnup of spent fuel. A research program has been instituted to improve the present method employed at the spent fuel management system for the Spent Fuel Receiving and Storage Pool of Rokkasho Reprocessing Plant. This program is jointly performed by Japan Nuclear Fuel Limited (JNFL) and JAERI.This presentation describes the current status of spent fuel accumulation discharged from PWR and BWR in Japan and the recent incentive to introduce burnup credit into design of spent fuel storage and transport facilities. This also includes the content of the joint research program initiated by JNFL and JAERI. The relevant study has been continued at JAERI. The results by these research programs will be included in the Burnup Credit Guide Original Version compiled by JAERI. (author)

  19. JAERI Material Performance Database (JMPD); outline of the system

    International Nuclear Information System (INIS)

    Yokoyama, Norio; Tsukada, Takashi; Nakajima, Hajime.

    1991-01-01

    JAERI Material Performance Database (JMPD) has been developed since 1986 in JAERI with a view to utilizing the various kinds of characteristic data of nuclear materials efficiently. Management system of relational database, PLANNER was employed and supporting systems for data retrieval and output were expanded. JMPD is currently serving the following data; (1) Data yielded from the research activities of JAERI including fatigue crack growth data of LWR pressure vessel materials as well as creep and fatigue data of the alloy developed for the High Temperature Gas-cooled Reactor (HTGR), Hastelloy XR. (2) Data of environmentally assisted cracking of LWR materials arranged by Electric power Research Institute (EPRI) including fatigue crack growth data (3000 tests), stress corrosion data (500 tests) and Slow Strain Rate Technique (SSRT) data (1000 tests). In order to improve user-friendliness of retrieval system, the menu selection type procedures have been developed where knowledge of system and data structures are not required for end-users. In addition a retrieval via database commands, Structured Query Language (SQL), is supported by the relational database management system. In JMPD the retrieved data can be processed readily through supporting systems for graphical and statistical analyses. The present report outlines JMPD and describes procedures for data retrieval and analyses by utilizing JMPD. (author)

  20. Experimental study on accelerator driven subcritical reactor. JAERI's nuclear research promotion program, H12-031 (Contract research)

    International Nuclear Information System (INIS)

    Shiroya, Seiji; Misawa, Tsuyoshi; Unesaki, Hironobu

    2004-03-01

    In view of the future plan of Research Reactor Institute, Kyoto University (KURRI), the present study consisted of 1) the transmission experiments of high energy neutrons through materials, 2) experimental simulation of ADSR using the Kyoto University Critical Assembly (KUCA), and 3) conceptual neutronics design study on Kyoto University Reactor (KUR) type ADSR using the MCNPX code. The purpose of the present study was not only to obtain the knowledge usable for the realization of ADSR as a new neutron source for research but also to select technical issues in the field of reactor physics for the development of ADSR in general. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR was obtained both theoretically and experimentally. This kind of knowledge is indispensable to promote the study on ADSR further. If one dare say the main part of knowledge in short words, the basic nuclear characteristics of ADSR is overwhelmed by the characteristics of the subcritical reactor as expected. For the realization of ADSR in the future, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable 1) to compile the more precise nuclear data for the wide energy range, 2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement from the low energy region to the high energy region, and 3) to develop neutronics calculation tools which facilitate to take into account the neutron generation process by the spallation reaction and the delayed neutron behavior. (author)

  1. Diabetes Research Institute Foundation

    Science.gov (United States)

    ... Video Be Part of the Cure Commitment to Stem Cell Research Exercise + Drug Therapy Tibi Creates Garment to Benefit ... Million Brenda Novak's Online Auction Cord Blood-Derived Stem ... Highlights DRI Research Diamond Ball 2009 DRI/DRIF Press Releases Historic ...

  2. Current and anticipated uses of thermal hydraulic codes at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Hajime; Kukita; Ohnuki, Akira [Japan Atomic Energy Research Institute, Ibaraki (Japan)

    1997-07-01

    The Japan Atomic Energy Research Institute (JAERI) is conducting several research programs related to thermal-hydraulic and neutronic behavior of light water reactors (LWRs). These include LWR safety research projects, which are conducted in accordance with the Nuclear Safety Commission`s research plan, and reactor engineering projects for the development of innovative reactor designs or core/fuel designs. Thermal-hydraulic and neutronic codes are used for various purposes including experimental analysis, nuclear power plant (NPP) safety analysis, and design assessment.

  3. Cost benefit effect of application of radiation in JAERI

    International Nuclear Information System (INIS)

    Kazuaki Yanagisawa

    2009-01-01

    It is important for us to show accountability and transparency of nuclear funds invested to Japan Atomic Energy Research Institute (JAERI, now JAEA). We have not only to simply present the R and D outputs to tax payers by the bibliometric methods as measurable as possible but also to carry out a cost benefit analysis to show quantitatively the effect of economic representation which enables to make efficient allotment of resources. The task is heavy but unavoidable. In the present work, a cost benefit effect (CBE) of application of radiation known as one of big R and D project conducted in JAERI-Takasaki Branch is focused on. After defining CBE as Market Creation Effect (MCE) / Total amounts of investment, one tried to reveal the long-term CBE as long as 44 years. It is found that 31 research items, such as radial tires, cross-linking of wires, sterilization, and sterile of melon flies were succeeded to create markets in industrial and agricultural fields. Estimated MCE of those was totaled to 1,125 million dollars (M$). On the other hand, investment was 396 M$ for personnel (4,092 man/year) and 509 M$ for research costs. It totaled as 905 M$. Therefore, CBE for application of radiation in Takasaki Branch shall be 1,125/905=1.2. The mission dictated by the Long-Range Research Plan for Nuclear settled by the Atomic Energy Commission involves a lot of R and D tasks including partly the technical difficulties as well as partly the deep uncertainties for future prospects. JAERI is a national research institute and this figure may be regarded as reasonably acceptable because of many high risk and complex tasks were conducted successfully resulting in the creation of 31 new markets. It contributed to the increase of GDP. (Author)

  4. Champion comparison of prestigious nuclear research institutes by thirty-year research papers written in nuclear advanced countries

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2010-08-01

    A champion of research paper at JAERI and those of foreign prestigious nuclear research institutes (5 from the U.S., 3 from the France and 2 from the Germany) was studied taking the timeframe as long as 30 years (1978-2007) Tools for this bibliometric study were INIS, ECD, WOS and SCOPUS. The former two were general database collected all papers related to nuclear, while the latter two were specified database collected research papers submitted to journals for natural, social sciences and human learning. (1) INIS for the world-wide general tool focused on nuclear judged that JAERI (32,859 papers) was the champion and ORNL (32,395 papers) was the second position. (2) ECD for the US-oriented energy database judged that the ranking was of the order of ORNL(36,608 papers), ANL(26,530) and SNL(24,687). (3) The trend observed in the WOS for the US-oriented database roughly coincided with that of ECD, where ORNL(34,331 papers) was the champion, where JAERI was the 7th position. (4) SCOPUS, basically originated from the Europe judged that that ORNL (32,728 papers) was the champion, where JAERI (16,860) was the 7th position. (5) Different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS and SCOPUS when looking at trends between 5-year periods. It implies that results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors. (6) Use of INIS has predominance in Japan, and use of ECD has predominance in the U.S. Users from developed and developing countries assigned as the Member State of IAEA would be better served using INIS and ECD as the intellectual data source. As the recent trend, WOS and SCOPUS are used as the evaluation tools. (author)

  5. Peralta Cancer Research Institute

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    The investigators in the cell biology program at PCRI have pioneered in the development of techniques for culturing human epithelial cells. The cancer diagnosis program has been concerned with researching new techniques for early diagnosis of breast cancer in women. The cancer treatment program has been concerned with applying cell biology and biochemistry advances to improve cancer management

  6. Status of JAERI tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi; Kanda, Susumu; Takeuchi, Suehiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (and others)

    2001-02-01

    JAERI Tandem Accelerator had been operated approximately 230 days in fiscal year of 1999. Meanwhile, we had three times of maintenance period with vent. Total operation-times were 5273 hours. We could not carry out the experiment using rare gas, due to malfunction of the RF power supply for the ECR ion source. The type of the RF power supply is peculiar and it is impossible to get spare parts for repair. We are now investigating the backup RF power supply. The power supply for the magnet became unstable due to degradation of insulation in the shunt resistance, which is used for feedback stabilization. Stability was recovered after cleaning. The acrylic resin shaft was cracked. This cracks have a potential for severe accidents. So far bearing of the shaft has no problem. The reason of cracks may be self-destruction by charge accumulation in the shaft. JAERI Tandem Accelerator is approximately 20 years old. There appear requirements on the higher ion currents for additional ion species. Therefore, authors are investigating cost effective improvement plans of RFQ (Radio Frequency Quadra-pole) and IH type accelerator based on KEK (High Energy Accelerator Research Organization) R and D. As a whole, maintenance services for the control system are increasing due to some changes of computer programs. There are some difficulties to keep skilled personnel for facilities operation. Authors are gradually increasing hired personnel with contract from 1993. However, loads for JAERI permanent staffs are still heavy. It takes much longer time to educate skilled persons especially for safety. (Y. Tanaka)

  7. Present status of research on radiation utilization in 1994 at JAERI. Utilization of irradiation and RI production and utilization

    International Nuclear Information System (INIS)

    1994-10-01

    In Japan Atomic Energy Research Institute, Takasaki Radiation Chemistry Research Establishment is in charge of the utilization of irradiation, and Tokai Research Establishment is in charge of the production and utilization of radioisotopes. As for the utilization of irradiation the development of new polymers, the development of environment preservation technology such as flue gas treatment, and by using various ion beams from four accelerators, the development of the materials used for space environment, nuclear fusion and new functional materials, the research on the radiation application to biotechnology, the development of the production and utilization of new radioisotopes have been carried out. As for the production and utilization of radioisotopes, the development of new products and new utilization techniques, the technology of producing and using a large amount of tritium, and the research on the chemical behavior of tritium have been carried out. The international cooperations have been promoted positively. In this report, the research activities in 1994 are described. (K.I.)

  8. Outline of application plans of accelerator beams in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has various application plans of accelerators such as; Neutron Science Research Complex (NSRC), Positron Factory, International Fusion Material Irradiation Facility (IFMIF), and Spring-8 Project. Each application plan has its own research program and its own core accelerator. The NSRC is a multi-purpose research complex composed of seven research facilities: slow neutron scattering facility for material science, the nuclear energy research facility like nuclear transmutation and so on. The Positron Factory will be applied to the research of precise analysis of material structure by novel method of positron probing. The IFMIF aims at simulating the wall loading of a demo fusion reactor by producing high intense neutron flux. The SPring-8 is the largest synchrotron radiation source in the world. More than 60 X-ray beam lines will be equipped for the various researches. (author)

  9. Annual report of the Japan Atomic Energy Research Institute for fiscal 2003

    International Nuclear Information System (INIS)

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) is comprehensively promoting the research and development (R and D) activities to make the best use of variety of potentials of atomic energy. In the field of nuclear energy, researches on advanced nuclear engineering systems, high-temperature engineering experimentation and nuclear fusion are forwarded to realize long-range stable supply of energy. Researches on safety of nuclear facilities, nuclear fuel cycles, radioactive waste processing/management and environmental radioactivities have been conducted in the safety category according to 'Annual Plan for Safety Research'. And researches on health physics have been implemented to establish the fundamentals of scientific and rational radiation protection. As a diversification of nuclear science and technology, various radiation application activities such as neutron science, advanced photon science and synchrotron radiation science and application research of charged particles and radioisotopes have been promoted, which contribute to drastic advance in the fields of materials and life science etc. and to establishment of new industries. Along with these activities, basic and fundamental researches including advanced basic research, materials science research, nuclear environmental science research and advanced computational science and engineering are in progress. In addition, operation management of JMTR, JRR-3 and JRR-4 were performed. And JAERI also implemented safety management and research information management activities etc. in the peaceful use of nuclear energy. The research activities for FY 2003 are reviewed in this issue. (J.P.N.)

  10. Proceedings of the symposium on the joint research program between JAERI and Universities. Current status and future perspectives of the chemistry research in the nuclear fuel cycle back end field

    International Nuclear Information System (INIS)

    1999-10-01

    The first Symposium on the Joint Research Project between JAERI and Universities was held in Tokyo, January 27, 1999, to present the main achievements of the project in these 5 years and to discuss future perspectives of the chemistry research relating to the nuclear fuel cycle. The areas covered by the Joint Research Project are (1) Nuclear Chemistry for TRU Recycling, (2) Solid State Chemistry on Nuclear Fuels and Wastes, (3) Solution Chemistry on Fuel Reprocessing and Waste Management, and (4) Fundamental Chemistry on Radioactive Waste Disposal. The 8 papers are indexed individually. (J.P.N.)

  11. The ion source development for neutral injection heating at JAERI

    International Nuclear Information System (INIS)

    Shirakata, H.; Itoh, T.; Kondoh, U.; Matsuda, S.; Ohara, Y.; Ohga, T.; Shibata, T.; Sugawara, T.; Tanaka, S.

    1976-01-01

    The neutral beam research and development effort at JAERI has been mainly concentrated on design, construction and testing of ion sources needed for present and planned heating experiments. Fundamental characteristics of the ion sources developed are described

  12. History of the JAERI linac facility for 33 years

    International Nuclear Information System (INIS)

    Ohkubo, Makio; Mizumoto, Motoharu; Nakajima, Yutaka; Mashiko, Katsuo

    1994-01-01

    The JAERI electron linear accelerator will be shutdown and disassembled at the end of 1993. At the JAERI, a prototype 20 MeV linac was constructed at 1960, and was used for the neutron time-of-flight experiments and for the isotope productions. An upgraded 120 MeV linac was constructed at 1972, and was used for many fields of research works until 1993. History of the JAERI Linac and the results of the works made using these facilities are reviewed, and also R/D on the accelerator engineering are described briefly. (author)

  13. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, Hiroshi; Kobayashi, Hideo

    1993-03-01

    Japan Atomic Energy Research Institute (JAERI) has continued the radiation background survey and environmental radiation monitoring to ensure the safety of the residents around the Institute. For the monitoring of β and γ radiations and α and β radioactivities in air, the centralized automatic environmental radiation monitoring system (EMS) applying a computer with monitoring stations (MS) was established. The system has been renewed twice in 1973 and 1988. In 1962, a new concept emergency environmental γ-ray monitoring system (MP) was begun to construct and completed in 1965 independent of EMS. The first renewal of the EMS was carried out by focusing on the rapid and synthetic judgement and estimation of the environmental impacts caused by radiation and radioactive materials due to the operation of nuclear facilities by centralizing the data measured at MS, MP, a meteorological station, stack monitors and drainage monitoring stations under the control of computer. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop caused by thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min. monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles. (J.P.N.)

  14. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    International Nuclear Information System (INIS)

    Sakai, Akihiro; Yoshimori, Michiro

    2001-01-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  15. Construction of new critical experiment facilities in JAERI

    International Nuclear Information System (INIS)

    Takeshita, Isao; Itahashi, Takayuki; Ogawa, Kazuhiko; Tonoike, Kotaro; Matsumura, Tatsuro; Miyoshi, Yoshinori; Nakajima, Ken; Izawa, Naoki

    1995-01-01

    Japan Atomic Energy Research Institute (JAERI) has promoted the experiment research program on criticality safety since early in 1980s and two types of new critical facilities, Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) were completed on 1994 in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF) of JAERI Tokai Research Establishment. STACY was designed so as to obtain critical mass data of low enriched uranium and plutonium solution which is extensively handled in LWR fuel reprocessing plant. TRACY is the critical facility where critical accident phenomenon is demonstrated with low enriched uranium nitrate solution. For criticality safety experiments with both facilities, the Fuel Treatment System is attached to them, where composition and concentration of uranium and plutonium nitrate solutions are widely varied so as to obtain experiments data covering fuel solution conditions in reprocessing plant. Design performances of both critical facilities were confirmed through mock-up tests of important components and cold function tests. Hot function test has started since January of 1995 and some of the results on STACY are to be reported. (author)

  16. Annual report of the Japan Atomic Energy Research Institute for fiscal 2002

    International Nuclear Information System (INIS)

    2003-01-01

    The Japan Atomic Energy Research Institute (JAERI) is comprehensively promoting the research and development (R and D) activities to make the best use of variety of potentials of atomic energy. In the field of nuclear energy, researches on advanced nuclear engineering systems, high-temperature engineering experimentation and nuclear fusion are forwarded to realize long-range stable supply of energy. Researches on safety of nuclear facilities, health physics and science and technology for society have been conducted in the safety category mainly according to 'Annual Plan for Safety Research' to play and important part in long-range utilization of power generation by LWRs and to meet the expectations of people by maintaining reliability and openness associated with 'safety and confidence'. As a diversification of nuclear science and technology, various radiation application activities such as neutron science, advanced photon science and synchrotron radiation science and application research of charged particles and radioisotopes have been promoted, which contribute to drastic advance in the fields of materials and life science etc. and to establishment of new industries. Along with these activities, basic and fundamental researches including advanced basic research, materials science research, nuclear environmental science research and advanced computational science and engineering are in progress. In addition, JAERI is devoted to the technology development in radioactive waste management and nuclear facility dismantling and also to international cooperation and training activities etc. in the peaceful use of nuclear energy. The research activities for FY 2002 are reviewed in this issue. (J.P.N.)

  17. Overview of HTGR heat utilization system development at JAERI

    International Nuclear Information System (INIS)

    Miyamoto, Y.; Shiozawa, S.; Ogawa, M.; Akino, N.; Shimizu, S.; Hada, K.; Inagaki, Y.; Onuki, K.; Takeda, T.; Nishihara, T.

    1998-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted research and development of nuclear heat utilization systems of a High Temperature Gas cooled Reactor (HTGR), which are capable to meet a large amount of energy demand without significant CO 2 emission to relax the global warming issue. The High Temperature engineering Test Reactor (HTTR) with thermal output of 30 MW and outlet coolant temperature of 950 deg C, the first HTGR in Japan, is under construction on the JAERI site, and its first criticality is scheduled for mid-1998. After the reactor performance and safety demonstration tests for several years, a hydrogen production system will be connected to the HTTR. A demonstration program on hydrogen production started in January 1997, in JAERI, as a study consigned by the Science and Technology Agency. A hydrogen production system connected to the HTTR is designed to be able to produce hydrogen by steam reforming of natural gas, using nuclear heat of 10 MW from the HTTR. The safety principle and standard are investigated for the HTTR hydrogen production system. In order to confirm safety, controllability and performance of key components in the HTTR hydrogen production system, an out-of-pile test facility on the scale of approximately 1/30 of the HTTR hydrogen production system is installed. It is equipped with an electric heater as a heat source instead of the HTTR. The out-of-pile test will be performed for four years after 2001. The HTTR hydrogen production system will be demonstratively operated after 2005 at its earliest plan. Other basic studies on the hydrogen production system using thermochemical water splitting, an iodine sulphur (IS) process, and technology of distant heat transport with microencapsulated phase change material have been carried out for more effective and various uses of nuclear heat. (author)

  18. Accounting and Control of Tritium at the Tritium Process Laboratory (TPL) of JAERI - Results of 15-year Operation and Research Activity -

    Science.gov (United States)

    Nishi, Masataka; Yamanishi, Toshihiko; Hayashi, Takumi; Yamada, Masayuki; Suzuki, Takumi

    Research and development work of fuel processing technology and tritium safe-handling technology necessary for fusion reactors has been performed at the Tritium Process Laboratory (TPL) of JAERI. TPL is the first facility in Japan permitted to handle tritium of more than 1g (about 0.36PBq), and its operation itself is also important for the development of fusion reactor facility in the viewpoint of tritium control. Various experiments have been carried out at TPL safely since 1988 controlling 22PBq of tritium as the maximum observing regulations. In addition to the regulatory accounting and control, detailed independent control in TPL was planned and was established throughits15-yearsafe-operation. For future fusion fuel facility where kilograms of tritium will be handled, method of tritium accounting has been researched and some new technologies have been developed at TPL. Results of TPL operation and of the research activity in it contributed the completion of the engineering design of ITER. Further research activity on tritium accounting and control is in progress in TPL for the future fusion reactors.

  19. Citation analysis in JAERI

    International Nuclear Information System (INIS)

    Nakamoto, Hideshiro; Shimizu, Takehiro.

    1982-01-01

    For purposes of the acquisition strategy the citation statistics were investigated on the articles which were published by JAERI staff in 1976, '77 and '78. The citations of 14,769 listed in the off-prints of 1,300 were analized by types of Literature, publication year, scattering, and so on. The results show that the occupation of technical reports increased and the lifetime became longer compared with the results of fifteen years ago. The journal ranking list is the important material for the acquisition of journals in our library. (author)

  20. Champion data comparison in nuclear research institutes in Europe, the U. S., and Japan

    International Nuclear Information System (INIS)

    Kazuaki Yanagisawa; Cutler, D.E.

    2011-01-01

    Bibliometric analysis was carried out for champion data comparisons among prestigious nuclear research institutes (PNRI) existed in Japan, the U. S., France, and Germany. The analysis was relied on database INIS (IAEA), ECD (DOE), WOS (Thomson), and SCOPUS (Elsevier). INIS is advanced, key ex-post evaluating tool for determining general research paper-based champion. Over the 30-year time span of research paper publication, the world champion among 11 PNRI is JAERI confirmed by INIS but ORNL confirmed by ECD, WOS, and SCOPUS, the latter two collected journal submitted research paper. Five years ago JAERI is the 3rd ranked institutes following ORNL and ANL. INIS database results revealed that CEA/Grenoble is the French domestic champion regarding research paper publication. Five years ago it was CEA/Saclay. Results from analytical tools used in bibliometric studies should be viewed with careful consideration to learn of any influencing factors because different characteristics exhibited by individual databases can sometimes generate conflicting bibliometric results. This was true among INIS, ECD, WOS, and SCOPUS when looking at trends especially between 5-year periods. (author)

  1. Report of the International Review Committee of the joint proposal of the Japan Hadron Facility (KEK) and the Neutron Science Project (JAERI)

    International Nuclear Information System (INIS)

    1999-08-01

    The International Review Committee composed of twelve Japanese and foreign experts was set up under the Research Evaluation Committee of JAERI, and has reviewed the proposed joint project combining JAERI's Neutron Science Project and KEK's Japan Hadron Facility into one major facility. The review meeting took place on April 26-27, 1999, at JAERI Head quarters, Tokyo. According to the points of review given in advance, the review was implemented based on the joint project report submitted and presentations of both institutions. The Research Evaluation Committee received the review report and its explanations from the Review Committee on July 5. The Research Evaluation Committee has acknowledged appropriateness of the review results. This report describes the review results. (author)

  2. JAERI TIARA annual report vol. 2 (1992)

    International Nuclear Information System (INIS)

    Ishigaki, Isao; Tanaka, Ryuichi; Nashiyama, Isamu; Naramoto, Hirosi; Omichi, Hideki; Toraishi, Akio; Watanabe, Hiromasa; Watanabe, Hiroshi

    1993-12-01

    This annual report describes research activities which have been performed with the JAERI TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities from April 1, 1992 to March 31, 1993. Summary reports of 60 papers and brief descriptions on status of TIARA in the period are contained. A list of publications, the type of research collaborations and organization of TIARA are also given as appendices. (author)

  3. Development of seismic risk analysis methodologies at JAERI

    International Nuclear Information System (INIS)

    Tanaka, T.; Abe, K.; Ebisawa, K.; Oikawa, T.

    1988-01-01

    The usefulness of probabilistic safety assessment (PSA) is recognized worldwidely for balanced design and regulation of nuclear power plants. In Japan, the Japan Atomic Energy Research Institute (JAERI) has been engaged in developing methodologies necessary for carrying out PSA. The research and development program was started in 1980. In those days the effort was only for internal initiator PSA. In 1985 the program was expanded so as to include external event analysis. Although this expanded program is to cover various external initiators, the current effort is dedicated for seismic risk analysis. There are three levels of seismic PSA, similarly to internal initiator PSA: Level 1: Evaluation of core damage frequency, Level 2: Evaluation of radioactive release frequency and source terms, and Level 3: Evaluation of environmental consequence. In the JAERI's program, only the methodologies for level 1 seismic PSA are under development. The methodology development for seismic risk analysis is divided into two phases. The Phase I study is to establish a whole set of simple methodologies based on currently available data. In the Phase II, Sensitivity study will be carried out to identify the parameters whose uncertainty may result in lage uncertainty in seismic risk, and For such parameters, the methodology will be upgraded. Now the Phase I study has almost been completed. In this report, outlines of the study and some of its outcomes are described

  4. Astronomical Research Institute Photometric Results

    Science.gov (United States)

    Linder, Tyler R.; Sampson, Ryan; Holmes, Robert

    2013-01-01

    The Astronomical Research Institute (ARI) conducts astrometric and photometric studies of asteroids with a concentration on near-Earth objects (NEOs). A 0.76-m autoscope was used for photometric studies of seven asteroids of which two were main-belt targets and five were NEOs, including one potentially hazardous asteroid (PHA). These objects are: 3122 Florence, 3960 Chaliubieju, 5143 Heracles, (6455) 1992 HE, (36284) 2000 DM8, (62128) 2000 SO1, and 2010 LF86.

  5. Centralized environmental radiation monitoring system in JAERI

    International Nuclear Information System (INIS)

    Katagiri, H.; Kobalyashi, H.

    1993-01-01

    JAERI has continued the environmental radiation background survey and monitoring to ensure the safety of the peoples around the institute since one year before the first criticality of JRR-1 (Japan Research Reactor No.1) in August 1957. Air absorbed doses from β and γ radiation, α and β radioactivity in air and the radioactivities in environmental samples were the monitoring items. For the monitoring of β and γ radiation and α and β radioactivity in air, monitoring station and the centralized automatic environmental radiation monitoring system applying a computer were established as a new challenging monitoring system for nuclear facility, which was the first one not only in Japan but also in the would in 1960 and since then the system has been renewed two times (in 1973 and 1988) by introducing the latest technology in the fields of radiation detection and computer control at each stage. Present system renewed in 1988 was designed to prevent the interruption of monitoring due to computer troubles, communication troubles and power failures especially an instant voltage drop arisen from thunder by reflecting the experiences through the operation and maintenance of the former system. Dual telemeters whose power is constantly supplied via batteries (capable of 10 min monitoring after power failure) are equipped in the monitoring center to cope with telemeter troubles, which has operated successfully without any suspension being attributable to the power failures and telemeter troubles

  6. Proceedings of the symposium on the joint research project between JAERI and Universities. Status and perspective of the advanced radiation technology project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    This report describes the Proceedings of the Symposium on the Joint Research Project between JAERI and Universities -Status and Perspective of the Advanced Radiation Technology Project-, held at Tokyo on January 27, 1999. After a series of conferences which had been held at the second or third year to present the main activities of this unique collaborative project system, the symposium was particularly focused on critical reviewing of the project and on its future. The scientific papers presented were the recent achievements in the themes: 1) nuclear spectroscopy and nuclear materials science with an isotope separator on-line; 2) radiation shielding and nuclear data for use of accelerators; 3) materials analysis methods using ion beams; 4) microstructure in polymer materials irradiated with ions; 5) effects of transmutation products in fusion-reactor materials; 6) physiological study of plants using positron-emitting isotopes. The new theme titled 'Development and application of micro PIXE analysis in the atmospheric pressure' was proposed. Eight panelists discussed the future of the project. The 17 papers are indexed individually. (J.P.N.)

  7. Design of a lattice for JAERI storage ring (JSR)

    International Nuclear Information System (INIS)

    Harada, Shunji; Yokomizo, Hideaki; Yanagida, Kenichi

    1990-08-01

    The new 8GeV synchrotron radiation facility (SPring-8) is planned to be constructed in Japan, and our institute (JAERI) are involved in this project with RIKEN. A compact electron storage ring JSR has been constructed in JAERI in order to study various kind of accelerator technologies, to test some devices such as the insertion devices and the beam monitors, and to train young researchers. The ring size is limited by the available space of a linac building, so that the circumference of JSR becomes 20.546 m. However, even in this small ring, one straight section with the length of ∼1.5 m, where the dispersion is free, is provided for the insertion device study. JSR takes Chasman-Green lattice with a superperiodicity of three. JSR is possible not only to suppress the dispersion but also to leave it on the long straight section. An electron beam from a linac is accepted into JSR in any operating modes. (author)

  8. R and D thermochemical I-S process at JAERI

    International Nuclear Information System (INIS)

    Onuki, K.; Kubo, S.; Nakajima, H.; Higashi, S.; Kasahara, S.; Ishiyama, S.; Okuda, H.

    2004-01-01

    The Japan Atomic Energy Research Institute (JAERI) has conducted a study on the thermochemical water-splitting process of the iodine-sulfur family (IS process). In the IS process, water will react with iodine and sulfur dioxide to produce hydrogen iodide and sulfuric acid, which are then decomposed thermally to produce hydrogen and oxygen. High temperature nuclear heat, mainly supplied by a High Temperature Gas-cooled Reactor (HTGR), is used to drive the endothermic decomposition of sulfuric acid. JAERI has demonstrated the feasibility of the water-splitting hydrogen production process by carrying out laboratory-scale experiments in which combined operation of fundamental reactions and separations using the IS process was performed continuously. At present, the hydrogen production test is continuing, using a scaled-up glass apparatus. Corrosion-resistant materials for constructing a large-scale plant and process improvements by introducing advanced separation techniques, such as membrane separation, are under study. Future R and D items are discussed based on the present activities. (author)

  9. Environmental monitoring activities in JAERI at JCO accident

    International Nuclear Information System (INIS)

    Yamaguchi, Takenori

    2001-01-01

    The Japan Atomic Energy Research Institute (JAERI) was involved in a various environmental monitoring activities, such as environmental radiation monitoring by monitoring post and monitoring car, air dust, soil, green vegetables and water sampling and measurements, neutron and gamma radiation dose rate survey around the JCO site for emergency response actions to the JCO accident on September 30, 1999. These activities were performed from Sep. 30 to Oct. 2, and were the initial and first stage activities in the emergency environmental monitoring activities. JAERI has been assigned to the public organization to support the government by Disaster Prevention Fundamental Law. These activities were performed to ensure the public safety to avoid the effluent of the accident. Through the environmental monitoring activities, I recognized that the importance of the accident information to make the best use for the initial environmental monitoring, and the monitoring information exchange is important to perform the effective monitoring activities for taking the early countermeasures such as evacuation to the public. (author)

  10. Analyses of superradiance and spiking-mode lasing observed at JAERI-FEL

    CERN Document Server

    Hajima, R; Nagai, R; Minehara, E J

    2001-01-01

    Japan Atomic Energy Research Institute (JAERI)-FEL has achieved quasi-CW lasing with an average power of 1.7 kW, the initial goal of the R and D program. The FEL extraction efficiency obtained completely exceeds the well-known limit for non-bunched beam, which is determined by the number of undulator periods. We have conducted numerical studies to characterize lasing dynamics observed at JAERI-FEL. Cavity-length detuning curves numerically obtained show good agreement with experimental results. Lasing behavior numerically obtained exhibits chaotic spiking-mode and superradiance as the cavity-length detuning approaches zero. Broadening of lasing spectrum observed in the experiments is explained by these lasing dynamics. The extraction efficiency becomes maximal at the perfect synchronization of the cavity length, where the lasing is quasi-stationary superradiance. We also compare these results with analytical theory previously reported.

  11. Research on the behavior of polonium produced in lead-bismuth eutectic irradiated with neutrons. JAERI's nuclear research promotion program, H10-026. Contract research

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Igashira, Masayuki; Yano, Toyohiko; Obara, Toru; Ohsaki, Toshiro

    2002-03-01

    Lead-Bismuth Eutectic (LBE) is proposed by several research institutes as a coolant of liquid metal cooled fast reactors, instead of sodium, and a target of accelerator driven subcritical nuclear reactor systems (ADS). LBE has some advantages that it is chemically inert compared to sodium and that its melting point is low like sodium. A problem might be that bismuth produces polonium, which is an alpha emitter, by irradiation of neutrons. The purpose of the study is to get information for quantitative estimations of the release of polonium on LBE cooled fast reactors and on ADSs by making it clear about production rate of polonium (information about cross section) by neutron irradiation of LBE, release rate of the produced polonium from LBE, and adsorption rate of the polonium on various materials. To get the information about production rate of polonium, neutron cross sections of bismuth were measured in keV energy region, which was important in fast reactors, by using the Pelletron accelerator in Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology. The obtained neutron capture cross sections were from 1/2 to 1/3 of the evaluated values in JENDL and the obtained polonium production cross sections were almost 1/3 of it. At the same time, an experimental device was designed for heating and adsorption experiments and the performance was tested. The performance of alpha spectrometer was tested also. By those the method was established for the measurement of polonium released from melted LBE after neutron irradiation. (author)

  12. Research Institute for Technical Careers

    Science.gov (United States)

    Glenn, Ronald L.

    1996-01-01

    The NASA research grant to Wilberforce University enabled us to establish the Research Institute for Technical Careers (RITC) in order to improve the teaching of science and engineering at Wilberforce. The major components of the research grant are infrastructure development, establishment of the Wilberforce Intensive Summer Experience (WISE), and Joint Research Collaborations with NASA Scientists. (A) Infrastructure Development. The NASA grant has enabled us to improve the standard of our chemistry laboratory and establish the electronics, design, and robotics laboratories. These laboratories have significantly improved the level of instruction at Wilberforce University. (B) Wilberforce Intensive Summer Experience (WISE). The WISE program is a science and engineering bridge program for prefreshman students. It is an intensive academic experience designed to strengthen students' knowledge in mathematics, science, engineering, computing skills, and writing. (C) Joint Collaboration. Another feature of the grant is research collaborations between NASA Scientists and Wilberforce University Scientists. These collaborations have enabled our faculty and students to conduct research at NASA Lewis during the summer and publish research findings in various journals and scientific proceedings.

  13. Ex-post evaluation by bibliometric method. Institutional comparison among 9 resembled foreign research institutes by using the energy citation database (ECD)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-09-01

    From a viewpoint of ex-post evaluation, research papers published from nine resembled nuclear research institutes located in Japan, the U.S.A., Germany and France were compared by a bibliometric method. A research database used was the Energy Citation Database (ECD) owned by USDOE. ECD is a database run by USDOE and has a high frequency of research paper acquisition assembled in the U.S. Response speed of ECD on the Website is quick and all logged data can be handled easily. INIS database is run by the International Atomic Energy Agency (IAEA) and contains a lot of nuclear research papers collected from the member countries such as the U.S.A., Japan, Germany and France. INIS underestimates about 20% of the U.S.A. data than that of ECD. I. Institutional Comparison. (1) ECD shows that a total number of research papers published during 25 years (1978-2002) was of the order of the ORNL (34, 149 papers)>SNL>ANL>BNL>Idaho (>Karlsruhe>JAERI>Jeulich>Cadarache). Where, INIS shows it as ORNL>JAERI. (2) ECD can show a long-term data comparison with a time span more than 50 years (1953-2002). Disclosed research papers were of the order of the ORNL (55,857)>ANL (37,129)>SNL (24,628)>BNL (24,829)> Idaho (2,398). There were many records loaded without publication dates-over 50,000. Because of this, any searches which use dates are not finding these documents. Typically, the author found over 5,000 SNL items in the NSA range of records. SNL also kept a lot of defense reports, those are not disclosed yet. One had better know a historical background of each cite as to the case for long-range dates comparison. (3) ECD founds that research papers at a five-year period varied those numbers. At past (10), thus 1988-1922, paper reduction occurred sharply at most US-institutes. This might be attributed to lay-offs, funding shifts or complete elimination of programs, a policy change in reporting requirements for contract reporting deliverables. Definitions of what constituted STI (science

  14. [Biological research and security institutes].

    Science.gov (United States)

    Darsie, G; Falczuk, A J; Bergmann, I E

    2006-04-01

    The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.

  15. The United Nuclear Research Institute

    International Nuclear Information System (INIS)

    Kiss, D.

    1978-01-01

    The UNRI, the only common institute of the socialist countries was founded in 1956 in Dubna. The scientists of small countries have the opportunity to take part in fundamental research with very expensive devices which are usually not available for them. There are six research laboratories and one department in the UNRI namely: the theoretical physical laboratory; the laboratory of high energies - there is a synchrophasotron of 1a GeV there; the laboratory of nuclear problems - there is a synchrocyclotron of 680 MeV there; the laboratory of nuclear reactions with the cyclotron U-300 which can accelerate heavy ions; the neutronphysical laboratory with the impulse reactor IBM-30; the laboratory of computation and automatization with two big computers; the department of new acceleration methods. The main results obtained by Hungarian scientist in Dubna are described. (V.N.)

  16. Ultralow temperature helium compressor for Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Asakura, Hiroshi

    1988-01-01

    Ishikawajima Harima Heavy Industries Co., Ltd. started the development of an ultralow temperature helium compressor for helium liquefaction in 1984 jointly with Japan Atomic Energy Research Institute, and has delivered the first practical machine to the Superconductive Magnet Laboratory of JAERI. For a large superconductive magnet to be used in the stable state for a fusion reactor, conventional superconductive materials (NbTi, NbTi 3 Sn, etc.) must be used, being cooled forcibly with supercritical helium. The supercritical helium which is compressed above the critical pressure of 228 kPa has a stable cooling effect since the thermal conductivity does not change due to the evaporation of liquid helium. In order to maintain the temperature of the supercritical helium below 4 K before it enters a magnet, a heat exchanger is used. The compressor that IHI has developed has the ability to reduce the vapor pressure of liquid helium from atmospheric pressure to 50.7 kPa, and can attain the temperature of 3.5 K. The specification of this single stage centrifugal compressor is: mass flow rate 25 - 64 g/s, speed 80,000 rpm, adiabatic efficiency 62 - 69 %. The structure and the performance are reported. (K.I.)

  17. Joint Global Change Research Institute (JGCRI)

    Data.gov (United States)

    Federal Laboratory Consortium — The Joint Global Change Research Institute (JGCRI) is dedicated to understanding the problems of global climate change and their potential solutions. The Institute...

  18. Progress report on neutron scattering research. April 1, 1999 - March 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru; Aizawa, Kazuya; Katano, Susumu (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    This issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor (JRR-3M) during the period between April 1, 1999 and March 31, 2000. (author)

  19. Progress report on neutron scattering research. April 1, 2002 - March 31, 2003

    International Nuclear Information System (INIS)

    Koizumi, Satoshi; Matsuda, Masaaki; Kurihara, Kazuo

    2004-03-01

    This issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor JRR-3 during the period between April 1, 2002 and March 31, 2003. (author)

  20. Progress report on neutron scattering research (April 1, 1998 - March 31, 1999)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi; Fujiwara, Satoru; Aizawa, Kazuya [eds.] [Advanced Science Research Center (Tokai Site), Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-03-01

    The present issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor (JRR-3M) during the period between April 1, 1998 and March 31, 1999. (author)

  1. Progress report on neutron scattering research. April 1, 2001 - March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Katano, Susumu; Koizumi, Satoshi; Matsuda, Masaaki (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    This issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor JRR-3M during the period between April 1, 2001 and March 31, 2002. (author)

  2. Progress report on neutron scattering research. April 1, 2000 - March 31, 2001

    International Nuclear Information System (INIS)

    Aizawa, Kazuya; Katano, Susumu; Koizumi, Satoshi

    2002-03-01

    This issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor (JRR-3M) during the period between April 1, 2000 and March 31, 2001. (author)

  3. Institutional Repositories in Indian Universities and Research Institutes: A Study

    Science.gov (United States)

    Krishnamurthy, M.; Kemparaju, T. D.

    2011-01-01

    Purpose: The purpose of this paper is to report on a study of the institutional repositories (IRs) in use in Indian universities and research institutes. Design/methodology/approach: Repositories in various institutions in India were accessed and described in a standardised way. Findings: The 20 repositories studied covered collections of diverse…

  4. Verification of the computational dosimetry system in JAERI (JCDS) for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Kumada, H; Yamamoto, K; Matsumura, A; Yamamoto, T; Nakagawa, Y; Nakai, K; Kageji, T

    2004-01-01

    Clinical trials for boron neutron capture therapy (BNCT) by using the medical irradiation facility installed in Japan Research Reactor No. 4 (JRR-4) at Japan Atomic Energy Research Institute (JAERI) have been performed since 1999. To carry out the BNCT procedure based on proper treatment planning and its precise implementation, the JAERI computational dosimetry system (JCDS) which is applicable to dose planning has been developed in JAERI. The aim of this study was to verify the performance of JCDS. The experimental data with a cylindrical water phantom were compared with the calculation results using JCDS. Data of measurements obtained from IOBNCT cases at JRR-4 were also compared with retrospective evaluation data with JCDS. In comparison with phantom experiments, the calculations and the measurements for thermal neutron flux and gamma-ray dose were in a good agreement, except at the surface of the phantom. Against the measurements of clinical cases, the discrepancy of JCDS's calculations was approximately 10%. These basic and clinical verifications demonstrated that JCDS has enough performance for the BNCT dosimetry. Further investigations are recommended for precise dose distribution and faster calculation environment

  5. Annual report of Nuclear Science Research Institute, JFY2005

    International Nuclear Information System (INIS)

    2007-04-01

    Japan Atomic Energy Agency (JAEA) was inaugurated on October 1st, 2005. Works for the operation and maintenance of various research facilities as well as safety management, radiation protection, and radioactive wastes management, which have been undertaken by departments in Tokai Research Establishment of Japan Atomic Energy Research Institute (JAERI), were inherited by newly established departments of Nuclear Science Research Institute (NSRI). The NSRI is composed of Planning and Coordination Office and seven departments such as Department of Operational Safety Administration, Department of Radiation Protection, Department of Research Reactor and Tandem Accelerator, Department of Hot Laboratories and Facilities, Department of Criticality and Fuel Cycle Research Facilities, Department of Decommissioning and Waste Management, and Engineering Services Department. This annual report of JFY 2005 summarizes the activities of NSRI and is expected to be referred to and utilized by R and D departments and project promotion sectors at NSRI site for the enhancement of their own research and management activities to attain their goals according to Middle-term Plan' successfully and effectively. In chapter 1, outline of organization and administrative activities of NSRI is described. In chapter 2, the following activities made by the departments in NSRI are summarized, i.e., (1) operation and maintenance of research reactors (JRR-3, JRR-4, NSRR), criticality assemblies (STACY, TRACY, FCA, TCA), hot laboratories, (BECKY, Reactor Fuel Examination Facility, WASTEF, Research Laboratory 4, Plutonium Research Laboratory 1, Tokai Hot Laboratory, etc), and large-scale facilities (Tandem accelerator, LSTF, THYNC, TPTF, etc), and (2) safety management, radiation protection, management of radioactive wastes, decommissioning of nuclear facilities, engineering services, utilities and maintenance, etc, all of which are indispensable for the stable and safe operation and utilization of the

  6. Waste management for JAERI fusion reactors

    International Nuclear Information System (INIS)

    Tobita, K.; Nishio, S.; Konishi, S.; Jitsukawa, S.

    2004-01-01

    In the fusion reactor design study at Japan Atomic Energy Institute (JAERI), several waste management strategies were assessed. The assessed strategies are: (1) reinforced neutron shield to clear the massive ex-shielding components from regulatory control; (2) low aspect ratio tokamak to reduce the total waste; (3) reuse of liquid metal breeding material and neutron shield. Combining these strategies, the weight of disposal waste from a low aspect ratio reactor VECTOR is expected to be comparable with the metal radwaste from a light water reactor (∼4000 t)

  7. Institutional failures and transaction costs of Bulgarian private research institutes

    OpenAIRE

    Nozharov, Shteryo

    2016-01-01

    The paper analyses the reasons for poor performance of private research institutes in Bulgaria. In this regard the Institutional Economics methods are used. A connection between smart growth policy goals and Bulgarian membership in EU is made. The gaps in the institutional environment are identified as well as measures for their elimination are proposed. The main accent of the study is put on the identification of transaction costs, arisen as a result of the failures of the institutional envi...

  8. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no.19)

    International Nuclear Information System (INIS)

    1987-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1985 through March 31, 1986. The latest report, for 1984, is JAERI-M 86-051. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  9. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 20)

    International Nuclear Information System (INIS)

    1989-01-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1986 through March 31, 1987. The latest report, for 1985, is JAERI-M 87-046. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  10. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, 14

    International Nuclear Information System (INIS)

    1981-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1980 through March 31, 1981. The latest report, for 1980, is JAERI-M 9214. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  11. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1982-12-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1981 through March 31, 1982. The latest report, for 1981, is JAERI-M 9856. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  12. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, No. 12

    International Nuclear Information System (INIS)

    1979-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1978 through March 31, 1979. The latest report, for 1978, is JAERI-M 7949. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  13. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (17)

    International Nuclear Information System (INIS)

    1985-01-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1983 through March 31, 1984. The latest report, for 1983, is JAERI-M 83-199. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  14. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (13)

    International Nuclear Information System (INIS)

    1980-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1979 through March 31, 1980. The latest report, for 1979, is JAERI-M 8569. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, hydrogen and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  15. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (9)

    International Nuclear Information System (INIS)

    1976-09-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1975 through March 31, 1976. The latest report, for 1975, is JAERI-M 6260. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and drafting. (auth.)

  16. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (no. 18)

    International Nuclear Information System (INIS)

    1986-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1984 through March 31, 1985. The latest report, for 1984, is JAERI-M 84-239. Detailed descriptions of the activities are presented in the following subjects: studies on surface phenomena under electron and ion irradiations; polymerization under the irradiation of electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  17. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, No. 10

    International Nuclear Information System (INIS)

    1977-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1976 through March 31, 1977. The latest report, for 1976, is JAERI-M 6702. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (auth.)

  18. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute (no. 16)

    International Nuclear Information System (INIS)

    1983-11-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1982 through March 31, 1983. The latest report, for 1982, is JAERI-M 82-192. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide, water and methane; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  19. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute, (no. 11)

    International Nuclear Information System (INIS)

    1978-10-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1977 through March 31, 1978. The latest report, for 1977, is JAERI-M 7355. Detailed descriptions of the activities are presented in the following subjects: studies on reactions of carbon monoxide and hydrogen; polymerization under the irradiation of high dose rate electron beams; modification of polymers, degradation, cross-linking, and grafting. (author)

  20. Research Institute for Medical Biophysics

    International Nuclear Information System (INIS)

    Wynchank, S.

    1989-01-01

    The effects of ionising and non-ionising radiation on rodent tumours and normal tissue were studied in terms of cellular repair and the relevant biochemical and biophysical changes following radiation. Rodent tumours investigated in vivo were the CaNT adenocarcinoma and a chemically induced transplantable rhabdomyosarcoma. Radiations used were 100KVp of X-Rays, neutron beams, various magnetic fields, and microwave radiation of 2450MHz. The biochemical parameters measured were, inter alia, levels of adenosine-5'-triphoshate (ATP) and the specific activity of hexokinase (HK). Metabolic changes in ATP levels and the activity of HK were observed in tumour and normal tissues following ionising and non-ionising radiation in normoxia and hypoxia. The observation that the effect of radiation and chemotherapeutic treatment of some tumours may be size dependent can possibly now be explained by the variation of ATP content with tumour size. The enhanced tumour HK specific activity implies increased metabolism, possibly a consequence of cellular requirements to maintain homeostasis during repair processes. Other research projects of the Research Institute for Medical Biophysics involved, inter alia, gastroesophageal scintigraphies to evaluate the results of new forms of therapy. 1 ill

  1. Decommissioning project feedback experience in the Japan Atomic Energy Research Institut

    International Nuclear Information System (INIS)

    Yanagihara, S.; Tachibana, M.; Miyajima, K.

    2003-01-01

    Since starting the research and development program for peaceful use of nuclear energy in 1950's, various research and demonstration facilities have been constructed in research organizations, universities and commercial sectors in Japan. Some of the nuclear facilities constructed in the early stage of research and development have been retired to be decommissioned because of completion of the initial objectives in the Japan Atomic Energy Research Institute (JAERI). On the other hand, since the first commercial operation of nuclear power plant (1968), the number of nuclear power plants has increased up to 52 plants operating as of August 2003 in Japan. The shear of nuclear energy accounts approximately for 35% of electricity generation in total at present time. However, several nuclear power plants have been operated for more than 25 years and two nuclear power plants are expected to be finally shutdown by 2010 to be eventually decommissioned. The Tokai Power Station, the oldest Japanese nuclear power plant operated by the Japan Atomic Power Company, was permanently shutdown from March 1998 and it is in decommissioning stage at this time. The Fugen, which is advanced thermal reactor operated by the Japan Nuclear Cycle Development Institute (JNC), was finally shutdown on March, 2003 after 25 years operation to be decommissioned. In addition, relating to planned unification between JAERI and JNC in 2005, the studies have been in progress on decommissioning and radioactive waste treatment and disposal; the cost was estimated to be 10 to 30 billion Japanese yens per year during 80 years for decommissioning of nearly 200 nuclear facilities. Decommissioning of nuclear facilities is thus getting to be one of important issues in Japan. Decommissioning of nuclear facilities might be possible using conventional and/or partially improved technology. However, reviewing project feedback experience on decommissioning and decontamination might contribute to solve various issues

  2. Institutional Support : Kenya Institute for Public Policy Research and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    In 2006 the Government of Kenya passed an Act of Parliament making the Kenya Institute for Public Policy Research and Analysis (KIPPRA) the government's lead socioeconomic research institute. The Act exerts enormous demands on KIPPRA at a time when it is trying to recover from the senior staff turnover suffered in ...

  3. Annual report of the Japan Atomic Energy Research Institute for fiscal 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The Japan Atomic Energy Research Institute (JAERI) has promoted some researches for contributing to general development of science and technology based on nuclear research and development such as neutron science research, light quantum and radiation beam science research, radiation application research, high level computational science research, advanced basic research, and so forth, along the 'Long-term plan on nuclear research, development and application' established on June, 1994. And, researches and developments on leading energy system bringing breakthrough of nuclear technology such as study on future type energy system, research and development of nuclear fusion, and high temperature engineering test research. In addition, as a research containing both fields of general nuclear science and nuclear energy, safety research and health and physics research were also promoted. Furthermore, together with not only inland co-operation with industry, university and institute, but also promotion of diverse international co-operation, effective research and development has been carried out by various research assistant business. Here were described in details on researches on neutron science, light quantum and radiation beam science, radiation application, material science, environmental science, advanced basic research, high level computational science, nuclear fusion, future type energy system, high-temperature engineering test, safety, and relative research, and on operation and safety management, relative technology and outsider operation, and construction arrangement. (G.K.)

  4. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    The Harish-Chandra Research Institute (known as the Mehta Research Institute of Math- ematics and Mathematical Physics until October 2000) came into existence in 1975, with a donation of some land and Rs. 40 lakhs from the B S Mehta Trust in Calcutta. With the aim of converting it into a top-class research Institute in ...

  5. Gas Research Institute wetland research program

    International Nuclear Information System (INIS)

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables

  6. Technical report on the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1993-05-01

    Japan Atomic Energy Research Institute (JAERI) conducts Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan (STA) under the auspices of the special account law for electric power development promotion. The purpose of these tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the light water reactor power plants. The tests with large experimental facilities had ended already in 1990. Presently piping reliability analysis by the probabilistic fracture mechanics method is being done. Until now annual reports concerning the proving tests were produced and submitted to STA, whereas this report summarizes the test results done during these 16 years. Objectives of the piping reliability proving tests are to prove that the primary piping of the light water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location even if it ruptured suddenly. To attain these objectives (i) pipe fatigue tests, (ii) unstable pipe fracture tests, (iii) pipe rupture tests and also the analyses by computer codes were done. After carrying out these tests, it is verified that the piping is reliable throughout the service period. The authors of this report are T. Isozaki, K. Shibata, S. Ueda, R. Kurihara, K. Onizawa and A. Kohsaka. The parts they wrote are shown in contents. (author)

  7. National Institute of Nursing Research

    Science.gov (United States)

    ... Medicine at NINR Research Highlights Data Science and Nursing Research Spotlight on End-of-Life and Palliative Care Research Spotlight on Symptom Management Research Spotlight on Pain Research The Science of Compassion: Future Directions in ...

  8. Auditing as Institutional Research: A Qualitative Focus.

    Science.gov (United States)

    Fetterman, David M.

    1991-01-01

    Internal institutional auditing can improve effectiveness and efficiency and protect an institution's assets. Many of the concepts and techniques used to analyze higher education institutions are qualitative in nature and suited to institutional research, including fiscal, operational, data-processing, investigative, management consulting,…

  9. Using institutional theory in enterprise systems research

    DEFF Research Database (Denmark)

    Svejvig, Per

    2013-01-01

    This paper sets out to examine the use of institutional theory as a conceptually rich lens to study social issues of enterprise systems (ES) research. More precisely, the purpose is to categorize current ES research using institutional theory to develop a conceptual model that advances ES research...... model that advocates multi-level and multi-theory approaches and applies newer institutional aspects such as institutional logics. The findings show that institutional theory in ES research is in its infancy and adopts mainly traditional institutional aspects like isomorphism, with the organization....... Key institutional features are presented such as isomorphism, rationalized myths, and bridging macro and micro structures, and institutional logics and their implications for ES research are discussed. Through a literature review of 181 articles, of which 18 papers are selected, we build a conceptual...

  10. Atomic and Molecular Data activities at NDC/JAERI

    International Nuclear Information System (INIS)

    Shirai, Toshizo

    2000-01-01

    The NDC/JAERI is a member of the international atomic and molecular (A+M) data center network for fusion, coordinated by the International Atomic Energy Agency. In this poster we introduce our Evaluated Atomic and Molecular Data Library (JEAMDL) developed in collaboration with the JAERI Research Committee on A+M Data and with researchers of ORNL and NIST under the US-Japan fusion cooperation program. JEAMDL comprises databases of collision cross section data and of spectroscopic data. We briefly summarize these two databases below. (author)

  11. Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-06-30

    This is a second quarter 1194 progress report on the UNLV Information Science Research Institute. Included is symposium activity; staff activity; document analysis program; text retrieval program; institute activity; and goals.

  12. TIT reactor laboratory course using JAERI and PNC large experimental facilities

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Obara, Toru; Ohtani, Nobuo.

    1995-01-01

    This report is presented on a reactor laboratory course for graduate students using large facilities in national laboratories in Japan. A reactor laboratory course is offered every summer since 1990 for all graduate students in the Nuclear Engineering Course in Tokyo Institute of Technology (TIT), where the students can choose one of the experiments prepared at Japan Atomic Energy Research Institute (JAERI), Power Reactor and Nuclear Fuel Development Corporation (PNC) and Research Reactor Institute, Kyoto University (KUR). Both JAERI and PNC belong to Science and Technology Agency (STA). This is the first university curriculum of nuclear engineering using the facilities owned by the STA laboratories. This type of collaboration is promoted in the new Long-Term Program for Research, Development and Utilization of Nuclear Energy adopted by Atomic Energy Commission. Most students taking this course reported that they could learn so much about reactor physics and engineering in this course and the experiment done in large laboratory was a very good experience for them. (author)

  13. Evaluation of nuclear knowledge management: An outcome in JAERI

    International Nuclear Information System (INIS)

    Yanagisawa, K.

    2006-01-01

    The author performed an ex post evaluation on the nuclear research of JAERI and revealed that the national funds invested in this field were 4 b$. With aid of NKM, it was revealed that the total outcome was 6 b$, where the creation of nuclear markets for electricity and nuclear facilities was the main stream. This implies that the cost benefit effect is 6 b$/4 b$ = 1.5 (>1). From this, it can be concluded that JAERI contributes not only to technological promotion of nuclear activity but also to the increase of gross domestic product (GDP). (author)

  14. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1988

    International Nuclear Information System (INIS)

    1989-01-01

    At present, a half century has elapsed since the discovery of nuclear fission, and atomic energy has taken the position of basic energy already, accordingly the development and utilization of atomic energy is very important as the energy source which can supply energy for long term economically and stably. Along the long term plan of atomic energy development and utilization decided in 1987, Japan Atomic Energy Research Institute (JAERI) advanced the research and development, thus it has borne the role as the nucleus general research institute in atomic energy fields. It has exerted efforts to obtain the understanding and trust of the nation on atomic energy, and has promoted the pioneering project research, such as safety research, high temperature engineering test and research, the research and development of nuclear fusion, the research on radiation utilization and the research and development of nuclear-powered ships. In the safety research, in order to contribute to the further rooting of LWRs and the establishment of nuclear fuel cycle, the research on the engineering safety of nuclear facilities and environmental safety has been advanced. The activities in respective research fields are summarized. Also the international cooperation with USA, FRG, China and others were carried out smoothly. (K.I.)

  15. Development of reconstitution technique of irradiated specimens. 3. Report for FY 1995 and FY 1996 on JAERI-IHI cooperated research program (joint research)

    Energy Technology Data Exchange (ETDEWEB)

    Nishiyama, Yutaka; Fukaya, Kiyoshi; Onizawa, Kunio; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nakamura, Terumi; Kaihara, Shoichiro; Yoshida, Kazuo; Sato, Akira

    1998-10-01

    The cooperated research between Japan Atomic Energy Research Institute and Ishikawajima-Harima Heavy Industries Co., Ltd. on the development of reconstitution technique of irradiated reactor pressure vessel surveillance specimens has been performed from FY 1993. In FY 1993-1994, the method of surface activated joining (SAJ) was applied to reconstitution of Charpy impact specimens. Some verification tests using unirradiated reactor pressure vessel plate materials have shown that SAJ is feasible for a reconstitution technique, in particular, owing to low joining temperature. The present paper reports the results of the cooperated research performed in FY 1995-1996. To improve the quality of the SAJ, the configuration of the end tab surface to be joined with the insert material was modified. The torque measured during joining was also introduced in joining parameters. A nondestructive inspection, temperature measurements in the specimens during joining were performed. The effect of joining on Charpy impact properties was discussed. For practical application of the technique to irradiated specimens, we confirmed that the impact specimens with joining interface gave rise to no failure at the joining position during impact test after neutron irradiation. (author)

  16. Low Vision Research at the Schepens Eye Research Institute

    National Research Council Canada - National Science Library

    D'Amore, Patricia

    2003-01-01

    This research proposal, Low Vision at the Schepens Eye Research Institute, is a collaborative effort on the part of four Investigators at the Institute whose goal is to advance the studies on low vision...

  17. Current studies on the decommissioning materials recycling at Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Fujiki, K.; Nakamura, H.

    1993-01-01

    Rational treatment of a large volume of solid wastes resulting from the reactor dismantling is a key to success to carry out the decommissioning smoothly. From this viewpoint, the Japan Atomic Energy Research Institute (JAERI) has been conducting development of the recycling technology for metal waste and an investigation study on the rational recycling system for the dismantling wastes recycling. With respect to the development of the recycling technology, series of melting tests using non-contaminated metals, metal waste dismantled from JPDR or imitated waste using radioisotopes have been conducted. The basic characteristics of the radionuclides transport behavior during the melting have been understood. In the investigation study on the rational recycling system, a scenario of recycling the wastes was developed based on the amount of waste arising from decommissioning nuclear power plants, and necessary processing facilities were examined, and safety and economy of the process were evaluated

  18. Construction plan of ion irradiation facility in JAERI

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi

    1987-01-01

    The Takasaki Radiation Chemistry Research Establishment of Japan Atomic Energy Research Institute (JAERI) started the construction of an ion irradiation facility to apply ion beam to the research and development of radiation resistant materials for severe environment, the research on biotechnology and new functional materials. This project was planned as ion beam irradiation becomes an effective means for the research on fundamental physics and advanced technology, and the national guideline recently emphasizes the basic and pioneering field in research and development. This facility comprises an AVF cyclotron with an ECR ion source (maximum proton energy: 90 MeV), a 3 MV tandem accelerator, a 3 MV single end type Van de Graaf accelerator and a 400 kV ion implanter. In this report, the present status of planning the accelerators and the facility to be constructed, the outline of research plan, the features of the accelerators, and the beam characteristics are described. In this project, the research items are divided into the materials for space environment, the materials for nuclear fusion reactors, biotechnology, new functional materials, and ion beam technology. The ion beams required for the facility are microbeam, pulsed beam, multiple beam, neutron beam and an expanded irradiation field. (Kako, I.)

  19. Intraoperative boron neutron capture therapy for malignant gliomas. First clinical results of Tsukuba phase I/II trial using JAERI mixed thermal-epithermal beam

    International Nuclear Information System (INIS)

    Matsumura, A.; Yamamoto, T.; Shibata, Y.

    2000-01-01

    Since October 1999, a clinical trial of intraoperative boron neutron capture therapy (IOBNCT) is in progress at JRR-4 (Japan Research Reactor-4) in Japan Atomic Energy Research Institute (JAERI) using mixed thermal-epithermal beam (thermal neutron beam I: TNB-I). Compared to pure thermal beam (thermal neutron beam II: TNB-II), TNB-I has an improved neutron delivery into the deep region than TNB-II. The clinical protocol and the preliminary results will be discussed. (author)

  20. Development program on HTTR heat application systems at JAERI

    International Nuclear Information System (INIS)

    Ogawa, M.; Inagaki, Y.; Nishihara, T.; Shimizu, S.; Shiozawa, S.; Miyamoto, Y.

    2000-01-01

    The High Temperature Engineering Test Reactor (HTTR), which is a Japanese High Temperature Gas-cooled Reactor (HTGR) with 30 MW thermal output at 950 deg. C of the coolant outlet temperature, was constructed at Oarai Research Establishment of Japan Atomic Energy Research Institute (JAERI). The HTTR has attained the first criticality on November 1998. In JAERI, a hydrogen production system was selected as a heat utilization system of the HTTR. The development program on the HTTR hydrogen production system consists of two parts: one is to establish technologies connecting the hydrogen production system with the HTTR, the other is to establish technologies producing hydrogen from water by using nuclear heat. Finally, hydrogen can be produced from water by using nuclear heat supplied by the HTTR. In the hydrogen production system connected to the HTTR at first, JAERI selected a steam reforming process because its technology had matured. The HTTR hydrogen production system adopting the steam reforming process is being designed to produce hydrogen of about 3800 Nm 3 /hr by using nuclear heat (10MW, 905 deg. C) supplied from the HTTR. The safety principle and criteria are also being investigated for the HTTR hydrogen production system. A facility for an out-of-pile test prior to the demonstration test with the HTTR hydrogen production system is under manufacturing to carry out tests of safety, controllability and performance. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30. The tests will be started in 2001 and continued for 4 years or longer. In parallel to the tests, a hydrogen/tritium permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the HTTR hydrogen production system. A kind of thermochemical method called IS process is under studying to produce hydrogen from water by

  1. National Human Genome Research Institute

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  2. Annual report of the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1993-01-01

    JAERI has conducted nuclear safety research in conformity with the national five year plan for safety research on nuclear installations, radioactive waste management and environmental radiation, and the research on engineering safety and environmental safety is described. In the research on high temperature engineering, the construction of the high temperature test reactor, the research on its fuel and materials, the reactor engineering, high temperature structures, safety and heat transfer, and nuclear heat application are reported. On the research and development of nuclear fusion, core plasma, core engineering technology and so on have been studied, and the engineering design activities for the international thermonuclear experimental reactor are in progress. On the research and development of radiation application, radiation processing, advanced radiation application and radioisotope production have been researched. The experiment on the nuclear ship 'Mutsu' was completed, and the research on the design of improved marine reactors has been advanced. Fundamental and related researches on various subjects are also reported. (K.I.)

  3. National Nuclear Research Institute Annual Report 2013

    International Nuclear Information System (INIS)

    2014-01-01

    The report highlights the activities of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission for the year 2013, grouped under the following headings: Centres under the institute namely Nuclear Reactors Research Centre (NRRC); Accelerator Research Centre (ARC); Engineering Services Centre (ESC); National Radioactive Waste Management Centre (NRWMC); Nuclear Chemistry and Environmental Research Centre (NCERC); Nuclear Applications Centre (NAC) and National Data Centre (NDC). (A. B.)

  4. Proceedings of the 2nd JAERI symposium on HTGR technologies October 21 ∼ 23, 1992, Oarai, Japan

    International Nuclear Information System (INIS)

    1993-01-01

    The Japan Atomic Energy Research Institute (JAERI) held the 2nd JAERI Symposium on HTGR Technologies on October 21 to 23, 1992, at Oarai Park Hotel at Oarai-machi, Ibaraki-ken, Japan, with support of International Atomic Energy Agency (IAEA), Science and Technology Agency of Japan and the Atomic Energy Society of Japan on the occasion that the construction of the High Temperature Engineering Test Reactor (HTTR), which is the first high temperature gas-cooled reactor (HTGR) in Japan, is now being proceeded smoothly. In this symposium, the worldwide present status of research and development (R and D) of the HTGRs and the future perspectives of the HTGR development were discussed with 47 papers including 3 invited lectures, focusing on the present status of HTGR projects and perspectives of HTGR Development, Safety, Operation Experience, Fuel and Heat Utilization. A panel discussion was also organized on how the HTGRs can contribute to the preservation of global environment. About 280 participants attended the symposium from Japan, Bangladesh, Germany, France, Indonesia, People's Republic of China, Poland, Russia, Switzerland, United Kingdom, United States of America, Venezuela and the IAEA. This paper was edited as the proceedings of the 2nd JAERI Symposium on HTGR Technologies, collecting the 47 papers presented in the oral and poster sessions along with 11 panel exhibitions on the results of research and development associated to the HTTR. (author)

  5. Options for a next generation neutron source for neutron scattering based on the projected linac facility at JAERI

    International Nuclear Information System (INIS)

    Mezei, F.; Watanabe, Noboru; Niimura, Nobuo; Morii, Yukio; Aizawa, Kazuya; Suzuki, Jun-ichi.

    1997-03-01

    Japan Atomic Energy Research Institute (JAERI) has a project to construct a high intensity proton accelerator to promote wide basic science using neutrons and nuclear power technologies such as radioactive nuclide transmutation. One of the most important field for utilization of neutron beam is neutron scattering. The energy and the averaged current obtained by the proton accelerator are 1.5 GeV and 4-5.3 mA, respectively and these provide 6-8 MW power. The repetition frequency is 50-60 Hz. Evaluation of options for the use of accelerators for neutron production for neutron scattering research and investigation of the neutron research opportunities offered by sharing the superconducting linac planned at JAERI were discussed. There are two ways of the utilization of proton beams for neutron scattering experiment. One is for long pulse spallation source (LPSS) and the other is for short pulse spallation source (SPSS). Quantitative evaluation of instrument performance with LPSS and SPSS was examined in the intensive discussion, calculations, workshop on this topics with Prof. F. Mezei who stayed at JAERI from October 24 to November 6, 1996. A report of the collaborative workshop will be also published separately. (author)

  6. Research on the mechanism of inhibition of stress corrosion cracking by water chemistry of nuclear reactor. JAERI's nuclear research promotion program, H10-004 (contact research)

    International Nuclear Information System (INIS)

    Shibata, Toshio; Haruna, Takumi; Fujimoto, Shinji; Zhang, Shenghan

    2000-09-01

    We have developed a slow strain rate testing apparatus combined with a CCD camera system for researching stress corrosion cracking of the materials in high temperature and high pressure water, like nuclear reactor environment. The features of the tensile testing apparatus are the following; pressure up to 100 kg/cm 2 , temperature up to 300degC, and cross head speed down to 10 -5 mm/min. In addition, initiation and propagation of the multiple crack appearing on the material surface in the water at high pressure and high temperature can be clearly observed through a sapphire window penetrating an autoclave. Using the apparatus, we investigated the effects of temperature and species of anion, SO 4 2- and B 4 O 7 2- on the crack initiation and propagation of sensitized 304 stainless steel. The following were revealed: in the sulfate solutions, crack initiation time decreased with increase in temperature from 100 to 250degC, while crack initiation frequency showed maximum at 150degC. In the borate solutions, however, no crack was found on the gauge section of the specimen at any temperatures. This indicates the borate can suppress the initiation of cracks. The effect of anion on the crack initiation may be explained by hardness of anion based on the hard and soft acids and bases concept and the passive film model. (author)

  7. [German research institute/Max-Planck Institute for psychiatry].

    Science.gov (United States)

    Ploog, D

    1999-12-01

    The Deutsche Forschungsanstalt für Psychiatrie (DFA, German Institute for Psychiatric Research) in Munich was founded in 1917 bel Emil Kraepelin. For a long time it was the only institution in Germany entirely devoted to psychiatric research. Because of its strictly science-oriented and multidisciplinary approach it also became a model for institutions elsewhere. Kraepelin's ideas have certainly had a strong influence on psychiatry in the twentieth century. The fascinating and instructive history of the DFA reflects the central issues and determinants of psychiatric research. First, talented individuals are needed to conduct such research, and there was no lack in this regard. Second, the various topics chosen are dependent on the available methods and resources. And finally, the issues addressed and the ethical standards of the researchers are heavily dependent on the zeitgeist, as is evident in the three epochs of research at the DFA, from 1917 to 1933, from 1933 to 1945, and from the postwar period to the present. With the introduction of molecular biology and neuroimaging techniques into psychiatric research a change in paradigm took place and a new phase of the current epoch began.

  8. Report of results of joint research using facilities in Japan Atomic Energy Research Institute in fiscal year 1987

    International Nuclear Information System (INIS)

    1988-06-01

    The total themes of the joint research in fiscal year 1987 were 127. These are shown being classified into the general joint research in Tokai and Takasaki, neutron diffraction research and cooperative research. The general joint research is the standard utilization form using research reactors JRR-2 and JRR-4, Co-60 gamma irradiation facilities in Tokai and Takasaki, an electron beam irradiation facility in Takasaki, an electron beam linear accelator and hot laboratories, which are opened for common utilization by Japan Atomic Energy Research Institute. The cooperative research is carried out by concluding research cooperation contracts between the researchers of universities and JAERI. In the general joint research, radioactivation analysis, radiation chemistry, irradiation effect, neutron diffraction and so on are the main themes, and in the cooperative research, reactor technology, reactor materials, nuclear physics measurement and others are the main themes. The total number of visitors was 2629 man-day, and decreased due to the stop of JRR-2. Also other activities are reported. The abstracts of respective reports are collected in this book. (Kako, I.)

  9. Institutional Support : Institute for Research on Political Economy in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Institut de recherche empirique en économie politique (IREEP) is an independent nonprofit organization established in 2004 with a view to contributing to the education of the next generation of teachers and researchers in political economy in Bénin and West Africa. IREEP has successfully integrated academic training ...

  10. JAERI tandem-accelerator and tandem-booster

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tadashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    In 1982, aiming at the new development of atomic energy research, the tandem accelerator of Japan Atomic Energy Research Institute (JAERI) was installed. In fiscal year 1993, the superconducting boosters which can increase the ion energy by up to 4 times were added, and the research in the region below 1000 MeV became possible. Those are electrostatic type accelerators which are easy to be used especially in basic research field, and are useful for future research. The tandem accelerator has been operated while maintaining the first class performance as the accelerator for various kinds of heavy ion beam. It has the special shape among electrostatic type accelerators, and is excellent in the easiness of control and stability. The main particulars of the tandem accelerator are shown. As for the ion sources of the tandem accelerator, three cesium sputter type ion sources are installed on two high voltage stands. The kinds of the ions which can be accelerated are mainly negative ions. As the improvement, electron cyclotron resonance (ECR) ion sources are expected to be adopted. As for the tandem boosters, the 1/4 wavelength type resonance hollow cylinder was adopted. The constitution of the tandem boosters is explained. The way of utilizing the tandem accelerator system and the aim for hereafter are reported. (K.I.)

  11. Institutional research and development, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S. (eds.)

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87. (DWL)

  12. Institutional research and development, FY 1987

    International Nuclear Information System (INIS)

    Struble, G.L.; Lawler, G.M.; Crawford, R.B.; Kirvel, R.D.; Peck, T.M.; Prono, J.K.; Strack, B.S.

    1987-01-01

    The Institutional Research and Development program at Lawrence Livermore National Laboratory fosters exploratory work to advance science and technology, disciplinary research to develop innovative solutions to problems in various scientific fields, and long-term interdisciplinary research in support of defense and energy missions. This annual report describes research funded under this program for FY87

  13. Central Institute for Nuclear Research (1956 - 1979)

    International Nuclear Information System (INIS)

    Flach, G.; Bonitz, M.

    1979-12-01

    The Central Institute for Nuclear Research (ZfK) of the Academy of Sciences of the GDR is presented. This first overall survey covers the development of the ZfK since 1956, the main research activities and results, a description of the departments responsible for the complex implementation of nuclear research, the social services for staff and the activities of different organizations in the largest central institute of the Academy of Sciences of the GDR. (author)

  14. JAERI TIARA annual report vol. 1 (1992)

    International Nuclear Information System (INIS)

    Ishigaki, Isao; Nashiyama, Isamu; Naramoto, Hiroshi; Omichi, Hideki; Tanaka, Ryuichi; Watanabe, Hiromasa; Watanabe, Hiroshi

    1993-03-01

    This annual report describes research activities which have been performed with the JAERI TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities from April 1, 1991 to March 31, 1992, and also gives an outline of the ion accelerators and surrounding apparatus which have been constructed and prepared for various experiments. As well as an outline of the characteristics of AVF cyclotron, 3 MV tandem electrostatic accelerator and other ones, included are 25 summary reports on preparation of experimental apparatus and on the preliminary results of experimental studies using the 3 MV tandem accelerator in the different research fields of beam technology, materials for space environment and nuclear fusion reactor, organic and inorganic functional materials, biology, medicine, radiation chemistry, radioisotope production and nuclear chemistry. Lists of publication, staff of TIARA and cooperated researchers are also given. (author)

  15. Institutional Research's Role in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    Institutions that have organized and centralized their data enjoy an obvious advantage in grappling with strategic planning and other issues. As the drumbeat for accountability, planning, and demonstrating effectiveness to internal and external stakeholders intensifies, the stature and importance of institutional research offices on most campuses…

  16. Research at the Paul Scherrer Institut

    International Nuclear Information System (INIS)

    Walter, H.K.

    1996-01-01

    The Paul Scherrer Institut (PSI) is a multidisciplinary research institute for natural sciences and technology. In national and international collaboration with universities, other research institutes and industry, PSI is active in elementary particle physics, life sciences, solid-state physics, material sciences, nuclear and non-nuclear energy research, and energy-related ecology. PSI's priorities lie in research fields which are relevant to sustainable development, serve educational needs and are beyond the possibilities of a single university department. PSI develops and operates complex research installations open of the world's most powerful cyclotron, allowing to operate high intensity secondary pion and muon beams, a neutron spallation source and various applications in medicine and materials research. A short review on research at PSI is presented, with special concentration on particle physics experiments. (author)

  17. Teaching and Research at Undergraduate Institutions

    Science.gov (United States)

    Garg, Shila

    2006-03-01

    My own career path has been non-traditional and I ended up at a primarily undergraduate institution by pure accident. However, teaching at a small college has been extremely rewarding to me, since I get to know and interact with my students, have an opportunity to work with them one-on-one and promote their intellectual growth and sense of social responsibility. One of the growing trends at undergraduate institutions in the past decade has been the crucial role of undergraduate research as part of the teaching process and the training of future scientists. There are several liberal arts institutions that expect research-active Faculty who can mentor undergraduate research activities. Often faculty members at these institutions consider their roles as teacher-scholars with no boundary between these two primary activities. A researcher who is in touch with the developments in his/her own field and contributes to new knowledge in the field is likely to be a more exciting teacher in the classroom and share the excitement of discovery with the students. At undergraduate institutions, there is generally very good support available for faculty development projects in both teaching and research. Often, there is a generous research leave program as well. For those who like advising and mentoring undergraduates and a teaching and learning centered paradigm, I will recommend a career at an undergraduate institution. In my presentation, I will talk about how one can prepare for such a career.

  18. Institutional Researchers' Use of Qualitative Research Methods for Institutional Accountability at Two Year Colleges in Texas

    Science.gov (United States)

    Sethna, Bishar M.

    2011-01-01

    This study examined institutional researchers' use of qualitative methods to document institutional accountability and effectiveness at two-year colleges in Texas. Participants were Institutional Research and Effectiveness personnel. Data were collected through a survey consisting of closed and open ended questions which was administered…

  19. Annual reports of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 23, 24, 25)

    International Nuclear Information System (INIS)

    1992-09-01

    Research activities of Osaka Laboratory for Radiation Chemistry, JAERI during three year period from April 1, 1989 through March 31, 1992 are described. The latest report. for 1988, is JAERI-M 91-054. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, polymerization and modification of polymers by electron beam, and electron beam dosimetry. (author) 77 refs

  20. Manual on JSSL (JAERI scientific subroutine library)

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Nishida, Takahiko; Asai, Kiyoshi

    1979-11-01

    A manual on the revised version of JAERI scientific subroutine library is presented. The library is a collection of subroutines developed or modified in JAERI. They are classified into fifteen fields. It is subject to further extension in the future, since there are some fields still insufficient for scientific calculations in the present library. (author)

  1. Manual on JSSL (JAERI scientific subroutine library)

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Nishida, Takahiko; Asai, Kiyoshi

    1977-05-01

    A manual on the revised JAERI scientific subroutine library is presented. The library is a collection of subroutines developed or modified in JAERI which complements the library installed for FACOM 230-75 computer. It is subject to further extension in the future, since the present one is still insufficient for scientific calculations. (auth.)

  2. Users manual on database of the Piping Reliability Proving Tests at the Japan Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Japan Atomic Energy Research Institute(JAERI) conducted Piping Reliability Proving Tests from 1975 to 1992 based upon the contracts between JAERI and Science and Technology Agency of Japan under the auspices of the special account law for electric power development promotion. The purposes of those tests are to prove the structural reliability of the primary cooling piping constituting a part of the pressure boundary in the water reactor power plants. The tests with large experimental facilities had ended already in 1990. After that piping reliability analysis by the probabilistic method followed until 1992. This report describes the users manual on databases about the test results using the large experimental facilities. Objectives of the piping reliability proving tests are to prove that the primary piping of the water reactor (1) be reliable throughout the service period, (2) have no possibility of rupture, (3) bring no detrimental influence on the surrounding instrumentations or equipments near the break location. The research activities using large scale piping test facilities are described. The present report does the database about the test results pairing the former report. With these two reports, all the feature of Piping Reliability Proving Tests is made clear. Briefings of the tests are described also written in Japanese or English. (author)

  3. Current status of HTTR project at JAERI

    International Nuclear Information System (INIS)

    Saito, Shinzo; Sudo, Yukio; Tanaka, Toshiyuki; Baba, Osamu

    1992-01-01

    The HTTR is a high temperature gas cooled test reactor with thermal output of 30 MW, outlet coolant temperatures of 850degC at rated operation and 950degC at high temperature test operation and primary coolant pressure of 4 MPa. The HTTR consists of a reactor pressure vessel with a prismatic core in it, a primary cooling loop with an intermediate helium-helium heat exchanger and a pressurized water cooler in parallel, an auxiliary cooling system, a reactor vessel cooling system and related components. The HTTR is utilized for establishing and upgrading the technology bases for advanced HTGRs including irradiation tests for fuels and materials, safety demonstration tests for HTGRs and nuclear heat application and for carrying out various kinds of innovative basic researches on high temperature technologies. Since 1969, the JAERI has carried out research and development works on block type fuel, high temperature materials, high temperature in-core instrumentations, high temperature components, reactor physics, heat transfer and fluid dynamics, plate-out of fission products etc., in order to construct the HTTR which can supply high temperature coolant of 950degC to the outside of the pressure vessel for the nuclear heat application, for the first time in the world. In November 1990, the installation permit was issued by the Government through about 20 month safety review by the Science and Technology Agency and Nuclear Safety Commission. The construction of the HTTR facility was initiated on the site in the Oarai Research Establishment, JAERI in March 1991. The excavation of ground is now finished at the HTTR site. It will take about six years for the completion of the HTTR facility and the first criticality will be attained in 1996. (author)

  4. Retooling Institutional Support Infrastructure for Clinical Research

    Science.gov (United States)

    Snyder, Denise C.; Brouwer, Rebecca N.; Ennis, Cory L.; Spangler, Lindsey L.; Ainsworth, Terry L.; Budinger, Susan; Mullen, Catherine; Hawley, Jeffrey; Uhlenbrauck, Gina; Stacy, Mark

    2016-01-01

    Clinical research activities at academic medical centers are challenging to oversee. Without effective research administration, a continually evolving set of regulatory and institutional requirements can detract investigator and study team attention away from a focus on scientific gain, study conduct, and patient safety. However, even when the need for research administration is recognized, there can be struggles over what form it should take. Central research administration may be viewed negatively, with individual groups preferring to maintain autonomy over processes. Conversely, a proliferation of individualized approaches across an institution can create inefficiencies or invite risk. This article describes experiences establishing a unified research support office at the Duke University School of Medicine based on a framework of customer support. The Duke Office of Clinical Research was formed in 2012 with a vision that research administration at academic medical centers should help clinical investigators navigate the complex research environment and operationalize research ideas. The office provides an array of services that have received high satisfaction ratings. The authors describe the ongoing culture change necessary for success of the unified research support office. Lessons learned from implementation of the Duke Office of Clinical Research may serve as a model for other institutions undergoing a transition to unified research support. PMID:27125563

  5. Final Report: Performance Engineering Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Mellor-Crummey, John [Rice Univ., Houston, TX (United States)

    2014-10-27

    This document is a final report about the work performed for cooperative agreement DE-FC02-06ER25764, the Rice University effort of Performance Engineering Research Institute (PERI). PERI was an Enabling Technologies Institute of the Scientific Discovery through Advanced Computing (SciDAC-2) program supported by the Department of Energy's Office of Science Advanced Scientific Computing Research (ASCR) program. The PERI effort at Rice University focused on (1) research and development of tools for measurement and analysis of application program performance, and (2) engagement with SciDAC-2 application teams.

  6. Results from the Argonne, Los Alamos, JAERI collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Meadows, J.; Smith, D.; Greenwood, L. [Argonne National Lab., IL (United States); Haight, R. [Los Alamos National Lab., NM (United States); Ikeda, Y.; Konno, C. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1993-07-01

    Four sample packets containing elemental Ti, Fe, Ni, Cu, Nb, Ag, Eu, Tb and Hf have been irradiated in three distinct accelerator neutron fields, at Argonne National Laboratory and Los Alamos National Laboratory, USA, and Japan Atomic Energy Research Institute, Tokai, Japan. The acquired experimental data include differential cross sections and integral cross sections for the continuum neutron spectrum produced by 7-MeV deuterons incident on thick Be-metal target. The U-238(n,f) cross section was also measured at 10.3 MeV as a consistency check on the experimental technique. This the third progress report on a project which has been carried out under the auspices of an IAEA Coordinated Research Program entitled ``Activation Cross Sections for the Generation Of Long-lived Radionuclides of Importance in Fusion Reactor Technology``. The present report provides the latest results from this work. Comparison is made between the 14.7-MeV cross-section values obtained from the separate investigations at Argonne and JAERI. Generally, good agreement observed within the experimental errors when consistent sample parameters, radioactivity decay data and reference cross values are employed. A comparison is also made between the experimental results and those derived from calculations using a nuclear model. Experimental neutron information on the Be(d,n) neutron spectrum was incorporated in the comparisons for the integral results. The agreement is satisfactory considering the various uncertainties that are involved.

  7. Institutional shared resources and translational cancer research

    Directory of Open Access Journals (Sweden)

    De Paoli Paolo

    2009-06-01

    Full Text Available Abstract The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology. In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization

  8. Institutional shared resources and translational cancer research.

    Science.gov (United States)

    De Paoli, Paolo

    2009-06-29

    The development and maintenance of adequate shared infrastructures is considered a major goal for academic centers promoting translational research programs. Among infrastructures favoring translational research, centralized facilities characterized by shared, multidisciplinary use of expensive laboratory instrumentation, or by complex computer hardware and software and/or by high professional skills are necessary to maintain or improve institutional scientific competitiveness. The success or failure of a shared resource program also depends on the choice of appropriate institutional policies and requires an effective institutional governance regarding decisions on staffing, existence and composition of advisory committees, policies and of defined mechanisms of reporting, budgeting and financial support of each resource. Shared Resources represent a widely diffused model to sustain cancer research; in fact, web sites from an impressive number of research Institutes and Universities in the U.S. contain pages dedicated to the SR that have been established in each Center, making a complete view of the situation impossible. However, a nation-wide overview of how Cancer Centers develop SR programs is available on the web site for NCI-designated Cancer Centers in the U.S., while in Europe, information is available for individual Cancer centers. This article will briefly summarize the institutional policies, the organizational needs, the characteristics, scientific aims, and future developments of SRs necessary to develop effective translational research programs in oncology.In fact, the physical build-up of SRs per se is not sufficient for the successful translation of biomedical research. Appropriate policies to improve the academic culture in collaboration, the availability of educational programs for translational investigators, the existence of administrative facilitations for translational research and an efficient organization supporting clinical trial recruitment

  9. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 21

    International Nuclear Information System (INIS)

    1990-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1987 through March 31, 1988. Detailed descriptions of the activities are presented in the following subjects: (i) studies on surface phenomena under electron and ion irradiations and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  10. Experiences in monitoring airborne radioactive contamination in JAERI

    International Nuclear Information System (INIS)

    Ikezawa, Y.; Okamoto, T.; Yabe, A.

    1980-01-01

    The following results were obtained at the Japan Atomic Energy Research Institute (JAERI) from experience in air monitoring at the hot cells for handling highly radioactive materials, the glove box containing plutonium and the cell for producing 99 Mo. (1) The ratios of activities of airborne dust to those of whole dust were of the order of 10 -2 for the semi-volatile form of 125 Sb, and 10 -3 to 10 -4 for the particulate form of 137 Cs, 144 Ce and 144 Pr, when irradiated fuels were cut in the hot cells. (2) The activity median aerodynamic diameter (AMAD) of airborne particle size distributions varied from O.4 to 15 μm with changing geometric standard deviation (sigmasub(g)) 1.7 to 7, depending on types of metallurgical treatment of fuels and on kinds of work in the cells. (3) A resuspension factor (the ratio of the concentration of airborne contamination to the surface contamination) was found to be 4x10 -8 to approximately 2x10 -7 cm -1 for plutonium oxide deposited on the floor surface. (4) The collection efficiency of the charcoal-loaded filter paper for airborne radioiodine, consisting of 60% inorganic and 40% organic iodide, was over 95% under conditions of relative humidity 40 to approximately 80% and face velocity 50 cm/sec, during the production of 99 Mo. (H.K.)

  11. Acoustic emission measurement on large scale coils at JAERI

    International Nuclear Information System (INIS)

    Yoshida, K.; Hattori, Y.; Nishi, M.F.; Shimamoto, S.; Tsuji, H.

    1986-01-01

    The objective of acoustic emission measurement at Japan Atomic Energy Research Institute (JAERI) is an establishment of a general diagnostic method for superconducting magnet systems. Output of strain and displacement gages can not cover a whole system in monitoring premonitory phenomena of a magnet system s failure, because these sensors are mounted on points and therefore localized. Acoustic emissions can be transmitted to sensors through structural materials without electrical noise. Monitoring of acoustic emission will be one of the methods to predict a serious failure of magnet systems in a vacuum vessel. For this purpose, several sensors were installed on the Japanese LCT coil and the Test Module Coil (TMC). Some of acoustic activity was similar as seen in these coils. The correlation between voltage spikes and acoustic events is excellent during single coil charging mode, but poorer during out of plane force mode. There are no indicative acoustical phenomena before a magnet quench or during normal zone generation. The conditioning of acoustic events and voltage spikes can be seen after any cooling down. The localization of electrical insulation damage with the acoustic emission technique is one of its most useful applications

  12. Progress report on neutron scattering at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    In the first half of fiscal year 1997, JRR-3M was operated for 97 days followed by a long term shut down for its annual maintenance. Three days were lost out of 100 scheduled operation days, due to a trouble in irradiation facility. Neutron scattering research activities at the JRR-3M have been extended from that of fiscal year 1996. In the Research Group for Quantum Condensed Matter System, experimental study under high pressures, low temperatures and high fields as well as coupling of these conditions were planned to find new quantum condensed matter systems. And, obtained experimental results were immediately provided to theorists for their investigations. In cooperation with new group, Research Group for Neutron Scattering of Strongly Correlated Electron Systems and Research Group for Neutron Scattering at Ultralow Temperatures were carrying neutron scattering experiments at JRR-3M. Research Group for Neutron Crystallography in Biology had opened a way for investigating biomatter neutron diffraction research with high experimental accuracy by growing a millimeter-class large single crystal. In fiscal year 1997, 39 research projects were conducted by these four groups and other staffs in JAERI, 27 projects collaborated with university researchers and 3 projects collaborated with private enterprises were also conducted as complementary researches. 2117 days of machine times were requested to use 8 neutron scattering instruments this year, which corresponded to 1.51 times larger than those planned at its beginning. (G.K.)

  13. Development of novel functional dyes for the effective detection of γ-ray. JAERI's nuclear research promotion program, H12-007. Contract research

    International Nuclear Information System (INIS)

    Tokita, Sumio; Yoshida, Masaru

    2004-03-01

    The academic field of ''Functional Dyes'' was proposed in Japan and has been widely applied to novel functional materials for electronic industry, however, its application to radiation chemistry is still scarce. We have found a certain photochromic dye, benzo[1,2,3-kl:4,5,6-k'l'] dixanthene endoperoxide, to give dramatic change of color in acid conditions. In this research project, we have developed this finding to realize novel dosimetry systems. The findings of this research are as follows: 1. Computer programs for the molecular design of functional materials using quantum chemical method such as PPP or INDO/S molecular orbital calculations were developed. 2. Novel functional materials for the detection of γ-ray were surveyed. Among these, the following series of compound were found to have practical importance. a. Color formers having phenoxazine moieties. b. Color formers having sulfur containing protective groups. 3. Novel sensor systems for γ radiation using functional materials were developed. (author)

  14. Digital Repository of Research Institutes – RCIN

    Directory of Open Access Journals (Sweden)

    Kamila Kaczyńska

    2014-03-01

    Full Text Available The paper describes the project of Digital Repository of Scientific Institutes RCIN and presents opportunities for promoting science by digitization and sharing them on the Internet. The Repository has been created by the 16 Scientific Institutes in Warsaw, Krakow and Bialowieza to modernize the science-research and IT infrastructure, to increase digital resources of mathematical, technical, natural and medical sciences, and to popularize and promote of Polish science. That dissemination and popularization of science affects its development and competitiveness in the international arena and it allows transfer of research results to the economy. In addition, Institutes of RCIN providing contemporary and archival materials of science, support the intellectual capital of Polish science and raise awareness of professional literature of search on the Internet. Project RCIN is implemented in the years 2010–2014 and financing is provided by the funds of the European Fund of Regional Development.

  15. Research in Institutional Economics in Management Science

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    This report maps research in institutional economics in management science in the European Union for the 1995 to 2002 period. The reports applies Internet search based on a university listing, search on journal databases, key informants and an internet-based survey. 195 researchers are identified....... In (sub-)disciplinary terms, organization, strategy, corporate governance, and international business are the major areas of application of institutional economics ideas. In terms of countries, the EU strongholds are Holland, Denmark, UK, and Germany. There is apparently no or very little relevant...... research in Ireland, Portugal, Luxembourg and Greece. Based on the findings of the report, it seems warranted to characterize the EU research effort in the field as being rather dispersed and uncoordinated. Thus, there are no specialized journals, associations or PhD courses. This state of affairs...

  16. Adapting Institutional Research to Changing Student Populations.

    Science.gov (United States)

    Cohen, Arthur M.

    Institutional research (IR) in community/junior colleges in past years has been limited to gathering data for external agencies, concentrating on raw demographic data and student flow studies. IR should be directed toward providing data for administrative decisions and for successful maintenance of college operations. In spite of the heavy demands…

  17. Water Resources Research Institute | Mississippi State University

    Science.gov (United States)

    Welcome The Mississippi Water Resources Research Institute provides a statewide center of expertise in water and associated land-use and serves as a repository of knowledge for use in education private interests in the conservation, development, and use of water resources; to provide training

  18. General activities of JAERI nuclear data center and Japanese nuclear data committee

    International Nuclear Information System (INIS)

    Fukahori, Tokio

    1999-01-01

    The nuclear data center of Japan Atomic Energy Research Institute (JAERI/NDC) is playing the role of Japanese domestic nuclear data center and gateway to foreign data centers. As the domestic nuclear data center, activities of JAERI/NDC are 1) compiling the Japanese Evaluated Nuclear Data Library (JENDL) for both general and special purposes, 2) importing and exporting nuclear data, 3) nuclear data services for the domestic users, and 4) organizing japanese Nuclear Data Committee (JNDC) as a secretariat. Compiled JENDL General Purpose Files up to now are JENDL-1, 2, 3, 3.1 and 3.2. The data for 340 nuclei in the energy range from 10 -5 eV to 20 MeV are available in JENDL-3.2. JENDL Special Purpose Files were also prepared in order to meet the requests from the specified application fields. JNDC has about 140 members. JNDC consists of Main Committee, Steering Committee, Subcommittee on Nuclear Data, Subcommittee on Reactor Constants, Subcommittee on Nuclear Fuel Cycle and Standing Groups. Above subcommittees are performing essential evaluation for the files described above, checking the JENDL files through the benchmark and integral testing as well as considering the standard group constant, and considering about evaluation of decay heat and nuclide generation/depletion and fission product yields. (author)

  19. Multi-Institutional Collaborative Astronomy Education Research

    Science.gov (United States)

    Slater, T. F.; Slater, S. J.

    2011-09-01

    ASP, AAS, APS, and AAPT advocate that scientists should be engaged and acknowledged for successfully engaging in astronomy and physics education research and the scholarship of teaching because these efforts serve to improve pedagogical techniques and the evaluation of teaching. However, scientists have had the opportunity to pursue formal training in how to meaningfully engage in astronomy education research as an important scholarly endeavor. This special interest session for college and university physics and astronomy faculty, post-docs, and graduate students provided a forum to discuss the motivations, strategies, methodology, and publication routes for improving astronomy education through conducting rigorous science education research. Topics for discussion targeted the value of various education research questions, strengths and weaknesses of several different research design methodologies, strategies to successfully obtain Institutional Review Board approval to conduct education research on human subjects, and become more aware of how education research articles are created for publication in journals such as the Astronomy Education Review.

  20. The Knowledge Management Research of Agricultural Scientific Research Institution

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the perception of knowledge management from experts specializing in different fields,and experts at home and abroad,the knowledge management of agricultural scientific research institution can build new platform,offer new approach for realization of explicit or tacit knowledge,and promote resilience and innovative ability of scientific research institution.The thesis has introduced functions of knowledge management research of agricultural science.First,it can transform the tacit knowledge into explicit knowledge.Second,it can make all the scientific personnel share knowledge.Third,it is beneficial to the development of prototype system of knowledge management.Fourth,it mainly researches the realization of knowledge management system.Fifth,it can manage the external knowledge via competitive intelligence.Sixth,it can foster talents of knowledge management for agricultural scientific research institution.Seventh,it offers the decision-making service for leaders to manage scientific program.The thesis also discusses the content of knowledge management of agricultural scientific research institution as follows:production and innovation of knowledge;attainment and organizing of knowledge;dissemination and share of knowledge;management of human resources and the construction and management of infrastructure.We have put forward corresponding countermeasures to further reinforce the knowledge management research of agricultural scientific research institution.

  1. Do Research Participants Trust Researchers or Their Institution?

    Science.gov (United States)

    Guillemin, Marilys; Barnard, Emma; Allen, Anton; Stewart, Paul; Walker, Hannah; Rosenthal, Doreen; Gillam, Lynn

    2018-07-01

    Relationships of trust between research participants and researchers are often considered paramount to successful research; however, we know little about participants' perspectives. We examined whom research participants trusted when taking part in research. Using a qualitative approach, we interviewed 36 research participants, including eight Indigenous participants. Thematic analysis was used to analyze the data. This article focuses on findings related to non-Indigenous participants. In contrast to Indigenous participants, non-Indigenous participants placed their trust in research institutions because of their systems of research ethics, their reputation and prestige. Researchers working in non-Indigenous contexts need to be cognizant that the trust that participants place in them is closely connected with the trust that participants have in the institution.

  2. Institute for Safety Research. Annual report 1992

    International Nuclear Information System (INIS)

    Weiss, F.P.; Boehmert, J.

    1993-11-01

    The Institute is concerned with evaluating the design based safety and increasing the operational safety of technical systems which include serious sources of danger. It is further occupied with methods of mitigating the effects of incidents and accidents. For all these goals the institute does research work in the following fields: modelling and simulation of thermofluid dynamics and neutron kinetics in cases of accidents; two-phase measuring techniques; safety-related analyses and characterizing of mechanical behaviours of material; measurements and calculations of radiation fields; process and plant diagnostics; development and application of methods of decision analysis. This annual report gives a survey of projects and scientific contributions (e.g. Single rod burst tests with ZrNb1 cladding), lists publications, institute seminars and workshops, names the personal staff and describes the organizational structure. (orig./HP)

  3. JAERI thermal reactor standard code system for reactor design and analysis SRAC

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro

    1985-01-01

    SRAC, JAERI thermal reactor standard code system for reactor design and analysis, developed in Japan Atomic Energy Research Institute, is for all types of thermal neutron nuclear design and analysis. The code system has undergone extensive verifications to confirm its functions, and has been used in core modification of the research reactor, detailed design of the multi-purpose high temperature gas reactor and analysis of the experiment with a critical assembly. In nuclear calculation with the code system, multi-group lattice calculation is first made with the libraries. Then, with the resultant homogeneous equivalent group constants, reactor core calculation is made. Described are the following: purpose and development of the code system, functions of the SRAC system, bench mark tests and usage state and future development. (Mori, K.)

  4. Alligator Rivers Regions Research Institute research report 1983-84

    International Nuclear Information System (INIS)

    1984-01-01

    The Institute undertakes and coordinates research required to ensure the protection of the environment in the Alligator Rivers Region from any consequences resulting from the mining and processing of uranium ore. Research projects outlined are in aquatic biology, terrestrial ecology, analytical chemistry, environmental radioactivity and geomorphology

  5. Research Ethics: Institutional Review Board Oversight of Art Therapy Research

    Science.gov (United States)

    Deaver, Sarah P.

    2011-01-01

    By having their research proposals reviewed and approved by Institutional Review Boards (IRBs), art therapists meet important ethical principles regarding responsibility to research participants. This article provides an overview of the history of human subjects protections in the United States; underlying ethical principles and their application…

  6. The Swiss Institute for Nuclear Research SIN

    CERN Document Server

    Pritzker, Andreas

    2014-01-01

    This book tells the story of the Swiss Institute for Nuclear Research (SIN). The institute was founded in 1968 and became part of the Paul Scherrer Institute (PSI) in 1988. Its founding occurred at a time when physics was generally considered the key discipline for technological and social development. This step was unusual for a small country like Switzerland and showed courage and foresight. Equally unusual were the accomplishments of SIN, compared with similar institutes in the rest of the world, as well as its influence on Swiss, and partially also on international politics of science. That this story is now available in a widely understandable form is due to the efforts of some physicists, who took the initiative as long as contemporary witnesses could still be questioned. As is usually the case, official documents always show just an excerpt of what really happened. An intimate portrayal of people who contributed to success requires personal memories. This text relies on both sources. In addition, the e...

  7. Research misconduct definitions adopted by U.S. research institutions.

    Science.gov (United States)

    Resnik, David B; Neal, Talicia; Raymond, Austin; Kissling, Grace E

    2015-01-01

    In 2000, the U.S. federal government adopted a uniform definition of research misconduct as fabrication, falsification, or plagiarism (FFP), which became effective in 2001. Institutions must apply this definition of misconduct to federally-funded research to receive funding. While institutions are free to adopt definitions of misconduct that go beyond the federal standard, it is not known how many do. We analyzed misconduct policies from 183 U.S. research institutions and coded them according to thirteen different types of behavior mentioned in the misconduct definition. We also obtained data on the institution's total research funding and public vs. private status, and the year it adopted the definition. We found that more than half (59%) of the institutions in our sample had misconduct policies that went beyond the federal standard. Other than FFP, the most common behaviors included in definitions were "other serious deviations" (45.4%), "significant or material violations of regulations" (23.0%), "misuse of confidential information" (15.8%), "misconduct related to misconduct" (14.8%), "unethical authorship other than plagiarism" (14.2%), "other deception involving data manipulation" (13.1%), and "misappropriation of property/theft" (10.4%). Significantly more definitions adopted in 2001 or later went beyond the federal standard than those adopted before 2001 (73.2% vs. 26.8%), and significantly more definitions adopted by institutions in the lower quartile of total research funding went beyond the federal standard than those adopted by institutions in the upper quartiles. Public vs. private status was not significantly associated with going beyond the federal standard.

  8. Neutron scattering equipments in JAERI. Current status

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu; Minakawa, Nobuaki

    2003-01-01

    24 neutron scattering instruments are installed in the JRR-3M research reactor. Among them JAERI has 12 neutron scattering instruments. Those instruments are HRPD for high-resolution structural analysis, TAS-1 and TAS-2 for elastic and inelastic scattering and for magnetic scattering measurements by the polarized neutron, LTAS for elastic and inelastic scattering measurement at a low energy region, and for neutron device development, PNO for topography and for very small angle scattering measurement in a small Q range, NRG for neutron radiography, RESA for internal strain measurements, SANS for the molecule and semi-macroscopic magnetic structural analysis, BIX-2 and BIX-3 for the biological structural analysis research, and PGA for the research of prompt gamma-ray analysis. The university groups have 12 neutron scattering instruments. Since those instruments were installed at the period when JRR-3M was completed, about 10 years have passed. In order to match the old control systems with the progress of recent computer technologies, and peripheral equipment, numbers of instruments are being renewed. In the neutron guide hall of JRR-3M, the Ni mirror guide tube was replaced by a super mirror guide tube to increase neutron flux. The intensity of 2A flux was increased by a factor of about two. (J.P.N.)

  9. Institutional research and development, FY 1988

    International Nuclear Information System (INIS)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance

  10. Institutional research and development, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    The Laboratory's Institutional Research and Development (IR and D) Program was established in 1984 to foster exploratory work to advance science and technology, disciplinary research to develop innovative solutions to support our national defense and energy missions. In FY 1988, the IR and D Program was funded by a 2% assessment on the Laboratory's operating budget. Our policy is to use these funds for researching innovative ideas in LLNL's areas of expertise and for developing new areas of expertise that we perceive to be in the national interest. The technical and scientific accomplishments of each project and of each institute funded this year are presented in this report. The projects were selected because they are expected to advance research in important areas that are too basic or too time consuming to be funded by the developmental programs or because they are somewhat risky projects that have the promise of high payoff. We are continually reappraising the IR and D Program. In particular, we seek new candidates for the Director's Initiatives, and we constantly reassess the work in progress. Each year, we make adjustments to further the Laboratory's policy of using the IR and D Program to fund innovative ideas with high potential for enhancing programmatic activities of national importance.

  11. 76 FR 11765 - Education Research and Special Education Research Grant Programs; Institute of Education Sciences...

    Science.gov (United States)

    2011-03-03

    ... DEPARTMENT OF EDUCATION Education Research and Special Education Research Grant Programs; Institute of Education Sciences; Overview Information; Education Research and Special Education Research.... SUMMARY: The Director of the Institute of Education Sciences (Institute) announces the Institute's FY 2012...

  12. Nuclear calculation for employing medium enrichment in reactors of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Miyasaka, Yasuhiko

    1979-01-01

    The fuel used for the research reactors of Japan Atomic Energy Research Institute (JAERI) is presently highly enriched uranium of 93%. However, the U.S. government (the supplier of fuel) is claiming to utilize low or medium enriched uranium from the viewpoint of resistivity to nuclear proliferation, and the availability of highly enriched uranium is becoming hard owing to the required procedure. This report is described on the results of nuclear calculation which is the basis of fuel design in the countermeasures to the reduction of enrichment. The basic conception in the reduction of enrichment is three-fold: to lower the latent potential of nuclear proliferation as far as possible, to hold the present reactor performance as far as possible, and to limit the reduction in the range which is not accompanied by the modification of reactor core construction and cooling system. This time, the increase of the density and thickness of fuel plates and the effect of enrichment change to 45% on reactivity and neutron flux were investigated. The fuel of UAl sub(x) - Al system was assumed, which was produced by powder metallurgical method. The results of investigations on JRR-2 and JMTR reactors revealed that 45% enriched fuel does not affect the performances much. However, deterioration of the performances is not neglegible if further reduction is needed. In future, the influence of the burn-up effect of fuel on the life of reactor cores must be investigated. (Wakatsuki, Y.)

  13. Present state of tandem superconductive booster of JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Matsuda, Makoto; Kanazawa, Shuhei; Yoshida, Tadashi; Ouchi, Isao; Shoji, Tokio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    The superconductive booster constructed rear-stage accelerator of the tandem accelerator of the Tokai Research Establishment, JAERI (Japan Atomic Energy Research Institute), was completed in construction of its whole system on October, 1993, and through its beam accelerating test and remodulation its design characteristics were established on September, 1994. From November, 1994 to April, 1995 a repulsion-forming nuclear isolation apparatus was installed to modulate at target room, and was begun to use on June, 1995. The beam reaccelerated at the booster was used mainly for nuclear spectroscopy experiment, a collaborative research was developed using mini-crystal balls made by collecting from University of Tsukuba and so forth. The accelerating part of the booster is a phase independent setting type Linac consisting of 40 niobium superconducting holes with 1/4 wave-length type and 130 MHz in frequency, in which a hole can form 5 MV/m of accelerating electric field for 4 W of radio frequency spent power of 0.75 MV of accelerating voltage per hole, to form 30 MV of voltage in a whole. 4 holes are contained into each 10 cryostats, respectively. In accelerating tests, Si, Cl, Ni, Ge, Ag, I and Au ions are accelerated to establish 30 mV of total accelerating voltage in its design value, which reaches to their expected energy characteristics. Its used days in this year are 25 days after beginning of its use, and operating days of the cooling apparatus was 135 days in total. (G.K.)

  14. Expectations of JAERI on INIS from a viewpoint of socio-economic evaluation

    International Nuclear Information System (INIS)

    Yanagisawa, K.; Takahashi, S.; Narita, O.; Yonezawa, M.

    2004-01-01

    Because the taxpayers funded basic scientific researches in JAERI, a feedback of the results to the public is strongly requested by the Japanese government. By using the concept of socio-economic effect, that is, the stimulation and promotion of social interrelations through a formation of networking in basic research, the authors tried to show a kind of feedback. For this purpose, JAERI developed computer code SOCIOECO combined with INIS was used as a main tool and database. The case study was addressed to the Material Science (MS) field in JAERI. It is revealed from the study that a significant formation and development of socio-economic networking is occurring at the emphasized basic research fields (EBRF) of ion irradiation and actinides having a strong relation to nuclear. For actinides a total of 7,237 papers were written in basic research fields, where the share of JAERI over 25 years was 25%, while 52% by public sectors (PS, namely university (U) and governmental sectors (GS)) and 17% by private organizations (PO). Numbers of co-written papers defined as an index of socio-economic networking were increased with time. The growth rate, for example, between JAERI and PS was of order of 3-4% per 25 years, while 8% per recent 5 years. The socio-economic networking described here seems to be useful for showing the feedback occurring from basic research to the public. (author)

  15. Gas Research Institute research program summary: Goals and accomplishments

    International Nuclear Information System (INIS)

    1991-07-01

    Gas Research Institute's research and development programs pursue technologies that maximize the value of gas energy services while minimizing the cost of supplying and delivering gaseous fuels. Four program areas, Supply Options, End Use, Gas Operations, and Crosscutting Research, are described in the report, together with related project titles and numbers. Also included are summaries of 1990 research results, research collaboration and supported work, and patents and licensing agreements. Glossaries of budget and program terms and of acronyms and abbreviations often used in the GRI literature are added

  16. KEK/JAERI joint project on high intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2002-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within six years. In this article I will describe a) the project itself, b) sciences to be pursued at this new accelerator complex and c) the present status and future plans of the project. (author)

  17. Program of nuclear criticality safety experiment at JAERI

    International Nuclear Information System (INIS)

    Kobayashi, Iwao; Tachimori, Shoichi; Takeshita, Isao; Suzaki, Takenori; Ohnishi, Nobuaki

    1983-11-01

    JAERI is promoting the nuclear criticality safety research program, in which a new facility for criticality safety experiments (Criticality Safety Experimental Facility : CSEF) is to be built for the experiments with solution fuel. One of the experimental researches is to measure, collect and evaluate the experimental data needed for evaluation of criticality safety of the nuclear fuel cycle facilities. Another research area is a study of the phenomena themselves which are incidental to postulated critical accidents. Investigation of the scale and characteristics of the influences caused by the accident is also included in this research. The result of the conceptual design of CSEF is summarized in this report. (author)

  18. Organizational Creativity in Japanese National Research Institutions

    Directory of Open Access Journals (Sweden)

    Naoko Kato-Nitta

    2016-10-01

    Full Text Available The effects of environmental or individual internal factors on organizational creativity are well documented, but the mediating mechanisms of intrinsic motivation that explain the linkages between such effects remain unclear. Questionnaires completed by scientists at Japanese national research institutions were statistically analyzed by using structural equation modeling for teams (n = 65 and individuals (n = 420, and the results showed that the two variables associated with intrinsic motivation mediated the work environment and creative performance at both the individual and team levels. In revealing the similarities and differences between the team and individual measurements, the results showed that the psychological aspects of intrinsic motivation (job satisfaction, supervision, and communication are relatively significant for teams and that the behavioral aspects of intrinsic motivation (research activity, communication, and involvement are key for individuals. Furthermore, both levels of analysis showed that “Western-style” meetings are detractors for intrinsic motivation. The implications for organizational creativity theory and research management are ultimately discussed.

  19. Status of fusion technology development in JAERI stressing steady-state operation for future reactors

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    2000-01-01

    This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future

  20. Annual report of the Osaka Laboratory for Radiation Chemistry, Japan Atomic Energy Research Institute (No. 8)

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes research activities in Osaka Laboratory for Radiation Chemistry, JAERI during the one year period from April 1, 1974 through March 31, 1975. The major research field covers the following subjects: studies related to reactions of carbon monoxide and hydrogen; polymerization studies under the irradiation of high dose rate electron beams; modification of polymers; fundamental studies on polymerization, degradation, crosslinking, and grafting. (auth.)

  1. Forgotten research institute makes money from ideas

    International Nuclear Information System (INIS)

    Sobinkovic, B.

    2008-01-01

    Robots that stack magnets weighing several tons in the world's biggest nuclear laboratory with a millimetre precision. Small machines that can destroy bombs, detect bombs in trains, planes or cars. A leading position in an expert group that, with NATO funds, tests how robotic systems can be used in the fight against terrorism. This summary indicates that ideas are an integral part of the work done at the ZTS Vyskumno-vyvojovy ustav (ZTS VVU) research institute in Kosice. This is nothing special for a research institute. But this is a joint stock company. And so it needed one additional vision: producing goods that sell from the research. ZTS VVU has delivered robotic system for accurate positioning of cryo-magnets for the CERN. Cryo-magnet is 16 m long and weights 34 tonnes. For the CERN five robotic systems were delivered. The value of the contract with the CERN was about 60 millions slovak crowns (≅ 2 million EUR). Transport containers, manipulators for decontamination and manipulators with radioactive wastes were manufactured for the Bohunicke spracovatelske centrum (Bohunice Radioactive Waste Processing Center). (authors)

  2. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  3. Perspectives from the Aldo Leopold Wilderness Research Institute: The Wildland Research institute

    Science.gov (United States)

    J. M. Bowker; H. Ken Cordell; Neelam C. Poudyal

    2014-01-01

    The Wildland Research Institute (WRi) at the University of Leeds (UK) came into being in October 2009. Its origins go back to a United Kingdom research councilfunded seminar series called Wilderness Britain? which ran between 1998 and 2000 and was coordinated from the University of Leeds. This opened up the wider debate on wilderness and rewilding in the UK and later...

  4. International Interdisciplinary Research Institute Project in Senegal

    Science.gov (United States)

    Gueye, Paul

    2010-02-01

    The project of an interdisciplinary research institute in Senegal was initiated in 1993 in Senegal (West Africa) and became a template for a similar project in the US in 1999. Since then, numerous meetings and presentations have been held at various national and international institutions, workshops and conferences. The current development of this partnership includes drafts for a full design of all systems at each facility, as well as the physics, applied health and educational programs to be implemented. The Senegal facility was conceived for scientific capacity building and equally to act as a focal point aimed at using the local scientific expertise. An anticipated outcome would be a contribution to the reduction of an ever-growing brain drain process suffered by the country, and the African continent in general. The development of the project led also to a strong African orientation of the facility: built for international collaboration, it is to be a pan-African endeavor and to serve primarily African countries. The facility received a presidential approval in a 2003 meeting and will develop an interdisciplinary program centered on a strong materials science research which will also allow for the establishment of an advanced analytical (physical chemistry) laboratory. A central part of the facility will be linked to state-of-the art accelerator mass spectrometry, cyclotron and low energy electromagnetic accelerator systems. )

  5. Institutional Support : Institute for Research on Political Economy in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Institut de recherche empirique en économie politique (IREEP) is an independent nonprofit organization established in 2004 with a view to contributing to the ... International Water Resources Association, in close collaboration with IDRC, is holding a webinar titled “Climate change and adaptive water management: ...

  6. A Proposed Framework of Institutional Research Development Phases

    Science.gov (United States)

    Bosch, Anita; Taylor, John

    2011-01-01

    Globally, research has become a key driver for the achievement of status and the procurement of funding for higher education institutions. Although there is mounting pressure on institutions to become research active, many institutions are rooted in a strong tradition of teaching. These institutions find it challenging to develop research capacity…

  7. Overview of research potential of Institute for Nuclear Research

    International Nuclear Information System (INIS)

    Ciocanescu, Marin

    2007-01-01

    The main organizations involved in nuclear power production in Romania, under supervision of Presidency, Prime Minister and Parliament are: CNCAN (National Commission for Nuclear Activities Control), Nuclear Agency, Ministry of Economy and Commerce, ANDRAD (Waste Management Agency), SNN (Nuclearelectrica National Society), RAAN (Romanian Authority for Nuclear Activities), ICN (Institute for Nuclear Research - Pitesti), SITON (Center of Design and Engineering for Nuclear Projects- Bucharest); ROMAG-PROD (Heavy Water Plant), CNE-PROD (Cernavoda Nuclear Power Plant - Production Unit), CNE-INVEST (Cernavoda Nuclear Power Plant -Investments Unit), FCN (Nuclear Fuel Factory). The Institute for Nuclear Research, Pitesti INR, Institute for Nuclear Research, Pitesti is endowed with a TRIGA Reactor, Hot Cells, Materials Laboratories, Nuclear Fuel, Nuclear Safety Laboratories, Nuclear Fuel, Nuclear Safety. Waste management. Other research centers and laboratories implied in nuclear activities are: ICIT, National Institute for cryogenics and isotope technologies at Rm Valcea Valcea. with R and D activity devoted to heavy water technologies, IFIN, Institute for nuclear physics and engineering, Bucharest, as well as the educational institutions involved in atomic energy applications and University research, Politechnical University Bucharest, University of Bucharest, University of Pitesti, etc. The INR activity outlined, i.e. the nuclear power research as a scientific and technical support for the Romanian nuclear power programme, mainly dedicated to the existing NPP in the country (CANDU). Focused with priority are: - Nuclear Safety (behavior of plant materials, components, installations during accident conditions and integrity investigations); - Radioactive Waste Management Radioactive; - Radioprotection; Product and services supply for NPP. INR Staff numbers 320 R and D qualified and experienced staff, 240 personnel in devices and prototype workshops and site support

  8. Overview of Gas Research Institute environmental research programs

    International Nuclear Information System (INIS)

    Evans, J.M.

    1991-01-01

    The Gas Research Institute (GRI) is a private not-for-profit membership organization of natural gas pipelines, distribution companies and natural gas producers. GRI's purpose is to plan, to manage and to develop financing for a gas-related research and development (R and D) program on behalf of its members and their customers. GRI does not do any research itself. GRI's R and D program is designed to provide advanced technologies for natural gas supply, transport, storage, distribution and end-use applications in all markets. In addition, basic research is conducted for GRI in these areas to build a foundation for future technology breakthroughs. Work in the Environment and Safety Research Department includes sections interested in: supply related research, air quality research, end use equipment safety research, gas operations safety research, and gas operations environmental research. The Natural Gas Supply Program has research ongoing in such areas as: restoration of pipeline right-of-ways; cleaning up town gas manufacturing sites; the development of methanogenic bacteria for soil and groundwater cleanup; development of biological fluidized carbon units for rapid destruction of carbonaceous compounds; research on liquid redox sulfur recovery for sulfur removal from natural gas; research on produced water and production wastes generated by the natural gas industry; environmental effects of coalbed methane production; and subsurface effects of natural gas operations. The western coalbed methane and ground water programs are described

  9. Health physics in JAERI, no.28

    International Nuclear Information System (INIS)

    1986-09-01

    In the annual report No.28 (fiscal 1985) are described the activities of health physics including radioactive waste management in Tokai Research Establishment, Takasaki Radiation Chemistry Research Establishment and Oarai Research Establishment. There were no occupational exposure exceeding the maximum permissible dose and no release of radioactive gaseous and liquid waste beyond the release limit specified according to the regulations. In the environment there were observed no abnormal radioactivity due to facilities. Technology development and research; Technology developments were made as in the previous years for improving the techniques and methods in monitoring of individuals, facilities and environment, radiation measurement instrumentation and also in waste management and decontamination. The following works were made in the researches of radiation dosimetry, body radioactivity, airborne radioactivity and estimation of radiation dose due to low level waste disposal. For radiation dosimetry: portable apparatus for calibration of radioactive gas monitors, evaluation of β-ray depth dose distribution, and exposure analysis through an extended series of specific jobs at JRR-2. For body radioactivity: characteristic of JAERI phantom for an assessment of Pu in lung, transfer compartment in the internal dose evaluation method, and radiosensitivity of chromosomes of rabbit lymphocytes. For airborne radioactivity and estimation of radiation dose due to wastedisposal: sheltering effect of houses for radioactive effluent, tritium oxide permeability of membrance in protective appliances, conversion rate of low concentration tritium gas to tritiated water, computer code for calculation of radiation dose from very low-level radioactive waste disposal and safety demonstration tests of national disposal of very low-level radioactive solid waste. (J.P.N.)

  10. Manual for JSSL (JAERI Scientific Subroutine Library)

    International Nuclear Information System (INIS)

    Fujimura, Toichiro; Tsutsui, Tsuneo

    1991-09-01

    JSSL (JAERI Scientific Subroutine Library) is a library of scientific subroutines developed or modified in JAERI. They are classified into sixteen fields (Special Functions, Linear Problems, Eigenvalue and Eigenvector Problems, Non Linear Problems, Mathematical Programming, Extreme Value Problems, Transformations, Functional Approximation Methods, Numerical Differential and Integral Methods, Numerical Differential and Integral Equations, Statistical Functions, Physical Problems, I/O Routines, Plotter Routines, Computer System Functions and Others). This report is the user manual for the revised version of JSSL which involves evaluated subroutines selected from the previous compilation of JSSL, applied in almost all the fields. (author)

  11. Manual for JSSL (JAERI scientific subroutine library)

    International Nuclear Information System (INIS)

    Inoue, Shuji; Fujimura, Toichiro; Tsutsui, Tsuneo; Nishida, Takahiko

    1982-09-01

    A manual on revised version of JAERI scientific subroutine library, which is a collection of scientific subroutines developed or modified in JAERI. They are classified into fifteen fields (Special Functions, Linear Problems, Eigenvalue and Eigen vector Problems, Non linear Problems, Mathematical Programming, Extreme Value Problems, Transformations, Functional Approximation Methods, Numerical Differential and Integral Methods, Numerical Differential and Integral Equations, Statistical Functions, Physical Problems, I/O Routines, Plotter Routines, Computer System Functions and Others). Main expansion of this version is in the fields of mathematical programming and statistical functions. The present library may be said to be a comprehensive compilation of scientific subroutines covering almost all the important fields. (author)

  12. Progress of neutral beam R and D for plasma heating and current drive at JAERI

    International Nuclear Information System (INIS)

    Ohara, Y.

    1995-01-01

    Recent progress and future plans regarding development of a high power negative ion source at the Japan Atomic Energy Research Institute (JAERI) are described. The neutral beam injection system, which is expected to play an important role not only in plasma heating but also in the plasma current drive in the fusion reactor, requires a high power negative ion source which can produce negative deuterium ion beams with current of order 20A at energy above 1MeV. In order to realize such a high power negative ion beam, intensive research and development has been carried out at JAERI since 1984. The negative hydrogen ion beam current of 10A achieved in recent years almost equals the value required for the fusion reactor. With regard to the negative ion acceleration, a high current negative ion beam of 0.2A has been accelerated up to 350keV electrostatically. On the basis of this recent progress, two development plans have been initiated as an intermediate step towards the fusion reactor. One is to develop a 500keV, 10MW negative ion based neutral beam injection system for JT-60U to demonstrate the neutral beam current drive in a high density plasma. The other is to develop a 1MeV, 1A ion source to demonstrate high current negative ion acceleration up to 1MeV. On the basis of this research and development, an efficient and reactor relevant neutral beam injection system will be developed for an experimental fusion reactor such as the International Thermonuclear Experimental Reactor. ((orig.))

  13. Proceedings of fuel safety research specialists' meeting

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2002-08-01

    Fuel Safety Research Specialists' Meeting, which was organized by Japan Atomic Energy Research Institute, was held on March 4-5, 2002 at JAERI in Tokai Establishment. Purposes of the Meeting are to exchange information and views on LWR fuel safety topics among the specialist participants from domestic and foreign organizations, and to discuss the recent and future fuel research activities in JAERI. In the Meeting, presentations were given and discussions were made on general report of fuel safety research activities, fuel behaviors in normal operation and accident conditions, FP release behaviors in severe accident conditions, and JAERI's ''Advanced LWR Fuel Performance and Safety Research Program''. A poster exhibition was also carried out. The Meeting significantly contributed to planning future program and cooperation in fuel research. This proceeding integrates all the pictures and papers presented in the Meeting. The 10 of the presented papers are indexed individually. (J.P.N.)

  14. Institutional Support : Institute for Policy Analysis and Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant from IDRC's Think Tank Initiative (TTI) will allow IPAR-Rwanda to strengthen its managerial and research capacity by means of a mentoring program for managers, researchers and support staff. This will include formulating a set of organizational goals and establishing a monitoring system to assess progress ...

  15. Progress of nuclear safety research - 2005

    International Nuclear Information System (INIS)

    Anoda, Yoshinari; Amaya, Masaki; Saito, Junichi; Sato, Atsushi; Sono, Hiroki; Tamaki, Hitoshi; Tonoike, Kotaro; Nemoto, Yoshiyuki; Motoki, Yasuo; Moriyama, Kiyofumi; Yamaguchi, Tetsuji; Araya, Fumimasa

    2006-03-01

    The Japan Atomic Energy Research Institute (JAERI), one of the predecessors of the Japan Atomic Energy Agency (JAEA), had conducted nuclear safety research primarily at the Nuclear Safety Research Center in close cooperation with the related departments in accordance with the Long Term Plan for Development and Utilization of Nuclear Energy and Five-Years Program for Safety Research issued by the Japanese government. The fields of conducting safety research at JAERI were the engineering safety of nuclear power plants and nuclear fuel cycle facilities, and radioactive waste management as well as advanced technology for safety improvement or assessment. Also, JAERI had conducted international collaboration to share the information on common global issues of nuclear safety and to supplement own research. Moreover, when accidents occurred at nuclear facilities, JAERI had taken a responsible role by providing experts in assistance to conducting accident investigations or emergency responses by the government or local government. These nuclear safety research and technical assistance to the government have been taken over as an important role by JAEA. This report summarizes the nuclear safety research activities of JAERI from April 2003 through September 2005 and utilized facilities. (author)

  16. Harish-Chandra Research Institute, Allahabad

    Indian Academy of Sciences (India)

    Academic Activities at the Institute. The aim of the Institute ... with perfectly free interactions between the faculty and the students. Box 2. ... standard model'. The only experimental motivation for this question is the fact that there are certain.

  17. Report of the summative evaluation by the advisory committee on fusion research and development

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an Advisory Committee on Fusion Research and Development in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Fusion Research and Development evaluated the adequacy of the plans of fusion research and development to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of eight specialists from outside the JAERI conducted its activities from June 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on July 23, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Fusion Research and Development. (author)

  18. Report of the summative evaluation by the advisory committee on nuclear safety research

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an Advisory Committee on Nuclear Safety Research in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Nuclear Safety Research evaluated the adequacy of the plans of nuclear safety research to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of eight specialists from outside the JAERI conducted its activities from June 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advanced and of the oral presentations made at the Advisory Committee meeting which was held on July 27, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Safety Research. (author)

  19. Report of the summative evaluation by the advisory committee on research support and collaborative activities

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an Advisory Committee on Research Support and Collaborative Activities in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Research Support and Collaborative Activities evaluated the adequacy of the plans of research support and collaborative activities to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of nine specialists from outside the JAERI conducted its activities from June 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on July 21, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Research Support and Collaborative Activities. (author)

  20. Report of the summative evaluation by the advisory committee on research for radiation applications

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an Advisory Committee on Research for Radiation Applications in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Research for Radiation Applications evaluated the adequacy of the plans of research for radiation applications to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of nine specialists from outside the JAERI conducted its activities from June 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advanced and of the oral presentations made at the Advisory Committee meeting which was held on July 29, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Research for Radiation Applications. (author)

  1. Extended abstracts of the 12th JAERI workshop on high-Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hojou, Kiichi; Okayasu, Satoru; Sasase, Masato [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishida, Takekazu [Osaka Prefectual Univ., Sakai (JP)] (eds.)

    2001-03-01

    This workshop was held on December 7-8, 2000 at JAERI (Tokai). The research group at JAERI shares a responsibility for material modification of high-Tc superconductors by irradiation in 'the multi-core project II of the high temperature superconducting material research' organized by STA (Science and Technology Agency) of Japan. This report contains the extended abstracts of workshop presentations covering basic theories, various experimental results and material improvement studies of the superconductivity by high energy ion irradiation. The twelve presentations of the workshop were devoted to a mini symposium where the direct observations of vortices were discussed in view of the various sophisticated techniques. (author)

  2. Extended abstracts of the 12th JAERI workshop on high-Tc superconductors

    International Nuclear Information System (INIS)

    Hojou, Kiichi; Okayasu, Satoru; Sasase, Masato

    2001-03-01

    This workshop was held on December 7-8, 2000 at JAERI (Tokai). The research group at JAERI shares a responsibility for material modification of high-Tc superconductors by irradiation in 'the multi-core project II of the high temperature superconducting material research' organized by STA (Science and Technology Agency) of Japan. This report contains the extended abstracts of workshop presentations covering basic theories, various experimental results and material improvement studies of the superconductivity by high energy ion irradiation. The twelve presentations of the workshop were devoted to a mini symposium where the direct observations of vortices were discussed in view of the various sophisticated techniques. (author)

  3. Applied Research at Canadian Colleges and Institutes

    Science.gov (United States)

    Association of Canadian Community Colleges, 2006

    2006-01-01

    Canada has a national network of over 150 colleges and institutes in over 900 communities in all regions of the country. These institutions are mandated to support the socio-economic development of the communities and regions. Colleges and institutes develop education and training programs to meet employer needs with direct input from business,…

  4. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, 22. April 1, 1988 - March 31, 1989

    International Nuclear Information System (INIS)

    1991-03-01

    This report describes research activities of Osaka Laboratory for Radiation Chemistry, JAERI during one year period from April 1, 1988 through March 31, 1989. The latest report, for 1987, is JAERI-M 90-054. Detailed descriptions of the activities are presented in the following subjects : (i) studies on laser-induced organic chemical reactions and (ii) studies on radiation chemistry of high polymers and radiation dosimetry. (J.P.N.)

  5. Financial Support for Institutional Research, 1969-70.

    Science.gov (United States)

    Pieper, W. C., Jr.

    The Association for Institutional Research conducted a survey of all institutions of higher education in the U.S. and Canada in order to assess the number, size, and financial support of institutional research offices. Data were requested for the 1969-70 academic year. This report is based on the responses of 1,444 institutions that returned the…

  6. Summary report for IAEA CRP on lifetime prediction for the first wall of a fusion machine (JAERI contribution)

    International Nuclear Information System (INIS)

    Suzuki, Satoshi; Araki, Masanori; Akiba, Masato

    1993-03-01

    IAEA Coordinated Research Program (CRP) on 'Lifetime Prediction for the First Wall of a Fusion Machine' was started in 1989. Five participants, Joint Research Centre (JRC-Ispra), The NET team, Kernforschungszentrum Karlsruhe (KfK), Russian Research Center and Japan Atomic Energy Research Institute, contributed in this activity. The purpose of the CRP is to evaluate the thermal fatigue behavior of the first wall of a next generation fusion machine by means of numerical methods and also to contribute the design activities for ITER (International Thermonuclear Experimental Reactor). Thermal fatigue experiments of a first wall mock-up which were carried out in JRC-Ispra were selected as a first benchmark exercise model. All participants performed finite element analyses with various analytical codes to predict the lifetime of the simulated first wall. The first benchmark exercise has successfully been finished in 1992. This report summarizes a JAERI's contribution for this first benchmark exercise. (author)

  7. 78 FR 13097 - Electric Power Research Institute; Seismic Evaluation Guidance

    Science.gov (United States)

    2013-02-26

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0038] Electric Power Research Institute; Seismic... Electric Power Research Institute (EPRI)-1025287, ``Seismic Evaluation Guidance: Screening, Prioritization... guidance and clarification of an acceptable approach to assist nuclear power reactor licensees when...

  8. TTI Phase 2 Institutional Support: Economic Policy Research Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    TTI Phase 2 Institutional Support: Economic Policy Research Centre ... the Economic Policy Research Centre's (EPRC) role as a credible public policy institution in ... IWRA/IDRC webinar on climate change and adaptive water management.

  9. Present status of HTGR research and development

    International Nuclear Information System (INIS)

    1992-08-01

    This report briefly describes the progress of the construction of the High Temperature Engineering Test Reactor (HTTR), Research and Development (R and D) on the advanced technologies for the High Temperature Gas-cooled Reactors (HTGRs) and international cooperation in the Japan Atomic Energy Research Institute (JAERI) in 1991. (J.P.N.)

  10. JAERI electrostatic accelerators for multiple ion beam application

    International Nuclear Information System (INIS)

    Ishii, Yasuyuki; Tajima, Satoshi; Takada, Isao

    1993-01-01

    An electrostatic accelerators facility of a 3MV tandem accelerator, a 3MV single-ended accelerator and a 400kV ion implanter was completed mainly for materials science and biotechnology research at JAERI, Takasaki. The accelerators can be operated simultaneously for multiple beam application in triple and dual beam modes. The single-ended machine was designed to satisfy an extremely high voltage stability of ±1x10 -5 to provide a submicron microbeam stably. The measured voltage stability and ripple were within the designed value. (author)

  11. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  12. Commissioning of the JAERI free electron laser

    International Nuclear Information System (INIS)

    Minehara, E.J.; Nagai, R.; Sawamura, M.

    1993-01-01

    We have developed, and constructed a prototype for a quasi-cw, and high-average power free electron laser driven by a 15MeV superconducting rf linac at Tokai, JAERI. In designing a high power FEL, there are many available design options to generate the required power output. By applying the superconducting rf linac driver, some of the options relating to the FEL itself may be relaxed by transferring design difficulties to the driver. Because wall losses become minimal in the superconducting accelerator cavity, very long pulse or quasi-cw, and resultant high average power may be readily attained at the JAERI superconducting rf linac FEL. In 1992 Japanese fiscal year, we have successfully demonstrated better cryogenic (stand-by loss<3.5W at 4.5K) and accelerating fields' performances (Eacc=7-9.4MV/m and Q=1-2x10+9) of four JAERI superconducting accelerator modules, and installed them in the FEL accelerator vault. In 1993, Optical resonators and beam transport systems, which have been already assembled, are now under commissioning. A description and the latest results of the JAERI super-conducting rf linac FEL will be discussed in comparison with a normal-conducting one, and reported in the symposium. (author)

  13. Development of authentication system for the fast critical assembly (FCA) portal monitor (P/M) and penetration monitor (PN/M) systems of JAERI

    International Nuclear Information System (INIS)

    Ogawa, Hironobu; Mukaiyama, Takehiko

    1999-05-01

    The advanced comprehensive containment and surveillance system for the Fast Critical Assembly facility (FCA) of the Japan Atomic Energy Research Institute (JAERI) consists of a Portal monitor (P/M) and a Penetration Monitor (PN/M) systems. The development of these systems was completed in 1988 for alleviating the burdens of manpower and radiation problems in the frequent NDA inspections. After the completion of the field trial test (Phase III), in 1990, the International Atomic Energy Agency (IAEA) accepted the system on condition that an independent IAEA authentication equipment would be provided. The development of the authentication measures was carried out jointly by both the Japan Support Programme for Agency Safeguards (JASPAS) and the U.S. Program of Technical Assistance to IAEA Safeguards (POTAS), and also under the research agreement for the safeguards research and development between JAERI and the US Department of Energy (USDOE). The concept and design requirements of the authentication system were developed by IAEA, but the design and development of the authentication equipment were jointly funded both by JASPAS and POTAS, and also the fund of JAERI was provided for the Sandia National Laboratories (SNL) through USDOE. SNL developed and constructed the authentication system in two phase as Phase I and Phase II. JAERI financed the development of the Phase I and Phase II hardware and software, and the installation of the authentication equipment at the FCA facility, and also carried out the modification of the circuitry and devices for both the P/M and the PN/M systems as well as the reconstruction of the PN/M Junction Unit for compatibility with the implementation of the authentication measures. After the completion of consecutive field trial test of the P/M, the PN/M and the authentication system, IAEA accepted the entire system as an effective and efficient routine inspection measures in 1996. This report describes the modification and reconstruction of

  14. Multi-Institution Research Centers: Planning and Management Challenges

    Science.gov (United States)

    Spooner, Catherine; Lavey, Lisa; Mukuka, Chilandu; Eames-Brown, Rosslyn

    2016-01-01

    Funding multi-institution centers of research excellence (CREs) has become a common means of supporting collaborative partnerships to address specific research topics. However, there is little guidance for those planning or managing a multi-institution CRE, which faces specific challenges not faced by single-institution research centers. We…

  15. JAERI TANDEM, LINAC and V.D.G. annual report 1989

    International Nuclear Information System (INIS)

    1990-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1989 to March 31, 1990. Summary reports of 49 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  16. JAERI tandem and V.D.G. annual report 1998. April 1, 1998 - March 31, 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1998 to March 31, 1999. Summary reports of 38 papers, and lists of publication, personnel and cooperative research with universities and contained. (author)

  17. JAERI tandem annual report 2002. April 1, 2002 - March 31, 2003

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Oshima, Masumi; Ishii, Tetsuro; Nagame, Yuichiro; Chiba, Satoshi; Sataka, Masao

    2003-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 2002 to March 31, 2003. Summary reports of 54 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  18. JAERI tandem and V.D.G. annual report 1997. April 1, 1997 - March 31, 1998

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Chiba, Satoshi; Sataka, Masao; Nagame, Yuichiro; Takemori, Satoshi; Iwamoto, Akira

    1998-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1997 to March 31, 1998. Summary reports of 40 papers, and lists of publication, personnel and cooperative researches with universities are contained. (author)

  19. JAERI TANDEM and V.D.G. annual report 1992 April 1, 1992 - March 31, 1993

    International Nuclear Information System (INIS)

    1993-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1992 to March 31, 1993. Summary reports of 41 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  20. JAERI tandem, linac and V.D.G. annual report 1984

    International Nuclear Information System (INIS)

    Shikazono, Naomoto; Iizumi, Masashi; Ishii, Mitsuhiko; Kawarasaki, Yuuki; Murayama, Michio; Okashita, Hiroshi; Ozawa, Kunio; Suto, Yoichi

    1985-07-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1984 to March 31, 1985. Summary reports of 53 papers, publications, personnel and a list of cooperative researches with universities are contained. (author)

  1. JAERI tandem, linac and V.D.G. annual report 1987

    International Nuclear Information System (INIS)

    1988-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1987 to March 31, 1988. Summary reports of 49 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  2. JAERI TANDEM and V.D.G. annual report 1994. April 1, 1994 - March 31, 1995

    International Nuclear Information System (INIS)

    Suzuki, Yasuo; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Shinohara, Nobuo; Takeuchi, Suehiro; Shoji, Tokio; Okabe, Takashi

    1995-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1994 to March 31, 1995. Summary reports of 47 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  3. JAERI tandem annual report 2001. April 1, 2001 - March 31, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Chiba, Satoshi; Nagame, Yuichiro; Sataka, Masao; Iwamoto, Akira (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 2001 to March 31, 2002. Summary reports of 48 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  4. JAERI TANDEM annual report 2000. April 1, 2000 - March 31, 2001

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Chiba, Satoshi; Nagame, Yuichiro; Sataka, Masao; Iwamoto, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] (eds.)

    2001-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 2000 to March 31, 2001. Summary reports of 46 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  5. JAERI TANDEM and V.D.G. annual report 1995. April 1, 1995 - March 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Nagame, Yuichiro; Shoji, Tokio; Okabe, Takashi; Maekawa, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; eds.

    1996-08-01

    This annual report describes research activities which have been performed with the JAERI Tandem accelerator and the Van de Graaff accelerator from April 1, 1995 to March 31, 1996. Summary reports of 59 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  6. JAERI tandem and V.D.G. annual report 1993. April 1, 1993 - March 31, 1994

    International Nuclear Information System (INIS)

    Suzuki, Yasuo; Ikezoe, Hiroshi; Iwamoto, Akira; Kazumata, Yukio; Shinohara, Nobuo; Takeuchi, Suehiro; Okabe, Takashi

    1994-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1993 to March 31, 1994. Summary reports of 43 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  7. JAERI Tandem, LINAC and V.D.G. annual report 1986

    International Nuclear Information System (INIS)

    1987-08-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1986 to March 31, 1987. Summary reports of 55 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  8. JAERI tandem annual report 1999. April 1, 1999 - March 31, 2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1999 to March 31, 2000. Summary reports of 49 papers, and lists of publication, personnel and cooperative research with universities are contained. (author)

  9. JAERI tandem, LINAC and V.D.G. annual report 1988

    International Nuclear Information System (INIS)

    1989-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1988 to March 31, 1989. Summary reports of 45 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  10. JAERI TANDEM, LINAC and V.D.G. annual report, 1985

    International Nuclear Information System (INIS)

    1986-08-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1985 to March 31, 1986. Summary reports of 52 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  11. JAERI TANDEM and V.D.G. annual report 1996. April 1, 1996 - March 31, 1997

    International Nuclear Information System (INIS)

    Takeuchi, Suehiro; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Nagame, Yuichiro; Shoji, Tokio; Okabe, Takashi; Maekawa, Hiroshi

    1997-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaf accelerator from April 1, 1996 to March 31, 1997. Summary reports of 48 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  12. JAERI TANDEM and V.D.G. annual report 1994. April 1, 1994 - March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yasuo; Ikezoe, Hiroshi; Iwamoto, Akira; Sataka, Masao; Shinohara, Nobuo; Takeuchi, Suehiro; Shoji, Tokio; Okabe, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; eds.

    1995-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator and the Van de Graaff accelerator from April 1, 1994 to March 31, 1995. Summary reports of 47 papers, and list of publications, personnel and cooperative researches with universities are contained. (author).

  13. Workshop: Creating Your Institutional Research Repository

    KAUST Repository

    Grenz, Daryl M.

    2016-11-08

    In 2002, the Scholarly Publishing and Academic Resources Coalition (SPARC) proposed the concept of an institutional repository to simultaneously disrupt and enhance the state of scholarly communications in the academic world. Thirteen years later, thousands of universities and other institutions have answered this call, but many more have not due to gaps in budgets, awareness and, most of all, practical guidance on creating an institutional repository. This workshop provides you with an essential primer on what it takes to establish a fully-functioning institutional repository. Every aspect of the process will be covered, including policies, procedures, staffing guidelines, workflows and repository technologies.

  14. Astronomy Legacy Project - Pisgah Astronomical Research Institute

    Science.gov (United States)

    Barker, Thurburn; Castelaz, Michael W.; Rottler, Lee; Cline, J. Donald

    2016-01-01

    Pisgah Astronomical Research Institute (PARI) is a not-for-profit public foundation in North Carolina dedicated to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines. In November 2007 a Workshop on a National Plan for Preserving Astronomical Photographic Data (2009ASPC,410,33O, Osborn, W. & Robbins, L) was held at PARI. The result was the establishment of the Astronomical Photographic Data Archive (APDA) at PARI. In late 2013 PARI began ALP (Astronomy Legacy Project). ALP's purpose is to digitize an extensive set of twentieth century photographic astronomical data housed in APDA. Because of the wide range of types of plates, plate dimensions and emulsions found among the 40+ collections, plate digitization will require a versatile set of scanners and digitizing instruments. Internet crowdfunding was used to assist in the purchase of additional digitization equipment that were described at AstroPlate2014 Plate Preservation Workshop (www.astroplate.cz) held in Prague, CZ, March, 2014. Equipment purchased included an Epson Expression 11000XL scanner and two Nikon D800E cameras. These digital instruments will compliment a STScI GAMMA scanner now located in APDA. GAMMA will be adapted to use an electroluminescence light source and a digital camera with a telecentric lens to achieve high-speed high-resolution scanning. The 1μm precision XY stage of GAMMA will allow very precise positioning of the plate stage. Multiple overlapping CCD images of small sections of each plate, tiles, will be combined using a photo-mosaic process similar to one used in Harvard's DASCH project. Implementation of a software pipeline for the creation of a SQL database containing plate images and metadata will be based upon APPLAUSE as described by Tuvikene at AstroPlate2014 (www.astroplate.cz/programs/).

  15. Report of the summative evaluation by the advisory committee on research and development of nuclear energy technology

    International Nuclear Information System (INIS)

    2005-03-01

    The Research Evaluation Committee of the Japan Atomic Energy Research Institute (JAERI) set up an advisory Committee on Research and Development of Nuclear Energy Technology in accordance with the 'Fundamental Guideline for the Evaluation of Research and Development (R and D) at JAERI' and its subsidiary regulations. The Advisory Committee on Research and Development of Nuclear Energy Technology evaluated the adequacy of the plans of safety research to be succeeded from JAERI to a new research institute which will be established by integration of JAERI and the Japan Nuclear Cycle Development Institute (JNC). The Advisory Committee consisted of nine specialists from outside the JAERI conducted its activities from July 2004 to August 2004. The evaluation was performed on the basis of the materials submitted in advance and of the oral presentations made at the Advisory Committee meeting which was held on August 10, 2004, in line with the items, viewpoints, and criteria for the evaluation specified by the Research Evaluation Committee. The result of the evaluation by the Advisory Committee was submitted to the Research Evaluation Committee, and was judged to be appropriate at its meeting held on December 1, 2004. This report describes the result of the evaluation by the Advisory Committee on Research and Development on Nuclear Energy Technology. (author)

  16. Experiments using LHTL in JAERI

    International Nuclear Information System (INIS)

    Takamura, Saburo; Maeta, Hiroshi

    1984-01-01

    The liquid helium temperature loop (LHTL) in the Japan Atomic Energy Research Institute finished the irradiation experiment in March, 1983, accompanying the reconstruction of JRR-3 reactor, and at present, the removing work is in progress. This facility was built so as to be able to irradiate fast neutrons at 5 K, and in the state of having freezed the defects formed by irradiation, electric resistance, internal friction, X-ray scattering, length, mechanical strength and so on were able to be measured, and the state of recovery of irradiation defects accompanying temperature rise was able to be investigated. Recently, the irradiation damage of superconducting magnet materials used for nuclear fusion reactors has become a problem, and the importance of the irradiation experiment at extremely low temperature has increased. The LHTL engaged also in this problem. The transfer of irradiated specimens to the cryostat for measurement, the measurement of electric resistance, X-ray and the change of length, and compression test are reported. As for the properties of irradiation defects in metals, the examples of experiment carried out by the authors are briefly described. The effect of the irradiation at very low temperature on superconducting magnet materials is reported. (Kako, I.)

  17. Activities of working party on 'Subcritical core of accelerator-driven system' under the research committee on reactor physics of AESJ and JAERI

    International Nuclear Information System (INIS)

    Iwasaki, T.; Tsujimoto, K.; Nishihara, K.; Kitamura, Y.

    2004-01-01

    The Research Committee on Reactor Physics under the Atomic Energy Society of Japan and the Japan Atomic Energy Research Inst. organized the working party (ADS-WP) on S ubcritical Core of Accelerator-Driven System . The ADS-WP investigated reactor physics of subcriticality from the viewpoint of the accelerator driven system (ADS) since subcriticality has been almost studied from the viewpoint of critical safety. The working party was set in July 2001 and it worked for two years. The activities of the ADS-WP are (Work-I) theory of subcriticality, (Work-II) benchmark of subcritical core, (Work-III) setting of subcriticality level of ADS and (Work-JAO monitoring of subcriticality. These activities clarified about the important issues related to the subcriticality or the subcritical core from the wide ranges of theory, analysis, calculation, design and monitoring for ADS. The activities were already summarized and the report will be published in March 2004. (authors)

  18. The second workshop of neutron science research program

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Hideshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tone, Tatsuzo [eds.

    1997-11-01

    The Japan Atomic Energy Research Institute(JAERI) has been proposing the Neutron Science Research Program to explore a broad range of basic research and the nuclear technology including actinide transmutation with use of powerful spallation neutron sources. For this purpose, the JAERI is conducting the research and development of an intense proton linac, the development of targets, as well as the conceptual design study of experimental facilities required for applications of spallation neutrons and secondary particle beams. The Special Task Force for Neutron Science Initiative was established in May 1996 to promote aggressively and systematically the Neutron Science Research Program. The second workshop on neutron science research program was held at the JAERI Tokai Research Establishment on 13 and 14 March 1997 for the purpose of discussing the results obtained since the first workshop in March 1996. The 27 of the presented papers are indexed individually. (J.P.N.)

  19. Spacecraft computer technology at Southwest Research Institute

    Science.gov (United States)

    Shirley, D. J.

    1993-01-01

    Southwest Research Institute (SwRI) has developed and delivered spacecraft computers for a number of different near-Earth-orbit spacecraft including shuttle experiments and SDIO free-flyer experiments. We describe the evolution of the basic SwRI spacecraft computer design from those weighing in at 20 to 25 lb and using 20 to 30 W to newer models weighing less than 5 lb and using only about 5 W, yet delivering twice the processing throughput. Because of their reduced size, weight, and power, these newer designs are especially applicable to planetary instrument requirements. The basis of our design evolution has been the availability of more powerful processor chip sets and the development of higher density packaging technology, coupled with more aggressive design strategies in incorporating high-density FPGA technology and use of high-density memory chips. In addition to reductions in size, weight, and power, the newer designs also address the necessity of survival in the harsh radiation environment of space. Spurred by participation in such programs as MSTI, LACE, RME, Delta 181, Delta Star, and RADARSAT, our designs have evolved in response to program demands to be small, low-powered units, radiation tolerant enough to be suitable for both Earth-orbit microsats and for planetary instruments. Present designs already include MIL-STD-1750 and Multi-Chip Module (MCM) technology with near-term plans to include RISC processors and higher-density MCM's. Long term plans include development of whole-core processors on one or two MCM's.

  20. The Undergraduate Research Resources at the Pisgah Astronomical Research Institute

    Science.gov (United States)

    Cline, J. Donald; Castelaz, Michael W.

    2016-01-01

    Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.

  1. Workshop: Creating Your Institutional Research Repository

    KAUST Repository

    Grenz, Daryl M.; Baessa, Mohamed A.

    2016-01-01

    In 2002, the Scholarly Publishing and Academic Resources Coalition (SPARC) proposed the concept of an institutional repository to simultaneously disrupt and enhance the state of scholarly communications in the academic world. Thirteen years later

  2. 25 years TNO Road-Vehicles Research Institute

    NARCIS (Netherlands)

    1995-01-01

    Since the founding of the TNO Road-Vehicles Research Institute 25years ago, the institute has managed to develop a leading position in automotive research in several disciplines. A steady growth of the institute during the first 20 years has turned into a strong growth during the last 5 years. A

  3. Annual report of the Japan Atomic Energy Research Institute, for fiscal 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Fiscal year 1987 fell on the year to revise the long term program every five years, and the new long term program was decided, and the course that JAERI takes hereafter was shown. In this new program, the safety research and the upgrading research in the development from LWRs to FBRs, the promotion of the research and development of high temperature engineering, nuclear fusion, the utilization of radiation and nuclear-powered ships, the basic research and the development of base technology for opening up atomic energy frontier, and the expansion of international cooperation were emphasized as the role of JAERI. The research on engineering safety, the development of high temperature gas-cooled reactors, the research and development of nuclear fusion, and the research and development of nuclear-powered ships are reported. In the fields of the related research, basic research and the utilization of radiation, the research on the reactor physics of FBRs and thermal neutron reactors, the research on nuclear fuel and reactor materials, the research on reactor dismantling techniques, the development of tritium production technology and many others were advanced. The operation for utilizing JRR 2, JRR 4 and JMTR was carried out, and JRR 3 was under reconstruction. (K.I.)

  4. Annual report of the Osaka Laboratory for Radiation Chemistry Japan Atomic Energy Research Institute, (No. 26)

    International Nuclear Information System (INIS)

    1994-03-01

    The annual research activities of Osaka Laboratory for Radiation Chemistry, JAERI during the fiscal year of 1992 (April 1, 1992 - March 31, 1993) are described. The research activities were conducted under the two research programs: the study on laser-induced organic chemical reactions and the study on basic radiation technology for functional materials. Detailed descriptions of the activities are presented in the following subjects: laser-induced organic synthesis, modification of polymer surface by laser irradiation, radiation-induced polymerization, preparation of fine particles by gamma ray irradiation, and electron beam dosimetry. The operation report of the irradiation facilities is also included. (author)

  5. Overview of the 3rd phase crossover research on migration of radionuclides in biosphere

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Amano, Hikaru; Chiba, Masaru; Hisamatsu, Shun'ichi; Enomoto, Shuichi; Matsumoto, Shiro

    2003-01-01

    In 1991, we started a series of projects in Nuclear Energy Generic Crossover Research, which is known as ''Crossover Research (CR)''. This 1st phase was successfully finished with the active cooperation of five organizations: Japan Atomic Energy Research Institute (JAERI), Meteorological Research Institute (MRI), National Institute of Radiological Sciences (NIRS), the Institute of Physical and Chemical Research (RIKEN) and Power Reactor and Nuclear Fuel Development Corporation (PNC). Subsequently we carried out the 2nd phase of CR (1996-1998). A new member, Institute for Environmental Sciences (IES) participated from this phase. In the 3rd phase CR, a project on ''Development of a dynamic transfer model of radionuclides in the soil ecosphere'', is currently being promoted (1999-2003). The following five researches are carried out in this project. (1) Research into the forms of existence of nuclide and their change in the soil (NIRS and JAERI), (2) Research into the transition behavior of radionuclides in plants (IES, RIKEN and NIRS), (3) Research into the relation to the microorganism and on environmental remediation (RIKEN, JAERI and NIRS), (4) Research on the migration of radionuclides from atmosphere to soil and plant (MRI and JAERI), and (5) Database construction on transfer parameters (JAERI, NIRS and MRI). Then, JAERI, MRI and NIRS are working on the development of a dynamic transfer model for radionuclides on the basis of a gained knowledge about the environmental behavior with the cooperation of universities, etc. The dynamic transfer model developed in this project is effective not only for Japan, but also for the Southeast Asian countries. Besides, this model is capable of predicting the behavior of materials that are harmful to the environment, i.e. hazardous heavy metals discharged in the soil ecosphere. (author)

  6. UNLV Information Science Research Institute. Quarterly progress report

    International Nuclear Information System (INIS)

    Nartker, T.A.

    1994-01-01

    This document summarizes the activities and progress for the 1994 Fall quarter for the UNLV Information Science Research Institute. Areas covered include: Symposium activity, Staff activity, Document analysis program, Text-retrieval program, and Institute activity

  7. UNLV Information Science Research Institute. Quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1994-12-31

    This document summarizes the activities and progress for the 1994 Fall quarter for the UNLV Information Science Research Institute. Areas covered include: Symposium activity, Staff activity, Document analysis program, Text-retrieval program, and Institute activity.

  8. Institute for Advanced Learning and Research names new executive director

    OpenAIRE

    Virginia Tech News

    2008-01-01

    Virginia Tech's Institute for Advanced Learning and Research has named Liam E. Leightley as executive director, effective Oct. 6, 2008, according to Mike Henderson, chair of the institute's board of trustees.

  9. Historical evolution of nuclear energy systems development and related activities in JAERI. Fission, fusion, accelerator utilization

    Energy Technology Data Exchange (ETDEWEB)

    Tone, Tatsuzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Overview of the historical evolution of nuclear energy systems development and related activities in JAERI is given in the report. This report reviews the research and development for light water reactor, fast breeder reactor, high temperature gas reactor, fusion reactor and utilization of accelerator-based neutron source. (author)

  10. Recent activity on the post-irradiation analyses of nuclear fuels and actinide samples at JAERI

    International Nuclear Information System (INIS)

    Shinohara, Nobuo; Nakahara, Yoshinori; Kohno, Nobuaki; Tsujimoto, Kazufumi

    2003-01-01

    Radiochemical analyses of spent fuels have been carried out at JAERI for contributing to the development of nuclear technologies, where several samples from research reactors and nuclear power plants were analyzed to obtain isotopic compositions and burnups. The history and procedures of the radiochemical analyses are depicted and some recent results are given in this paper. (author)

  11. A proposal for study of ion-beam induced chemical reactions using JAERI tandem accelerator

    International Nuclear Information System (INIS)

    1985-11-01

    Problems in ion-beam induced chemical reactions using JAERI Tandem Accelerator were discussed. Research philosophy, some proposed experiments which are based on measurements during ion-beam bombardment, and main features of the experimental apparatus are briefly described in this report. (author)

  12. Institute of Nuclear Physics, mission and scientific research activities

    International Nuclear Information System (INIS)

    Zoto, J.; Zaganjori, S.

    2004-01-01

    The Institute of Nuclear Physics (INP) was established in 1971 as a scientific research institution with main goal basic scientific knowledge transmission and transfer the new methods and technologies of nuclear physics to the different economy fields. The organizational structure and main research areas of the Institute are described. The effects of the long transition period of the Albanian society and economy on the Institution activity are also presented

  13. Development of superconducting cavities at JAERI

    International Nuclear Information System (INIS)

    Ouchi, N.

    2001-01-01

    Development of superconducting (SC) cavities is continued for the high intensity proton accelerator in JAERI. In FY-1999, we carried out R and D work; (1) 2nd vertical test of β=0.886 single-cell cavity, (2) vertical test for observation of Q-disease without heat treatment after electropolishing, (3) vertical test of β=0.5 5-cell cavity, (4) pretuning, surface treatment and vertical test of β=0.886 5-cell cavity, (5) pulsed operation of β=0.886 single-cell cavity in the vertical test to confirm the validity of a new model calculation. This paper describes the present status of the R and D work for the SC cavities in JAERI. (author)

  14. Information Science Research Institute quarterly progress report

    Energy Technology Data Exchange (ETDEWEB)

    Nartker, T.A.

    1995-09-30

    Subjects studied include optical character recognition (OCR), text retrieval, and document analysis. This report discusses the OCR test system and the text retrieval program. Staff and institute activities are given. Appendices give the ISRI methodology for preparing ground-truth test data and the test of OCR systems using DOE documents.

  15. Transforming Welfare Institutions through Action Research

    DEFF Research Database (Denmark)

    Andersen, John; Bilfeldt, Annette

    Abstract til ALARA 9th Action Learning Action Research and 13th Participatory Action Research World Congress, South Africa from 4 – 7 November 2015 Pretoria, Sydafrika......Abstract til ALARA 9th Action Learning Action Research and 13th Participatory Action Research World Congress, South Africa from 4 – 7 November 2015 Pretoria, Sydafrika...

  16. The present status of JAERI OCTOPUS

    International Nuclear Information System (INIS)

    Yokota, Watalu

    1992-01-01

    As the ECR ion source of the JAERI AVF Cyclotron, OCTOPUS was installed. An experimental operation was conducted to increase the capability of generating multi-charged ions and to ameliorate the efficiency of beam transport to the cyclotron. In this paper, the brief description of OCTOPUS is given. And the difference of ion generation characteristics depending on the position of the main gas introduction, and the result of emittance measurement are reported. (J.P.N.)

  17. Present status of low-Z coating development in JAERI

    International Nuclear Information System (INIS)

    Nakamura, K.; Abe, T.; Obara, K.; Murakami, Y.

    1986-01-01

    In the JT-60 at JAERI, TiC-coated molybdenum and TiC-coated Inconel tiles are currently used as plasma interactive components. They have already been subjected to initial ohmic heating experiments and exhibited good adhesion characteristics under high heat flux conditions. The present article reviews a JAERI's coating development program for JT-60 experiments currently under way and for the next-step experiments. The program includes development and performance tests of the TiC-coated tiles, development of an in-situ coating technique for the repair of damaged surface of the tiles, and research on carbonization. Stress is laid on thermal shock and thermal fatigue tests of these coatings. In the thermal tests, adhesion between low-Z coatings and bulk materials have been investigated under high heat irradiation. TiC and TiN are used as coating material while Mo and Inconel 625 are employed as bulk material. Results are shown in this report concerning calculated temperature elavation of TiC/TiN/Mo due to hydrogen beam irradiation. As regards the irradiation time required for the melting of the substrate, experimental results mostly agree with calculations. Almost all coatings investigated are not exfoliated from the substrate until the melting of the substrate. (Nogami, K.)

  18. Technical publications by JAERI staff in 1997, vol. 31

    International Nuclear Information System (INIS)

    1998-06-01

    This list contains 998 references published as JAERI technical reports and selected from JAERI personnel's paper in journals and other publications in 1997. A bibliographic description for each entry consists of title, language, author(s) and source. While JAERI technical reports are sorted by report number, papers-in-journals are arranged by the first author. The personal author index, corporate author index and report number index are included. (author). 998 refs

  19. Technical publications by JAERI staff in 1998, vol. 32

    International Nuclear Information System (INIS)

    1999-06-01

    This list contains 1074 references of JAERI technical reports and JAERI personnel's papers in journals and other publications in 1998. A bibliographic description for each entry consists of title, language, author(s) and source. While JAERI technical reports are sorted by report number, papers-in-journals are arranged by the first author. The personal author index, corporate author index and report number index are included. (author). 1074 refs

  20. Technical publications by JAERI staff in 1999, vol. 33

    International Nuclear Information System (INIS)

    2000-06-01

    This list contains 1399 references of JAERI technical reports and JAERI personnel's papers in journals and other publications in 1999. A bibliographic description for each entry consists of title, language, author(s) and source. While JAERI technical reports are sorted by report number, papers-in-journals are arranged by the first author. The personal author index, corporate author index and report number index are included. (author)

  1. Technical publications by JAERI staff in 2000, vol. 34

    International Nuclear Information System (INIS)

    2001-04-01

    This list contains 830 references of JAERI technical reports and JAERI personnel's papers in journals and other publications in 2000. A bibliographic description for each entry consists of title, language, author(s) and source. While JAERI technical reports are sorted by report number, papers-in-journals are arranged by the first author. The personal author index, corporate author index and report number index are included. (author)

  2. Institutional Support : Centre for Research and Technology ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    year-old science and technology research centre at Maseno University in western Kenya. The Centre focuses on science and technology research to influence both national policies and development practices at the community level. Currently ...

  3. Institutional Support : Research on Poverty Alleviation (REPOA ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    -established and well-managed independent policy research organization with a record of producing high-quality, policy-relevant research results. REPOA is experiencing rapid growth in the demand for its services. This grant from IDRC's ...

  4. Funds Utilization and its Impact on Research Institute Libraries in ...

    African Journals Online (AJOL)

    This study was carried out to assess funds utilization and it impact on research institute libraries in Kaduna State. Twelve research institutes in Kaduna State with the exception of one which did not have a library were used for the study. The survey research design was adopted for the study, and questionnaire was used as ...

  5. Water and Environmental Research Institute of the Western Pacific

    Science.gov (United States)

    Water and Environmental Research Institute of the Western Pacific - University of Guam Skip to main entered the website of the Water and Environmental Research Institute of the Western Pacific (WERI) at the CNMI and the FSM. Research Programs Weather and Climate Surface Water & Watersheds Groundwater &

  6. Technical publications by JAERI staff in 1992, vol. 26

    International Nuclear Information System (INIS)

    1993-05-01

    This list contains 969 references published as technical reports by JAERI and selected from JAERI personnel's papers in journals and other publications in 1992. A bibliographic description for each entry consists of title, carrier language, author(s) and source. The references fall into three groups. While JAERI report and JAERI-M report groups are sorted by report number, Papers-in-Journals group is arranged by the first author. The indexes are both by personal author and corporate entry. (author) 969 refs

  7. Technical publications by JAERI staff in 1991, Vol. 25

    International Nuclear Information System (INIS)

    1992-05-01

    This list contains 843 references published as technical reports by JAERI and selected from JAERI personnel's papers in journals and other publications in 1991. A bibliographic description for each entry consists of title, carrier language, author(s) and source. The references fall into three groups. While JAERI report and JAERI-M report groups are sorted by report number, Papers-in-Journals group is arranged by the first author. The indexes are both by personal author and corporate entry. (author) 843 refs

  8. Technical publications by JAERI staff in 1990, Vol. 24

    International Nuclear Information System (INIS)

    1991-05-01

    This list contains 752 references published as technical reports by JAERI and selected from JAERI personnel's papers in journals and other publications in 1990. A bibliographic description for each entry consists of title, carrier language, author(s) and source. The references fall into three groups. While JAERI report and JAERI-M report groups are sorted by report number, Papers-in-Journals group is arranged by the first author. The indexes are both by personal author and corporate entry. (author) 752 refs

  9. Technical publications by JAERI staff in 1989, Vol. 23

    International Nuclear Information System (INIS)

    1990-05-01

    This list contains 801 references published as technical reports by JAERI and selected from JAERI personnel's papers in journals and other publications in 1989. A bibliographic description for each entry consists of title, carrier language, author(s) and source. The references fall into three groups. While JAERI report and JAERI-M report groups are sorted by report number, Papers-in-Journals group is arranged by the first author. The indexes are both by personal author and corporate entry. (author) 801 refs

  10. Information Security Issues in Higher Education and Institutional Research

    Science.gov (United States)

    Custer, William L.

    2010-01-01

    Information security threats to educational institutions and their data assets have worsened significantly over the past few years. The rich data stores of institutional research are especially vulnerable, and threats from security breaches represent no small risk. New genres of threat require new kinds of controls if the institution is to prevent…

  11. Present state of control system of tandem accelerator in JAERI. Accidents frequently occurred in 1995 fiscal year

    Energy Technology Data Exchange (ETDEWEB)

    Hanashima, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    Tandem accelerator in JAERI (Japan Atomic Energy Research Institute) has been controlled by parallel processing control system using plural microprocessors and parallel processing programming since 1992. As the control system has been smoothly operated since beginning of its usage, many system downs have been experienced at later half of 1995. After each system down, original damage has not been found and it has been recovered by usual restarting operation. Some found remarkable defects were corrected by correction of electric circuit. As a result, frequency of the system down was decreased remarkably but its level could not be reduced to a level before occurring this phenomenon. As operation of the accelerator is preferable without control line for urgent measure, fundamental determination method is planned by controlling humidity of the control room and replacing serial highway driver with a new type producing now. (G.K.)

  12. Institutional Support : Applied and Theoretical Economic Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant from IDRC's Think Tank Initiative will allow GREAT to recruit fulltime research staff, enhance researcher training, formulate a strategic plan, upgrade the information infrastructure, and put ... IDRC is pleased to announce the results of its 2017 call for proposals to establish Cyber Policy Centres in the Global South.

  13. Progress report on neutron scattering research (April 1, 1996 - March 31, 1997)

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Yoshinobu; Suzuki, Jun-ichi; Fujiwara, Satoru [eds.

    1997-10-01

    This issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor (JRR-3M) mainly during the period between April 1, 1996 and March 31, 1997. The 57 of the presented papers are indexed individually. (J.P.N.)

  14. Progress report on neutron scattering research (April 1, 1997 - March 31, 1998)

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi; Fujiwara, Satoru; Aizawa, Kazuya [eds.

    1999-02-01

    The present issue summarizes research progress in neutron scattering at Japan Atomic Energy Research Institute (JAERI) by utilizing the research reactor (JRR-3M) during the period between April 1, 1997 and March 31, 1998. The 76 papers are indexed individually. (J.P.N.)

  15. Health physics in JAERI, 26

    International Nuclear Information System (INIS)

    1984-10-01

    In the annual report No.26 (fiscal 1983) are described the activities of health physics including radioactive waste management in Tokai Research Establishment, Takasaki Radiation Chemistry Research Establishment and Oarai Research Establishment. In all the three research establishments, radiation monitoring in nuclear facilities, individual monitoring, environmental monitoring and maintenance of measuring instruments were carried out as in the previous years. There were no occupational exposures exceeding the maximum permissible doses and no releases of radioactive gaseous and liquid wastes beyond the release limits specified according to the regulations. In the environment there were observed no abnormal radioactivities due to facilities. (J.P.N.)

  16. The future of national research institutions

    International Nuclear Information System (INIS)

    Popp, M.

    1992-01-01

    In Germany, the national research centers have prepared, accompanied and stabilized the development of nuclear technology. In the present, political, situation, they are no longer able to make a comparably constructive contribution to the future perspective of nuclear technology. The accompanying scientific services rendered nuclear technology by the national research centers also in the future include the cultivation of qualified expertise. In this way, the link between national research centers and nuclear technology is maintained, albeit at a different level. Cases in point are nuclear fusion or the development of new, advanced reactor lines. (orig.) [de

  17. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  18. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    2005-01-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  19. Health physics in JAERI, 22

    International Nuclear Information System (INIS)

    1980-10-01

    In the annual report No. 22 (fiscal 1979) are described the activities of health physics including radioactive waste management in Tokai Research Establishment, Takasaki Radiation Chemistry Research Establishment and Oarai Research Establishment. In all the three research establishments, radiation monitoring in nuclear facilities, individual monitoring, environmental monitoring and maintenance of measuring instruments were carried out as in previous years. There were no occupational exposures exceeding the maximum permissible doses and no release of radioactive gaseous and liquid wastes beyond the release limits specified according to regulations. In the environment there were observed no abnormal radioactivities due to facilities. In Tokai and Oarai Research Establishments radioactive waste management including decontamination works was also carried out and radioactive solid wastes were stored in the same way as in previous years. Construction of the Packaged Waste Storage Facility was completed, and of the Facility of Radiation Standards and the Medium-Level Waste Treatment Facility progressed on schedule in Tokai Research Establishment. In Oarai Research Establishment, construction was completed on the latter project of radioactive waste treatment facilities, starting in 1974. Technical development and research were made as in previous years for improving techniques and methods in monitoring of individuals, facilities and environment and also in waste management and decontamination. (author)

  20. Guidelines for an environmental code of ethics for research institutions

    International Nuclear Information System (INIS)

    Gardusi, Claudia; Aquino, Afonso Rodrigues de

    2009-01-01

    The purpose of this work is to reflect about actions that may contribute to the creation of mechanisms to protect the environment in the development of research projects at research institutions, specifically the Nuclear and Energy Research Institute - IPEN. A brief review of part of the ethical values applied to the process of scientific development during the old, medieval and modern periods is presented, showing the split of the nature ethical principles. It is also reported an overview of the creation of codes of ethics applied to research institutions. Moreover, criteria are presented to settle guidelines to protect the environment during the development of research projects. (author)

  1. Report of the third seminar on nuclear physics at the energy region of the JAERI tandem-booster accelerator February 27-28, 1992, Tokai, Japan

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Oshima, Masumi; Ikezoe, Hiroshi; Nagame, Yuichiro; Shinohara, Nobuo

    1992-09-01

    A seminar on new experiments to be studied and new experimental apparatus suitable for the JAERI tandem-booster accelerator being under construction was held at Tokai Research Establishment of JAERI in the period from February 27 to 28, 1992. Sixty eight participants from universities and from JAERI attended to discuss the following items: 1. Physics at low temperature, 2. Nuclear structure at high spin and at high excitation energy, 3. Application of unstable beam and their spectroscopy, 4. Nuclear reaction at intermediate energy, 5. New facilities. (author)

  2. Offshore Wind Farm Research at the NWO Institutes

    NARCIS (Netherlands)

    J.A.S. Witteveen (Jeroen)

    2013-01-01

    htmlabstractFundamental scientific research is essential to take the necessary next step in offshore wind farm innovation. The NWO scientific research institutes play a central role in the Dutch knowledge infrastructure for disseminating scientific discoveries into industrial innovations. Multiple

  3. Academic research at a South African higher education institution ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... The investigation involved an ethnographic case study of the research culture at one college at the institution. ... programmes and travel opportunities to interact with other researchers.

  4. Policy research institutions and the health SDGs: Open data ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Policy research institutions and the health SDGs: Open data platforms for ... This exercise will provide the opportunity to raise awareness of the SGDs and the ... IDRC is supporting research that studies the most effective ways to empower ...

  5. Research Review of the Institute of African Studies

    African Journals Online (AJOL)

    Please note: As of 2013 the Research Review of the Institute of African Studies is now publishing under the title Contemporary Journal of African Studies. You can view the CJAS pages on AJOL here: http://www.ajol.info/index.php/contjas/index. The Research Review of the Institute of African Studies at the University of ...

  6. Open Access Publishing in Indian Premier Research Institutions

    Science.gov (United States)

    Bhat, Mohammad Hanief

    2009-01-01

    Introduction: Publishing research findings in open access journals is a means of enhancing visibility and consequently increasing the impact of publications. This study provides an overview of open access publishing in premier research institutes of India. Method: The publication output of each institution from 2003 to 2007 was ascertained through…

  7. THE CONTRIBUTION OF RESEARCH INSTITUTES IN EUREKA PROJECTS

    NARCIS (Netherlands)

    VANROSSUM, W; CABO, PG

    1995-01-01

    Technological cooperation between industrial firms and research institutes is studied at the project level. The various forms of cooperation, and the instances in which they are advantageous, are discussed. The authors then focus on situations in which the research institute acts as 'knowledge

  8. Research Productivity and Its Policy Implications in Higher Education Institutions

    Science.gov (United States)

    Quimbo, Maria Ana T.; Sulabo, Evangeline C.

    2014-01-01

    Responding to the Commission on Higher Education's development plan of enhancing research culture among higher education institutions, this study was conducted to analyze the research productivity of selected higher education institutions. It covered five state universities in the Philippines where a total of 377 randomly selected faculty members…

  9. Productivity through Innovation: Applied Research at Canada's Colleges and Institutes

    Science.gov (United States)

    Association of Canadian Community Colleges, 2011

    2011-01-01

    Applied research at Canada's colleges and institutes has expanded rapidly over the last five years. This report provides an overview of the current context and positions colleges and institutes as key players in Canada's innovation system. The report builds upon findings of previous research and reports on the results of the 2009-2010…

  10. National Nuclear Research Institute (NNRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The 2015 report of the National Nuclear Research Institute (NNRI) of the Ghana Atomic Energy Commission (GAEC) lists various programmes undertaken by the Institute under the following headings: Water resources programme, Energy Research programme, Environmental and Health Safety Programme, Digital Instrumentation programme, Nuclear Applications and Materals programme and Radiation Occupational safety programme. Also, included are abstracts of publications and technical reports.

  11. Japanese Research Institutes Funded by Private Corporations.

    Science.gov (United States)

    1983-12-01

    makeup for market in the fall of 1980. The Food Department of the company commercialized nonfried instant noodles for the first time in the industry...This type of instant noodles is most popular. The research and development costs of the company in 1980 amounted to 1.5% of the total sales. 188

  12. Progress of JAERI neutron science project

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1999-01-01

    Neutron Science Project was started at Japan Atomic Energy Research Institute since 1996 for promoting futuristic basic science and nuclear technology utilizing neutrons. For this purpose, research and developments of intense proton accelerator and spallation neutron target were initiated. The present paper describes the current status of such research and developments. (author)

  13. Subcriticality of accelerator driven system by AESJ/JAERI working party

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko

    2002-01-01

    Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  14. Development of Cyclotron Beam Technology for Applications in Materials Science and Biotechnology at JAERI-TIARA

    International Nuclear Information System (INIS)

    Ohara, Y.; Arakawa, K.; Fukuda, M.; Kamiya, T.; Kurashima, S.; Nakamura, Y.; Okumura, S.; Saidoh, M.; Tajima, S.

    2003-01-01

    Recent progress of cyclotron ion beam development for applications in materials science and biotechnology at the ion-irradiation research facility TIARA of the Japan Atomic Energy Research Institute(JAERI) is overviewed. The AVF cyclotron in TIARA can accelerate protons and heavy ions up to 90 MeV and 27.5 MeV/n, respectively. In order to conform to the requirement of a reliable tuning of microbeam formation, the cyclotron beam current has been stabilized by controlling the temperature of the magnet yoke and pole within +/-0.5 deg. and hence by decreasing the variation of the magnetic field ΔB/B below 10-5. A heavy ion microbeam with energy of hundreds MeV is a significantly useful probe for researches on biofunctional elucidation in biotechnology. Production of the microbeam with spot size as small as 1μm by quadrupole lenses requires the energy spread of the beam ΔE/E < 2 x 10-4. In order to minimize the energy spread of the cyclotron beam, the fifth-harmonic voltage waveform has been successfully superposed on the fundamental one to make energy gain uniform

  15. Radiant Research. Institute for Energy Technology 1948-98

    International Nuclear Information System (INIS)

    Njoelstad, Olav

    1999-01-01

    Institutt for Atomenergi (IFA), or Institute for Atomic Energy, at Kjeller, Norway, was founded in 1948. The history of the institute as given in this book was published in 1999 on the occasion of the institute's 50th anniversary. The scope of the institute was to do research and development as a foundation for peaceful application of nuclear energy and radioactive substances in Norway. The book tells the story of how Norway in 1951 became the first country after the four superpowers and Canada to have its own research reactor. After the completion of the reactor, the institute experienced a long and successful period and became the biggest scientific and technological research institute in Norway. Three more reactors were built, one in Halden and two at Kjeller. Plans were developed to build nuclear powered ships and nuclear power stations. It became clear, however, in the 1970s, that there was no longer political support for nuclear power in Norway, and it was necessary for the institute to change its research profile. In 1980, the institute changed its name to Institutt for energiteknikk (IFE), or Institute for energy technology, to signal the broadened scope. The book describes this painful but successful readjustment and shows how IFE in the 1980s and 1990s succeeded in using its special competence from the nuclear field to establish special competence in new research fields with great commercial potential

  16. Selection of JAERI'S HTGR-GT concept

    International Nuclear Information System (INIS)

    Muto, Y.; Ishiyama, S.; Shiozawa, S.

    2001-01-01

    In JAERI, a feasibility study of HTGR-GT has been conducted as an assigned work from STA in Japan since January 1996. So far, the conceptual or preliminary designs of 600, 400 and 300 MW(t) power plants have been completed. The block type core and pebble-bed core have been selected in 600 MW(t) and 400/300 MW(t), respectively. The gas-turbine system adopts a horizontal single shaft rotor and then the power conversion vessel is separated into a turbine vessel and a heat exchanger vessel. In this paper, the issues related to the selection of these concepts are technically discussed. (author)

  17. Development of EC technology in JAERI

    International Nuclear Information System (INIS)

    Sakamoto, Keishi; Takahashi, Koji; Kasugai, Atsushi; Hayashi, Kenichi; Ikeda, Yoshitaka; Kajiwara, Ken; Fujii, Tsuneyuki; Imai, Tsuyoshi; Kariya, Tsuyoshi; Mitsunaka, Yoshika

    2003-01-01

    Recent progress of electron cyclotron (EC) heating and current drive technologies in JAERI is reported. In 170 GHz gyrotron development, 0.9 MW/9.2 sec (efficiency: 43%), 0.5 MW/30 sec (46%), etc, have been demonstrated. As for 110 GHz gyrotron, 1 MW/5 sec and 1.2 MW/4.1 sec were obtained. Using four 110 GHz gyrotrons, a 3 MW power injection into JT- 60U plasma was carried out. In parallel, a launcher design and its development that includes neutron irradiation of the launcher components and a remote steering launcher are underway for ITER application. (authors)

  18. Gas Research Institute, Annual report 1992

    International Nuclear Information System (INIS)

    1993-01-01

    Technology is playing a major role in helping the gas industry meet the challenge of change, and as the focal point for gas industry R ampersand D, the authors at GRI are focusing their efforts on the real-world problems facing our member companies. They haven't forsaken longer range research, but they must stress the development and deployment of technology that can be put to work in the near term or they will fail in their mission. The pages that follow show how they put R ampersand D to work to meet the five key gas industry needs that will dominate the future: Developing new markets and new opportunities; Competing with electricity in selected markets; Tackling new regulations; Controlling the cost of gas delivery; Providing reliable and cost-competitive supplies of natural gas that allow reasonable returns to producers

  19. Chinese TEFL Academics' Perceptions about Research: An Institutional Case Study

    Science.gov (United States)

    Bai, Li; Millwater, Jan

    2011-01-01

    Research capacity building has become a prominent theme in higher education institutions in China, as across the world. However, Chinese TEFL (Teaching English as a Foreign Language) academics' research capacity has been quite limited. In order to build their research capacity, it is necessary to understand their perceptions about research. This…

  20. Radiological and Medical Sciences Research Institute (RAMSRI) - Annual Report 2015

    International Nuclear Information System (INIS)

    2015-01-01

    The Radiological and Medical Sciences Research Institute (RAMSRI) is the fourth Research and Development Institute of the Ghana Atomic Energy Commission (GAEC), undertaking research in human health and nutrition. This annual report covers the major activities undertaken by RAMSRI for the year 2015. The activities are grouped under the following headings: Establishment; Personnel and Organisation; Major Activities of Centres; Ongoing IAEA TC Projects; Human Resource Development; IAEA Coordinated Meetings Hosted; Publications; Achievements; Challenges; Projections for the Year 2016; and Recommendations.

  1. Materials and corrosion programs sponsored by the Gas Research Institute

    International Nuclear Information System (INIS)

    Flowers, A.

    1980-01-01

    The paper deals briefly with the Gas Research Institute and its research in materials and corrosion. As a not-for-profit organization, the Gas Research Institute plans, finances, and manages applied and basic research and technological development programs associated with gaseous fuels. These programs are in the general areas of production, transportation, storage, utilization and conservation of natural and manufactured gases and related products. Research results, whether experimental or analytical, are evaluated and publicly disseminated. Materials and corrosion research is concentrated in the SNG from Coal and Non-fossil Hydrogen subprograms

  2. PROGER - Management program for radioactive wastes in research institutions

    International Nuclear Information System (INIS)

    Ferreira, Rubemar S.; Costa, Maria Regina Ferro; Ramos Junior, Anthenor C.; Esposito, Irapoan; Vaz, Solange dos Reis e; Pontedeiro, Elizabeth May; Gomes, Carlos de Almeida

    1997-01-01

    This article demonstrates the feasibility of a program, denominated PROGER, and aimed at the improvement of radioactive waste management activities in research institutions in Brazil. This program involves implementation, correction and updating of waste management techniques in those institutions that already possess a waste management system or its full set-up for the institutions where it is non-existent. Partial results are presented, concerning characteristics and quantities of wastes, and the methodology utilized by PROGER discussed

  3. Research and development for high temperature gas cooled reactor in Japan

    International Nuclear Information System (INIS)

    Taketani, K.

    1978-01-01

    The paper describes the current status of High Temperature Gas Cooled Reactor research and development work in Japan, with emphasis on the Experimental Very High Temperature Reactor (Exp. VHTR) to be built by Japan Atomic Energy Research Institute (JAERI) before the end of 1985. The necessity of construction of Exp. VHTR was explained from the points of Japanese energy problems and resources

  4. JAERI FEL applications in nuclear energy industries

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2005-01-01

    The JAERI FEL has first discovered the new FEL lasing of 255fs ultra fast pulse, 6-9% high efficiency, 1GW high peak power, a few kilowatts average power, and wide tunability of medium and far infrared wavelength regions at the same time. Using the new lasing and energy-recovery linac technology, we could extend a more powerful and more efficient free-electron laser (FEL) than 10kW and 25%, respectively, for nuclear energy industries, and others. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, we need the efficient and powerful FEL driven by the JAERI compact, stand alone and zero boil-off super-conducting RF linac with an energy-recovery geometry. Our discussions on the FEL will cover the application of non-thermal peeling, cutting, and drilling to prevent cold-worked stress-corrosion cracking failures in nuclear energy and other heavy industries. (author)

  5. Annual report of the Japan Atomic Energy Research Institute, Apr. 1987 - Mar. 1988

    International Nuclear Information System (INIS)

    1988-01-01

    In fiscal 1987, the Atomic Energy Commission of Japan revised the 'Long term program for development and utilization of nuclear energy', which is done every five years. It determined the future direction of the research and development in JAERI. Three basic objectives are indicated in it, that is, to qualitatively upgrade nuclear technology, to tackle the frontiers of the technology, and to promote international collaboration. The new 'Long term task plan' of JAERI based on the 'Long term program' was established in August, 1987. The integral experiment on loss of coolant accident, the test on reactivity-initiated accident, the irradiation and post-irradiation examination of fuel, the development of safety analysis codes, the design and safety analysis of the Nuclear Fuel Cycle Safety Engineering Research Facility, the treatment and disposal of radioactive wastes, the preparatory work for constructing the High Temperature Engineering Test Reactor, the full scale plasma heating experiment with JT-60, the study on high efficiency confinement mode and current drive, the construction of the new home port for the nuclear ship 'Mutsu', the design of an advanced marine reactor, the reactor physics of FBRs and ATRs and other fundamental studies, and the operation of JRR-2, JRR-4 and JMTR are reported. (K.I.)

  6. JAERI TIARA annual report 1994. V.4. April 1994 - March 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Ryuichi; Seguchi, Tadao; Nashiyama, Isamu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; eds.; and others

    1995-10-01

    This annual report describes research activities which have been performed with the JAERI TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities from April 1, 1994 to March 31, 1995. Summary reports of 86 papers and briaf descriptions on status of TIARA in the period are contained. A list of publications, the type of research collaborations and organization of TIARA are also given as appendices. (author).

  7. JAERI TIARA annual report vol. 3 (1993). April 1993 - March 1994

    International Nuclear Information System (INIS)

    Ishigaki, Isao; Tanaka, Ryuichi; Seguchi, Tadao

    1994-11-01

    This annual report describes research activities which have been performed with the JAERI TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities from April 1, 1993 to March 31, 1994. Summary reports of 80 papers and brief descriptions on status of TIARA in the period are contained. A list of publications, the type of research collaborations and organization of TIARA are also given as appendices. (author)

  8. JAERI TIARA annual report 1995. V. 5. April 1995 - March 1996

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi; Seguchi, Tadao; Ohmichi, Hideki

    1997-01-01

    This annual report describes research activities which have been performed with the JAERI TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities from April 1, 1995 to March 31, 1996. Summary reports of 84 papers and briaf descriptions on status of TIARA in the period are contained. A list of publications, the type of research collaborations and organization of TIARA are also given as appendices. (author)

  9. JAERI TIARA annual report 1994. V.4. April 1994 - March 1995

    International Nuclear Information System (INIS)

    Tanaka, Ryuichi; Seguchi, Tadao; Nashiyama, Isamu

    1995-10-01

    This annual report describes research activities which have been performed with the JAERI TIARA (Takasaki Ion Accelerators for Advanced Radiation Application) facilities from April 1, 1994 to March 31, 1995. Summary reports of 86 papers and briaf descriptions on status of TIARA in the period are contained. A list of publications, the type of research collaborations and organization of TIARA are also given as appendices. (author)

  10. The Aldo Leopold Wilderness Research Institute: a national wilderness research program in support of wilderness management

    Science.gov (United States)

    Vita Wright

    2000-01-01

    The Aldo Leopold Wilderness Research Institute strives to provide scientific leadership in developing and applying the knowledge necessary to sustain wilderness ecosystems and values. Since its 1993 dedication, researchers at this federal, interagency Institute have collaborated with researchers and managers from other federal, academic and private institutions to...

  11. Evaluation of the state water-resources research institutes

    Science.gov (United States)

    Ertel, M.O.

    1988-01-01

    Water resources research institutes, as authorized by the Water Resources Research Act of 1984 (Public Law 98-242), are located in each state and in the District of Columbia, Guam, Puerto Rico , and the Virgin Islands. Public Law 98-242 mandated an onsite evaluation of each of these institutes to determine whether ' . . .the quality and relevance of its water resources research and its effectiveness as an institution for planning, conducting, and arranging for research warrant its continued support in the national interest. ' The results of these evaluations, which were conducted between September 1985 and June 1987, are summarized. The evaluation teams found that all 54 institutes are meeting the basic objectives of the authorizing legislation in that they: (1) use the grant funds to support research that addresses water problems of state and regional concern; (2) provide opportunities for training of water scientists through student involvement on research projects; and (3) promote the application of research results through preparation of technical reports and contributions to the technical literature. The differences among institutes relate primarily to degrees of effectiveness, and most often are determined by the financial, political, and geographical contexts in which the institutes function and by the quality of their leadership. (Lantz-PTT)

  12. Economic management model of nuclear power plant research institute

    International Nuclear Information System (INIS)

    Schultz, O.

    1993-01-01

    Brief information about the development of economic management and processing of economic information in the Nuclear Power Plants Research Institute Trnava is given in the paper. The existing economic management model of the Institute impacts positively the fulfillment of economic indicators. When applying this model, activities of individual divisions are emphasized and presentation of the Institute as a global professional capacity is suppressed. With regards to this influence, it will be necessary to look for such system elements that will impact the integrity of the Institute in the future period positively

  13. Authorship in "College & Research Libraries" Revisited: Gender, Institutional Affiliation, Collaboration.

    Science.gov (United States)

    Terry, James L.

    1996-01-01

    Updates earlier studies on the characteristics of authorship of articles published in "College & Research Libraries", focusing on gender, institutional affiliation, and extent of collaboration. Results show representation by academic librarians and authors affiliated with library schools increased, collaboration predominated, and…

  14. Biotechnology and Nuclear Agriculture Research Institute (BNARI) at a glance

    International Nuclear Information System (INIS)

    2007-01-01

    Biotechnology and Nuclear Agriculture Research Institute (BNARI) was established in 1993 as one of the research, development and technology transfer institutes of the Ghana Atomic Energy Commission (GAEC). This was to help the GAEC to expand its research and development in the area of biotechnology and nuclear agriculture, which have been found to have a major impact on the agricultural development in countries involved in peaceful application of nuclear energy. The main objective of the Institute is to explore and exploit the application of isotopes, ionizing radiation and biotechnologies for increased agricultural and economic development of Ghana and to help the Country attain self-sufficiency in food and agriculture in order to alleviate malnutrition, hunger and poverty. This brochure describes the organizational structure; research facilities and programmes; services of the various departments of the Institute as well as achievements

  15. The OpenAIRE Guide for Research Institutions

    Directory of Open Access Journals (Sweden)

    Gültekin Gürdal

    2013-11-01

    Full Text Available This text is transcript of OpenAIRE Guide which is prepared in order to help research institutions was released on 13.04.2011and translated with the cooperation of ANKOS Open Access and Institutional Repositories Grup members and OpenAIREplus project team of Turkey which is coordinated from Izmir Institute of Technology Library. OpenAIRE Project aims to support researchers in complying with the European Commission Seventh Framework Programme Open Access Pilot through a European Helpdesk System; support researchers in depositing their research publications in an institutional or disciplinary repository; build up an OpenAIRE portal and e-infrastructure for repository networks. The project will work in tadem with OpeanAIREplus Project which has the principal goal of creating a robust, participatory service for the cross-linking of peer-reviewed scientific publications and associated datasets.

  16. USAF Institute for National Security Studies 1998 Research Results Conference

    National Research Council Canada - National Science Library

    1998-01-01

    The USAF Institute for National Security Studies (INSS), in cooperation with HQ USAF Nuclear and Counterproliferation Directorate, sponsored its 6th annual Research Results Conference on 19 - 20 November 1998...

  17. TTI Phase 2 Institutional Support: Centre for Policy Research | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    CPR is an independent, non-partisan research institute focused on improving policy-making and management, and promoting national development in India. CPR's research covers ... For CPR, this project will help enhance its research quality, organizational performance, and policy engagement. Policy influence in India

  18. Institutional Support to South Asian Policy Research Organizations ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    There are very few policy research organizations in South Asia outside India. Those that exist are fragile due to little demand for policy research, limited if no funding from local sources, and an often insecure political climate. This grant will strengthen the ability of the seven selected research institutions in Bangladesh, Nepal ...

  19. Institutional Support to Latin American Policy Research Organizations

    International Development Research Centre (IDRC) Digital Library (Canada)

    This grant will strengthen the ability of the 12 selected research institutions to provide, disseminate and communicate high-quality research. This will be achieved through measures aimed at enhancing the ability of staff to conduct sound research, improving organizational governance, and communicating with policymakers.

  20. Institute of fundamental research: forty years of research

    International Nuclear Information System (INIS)

    1986-01-01

    This document is aimed at illustration of forty years of fundamental research at CEA. It has not been conceived to give an exhaustive view of current research at IRF, but to give an illustration of these researches to non-specialists, and even to non-scientifists [fr

  1. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  2. Progress of nuclear safety research, 1990

    International Nuclear Information System (INIS)

    1990-07-01

    Since the Japan Atomic Energy Research Institute (JAERI) was founded as a nonprofit, general research and development organization for the peaceful use of nuclear energy, it has actively pursued the research and development of nuclear energy. Nuclear energy is the primary source of energy in Japan where energy resources are scarce. The safety research is recognized at JAERI as one of the important issues to be clarified, and the safety research on nuclear power generation, nuclear fuel cycle, waste management and environmental safety has been conducted systematically since 1973. As of the end of 1989, 38 reactors were in operation in Japan, and the nuclear electric power generated in 1988 reached 29 % of the total electric power generated. 50 years have passed since nuclear fission was discovered in 1939. The objective of the safety research at JAERI is to earn public support and trust for the use of nuclear energy. The overview of the safety research at JAERI, fuel behavior, reliability of reactor structures and components, reactor thermal-hydraulics during LOCA, safety assessment of nuclear power plants and nuclear fuel cycle facilities, radioactive waste management and environmental radioactivity are reported. (K.I.)

  3. Development of control and data processing system for JAERI ERL-FEL

    International Nuclear Information System (INIS)

    Kikuzawa, Nobuhiro

    2005-03-01

    A personal computer (PC) based distributed control system has been developed for Free Electron Laser (FEL) at Japan Atomic Energy Research Institute (JAERI) and operated since 1992. The control system was implemented on Ethernet LAN of PCs, Nippon Electric Company (NEC Corp.) PC-9800 series 32 bit personal computers. It became troublesome to maintain the control system, because many application programs did not work on outdated hardware interfaces and operating system. Furthermore, since security updates of the operating system (OS) were no longer provided, the problem was in network security when many PCs were connected with the LAN. We have to solve these problems and to improve the reliability and the safety of the control system, an ITRON-based controller was developed. In Japan, the ITRON is very popular and embedded in many products such as industrial instruments or household appliances that are demanded of its high reliability. When the local controller was installed, a new control program was developed by Java language which had high compatibility on many platforms so that replacement of the computer for consoles might become easy in future. High reliability and interchangeability have been successfully realized by them, and the control system made long continuous operation possible. (author)

  4. System of the advanced volume reduction facilities for LLW at JAERI

    International Nuclear Information System (INIS)

    Higuchi, Hidekazu; Monma, Toshiyuki; Nakashio, Nobuyuki; Kozawa, Kazushige; Touhei, Toshio; Sudou, Tomoyuki; Mitsuda, Motoyuki; Kurosawa, Shigenobu; Henmi, Kou; Ishikawa, Joji; Kato, Mitsugu; Sato, Motoaki

    2005-01-01

    The Japan Atomic Energy Research Institute (JAERI) constructed the Advanced Volume Reduction Facilities (AVRF), in which volume reduction techniques are applied and achieved high volume reduction ratio, homogenization and stabilization by means of melting or super compaction processes for low level solid wastes. It will be able to produce waste packages for final disposal and to reduce the amount of the wastes by operating the AVRF. The AVRF consist of the Waste Size Reduction and Storage Facilities (WSRSF) and the Waste Volume Reduction Facilities (WVRF); the former have cutting installations for large size wastes and the latter have melting units and a super compactor. Cutting installations in the WSRSF have been operating since June 1999. Radioactive wastes treated so far amount to 600 m 3 and the volume reduction ratio is from 1/2 to 1/3. The WVRF have been operating with non-radioactive wastes since February 2003 for the training and the homogeneity investigation in the melting processes. The operation with radioactive wastes will start in FY2005. (author)

  5. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Behavior of fine droplet flow. JAERI's nuclear research promotion program, H10-027-7. Contract research

    International Nuclear Information System (INIS)

    Kataoka, Isao; Yoshida, Kenji; Matsuura, Keizo

    2002-03-01

    Analytical and experimental researches were carried out on the behavior of fine droplet flow in relation to the fundamental phenomena of thermohydraulics in severe accident. Simulation program of fine droplet behavior in turbulent gas flow was developed based on the eddy interaction model with improvement of Graham's stochastic model on eddy lifetime and eddy size. Furthermore, the developed program are capable of simulating the droplet behavior in annular dispersed flow based on the models of droplet entrainment from liquid film and turbulence modification of gas phase by liquid film. This program was confirmed by the various experimental data on droplet diffusion, deposition. Furthermore, this program was applied to the three dimensional droplet flow with the satisfactory agreement of experimental data. This means the developed program can be used as a simulation program for analysis of severe accident. Experimental research was carried out on the effect of liquid film on the turbulence field of gas flow in annular and annular dispersed flow. Averaged and turbulent velocity of gas phase were measured under various gas and liquid film flow rates. Turbulent velocity of gas phase in annular flow increased compared with single phase gas flow. This is due to turbulence generation by waves in liquid film. Corresponding to the turbulence modification by liquid film, distribution of averaged velocity of gas phase became flattened compared with single phase gas flow. (author)

  6. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Behavior of fine droplet flow. JAERI's nuclear research promotion program, H10-027-7. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Isao; Yoshida, Kenji [Osaka Univ., Graduate School of Engineering, Osaka (Japan); Matsuura, Keizo [Nuclear Fuel Industry, Co., Ltd., Tokyo (Japan)

    2002-03-01

    Analytical and experimental researches were carried out on the behavior of fine droplet flow in relation to the fundamental phenomena of thermohydraulics in severe accident. Simulation program of fine droplet behavior in turbulent gas flow was developed based on the eddy interaction model with improvement of Graham's stochastic model on eddy lifetime and eddy size. Furthermore, the developed program are capable of simulating the droplet behavior in annular dispersed flow based on the models of droplet entrainment from liquid film and turbulence modification of gas phase by liquid film. This program was confirmed by the various experimental data on droplet diffusion, deposition. Furthermore, this program was applied to the three dimensional droplet flow with the satisfactory agreement of experimental data. This means the developed program can be used as a simulation program for analysis of severe accident. Experimental research was carried out on the effect of liquid film on the turbulence field of gas flow in annular and annular dispersed flow. Averaged and turbulent velocity of gas phase were measured under various gas and liquid film flow rates. Turbulent velocity of gas phase in annular flow increased compared with single phase gas flow. This is due to turbulence generation by waves in liquid film. Corresponding to the turbulence modification by liquid film, distribution of averaged velocity of gas phase became flattened compared with single phase gas flow. (author)

  7. JAERI TANDEM, LINAC and V.D.G. annual report 1991 April 1, 1991 - March 31, 1992

    International Nuclear Information System (INIS)

    1992-09-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1991 to March 31, 1992. Summary reports of 44 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  8. JAERI TANDEM, LINAC and V.D.G. annual report 1990. April 1, 1990 - March 31, 1991

    International Nuclear Information System (INIS)

    1991-10-01

    This annual report describes research activities which have been performed with the JAERI tandem accelerator, the electron linear accelerator and the Van de Graaff accelerator from April 1, 1990 to March 31, 1990. Summary reports of 38 papers, and list of publications, personnel and cooperative researches with universities are contained. (author)

  9. Building Research Cyberinfrastructure at Small/Medium Research Institutions

    Science.gov (United States)

    Agee, Anne; Rowe, Theresa; Woo, Melissa; Woods, David

    2010-01-01

    A 2006 ECAR study defined cyberinfrastructure as the coordinated aggregate of "hardware, software, communications, services, facilities, and personnel that enable researchers to conduct advanced computational, collaborative, and data-intensive research." While cyberinfrastructure was initially seen as support for scientific and…

  10. Institutional radioactive waste management in the Nuclear Research Institute Rez plc

    International Nuclear Information System (INIS)

    Kovarik, P.; Svoboda, K.; Podlaha, J.

    2008-01-01

    Nuclear research institute Rez, plc. (mentioned below as NRI) has had a dominant position in the area of the nuclear research and development in the Czech Republic, the Central and the Eastern Europe. Naturally, the radioactive waste management is an integral part of the nuclear industry, research and development. For that reason, there is Centre of the radioactive waste management (mentioned below as Centre) in the NRI. This Centre is engaged in the radioactive waste treatment, decontamination, characterisation, decommissioning and other relevant activities. This paper describes the system of technology and other information about institutional radioactive waste management in the NRI. (authors)

  11. Present status of nuclear power safety studies in JAERI, 1996; Genshiryoku anzensei kenkyu no genjo, heisei-8-nen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Japan Atomic Energy Research Institute has promoted the research on the engineering safety for nuclear reactors and nuclear fuel cycle facilities, the research on environmental safety for the objects of environmental radiation and radioactivity and the treatment and disposal of radioactive waste, and the development of the future technology related to the heightening of safety, according to the long term plan on the research, development and utilization of atomic energy that the state decided and the annual plan of various safety researches. It is an internationally important responsibility to ensure the safety, and JAERI has positively promoted bilateral and multilateral international cooperation and the exchange of information. In fiscal year 1995, the criticality experiment facility, the back end research facility, the waste disposal research facility and so on started the operation, and the researches on the soundness of high burnup fuel, the severe accidents of LERs, the abnormal chemical reaction in a fuel reprocessing plant, and the evaluation of environment radioactivity around Chernobyl were carried out. In this book, the results of the research on the safety carried out in fiscal year 1995 are reported synthetically. (K.I.)

  12. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  13. Fundamental research on positive systems of waste disposal and environmental protection using redox reaction and enriching ability of iron for pollutant. JAERI's nuclear research promotion program, H11-003. Contract research

    International Nuclear Information System (INIS)

    Ohashi, Hiroshi; Sato, Seichi; Kozaki, Tamotsu

    2002-03-01

    Iron corrosion products have a potential ability to retard the transport of pollutant in soil by sorption, co-precipitation and redox reaction. In this research program, an electrokinetic soil treatment method using iron anode, which can remove the pollutant and form an iron corrosion product layer in soil, was proposed as a new promising environmental remediation technique for contaminated soil with toxic heavy metal, organic materials and/or radioactive nuclides. As a fundamental study of the electrokinetic soil treatment, the formation mechanism of the corrosion product layer was discussed with the experimental data of the ion migration and the time dependence of the electric current during the treatment. In addition, diffusion behavior of Na + ions and He gas in the clay, which are closely related to the treatment, were studied. Furthermore, the potential ability of the iron corrosion layer to retard the transport of pollutant in soil was evaluated in terms of sorption coefficient of Se and Np onto the iron corrosion products and Fe-montmorillonite, which are the major component of the iron corrosion product layer. As results of these studies, it was confirmed that the electrokinetic soil treatment method using iron anode is one of promising environmental remediation techniques for contaminated soil. (author)

  14. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    International Nuclear Information System (INIS)

    Abe, Yutaka

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  15. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Hideki [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  16. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  17. Booklet of the Research Institute of Clinical Medicine

    International Nuclear Information System (INIS)

    Todua, F.; Jgamadze, N.; Todua, N.; Beriashvili, Z.; Chelishvili, M.; Todua, I.; Chovelidze, Sh. et al.

    2012-01-01

    Research Institute of Clinical Medicine is one of the biggest university diagnostic and treatment centre in Georgia with unique modern diagnostic and treatment apparatus. The institute is acknowledged as a leader in various trends of radiology and surgery. The Research Institute of Clinical Medicine was founded in 1991. It is the leading scientific establishment in the field of medicine. The scientific-research work of the Institute is coordinated by the National Academy of Sciences of Georgia. The main scientific trend of the Institute is the Early Complex Diagnostics and Treatment. The scientific activity of the Institute is led by the Scientific Council. Institute achieved remarkable success since its foundation: It has been defended 56 theses for Candidate of Medical Sciences and 16 for Doctor of Medical Sciences; About 30 post-graduate students and more than 200 radiologists have taken training courses in radiology. Nowadays they work in different regions of Georgia, 21 inventions took out patents. It has been published 2000 scientific works and 9 monographs. (authors)

  18. [Training of institutional research networks as a strategy of improvement].

    Science.gov (United States)

    Galván-Plata, María Eugenia; Almeida-Gutiérrez, Eduardo; Salamanca-Gómez, Fabio Abdel

    2017-01-01

    The Instituto Mexicano del Seguro Social (IMSS) through the Coordinación de Investigación en Salud (Health Research Council) has promoted a strong link between the generation of scientific knowledge and the clinical care through the program Redes Institucionales de Investigación (Institutional Research Network Program), whose main aim is to promote and generate collaborative research between clinical, basic, epidemiologic, educational, economic and health services researchers, seeking direct benefits for patients, as well as to generate a positive impact on institutional processes. All of these research lines have focused on high-priority health issues in Mexico. The IMSS internal structure, as well as the sufficient health services coverage, allows the integration of researchers at the three levels of health care into these networks. A few years after their creation, these networks have already generated significant results, and these are currently applied in the institutional regulations in diseases that represent a high burden to health care. Two examples are the National Health Care Program for Patients with Acute Myocardial Infarction "Código Infarto", and the Early Detection Program on Chronic Kidney Disease; another result is the generation of multiple scientific publications, and the promotion of training of human resources in research from the same members of our Research Networks. There is no doubt that the Coordinación de Investigación en Salud advances steadily implementing the translational research, which will keep being fruitful to the benefit of our patients, and of our own institution.

  19. Dissemination research: the University of Wisconsin Population Health Institute.

    Science.gov (United States)

    Remington, Patrick L; Moberg, D Paul; Booske, Bridget C; Ceraso, Marion; Friedsam, Donna; Kindig, David A

    2009-08-01

    Despite significant accomplishments in basic, clinical, and population health research, a wide gap persists between research discoveries (ie, what we know) and actual practice (ie, what we do). The University of Wisconsin Population Health Institute (Institute) researchers study the process and outcomes of disseminating evidence-based public health programs and policies into practice. This paper briefly describes the approach and experience of the Institute's programs in population health assessment, health policy, program evaluation, and education and training. An essential component of this dissemination research program is the active engagement of the practitioners and policymakers. Each of the Institute's programs conducts data collection, analysis, education, and dialogue with practitioners that is closely tied to the planning, implementation, and evaluation of programs and policies. Our approach involves a reciprocal exchange of knowledge with non-academic partners, such that research informs practice and practice informs research. Dissemination research serves an important role along the continuum of research and is increasingly recognized as an important way to improve population health by accelerating the translation of research into practice.

  20. The peculiarities of scientific research whithin old institutionalism of the political-institutional paradigm

    Directory of Open Access Journals (Sweden)

    O. V. Bashtannyk

    2016-10-01

    The presence of internal evolution in the analysis’s research strategy of the classical institutional theory is justified. First, the principle of normativity (borrowed from political philosophy was gradually transformed from requirements of accordance to moral and value criteria till declaration the paramount of legal framework for regulation the functioning of the political institutions. Second, understanding of the state as a legally holistic phenomenon of the highest status to the system of government (borrowed from legal positivism and historical school of law was modified to consideration of the state as one among other political institutions of society, though very influential.

  1. The current state of the development of the supercomputer system in plasma science and nuclear fusion research in the case of Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Azumi, Masafumi

    2004-01-01

    The progress of large scale scientific simulation environment in JAERI is briefly described. The expansion of fusion simulation science has been played a key role in the increasing performances of super computers and computer network system in JAERI. Both scalar parallel and vector parallel computer systems are now working at the Naka and Tokai sites respectively, and particle and fluid simulation codes developed under the fusion simulation project, NEXT, are running on each system. The storage grid system has been also successfully developed for effective visualization analysis by remote users. Fusion research is going to enter the new phase of ITER, and the need for the super computer system with higher performance are increasing more than as ever along with the development of reliable simulation models. (author)

  2. JAERI/KEK target material program overview

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Kogawa, Hiroyuki; Sasa, Toshinobu

    2001-01-01

    Mercury target was designed for megawatt neutron scattering facility in JAERI/KEK spallation neutron source. The incident proton energy and current are 3 GeV and 333 μA, respectively: the total proton energy is 1 MW in short pulses at a frequency of 25 Hz. Under the guide rule the mercury target was designed: the maximum temperature of target window is 170degC and induced stresses for the type 316 stainless steel are within limits of design guide. In order to demonstrate ADS (Accelerator Driven Systems) transmutation critical and engineering facilities have been designed conceptually. In engineering facility lead-bismuth spallation target station is to be planned. Objective to build the facility is to demonstrate material irradiation. According to neutronics calculation irradiation damage of the target vessel window will be 5 dpa per year. (author)

  3. Development of radioisotope production in JAERI

    International Nuclear Information System (INIS)

    Yamabayashi, H.; Kato, H.; Umezawa, H.

    1992-01-01

    Since 1962, we have been developing methods and technology for producing a wide variety of processed radioisotopes and sealed radiation sources by using the JAERI's reactors, JRR-2, JRR-3, JRR-4 and JMTR, and providing the products to domestic users. At present, 29 nuclides and 31 products are on our list of processed radioisotopes. Some of those isotopes such as P-32, S-35, Cr-51 and short-lived nuclides are being produced regularly for distribution, but most of the rest are produced upon request. The radiation sources of Co-60 needles and Ir-192 pellets for industrial use and Gd-153 pellet, 7 kinds of Ir-192 and Au-198 grain for medical applications are produced and distributed routinely. (author)

  4. Forschungszentrum Rossendorf, Institute of Safety Research. Annual report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, F.P.; Rindelhardt, U. (eds.)

    2005-07-01

    The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Rossendorf e.V. (FZR e.V.) which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibniz Association). Together with the Institute of Radiochemistry, ISR constitutes the research programme ''Safety and Environment'' which is one from three scientific programmes of FZR. In the framework of this research programme, the institute is responsible for the two subprogrammes ''Plant and Reactor Safety'' and ''Thermal Fluid Dynamics'', respectively. We also provide minor contributions to the sub-programme ''Radio-Ecology''. Moreover, with the development of a pulsed photo-neutron source at the radiation source ELBE (Electron linear accelerator for beams of high brilliance and low emittance), we are involved in a networking project carried out by the FZR Institute of Nuclear and Hadron Physics, the Physics Department of TU Dresden, and ISR. (orig.)

  5. Studies in precise neutron optics at JAERI

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi

    1994-01-01

    Studies in the field of so-called 'Precise Neutron Optics' at JAERI were reported, since the beginning of 1970. It started with the photographic detection of the 'Pendellusung Fringes' in a wedge-shaped Si crystal, promoted by Prof.K.Kohra. Neutron diffraction topography was also tried and used for the 'direct' observation of the substructure in a Cu-5%Ge single crystal, carried out by the present author. So-called 'VSANS' (Very Small Angle Neutron Scattering) was also tried, with the angular resolution better than 0.1 sec. of arc, for the structural observation of several kinds of 'amorphous' materials, such as neutron-irradiated silica glasses, Pb-containing glasses and several ribbon-shaped amorphous alloys, carried out by Dr.K.Doi. Recently with the co-operation with Prof.S.Kikuta's group, some interferometric experiments were tried, such as the detection of the double-refraction phenomenon of the neutron in the magnetic materials, carried out by Dr.S.Nakatani. The apparatus for precise neutron optics and topography (PNO) was constructed at the JRR-3M in JAERI in 1992, which was just properly made for the studies in the present thema. With the PNO, the characterization of Ni-Ti multilayer mirror for the interferometer with the cold/ ultra-cold neutrons was carried out, the results being reported in the other article of this symposium by Dr.H.Funahashi. Through the test use of the PNO with the neutron interferometry, carried out by Dr.Y.Hasegawa, it was revealed that the PNO is the best facility in the world for the neutron interferometry; with the datas of the count ratio upto 20 cps and the contrast more than 40%. Dr.K.Aizawa is now refining the VSANS-technique on the PNO, for the precise observation of the precipitation behaviour of high density small particles such as metatic alloy-system. (author)

  6. Main directions of Research Institute of Experimental and Theoretic Physics

    International Nuclear Information System (INIS)

    Tazhibaeva, I.L.

    1997-01-01

    The characteristic of main directions of the Research Institute of Experimental and Theoretic Physics (RIETF) activity is given in the paper. It is noted, that Institute is headquarters organisation in 4 following scientific programs of Ministry of Science - Academy of Science of Republic of Kazakhstan: Physics and mechanics of gases, plasma and liquid; Theoretical physics; Nonlinear processes and structural self-organization of substance; Research works Comet. Since 1994 RIETF is one of executors on interstate scientific program ITER. There are following priorities in activity of the institute: - actual problems of relativity theory, gravitation and quantum mechanics; - research on combustion problems and heat-mass-transfer; - physics of gases, plasma and liquid; physics non-equilibrium processes in plasma an in plasma-similar media; - solid state physics and material testing problems; modification of materials properties; electrophysical, optical and structural researches of substance; - interactions of nuclear, electromagnet radiation and accelerated particles with substance; - theoretical and experimental nuclear physics and physics of cosmic rays

  7. National Institute on Disability and Rehabilitation Research Program Directory, 1999.

    Science.gov (United States)

    National Inst. on Disability and Rehabilitation Research (ED/OSERS), Washington, DC.

    This directory lists all projects funded by the National Institute of Disability and Rehabilitation Research (NIDRR) during the 1999 fiscal year. It includes summaries, funding data, and contact information for a broad range of programs. Programs are grouped into the following research priorities: (1) employment outcomes; (2) health and function;…

  8. 78 FR 29159 - Electric Power Research Institute; Seismic Evaluation Guidance

    Science.gov (United States)

    2013-05-17

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0038] Electric Power Research Institute; Seismic... U.S. Nuclear Regulatory Commission (NRC) is issuing an endorsement letter of Electric Power Research... Fukushima Dai-ichi nuclear power plant in March 2011. Enclosure 1 to the 50.54(f) letter requests licensees...

  9. Institutional Research in Australasia: Coming of Age or Coming Unstuck?

    Science.gov (United States)

    Hanlon, Martin; Rothery, Michael; Daldy, Rob

    2011-01-01

    The scope of institutional research (IR) undertaken in Australasian universities is progressively expanding. A traditional focus on student life cycle elements such as enrolment, retention and satisfaction has been complemented for some years now by other areas of focus including research performance and community engagement. More recently,…

  10. 1991 annual report of the Karlsruhe Federal Food Research Institute

    International Nuclear Information System (INIS)

    1992-01-01

    The Federal Food Research Institute does research in the field of nutrition, food and household sciences as well as in related special fields. Among its working priorities are the determination of foreign matter and radionuclides in food as well as food preservation by means of irradiation including dosimetry. The results of those priorities are represented. (orig./MG) [de

  11. A Ten Year Citation Analysis of Major Australian Research Institutions

    Science.gov (United States)

    Batterham, Robin J.

    2011-01-01

    The introduction of the Excellence in Research for Australia scheme has heightened debate amongst research institutions over the use of metrics such as citations, especially given the ready availability of citation data. An analysis is presented of the citation performance of nine Australian universities and the Commonwealth Scientific, Industrial…

  12. Key Institutions in Business and Management Education Research

    Science.gov (United States)

    Fornaciari, Charles J.; Arbaugh, J. B.; Asarta, Carlos J.; Bento, Regina F.; Hwang, Alvin; Lund Dean, Kathy

    2017-01-01

    The authors investigate institutional productivity in business and management education (BME) research based on the analysis of 4,464 articles published by 7,210 authors across 17 BME journals over a 10-year period, involving approximately 1,900 schools worldwide. Departing from traditional disciplinary silos, they examine the BME research field…

  13. Institutional review boards' attitudes towards remuneration in paediatric research

    DEFF Research Database (Denmark)

    Flege, Marius M; Thomsen, Simon F

    2017-01-01

    Remuneration in paediatric research poses an ethical dilemma. Too large a sum might cause parents to enrol their children in research projects with no benefit for the child, whereas too modest a sum might hamper recruitment. The institutional review boards have the responsibility to only approve ...

  14. Institutional Support: Centre for Economic and Social Research ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Institutional Support: Centre for Economic and Social Research, Education and Documentation (Burkina Faso). The Centre d'études de documentation et de ... innovations to improve lives and livelihoods. Five world-class research teams are working to develop vaccines for neglected livestock diseases in the Global South.

  15. Challenges in Education Research in Taiwan: Research Institutes and Organizations, Research Policies, and Problems

    Directory of Open Access Journals (Sweden)

    Jia Li Huang

    2017-02-01

    Full Text Available Since the 1990s, many education researchers and policy makers worldwide have reviewed education research to attempt to provide strategies to improve the quality of such research in their countries. Taiwan’s government has launched policies and funded support to set the benchmark for Taiwan’s leading universities in international academic competition. The external environment of global competition based on research policy influences the ecosystem of social science research production. To assure the quality of education policy, peer review from within the education community is one approach to supplementing the government’s governance, including the establishment of research institutes, promotion, rewards, and research value. This study tracked the mode of academic research and provides an overview of the status of academic education research in Taiwan. Because education research is part of the humanities and social sciences fields, this study identified the challenges in educational research by examining the trend of social science research and by analyzing research organizations, policy, and the evaluation of research performance. Due to the environment of education research in Taiwan is not friendly to education researcher to accumulate papers in SSCI or international journal, additional concerns entail how education research communities can develop and agree on its quality.

  16. Central Institute of Nuclear Research Rossendorf 25 years old

    International Nuclear Information System (INIS)

    Hohmuth, K.; Kaun, K.H.; Schmidt, A.; Hennig, K.; Brinckmann, H.F.; Lehmann, E.; Rossbander, W.; Bitterlich, H.; Weibrecht, R.; Fuelle, R.; Nebel, D.; Reetz, T.; Beyer, G.J.; Muenze, R.

    1981-12-01

    A colloquium dedicated the 25th anniversary of the foundation of the Central Institute for Nuclear Research of the GDR Academy of Sciences was held on January, 21st, '81. 13 papers were given which dealt with aspects of the institute's history as well as with modern trends in nuclear and solid state physics, nuclear energy and chemistry, radioisotope production, radiation protection and nuclear information. (author)

  17. Challenges facing the marketing of scientific and research institutes

    Directory of Open Access Journals (Sweden)

    Bogdan Sojkin

    2015-12-01

    Full Text Available This article presents the challenges that scientific research institutions face in terms of their marketing, which have been divided into two groups of those associated with internal marketing and those linked to external marketing. The most significant and important determinants that constitute challenges to both internal and external marketing were described. The key aspects of each of the identified challenges were indicated, as was their impact on the implementation of the marketing policy at institutions.

  18. Customer Relationship Management in scientific and research institutions

    Directory of Open Access Journals (Sweden)

    Jaromir Matulewicz

    2013-12-01

    Full Text Available Basing on the example of a scientific institute, this article shows: – potential areas in which CRM philosophy, procedures and tools could be applied – purpose of applying CRM – outcomes to expect from CRM application The article shows the Customer Relationship Management idea exclusively, along with areas of its use in scientific and research institutions and also a proposal to determine a group of clients for these institutions. The summary of the article consists of information regarding sources of knowledge about CRM philosophy and procedures (mainly bibliographical and also about IT systems which support CRM.

  19. Radiation processing project at the Institute of Nuclear Energy Research

    International Nuclear Information System (INIS)

    Tsai, C.M.; Fu, Y.K.; Yang, Y.H.; Chen, Y.T.; Wei, Y.H.; Lee, K.P.; Wang, Y.K.

    1981-01-01

    The utilization of scientific approach to preserve and sterilize the agricultural products has long been studied since 1954 and was adopted by several countries gradually since 1958. Starting from July 1977 this Institute began to study the preservation of potatoes and onions with reference to sprout inhibition which is discussed and its economical aspect is evaluated. The design concept of a megacurie 60 Co irradiator at this Institute is illustrated. The progress of construction work for the irradiator and the safety device in particular are reported. Current research project on the preservation of agricultural products in this Institute is presented. (author)

  20. Academic Libraries’ Role in Improving Institutions Research Impact

    KAUST Repository

    Tamarkin, Molly; Vijayakumar, J.K.; Baessa, Mohamed A.; Grenz, Daryl M.

    2015-01-01

    In the changing landscape of scientific research and scholarly communication, importance of “quality in research”, “reviewed research” and “reviewed publications” in qualifying for the ratings and rankings are widely discussed. While publishing the research pieces in peer-reviewed and highly ranked journals are increasingly important, there are different methods and tools to be in place at Institutional level to increase researchers’ profile and the ranking of the institutions. As a young research based university created in 2009, King Abdullah University of Science and Technology (KAUST) focuses on the bibliometrics and altemetrics tools, author affiliations, author naming and plug-ins to different search engines, research evaluation systems as well as to research repositories. The University has launched an institutional repository in September 2012 as a home for the intellectual outputs of KAUST researchers, and then adopted the first institutional open access mandate in the Arab region effective June 31, 2014. Integration with ORCID became a key element in this process and the best way to ensure data quality for researcher’s scientific contributions systematically. We will present the inclusion and creation of ORCID identifiers in the existing systems as an institutional member to ORCID, and the creation of dedicated integration tools with Current Research Information System (CRIS) as a standardized common resource to monitor KAUST research outputs. We will also present our experiences in awareness programs, trainings, outreach, implementation of systems and tools like PlumX, as well as our approach in improving the research impact and profiling our Institution’s research to the world.

  1. Academic Libraries’ Role in Improving Institutions Research Impact

    KAUST Repository

    Tamarkin, Molly

    2015-11-11

    In the changing landscape of scientific research and scholarly communication, importance of “quality in research”, “reviewed research” and “reviewed publications” in qualifying for the ratings and rankings are widely discussed. While publishing the research pieces in peer-reviewed and highly ranked journals are increasingly important, there are different methods and tools to be in place at Institutional level to increase researchers’ profile and the ranking of the institutions. As a young research based university created in 2009, King Abdullah University of Science and Technology (KAUST) focuses on the bibliometrics and altemetrics tools, author affiliations, author naming and plug-ins to different search engines, research evaluation systems as well as to research repositories. The University has launched an institutional repository in September 2012 as a home for the intellectual outputs of KAUST researchers, and then adopted the first institutional open access mandate in the Arab region effective June 31, 2014. Integration with ORCID became a key element in this process and the best way to ensure data quality for researcher’s scientific contributions systematically. We will present the inclusion and creation of ORCID identifiers in the existing systems as an institutional member to ORCID, and the creation of dedicated integration tools with Current Research Information System (CRIS) as a standardized common resource to monitor KAUST research outputs. We will also present our experiences in awareness programs, trainings, outreach, implementation of systems and tools like PlumX, as well as our approach in improving the research impact and profiling our Institution’s research to the world.

  2. Beyond Research Productivity: Matching Productivity Measures to Institutional Mission

    Directory of Open Access Journals (Sweden)

    Patricia Bartholomew

    2016-11-01

    Full Text Available Aim/Purpose: The aim of this paper is to develop a unified methodology inclusive of the three primary areas of faculty responsibility (teaching, research, and service to calculate departmental productivity that fills the gap in methodological bench-marking tools for overall faculty productivity. Background:\tA disproportionate number of departmental and faculty productivity indices in higher education rely solely on research. Productivity in other areas of faculty workload areas, like teaching and institutional and community service, are either measured separately or ignored all together – even when those activities are institutionally mandated. This does a disservice to those who work in those institutions and skews incentives. Methodology: This paper utilizes a unified methodology inclusive of the three primary areas of faculty responsibility (teaching, research, and service to calculate depart-mental productivity in five disparate departments (English, Biology, Mathematics, Sociology, and Computer Science common to two universities with differing missions (teaching and service. Findings: The results reveal the bias inherent in relying solely on research as a proxy for overall productivity in institutions that have differing missions. Recommendations for Practitioners: Utilizing better metrics informs higher education administrators, promotes better decision-making, and allows incentives to re-align with desired outcomes. Recommendation for Researchers: This paper recommends combing all aspects of faculty workload into a single benchmark index to better measure departmental productivity. Future Research: Further research into improving this simple index is warranted and would include how to account for quality and other facets of productivity.

  3. Concurrent control system for the JAERI tandem accelerator

    International Nuclear Information System (INIS)

    Hanashima, Susumu; Shozi, Tokio; Shiozaki, Yasuo; Saito, Motoi; Oogane, Yasuo; Sekiguchi, Satoshi.

    1994-01-01

    A new control system for the JAERI tandem accelerator is constructed. The system utilizes concurrent processing technology with multiprocessor. Transputers are used both for central processor and I/O front end processors. (author)

  4. Annual report on neutron scattering studies in JAERI

    International Nuclear Information System (INIS)

    Sato, Masatoshi; Nishi, Masakazu; Fujishita, Hideshi; Iizumi, Masashi

    1982-07-01

    Neutron scattering studies carried out from September 1979 to August 1981 by Division of Physics, JAERI, and universities with JRR-2 and -3 neutron beam facilities are described: 61 summary reports, and a list of publications. (author)

  5. Evaluation acting: the experience of a public research institute

    International Nuclear Information System (INIS)

    Guimaraes, Regia Ruth Ramirez; Ferreira, Hudson Rubio; Filgueiras, Sergio A. Cunha

    2007-01-01

    Innovation and knowledge management are central questions of the modern world economy where the incorporation of new knowledge is determining for competition. In this context, there is a movement of pression under public research institutions for a more dynamic participation on the local innovation system. The institutions of C and T should prepare to help the companies to insert in the context of open economies and also to compete in the global market. The modernity requires flexibility and organizational changes in the research institutions. Redefinitions of their practices in relation to other aspects such as: financing sources; partnership with other organizations; definition and planning of the objectives; evaluation, diffusion and valorization of the results and the establishing of a measuring system and performance indicators. Aiming at having an effective institutional insertion on the national and regional systems of innovation, the Nuclear Technology Development Center - CDTN reformulated its strategical planning, incorporating the view of the researchers of the Center and external experts. As part of the evaluation process, CDTN organizes an annual seminar for evaluating its projects, focused on presenting the results and also on the analysis of the performance indicators. The result of this pairs review are widely informed to the Institution and is an important tool for the critical analysis of the institutional performance and for corrections to be made by the high direction. This paper presents the methodology for evaluating the results, as well as the difficulties and improvements incorporated to the process, which has been applied for three years. (author)

  6. An Analysis of Canadian Institute for Health Research Funding for Research on Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    R. Deonandan

    2016-01-01

    Full Text Available We examined patterns of Canadian Institute for Health Research (CIHR funding on autism spectrum disorder (ASD research. From 1999 to 2013, CIHR funded 190 ASD grants worth $48 million. Biomedical research received 43% of grants (46% of dollars, clinical research 27% (41%, health services 10% (7%, and population health research 8% (3%. The greatest number of grants was given in 2009, but 2003 saw the greatest amount. Funding is clustered in a handful of provinces and institutions, favouring biomedical research and disfavouring behavioural interventions, adaptation, and institutional response. Preference for biomedical research may be due to the detriment of clinical research.

  7. Forschungszentrum Rossendorf. Institute of Safety Research. Annual report 1998

    International Nuclear Information System (INIS)

    Weiss, F.P.; Rindelhardt, U.

    1999-07-01

    The Institute of Safety Research is one of the five scientific institutes of Forschungszentrum Rossendorf e.V. The Forschungszentrum Rossendorf is a member of the 'Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz' und is funded by the Federal Ministry of Education and Research and by the Saxon Ministry of Science and Arts with 50% each. The research work of the institute aims at the assessment and increase of the safety and environmental sustainability of technical plants. The emphasis is put on the development and validation of mathematical and physical models for process and plant analysis, and of techniques for process and components monitoring. Subject of investigations are equally nuclear plants and installations of process industries. (orig.)

  8. 1994 - 1995 annual report of the NRC Biotechnology Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    One of the roles of the Biotechnology Research Institute is to promote leading edge research and development in biotechnology and molecular biology as they relate to industries in the natural resource sectors. To this end, researchers work with industry to develop less polluting, more efficient and economic processes and to solve environmental problems. Scientific studies undertaken in 1994 and 1995 included new analytical techniques and biosensors, bioprocesses for waste and ground water treatment, biopesticides, biodegradation of toxic compounds, biodesulfurization of bitumen, solvent- less sample preparation techniques to analyze environmental pollutants in soils and waste water, protocol for the analysis of petroleum hydrocarbons, gene probes and their applications, biodegradation of energetic compounds, and biofiltration of air emissions. These, and other noteworthy projects undertaken by the Institute, were reviewed and presented ,combined with institutional data. 2 tabs.

  9. Noise diagnostics research at the Institute for Electric Power Research

    International Nuclear Information System (INIS)

    Voeroess, L.

    1983-01-01

    The main goal of recent research is the designing of a diagnostic system for the Paks nuclear power plant. It includes the designing of measuring cascades for measuring mechanical vibrations caused by flow and pressure fluctuations in the primary coolant circuit, the arrangement of measuring cascades for measuring turbine bearing vibrations in the secondary coolant circuit, and the development, manufacturing and commissioning of a central data acquisition and processing unit for the whole diagnostic system. Simultaneously computer models are developed for improving the interpretation. Moreover, it is planned to develop methods for estimating residual lifetime and the status of plant components. (author)

  10. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    International Nuclear Information System (INIS)

    Iga, Kiminori; Takada, Hiroshi; Nagao, Tadashi.

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B 4 C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  11. Transport calculation of thermal and cold neutrons using NMTC/JAERI-MCNP4A code system

    Energy Technology Data Exchange (ETDEWEB)

    Iga, Kiminori [Kyushu Univ., Fukuoka (Japan); Takada, Hiroshi; Nagao, Tadashi

    1998-01-01

    In order to investigate the applicability of the NMTC/JAERI-MCNP4A code system to the neutronics design study in the neutron science research project of JAERI, transport calculations of thermal and cold neutrons are performed with the code system on a spallation neutron source composed of light water cooled tantalum target with a moderator and a reflector system. The following neutronic characteristics are studied in the calculation : the variation of the intensity of neutrons emitted from a light water moderator or a liquid hydrogen with/without the B{sub 4}C decoupler, which are installed to produce sharp pulse, and that dependent on the position of external source neutrons in the tantalum target. The calculated neutron energy spectra are reproduced well by the semi-empirical formula with the parameter values reliable in physical meanings. It is found to be necessary to employ proper importance sampling technique in the statistics. It is confirmed from this work that the NMTC/JAERI-MCNP4A code system is applicable to the neutronics design study of spallation neutron sources proposed for the neutron science research project. (author)

  12. Radiation protection code of practice in academic and research institutes

    International Nuclear Information System (INIS)

    Abdalla, A. A. M.

    2010-05-01

    The main aim of this study was to establish a code of practice on radiation protection for safe control of radiation sources used in academic and research institutes, another aim of this study was to assess the current situation of radiation protection in some of the academic and research institutes.To achieve the aims of this study, a draft of a code of practice has been developed which is based on international and local relevant recommendation. The developed code includes the following main issues: regulatory responsibilities, radiation protection program and design of radiation installations. The second aim had been accomplished by conducting inspection visits to five (A, B, C, D and E) academic and to four (F, G, H and I ) research institutes. Eight of such institutes are located in Khartoum State and the ninth one is in Madani city (Aljazeera State). The inspection activities have been carried out using a standard inspection check list developed by the regulatory authority of the Sudan. The inspection missions to the above mentioned institutes involved also evaluation of radiation levels around the premises and storage areas of radiation sources. The dose rate measurement around radiation sources locations were found to be quite low. This mainly is due to the fact that the activities of most radionuclides that are used in these institutes are quite low ( in the range of micro curies). Also ,most the x-ray machines that were found in use for scientific academic and research purposes work at low k Vp of maximum 60 k Vp. None of the radiation workers in the inspected institutes has a personal radiation monitoring device, therefor staff dose levels have not been assessed. However it was noted that in most of the academic/ research studies radiation workers are only exposed to very low levels of radiation and for a very short time that dose not exceed 1 minute, therefore the expected occupational exposure of the staff is very low. Radiation measurement in public

  13. Present state of the monitoring for internal contamination at Tokai Research Establishment, Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    Akaishi, J.; Fukuda, H.; Mizushita, S.

    1980-01-01

    At Tokai Research Establishment, JAERI, over one thousand people work in hot areas such as reactors, accelerators, chemical laboratories and waste treatment plants. The monitoring for internal contamination of this personnel is presented. Routine and special monitoring are carried out. The object of the former is to check for the presence of significant contamination, and that of the latter is to estimate body burden and committed dose equivalent, if necessary. Heavy shield and shadow shield whole body counters, a low energy lung counter and a wound monitor are used to detect the internal contamination due to γ or chi ray emitters, and bioassay technique is used for α or β emitters and uranium. The results of the monitoring until now are presented. (H.K.)

  14. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1979-01-01

    The institute is established under the atomic energy basic law to make effectively research of development of atomic energy in general and help to promote investigation, development and utilization of it. The institute is a legal person and has its main office in Tokyo. Its capital is the amount of yen 2,500 million plus contributions by persons other than the government. The government invests the said yen 2,500 million at the time of its establishment. The articles of the institute shall prescribe matters, such as: capital, contributions and assets; officer and meeting; business and its execution; accounting, etc. The officers are consisted of a chief director, a deputy chief director and less than 7 directors and less than 2 auditors. The chief director is appointed by the Prime Minister with the consent of the atomic energy commission. The term of the chief director, the deputy chief director and directors is 4 years and that of auditors is 2 years. Functions of the institute include basic and application research of atomic energy, planning, building and operation of reactors, training of researchers and engineers of atomic energy, etc. The budget, the business program and the financial project shall be prepared each business year and authorized by the Prime Minister. The institute is subject to the supervision of the Prime Minister. (Okada, K.)

  15. Mobilisation for public engagement: Benchmarking the practices of research institutes.

    Science.gov (United States)

    Entradas, Marta; Bauer, Martin M

    2017-10-01

    Studies on scientists' practices of public engagement have pointed to variations between disciplines. If variations at the individual level are reflected at the institutional level, then research institutes in Social Sciences (and Humanities) should perform higher in public engagement and be more involved in dialogue with the public. Using a nearly complete sample of research institutes in Portugal 2014 ( n = 234, 61% response rate), we investigate how public engagement varies in intensity, type of activities and target audiences across scientific areas. Three benchmark findings emerge. First, the Social Sciences and the Humanities profile differently in public engagement highlighting the importance of distinguishing between these two scientific areas often conflated in public engagement studies. Second, the Social Sciences overall perform more public engagement activities, but the Natural Sciences mobilise more effort for public engagement. Third, while the Social Sciences play a greater role in civic public engagement, the Natural Sciences are more likely to perform educational activities. Finally, this study shows that the overall size of research institutes, available public engagement funding and public engagement staffing make a difference in institutes' public engagement.

  16. The law for the Japan Atomic Energy Research Institute

    International Nuclear Information System (INIS)

    1977-01-01

    The law establishes the Japan Atomic Energy Research Institute in accordance with the Basic Act on Atomic Energy as a government corporation for the purpose of promoting R and D and utilizations of atomic energy (first chapter). The second chapter concerns the directors, advisers and personnel of the institute, namely a chairman of the board of directors, a vice-chairman, directors not more than seven persons, and auditors not more than two persons. The chairman represents and supervises the intitute, whom the prime minister appoints with the agreement of Atomic Energy Commission. The vice-chairman and other directors are nominated by the chairman with the approval of the prime minister, while the auditors are appointed by the prime minister with the advice of the Atomic Energy Commission. Their terms of office are 4 years for directors and 2 years for auditors. The third chapter defines the scope of activities of the institute as follows: basic and applied researches on atomic energy; design, construction and operation of nuclear reactors; training of researchers and technicians; and import, production and distribution of radioisotopes. Those activities should be done in accordance with the basic development and utilization plans of atomic energy established by the prime minister with the determination of Atomic Energy Commission. The fourth chapter provides for the finance and accounting of the institute, and the fifth chapter requires the supervision of the institute by the prime minister. (Matsushima, A.)

  17. Research Training, Institutional Support, and Self-Efficacy: Their Impact on Research Activity of Social Workers

    Directory of Open Access Journals (Sweden)

    Mark Thomas Lynch

    2009-11-01

    Full Text Available While the expectations for social work practitioners to do research have increased, their involvement is still limited. We know little about what factors influence involvement in research. The present study proposes a theoretical model that hypothesizes research training and institutional support for research as the exogenous variables, research self-efficacy as an intervening variable, and research activity as the endogenous variable. The study tests the model using data collected from a random sample of social workers. To a large degree the data support the model. Research self-efficacy has a significant effect on research activity. It is also an important mediating variable for the effect of institutional support on research activity. Although institutional support for research has no direct effect, it has an indirect effect via self-efficacy on research activity. However, research training has no effect on research activity and self-efficacy in research. The implications of these findings are discussed.

  18. 75 FR 8374 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2010-02-24

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special... Officer, Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health...

  19. 77 FR 71604 - National Human Genome Research Institute; Notice of Closed Meeting

    Science.gov (United States)

    2012-12-03

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Human Genome... unwarranted invasion of personal privacy. Name of Committee: National Human Genome Research Institute Special..., Scientific Review Branch, National Human Genome Research Institute, National Institutes of Health, 5635...

  20. Rehabilitation Research at the National Institutes of Health:

    Science.gov (United States)

    Bean, Jonathan F.; Damiano, Diane; Ehrlich-Jones, Linda; Fried-Oken, Melanie; Jette, Alan; Jung, Ranu; Lieber, Rick L.; Malec, James F.; Mueller, Michael J.; Ottenbacher, Kenneth J.; Tansey, Keith E.; Thompson, Aiko

    2017-01-01

    Abstract Approximately 53 million Americans live with a disability. For decades, the National Institutes of Health (NIH) has been conducting and supporting research to discover new ways to minimize disability and enhance the quality of life of people with disabilities. After the passage of the American With Disabilities Act, the NIH established the National Center for Medical Rehabilitation Research with the goal of developing and implementing a rehabilitation research agenda. Currently, a total of 17 institutes and centers at NIH invest more than $500 million per year in rehabilitation research. Recently, the director of NIH, Dr Francis Collins, appointed a Blue Ribbon Panel to evaluate the status of rehabilitation research across institutes and centers. As a follow-up to the work of that panel, NIH recently organized a conference under the title “Rehabilitation Research at NIH: Moving the Field Forward.” This report is a summary of the discussions and proposals that will help guide rehabilitation research at NIH in the near future. This article is being published almost simultaneously in the following six journals: American Journal of Occupational Therapy, American Journal of Physical Medicine and Rehabilitation, Archives of Physical Medicine and Rehabilitation, Neurorehabilitation and Neural Repair, Physical Therapy, and Rehabilitation Psychology. Citation information is as follows: Frontera WR, Bean JF, Damiano D, et al. Am J Phys Med Rehabil. 2017;97(4):393–403. PMID:28499004

  1. An Institutional Approach to Developing Research Data Management Infrastructure

    Directory of Open Access Journals (Sweden)

    James A. J. Wilson

    2011-10-01

    Full Text Available This article outlines the work that the University of Oxford is undertaking to implement a coordinated data management infrastructure. The rationale for the approach being taken by Oxford is presented, with particular attention paid to the role of each service division. This is followed by a consideration of the relative advantages and disadvantages of institutional data repositories, as opposed to national or international data centres. The article then focuses on two ongoing JISC-funded projects, ‘Embedding Institutional Data Curation Services in Research’ (Eidcsr and ‘Supporting Data Management Infrastructure for the Humanities’ (Sudamih. Both projects are intra-institutional collaborations and involve working with researchers to develop particular aspects of infrastructure, including: University policy, systems for the preservation and documentation of research data, training and support, software tools for the visualisation of large images, and creating and sharing databases via the Web (Database as a Service.

  2. Irradiation Facilities of the Takasaki Advanced Radiation Research Institute

    Directory of Open Access Journals (Sweden)

    Satoshi Kurashima

    2017-03-01

    Full Text Available The ion beam facility at the Takasaki Advanced Radiation Research Institute, the National Institutes for Quantum and Radiological Science and Technology, consists of a cyclotron and three electrostatic accelerators, and they are dedicated to studies of materials science and bio-technology. The paper reviews this unique accelerator complex in detail from the viewpoint of its configuration, accelerator specification, typical accelerator, or irradiation technologies and ion beam applications. The institute has also irradiation facilities for electron beams and 60Co gamma-rays and has been leading research and development of radiation chemistry for industrial applications in Japan with the facilities since its establishment. The configuration and utilization of those facilities are outlined as well.

  3. Research and development of treatment techniques for LLW from decommissioning: Decontamination and volume reduction techniques

    International Nuclear Information System (INIS)

    Hirabayashi, T.; Kameo, Y.; Nakashio, N.

    2001-01-01

    For the purpose of reducing the amount and/or volume of low-level radioactive waste (LLW) arising from decommissioning of nuclear reactor, the Japan Atomic Energy Research Institute (JAERI) has been developing four decontamination techniques. They are: (a) Gas-carrying abrasive method, (b) In-situ remote electropolishing method for pipe system before dismantling, (c) Bead reaction - thermal shock method, and (d) Laser induced chemical method for components after dismantling. JAERI in developing techniques are also carrying out melting tests of metal and non-metal. Melting was confirmed to be effective in reducing the volume, homogenizing, and furthermore stabilizing non-metallic wastes. (author)

  4. NATO Advanced Research Institute on the Efficiency of Manufacturing Systems

    CERN Document Server

    Berg, C; French, D

    1983-01-01

    The Advanced Research Institute (A.R. 1.) on "the efficiency of Manufacturing Systems" was held under the auspices of the NATO Special Programm~ Panel on Systems Science as a part of the NATO Science Committee's continuous effort to promote the advancement of science through international co-operation. Advanced Research Institutes are organised for the purpose of bringing together experts in a particular field of interest to identify and make known the present state of knowledge in that area and, through informed debate, to make recommendations for directions for future research that would benefit the community at large. To this end two kinds of contribution were obtained by invitation. There were those papers which were about the current state of work in the area of manufacturing systems and its organisation; in addition three theme papers were presented to provide a stimulus to the discussion in terms of ways of thinking, both about the area and about the kind of research needed.

  5. Fraunhofer Institute for Atmospheric Environmental Research. Annual report 1990

    International Nuclear Information System (INIS)

    1991-01-01

    This progress report submitted by Fraunhofer Institut fuer Atmosphaerische Umweltforschung, Garmisch-Partenkirchen, reviews the institute's scientific and technical atmospheric environmental research activities of 1990. Emphasis was on research into the atmospheric circulation of CH 4 and N 2 O, the determination of the distribution and of the time characteristics of trace substances of environmental relevance, and on studies of the effects of pollutants on the vegetation. Major efforts went into the development of instruments and the modeling of the atmosphere in support of the experimental work. The FhG activities advance the research into the chemical behavior of the atmosphere, the possible effects of man-made changes in the chemical composition of the atmosphere on the greenhouse effect, the regional pollutant loads, and the effects of ground-level UV-B radiation. The activities are part of international and national joint research projects, e.g. EUROTRAC, IGAC, and ICAT. (orig./KW) [de

  6. The Netherlands Institute for Social Research | SCP at a glance

    NARCIS (Netherlands)

    2009-01-01

    The Netherlands Institute for Social Research supplies central government with information on the Dutch welfare state. For more than 30 years, the SCP has been charting developments in the daily lives of the Dutch population: work, income, health, education, social security, housing, culture, how

  7. The African Languages Research Institute: A Milestone in the ...

    African Journals Online (AJOL)

    Ruthven

    African Languages Research Institute (ALRI) gedoen het in die ontwikkeling van die ... church literature and educational books to create literature for their new con- verts. .... tive impact on the process of raising the status of Shona and Ndebele. .... from naturally occurring language in use by mother-tongue speakers of the.

  8. Cyclotrons at the Institute of Physical and Chemical Research

    International Nuclear Information System (INIS)

    Imamura, Masashi.

    1989-01-01

    In this article the destruction by American forces, during World War II, of the Japanese cyclotrons and the subsequent construction of new cyclotrons at the Institute of Physical and Chemical Research, Japan is described. Their use for biological and medical radiation chemistry studies is summarized. (UK)

  9. Proposal to Establish an International Solar Research Institute

    International Nuclear Information System (INIS)

    Broda, E.

    1974-01-01

    This report was written by E. Broda and it is about a proposal to establish an international solar research institute. Broda emphasizes solar energy as the most important energy source alternatively to nuclear energy and he points out the advantages of solar energy over nuclear energy. This report was written for a symposium for science and peace in February 1974. (nowak)

  10. Cooperative Institute for Research in the Atmosphere (CIRA) Requirements Review

    Energy Technology Data Exchange (ETDEWEB)

    Zurawski, Jason, W; Mace, Kathryn, P

    2016-08-11

    In August 2016 The Energy Sciences Network (ESnet) and Colorado State University (CSU) organized a review to characterize the networking requirements of the Cooperative Institute for Research in the Atmosphere (CIRA) located on the campus of Colorado State University. Several key findings highlighting the results from the review were discovered, with benefits to improve the overall scientific process for CIRA and CSU.

  11. The National Institute of Dental Research Clinical Dental Staff Fellowship.

    Science.gov (United States)

    Baum, Bruce J.; And Others

    1988-01-01

    A program in one of the National Institutes of Health offers clinical training fellowships as a means of training potential dental school faculty by providing both unique clinical skills and high-quality research experience. The program was developed in response to a perceived need for change in academic dentistry. (MSE)

  12. The Gatekeepers of Business Education Research: An Institutional Analysis

    Science.gov (United States)

    Urbancic, Frank R.

    2011-01-01

    The author ranked the academic standing of universities based on faculty representation to the editorial boards of business education journals. Previous studies that ranked institutions for editorial board representation focused on journals that primarily favor publication of basic and applied research contributions. As a result, prior research…

  13. Aging in France: Population Trends, Policy Issues, and Research Institutions

    Science.gov (United States)

    Beland, Daniel; Durandal, Jean-Philippe Viriot

    2013-01-01

    Like in other advanced industrial countries, in France, demographic aging has become a widely debated research and policy topic. This article offers a brief overview of major aging-related trends in France. The article describes France's demographics of aging, explores key policy matters, maps the institutional field of French social gerontology…

  14. Guides to Pollution Prevention: Research and Educational Institutions.

    Science.gov (United States)

    Environmental Protection Agency, Cincinnati, OH. Office of Research and Development.

    This guide provides an overview of waste generating processes and operations that occur in educational or research institutions and presents options for minimizing waste generation through source reduction and recycling. A broad spectrum of waste chemicals in laboratories, art studios, print shops, maintenance, and other operations can be…

  15. Item Response Theory: Overview, Applications, and Promise for Institutional Research

    Science.gov (United States)

    Bowman, Nicholas A.; Herzog, Serge; Sharkness, Jessica

    2014-01-01

    Item Response Theory (IRT) is a measurement theory that is ideal for scale and test development in institutional research, but it is not without its drawbacks. This chapter provides an overview of IRT, describes an example of its use, and highlights the pros and cons of using IRT in applied settings.

  16. Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephan E.

    2004-10-01

    Pacific Northwest National Laboratory (PNNL) hosted its first annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2004. During this period, fourteen PNNL scientists hosted sixteen young scientists from eleven different universities. Of the sixteen participants, fourteen were graduate students; one was transitioning to graduate school; and one was a university faculty member.

  17. Institutional and Departmental Cultures: The Relationship Between Teaching and Research.

    Science.gov (United States)

    Austin, Ann E.

    1996-01-01

    The influence of institutional and departmental cultures on the relationship between college teaching and research is discussed, and suggestions for assessing these factors and nurturing a positive relationship between them are made. Approaches include making reward systems more equitable, strengthening administrative leadership, encouraging…

  18. Research Review of the Institute of African Studies: Contact

    African Journals Online (AJOL)

    Principal Contact. Prof. M.E. Kropp Dakubu Editor-in-Chief University of Ghana. Research Review. Institute of African Studies. P.O.Box LG73 Legon, Ghana. Phone: 211-24-4764006. Fax: 233-21-500512. Email: medakubu@ug.edu.gh. Support Contact. Dr Stephen Acheampong Phone: 211-24-4979233

  19. Physical protection of radioactive materials in a University Research Institute

    International Nuclear Information System (INIS)

    Boeck, H.

    1998-01-01

    Although nuclear research centers attached to universities usually do not keep large inventories of radioactive or special nuclear material, the mentioned material has still to be under strict surveillance and safeguards if applicable. One problem in such research centers is the large and frequent fluctuation of persons - mainly students, scientists or visiting guest scientists - using such materials for basic or applied research. In the present paper an overview of protective actions in such a research institute will be given and experience of more than 36 years will be presented. (author)

  20. Knowledge synthesis and the Canadian Institutes of Health Research

    Directory of Open Access Journals (Sweden)

    Graham Ian D

    2012-02-01

    Full Text Available Abstract The Canadian Institutes of Health Research (CIHR is Canada's premier health-research funding agency. We fund nearly 14,000 researchers and trainees in four theme areas: biomedical, clinical, health services, and population and public-health research. Our mandate is 'to excel according to international standards of scientific excellence, in the creation of new knowledge and its translation into improved health for Canadians, more effective health services and products and a strengthened Canadian health care system'. Knowledge synthesis is a key element of the knowledge-translation objectives of CIHR, as outlined in our definition of knowledge-translation.

  1. Developing institutional repository at National Institute for Materials Science : Researchers directory service “SAMURAI” and Research Collection Library

    Science.gov (United States)

    Takaku, Masao; Tanifuji, Mikiko

    National Institute for Materials Science (NIMS) has developed an institutional repository “NIMS eSciDoc” since 2008. eSciDoc is an open source repository software made in Germany, and provides E-Science infrastructures through its flexible data model and rich Web APIs. NIMS eScidoc makes use of eSciDoc functions to benefit for NIMS situations. This article also focuses on researchers directory service “SAMURAI” in addition to NIMS eSciDoc. Successfully launched in October 2010, SAMURAI provides approximately 500 researchers' profile and publication information.

  2. JAERI R & D on accelerator-based transmutation under OMEGA program

    Energy Technology Data Exchange (ETDEWEB)

    Takizuka, T.; Nishida, T.; Mizumoto, M. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1995-10-01

    The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts also as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.

  3. Establishment of the observing system for boron in steels by alpha-particle track etching method using JAERI reactor

    International Nuclear Information System (INIS)

    Asakura, Kentaro; Shibata, Koji; Sawahata, Hiroyuki; Kawate, Minoru; Harasawa, Susumu

    2003-01-01

    Alpha-particle track etching (ATE) method is most effective in observing boron distribution in steels. Previously, in Japan, neutron irradiation for this method was carried out in the reactor at the Institute of Atomic Energy, Rikkyo University. This reactor, however, was shut down in 1999. Therefore, the establishment of a new system for ATE method has been required and experimental research was performed using the reactor at the Japan Atomic Energy Research Institute (JAERI). It was clarified that the irradiation equipment for medical treatment of the reactor JRR-4 was most suitable for ATE method. The specimen trestle for low radioactive exposure was newly-developed. ATE image obtained by 12h irradiation using this trestle showed a good quality similar to that obtained using Rikkyo's reactor and that obtained using the trestle of the old model. Using this new trestle, the amount of neutron which the worker suffers during the operation at the irradiation equipment decreases from 4μSv/h to 0-1 μSv/h compared with the trestle of the old model. The total amount of thermal neutron after 12 h irradiation was almost same as that under the recommended condition of the reactor at Rikkyo University, 6.5 x 10 14 n cm -2 . (author)

  4. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    2000-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, whose activities are based on the principles of openness for participation to all interested states and of their equal, mutually beneficial collaboration.

  5. Joint Institute for Nuclear Research Exhibition Science Bringing Nations Together

    CERN Multimedia

    1999-01-01

    The JOINT INSTITUTE FOR NUCLEAR RESEARCH, JINR, was established by its founding countries in 1956 with the purpose of joining together the scientific and material potential of Member States in studies of the fundamental properties of matter. JINR is an international inter-governmental scientific research organization, the activities of which are based on the principles of openness for participation to all interested states of their equal, mutually beneficial collaboration.

  6. KFK. Institut fuer Radiochemie research and development activities in 1982

    International Nuclear Information System (INIS)

    1983-02-01

    The Institute for Radiochemistry (IRCH, Director: Proj. D. Ache) is concerned with research and development programmes within two framework of the following projects: Reprocessing and Waste Processing; Fast Breeder; Nuclear Safeguards; and Nuclear Material Surveillance. Fundamental problems in the field of instrumental analysis (in particular surface chemistry, surface structure analysis and radiochemistry) are studied within the priority work programme 'Solids and Materials Research'. Water technology studies at the IRCH are included in the joint priority programmes 'Technology - Man - Environment'. (orig./RB) [de

  7. A platform for quality management in research institutes (part II

    Directory of Open Access Journals (Sweden)

    Klembalska Agnieszka

    2016-09-01

    Full Text Available In the recent years there has been a particularly strong pressure on changing old structures and management models in research institutes. Contemporary research institutes are scientific units which are commercial in character – almost 80% of funds come from companies and contractual research activity and services. They are the basic sector of science aiming at cooperation with the economy, applied and innovative research. In order to maintain the current and start new cooperation it is necessary to pay particular attention to maintaining, improving and exposing high level of quality of conducted activity. Taking into consideration the necessity of carrying out ever more complex research projects, conducting activity requiring fast reaction to change, risk analysis, which is assessed every year by the Ministry of Science and Higher Education – it seems that it is necessary to apply tools supporting the assessment of quality. In the proposed three-aspect perspective the following scopes of activity are emphasized: implemented quality management systems, area of scientific information and the sphere of cooperation with the client. This article constitutes the continuation of the subjects discussed in the first part – an extension of issues associated with the scope of responsibilities of particular Sections of the proposed Quality Management Platform in research institutes.

  8. Annual report 1988-89: Tata Institute of Fundamental Research

    International Nuclear Information System (INIS)

    Isloor, J.D.

    1989-01-01

    The annual report surveys the work of the Tata Institute of Fundamental Research (TIFR), Bombay, during the fiscal year 1988-89. Most of the research activities are organised and carried out in two schools of the Institute, namely, the School of Mathematics and the School of Physics. In the School of Mathematics, active research is carried out in almost every branch of pure mathematics. The School of Physics is engaged in research activities of both theoretical and experimental nature in high energy physics, astrophysics, cosmic rays, space physics, astronomy, nuclear and atomic physics, condensed matter physics, molecular biology, computer science and communication and microwave engineering. TIFR has a Basic Dental Research Unit which carries out intervention studies on oral cancer and precancerous lesions. Its Homi Bhabha Centre for Science Education (HBCSE) carries out programmes for improvement of science education at all levels in the country. TIFR outstation units are: (1) TIFR Centre at Bangalore which in collaboration with the Indian Institute of Science, Bangalore has a programme in Applications of Mathematics (2) Radio Astronomy Centre, Ooty, (3) Baloon Facility, Hyderabad and (4) National Image Processing Facility, Ooty. The academic and research activities of the schools, new technique and instruments and experimental facilities developed and fabricated by various units of TIFR are briefly described. Faculty and section wise list of staff members is given. Lists of publications by the members and other activities such as colloquia, seminars, conferences etc. are also given. (M.G.B.)

  9. KEK/JAERI Joint Project on high-intensity proton accelerators

    International Nuclear Information System (INIS)

    Nagamiya, Shoji

    2003-01-01

    From JFY01, which started on April 1, 2001, a new accelerator project to provide high-intensity proton beams proceeded into a construction phase. This project is conducted under a cooperation of two institutions, KEK and JAERI. The accelerator complex will provide 1 MW proton beams at 3 GeV and 0.75 MW beams at 50 GeV. The project will be completed within 6 years. In this article I will describe (a) the project itself, (b) sciences to be pursued at this new accelerator complex and (c) the present status and future plans of the project

  10. The Armstrong Institute: An Academic Institute for Patient Safety and Quality Improvement, Research, Training, and Practice.

    Science.gov (United States)

    Pronovost, Peter J; Holzmueller, Christine G; Molello, Nancy E; Paine, Lori; Winner, Laura; Marsteller, Jill A; Berenholtz, Sean M; Aboumatar, Hanan J; Demski, Renee; Armstrong, C Michael

    2015-10-01

    Academic medical centers (AMCs) could advance the science of health care delivery, improve patient safety and quality improvement, and enhance value, but many centers have fragmented efforts with little accountability. Johns Hopkins Medicine, the AMC under which the Johns Hopkins University School of Medicine and the Johns Hopkins Health System are organized, experienced similar challenges, with operational patient safety and quality leadership separate from safety and quality-related research efforts. To unite efforts and establish accountability, the Armstrong Institute for Patient Safety and Quality was created in 2011.The authors describe the development, purpose, governance, function, and challenges of the institute to help other AMCs replicate it and accelerate safety and quality improvement. The purpose is to partner with patients, their loved ones, and all interested parties to end preventable harm, continuously improve patient outcomes and experience, and eliminate waste in health care. A governance structure was created, with care mapped into seven categories, to oversee the quality and safety of all patients treated at a Johns Hopkins Medicine entity. The governance has a Patient Safety and Quality Board Committee that sets strategic goals, and the institute communicates these goals throughout the health system and supports personnel in meeting these goals. The institute is organized into 13 functional councils reflecting their behaviors and purpose. The institute works daily to build the capacity of clinicians trained in safety and quality through established programs, advance improvement science, and implement and evaluate interventions to improve the quality of care and safety of patients.

  11. PROGER - radioactive waste management in Brazilian research institutions

    International Nuclear Information System (INIS)

    Pontedeiro, E.; Ramos, A.C.; Reis e Vaz, S.; Ferreira, R.S.

    1998-01-01

    This article demonstrates the feasibility of a programme, called PROGER, which is aimed at improving the radioactive waste management activities of research institutions in Brazil. PROGER involves the implementation, correction and updating of waste management techniques in those institutions where a waste management system is already being carried out or the introduction and full deployment of such a system in those where a system does not exist. The methodology utilized by the PROGER programme is discussed, and partial results are presented bearing in mind the characteristics and quantities of wastes. (author)

  12. JAERI's activities on photon production data

    International Nuclear Information System (INIS)

    Shibata, Keiichi; Maekawa, Fujio; Niita, Koji

    1996-01-01

    Summarized are activities on photon production data at JAERI. The activities consists of evaluation of photon production data for JENDL Fusion File, benchmark tests of JENDL and FENDL-1 data, and calculation of photon production data in the framework of the Quantum Molecular Dynamics. The capture cross sections of 12 C and 16 O were evaluated for JENDL Fusion File by taking account of the direct radiative capture calculations obtained by A. Mengoni (ENEA). The presently evaluated data are in good agreement with the measurements of Igashira et al. in the keV region, describing the behaviour of p-wave capture which is in proportion to υ. Photon production data on Fe and Ni were updated for JENDL Fusion File by using a statistical-model calculations. According to the results of benchmark tests, the calculations with the updated data reproduce the integral measurements on gamma-ray heating. Benchmark tests of evaluated photon production data have been continued by analyzing the integral experimental performed at OKTAVIAN and FNS. The calculations with JENDL Fusion File are in good agreement with the integral measurements. Preliminary calculation of photon production data in the high energy region has been done in the framework of the Quantum Molecular Dynamics approach. The quasi-deuteron model was used to describe photon absorption in the low energy region. Above pion production threshold, pion production channels were included in the calculation. The neutron-proton bremsstrahlung obtained with the one-boson-exchange model was incorporated into QMD codes. (Abstract only)

  13. The second eddy current testing of zircaloy tube samples from the OECD Halden reactor project at Reactor Fuel Examination Facility, Tokai, JAERI

    International Nuclear Information System (INIS)

    Ohwada, Isao; Nishino, Yasuharu

    1986-07-01

    The Reactor Fuel Examination Facility in Tokai/JAERI (Japan Atomic Energy Research Institute) joined to the second round robin programme on eddy current test of the Halden/IFE. In the programme, two zircaloy tube samples with some artificial defects were provided for measurements. To clarify the locations in axial and azimuthal directions, types and dimensions of the provided artificial defects, measured signals from eddy current test were analysed in comparison with the known defects on the calibration tube. As a result, fourteen defects were determined from the measurements. Then, the location, the type and the relative dimension of them were also revealed. The results of those eddy current test are described in this paper. (author)

  14. Research Institute ITAL. Association EURATOM ITAL. Annual report 1982

    International Nuclear Information System (INIS)

    1983-01-01

    The Research Institute ITAL is one of the institutes of the Division for Agricultural Research of the Dutch Ministry of Agriculture and Fisheries. For certain aspects of its programme it is also a partner in the Association EURATOM-ITAL with the Commission of the European Community. This annual report deals with: molecular genetic methods for plant breeding; biotechnical production of valuable compounds by means of (plant) cell cultures and microorganisms; soil biology including the rhizosphere; radioactive contamination of the environment and its public health risks; the synergistic interaction between radiation and other mutagenic agents; a new approach in malaria control by means of radiation genetic research on insects; genetic sexing in the Mediterranean fruitfly, Ceratitis capitata; food irradiation (activities within the contract of the Dutch Government with the IAEA in Vienna and the FAO in Rome on food irradiation technology for developing countries). (Auth.)

  15. Metrics-based assessments of research: incentives for 'institutional plagiarism'?

    Science.gov (United States)

    Berry, Colin

    2013-06-01

    The issue of plagiarism--claiming credit for work that is not one's own, rightly, continues to cause concern in the academic community. An analysis is presented that shows the effects that may arise from metrics-based assessments of research, when credit for an author's outputs (chiefly publications) is given to an institution that did not support the research but which subsequently employs the author. The incentives for what is termed here "institutional plagiarism" are demonstrated with reference to the UK Research Assessment Exercise in which submitting units of assessment are shown in some instances to derive around twice the credit for papers produced elsewhere by new recruits, compared to papers produced 'in-house'.

  16. Skoda Concern's cooperation with State Machinery Design Research Institute

    International Nuclear Information System (INIS)

    Valchar, J.; Kuhn, L.

    1988-01-01

    The main areas are presented of cooperation between the Skoda Plzen Concern and the State Machinery Design Research Institute in Prague-Bechovice. This is mainly the development of steam turbines, from 50 MW turbines to the present 1000 MW saturated steam turbines designed for nuclear power plants. Main attention is centred on conditions of the boiling crisis in the steam turbine circuit, and its consequences. This study is served by the experimental equipment of the institute and its computer. The cooperation of the two institutions in the field of testing and diagnostic equipment is centred on measuring natural oscillations of turbine blades, the diagnostics of vibrations of steam turbines, the measurement of the humidity of saturated steam, optical measurements of the parameters of saturated steam, ultrasound diagnostics and the measurement of turbine blade deformation caused by hydraulic effects. (Z.M.). 8 figs

  17. Institutional Research and Development: [Annual report], FY 1986

    International Nuclear Information System (INIS)

    Strack, B.

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards

  18. Institutional Research and Development: (Annual report), FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Strack, B. (ed.)

    1987-01-01

    The Institutional Research and Development (IR and D) program was established at the Lawrence Livermore National Laboratory (LLNL) by the Director in October 1984. The IR and D program fosters exploratory work to advance science and technology; disciplinary research to create varied, innovative approaches to selected scientific fields; and long-term research in support of the defense and energy missions at LLNL. Each project in the IR and D program was selected after personal interviews by the Director and his delegates and was deemed to show unusual promise. These projects include research in the following fields: chemistry and materials science, computation, earth sciences, engineering, nuclear chemistry, biotechnology, environmental consequences of nuclear war, geophysics and planetary physics, and supercomputer research and development. A separate section of the report is devoted to research projects receiving individual awards.

  19. Introducing NASA's Solar System Exploration Research Virtual Institute

    Science.gov (United States)

    Pendleton, Yvonne

    The Solar System Exploration Research Virtual Institute (SSERVI) is focused on the Moon, near Earth asteroids, and the moons of Mars. Comprised of competitively selected teams across the U.S., a growing number of international partnerships around the world, and a small central office located at NASA Ames Research Center, the institute advances collaborative research to bridge science and exploration goals. As a virtual institute, SSERVI brings unique skills and collaborative technologies for enhancing collaborative research between geographically disparate teams. SSERVI is jointly funded through the NASA Science Mission Directorate and the NASA Human Exploration and Operations Mission Directorate. Current U.S. teams include: Dr. Jennifer L. Heldmann, NASA Ames Research Center, Moffett Field, CA; Dr. William Farrell, NASA Goddard Space Flight Center, Greenbelt, MD; Prof. Carlé Pieters, Brown University, Providence, RI; Prof. Daniel Britt, University of Central Florida, Orlando, FL; Prof. Timothy Glotch, Stony Brook University, Stony Brook, NY; Dr. Mihaly Horanyi, University of Colorado, Boulder, CO; Dr. Ben Bussey, Johns Hopkins Univ. Applied Physics Laboratory, Laurel, MD; Dr. David A. Kring, Lunar and Planetary Institute, Houston, TX; and Dr. William Bottke, Southwest Research Institute, Boulder, CO. Interested in becoming part of SSERVI? SSERVI Cooperative Agreement Notice (CAN) awards are staggered every 2.5-3yrs, with award periods of five-years per team. SSERVI encourages those who wish to join the institute in the future to engage current teams and international partners regarding potential collaboration, and to participate in focus groups or current team activities now. Joining hand in hand with international partners is a winning strategy for raising the tide of Solar System science around the world. Non-U.S. science organizations can propose to become either Associate or Affiliate members on a no-exchange-of-funds basis. Current international partners

  20. Inhalation Toxicology Research Institute annual report 1987-1988

    International Nuclear Information System (INIS)

    Mauderly, J.L.; Mewhinney, J.A.; Bechtold, W.E.; Sun, J.D.; Coons, T.A.

    1988-12-01

    The mission of the Inhalation Toxicology Research Institute is to investigate the magnitude of human health effects that result from the inhalation of airborne materials at home, in the work place, or in the general environment. Diseases of the respiratory tract are major causes of suffering and death, and many of these diseases are directly related to the materials that people breath. The Institute's research is directed toward obtaining a better understanding of the basic biology of the respiratory tract and the mechanisms by which inhaled materials produce respiratory disease. Special attention is focused on studying the airborne materials released by various energy technologies, as well as those associated with national defense activities. The research uses a wide-ranging, comprehensive array of investigative approaches that are directed toward characterizing the source of the airborne material, following the material through its potential transformation in the air, identifying the mechanisms that govern its inhalation and deposition in the respiratory tract, and determining the fate of these inhaled materials in the body and the health effects they produce. The ultimate objectives are to determine the roles played by inhaled materials in the development of disease processes adn to estimate the risk they pose by inhaled materials in the development of disease processes and to estimate the risk they pose to humans who may be exposed to them. This report contains brief research papers that reflect the scope and recent findings of the Institute's research funded by the U.S. Department of Energy, principally through the Office of Health and Environmental Research. The papers are divided into topical sections. The first section, Characterization of Airborne Materials and Generation of Experimental Exposure Atmospheres, reflects the Institute's capabilities for fundamental aerosol research and the application of that expertise to toxicological studies. The second