WorldWideScience

Sample records for research flight simulator

  1. A Unique Software System For Simulation-to-Flight Research

    Science.gov (United States)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  2. Intelligent Flight Control Simulation Research Program

    National Research Council Canada - National Science Library

    Stolarik, Brian

    2007-01-01

    ...). Under the program, entitled "Intelligent Flight Control Simulation Research Laboratory," a variety of technologies were investigated or developed during the course of the research for AFRL/VAC...

  3. Simulation and experimental research on line throwing rocket with flight

    Directory of Open Access Journals (Sweden)

    Wen-bin Gu

    2014-06-01

    Full Text Available The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basically agreed with the test data, which shows that the flight motion of the line throwing rocket can be predicted by the dynamic model. A theoretical model and guide for the further research on the disturbance of rope and the guidance, flight control of line throwing rocket are provided by the dynamic modeling.

  4. In-flight simulators and fly-by-wirelight demonstrators a historical account of international aeronautical research

    CERN Document Server

    2017-01-01

    This book offers the first complete account of more than sixty years of international research on In-Flight Simulation and related development of electronic and electro-optic flight control system technologies (“Fly-by-Wire” and “Fly-by-Light”). They have provided a versatile and experimental procedure that is of particular importance for verification, optimization, and evaluation of flying qualities and flight safety of manned or unmanned aircraft systems. Extensive coverage is given in the book to both fundamental information related to flight testing and state-of-the-art advances in the design and implementation of electronic and electro-optic flight control systems, which have made In-Flight Simulation possible. Written by experts, the respective chapters clearly show the interdependence between various aeronautical disciplines and in-flight simulation methods. Taken together, they form a truly multidisciplinary book that addresses the needs of not just flight test engineers, but also other aerona...

  5. Literature for flight simulator (motion) requirements research

    Science.gov (United States)

    2010-10-29

    This is the yearly snapshot of the literature examined in the framework of the Federal Aviation Administration/Volpe Center Flight Simulator Human Factors Program and entered in an EndNote database. It describes 1131 documents, 118 more than last y...

  6. Rapidly Re-Configurable Flight Simulator Tools for Crew Vehicle Integration Research and Design

    Science.gov (United States)

    Pritchett, Amy R.

    2002-01-01

    While simulation is a valuable research and design tool, the time and difficulty required to create new simulations (or re-use existing simulations) often limits their application. This report describes the design of the software architecture for the Reconfigurable Flight Simulator (RFS), which provides a robust simulation framework that allows the simulator to fulfill multiple research and development goals. The core of the architecture provides the interface standards for simulation components, registers and initializes components, and handles the communication between simulation components. The simulation components are each a pre-compiled library 'plugin' module. This modularity allows independent development and sharing of individual simulation components. Additional interfaces can be provided through the use of Object Data/Method Extensions (OD/ME). RFS provides a programmable run-time environment for real-time access and manipulation, and has networking capabilities using the High Level Architecture (HLA).

  7. Simulation and experimental research on line throwing rocket with flight

    OpenAIRE

    Wen-bin Gu; Ming Lu; Jian-qing Liu; Qin-xing Dong; Zhen-xiong Wang; Jiang-hai Chen

    2014-01-01

    The finite segment method is used to model the line throwing rocket system. A dynamic model of line throwing rocket with flight motion based on Kane's method is presented by the kinematics description of the system and the consideration of the forces acting on the system. The experiment designed according to the parameters of the dynamic model is made. The simulation and experiment results, such as range, velocity and flight time, are compared and analyzed. The simulation results are basicall...

  8. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  9. Production Support Flight Control Computers: Research Capability for F/A-18 Aircraft at Dryden Flight Research Center

    Science.gov (United States)

    Carter, John F.

    1997-01-01

    NASA Dryden Flight Research Center (DFRC) is working with the United States Navy to complete ground testing and initiate flight testing of a modified set of F/A-18 flight control computers. The Production Support Flight Control Computers (PSFCC) can give any fleet F/A-18 airplane an in-flight, pilot-selectable research control law capability. NASA DFRC can efficiently flight test the PSFCC for the following four reasons: (1) Six F/A-18 chase aircraft are available which could be used with the PSFCC; (2) An F/A-18 processor-in-the-loop simulation exists for validation testing; (3) The expertise has been developed in programming the research processor in the PSFCC; and (4) A well-defined process has been established for clearing flight control research projects for flight. This report presents a functional description of the PSFCC. Descriptions of the NASA DFRC facilities, PSFCC verification and validation process, and planned PSFCC projects are also provided.

  10. Human Factors Topics in Flight Simulation: An Annotated Bibliography

    Science.gov (United States)

    1976-01-01

    A flight simulator study of missile control performance as a function of concurrent workload. AGARD CP-146, 1974. HUMAN PERFORMANCE. CREELMAN , J.A...aircraft flight simulators. Aviation Psychological Research Centre, Western European Association for Aviation Psychology , Brussels, Belgium. 1973...training fighter pilots. AIAA 72-161, 1972. TRAINING. FRISBY, C.B. Field research in flying training. Occupational Psychology , 1947, 21, 24-33

  11. Development of a Free-Flight Simulation Infrastructure

    Science.gov (United States)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  12. Flight code validation simulator

    Science.gov (United States)

    Sims, Brent A.

    1996-05-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer and reads and writes actual hardware sensor locations in which Inertial Measurement Unit data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System in January of 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  13. Development of a Model Following Control Law for Inflight Simulation and Flight Controls Research

    Science.gov (United States)

    Takahashi, Mark; Fletcher, Jay; Aiken, Edwin W. (Technical Monitor)

    1994-01-01

    The U.S. Army and NASA are currently developing the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) at the Ames Research Center. RASCAL, shown in Figure 1, is a UH-60, which is being modified in a phased development program to have a research fly-by-wire flight control system, and an advanced navigation research platform. An important part of the flight controls and handling qualities research on RASCAL will be an FCS design for the aircraft to achieve high bandwidth control responses and disturbance rejection characteristics. Initially, body states will be used as feedbacks, but research into the use of rotor states will also be considered in later stages to maximize agility and maneuverability. In addition to supporting flight controls research, this FCS design will serve as the inflight simulation control law to support basic handling qualities, guidance, and displays research. Research in high bandwidth controls laws is motivated by the desire to improve the handling qualities in aggressive maneuvering and in severely degraded weather conditions. Naturally, these advantages will also improve the quality of the model following, thereby improving the inflight simulation capabilities of the research vehicle. High bandwidth in the control laws provides tighter tracking allowing for higher response bandwidths which can meet handling qualities requirements for aggressive maneuvering. System sensitivity is also reduced preventing variations in the response from the vehicle due to changing flight conditions. In addition, improved gust rejection will result from this reduced sensitivity. The gust rejection coupled with a highly stable system will make more precise maneuvering and pointing possible in severely degraded weather conditions. The difficulty in achieving higher bandwidths from the control laws in the feedback and in the responses arises from the complexity of the models that are needed to produce a satisfactory design. In this case, high

  14. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  15. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Science.gov (United States)

    2010-01-01

    ... (airplane) and flight instructors (simulator). 121.412 Section 121.412 Aeronautics and Space FEDERAL... OPERATIONS Training Program § 121.412 Qualifications: Flight instructors (airplane) and flight instructors (simulator). (a) For the purposes of this section and § 121.414: (1) A flight instructor (airplane) is a...

  16. Functional requirements for the man-vehicle systems research facility. [identifying and correcting human errors during flight simulation

    Science.gov (United States)

    Clement, W. F.; Allen, R. W.; Heffley, R. K.; Jewell, W. F.; Jex, H. R.; Mcruer, D. T.; Schulman, T. M.; Stapleford, R. L.

    1980-01-01

    The NASA Ames Research Center proposed a man-vehicle systems research facility to support flight simulation studies which are needed for identifying and correcting the sources of human error associated with current and future air carrier operations. The organization of research facility is reviewed and functional requirements and related priorities for the facility are recommended based on a review of potentially critical operational scenarios. Requirements are included for the experimenter's simulation control and data acquisition functions, as well as for the visual field, motion, sound, computation, crew station, and intercommunications subsystems. The related issues of functional fidelity and level of simulation are addressed, and specific criteria for quantitative assessment of various aspects of fidelity are offered. Recommendations for facility integration, checkout, and staffing are included.

  17. Review on flight simulators (today and tomorrow); Flight simulatior no genjo to kongo

    Energy Technology Data Exchange (ETDEWEB)

    Komura, T. [Mitsubishi Precision Company Limited, Tokyo (Japan)

    2000-04-05

    This paper presents various flight simulators. A flight simulator is classified into that for R and D on aircraft and that for flight training according to its usage. As an example of the former, the general-purpose flight simulation test facility of National Aerospace Laboratory, Science and Technology Agency is in use for development of the STOL experimental aircraft 'Asuka' and simulation experiments for space development. A civil aircraft simulator simulating the interior of a cockpit, operation feeling of piloting devices, flight performance, dynamic characteristics, an engine system and a hydraulic system like a real aircraft is in wide use for training pilots. A fighter simulator for air force is used for training detection of enemy's aircraft by radar, and missile shooting. An antisubmarine patrol aircraft simulator is used for training detection of submarines by sonic detector and magnetic detector, and torpedo air-launching. For both simulators, real simulation of detection sensors or battle environment is required. (NEDO)

  18. The use of an automated flight test management system in the development of a rapid-prototyping flight research facility

    Science.gov (United States)

    Duke, Eugene L.; Hewett, Marle D.; Brumbaugh, Randal W.; Tartt, David M.; Antoniewicz, Robert F.; Agarwal, Arvind K.

    1988-01-01

    An automated flight test management system (ATMS) and its use to develop a rapid-prototyping flight research facility for artificial intelligence (AI) based flight systems concepts are described. The ATMS provides a flight test engineer with a set of tools that assist in flight planning and simulation. This system will be capable of controlling an aircraft during the flight test by performing closed-loop guidance functions, range management, and maneuver-quality monitoring. The rapid-prototyping flight research facility is being developed at the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) to provide early flight assessment of emerging AI technology. The facility is being developed as one element of the aircraft automation program which focuses on the qualification and validation of embedded real-time AI-based systems.

  19. High performance real-time flight simulation at NASA Langley

    Science.gov (United States)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  20. Pilot Control Behavior Discrepancies Between Real and Simulated Flight Caused by Limited Motion Stimuli

    NARCIS (Netherlands)

    Zaal, P.M.T.

    2011-01-01

    Flight simulators provide a flexible, efficient, and safe environment for research and training at much lower costs than real flight. The ultimate validity of any simulation would be achieved when – for a particular task – human cognitive and psychomotor behavior in the simulator corresponds

  1. Simulation of the Physics of Flight

    Science.gov (United States)

    Lane, W. Brian

    2013-01-01

    Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…

  2. Methodology for Evaluating the Simulator Flight Performance of Pilots

    National Research Council Canada - National Science Library

    Smith, Jennifer

    2004-01-01

    The type of research that investigates operational tasks such as flying an aircraft or flight simulator is extremely useful to the Air Force's operational community because the results apply directly...

  3. The use of vestibular models for design and evaluation of flight simulator motion

    Science.gov (United States)

    Bussolari, Steven R.; Young, Laurence R.; Lee, Alfred T.

    1989-01-01

    Quantitative models for the dynamics of the human vestibular system are applied to the design and evaluation of flight simulator platform motion. An optimal simulator motion control algorithm is generated to minimize the vector difference between perceived spatial orientation estimated in flight and in simulation. The motion controller has been implemented on the Vertical Motion Simulator at NASA Ames Research Center and evaluated experimentally through measurement of pilot performance and subjective rating during VTOL aircraft simulation. In general, pilot performance in a longitudinal tracking task (formation flight) did not appear to be sensitive to variations in platform motion condition as long as motion was present. However, pilot assessment of motion fidelity by means of a rating scale designed for this purpose, were sensitive to motion controller design. Platform motion generated with the optimal motion controller was found to be generally equivalent to that generated by conventional linear crossfeed washout. The vestibular models are used to evaluate the motion fidelity of transport category aircraft (Boeing 727) simulation in a pilot performance and simulator acceptability study at the Man-Vehicle Systems Research Facility at NASA Ames Research Center. Eighteen airline pilots, currently flying B-727, were given a series of flight scenarios in the simulator under various conditions of simulator motion. The scenarios were chosen to reflect the flight maneuvers that these pilots might expect to be given during a routine pilot proficiency check. Pilot performance and subjective rating of simulator fidelity was relatively insensitive to the motion condition, despite large differences in the amplitude of motion provided. This lack of sensitivity may be explained by means of the vestibular models, which predict little difference in the modeled motion sensations of the pilots when different motion conditions are imposed.

  4. Flight research and testing

    Science.gov (United States)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  5. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  6. Adaptive Flight Control Research at NASA

    Science.gov (United States)

    Motter, Mark A.

    2008-01-01

    A broad overview of current adaptive flight control research efforts at NASA is presented, as well as some more detailed discussion of selected specific approaches. The stated objective of the Integrated Resilient Aircraft Control Project, one of NASA s Aviation Safety programs, is to advance the state-of-the-art of adaptive controls as a design option to provide enhanced stability and maneuverability margins for safe landing in the presence of adverse conditions such as actuator or sensor failures. Under this project, a number of adaptive control approaches are being pursued, including neural networks and multiple models. Validation of all the adaptive control approaches will use not only traditional methods such as simulation, wind tunnel testing and manned flight tests, but will be augmented with recently developed capabilities in unmanned flight testing.

  7. Creating a Realistic Weather Environment for Motion-Based Piloted Flight Simulation

    Science.gov (United States)

    Daniels, Taumi S.; Schaffner, Philip R.; Evans, Emory T.; Neece, Robert T.; Young, Steve D.

    2012-01-01

    A flight simulation environment is being enhanced to facilitate experiments that evaluate research prototypes of advanced onboard weather radar, hazard/integrity monitoring (HIM), and integrated alerting and notification (IAN) concepts in adverse weather conditions. The simulation environment uses weather data based on real weather events to support operational scenarios in a terminal area. A simulated atmospheric environment was realized by using numerical weather data sets. These were produced from the High-Resolution Rapid Refresh (HRRR) model hosted and run by the National Oceanic and Atmospheric Administration (NOAA). To align with the planned flight simulation experiment requirements, several HRRR data sets were acquired courtesy of NOAA. These data sets coincided with severe weather events at the Memphis International Airport (MEM) in Memphis, TN. In addition, representative flight tracks for approaches and departures at MEM were generated and used to develop and test simulations of (1) what onboard sensors such as the weather radar would observe; (2) what datalinks of weather information would provide; and (3) what atmospheric conditions the aircraft would experience (e.g. turbulence, winds, and icing). The simulation includes a weather radar display that provides weather and turbulence modes, derived from the modeled weather along the flight track. The radar capabilities and the pilots controls simulate current-generation commercial weather radar systems. Appropriate data-linked weather advisories (e.g., SIGMET) were derived from the HRRR weather models and provided to the pilot consistent with NextGen concepts of use for Aeronautical Information Service (AIS) and Meteorological (MET) data link products. The net result of this simulation development was the creation of an environment that supports investigations of new flight deck information systems, methods for incorporation of better weather information, and pilot interface and operational improvements

  8. Use of high performance networks and supercomputers for real-time flight simulation

    Science.gov (United States)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  9. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    International Nuclear Information System (INIS)

    GREGORY, DANNY LYNN; CAP, JEROME S.; TOGAMI, THOMAS C.; NUSSER, MICHAEL A.; HOLLINGSHEAD, JAMES RONALD

    1999-01-01

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented

  10. Parachute-Payload System Flight Dynamics and Trajectory Simulation

    Directory of Open Access Journals (Sweden)

    Giorgio Guglieri

    2012-01-01

    Full Text Available The work traces a general procedure for the design of a flight simulation tool still representative of the major flight physics of a parachute-payload system along decelerated trajectories. An example of limited complexity simulation models for a payload decelerated by one or more parachutes is given, including details and implementation features usually omitted as the focus of the research in this field is typically on the investigation of mission design issues, rather than addressing general implementation guidelines for the development of a reconfigurable simulation tool. The dynamics of the system are modeled through a simple multibody model that represents the expected behavior of an entry vehicle during the terminal deceleration phase. The simulators are designed according to a comprehensive vision that enforces the simplification of the coupling mechanism between the payload and the parachute, with an adequate level of physical insight still available. The results presented for a realistic case study define the sensitivity of the simulation outputs to the functional complexity of the mathematical model. Far from being an absolute address for the software designer, this paper tries to contribute to the area of interest with some technical considerations and clarifications.

  11. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    Science.gov (United States)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  12. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    Science.gov (United States)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  13. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    Science.gov (United States)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  14. Simulation to Flight Test for a UAV Controls Testbed

    Science.gov (United States)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  15. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    Science.gov (United States)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  16. Anticipation of the landing shock phenomenon in flight simulation

    Science.gov (United States)

    Mcfarland, Richard E.

    1987-01-01

    An aircraft landing may be described as a controlled crash because a runway surface is intercepted. In a simulation model the transition from aerodynamic flight to weight on wheels involves a single computational cycle during which stiff differential equations are activated; with a significant probability these initial conditions are unrealistic. This occurs because of the finite cycle time, during which large restorative forces will accompany unrealistic initial oleo compressions. This problem was recognized a few years ago at Ames Research Center during simulation studies of a supersonic transport. The mathematical model of this vehicle severely taxed computational resources, and required a large cycle time. The ground strike problem was solved by a described technique called anticipation equations. This extensively used technique has not been previously reported. The technique of anticipating a significant event is a useful tool in the general field of discrete flight simulation. For the differential equations representing a landing gear model stiffness, rate of interception and cycle time may combine to produce an unrealistic simulation of the continuum.

  17. Flight Control Laws for NASA's Hyper-X Research Vehicle

    Science.gov (United States)

    Davidson, J.; Lallman, F.; McMinn, J. D.; Martin, J.; Pahle, J.; Stephenson, M.; Selmon, J.; Bose, D.

    1999-01-01

    The goal of the Hyper-X program is to demonstrate and validate technology for design and performance predictions of hypersonic aircraft with an airframe-integrated supersonic-combustion ramjet propulsion system. Accomplishing this goal requires flight demonstration of a hydrogen-fueled scramjet powered hypersonic aircraft. A key enabling technology for this flight demonstration is flight controls. Closed-loop flight control is required to enable a successful stage separation, to achieve and maintain the design condition during the engine test, and to provide a controlled descent. Before the contract award, NASA developed preliminary flight control laws for the Hyper-X to evaluate the feasibility of the proposed scramjet test sequence and descent trajectory. After the contract award, a Boeing/NASA partnership worked to develop the current control laws. This paper presents a description of the Hyper-X Research Vehicle control law architectures with performance and robustness analyses. Assessments of simulated flight trajectories and stability margin analyses demonstrate that these control laws meet the flight test requirements.

  18. Aerodynamic Simulation of Indoor Flight

    Science.gov (United States)

    De Leon, Nelson; De Leon, Matthew N.

    2007-01-01

    We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…

  19. A teaching experience using a flight simulator: Educational Simulation in practice

    Directory of Open Access Journals (Sweden)

    Sergio Ruiz

    2014-09-01

    Full Text Available The use of appropriate Educational Simulation systems (software and hardware for learning purposes may contribute to the application of the “Learning by Doing” (LbD paradigm in classroom, thus helping the students to assimilate the theoretical concepts of a subject and acquire certain pre-defined competencies in a more didactical way. The main objective of this work is to conduct a teaching experience using a flight simulation environment so that the students of Aeronautical Management degree can assume the role of an aircraft pilot, in order to allow the students understanding the basic processes of the air navigation and observe how the new technologies can transform and improve these processes. This is especially helpful in classroom to teach the contents of the Single European Sky ATM Research (SESAR programme, an European project that introduces a new Air Traffic Management (ATM paradigm based on several relevant technological and procedural changes that will affect the entire air transportation system in the short and medium term. After the execution of several activities with a flight simulator in the classroom a short test and a satisfaction survey have been requested to the students in order to assess the teaching experience.

  20. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    , which are all tightly linked to the UAV flight controller hardware and software. The lack of standardization of flight controller architectures and the use of proprietary closed-source flight controllers on many UAV platforms, however, complicates this work: solutions developed for one flight controller...... may be difficult to port to another without substantial extra development and testing. Using open-source flight controllers mitigates some of these challenges and enables other researchers to validate and build upon existing research. This paper presents a survey of the publicly available open...

  1. Design and Testing of Flight Control Laws on the RASCAL Research Helicopter

    Science.gov (United States)

    Frost, Chad R.; Hindson, William S.; Moralez. Ernesto, III; Tucker, George E.; Dryfoos, James B.

    2001-01-01

    Two unique sets of flight control laws were designed, tested and flown on the Army/NASA Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A Black Hawk helicopter. The first set of control laws used a simple rate feedback scheme, intended to facilitate the first flight and subsequent flight qualification of the RASCAL research flight control system. The second set of control laws comprised a more sophisticated model-following architecture. Both sets of flight control laws were developed and tested extensively using desktop-to-flight modeling, analysis, and simulation tools. Flight test data matched the model predicted responses well, providing both evidence and confidence that future flight control development for RASCAL will be efficient and accurate.

  2. 14 CFR 141.41 - Flight simulators, flight training devices, and training aids.

    Science.gov (United States)

    2010-01-01

    ..., and training aids. 141.41 Section 141.41 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... aids. An applicant for a pilot school certificate or a provisional pilot school certificate must show that its flight simulators, flight training devices, training aids, and equipment meet the following...

  3. Flight Tasks and Metrics to Evaluate Laser Eye Protection in Flight Simulators

    Science.gov (United States)

    2017-07-07

    IFR ) IFR Instrument Flight Rules LED Light Emitting Diode LEP Laser Eye Protection MAPP Model Assessing Pilot Performance OD Optical Density...LEP and then use them to assess the impact of wearing LEP in a flight simulator environment. 2 Pending Distribution, A: Approved for public...2005). LEP has the potential to alter distinct characteristics of the visual environment, giving rise to concerns over the impact on flight tasks and

  4. Weapon system simulation in flight (WaSiF)

    Science.gov (United States)

    Bartoldus, Klaus H.

    2005-05-01

    The research and technology demonstration program was co-funded by the Ministries of Defence of five European countries under the framework of the "EUropean Cooperation for the Long term in Defence" (EUCLID) MoU to include Germany, Italy, The Netherlands, Portugal and Turkey with considerable financial contribution from the industrial entities. EADS Military Aircraft Munich has led a team of seven industries and research centers, including Aermacchi of Italy, DutchSpace and NLR of The Netherlands, OGMA and INETI of Portugal and Marmara Research Center of Turkey. The purpose of the project was the design, realization and demonstration of an embedded real time simulation system allowing the combat training of operational aircrew in a virtual air defence scenario and threat environment against computer generated forces in the air and on the ground while flying on a real aircraft. The simulated scenario is focused on air-to-air beyond visual range engagements of fighter aircraft. WaSiF represents one of the first demonstrations of an advanced embedded real time training system onboard a fighter/training aircraft. The system is integrated onboard the MB339CX aircraft. The overall flight test activity covered a wide variety of test conditions for a total of 21 test flights; the operational airborne time of the WaSiF amounted to nearly 18 hours. The demonstration and evaluation were quite positive; the five-nation aircrew was very fond of their first encounter with the virtual world in the military flight training. A common view and approach towards Network Centric Warfare is but emerging. WaSiF in a future networked configuration holds lots of promise to serve the needs of Integrated Air Defence: Common training in a virtual environment.

  5. Numerical simulation of hypersonic flight experiment vehicle

    OpenAIRE

    Yamamoto, Yukimitsu; Yoshioka, Minako; 山本 行光; 吉岡 美菜子

    1994-01-01

    Hypersonic aerodynamic characteristics of Hypersonic FLight EXperiment (HYFLEX vehicle were investigated by numerical simulations using Navier-Stokes CFD (Computational Fluid Dynamics) code of NAL. Numerical results were compared with experimental data obtained at Hypersonic Wind Tunnel at NAL. In order to investigate real flight aerodynamic characteristics. numerical calculations corresponding to the flight conditions suffering from maximum aero thermodynamic heating were also made and the d...

  6. High Altitude Balloon Flight Path Prediction and Site Selection Based On Computer Simulations

    Science.gov (United States)

    Linford, Joel

    2010-10-01

    Interested in the upper atmosphere, Weber State University Physics department has developed a High Altitude Reconnaissance Balloon for Outreach and Research team, also known as HARBOR. HARBOR enables Weber State University to take a variety of measurements from ground level to altitudes as high as 100,000 feet. The flight paths of these balloons can extend as long as 100 miles from the launch zone, making the choice of where and when to fly critical. To ensure the ability to recover the packages in a reasonable amount of time, days and times are carefully selected using computer simulations limiting flight tracks to approximately 40 miles from the launch zone. The computer simulations take atmospheric data collected by National Oceanic and Atmospheric Administration (NOAA) to plot what flights might have looked like in the past, and to predict future flights. Using these simulations a launch zone has been selected in Duchesne Utah, which has hosted eight successful flights over the course of the last three years, all of which have been recovered. Several secondary launch zones in western Wyoming, Southern Idaho, and Northern Utah are also being considered.

  7. Realization of a Desktop Flight Simulation System for Motion-Cueing Studies

    Directory of Open Access Journals (Sweden)

    Berkay Volkaner

    2016-05-01

    Full Text Available Parallel robotic mechanisms are generally used in flight simulators with a motion-cueing algorithm to create an unlimited motion feeling of a simulated medium in a bounded workspace of the simulator. A major problem in flight simulators is that the simulation has an unbounded space and the manipulator has a limited one. Using a washout filter in the motion-cueing algorithm overcomes this. In this study, a low-cost six degrees of freedom (DoF desktop parallel manipulator is used to test a classical motion-cueing algorithm; the algorithm's functionality is confirmed with a Simulink real-time environment. Translational accelerations and angular velocities of the simulated medium obtained from FlightGear flight simulation software are processed through a generated washout filter algorithm and the simulated medium's motion information is transmitted to the desktop parallel robotic mechanism as a set point for each leg. The major issues of this paper are designing a desktop simulation system, controlling the parallel manipulator, communicating between the flight simulation and the platform, designing a motion-cueing algorithm and determining the parameters of the washout filters.

  8. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  9. In-flight simulation of high agility through active control: Taming complexity by design

    Science.gov (United States)

    Padfield, Gareth D.; Bradley, Roy

    1993-01-01

    The motivation for research into helicopter agility stems from the realization that marked improvements relative to current operational types are possible, yet there is a dearth of useful criteria for flying qualities at high performance levels. Several research laboratories are currently investing resources in developing second generation airborne rotorcraft simulators. The UK's focus has been the exploitation of agility through active control technology (ACT); this paper reviews the results of studies conducted to date. The conflict between safety and performance in flight research is highlighted and the various forms of safety net to protect against system failures are described. The role of the safety pilot, and the use of actuator and flight envelope limiting are discussed. It is argued that the deep complexity of a research ACT system can only be tamed through a requirement specification assembled using design principles and cast in an operational simulation form. Work along these lines conducted at DRA is described, including the use of the Jackson System Development method and associated Ada simulation.

  10. Study of Flapping Flight Using Discrete Vortex Method Based Simulations

    Science.gov (United States)

    Devranjan, S.; Jalikop, Shreyas V.; Sreenivas, K. R.

    2013-12-01

    In recent times, research in the area of flapping flight has attracted renewed interest with an endeavor to use this mechanism in Micro Air vehicles (MAVs). For a sustained and high-endurance flight, having larger payload carrying capacity we need to identify a simple and efficient flapping-kinematics. In this paper, we have used flow visualizations and Discrete Vortex Method (DVM) based simulations for the study of flapping flight. Our results highlight that simple flapping kinematics with down-stroke period (tD) shorter than the upstroke period (tU) would produce a sustained lift. We have identified optimal asymmetry ratio (Ar = tD/tU), for which flapping-wings will produce maximum lift and find that introducing optimal wing flexibility will further enhances the lift.

  11. Cost-Effectiveness of Flight Simulators for Military Training. Volume 1. Use and Effectiveness of Flight Simulators

    Science.gov (United States)

    1977-08-01

    Training Division DCS for Personnel LCOL Ralph H. Lauder Aviation Systems Division DCS, RDA CAPT James LeBlanc Aviation Manpower and Training...Since. a commercial flight brings in money to the airlines, their pilots are encouraged to fly up to the limit supported by the market. A military...by 17 percent in FY 1981. Thus, while flight simulators may save money by reducing flying hours, it is also necessary to demonstrate that they are

  12. Pegasus hypersonic flight research

    Science.gov (United States)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  13. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    OpenAIRE

    Eerland, Willem J.; Box, Simon; Sóbester, András

    2017-01-01

    The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of th...

  14. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    Science.gov (United States)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  15. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  16. Advanced flight deck/crew station simulator functional requirements

    Science.gov (United States)

    Wall, R. L.; Tate, J. L.; Moss, M. J.

    1980-01-01

    This report documents a study of flight deck/crew system research facility requirements for investigating issues involved with developing systems, and procedures for interfacing transport aircraft with air traffic control systems planned for 1985 to 2000. Crew system needs of NASA, the U.S. Air Force, and industry were investigated and reported. A matrix of these is included, as are recommended functional requirements and design criteria for simulation facilities in which to conduct this research. Methods of exploiting the commonality and similarity in facilities are identified, and plans for exploiting this in order to reduce implementation costs and allow efficient transfer of experiments from one facility to another are presented.

  17. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    Science.gov (United States)

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  18. Numerical Algorithms for Steady and Unsteady Multi-Disciplinary Simulation of Flight Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A new multidisciplinary software environment ('MUSE') will be developed for the simulation of flight vehicles, drawing on the results of recent research on very fast...

  19. Transient immune impairment after a simulated long-haul flight.

    Science.gov (United States)

    Wilder-Smith, Annelies; Mustafa, Fatima B; Peng, Chung Mien; Earnest, Arul; Koh, David; Lin, Gen; Hossain, Iqbal; MacAry, Paul A

    2012-04-01

    Almost 2 billion people travel aboard commercial airlines every year, with about 20% developing symptoms of the common cold within 1 wk after air travel. We hypothesize that hypobaric hypoxic conditions associated with air travel may contribute to immune impairment. We studied the effects of hypobaric hypoxic conditions during a simulated flight at 8000 ft (2438 m) cruising altitude on immune and stress markers in 52 healthy volunteers (mean age 31) before and on days 1, 4, and 7 after the flight. We did a cohort study using a generalized estimating equation to examine the differences in the repeated measures. Our findings show that the hypobaric hypoxic conditions of a 10-h overnight simulation flight are not associated with severe immune impairment or abnormal IgA or cortisol levels, but with transient impairment in some parameters: we observed a transient decrease in lymphocyte proliferative responses combined with an upregulation in CD69 and CD14 cells and a decrease in HLA-DR in the immediate days following the simulated flight that normalized by day 7 in most instances. These transient immune changes may contribute to an increased susceptibility to respiratory infections commonly seen after long-haul flights.

  20. A general method for closed-loop inverse simulation of helicopter maneuver flight

    Directory of Open Access Journals (Sweden)

    Wei WU

    2017-12-01

    Full Text Available Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provide mathematical descriptions of different kinds of maneuvers. A comprehensive control solver based on the optimal linear quadratic regulator theory is developed to calculate the pilot controls of different maneuvers. The coupling problem between pilot controls and flight control system outputs is well solved by taking the flight control system model into the control solver. Inverse simulation of three different kinds of maneuvers with different agility requirements defined in the ADS-33E-PRF is implemented based on the developed method for a UH-60 helicopter. The results show that the method developed in this paper can solve the closed-loop inverse simulation problem of helicopter maneuver flight with high reliability as well as efficiency. Keywords: Closed-loop, Flying quality, Helicopters, Inverse simulation, Maneuver flight

  1. Use of ILTV Control Laws for LaNCETS Flight Research

    Science.gov (United States)

    Moua, Cheng

    2010-01-01

    A report discusses the Lift and Nozzle Change Effects on Tail Shock (LaNCETS) test to investigate the effects of lift distribution and nozzle-area ratio changes on tail shock strength of an F-15 aircraft. Specific research objectives are to obtain inflight shock strength for multiple combinations of nozzle-area ratio and lift distribution; compare results with preflight prediction tools; and update predictive tools with flight results. The objectives from a stability and control perspective are to ensure adequate aircraft stability for the changes in lift distribution and plume shape, and ensure manageable transient from engaging and disengaging the ILTV research control laws. In order to change the lift distribution and plume shape of the F-15 aircraft, a decade-old Inner Loop Thrust Vectoring (ILTV) research control law was used. Flight envelope expansion was performed for the test configuration and flight conditions prior to the probing test points. The approach for achieving the research objectives was to utilize the unique capabilities of NASA's NF-15B-837 aircraft to allow the adjustment of the nozzle-area ratio and/or canard positions by engaging the ILTV research control laws. The ILTV control laws provide the ability to add trim command biases to canard positions, nozzle area ratios, and thrust vectoring through the use of datasets. Datasets consist of programmed test inputs (PTIs) that define trims to change the nozzle-area ratio and/or canard positions. The trims are applied as increments to the normally commanded positions. A LaNCETS non-linear, six-degrees-of-freedom simulation capable of realtime pilot-in-the-loop, hardware-in-the-loop, and non-real-time batch support was developed and validated. Prior to first flight, extensive simulation analyses were performed to show adequate stability margins with the changes in lift distribution and plume shape. Additionally, engagement/disengagement transient analysis was also performed to show manageable

  2. Flight Test Approach to Adaptive Control Research

    Science.gov (United States)

    Pavlock, Kate Maureen; Less, James L.; Larson, David Nils

    2011-01-01

    The National Aeronautics and Space Administration s Dryden Flight Research Center completed flight testing of adaptive controls research on a full-scale F-18 testbed. The validation of adaptive controls has the potential to enhance safety in the presence of adverse conditions such as structural damage or control surface failures. This paper describes the research interface architecture, risk mitigations, flight test approach and lessons learned of adaptive controls research.

  3. Flight Telerobotic Servicer prototype simulator

    Science.gov (United States)

    Schein, Rob; Krauze, Linda; Hartley, Craig; Dickenson, Alan; Lavecchia, Tom; Working, Bob

    A prototype simulator for the Flight Telerobotic Servicer (FTS) system is described for use in the design development of the FTS, emphasizing the hand controller and user interface. The simulator utilizes a graphics workstation based on rapid prototyping tools for systems analyses of the use of the user interface and the hand controller. Kinematic modeling, manipulator-control algorithms, and communications programs are contained in the software for the simulator. The hardwired FTS panels and operator interface for use on the STS Orbiter are represented graphically, and the simulated controls function as the final FTS system configuration does. The robotic arm moves based on the user hand-controller interface, and the joint angles and other data are given on the prototype of the user interface. This graphics simulation tool provides the means for familiarizing crewmembers with the FTS system operation, displays, and controls.

  4. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  5. Learning control of a flight simulator stick

    NARCIS (Netherlands)

    Velthuis, W.J.R.; de Vries, Theodorus J.A.; Vrielink, Koen H.J.; Wierda, G.J.; Borghuis, André

    1998-01-01

    Aimportant part of a flight simulator is its control loading system, which is the part that emulates the behaviour of an aircraft as experienced by the pilot through the stick. Such a system consists of a model of the aircraft that is to be simulated and a stick that is driven by an electric motor.

  6. Vertical flight training: An overview of training and flight simulator technology with emphasis on rotary-wing requirements

    Science.gov (United States)

    Alderete, Thomas S.; Ascencio-Lee, Carmen E.; Bray, Richard; Carlton, John; Dohme, Jack; Eshow, Michelle M.; Francis, Stephen; Lee, Owen M.; Lintern, Gavan; Lombardo, David A.

    1994-01-01

    The principal purpose of this publication is to provide a broad overview of the technology that is relevant to the design of aviation training systems and of the techniques applicable to the development, use, and evaluation of those systems. The issues addressed in our 11 chapters are, for the most part, those that would be expected to surface in any informed discussion of the major characterizing elements of aviation training systems. Indeed, many of the same facets of vertical-flight training discussed were recognized and, to some extent, dealt with at the 1991 NASA/FAA Helicopter Simulator Workshop. These generic topics are essential to a sound understanding of training and training systems, and they quite properly form the basis of any attempt to systematize the development and evaluation of more effective, more efficient, more productive, and more economical approaches to aircrew training. Individual chapters address the following topics: an overview of the vertical flight industry: the source of training requirements; training and training schools: meeting current requirements; training systems design and development; transfer of training and cost-effectiveness; the military quest for flight training effectiveness; alternative training systems; training device manufacturing; simulator aero model implementation; simulation validation in the frequency domain; cockpit motion in helicopter simulation; and visual space perception in flight simulators.

  7. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  8. A general method for closed-loop inverse simulation of helicopter maneuver flight

    OpenAIRE

    Wei WU

    2017-01-01

    Maneuverability is a key factor to determine whether a helicopter could finish certain flight missions successfully or not. Inverse simulation is commonly used to calculate the pilot controls of a helicopter to complete a certain kind of maneuver flight and to assess its maneuverability. A general method for inverse simulation of maneuver flight for helicopters with the flight control system online is developed in this paper. A general mathematical describing function is established to provid...

  9. Psychophysiological Assessment in Pilots Performing Challenging Simulated and Real Flight Maneuvers.

    Science.gov (United States)

    Johannes, Bernd; Rothe, Stefanie; Gens, André; Westphal, Soeren; Birkenfeld, Katja; Mulder, Edwin; Rittweger, Jörn; Ledderhos, Carla

    2017-09-01

    The objective assessment of psychophysiological arousal during challenging flight maneuvers is of great interest to aerospace medicine, but remains a challenging task. In the study presented here, a vector-methodological approach was used which integrates different psychophysiological variables, yielding an integral arousal index called the Psychophysiological Arousal Value (PAV). The arousal levels of 15 male pilots were assessed during predetermined, well-defined flight maneuvers performed under simulated and real flight conditions. The physiological data, as expected, revealed inter- and intra-individual differences for the various measurement conditions. As indicated by the PAV, air-to-air refueling (AAR) turned out to be the most challenging task. In general, arousal levels were comparable between simulator and real flight conditions. However, a distinct difference was observed when the pilots were divided by instructors into two groups based on their proficiency in AAR with AWACS (AAR-Novices vs. AAR-Professionals). AAR-Novices had on average more than 2000 flight hours on other aircrafts. They showed higher arousal reactions to AAR in real flight (contact: PAV score 8.4 ± 0.37) than under simulator conditions (7.1 ± 0.30), whereas AAR-Professionals did not (8.5 ± 0.46 vs. 8.8 ± 0.80). The psychophysiological arousal value assessment was tested in field measurements, yielding quantifiable arousal differences between proficiency groups of pilots during simulated and real flight conditions. The method used in this study allows an evaluation of the psychophysiological cost during a certain flying performance and thus is possibly a valuable tool for objectively evaluating the actual skill status of pilots.Johannes B, Rothe S, Gens A, Westphal S, Birkenfeld K, Mulder E, Rittweger J, Ledderhos C. Psychophysiological assessment in pilots performing challenging simulated and real flight maneuvers. Aerosp Med Hum Perform. 2017; 88(9):834-840.

  10. Impact of subject related factors and position of flight control stick on acquisition of simulated flying skills using a flight simulator

    Science.gov (United States)

    Cho, Bo-Keun

    Increasing demand on aviation industry calls for more pilots. Thus, pilot training systems and pilot-candidate screening systems are essential for civil and military flying training institutes. Before actual flight training, it is not easy to determine whether a flight trainee will be successful in the training. Due to the high cost of actual flight training, it would be better if there were low cost methods for screening and training candidates prior to the actual flight training. This study intended to determine if subject related factors and flight control stick position have an impact on acquisition of simulated flying skills using a PC-based flight simulator. The experimental model was a factorial design with repeated measures. Sixty-four subjects participated in the experiment and were divided into 8 groups. Experiment consisted of 8 sessions in which performance data, such as heading, altitude and airspeed were collected every 15 seconds. Collected data were analyzed using SAS statistical program. Result of multivariate analysis of variance indicated that the three independent variables: nationality, computer game experience, and flight stick position have significant impact on acquiring simulated flying skill. For nationality, Americans recorded higher scores in general (mean: 81.7) than Koreans (mean: 78.9). The difference in mean scores between Americans and Koreans was 2.8 percent. Regarding computer game experience, the difference between high experience group (82.3) and low experience group (78.3) is significant. For high experience group, American side-stick group recorded the highest (mean: 85.6), and Korean side-stick group (mean: 77.2) scored the lowest. For the low experience group, American center-stick group scored the highest (80.6), and the Korean side-stick group (74.2) scored the lowest points. Therefore, there is a significant difference between high experience group and low experience group. The results also reveal that the center

  11. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations

    Science.gov (United States)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    The rise of innovative unmanned aeronautical systems and the emergence of commercial space activities have resulted in a number of relatively new aerospace organizations that are designing innovative systems and solutions. These organizations use a variety of commercial off-the-shelf and in-house-developed simulation and analysis tools including 6-degree-of-freedom (6-DOF) flight simulation tools. The increased affordability of computing capability has made highfidelity flight simulation practical for all participants. Verification of the tools' equations-of-motion and environment models (e.g., atmosphere, gravitation, and geodesy) is desirable to assure accuracy of results. However, aside from simple textbook examples, minimal verification data exists in open literature for 6-DOF flight simulation problems. This assessment compared multiple solution trajectories to a set of verification check-cases that covered atmospheric and exo-atmospheric (i.e., orbital) flight. Each scenario consisted of predefined flight vehicles, initial conditions, and maneuvers. These scenarios were implemented and executed in a variety of analytical and real-time simulation tools. This tool-set included simulation tools in a variety of programming languages based on modified flat-Earth, round- Earth, and rotating oblate spheroidal Earth geodesy and gravitation models, and independently derived equations-of-motion and propagation techniques. The resulting simulated parameter trajectories were compared by over-plotting and difference-plotting to yield a family of solutions. In total, seven simulation tools were exercised.

  12. UAV Flight Control Based on RTX System Simulation Platform

    Directory of Open Access Journals (Sweden)

    Xiaojun Duan

    2014-03-01

    Full Text Available This paper proposes RTX and Matlab UAV flight control system simulation platform based on the advantages and disadvantages of Windows and real-time system RTX. In the simulation platform, we set the RTW toolbox configuration and modify grt_main.c in order to make simulation platform endowed with online parameter adjustment, fault injection. Meanwhile, we develop the interface of the system simulation platform by CVI, thus it makes effective and has good prospects in application. In order to improve the real-time performance of simulation system, the current computer of real-time simulation mostly use real-time operating system to solve simulation model, as well as dual- framework containing in Host and target machine. The system is complex, high cost, and generally used for the control and half of practical system simulation. For the control system designers, they expect to design control law at a computer with Windows-based environment and conduct real-time simulation. This paper proposes simulation platform for UAV flight control system based on RTX and Matlab for this demand.

  13. A hybrid flight control for a simulated raptor-30 v2 helicopter

    International Nuclear Information System (INIS)

    Khizer, A.N.

    2015-01-01

    This paper presents a hybrid flight control system for a single rotor simulated Raptor-30 V2 helicopter. Hybrid intelligent control system, combination of the conventional and intelligent control methodologies, is applied to small model helicopter. The proposed hybrid control used PID as a traditional control and fuzzy as an intelligent control so as to take the maximum advantage of advanced control theory. The helicopter model used; comes from X-Plane flight simulator and their hybrid flight control system was simulated using MATLAB/SIMULINK in a simulation platform. X-Plane is also used to visualize the performance of this proposed autopilot design. Through a series of numerous experiments, the operation of hybrid control system was investigated. Results verified that the proposed hybrid control has an excellent performance at hovering flight mode. (author)

  14. Simulation and Optimization of Control of Selected Phases of Gyroplane Flight

    Directory of Open Access Journals (Sweden)

    Wienczyslaw Stalewski

    2018-02-01

    Full Text Available Optimization methods are increasingly used to solve problems in aeronautical engineering. Typically, optimization methods are utilized in the design of an aircraft airframe or its structure. The presented study is focused on improvement of aircraft flight control procedures through numerical optimization. The optimization problems concern selected phases of flight of a light gyroplane—a rotorcraft using an unpowered rotor in autorotation to develop lift and an engine-powered propeller to provide thrust. An original methodology of computational simulation of rotorcraft flight was developed and implemented. In this approach the aircraft motion equations are solved step-by-step, simultaneously with the solution of the Unsteady Reynolds-Averaged Navier–Stokes equations, which is conducted to assess aerodynamic forces acting on the aircraft. As a numerical optimization method, the BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm was adapted. The developed methodology was applied to optimize the flight control procedures in selected stages of gyroplane flight in direct proximity to the ground, where proper control of the aircraft is critical to ensure flight safety and performance. The results of conducted computational optimizations proved the qualitative correctness of the developed methodology. The research results can be helpful in the design of easy-to-control gyroplanes and also in the training of pilots for this type of rotorcraft.

  15. Armstrong Flight Research Center Research Technology and Engineering 2017

    Science.gov (United States)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  16. Cardiac arrhythmias during aerobatic flight and its simulation on a centrifuge.

    Science.gov (United States)

    Zawadzka-Bartczak, Ewelina K; Kopka, Lech H

    2011-06-01

    It is well known that accelerations during centrifuge training and during flight can provoke cardiac arrhythmias. Our study was designed to investigate both the similarities and differences between heart rhythm disturbances during flights and centrifuge tests. There were 40 asymptomatic, healthy pilots who performed two training flights and were also tested in a human centrifuge according to a program of rapid onset rate acceleration (ROR) and of centrifuge simulation of the actual acceleration experienced in flight (Simulation). During the flight and centrifuge tests ECG was monitored with the Holter method. ECG was examined for heart rhythm changes and disturbances. During flights, premature ventricular contractions (PVCs) were found in 25% of the subjects, premature supraventricular contractions (PSVCs) and PVCs with bigeminy in 5%, and pairs of PVCs in 2.5% of subjects. During the centrifuge tests, PVCs were experienced by 45% of the subjects, PSVCs and pairs of PVCs by 7.5%, and PVCs with bigeminy by 2.5%. Sinus bradycardia was observed during flights and centrifuge tests in 7.5% of subjects. Comparative evaluation of electrocardiographic records in military pilots during flights and centrifuge tests demonstrated that: 1) there were no clinically significant arrhythmias recorded; and 2) the frequency and kind of heart rhythm disturbances during aerobatic flight and its simulation on a centrifuge were not identical and did not occur repetitively in the same persons during equal phases of the tests.

  17. Flight management research utilizing an oculometer. [pilot scanning behavior during simulated approach and landing

    Science.gov (United States)

    Spady, A. A., Jr.; Kurbjun, M. C.

    1978-01-01

    This paper presents an overview of the flight management work being conducted using NASA Langley's oculometer system. Tests have been conducted in a Boeing 737 simulator to investigate pilot scan behavior during approach and landing for simulated IFR, VFR, motion versus no motion, standard versus advanced displays, and as a function of various runway patterns and symbology. Results of each of these studies are discussed. For example, results indicate that for the IFR approaches a difference in pilot scan strategy was noted for the manual versus coupled (autopilot) conditions. Also, during the final part of the approach when the pilot looks out-of-the-window he fixates on his aim or impact point on the runway and holds this point until flare initiation.

  18. Secondary task for full flight simulation incorporating tasks that commonly cause pilot error: Time estimation

    Science.gov (United States)

    Rosch, E.

    1975-01-01

    The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.

  19. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  20. Cambridge Rocketry Simulator – A Stochastic Six-Degrees-of-Freedom Rocket Flight Simulator

    Directory of Open Access Journals (Sweden)

    Willem J. Eerland

    2017-02-01

    Full Text Available The Cambridge Rocketry Simulator can be used to simulate the flight of unguided rockets for both design and operational applications. The software consists of three parts: The first part is a GUI that enables the user to design a rocket. The second part is a verified and peer-reviewed physics model that simulates the rocket flight. This includes a Monte Carlo wrapper to model the uncertainty in the rocket’s dynamics and the atmospheric conditions. The third part generates visualizations of the resulting trajectories, including nominal performance and uncertainty analysis, e.g. a splash-down region with confidence bounds. The project is available on SourceForge, and is written in Java (GUI, C++ (simulation core, and Python (visualization. While all parts can be executed from the GUI, the three components share information via XML, accommodating modifications, and re-use of individual components.

  1. Flight test techniques for validating simulated nuclear electromagnetic pulse aircraft responses

    Science.gov (United States)

    Winebarger, R. M.; Neely, W. R., Jr.

    1984-01-01

    An attempt has been made to determine the effects of nuclear EM pulses (NEMPs) on aircraft systems, using a highly instrumented NASA F-106B to document the simulated NEMP environment at the Kirtland Air Force Base's Vertically Polarized Dipole test facility. Several test positions were selected so that aircraft orientation relative to the test facility would be the same in flight as when on the stationary dielectric stand, in order to validate the dielectric stand's use in flight configuration simulations. Attention is given to the flight test portions of the documentation program.

  2. ISS Material Science Research Rack HWIL Interface Simulation

    Science.gov (United States)

    Williams, Philip J.; Ballard, Gary H.; Crumbley, Robert T. (Technical Monitor)

    2002-01-01

    In this paper, the first Material Science Research Rack (MSRR-1) hardware-in-the-loop (HWIL) interface simulation is described. Dynamic Concepts developed this HWIL simulation system with funding and management provided by the Flight Software group (ED14) of NASA-MSFC's Avionics Department. The HWIL system has been used both as a flight software development environment and as a software qualification tool. To fulfill these roles, the HWIL simulator accurately models the system dynamics of many MSRR-1 subsystems and emulates most of the internal interface signals. The modeled subsystems include the Experiment Modules, the Thermal Environment Control System, the Vacuum Access System, the Solid State Power Controller Module, and the Active Rack Isolation Systems. The emulated signals reside on three separate MIL-STD-1553B digital communication buses, the ISS Medium Rate Data Link, and several analog controller and sensor signals. To enhance the range of testing, it was necessary to simulate several off-nominal conditions that may occur in the interfacing subsystems.

  3. Realistic 3D Terrain Roaming and Real-Time Flight Simulation

    Science.gov (United States)

    Que, Xiang; Liu, Gang; He, Zhenwen; Qi, Guang

    2014-12-01

    This paper presents an integrate method, which can provide access to current status and the dynamic visible scanning topography, to enhance the interactive during the terrain roaming and real-time flight simulation. A digital elevation model and digital ortho-photo map data integrated algorithm is proposed as the base algorithm for our approach to build a realistic 3D terrain scene. A new technique with help of render to texture and head of display for generating the navigation pane is used. In the flight simulating, in order to eliminate flying "jump", we employs the multidimensional linear interpolation method to adjust the camera parameters dynamically and steadily. Meanwhile, based on the principle of scanning laser imaging, we draw pseudo color figures by scanning topography in different directions according to the real-time flying status. Simulation results demonstrate that the proposed algorithm is prospective for applications and the method can improve the effect and enhance dynamic interaction during the real-time flight.

  4. Documenting the NASA Armstrong Flight Research Center Oblate Earth Simulation Equations of Motion and Integration Algorithm

    Science.gov (United States)

    Clarke, R.; Lintereur, L.; Bahm, C.

    2016-01-01

    A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.

  5. Flight Test Results from the NF-15B Intelligent Flight Control System (IFCS) Project with Adaptation to a Simulated Stabilator Failure

    Science.gov (United States)

    Bosworth, John T.; Williams-Hayes, Peggy S.

    2010-01-01

    Adaptive flight control systems have the potential to be more resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane and subjected to an inflight simulation of a failed (frozen) (unmovable) stabilator. Formation flight handling qualities evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to decouple the roll and pitch response and reestablish good onboard model tracking. Flight evaluation with the simulated stabilator failure and adaptation engaged showed that there was generally improvement in the pitch response; however, a tendency for roll pilot-induced oscillation was experienced. A detailed discussion of the cause of the mixed results is presented.

  6. Health Effects of Airline Cabin Environments in Simulated 8-Hour Flights.

    Science.gov (United States)

    2017-07-01

    Commercial air travel is usually without health incidents. However, there is a view that cabin environments may be detrimental to health, especially flights of 8 h or more. Concerns have been raised about deep vein thrombosis, upper respiratory tract infections, altitude sickness, and toxins from the engines. Passenger cabin simulators were used to achieve a comparative observational study with 8-h flights at pressures equivalent to terrestrial altitudes of ground, 4000, 6000, and 8000 ft. Biomarkers of thrombosis (D-Dimer), inflammation (interleukin-6), and respiratory dysfunction (FEV1) and oxygen saturation (Spo2) were measured, as well as pulse and blood pressure. The wellbeing of the passengers was also monitored. During 36 flights, 1260 healthy subjects [626 women (F) and 634 men (M) (mean age = 43, SD = 16)] were assessed. Additionally, 72 subjects with chronic obstructive pulmonary disease (F = 32, M = 40, mean age = 48, SD = 17) and 74 with heart failure (F = 50, M = 24, mean age = 54, SD = 14) contributed to 11 flights. Additionally, 76 normal controls were observed while engaged in a usual day's work (F = 38, M = 38, mean age = 39, SD = 15). There were no health-significant changes in D-Dimer, interleukin-6, or FEV1. Spo2 varied as expected, with lowest values at 8000 ft and in patients with cardiopulmonary disease. The only differences from the controls were the loss of the normal diurnal variations in interleukin-6 and D-Dimer. This very large, comparative, controlled study provides much reassurance for the traveling public, who use airline flights of up to 8 h. We did not show evidence of the development of venous thrombosis, inflammation, respiratory embarrassment, nor passenger distress. No significant symptoms or adverse effects were reported.Ideal Cabin Environment (ICE) Research Consortium of the European Community 6th Framework Programme. Health effects of airline cabin environments in simulated 8-hour flights. Aerosp Med Hum Perform. 2017; 88(7):651-656.

  7. Piloted simulation tests of propulsion control as backup to loss of primary flight controls for a mid-size jet transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Davis, Gloria; Conley, Joe; Hardy, Gordon; Gibson, Jim; Blake, Matthew; Bryant, Don; Williams, Diane

    1995-01-01

    Failures of aircraft primary flight-control systems to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. , DC-1O crash, B-747 crash, C-5 crash, B-52 crash, and others). Dryden Flight Research Center (DFRC) investigated the use of engine thrust for emergency flight control of several airplanes, including the B-720, Lear 24, F-15, C-402, and B-747. A series of three piloted simulation tests have been conducted at Ames Research Center to investigate propulsion control for safely landing a medium size jet transport which has experienced a total primary flight-control failure. The first series of tests was completed in July 1992 and defined the best interface for the pilot commands to drive the engines. The second series of tests was completed in August 1994 and investigated propulsion controlled aircraft (PCA) display requirements and various command modes. The third series of tests was completed in May 1995 and investigated PCA full-flight envelope capabilities. This report describes the concept of a PCA, discusses pilot controls, displays, and procedures; and presents the results of piloted simulation evaluations of the concept by a cross-section of air transport pilots.

  8. Biologically Inspired Micro-Flight Research

    Science.gov (United States)

    Raney, David L.; Waszak, Martin R.

    2003-01-01

    Natural fliers demonstrate a diverse array of flight capabilities, many of which are poorly understood. NASA has established a research project to explore and exploit flight technologies inspired by biological systems. One part of this project focuses on dynamic modeling and control of micro aerial vehicles that incorporate flexible wing structures inspired by natural fliers such as insects, hummingbirds and bats. With a vast number of potential civil and military applications, micro aerial vehicles represent an emerging sector of the aerospace market. This paper describes an ongoing research activity in which mechanization and control concepts for biologically inspired micro aerial vehicles are being explored. Research activities focusing on a flexible fixed- wing micro aerial vehicle design and a flapping-based micro aerial vehicle concept are presented.

  9. Multi-Vehicle Cooperative Control Research at the NASA Armstrong Flight Research Center, 2000-2014

    Science.gov (United States)

    Hanson, Curt

    2014-01-01

    A brief introductory overview of multi-vehicle cooperative control research conducted at the NASA Armstrong Flight Research Center from 2000 - 2014. Both flight research projects and paper studies are included. Since 2000, AFRC has been almost continuously pursuing research in the areas of formation flight for drag reduction and automated cooperative trajectories. An overview of results is given, including flight experiments done on the FA-18 and with the C-17. Other multi-vehicle cooperative research is discussed, including small UAV swarming projects and automated aerial refueling.

  10. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs.

    Directory of Open Access Journals (Sweden)

    Shiqiu Liu

    2015-12-01

    Full Text Available Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability.

  11. Research and development at the Marshall Space Flight Center Neutral Buoyancy Simulator

    Science.gov (United States)

    Kulpa, Vygantas P.

    1987-01-01

    The Neutral Buoyancy Simulator (NBS), a facility designed to imitate zero-gravity conditions, was used to test the Experimental Assembly of Structures in Extravehicular Activity (EASE) and the Assembly Concept for Construction of Erectable Space Structures (ACCESS). Neutral Buoyancy Simulator applications and operations; early space structure research; development of the EASE/ACCESS experiments; and improvement of NBS simulation are summarized.

  12. Flight simulation program for high altitude long endurance unmanned vehicle; Kokodo mujinki no hiko simulation program

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, H.; Hashidate, M. [National Aerospace Laboratory, Tokyo (Japan)

    1995-11-01

    An altitude of about 20 km has the atmospheric density too dilute for common aircraft, and the air resistance too great for satellites. Attention has been drawn in recent years on a high-altitude long-endurance unmanned vehicle that flies at this altitude for a long period of time to serve as a wave relaying base and perform traffic control. Therefore, a development was made on a flight simulation program to evaluate and discuss the guidance and control laws for the high-altitude unmanned vehicle. Equations of motion were derived for three-dimensional six freedom and three-dimensional three freedom. Aerodynamic characteristics of an unmanned vehicle having a Rectenna wing were estimated, and formulation was made according to the past research results on data of winds that the unmanned vehicle is anticipated to encounter at an altitude of 20 km. Noticing the inside of a horizontal plane, a proposal was given on a guidance law that follows a given path. A flight simulation was carried out to have attained a prospect that the unmanned vehicle may be enclosed in a limited space even if the vehicle is encountered with a relatively strong wind. 18 refs., 20 figs., 1 tab.

  13. FLIGHT SIMULATION IN AIR FORCE TRAINING. A KNOWLEDGE TRANSFER EFICIENCY PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Alexandru GHEORGHIU

    2013-10-01

    Full Text Available For decades the issue of training through simulation has been discussed and studied to show its value and importance in fighter pilot training programs. Besides the fact that simulators are less expensive than a real airplane, and eliminate the operational risks that are present in a real flight they bring a significant contribution to the pilot training by their fidelity and realism that they show in such scenarios as in the reality. To measure the efficiency of training transfer from simulator to the aircraft, performance indicators were defined. The purpose of this article is to define these performance indicators and measurement of training transfer within the flight simulator involvement.

  14. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    Science.gov (United States)

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  15. Intraindividual variability in basic reaction time predicts middle-aged and older pilots' flight simulator performance.

    Science.gov (United States)

    Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome

    2013-07-01

    Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.

  16. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results

    Science.gov (United States)

    Davidson, John B.; Murphy, Patrick C.; Lallman, Frederick J.; Hoffler, Keith D.; Bacon, Barton J.

    1998-01-01

    This report contains a description of a lateral-directional control law designed for the NASA High-Alpha Research Vehicle (HARV). The HARV is a F/A-18 aircraft modified to include a research flight computer, spin chute, and thrust-vectoring in the pitch and yaw axes. Two separate design tools, CRAFT and Pseudo Controls, were integrated to synthesize the lateral-directional control law. This report contains a description of the lateral-directional control law, analyses, and nonlinear simulation (batch and piloted) results. Linear analysis results include closed-loop eigenvalues, stability margins, robustness to changes in various plant parameters, and servo-elastic frequency responses. Step time responses from nonlinear batch simulation are presented and compared to design guidelines. Piloted simulation task scenarios, task guidelines, and pilot subjective ratings for the various maneuvers are discussed. Linear analysis shows that the control law meets the stability margin guidelines and is robust to stability and control parameter changes. Nonlinear batch simulation analysis shows the control law exhibits good performance and meets most of the design guidelines over the entire range of angle-of-attack. This control law (designated NASA-1A) was flight tested during the Summer of 1994 at NASA Dryden Flight Research Center.

  17. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    Science.gov (United States)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  18. Effect of video-game experience and position of flight stick controller on simulated-flight performance.

    Science.gov (United States)

    Cho, Bo-Keun; Aghazadeh, Fereydoun; Al-Qaisi, Saif

    2012-01-01

    The purpose of this study was to determine the effects of video-game experience and flight-stick position on flying performance. The study divided participants into 2 groups; center- and side-stick groups, which were further divided into high and low level of video-game experience subgroups. The experiment consisted of 7 sessions of simulated flying, and in the last session, the flight stick controller was switched to the other position. Flight performance was measured in terms of the deviation of heading, altitude, and airspeed from their respective requirements. Participants with high experience in video games performed significantly better (p increase (0.78 %). However, after switching from a center- to a side-stick controller, performance scores decreased (4.8%).

  19. In-Flight Validation of a Pilot Rating Scale for Evaluating Failure Transients in Electronic Flight Control Systems

    Science.gov (United States)

    Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III

    2006-01-01

    Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.

  20. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    Directory of Open Access Journals (Sweden)

    Yamina BOUGHARI

    2017-06-01

    Full Text Available In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augmentation systems’ handling qualities, and design requirements. Furthermore the number of controllers used to control the aircraft in its flight envelope was optimized using the Linear Fractional Representations features. To validate the controller over the whole aircraft flight envelope, the linear stability, eigenvalue, and handling qualities criteria in addition of the nonlinear analysis criteria were investigated during this research to assess the business aircraft for flight control clearance and certification. The optimized gains provide a very good stability margins as the eigenvalue analysis shows that the aircraft has a high stability, and a very good flying qualities of the linear aircraft models are ensured in its entire flight envelope, its robustness is demonstrated with respect to uncertainties due to its mass and center of gravity variations.

  1. Flight Simulation of ARES in the Mars Environment

    Science.gov (United States)

    Kenney, P. Sean; Croom, Mark A.

    2011-01-01

    A report discusses using the Aerial Regional- scale Environmental Survey (ARES) light airplane as an observation platform on Mars in order to gather data. It would have to survive insertion into the atmosphere, fly long enough to meet science objectives, and provide a stable platform. The feasibility of such a platform was tested using the Langley Standard Real- Time Simulation in C++. The unique features of LaSRS++ are: full, six-degrees- of-freedom flight simulation that can be used to evaluate the performance of the aircraft in the Martian environment; capability of flight analysis from start to finish; support of Monte Carlo analysis of aircraft performance; and accepting initial conditions from POST results for the entry and deployment of the entry body. Starting with a general aviation model, the design was tweaked to maintain a stable aircraft under expected Martian conditions. Outer mold lines were adjusted based on experience with the Martian atmosphere. Flight control was modified from a vertical acceleration control law to an angle-of-attack control law. Navigation was modified from a vertical acceleration control system to an alpha control system. In general, a pattern of starting with simple models with well-understood behaviors was selected and modified during testing.

  2. Fifty Years of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-1996

    Science.gov (United States)

    Fisher, David F.

    1999-01-01

    Titles, authors, report numbers, and abstracts are given for more than 2200 unclassified and unrestricted technical reports and papers published from September 1946 to December 1996 by NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 50 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, and X-31 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, and F-18 Systems Research Aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 233 contractor reports, more than 200 UCLA Flight System Research Center reports and 25 video tapes are included.

  3. New Methodology for Optimal Flight Control using Differential Evolution Algorithms applied on the Cessna Citation X Business Aircraft – Part 2. Validation on Aircraft Research Flight Level D Simulator

    OpenAIRE

    Yamina BOUGHARI; Georges GHAZI; Ruxandra Mihaela BOTEZ; Florian THEEL

    2017-01-01

    In this paper the Cessna Citation X clearance criteria were evaluated for a new Flight Controller. The Flight Control Law were optimized and designed for the Cessna Citation X flight envelope by combining the Deferential Evolution algorithm, the Linear Quadratic Regulator method, and the Proportional Integral controller during a previous research presented in part 1. The optimal controllers were used to reach satisfactory aircraft’s dynamic and safe flight operations with respect to the augme...

  4. A conceptual framework for using Doppler radar acquired atmospheric data for flight simulation

    Science.gov (United States)

    Campbell, W.

    1983-01-01

    A concept is presented which can permit turbulence simulation in the vicinity of microbursts. The method involves a large data base, but should be fast enough for use with flight simulators. The model permits any pilot to simulate any flight maneuver in any aircraft. The model simulates a wind field with three-component mean winds and three-component turbulent gusts, and gust variation over the body of an aircraft so that all aerodynamic loads and moments can be calculated. The time and space variation of mean winds and turbulent intensities associated with a particular atmospheric phenomenon such as a microburst is used in the model. In fact, Doppler radar data such as provided by JAWS is uniquely suited for use with the proposed model. The concept is completely general and is not restricted to microburst studies. Reentry and flight in terrestrial or planetary atmospheres could be realistically simulated if supporting data of sufficient resolution were available.

  5. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    Science.gov (United States)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  6. Piloted Simulator Evaluation Results of Flight Physics Based Stall Recovery Guidance

    Science.gov (United States)

    Lombaerts, Thomas; Schuet, Stefan; Stepanyan, Vahram; Kaneshige, John; Hardy, Gordon; Shish, Kimberlee; Robinson, Peter

    2018-01-01

    In recent studies, it has been observed that loss of control in flight is the most frequent primary cause of accidents. A significant share of accidents in this category can be remedied by upset prevention if possible, and by upset recovery if necessary, in this order of priorities. One of the most important upsets to be recovered from is stall. Recent accidents have shown that a correct stall recovery maneuver remains a big challenge in civil aviation, partly due to a lack of pilot training. A possible strategy to support the flight crew in this demanding context is calculating a recovery guidance signal, and showing this signal in an intuitive way on one of the cockpit displays, for example by means of the flight director. Different methods for calculating the recovery signal, one based on fast model predictive control and another using an energy based approach, have been evaluated in four relevant operational scenarios by experienced commercial as well as test pilots in the Vertical Motion Simulator at NASA Ames Research Center. Evaluation results show that this approach could be able to assist the pilots in executing a correct stall recovery maneuver.

  7. Six Decades of Flight Research: An Annotated Bibliography of Technical Publications of NASA Dryden Flight Research Center, 1946-2006

    Science.gov (United States)

    Fisher, David F.

    2007-01-01

    Titles, authors, report numbers, and abstracts are given for nearly 2900 unclassified and unrestricted technical reports and papers published from September 1946 to December 2006 by the NASA Dryden Flight Research Center and its predecessor organizations. These technical reports and papers describe and give the results of 60 years of flight research performed by the NACA and NASA, from the X-1 and other early X-airplanes, to the X-15, Space Shuttle, X-29 Forward Swept Wing, X-31, and X-43 aircraft. Some of the other research airplanes tested were the D-558, phase 1 and 2; M-2, HL-10 and X-24 lifting bodies; Digital Fly-By-Wire and Supercritical Wing F-8; XB-70; YF-12; AFTI F-111 TACT and MAW; F-15 HiDEC; F-18 High Alpha Research Vehicle, F-18 Systems Research Aircraft and the NASA Landing Systems Research aircraft. The citations of reports and papers are listed in chronological order, with author and aircraft indices. In addition, in the appendices, citations of 270 contractor reports, more than 200 UCLA Flight System Research Center reports, nearly 200 Tech Briefs, 30 Dryden Historical Publications, and over 30 videotapes are included.

  8. Transfer of training from a Full-Flight Simulator vs. a high level flight training device with a dynamic seat

    Science.gov (United States)

    2010-08-02

    This paper summarizes the most recent study conducted by the Federal Administration Administration/Volpe Center Flight Simulator Fidelity Requirements Program. For many smaller airlines, access to qualified simulators is limited due to the availabili...

  9. Women in Flight Research at NASA Dryden Flight Research Center from 1946 to 1995. Number 6; Monographs in Aerospace History

    Science.gov (United States)

    Powers, Sheryll Goecke

    1997-01-01

    This monograph discusses the working and living environment of women involved with flight research at NASA Dryden Flight Research Center during the late 1940s and early 1950s. The women engineers, their work and the airplanes they worked on from 1960 to December 1995 are highlighted. The labor intensive data gathering and analysis procedures and instrumentation used before the age of digital computers are explained by showing and describing typical instrumentation found on the X-series aircraft from the X-1 through the X-15. The data reduction technique used to obtain the Mach number position error curve for the X-1 aircraft and which documents the historic first flight to exceed the speed of sound is described and a Mach number and altitude plot from an X-15 flight is shown.

  10. Flight simulation using a Brain-Computer Interface: A pilot, pilot study.

    Science.gov (United States)

    Kryger, Michael; Wester, Brock; Pohlmeyer, Eric A; Rich, Matthew; John, Brendan; Beaty, James; McLoughlin, Michael; Boninger, Michael; Tyler-Kabara, Elizabeth C

    2017-01-01

    As Brain-Computer Interface (BCI) systems advance for uses such as robotic arm control it is postulated that the control paradigms could apply to other scenarios, such as control of video games, wheelchair movement or even flight. The purpose of this pilot study was to determine whether our BCI system, which involves decoding the signals of two 96-microelectrode arrays implanted into the motor cortex of a subject, could also be used to control an aircraft in a flight simulator environment. The study involved six sessions in which various parameters were modified in order to achieve the best flight control, including plane type, view, control paradigm, gains, and limits. Successful flight was determined qualitatively by evaluating the subject's ability to perform requested maneuvers, maintain flight paths, and avoid control losses such as dives, spins and crashes. By the end of the study, it was found that the subject could successfully control an aircraft. The subject could use both the jet and propeller plane with different views, adopting an intuitive control paradigm. From the subject's perspective, this was one of the most exciting and entertaining experiments she had performed in two years of research. In conclusion, this study provides a proof-of-concept that traditional motor cortex signals combined with a decoding paradigm can be used to control systems besides a robotic arm for which the decoder was developed. Aside from possible functional benefits, it also shows the potential for a new recreational activity for individuals with disabilities who are able to master BCI control. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. UAV Research, Operations, and Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2009-01-01

    This slide presentation reviews some of the projects that have extended NASA Dryden's capabilities in designing, testing, and using Unmanned Aerial Vehicles (UAV's). Some of the UAV's have been for Science and experimental applications, some have been for flight research and demonstration purposes, and some have been small UAV's for other customers.

  12. Flight test operations using an F-106B research airplane modified with a wing leading-edge vortex flap

    Science.gov (United States)

    Dicarlo, Daniel J.; Brown, Philip W.; Hallissy, James B.

    1992-01-01

    Flight tests of an F-106B aircraft equipped with a leading-edge vortex flap, which represented the culmination of a research effort to examine the effectiveness of the flap, were conducted at the NASA Langley Research Center. The purpose of the flight tests was to establish a data base on the use of a wing leading-edge vortex flap as a means to validate the design and analysis methods associated with the development of such a vortical flow-control concept. The overall experiment included: refinements of the design codes for vortex flaps; numerous wind tunnel entries to aid in verifying design codes and determining basic aerodynamic characteristics; design and fabrication of the flaps, structural modifications to the wing tip and leading edges of the test aircraft; development and installation of an aircraft research instrumentation system, including wing and flap surface pressure measurements and selected structural loads measurements; ground-based simulation to assess flying qualities; and finally, flight testing. This paper reviews the operational aspects associated with the flight experiment, which includes a description of modifications to the research airplane, the overall flight test procedures, and problems encountered. Selected research results are also presented to illustrate the accomplishments of the research effort.

  13. Efficient Neural Network Modeling for Flight and Space Dynamics Simulation

    Directory of Open Access Journals (Sweden)

    Ayman Hamdy Kassem

    2011-01-01

    Full Text Available This paper represents an efficient technique for neural network modeling of flight and space dynamics simulation. The technique will free the neural network designer from guessing the size and structure for the required neural network model and will help to minimize the number of neurons. For linear flight/space dynamics systems, the technique can find the network weights and biases directly by solving a system of linear equations without the need for training. Nonlinear flight dynamic systems can be easily modeled by training its linearized models keeping the same network structure. The training is fast, as it uses the linear system knowledge to speed up the training process. The technique is tested on different flight/space dynamic models and showed promising results.

  14. Pitch control margin at high angle of attack - Quantitative requirements (flight test correlation with simulation predictions)

    Science.gov (United States)

    Lackey, J.; Hadfield, C.

    1992-01-01

    Recent mishaps and incidents on Class IV aircraft have shown a need for establishing quantitative longitudinal high angle of attack (AOA) pitch control margin design guidelines for future aircraft. NASA Langley Research Center has conducted a series of simulation tests to define these design guidelines. Flight test results have confirmed the simulation studies in that pilot rating of high AOA nose-down recoveries were based on the short-term response interval in the forms of pitch acceleration and rate.

  15. Validation of the USNTPS simulator for the advanced flight controls design exercise

    OpenAIRE

    Jurta, Daniel S.

    2005-01-01

    This thesis explores the fidelity of the ground based simulator used at USNTPS during the Advanced Flight Controls Design exercise. A Simulink model is developed as a test platform and used to compare the longitudinal flight characteristics of the simulator. The model is also compared to the same characteristics of a Learjet in the approach configuration. The Simulink model is modified with the aim of yielding a better training aid for the students as well as providing a means of comparison b...

  16. An Indispensable Ingredient: Flight Research and Aircraft Design

    Science.gov (United States)

    Gorn, Michael H.

    2003-01-01

    Flight research-the art of flying actual vehicles in the atmosphere in order to collect data about their behavior-has played a historic and decisive role in the design of aircraft. Naturally, wind tunnel experiments, computational fluid dynamics, and mathematical analyses all informed the judgments of the individuals who conceived of new aircraft. But flight research has offered moments of realization found in no other method. Engineer Dale Reed and research pilot Milt Thompson experienced one such epiphany on March 1, 1963, at the National Aeronautics and Space Administration s Dryden Flight Research Center in Edwards, California. On that date, Thompson sat in the cockpit of a small, simple, gumdrop-shaped aircraft known as the M2-F1, lashed by a long towline to a late-model Pontiac Catalina. As the Pontiac raced across Rogers Dry Lake, it eventually gained enough speed to make the M2-F1 airborne. Thompson braced himself for the world s first flight in a vehicle of its kind, called a lifting body because of its high lift-to-drag ratio. Reed later recounted what he saw:

  17. In-Flight Sleep of Flight Crew During a 7-hour Rest Break: Implications for Research and Flight Safety

    Science.gov (United States)

    Signal, T. Leigh; Gander, Philippa H.; van den Berg, Margo J.; Graeber, R. Curtis

    2013-01-01

    Study Objectives: To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Design: Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Setting: Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Participants: Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). Interventions: N/A. Measurements and Results: Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. Conclusions: This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated. Citation: Signal TL; Gander PH; van den Berg MJ; Graeber RC. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety. SLEEP 2013;36(1):109–115. PMID:23288977

  18. Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...

  19. The Propulsive-Only Flight Control Problem

    Science.gov (United States)

    Blezad, Daniel J.

    1996-01-01

    Attitude control of aircraft using only the throttles is investigated. The long time constants of both the engines and of the aircraft dynamics, together with the coupling between longitudinal and lateral aircraft modes make piloted flight with failed control surfaces hazardous, especially when attempting to land. This research documents the results of in-flight operation using simulated failed flight controls and ground simulations of piloted propulsive-only control to touchdown. Augmentation control laws to assist the pilot are described using both optimal control and classical feedback methods. Piloted simulation using augmentation shows that simple and effective augmented control can be achieved in a wide variety of failed configurations.

  20. Hyper-X Research Vehicle - Artist Concept in Flight

    Science.gov (United States)

    1997-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  1. Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations Using MATLAB (R)

    Science.gov (United States)

    Headrick, R. D.; Rowe, J. N.

    1996-01-01

    This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO) mission. SOHO was launched on December 2, 1995, and the predictions of the simulation were verified with the flight data. This study used a commercial off the shelf product MATLAB(tm) to do the following: Develop procedures for computing the parasitic torques for orbital maneuvers; Simulate onboard attitude control of roll, pitch, and yaw during orbital maneuvers; Develop procedures for predicting firing time for both on- and off-modulated thrusters during orbital maneuvers; Investigate the use of feed forward or pre-bias torques to reduce the attitude handoff during orbit maneuvers - in particular, determine how to use the flight data to improve the feed forward torque estimates for use on future maneuvers. The study verified the stability of the attitude control during orbital maneuvers and the proposed use of feed forward torques to compensate for the attitude handoff. Comparison of the simulations with flight data showed: Parasitic torques provided a good estimate of the on- and off-modulation for attitude control; The feed forward torque compensation scheme worked well to reduce attitude handoff during the orbital maneuvers. The work has been extended to prototype calibration of thrusters from observed firing time and observed reaction wheel speed changes.

  2. STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS

    Science.gov (United States)

    1988-01-01

    On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.

  3. X-36 Tailless Fighter Agility Research Aircraft in flight

    Science.gov (United States)

    1997-01-01

    The lack of a vertical tail on the X-36 technology demonstrator is evident as the remotely piloted aircraft flies a low-altitude research flight above Rogers Dry Lake at Edwards Air Force Base in the California desert on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three

  4. Dynamic Flight Simulation Utilizing High Fidelity CFD-Based Nonlinear Reduced Order Model, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nonlinear Dynamic Flight Simulation (NL-DFS) system will be developed in the Phase II project by combining the classical nonlinear rigid-body flight dynamics...

  5. A Debris Backwards Flow Simulation System for Malaysia Airlines Flight 370

    OpenAIRE

    Eichhorn, Mike; Haertel, Alexander

    2017-01-01

    This paper presents a system based on a Two-Way Particle-Tracking Model to analyze possible crash positions of flight MH370. The particle simulator includes a simple flow simulation of the debris based on a Lagrangian approach and a module to extract appropriated ocean current data from netCDF files. The influence of wind, waves, immersion depth and hydrodynamic behavior are not considered in the simulation.

  6. Multimodal Displays for Target Localization in a Flight Test

    National Research Council Canada - National Science Library

    Tannen, Robert

    2001-01-01

    ... Synthesized Immersion Research Environment (SIRE) facility. Twelve pilots with a mean of 2652 flight hours performed a simulated flight task in which they were instructed to maintain a prescribed flight path, air speed, and altitude...

  7. Evaluation of Game-Based Visualization Tools for Military Flight Simulation

    Science.gov (United States)

    2014-02-01

    accepted that game-based flight simulators cannot approach the complexity and realism of the high fidelity avionics simulations employed in...modern Air Force training systems. However, low cost Commercial Off the Shelf (COTS) gaming technology is rapidly approaching many of the...pitch, and yaw) then converts this position to WGS84 geocentric coordinates to conform to DIS standards prior to broadcast. The position data of

  8. Do the design concepts used for the space flight hardware directly affect cell structure and/or cell function ground based simulations

    Science.gov (United States)

    Chapman, David K.

    1989-01-01

    The use of clinostats and centrifuges to explore the hypogravity range between zero and 1 g is described. Different types of clinostat configurations and clinostat-centrifuge combinations are compared. Some examples selected from the literature and current research in gravitational physiology are presented to show plant responses in the simulated hypogravity region of the g-parameter (0 is greater than g is greater than 1). The validation of clinostat simulation is discussed. Examples in which flight data can be compared to clinostat data are presented. The data from 3 different laboratories using 3 different plant species indicate that clinostat simulation in some cases were qualitatively similar to flight data, but that in all cases were quantitatively different. The need to conduct additional tests in weightlessness is emphasized.

  9. Understanding Crew Decision-Making in the Presence of Complexity: A Flight Simulation Experiment

    Science.gov (United States)

    Young, Steven D.; Daniels, Taumi S.; Evans, Emory; deHaag, Maarten Uijt; Duan, Pengfei

    2013-01-01

    Crew decision making and response have long been leading causal and contributing factors associated with aircraft accidents. Further, it is anticipated that future aircraft and operational environments will increase exposure to risks related to these factors if proactive steps are not taken to account for ever-increasing complexity. A flight simulation study was designed to collect data to help in understanding how complexity can, or may, be manifest. More specifically, an experimental apparatus was constructed that allowed for manipulation of information complexity and uncertainty, while also manipulating operational complexity and uncertainty. Through these manipulations, and the aid of experienced airline pilots, several issues have been discovered, related most prominently to the influence of information content, quality, and management. Flight crews were immersed in an environment that included new operational complexities suggested for the future air transportation system as well as new technological complexities (e.g. electronic flight bags, expanded data link services, synthetic and enhanced vision systems, and interval management automation). In addition, a set of off-nominal situations were emulated. These included, for example, adverse weather conditions, traffic deviations, equipment failures, poor data quality, communication errors, and unexpected clearances, or changes to flight plans. Each situation was based on one or more reference events from past accidents or incidents, or on a similar case that had been used in previous developmental tests or studies. Over the course of the study, 10 twopilot airline crews participated, completing over 230 flights. Each flight consisted of an approach beginning at 10,000 ft. Based on the recorded data and pilot and research observations, preliminary results are presented regarding decision-making issues in the presence of the operational and technological complexities encountered during the flights.

  10. Math modeling for helicopter simulation of low speed, low altitude and steeply descending flight

    Science.gov (United States)

    Sheridan, P. F.; Robinson, C.; Shaw, J.; White, F.

    1982-01-01

    A math model was formulated to represent some of the aerodynamic effects of low speed, low altitude, and steeply descending flight. The formulation is intended to be consistent with the single rotor real time simulation model at NASA Ames Research Center. The effect of low speed, low altitude flight on main rotor downwash was obtained by assuming a uniform plus first harmonic inflow model and then by using wind tunnel data in the form of hub loads to solve for the inflow coefficients. The result was a set of tables for steady and first harmonic inflow coefficients as functions of ground proximity, angle of attack, and airspeed. The aerodynamics associated with steep descending flight in the vortex ring state were modeled by replacing the steady induced downwash derived from momentum theory with an experimentally derived value and by including a thrust fluctuations effect due to vortex shedding. Tables of the induced downwash and the magnitude of the thrust fluctuations were created as functions of angle of attack and airspeed.

  11. Research on computer aided testing of pilot response to critical in-flight events

    Science.gov (United States)

    Giffin, W. C.; Rockwell, T. H.; Smith, P. J.

    1984-01-01

    Experiments on pilot decision making are described. The development of models of pilot decision making in critical in flight events (CIFE) are emphasized. The following tests are reported on the development of: (1) a frame system representation describing how pilots use their knowledge in a fault diagnosis task; (2) assessment of script norms, distance measures, and Markov models developed from computer aided testing (CAT) data; and (3) performance ranking of subject data. It is demonstrated that interactive computer aided testing either by touch CRT's or personal computers is a useful research and training device for measuring pilot information management in diagnosing system failures in simulated flight situations. Performance is dictated by knowledge of aircraft sybsystems, initial pilot structuring of the failure symptoms and efficient testing of plausible causal hypotheses.

  12. On the simulation of annihilation process of positrons in flight

    International Nuclear Information System (INIS)

    Dobrynin, Yu.L.

    1988-01-01

    The process of annihilation (AN) of positrons with the energy lower than 50 MeV in flight is sequentially considered.Formulae and data tables necessary for calculating probabilities and kinematics of AN process are presented in a suitable for computerized simulation algorithmic form

  13. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  14. Fully automatic guidance and control for rotorcraft nap-of-the-Earth flight following planned profiles. Volume 1: Real-time piloted simulation

    Science.gov (United States)

    Clement, Warren F.; Gorder, Peter J.; Jewell, Wayne F.

    1991-01-01

    Developing a single-pilot, all-weather nap-of-the-earth (NOE) capability requires fully automatic NOE (ANOE) navigation and flight control. Innovative guidance and control concepts are investigated in a four-fold research effort that: (1) organizes the on-board computer-based storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan; (2) defines a class of automatic anticipative pursuit guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles; (3) automates a decision-making process for unexpected obstacle avoidance; and (4) provides several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the forehand knowledge of the recorded environment (terrain, cultural features, threats, and targets), which is then used to determine an appropriate evasive maneuver if a nonconformity of the sensed and recorded environments is observed. This four-fold research effort was evaluated in both fixed-based and moving-based real-time piloted simulations, thereby, providing a practical demonstration for evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and re-engagement of the automatic system. Volume one describes the major components of the guidance and control laws as well as the results of the piloted simulations. Volume two describes the complete mathematical model of the fully automatic guidance system for rotorcraft NOE flight following planned flight profiles.

  15. Oblique-wing research airplane motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mc Neill, Walter E.; Maine, Trindel A.

    1988-01-01

    A large piloted vertical motion simulator was used to assess the performance of a preliminary decoupling control law for an early version of the F-8 oblique wing research demonstrator airplane. Evaluations were performed for five discrete flight conditions, ranging from low-altitude subsonic Mach numbers to moderate-altitude supersonic Mach numbers. Asymmetric sideforce as a function of angle of attack was found to be the primary cause of both the lateral acceleration noted in pitch and the tendency to roll into left turns and out of right turns. The flight control system was shown to be effective in generally decoupling the airplane and reducing the lateral acceleration in pitch maneuvers.

  16. A Discrete-Time Chattering Free Sliding Mode Control with Multirate Sampling Method for Flight Simulator

    Directory of Open Access Journals (Sweden)

    Yunjie Wu

    2013-01-01

    Full Text Available In order to improve the tracking accuracy of flight simulator and expend its frequency response, a multirate-sampling-method-based discrete-time chattering free sliding mode control is developed and imported into the systems. By constructing the multirate sampling sliding mode controller, the flight simulator can perfectly track a given reference signal with an arbitrarily small dynamic tracking error, and the problems caused by a contradiction of reference signal period and control period in traditional design method can be eliminated. It is proved by theoretical analysis that the extremely high dynamic tracking precision can be obtained. Meanwhile, the robustness is guaranteed by sliding mode control even though there are modeling mismatch, external disturbances and measure noise. The validity of the proposed method is confirmed by experiments on flight simulator.

  17. Development of a flight simulator for the control of plasma discharges

    Energy Technology Data Exchange (ETDEWEB)

    Ravenel, N.; Artaud, J.F.; Bremond, S.; Guillerminet, B.; Huynh, P.; Moreau, P.; Signoret, J. [CEA Cadarache, IRFM, 13 - Saint-Paul-lez-Durance (France)

    2009-07-01

    Over the years, feedback controls in fusion experiments become more and more crucial both for increasing performance, stability and ensuring machine protection. Advanced controls, such as current profile control, have to deal with nonlinear, complex physical processes that can hardly be addressed by 'trial and error' methods. Such issues highlight the necessity to build new tools based on plasma discharge flight simulator for the development, test and qualification of advanced control algorithms. A project aiming at developing such tools has started last year at Cea. A part of the project consists in the development of a flight simulator that will be integrated to the present Real Time Control and Acquisition System. Under the experimental program, it will facilitate the development and the implementation of new advanced controllers in the control units. The flight simulator will be based on the European Integrated Tokamak Modelling (ITM) simulation platform. Thus, it will benefit from the development made by the task force and it will be able to offer a development platform for the new controllers of present day European tokamaks and future machine. This paper will address the architecture of the project focussing on the following items: -) Development of a 'high level' interface to build plasma scenarios as a set in sequence; -) Interface of the Tore Supra data and parameters within the ITM data structure; -) Integration of the developments under the ITM simulation platform (Kepler) using Xcos software (produced by the Scilab Consortium) functionalities such as the automatic code generation for the implementation of the controllers; -) Modification of the present control unit software towards modular units in order to facilitate control algorithm development. This document is composed of an abstract followed by the presentation transparencies. (authors)

  18. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry James; Haering, Ed; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of NASAs ongoing effort to bring supersonic commercial travel to the public, NASA Dryden Flight Research Center and NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response. Such tests will go towards building a dataset that governing agencies like the Federal Aviation Administration and International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. Until WSPR, there had never been an effort that studied the response of people in their own homes and performing daily activities to non-traditional, low sonic booms.WSPR was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle. Other partners included Gulfstream Aerospace Corporation, Pennsylvania State University, Tetra Tech, and Fidell Associates, Inc.A major objective of the effort included exposing a community with the sonic boom magnitudes and occurrences expected in high-air traffic regions with a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data was collected using multiple survey methods. The research focused on essential elements of community response testing including subject recruitment, survey methods, instrumentation systems, flight planning and operations, and data analysis methods.This paper focuses on NASAs role in the efforts

  19. Vertical Axis Rotational Motion Cues in Hovering Flight Simulation

    Science.gov (United States)

    Schroeder, Jeffrey A.; Johnson, Walter W.; Showman, Robert D. (Technical Monitor)

    1994-01-01

    A previous study that examined how yaw motion affected a pilot's ability to perform realistic hovering flight tasks indicated that any amount of pure yaw motion had little-to-no effect on pilot performance or opinion. In that experiment, pilots were located at the vehicle's center of rotation; thus lateral or longitudinal accelerations were absent. The purpose of the new study described here was to investigate further these unanticipated results for additional flight tasks, but with the introduction of linear accelerations associated with yaw rotations when the pilot is not at the center of rotation. The question of whether a yaw motion degree-of-freedom is necessary or not is important to government regulators who specify what simulator motions are necessary according to prescribed levels of simulator sophistication. Currently, specifies two levels of motion sophistication for flight simulators: full 6-degree-of-freedom and 3-degree-of-freedom. For the less sophisticated simulator, the assumed three degrees of freedom are pitch, roll, and heave. If other degrees of freedom are selected, which are different f rom these three, they must be qualified on a case-by-case basis. Picking the assumed three axes is reasonable and based upon experience, but little empirical data are available to support the selection of critical axes. Thus, the research described here is aimed at answering this question. The yaw and lateral degrees of freedom were selected to be examined first, and maneuvers were defined to uncouple these motions from changes in the gravity vector with respect to the pilot. This approach simplifies the problem to be examined. For this experiment, the NASA Ames Vertical Motion Simulator was used in a comprehensive investigation. The math model was an AH-64 Apache in hover, which was identified from flight test data and had previously been validated by several AH-64 pilots. The pilot's head was located 4.5 ft in front of the vehicle center of gravity, which is

  20. Further Development of Verification Check-Cases for Six- Degree-of-Freedom Flight Vehicle Simulations

    Science.gov (United States)

    Jackson, E. Bruce; Madden, Michael M.; Shelton, Robert; Jackson, A. A.; Castro, Manuel P.; Noble, Deleena M.; Zimmerman, Curtis J.; Shidner, Jeremy D.; White, Joseph P.; Dutta, Doumyo; hide

    2015-01-01

    This follow-on paper describes the principal methods of implementing, and documents the results of exercising, a set of six-degree-of-freedom rigid-body equations of motion and planetary geodetic, gravitation and atmospheric models for simple vehicles in a variety of endo- and exo-atmospheric conditions with various NASA, and one popular open-source, engineering simulation tools. This effort is intended to provide an additional means of verification of flight simulations. The models used in this comparison, as well as the resulting time-history trajectory data, are available electronically for persons and organizations wishing to compare their flight simulation implementations of the same models.

  1. Three axis electronic flight motion simulator real time control system design and implementation.

    Science.gov (United States)

    Gao, Zhiyuan; Miao, Zhonghua; Wang, Xuyong; Wang, Xiaohua

    2014-12-01

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  2. Three axis electronic flight motion simulator real time control system design and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiyuan; Miao, Zhonghua, E-mail: zhonghua-miao@163.com; Wang, Xiaohua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200072 (China); Wang, Xuyong [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-12-15

    A three axis electronic flight motion simulator is reported in this paper including the modelling, the controller design as well as the hardware implementation. This flight motion simulator could be used for inertial navigation test and high precision inertial navigation system with good dynamic and static performances. A real time control system is designed, several control system implementation problems were solved including time unification with parallel port interrupt, high speed finding-zero method of rotary inductosyn, zero-crossing management with continuous rotary, etc. Tests were carried out to show the effectiveness of the proposed real time control system.

  3. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    Science.gov (United States)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  4. Recycling Flight Hardware Components and Systems to Reduce Next Generation Research Costs

    Science.gov (United States)

    Turner, Wlat

    2011-01-01

    With the recent 'new direction' put forth by President Obama identifying NASA's new focus in research rather than continuing on a path to return to the Moon and Mars, the focus of work at Kennedy Space Center (KSC) may be changing dramatically. Research opportunities within the micro-gravity community potentially stands at the threshold of resurgence when the new direction of the agency takes hold for the next generation of experimenters. This presentation defines a strategy for recycling flight experiment components or part numbers, in order to reduce research project costs, not just in component selection and fabrication, but in expediting qualification of hardware for flight. A key component of the strategy is effective communication of relevant flight hardware information and available flight hardware components to researchers, with the goal of 'short circuiting' the design process for flight experiments

  5. Comparison of in-flight and ground-based simulator derived flying qualities and pilot performance for approach and landing tasks

    Science.gov (United States)

    Grantham, William D.; Williams, Robert H.

    1987-01-01

    For the case of an approach-and-landing piloting task emphasizing response to the landing flare, pilot opinion and performance parameters derived from jet transport aircraft six-degree-of-freedom ground-based and in-flight simulators were compared in order to derive data for the flight-controls/flying-qualities engineers. The data thus obtained indicate that ground simulation results tend to be conservative, and that the effect of control sensitivity is more pronounced for ground simulation. The pilot also has a greater tendency to generate pilot-induced oscillation in ground-based simulation than in flight.

  6. A flight simulator control system using electric torque motors

    Science.gov (United States)

    Musick, R. O.; Wagner, C. A.

    1975-01-01

    Control systems are required in flight simulators to provide representative stick and rudder pedal characteristics. A system has been developed that uses electric dc torque motors instead of the more common hydraulic actuators. The torque motor system overcomes certain disadvantages of hydraulic systems, such as high cost, high power consumption, noise, oil leaks, and safety problems. A description of the torque motor system is presented, including both electrical and mechanical design as well as performance characteristics. The system develops forces sufficiently high for most simulations, and is physically small and light enough to be used in most motion-base cockpits.

  7. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    Science.gov (United States)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  8. Digital virtual flight testing and evaluation method for flight characteristics airworthiness compliance of civil aircraft based on HQRM

    Directory of Open Access Journals (Sweden)

    Fan Liu

    2015-02-01

    Full Text Available In order to incorporate airworthiness requirements for flight characteristics into the entire development cycle of electronic flight control system (EFCS equipped civil aircraft, digital virtual flight testing and evaluation method based on handling qualities rating method (HQRM is proposed. First, according to HQRM, flight characteristics airworthiness requirements of civil aircraft in EFCS failure states are determined. On this basis, digital virtual flight testing model, comprising flight task digitized model, pilot controlling model, aircraft motion and atmospheric turbulence model, is used to simulate the realistic process of a pilot controlling an airplane to perform assigned flight tasks. According to the simulation results, flight characteristics airworthiness compliance of the airplane can be evaluated relying on the relevant regulations for handling qualities (HQ rating. Finally, this method is applied to a type of passenger airplane in a typical EFCS failure state, and preliminary conclusions concerning airworthiness compliance are derived quickly. The research results of this manuscript can provide important theoretical reference for EFCS design and actual airworthiness compliance verification of civil aircraft.

  9. State-dependent sensorimotor processing: gaze and posture stability during simulated flight in birds.

    Science.gov (United States)

    McArthur, Kimberly L; Dickman, J David

    2011-04-01

    Vestibular responses play an important role in maintaining gaze and posture stability during rotational motion. Previous studies suggest that these responses are state dependent, their expression varying with the environmental and locomotor conditions of the animal. In this study, we simulated an ethologically relevant state in the laboratory to study state-dependent vestibular responses in birds. We used frontal airflow to simulate gliding flight and measured pigeons' eye, head, and tail responses to rotational motion in darkness, under both head-fixed and head-free conditions. We show that both eye and head response gains are significantly higher during flight, thus enhancing gaze and head-in-space stability. We also characterize state-specific tail responses to pitch and roll rotation that would help to maintain body-in-space orientation during flight. These results demonstrate that vestibular sensorimotor processing is not fixed but depends instead on the animal's behavioral state.

  10. Eclipse takeoff and flight

    Science.gov (United States)

    1998-01-01

    made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes. The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable launch vehicles, in particular to gain experience towing delta-wing aircraft having high wing loading, and in general to demonstrate various operational procedures such as ground processing and abort scenarios. The first successful

  11. The Rufous Hummingbird in hovering flight -- full-body 3D immersed boundary simulation

    Science.gov (United States)

    Ferreira de Sousa, Paulo; Luo, Haoxiang; Bocanegra Evans, Humberto

    2009-11-01

    Hummingbirds are an interesting case study for the development of micro-air vehicles since they combine the high flight stability of insects with the low metabolic power per unit of body mass of bats, during hovering flight. In this study, simulations of a full-body hummingbird in hovering flight were performed at a Reynolds number around 3600. The simulations employ a versatile sharp-interface immersed boundary method recently enhanced at our lab that can treat thin membranes and solid bodies alike. Implemented on a Cartesian mesh, the numerical method allows us to capture the vortex dynamics of the wake accurately and efficiently. The whole-body simulation will allow us to clearly identify the three general patterns of flow velocity around the body of the hummingbird referred in Altshuler et al. (Exp Fluids 46 (5), 2009). One focus of the current study is to understand the interaction between the wakes of the two wings at the end of the upstroke, and how the tail actively defects the flow to contribute to pitch stability. Another focus of the study will be to identify the pair of unconnected loops underneath each wing.

  12. MD-11 PCA - Research flight team egress

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 has parked on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. Coming down the steps from the aircraft are Gordon Fullerton (in front), followed by Bill Burcham, Propulsion Controlled Aircraft (PCA) project engineer at Dryden; NASA Dryden controls engineer John Burken; John Feather of McDonnell Douglas; and Drew Pappas, McDonnell Douglas' project manager for PCA.

  13. Flight Dynamic Simulation of Fighter In the Asymmetric External Store Release Process

    Science.gov (United States)

    Safi’i, Imam; Arifianto, Ony; Nurohman, Chandra

    2018-04-01

    In the fighter design, it is important to evaluate and analyze the flight dynamic of the aircraft earlier in the development process. One of the case is the dynamics of external store release process. A simulation tool can be used to analyze the fighter/external store system’s dynamics in the preliminary design stage. This paper reports the flight dynamics of Jet Fighter Experiment (JF-1 E) in asymmetric Advance Medium Range Air to Air Missile (AMRAAM) release process through simulations. The JF-1 E and AIM 120 AMRAAAM models are built by using Advanced Aircraft Analysis (AAA) and Missile Datcom software. By using these softwares, the aerodynamic stability and control derivatives can be obtained and used to model the dynamic characteristic of the fighter and the external store. The dynamic system is modeled by using MATLAB/Simulink software. By using this software, both the fighter/external store integration and the external store release process is simulated, and the dynamic of the system can be analyzed.

  14. Dynamic registration of an optical see-through HMD into a wide field-of-view rotorcraft flight simulation environment

    Science.gov (United States)

    Viertler, Franz; Hajek, Manfred

    2015-05-01

    To overcome the challenge of helicopter flight in degraded visual environments, current research considers headmounted displays with 3D-conformal (scene-linked) visual cues as most promising display technology. For pilot-in-theloop simulations with HMDs, a highly accurate registration of the augmented visual system is required. In rotorcraft flight simulators the outside visual cues are usually provided by a dome projection system, since a wide field-of-view (e.g. horizontally > 200° and vertically > 80°) is required, which can hardly be achieved with collimated viewing systems. But optical see-through HMDs do mostly not have an equivalent focus compared to the distance of the pilot's eye-point position to the curved screen, which is also dependant on head motion. Hence, a dynamic vergence correction has been implemented to avoid binocular disparity. In addition, the parallax error induced by even small translational head motions is corrected with a head-tracking system to be adjusted onto the projected screen. For this purpose, two options are presented. The correction can be achieved by rendering the view with yaw and pitch offset angles dependent on the deviating head position from the design eye-point of the spherical projection system. Furthermore, it can be solved by implementing a dynamic eye-point in the multi-channel projection system for the outside visual cues. Both options have been investigated for the integration of a binocular HMD into the Rotorcraft Simulation Environment (ROSIE) at the Technische Universitaet Muenchen. Pros and cons of both possibilities with regard on integration issues and usability in flight simulations will be discussed.

  15. STS 51-L crewmembers during training session in flight deck simulation

    Science.gov (United States)

    1985-01-01

    S85-46207 (December 1985) --- Shuttle Mission Simulator (SMS) scene of astronauts Michael J. Smith, Ellison S. Onizuka, Judith A. Resnik, and Francis R. (Dick) Scobee in their launch and entry positions on the flight deck. The photo was taken by Bill Bowers.

  16. Effect of cognitive load on speech prosody in aviation: Evidence from military simulator flights.

    Science.gov (United States)

    Huttunen, Kerttu; Keränen, Heikki; Väyrynen, Eero; Pääkkönen, Rauno; Leino, Tuomo

    2011-01-01

    Mental overload directly affects safety in aviation and needs to be alleviated. Speech recordings are obtained non-invasively and as such are feasible for monitoring cognitive load. We recorded speech of 13 military pilots while they were performing a simulator task. Three types of cognitive load (load on situation awareness, information processing and decision making) were rated by a flight instructor separately for each flight phase and participant. As a function of increased cognitive load, the mean utterance-level fundamental frequency (F0) increased, on average, by 7 Hz and the mean vocal intensity increased by 1 dB. In the most intensive simulator flight phases, mean F0 increased by 12 Hz and mean intensity, by 1.5 dB. At the same time, the mean F0 range decreased by 5 Hz, on average. Our results showed that prosodic features of speech can be used to monitor speaker state and support pilot training in a simulator environment. Copyright © 2010 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. A Flight Research Overview of WSPR, a Pilot Project for Sonic Boom Community Response

    Science.gov (United States)

    Cliatt, Larry J., II; Haering, Edward A., Jr.; Jones, Thomas P.; Waggoner, Erin R.; Flattery, Ashley K.; Wiley, Scott L.

    2014-01-01

    In support of the ongoing effort by the National Aeronautics and Space Administration (NASA) to bring supersonic commercial travel to the public, the NASA Armstrong Flight Research Center and the NASA Langley Research Center, in cooperation with other industry organizations, conducted a flight research experiment to identify the methods, tools, and best practices for a large-scale quiet (or low) sonic boom community human response test. The name of the effort was Waveforms and Sonic boom Perception and Response (WSPR). Such tests will be applied to building a dataset that governing agencies such as the Federal Aviation Administration and the International Civil Aviation Organization will use to establish regulations for acceptable sound levels of overland sonic booms. The WSPR test was the first such effort that studied responses to non-traditional low sonic booms while the subject persons were in their own homes and performing daily activities.The WSPR test was a NASA collaborative effort with several industry partners, in response to a NASA Aeronautics Research Mission Directorate Research Opportunities in Aeronautics. The primary contractor was Wyle (El Segundo, California). Other partners included Gulfstream Aerospace Corporation (Savannah, Georgia); Pennsylvania State University (University Park, Pennsylvania); Tetra Tech, Inc. (Pasadena, California); and Fidell Associates, Inc. (Woodland Hills, California).A major objective of the effort included exposing a community to the sonic boom magnitudes and occurrences that would be expected to occur in high-air traffic regions having a network of supersonic commercial aircraft in place. Low-level sonic booms designed to simulate those produced by the next generation of commercial supersonic aircraft were generated over a small residential community. The sonic boom footprint was recorded with an autonomous wireless microphone array that spanned the entire community. Human response data were collected using multiple

  18. Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator

    Directory of Open Access Journals (Sweden)

    Han Songshan

    2015-02-01

    Full Text Available A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command, but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output (MISO fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators. Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.

  19. Effects of visual, seat, and platform motion during flight simulator air transport pilot training and evaluation

    Science.gov (United States)

    2009-04-27

    Access to affordable and effective flight-simulation training devices (FSTDs) is critical to safely train airline crews in aviating, navigating, communicating, making decisions, and managing flight-deck and crew resources. This paper provides an over...

  20. Team Performance and Error Management in Chinese and American Simulated Flight Crews: The Role of Cultural and Individual Differences

    Science.gov (United States)

    Davis, Donald D.; Bryant, Janet L.; Tedrow, Lara; Liu, Ying; Selgrade, Katherine A.; Downey, Heather J.

    2005-01-01

    This report describes results of a study conducted for NASA-Langley Research Center. This study is part of a program of research conducted for NASA-LARC that has focused on identifying the influence of national culture on the performance of flight crews. We first reviewed the literature devoted to models of teamwork and team performance, crew resource management, error management, and cross-cultural psychology. Davis (1999) reported the results of this review and presented a model that depicted how national culture could influence teamwork and performance in flight crews. The second study in this research program examined accident investigations of foreign airlines in the United States conducted by the National Transportation Safety Board (NTSB). The ability of cross-cultural values to explain national differences in flight outcomes was examined. Cultural values were found to covary in a predicted way with national differences, but the absence of necessary data in the NTSB reports and limitations in the research method that was used prevented a clear understanding of the causal impact of cultural values. Moreover, individual differences such as personality traits were not examined in this study. Davis and Kuang (2001) report results of this second study. The research summarized in the current report extends this previous research by directly assessing cultural and individual differences among students from the United States and China who were trained to fly in a flight simulator using desktop computer workstations. The research design used in this study allowed delineation of the impact of national origin, cultural values, personality traits, cognitive style, shared mental model, and task workload on teamwork, error management and flight outcomes. We briefly review the literature that documents the importance of teamwork and error management and its impact on flight crew performance. We next examine teamwork and crew resource management training designed to improve

  1. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and apply advanced tools to predict, assess and mitigate potential hazards to astronaut health. NASA s Digital Astronaut Project (DAP) is working to develop and apply computational models of physiologic response to space flight operation conditions over various time periods and environmental circumstances. The collective application and integration of well vetted models assessing the physiology, biomechanics and anatomy is referred to as the Digital Astronaut. The Digital Astronaut simulation environment will serve as a practical working tool for use by NASA in operational activities such as the prediction of biomedical risks and functional capabilities of astronauts. In additional to space flight operation conditions, DAP s work has direct applicability to terrestrial biomedical research by providing virtual environments for hypothesis testing, experiment design, and to reduce animal/human testing. A practical application of the DA to assess pre and post flight responses to exercise is illustrated and the difficulty in matching true physiological responses is discussed.

  2. STS-26 crew on fixed based (FB) shuttle mission simulator (SMS) flight deck

    Science.gov (United States)

    1988-01-01

    STS-26 Discovery, Orbiter Vehicle (OV) 103, Commander Frederick H. Hauck (left) and Pilot Richard O. Covey review checklists in their respective stations on the foward flight deck. The STS-26 crew is training in the fixed base (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.

  3. Numerical simulation and comparison of symmetrical/supercritical airfoils for the near tip region of a helicopter in forward flight

    Science.gov (United States)

    Badavi, F. F.

    1989-01-01

    Aerodynamic loads on a multi-bladed helicopter rotor in forward flight at transonic tip conditions are calculated. The unsteady, three-dimensional, time-accurate compressible Reynolds-averaged thin layer Navier-Stokes equations are solved in a rotating coordinate system on a body-conformed, curvilinear grid of C-H topology. Detailed boundary layer and global numerical comparisons of NACA-0012 symmetrical and CAST7-158 supercritical airfoils are made under identical forward flight conditions. The rotor wake effects are modeled by applying a correction to the geometric angle of attack of the blade. This correction is obtained by computing the local induced downwash velocity with a free wake analysis program. The calculations are performed on the Numerical Aerodynamic Simulation Cray 2 and the VPS32 (a derivative of a Cyber 205 at the Langley Research Center) for a model helicopter rotor in forward flight.

  4. Design and simulation of flight control system for man-portable micro reconnaissance quadcopter

    Science.gov (United States)

    Yin, Xinfan; Zhang, Daibing; Fang, Qiang; Shen, Lincheng

    2017-10-01

    The quadcopter has been widely used in the field of aerial photography and environmental detection, because of its advantages of VTOL, simple structure, and easy-control. In the field of urban anti-terrorism or special operations, micro reconnaissance quadcpter has its unique advantages such as all-weather taking off and landing, small noise and so on, and it is very popular with special forces and riot police. This paper aims at the flight control problem of the micro quadcopter, for the purposes of attitude stabilization control and trajectory tracking control of the micro quadcopter, first, the modeling of the micro quadcopter is presented. And using the MATLAB/SIMULINK toolbox to build the flight controller of the micro quadcopter, and then simulation analysis and real flight test are given. The results of the experiment show that the designed PID controller can correct the flight attitude shift effectively and track the planned tracks well, and can achieve the goal of stable and reliable flight of the quadcopter. It can be a useful reference for the flight control system design of future special operations micro UAV.

  5. MD-11 PCA - Research flight team photo

    Science.gov (United States)

    1995-01-01

    On Aug. 30, 1995, a the McDonnell Douglas MD-11 transport aircraft landed equipped with a computer-assisted engine control system that has the potential to increase flight safety. In landings at NASA Dryden Flight Research Center, Edwards, California, on August 29 and 30, the aircraft demonstrated software used in the aircraft's flight control computer that essentially landed the MD-11 without a need for the pilot to manipulate the flight controls significantly. In partnership with McDonnell Douglas Aerospace (MDA), with Pratt & Whitney and Honeywell helping to design the software, NASA developed this propulsion-controlled aircraft (PCA) system following a series of incidents in which hydraulic failures resulted in the loss of flight controls. This new system enables a pilot to operate and land the aircraft safely when its normal, hydraulically-activated control surfaces are disabled. This August 29, 1995, photo shows the MD-11 team. Back row, left to right: Tim Dingen, MDA pilot; John Miller, MD-11 Chief pilot (MDA); Wayne Anselmo, MD-11 Flight Test Engineer (MDA); Gordon Fullerton, PCA Project pilot; Bill Burcham, PCA Chief Engineer; Rudey Duran, PCA Controls Engineer (MDA); John Feather, PCA Controls Engineer (MDA); Daryl Townsend, Crew Chief; Henry Hernandez, aircraft mechanic; Bob Baron, PCA Project Manager; Don Hermann, aircraft mechanic; Jerry Cousins, aircraft mechanic; Eric Petersen, PCA Manager (Honeywell); Trindel Maine, PCA Data Engineer; Jeff Kahler, PCA Software Engineer (Honeywell); Steve Goldthorpe, PCA Controls Engineer (MDA). Front row, left to right: Teresa Hass, Senior Project Management Analyst; Hollie Allingham (Aguilera), Senior Project Management Analyst; Taher Zeglum, PCA Data Engineer (MDA); Drew Pappas, PCA Project Manager (MDA); John Burken, PCA Control Engineer.

  6. The role of situation assessment and flight experience in pilots' decisions to continue visual flight rules flight into adverse weather.

    Science.gov (United States)

    Wiegmann, Douglas A; Goh, Juliana; O'Hare, David

    2002-01-01

    Visual flight rules (VFR) flight into instrument meteorological conditions (IMC) is a major safety hazard in general aviation. In this study we examined pilots' decisions to continue or divert from a VFR flight into IMC during a dynamic simulation of a cross-country flight. Pilots encountered IMC either early or later into the flight, and the amount of time and distance pilots flew into the adverse weather prior to diverting was recorded. Results revealed that pilots who encountered the deteriorating weather earlier in the flight flew longer into the weather prior to diverting and had more optimistic estimates of weather conditions than did pilots who encountered the deteriorating weather later in the flight. Both the time and distance traveled into the weather prior to diverting were negatively correlated with pilots' previous flight experience. These findings suggest that VFR flight into IMC may be attributable, at least in part, to poor situation assessment and experience rather than to motivational judgment that induces risk-taking behavior as more time and effort are invested in a flight. Actual or potential applications of this research include the design of interventions that focus on improving weather evaluation skills in addition to addressing risk-taking attitudes.

  7. Development of a flight simulator for the control of plasma discharges

    International Nuclear Information System (INIS)

    Ravenel, N.; Artaud, J.F.; Bremond, S.; Guillerminet, B.; Huynh, P.; Moreau, P.; Signoret, J.

    2010-01-01

    The feedback control of fusion experiments in tokamak devices is entering a new area driven by the increase of control requirements for obtaining burning plasmas under safe operation conditions. A project aiming at setting up a flight simulator for the development of advanced controllers has started last year at CEA. This simulator will reuse most of the components of the European Integrated Tokamak Modelling (ITM) simulation platform. Thus, it will benefit from the development made by the task force and it will be able to offer a development platform for the new controllers of present day European tokamaks and future machines. This paper provides an overview of the architecture of the simulator. The functional specifications of the simulator have been defined and the needs in interface implementation are analysed as well.

  8. Two Mechatronic Projects - an Agricultural Robot and a Flight Simulator Platform

    DEFF Research Database (Denmark)

    Sørensen, Torben; Fan, Zhun; Conrad, Finn

    2005-01-01

    and build in a one year Masters Thesis Project by two M.Sc. students (2400 hours in total). • The development of a portable platform for flight simulation has been initiated in a Mid-term project by two students (720 hours in total). In both of these projects the students started from scratch...

  9. A review of critical in-flight events research methodology

    Science.gov (United States)

    Giffin, W. C.; Rockwell, T. H.; Smith, P. E.

    1985-01-01

    Pilot's cognitive responses to critical in-flight events (CIFE's) were investigated, using pilots, who had on the average about 2540 flight hours each, in four experiments: (1) full-mission simulation in a general aviation trainer, (2) paper and pencil CIFE tests, (3) interactive computer-aided scenario testing, and (4) verbal protocols in fault diagnosis tasks. The results of both computer and paper and pencil tests showed only 50 percent efficiency in correct diagnosis of critical events. The efficiency in arriving at a diagnosis was also low: over 20 inquiries were made for 21 percent of the scenarios diagnosed. The information-seeking pattern was random, with frequent retracing over old inquiries. The measures for developing improved cognitive skills for CIFE's are discussed.

  10. Armstrong Flight Research Center Research Technology and Engineering Report 2015

    Science.gov (United States)

    Voracek, David F.

    2016-01-01

    I am honored to endorse the 2015 Neil A. Armstrong Flight Research Center’s Research, Technology, and Engineering Report. The talented researchers, engineers, and scientists at Armstrong are continuing a long, rich legacy of creating innovative approaches to solving some of the difficult problems and challenges facing NASA and the aerospace community.Projects at NASA Armstrong advance technologies that will improve aerodynamic efficiency, increase fuel economy, reduce emissions and aircraft noise, and enable the integration of unmanned aircraft into the national airspace. The work represented in this report highlights the Center’s agility to develop technologies supporting each of NASA’s core missions and, more importantly, technologies that are preparing us for the future of aviation and space exploration.We are excited about our role in NASA’s mission to develop transformative aviation capabilities and open new markets for industry. One of our key strengths is the ability to rapidly move emerging techniques and technologies into flight evaluation so that we can quickly identify their strengths, shortcomings, and potential applications.This report presents a brief summary of the technology work of the Center. It also contains contact information for the associated technologists responsible for the work. Don’t hesitate to contact them for more information or for collaboration ideas.

  11. Influence of a controlled environment simulating an in-flight airplane cabin on dry eye disease.

    Science.gov (United States)

    Tesón, Marisa; González-García, María J; López-Miguel, Alberto; Enríquez-de-Salamanca, Amalia; Martín-Montañez, Vicente; Benito, María Jesús; Mateo, María Eugenia; Stern, Michael E; Calonge, Margarita

    2013-03-01

    To evaluate symptoms, signs, and the levels of 16 tears inflammatory mediators of dry eye (DE) patients exposed to an environment simulating an in-flight air cabin in an environmental chamber. Twenty DE patients were exposed to controlled environment simulating an in-flight airplane cabin (simulated in-flight condition [SIC]) of 23°C, 5% relative humidity, localized air flow, and 750 millibars (mb) of barometric pressure. As controls, 15 DE patients were subjected to a simulated standard condition (SSC) of 23°C, 45% relative humidity, and 930 mb. A DE symptoms questionnaire, diagnostic tests, and determination of 16 tear molecules by multiplex bead array were performed before and 2 hours after exposure. After SIC exposure, DE patients became more symptomatic, suffered a significant (P ≤ 0.05) decrease in tear stability (tear break up time) (from 2.18 ± 0.28 to 1.53 ± 0.20), and tear volume (phenol red thread test), and a significant (P ≤ 0.05) increase in corneal staining, both globally (0.50 ± 0.14 before and 1.25 ± 0.19 after) and in each area (Baylor scale). After SSC, DE patients only showed a mild, but significant (P ≤ 0.05), increase in central and inferior corneal staining. Consistently, tear levels of IL-6 and matrix metalloproteinase (MMP)-9 significantly increased and tear epidermal growth factor (EGF) significantly decreased (P ≤ 0.05) only after SIC. The controlled adverse environment conditions in this environmental chamber can simulate the conditions in which DE patients might be exposed during flight. As this clearly impaired their lacrimal functional unit, it would be advisable that DE patients use therapeutic strategies capable of ameliorating these adverse episodes.

  12. Numerical simulation of base flow of a long range flight vehicle

    Science.gov (United States)

    Saha, S.; Rathod, S.; Chandra Murty, M. S. R.; Sinha, P. K.; Chakraborty, Debasis

    2012-05-01

    Numerical exploration of base flow of a long range flight vehicle is presented for different flight conditions. Three dimensional Navier-Stokes equations are solved along with k-ɛ turbulence model using commercial CFD software. Simulation captured all essential flow features including flow separation at base shoulder, shear layer formation at the jet boundary, recirculation at the base region etc. With the increase in altitude, the plume of the rocket exhaust is seen to bulge more and more and caused more intense free stream and rocket plume interaction leading to higher gas temperature in the base cavity. The flow field in the base cavity is investigated in more detail, which is found to be fairly uniform at different instant of time. Presence of the heat shield is seen to reduce the hot gas entry to the cavity region due to different recirculation pattern in the base region. Computed temperature history obtained from conjugate heat transfer analysis is found to compare very well with flight measured data.

  13. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Roth, S.V.; Zirkel, A.; Neuhaus, J.; Petry, W.; Bossy, J.; Peters, J.; Schober, H.

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid 4 He for the two respective (q,ω) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  14. Measurement and simulation of the inelastic resolution function of a time-of-flight spectrometer

    CERN Document Server

    Roth, S V; Neuhaus, J; Petry, W; Bossy, J; Peters, J; Schober, H

    2002-01-01

    The deconvolution of inelastic neutron scattering data requires the knowledge of the inelastic resolution function. The inelastic resolution function of the time-of-flight spectrometer IN5/ILL has been measured by exploiting the sharp resonances of the roton and maxon excitations in superfluid sup 4 He for the two respective (q,omega) values. The calculated inelastic resolution function for three different instrumental setups is compared to the experimentally determined resolution function. The agreement between simulation and experimental data is excellent, allowing us in principle to extrapolate the simulations and thus to determine the resolution function in the whole accessible dynamic range of IN5 or any other time-of-flight spectrometer. (orig.)

  15. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    Science.gov (United States)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  16. Hovering and Transition Flight Tests of a 1/5-Scale Model of a Jet-Powered Vertical-Attitude VTOL Research Airplane

    Science.gov (United States)

    Smith, Charles C., Jr.

    1961-01-01

    An experimental investigation has been made to determine the dynamic stability and control characteristics of a 1/5-scale flying model of a jet-powered vertical-attitude VTOL research airplane in hovering and transition flight. The model was powered with either a hydrogen peroxide rocket motor or a compressed-air jet exhausting through an ejector tube to simulate the turbojet engine of the airplane. The gyroscopic effects of the engine were simulated by a flywheel driven by compressed-air jets. In hovering flight the model was controlled by jet-reaction controls which consisted of a swiveling nozzle on the main jet and a movable nozzle on each wing tip; and in forward flight the model was controlled by elevons and a rudder. If the gyroscopic effects of the jet engine were not represented, the model could be flown satisfactorily in hovering flight without any automatic stabilization devices. When the gyroscopic effects of the jet engine were represented, however, the model could not be controlled without the aid of artificial stabilizing devices because of the gyroscopic coupling of the yawing and pitching motions. The use of pitch and yaw dampers made these motions completely stable and the model could then be controlled very easily. In the transition flight tests, which were performed only with the automatic pitch and yaw dampers operating, it was found that the transition was very easy to perform either with or without the engine gyroscopic effects simulated, although the model had a tendency to fly in a rolled and sideslipped attitude at angles of attack between approximately 25 deg and 45 deg because of static directional instability in this range.

  17. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  18. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    Science.gov (United States)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  19. Research on the Frequency Aliasing of Resistance Acceleration Guidance for Reentry Flight

    Directory of Open Access Journals (Sweden)

    Han Pengxin

    2017-01-01

    Full Text Available According to the special response of resistance acceleration during hypersonic reentry flight, different guidance frequency will result to very different flight and control response. The analysis model for the response of resistance acceleration to the attack angle and dynamic press is put forward respectively in this paper. And the frequency aliasing phenomenon of guidance is revealed. The simulation results to the same vehicle sufficiently substantiate the frequency aliasing of resistance acceleration during reentry guidance.

  20. The flights before the flight - An overview of shuttle astronaut training

    Science.gov (United States)

    Sims, John T.; Sterling, Michael R.

    1989-01-01

    Space shuttle astronaut training is centered at NASA's Johnson Space Center in Houston, Texas. Each astronaut receives many different types of training from many sources. This training includes simulator training in the Shuttle Mission Simulator, in-flight simulator training in the Shuttle Training Aircraft, Extravehicular Activity training in the Weightless Environment Training Facility and a variety of lectures and briefings. Once the training program is completed each shuttle flight crew is well-prepared to perform the normal operations required for their flight and deal with any shuttle system malfunctions that might occur.

  1. Predictability of Pilot Performance from Simulated to Real Flight in the UH-60 (Black Hawk) Helicopter

    Science.gov (United States)

    2008-02-01

    keratectomy ( PRK ) and laser in-situ keratomileusis ( LASIK ) procedures to determine compatibility, safety, and efficacy of these procedures for rated Army...performance data. Table B- 1. Simulator and aircraft mean flight performance. LASIK PRK Simulator Aircraft Simulator Aircraft Pre-op 60.81 (2.65) 56.41...12 7. Aircraft vs . Simulator scatter plot, hover turn maneuvers

  2. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    Science.gov (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  3. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Hirohashi, Kensuke; Inamuro, Takaji, E-mail: inamuro@kuaero.kyoto-u.ac.jp [Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University, Kyoto 615-8540 (Japan)

    2017-08-15

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m . We set the parameters at Re = 200, Fr = 15 and m  = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ , and the horizontal motion of the model depends on the stroke angle β . Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β . The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β . (paper)

  4. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    International Nuclear Information System (INIS)

    Hirohashi, Kensuke; Inamuro, Takaji

    2017-01-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re , the Froude number Fr , and the non-dimensional mass m . We set the parameters at Re = 200, Fr = 15 and m  = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ , and the horizontal motion of the model depends on the stroke angle β . Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β . The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β . (paper)

  5. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  6. Configuration management issues and objectives for a real-time research flight test support facility

    Science.gov (United States)

    Yergensen, Stephen; Rhea, Donald C.

    1988-01-01

    Presented are some of the critical issues and objectives pertaining to configuration management for the NASA Western Aeronautical Test Range (WATR) of Ames Research Center. The primary mission of the WATR is to provide a capability for the conduct of aeronautical research flight test through real-time processing and display, tracking, and communications systems. In providing this capability, the WATR must maintain and enforce a configuration management plan which is independent of, but complimentary to, various research flight test project configuration management systems. A primary WATR objective is the continued development of generic research flight test project support capability, wherein the reliability of WATR support provided to all project users is a constant priority. Therefore, the processing of configuration change requests for specific research flight test project requirements must be evaluated within a perspective that maintains this primary objective.

  7. Eclipse - tow flight closeup and release

    Science.gov (United States)

    1998-01-01

    flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable

  8. Hyper-X Research Vehicle - Artist Concept in Flight with Scramjet Engine Firing

    Science.gov (United States)

    1997-01-01

    This is an artist's depiction of a Hyper-X research vehicle under scramjet power in free-flight following separation from its booster rocket. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need

  9. Research progress on the space-flight mutation breeding of woodyplant

    International Nuclear Information System (INIS)

    Cui Binbin; Sun Yuhan; Li Yun

    2013-01-01

    The space-flight mutation breeding conception, characteristics, mutagenic effects, research progress at home and abroad in woody plant were reviewed in this paper. Compared with crops, although the research of the woody plants space-flight mutation breeding in China started later, but it has developed rapidly and has gotten certain achievement. Now the satellite and high-altitude balloon experiment were conducted with over 20 tree species such as Populus ussuriensis and 50 flower species such as Paeonia suffruticosa. The above work will has profound significance for space-flight breeding technology application on woody plants. In the end, this thesis analyzes the prospect in the future from four aspects such as using woody plants asexual reproduction characteristic, strengthening the space mutation mechanism study, enhancing new space mutation varieties screen and strengthening ornamental specific types selection. This thesis also thinks that the space mutation breeding is expected to become an effective way in woody plant genetic breeding. (authors)

  10. Wind and Wake Sensing with UAV Formation Flight: System Development and Flight Testing

    Science.gov (United States)

    Larrabee, Trenton Jameson

    sensing data using UAVs in formation flight. This has been achieved and well documented before in manned aircraft but very little work has been done on UAV wake sensing especially during flight testing. This document describes the development and flight testing of small unmanned aerial system (UAS) for wind and wake sensing purpose including a Ground Control Station (GCS) and UAVs. This research can be stated in four major components. Firstly, formation flight was obtained by integrating a formation flight controller on the WVU Phastball Research UAV aircraft platform from the Flight Control Systems Laboratory (FCSL) at West Virginia University (WVU). Second, a new approach to wind estimation using an Unscented Kalman filter (UKF) is discussed along with results from flight data. Third, wake modeling within a simulator and wake sensing during formation flight is shown. Finally, experimental results are used to discuss the "sweet spot" for energy harvesting in formation flight, a novel approach to cooperative wind estimation, and gust suppression control for a follower aircraft in formation flight.

  11. Numerical simulation of divergent rocket-based-combined-cycle performances under the flight condition of Mach 3

    Science.gov (United States)

    Cui, Peng; Xu, WanWu; Li, Qinglian

    2018-01-01

    Currently, the upper operating limit of the turbine engine is Mach 2+, and the lower limit of the dual-mode scramjet is Mach 4. Therefore no single power systems can operate within the range between Mach 2 + and Mach 4. By using ejector rockets, Rocket-based-combined-cycle can work well in the above scope. As the key component of Rocket-based-combined-cycle, the ejector rocket has significant influence on Rocket-based-combined-cycle performance. Research on the influence of rocket parameters on Rocket-based-combined-cycle in the speed range of Mach 2 + to Mach 4 is scarce. In the present study, influences of Mach number and total pressure of the ejector rocket on Rocket-based-combined-cycle were analyzed numerically. Due to the significant effects of the flight conditions and the Rocket-based-combined-cycle configuration on Rocket-based-combined-cycle performances, flight altitude, flight Mach number, and divergence ratio were also considered. The simulation results indicate that matching lower altitude with higher flight Mach numbers can increase Rocket-based-combined-cycle thrust. For another thing, with an increase of the divergent ratio, the effect of the divergent configuration will strengthen and there is a limit on the divergent ratio. When the divergent ratio is greater than the limit, the effect of divergent configuration will gradually exceed that of combustion on supersonic flows. Further increases in the divergent ratio will decrease Rocket-based-combined-cycle thrust.

  12. In-flight sleep of flight crew during a 7-hour rest break: implications for research and flight safety.

    Science.gov (United States)

    Signal, T Leigh; Gander, Philippa H; van den Berg, Margo J; Graeber, R Curtis

    2013-01-01

    To assess the amount and quality of sleep that flight crew are able to obtain during flight, and identify factors that influence the sleep obtained. Flight crew operating flights between Everett, WA, USA and Asia had their sleep recorded polysomnographically for 1 night in a layover hotel and during a 7-h in-flight rest opportunity on flights averaging 15.7 h. Layover hotel and in-flight crew rest facilities onboard the Boeing 777-200ER aircraft. Twenty-one male flight crew (11 Captains, mean age 48 yr and 10 First Officers, mean age 35 yr). N/A. Sleep was recorded using actigraphy during the entire tour of duty, and polysomnographically in a layover hotel and during the flight. Mixed model analysis of covariance was used to determine the factors affecting in-flight sleep. In-flight sleep was less efficient (70% vs. 88%), with more nonrapid eye movement Stage 1/Stage 2 and more frequent awakenings per h (7.7/h vs. 4.6/h) than sleep in the layover hotel. In-flight sleep included very little slow wave sleep (median 0.5%). Less time was spent trying to sleep and less sleep was obtained when sleep opportunities occurred during the first half of the flight. Multivariate analyses suggest age is the most consistent factor affecting in-flight sleep duration and quality. This study confirms that even during long sleep opportunities, in-flight sleep is of poorer quality than sleep on the ground. With longer flight times, the quality and recuperative value of in-flight sleep is increasingly important for flight safety. Because the age limit for flight crew is being challenged, the consequences of age adversely affecting sleep quantity and quality need to be evaluated.

  13. Stall Recovery in a Centrifuge-Based Flight Simulator With an Extended Aerodynamic Model

    NARCIS (Netherlands)

    Ledegang, W.D.; Groen, E.L.

    2015-01-01

    We investigated the performance of 12 airline pilots in recovering from an asymmetrical stall in a flight simulator featuring an extended aerodynamic model of a transport-category aircraft, and a centrifuge-based motion platform capable of generating enhanced buffet motion and g-cueing. All pilots

  14. Development and Assessment of a Novel Training Package for Basic Maneuvering Tasks on a Flight Simulator Using Self Instruction Methods and Above Real Time Training (ARTT)

    Science.gov (United States)

    Ali, Syed Firasat; Khan, M. Javed; Rossi, Marcia J.; Heath, Bruce e.; Crane, Peter; Ward, Marcus; Crier, Tomyka; Knighten, Tremaine; Culpepper, Christi

    2007-01-01

    One result of the relatively recent advances in computing technology has been the decreasing cost of computers and increasing computational power. This has allowed high fidelity airplane simulations to be run on personal computers (PC). Thus, simulators are now used routinely by pilots to substitute real flight hours for simulated flight hours for training for an aircraft type rating thereby reducing the cost of flight training. However, FAA regulations require that such substitution training must be supervised by Certified Flight Instructors (CFI). If the CFI presence could be reduced or eliminated for certain tasks this would mean a further cost savings to the pilot. This would require that the flight simulator have a certain level of 'intelligence' in order to provide feedback on pilot performance similar to that of a CFI. The 'intelligent' flight simulator would have at least the capability to use data gathered from the flight to create a measure for the performance of the student pilot. Also, to fully utilize the advances in computational power, the simulator would be capable of interacting with the student pilot using the best possible training interventions. This thesis reports on the two studies conducted at Tuskegee University investigating the effects of interventions on the learning of two flight maneuvers on a flight simulator and the robustness and accuracy of calculated performance indices as compared to CFI evaluations of performance. The intent of these studies is to take a step in the direction of creating an 'intelligent' flight simulator. The first study deals with the comparisons of novice pilot performance trained at different levels of above real-time to execute a level S-turn. The second study examined the effect of out-of-the-window (OTW) visual cues in the form of hoops on the performance of novice pilots learning to fly a landing approach on the flight simulator. The reliability/robustness of the computed performance metrics was assessed

  15. Effects of Self-Instructional Methods and Above Real Time Training (ARTT) for Maneuvering Tasks on a Flight Simulator

    Science.gov (United States)

    Ali, Syed Firasat; Khan, Javed Khan; Rossi, Marcia J.; Crane, Peter; Heath, Bruce E.; Knighten, Tremaine; Culpepper, Christi

    2003-01-01

    Personal computer based flight simulators are expanding opportunities for providing low-cost pilot training. One advantage of these devices is the opportunity to incorporate instructional features into training scenarios that might not be cost effective with earlier systems. Research was conducted to evaluate the utility of different instructional features using a coordinated level turn as an aircraft maneuvering task. In study I, a comparison was made between automated computer grades of performance with certified flight instructors grades. Every one of the six student volunteers conducted a flight with level turns at two different bank angles. The automated computer grades were based on prescribed tolerances on bank angle, airspeed and altitude. Two certified flight instructors independently examined the video tapes of heads up and instrument displays of the flights and graded them. The comparison of automated grades with the instructors grades was based on correlations between them. In study II, a 2x2 between subjects factorial design was used to devise and conduct an experiment. Comparison was made between real time training and above real time training and between feedback and no feedback in training. The performance measure to monitor progress in training was based on deviations in bank angle and altitude. The performance measure was developed after completion of the experiment including the training and test flights. It was not envisaged before the experiment. The experiment did not include self- instructions as it was originally planned, although feedback by experimenter to the trainee was included in the study.

  16. High-Alpha Research Vehicle (HARV) longitudinal controller: Design, analyses, and simulation resultss

    Science.gov (United States)

    Ostroff, Aaron J.; Hoffler, Keith D.; Proffitt, Melissa S.; Brown, Philip W.; Phillips, Michael R.; Rivers, Robert A.; Messina, Michael D.; Carzoo, Susan W.; Bacon, Barton J.; Foster, John F.

    1994-01-01

    This paper describes the design, analysis, and nonlinear simulation results (batch and piloted) for a longitudinal controller which is scheduled to be flight-tested on the High-Alpha Research Vehicle (HARV). The HARV is an F-18 airplane modified for and equipped with multi-axis thrust vectoring. The paper includes a description of the facilities, a detailed review of the feedback controller design, linear analysis results of the feedback controller, a description of the feed-forward controller design, nonlinear batch simulation results, and piloted simulation results. Batch simulation results include maximum pitch stick agility responses, angle of attack alpha captures, and alpha regulation for full lateral stick rolls at several alpha's. Piloted simulation results include task descriptions for several types of maneuvers, task guidelines, the corresponding Cooper-Harper ratings from three test pilots, and some pilot comments. The ratings show that desirable criteria are achieved for almost all of the piloted simulation tasks.

  17. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    Science.gov (United States)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  18. Simulation of time of flight defraction signals for reactor vessel head penetrations

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Hun; Kim, Young Sik; Lee, Jeong Seok [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth.

  19. Simulation of time of flight defraction signals for reactor vessel head penetrations

    International Nuclear Information System (INIS)

    Lim, Tae Hun; Kim, Young Sik; Lee, Jeong Seok

    2016-01-01

    The simulation of nondestructive testing has been used in the prediction of the signal characteristics of various defects and in the development of the procedures. CIVA, a simulation tool dedicated to nondestructive testing, has good accuracy and speed, and provides a three-dimensional graphical user interface for improved visualization and familiar data displays consistent with an NDE technique. Even though internal validations have been performed by the CIVA software development specialists, an independent validation study is necessary for the assessment of the accuracy of the software prior to practical use. In this study, time of flight diffraction signals of ultrasonic inspection of a calibration block for reactor vessel head penetrations were simulated using CIVA. The results were compared to the experimentally inspected signals. The accuracy of the simulated signals and the possible range for simulation were verified. It was found that, there is a good agreement between the CIVA simulated and experimental results in the A-scan signal, B-scan image, and measurement of depth

  20. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    Science.gov (United States)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  1. Piloted Simulation Tests of Propulsion Control as Backup to Loss of Primary Flight Controls for a B747-400 Jet Transport

    Science.gov (United States)

    Bull, John; Mah, Robert; Hardy, Gordon; Sullivan, Barry; Jones, Jerry; Williams, Diane; Soukup, Paul; Winters, Jose

    1997-01-01

    Partial failures of aircraft primary flight control systems and structural damages to aircraft during flight have led to catastrophic accidents with subsequent loss of lives (e.g. DC-10, B-747, C-5, B-52, and others). Following the DC-10 accident at Sioux City, Iowa in 1989, the National Transportation Safety Board recommended 'Encourage research and development of backup flight control systems for newly certified wide-body airplanes that utilize an alternate source of motive power separate from that source used for the conventional control system.' This report describes the concept of a propulsion controlled aircraft (PCA), discusses pilot controls, displays, and procedures; and presents the results of a PCA piloted simulation test and evaluation of the B747-400 airplane conducted at NASA Ames Research Center in December, 1996. The purpose of the test was to develop and evaluate propulsion control throughout the full flight envelope of the B747-400 including worst case scenarios of engine failures and out of trim moments. Pilot ratings of PCA performance ranged from adequate to satisfactory. PCA performed well in unusual attitude recoveries at 35,000 ft altitude, performed well in fully coupled ILS approaches, performed well in single engine failures, and performed well at aft cg. PCA performance was primarily limited by out-of-trim moments.

  2. Development and Flight Evaluation of an Emergency Digital Flight Control System Using Only Engine Thrust on an F-15 Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Webb, Lannie Dean

    1996-01-01

    A propulsion-controlled aircraft (PCA) system for emergency flight control of aircraft with no flight controls was developed and flight tested on an F-15 aircraft at the NASA Dryden Flight Research Center. The airplane has been flown in a throttles-only manual mode and with an augmented system called PCA in which pilot thumbwheel commands and aircraft feedback parameters were used to drive the throttles. Results from a 36-flight evaluation showed that the PCA system can be used to safety land an airplane that has suffered a major flight control system failure. The PCA system was used to recover from a severe upset condition, descend, and land. Guest pilots have also evaluated the PCA system. This paper describes the principles of throttles-only flight control; a history of loss-of-control accidents; a description of the F-15 aircraft; the PCA system operation, simulation, and flight testing; and the pilot comments.

  3. Check-Cases for Verification of 6-Degree-of-Freedom Flight Vehicle Simulations. Volume 2; Appendices

    Science.gov (United States)

    Murri, Daniel G.; Jackson, E. Bruce; Shelton, Robert O.

    2015-01-01

    This NASA Engineering and Safety Center (NESC) assessment was established to develop a set of time histories for the flight behavior of increasingly complex example aerospacecraft that could be used to partially validate various simulation frameworks. The assessment was conducted by representatives from several NASA Centers and an open-source simulation project. This document contains details on models, implementation, and results.

  4. Assessment team report on flight-critical systems research at NASA Langley Research Center

    Science.gov (United States)

    Siewiorek, Daniel P. (Compiler); Dunham, Janet R. (Compiler)

    1989-01-01

    The quality, coverage, and distribution of effort of the flight-critical systems research program at NASA Langley Research Center was assessed. Within the scope of the Assessment Team's review, the research program was found to be very sound. All tasks under the current research program were at least partially addressing the industry needs. General recommendations made were to expand the program resources to provide additional coverage of high priority industry needs, including operations and maintenance, and to focus the program on an actual hardware and software system that is under development.

  5. Fundamental Research into Hyperelastic Materials for Flight Applications (FY15)

    Data.gov (United States)

    National Aeronautics and Space Administration — This research project is working to develop methods to characterize elastomer materials for flight applications as well as instrumentation methods to monitor their...

  6. Simulations of Continuous Descent Operations with Arrival-management Automation and Mixed Flight-deck Interval Management Equipage

    Science.gov (United States)

    Callantine, Todd J.; Kupfer, Michael; Martin, Lynne Hazel; Prevot, Thomas

    2013-01-01

    Air traffic management simulations conducted in the Airspace Operations Laboratory at NASA Ames Research Center have addressed the integration of trajectory-based arrival-management automation, controller tools, and Flight-Deck Interval Management avionics to enable Continuous Descent Operations (CDOs) during periods of sustained high traffic demand. The simulations are devoted to maturing the integrated system for field demonstration, and refining the controller tools, clearance phraseology, and procedures specified in the associated concept of operations. The results indicate a variety of factors impact the concept's safety and viability from a controller's perspective, including en-route preconditioning of arrival flows, useable clearance phraseology, and the characteristics of airspace, routes, and traffic-management methods in use at a particular site. Clear understanding of automation behavior and required shifts in roles and responsibilities is important for controller acceptance and realizing potential benefits. This paper discusses the simulations, drawing parallels with results from related European efforts. The most recent study found en-route controllers can effectively precondition arrival flows, which significantly improved route conformance during CDOs. Controllers found the tools acceptable, in line with previous studies.

  7. Simulation of a weather radar display for over-water airborne radar approaches

    Science.gov (United States)

    Clary, G. R.

    1983-01-01

    Airborne radar approach (ARA) concepts are being investigated as a part of NASA's Rotorcraft All-Weather Operations Research Program on advanced guidance and navigation methods. This research is being conducted using both piloted simulations and flight test evaluations. For the piloted simulations, a mathematical model of the airborne radar was developed for over-water ARAs to offshore platforms. This simulated flight scenario requires radar simulation of point targets, such as oil rigs and ships, distributed sea clutter, and transponder beacon replies. Radar theory, weather radar characteristics, and empirical data derived from in-flight radar photographs are combined to model a civil weather/mapping radar typical of those used in offshore rotorcraft operations. The resulting radar simulation is realistic and provides the needed simulation capability for ongoing ARA research.

  8. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  9. Futurepath: The Story of Research and Technology at NASA Lewis Research Center. Structures for Flight Propulsion, ARC Sprayed Monotape, National Aero-Space Plane

    Science.gov (United States)

    1989-01-01

    The story of research and technology at NASA Lewis Research Center's Structures Division is presented. The job and designs of the Structures Division needed for flight propulsion is described including structural mechanics, structural dynamics, fatigue, and fracture. The video briefly explains why properties of metals used in structural mechanics need to be tested. Examples of tests and simulations used in structural dynamics (bodies in motion) are briefly described. Destructive and non-destructive fatigue/fracture analysis is also described. The arc sprayed monotape (a composite material) is explained, as are the programs in which monotape plays a roll. Finally, the National Aero-Space Plane (NASP or x-30) is introduced, including the material development and metal matrix as well as how NASP will reduce costs for NASA.

  10. The effects of the aircraft cabin environment on passengers during simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter

    2007-01-01

    enables subjective assessments of the symptoms commonly experienced by passengers and crew during flights. Six investigations with subject exposure have subsequently been carried out in the aircraft cabin facility covering four environmental areas of study, i.e. humidity, air purification techniques...... but intensified complaints of headache, dizziness and claustrophobia, suggesting that air pollutants rather than low humidity cause the distress reported by airline passengers. Three investigations studying the efficacy of various air purification technologies showed that a gas phase adsorption purification unit......A 3-row, 21-seat section of a simulated Boeing 767 aircraft cabin has been built in a climate chamber, simulating the cabin environment not only in terms of materials and geometry, but also in terms of cabin air and wall temperatures and ventilation with very dry air. This realistic simulation...

  11. A Survey of Open-Source UAV Flight Controllers and Flight Simulators

    DEFF Research Database (Denmark)

    Ebeid, Emad Samuel Malki; Skriver, Martin; Terkildsen, Kristian Husum

    2018-01-01

    The current disruptive innovation in civilian drone (UAV) applications has led to an increased need for research and development in UAV technology. The key challenges currently being addressed are related to UAV platform properties such as functionality, reliability, fault tolerance, and endurance......-source drone platform elements that can be used for research and development. The survey covers open-source hardware, software, and simulation drone platforms and compares their main features....

  12. Impact of Flight Enthalpy, Fuel Simulant, and Chemical Reactions on the Mixing Characteristics of Several Injectors at Hypervelocity Flow Conditions

    Science.gov (United States)

    Drozda, Tomasz G.; Baurle, Robert A.; Drummond, J. Philip

    2016-01-01

    The high total temperatures or total enthalpies required to duplicate the high-speed flight conditions in ground experiments often place stringent requirements on the material selection and cooling needs for the test articles and intrusive flow diagnostic equipment. Furthermore, for internal flows, these conditions often complicate the use of nonintrusive diagnostics that need optical access to the test section and interior portions of the flowpath. Because of the technical challenges and increased costs associated with experimentation at high values of total enthalpy, an attempt is often made to reduce it. This is the case for the Enhanced Injection and Mixing Project (EIMP) currently underway in the Arc-Heated Scramjet Test Facility at the NASA Langley Research Center. The EIMP aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships between mixing performance and losses relevant to flight Mach numbers greater than 8. The experiments will consider a "direct-connect" approach and utilize a Mach 6 nozzle to simulate the combustor entrance flow of a scramjet engine. However, while the value of the Mach number is matched to that expected at the combustor entrance in flight, the maximum value of the total enthalpy for these experiments is limited by the thermal-structural limits of the uncooled experimental hardware. Furthermore, the fuel simulant is helium, not hydrogen. The use of "cold" flows and non-reacting mixtures of fuel simulants for mixing experiments is not new and has been extensively utilized as a screening technique for scramjet fuel injectors. In this study, Reynolds-averaged simulations are utilized (RAS) to systematically verify the implicit assumptions used by the EIMP. This is accomplished by first performing RAS of mixing for two injector configurations at planned nominal experimental

  13. Small UAS Test Area at NASA's Dryden Flight Research Center

    Science.gov (United States)

    Bauer, Jeffrey T.

    2008-01-01

    This viewgraph presentation reviews the areas that Dryden Flight Research Center has set up for testing small Unmanned Aerial Systems (UAS). It also reviews the requirements and process to use an area for UAS test.

  14. Mechanical design of NASA Ames Research Center vertical motion simulator

    Science.gov (United States)

    Engelbert, D. F.; Bakke, A. P.; Chargin, M. K.; Vallotton, W. C.

    1976-01-01

    NASA has designed and is constructing a new flight simulator with large vertical travel. Several aspects of the mechanical design of this Vertical Motion Simulator (VMS) are discussed, including the multiple rack and pinion vertical drive, a pneumatic equilibration system, and the friction-damped rigid link catenaries used as cable supports.

  15. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    Science.gov (United States)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  16. CFD to Flight: Some Recent Success Stories of X-Plane Design to Flight Test at the NASA Dryden Flight Research Center

    Science.gov (United States)

    Cosentino, Gary B.

    2007-01-01

    Several examples from the past decade of success stories involving the design and flight test of three true X-planes will be described: in particular, X-plane design techniques that relied heavily upon computational fluid dynamics (CFD). Three specific examples chosen from the author s personal experience are presented: the X-36 Tailless Fighter Agility Research Aircraft, the X-45A Unmanned Combat Air Vehicle, and, most recently, the X-48B Blended Wing Body Demonstrator Aircraft. An overview will be presented of the uses of CFD analysis, comparisons and contrasts with wind tunnel testing, and information derived from the CFD analysis that directly related to successful flight test. Some lessons learned on the proper application, and misapplication, of CFD are illustrated. Finally, some highlights of the flight-test results of the three example X-planes will be presented. This overview paper will discuss some of the author s experience with taking an aircraft shape from early concept and three-dimensional modeling through CFD analysis, wind tunnel testing, further refined CFD analysis, and, finally, flight. An overview of the key roles in which CFD plays well during this process, and some other roles in which it does not, are discussed. How wind tunnel testing complements, calibrates, and verifies CFD analysis is also covered. Lessons learned on where CFD results can be misleading are also given. Strengths and weaknesses of the various types of flow solvers, including panel methods, Euler, and Navier-Stokes techniques, are discussed. The paper concludes with the three specific examples, including some flight test video footage of the X-36, the X-45A, and the X-48B.

  17. SUPRA - Enhanced upset recovery simulation

    NARCIS (Netherlands)

    Groen, E.; Ledegang, W.; Field, J.; Smaili, H.; Roza, M.; Fucke, L.; Nooij, S.; Goman, M.; Mayrhofer, M.; Zaichik, L.E.; Grigoryev, M.; Biryukov, V.

    2012-01-01

    The SUPRA research project - Simulation of Upset Recovery in Aviation - has been funded by the European Union 7th Framework Program to enhance the flight simulation envelope for upset recovery simulation. Within the project an extended aerodynamic model, capturing the key aerodynamics during and

  18. Investigation of Inner Loop Flight Control Strategies for High-Speed Research

    Science.gov (United States)

    Newman, Brett; Kassem, Ayman

    1999-01-01

    This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.

  19. Software Considerations for Subscale Flight Testing of Experimental Control Laws

    Science.gov (United States)

    Murch, Austin M.; Cox, David E.; Cunningham, Kevin

    2009-01-01

    The NASA AirSTAR system has been designed to address the challenges associated with safe and efficient subscale flight testing of research control laws in adverse flight conditions. In this paper, software elements of this system are described, with an emphasis on components which allow for rapid prototyping and deployment of aircraft control laws. Through model-based design and automatic coding a common code-base is used for desktop analysis, piloted simulation and real-time flight control. The flight control system provides the ability to rapidly integrate and test multiple research control laws and to emulate component or sensor failures. Integrated integrity monitoring systems provide aircraft structural load protection, isolate the system from control algorithm failures, and monitor the health of telemetry streams. Finally, issues associated with software configuration management and code modularity are briefly discussed.

  20. Simulation model of the F/A-18 high angle-of-attack research vehicle utilized for the design of advanced control laws

    Science.gov (United States)

    Strickland, Mark E.; Bundick, W. Thomas; Messina, Michael D.; Hoffler, Keith D.; Carzoo, Susan W.; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    The 'f18harv' six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA's High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane modified to incorporate a multi-axis thrust-vectoring system for augmented pitch and yaw control power and actuated forebody strakes for enhanced aerodynamic yaw control power. The modified configuration is known as the High Alpha Research Vehicle (HARV). The 'f18harv' simulation was an outgrowth of the 'f18bas' simulation which modeled the basic F/A-18 with a preliminary version of a thrust-vectoring system designed for the HARV. The preliminary version consisted of two thrust-vectoring vanes per engine nozzle compared with the three vanes per engine actually employed on the F/A-18 HARV. The modeled flight envelope is extensive in that the aerodynamic database covers an angle-of-attack range of -10 degrees to +90 degrees, sideslip range of -20 degrees to +20 degrees, a Mach Number range between 0.0 and 2.0, and an altitude range between 0 and 60,000 feet.

  1. Artist Concept of X-43A/Hyper-X Hypersonic Experimental Research Vehicle in Flight

    Science.gov (United States)

    1998-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  2. Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project

    Science.gov (United States)

    Bosworth, John

    2006-01-01

    A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions

  3. Pre-flight physical simulation test of HIMES reentry test vehicle

    Science.gov (United States)

    Kawaguchi, Jun'ichiro; Inatani, Yoshifumi; Yonemoto, Koichi; Hosokawa, Shigeru

    ISAS is now developing a small reentry test vehicle, which is 2m long with a 1.5m wing span and weighs about 170 kg, for the purpose of exploring high angle-of-attack aerodynamic attitude control issue in supersonic and hypersonic speed. The flight test, employing 'Rockoon' launch system, is planned as a preliminary design verification for a fully reusable winged rocket named HIMES (Highly Maneuverable Experimental Space) vehicle. This paper describes the results of preflight ground test using a motion table system. This ground system test is called 'physical simulation' aimed at: (1) functional verification of side-jet system, aerodynamic surface actuators, battery and onboard avionics; and (2) guidance and control law evaluation, in total hardware-in-the-loop system. The pressure of side-jet nozzles was measured to provide exact thrust characteristics of reaction control. The dynamics of vehicle motion was calculated in real-time by the ground simulation computer.

  4. Research & Technology Report Goddard Space Flight Center

    Science.gov (United States)

    Soffen, Gerald A. (Editor); Truszkowski, Walter (Editor); Ottenstein, Howard (Editor); Frost, Kenneth (Editor); Maran, Stephen (Editor); Walter, Lou (Editor); Brown, Mitch (Editor)

    1995-01-01

    The main theme of this edition of the annual Research and Technology Report is Mission Operations and Data Systems. Shifting from centralized to distributed mission operations, and from human interactive operations to highly automated operations is reported. The following aspects are addressed: Mission planning and operations; TDRSS, Positioning Systems, and orbit determination; hardware and software associated with Ground System and Networks; data processing and analysis; and World Wide Web. Flight projects are described along with the achievements in space sciences and earth sciences. Spacecraft subsystems, cryogenic developments, and new tools and capabilities are also discussed.

  5. Workload and cortisol levels in helicopter combat pilots during simulated flights

    Directory of Open Access Journals (Sweden)

    A. García-Mas

    2016-03-01

    Conclusions: Cortisol levels in saliva and workload are the usual in stress situations, and change inversely: workload increases at the end of the task, whereas the cortisol levels decrease after the simulated flight. The somatic anxiety decreases as the task is done. In contrast, when the pilots are faced with new and demanding tasks, even if they fly this type of helicopter in different conditions, the workload increases toward the end of the task. From an applied point of view, these findings should impact the tactical, physical and mental training of such pilots.

  6. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Science.gov (United States)

    2010-01-01

    ... required for aircraft certification and simulation programming and validation (b) For each maneuver or... programming and for validating the performance of the FFS, and discuss the flight test plan anticipated for..., or checking activities. r. Problems with objective test results are handled as follows: (1) If a...

  7. Enhanced vision flight deck technology for commercial aircraft low-visibility surface operations

    Science.gov (United States)

    Arthur, Jarvis J.; Norman, R. M.; Kramer, Lynda J.; Prinzel, Lawerence J.; Ellis, Kyle K.; Harrison, Stephanie J.; Comstock, J. R.

    2013-05-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) airfield during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and minification effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  8. Multivariable Techniques for High-Speed Research Flight Control Systems

    Science.gov (United States)

    Newman, Brett A.

    1999-01-01

    This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.

  9. Conversion from Engineering Units to Telemetry Counts on Dryden Flight Simulators

    Science.gov (United States)

    Fantini, Jay A.

    1998-01-01

    Dryden real-time flight simulators encompass the simulation of pulse code modulation (PCM) telemetry signals. This paper presents a new method whereby the calibration polynomial (from first to sixth order), representing the conversion from counts to engineering units (EU), is numerically inverted in real time. The result is less than one-count error for valid EU inputs. The Newton-Raphson method is used to numerically invert the polynomial. A reverse linear interpolation between the EU limits is used to obtain an initial value for the desired telemetry count. The method presented here is not new. What is new is how classical numerical techniques are optimized to take advantage of modem computer power to perform the desired calculations in real time. This technique makes the method simple to understand and implement. There are no interpolation tables to store in memory as in traditional methods. The NASA F-15 simulation converts and transmits over 1000 parameters at 80 times/sec. This paper presents algorithm development, FORTRAN code, and performance results.

  10. A pilot rating scale for evaluating failure transients in electronic flight control systems

    Science.gov (United States)

    Hindson, William S.; Schroeder, Jeffery A.; Eshow, Michelle M.

    1990-01-01

    A pilot rating scale was developed to describe the effects of transients in helicopter flight-control systems on safety-of-flight and on pilot recovery action. The scale was applied to the evaluation of hardovers that could potentially occur in the digital flight-control system being designed for a variable-stability UH-60A research helicopter. Tests were conducted in a large moving-base simulator and in flight. The results of the investigation were combined with existing airworthiness criteria to determine quantitative reliability design goals for the control system.

  11. Operations Research Flight Ground Service Education/Outreach

    Science.gov (United States)

    Smith, Scott M.

    2011-01-01

    This viewgraph presentation describes a nutritional biochemistry assessment of astronauts in preflight, in-flight, and post-flight operations. In-flight collections of blood and urine samples from astronauts to test the effects of Vitamin K, Pro K, Vitamin D, Omega-3 Fatty Acids, Iron, and Sodium in spaceflight is shown. A demonstration of a 1-carbon metabolism pathway that determines the existence of enzymes and polymorphisms is also presented.

  12. An automated calibration laboratory for flight research instrumentation: Requirements and a proposed design approach

    Science.gov (United States)

    Oneill-Rood, Nora; Glover, Richard D.

    1990-01-01

    NASA's Dryden Flight Research Facility (Ames-Dryden), operates a diverse fleet of research aircraft which are heavily instrumented to provide both real time data for in-flight monitoring and recorded data for postflight analysis. Ames-Dryden's existing automated calibration (AUTOCAL) laboratory is a computerized facility which tests aircraft sensors to certify accuracy for anticipated harsh flight environments. Recently, a major AUTOCAL lab upgrade was initiated; the goal of this modernization is to enhance productivity and improve configuration management for both software and test data. The new system will have multiple testing stations employing distributed processing linked by a local area network to a centralized database. The baseline requirements for the new AUTOCAL lab and the design approach being taken for its mechanization are described.

  13. Human Factors in Training - Space Flight Resource Management Training

    Science.gov (United States)

    Bryne, Vicky; Connell, Erin; Barshi, Immanuel; Arsintescu, L.

    2009-01-01

    Accidents and incidents show that high workload-induced stress and poor teamwork skills lead to performance decrements and errors. Research on teamwork shows that effective teams are able to adapt to stressful situations, and to reduce workload by using successful strategies for communication and decision making, and through dynamic redistribution of tasks among team members. Furthermore, superior teams are able to recognize signs and symptoms of workload-induced stress early, and to adapt their coordination and communication strategies to the high workload, or stress conditions. Mission Control Center (MCC) teams often face demanding situations in which they must operate as an effective team to solve problems with crew and vehicle during onorbit operations. To be successful as a team, flight controllers (FCers) must learn effective teamwork strategies. Such strategies are the focus of Space Flight Resource Management (SFRM) training. SFRM training in MOD has been structured to include some classroom presentations of basic concepts and case studies, with the assumption that skill development happens in mission simulation. Integrated mission simulations do provide excellent opportunities for FCers to practice teamwork, but also require extensive technical knowledge of vehicle systems, mission operations, and crew actions. Such technical knowledge requires lengthy training. When SFRM training is relegated to integrated simulations, FCers can only practice SFRM after they have already mastered the technical knowledge necessary for these simulations. Given the centrality of teamwork to the success of MCC, holding SFRM training till late in the flow is inefficient. But to be able to train SFRM earlier in the flow, the training cannot rely on extensive mission-specific technical knowledge. Hence, the need for a generic SFRM training framework that would allow FCers to develop basic teamwork skills which are mission relevant, but without the required mission knowledge

  14. Enhanced Vision Flight Deck Technology for Commercial Aircraft Low-Visibility Surface Operations

    Science.gov (United States)

    Arthur, Jarvis J., III; Norman, R. Michael; Kramer, Lynda J.; Prinzel, Lawrence J., III; Ellis, Kyle K. E.; Harrison, Stephanie J.; Comstock, J. Ray

    2013-01-01

    NASA Langley Research Center and the FAA collaborated in an effort to evaluate the effect of Enhanced Vision (EV) technology display in a commercial flight deck during low visibility surface operations. Surface operations were simulated at the Memphis, TN (FAA identifier: KMEM) air field during nighttime with 500 Runway Visual Range (RVR) in a high-fidelity, full-motion simulator. Ten commercial airline flight crews evaluated the efficacy of various EV display locations and parallax and mini cation effects. The research paper discusses qualitative and quantitative results of the simulation experiment, including the effect of EV display placement on visual attention, as measured by the use of non-obtrusive oculometry and pilot mental workload. The results demonstrated the potential of EV technology to enhance situation awareness which is dependent on the ease of access and location of the displays. Implications and future directions are discussed.

  15. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.; Mamou, M.; Khalid, M. [National Research Council, Inst. for Aerospace Research, Ottawa, Ontario (Canada)]. E-mail: Hongyi.Xu@nrc.ca

    2004-07-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  16. Numerical simulations of unsteady flows past two-bladed rotors in forward-flight conditions

    International Nuclear Information System (INIS)

    Xu, H.; Mamou, M.; Khalid, M.

    2004-01-01

    The current paper presents time-accurate numerical simulations of compressible flows past two-bladed rotor configurations using a Chimera moving grid approach. The simulations are performed for a variety of flow conditions and various blade aspect ratios. The rotor blades are rectangular, untapered and untwisted planforms. Their cross-sections are built using the NACA 0012 airfoil profile. The aerodynamic performance of the rotor is investigated using the Euler equations. The CFD-FASTRAN code was used for the computations. The pressure distributions are benchmarked against the experimental data from Caradonna and Tung and a number of previous Euler calculations by Agarwal and Deese and Chen et al. The comparisons indicate that the current simulations for the forward flight conditions can reproduce the pressure distributions on the blade surfaces and the prediction of shockwave locations with reasonably good accuracy. (author)

  17. A piloted evaluation of an oblique-wing research aircraft motion simulation with decoupling control laws

    Science.gov (United States)

    Kempel, Robert W.; Mcneill, Walter E.; Gilyard, Glenn B.; Maine, Trindel A.

    1988-01-01

    The NASA Ames Research Center developed an oblique-wing research plane from NASA's digital fly-by-wire airplane. Oblique-wing airplanes show large cross-coupling in control and dynamic behavior which is not present on conventional symmetric airplanes and must be compensated for to obtain acceptable handling qualities. The large vertical motion simulator at NASA Ames-Moffett was used in the piloted evaluation of a proposed flight control system designed to provide decoupled handling qualities. Five discrete flight conditions were evaluated ranging from low altitude subsonic Mach numbers to moderate altitude supersonic Mach numbers. The flight control system was effective in generally decoupling the airplane. However, all participating pilots objected to the high levels of lateral acceleration encountered in pitch maneuvers. In addition, the pilots were more critical of left turns (in the direction of the trailing wingtip when skewed) than they were of right turns due to the tendency to be rolled into the left turns and out of the right turns. Asymmetric side force as a function of angle of attack was the primary cause of lateral acceleration in pitch. Along with the lateral acceleration in pitch, variation of rolling and yawing moments as functions of angle of attack caused the tendency to roll into left turns and out of right turns.

  18. In-flight Fault Detection and Isolation in Aircraft Flight Control Systems

    Science.gov (United States)

    Azam, Mohammad; Pattipati, Krishna; Allanach, Jeffrey; Poll, Scott; Patterson-Hine, Ann

    2005-01-01

    In this paper we consider the problem of test design for real-time fault detection and isolation (FDI) in the flight control system of fixed-wing aircraft. We focus on the faults that are manifested in the control surface elements (e.g., aileron, elevator, rudder and stabilizer) of an aircraft. For demonstration purposes, we restrict our focus on the faults belonging to nine basic fault classes. The diagnostic tests are performed on the features extracted from fifty monitored system parameters. The proposed tests are able to uniquely isolate each of the faults at almost all severity levels. A neural network-based flight control simulator, FLTZ(Registered TradeMark), is used for the simulation of various faults in fixed-wing aircraft flight control systems for the purpose of FDI.

  19. Design Challenges Encountered in a Propulsion-Controlled Aircraft Flight Test Program

    Science.gov (United States)

    Maine, Trindel; Burken, John; Burcham, Frank; Schaefer, Peter

    1994-01-01

    The NASA Dryden Flight Research Center conducted flight tests of a propulsion-controlled aircraft system on an F-15 airplane. This system was designed to explore the feasibility of providing safe emergency landing capability using only the engines to provide flight control in the event of a catastrophic loss of conventional flight controls. Control laws were designed to control the flightpath and bank angle using only commands to the throttles. Although the program was highly successful, this paper highlights some of the challenges associated with using engine thrust as a control effector. These challenges include slow engine response time, poorly modeled nonlinear engine dynamics, unmodeled inlet-airframe interactions, and difficulties with ground effect and gust rejection. Flight and simulation data illustrate these difficulties.

  20. Aerodynamics of ski jumping flight and its control: II. Simulations

    Science.gov (United States)

    Lee, Jungil; Lee, Hansol; Kim, Woojin; Choi, Haecheon

    2015-11-01

    In a ski jumping competition, it is essential to analyze the effect of various posture parameters of a ski jumper to achieve a longer flight distance. For this purpose, we conduct a large eddy simulation (LES) of turbulent flow past a model ski jumper which is obtained by 3D scanning a ski jumper's body (Mr. Chil-Ku Kang, member of the Korean national team). The angle of attack of the jump ski is 30° and the Reynolds number based on the length of the jump ski is 540,000. The flow statistics including the drag and lift coefficients in flight are in good agreements with our own experimental data. We investigate the flow characteristics such as the flow separation and three-dimensional vortical structures and their effects on the drag and lift. In addition to LES, we construct a simple geometric model of a ski jumper where each part of the ski jumper is modeled as a canonical bluff body such as the sphere, cylinder and flat plate, to find its optimal posture. The results from this approach will be compared with those by LES and discussed. Supported by NRF program (2014M3C1B1033848, 2014R1A1A1002671).

  1. Theseus in Flight

    Science.gov (United States)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  2. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    Science.gov (United States)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  3. Integrated flight path planning system and flight control system for unmanned helicopters.

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM).

  4. Integrated Flight Path Planning System and Flight Control System for Unmanned Helicopters

    Science.gov (United States)

    Jan, Shau Shiun; Lin, Yu Hsiang

    2011-01-01

    This paper focuses on the design of an integrated navigation and guidance system for unmanned helicopters. The integrated navigation system comprises two systems: the Flight Path Planning System (FPPS) and the Flight Control System (FCS). The FPPS finds the shortest flight path by the A-Star (A*) algorithm in an adaptive manner for different flight conditions, and the FPPS can add a forbidden zone to stop the unmanned helicopter from crossing over into dangerous areas. In this paper, the FPPS computation time is reduced by the multi-resolution scheme, and the flight path quality is improved by the path smoothing methods. Meanwhile, the FCS includes the fuzzy inference systems (FISs) based on the fuzzy logic. By using expert knowledge and experience to train the FIS, the controller can operate the unmanned helicopter without dynamic models. The integrated system of the FPPS and the FCS is aimed at providing navigation and guidance to the mission destination and it is implemented by coupling the flight simulation software, X-Plane, and the computing software, MATLAB. Simulations are performed and shown in real time three-dimensional animations. Finally, the integrated system is demonstrated to work successfully in controlling the unmanned helicopter to operate in various terrains of a digital elevation model (DEM). PMID:22164029

  5. Free flight simulations of a dragonfly-like flapping wing-body model using the immersed boundary-lattice Boltzmann method

    International Nuclear Information System (INIS)

    Minami, Keisuke; Suzuki, Kosuke; Inamuro, Takaji

    2015-01-01

    Free flights of the dragonfly-like flapping wing-body model are numerically investigated using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m, and we set the parameters at Re = 200, Fr = 15, and m = 51. First, we simulate free flights of the model without the pitching rotation for various values of the phase lag angle ϕ between the forewing and the hindwing motions. We find that the wing-body model goes forward in spite of ϕ, and the model with ϕ = 0 ∘ and 90 ∘ goes upward against gravity. The model with ϕ =180 ∘ goes almost horizontally, and the model with ϕ =270 ∘ goes downward. That is, the moving direction of the model depends on the phase lag angle ϕ. Secondly, we simulate free flights with the pitching rotation for various values of the phase lag angle ϕ. It is found that in spite of ϕ the wing-body model turns gradually in the nose-up direction and goes back and down as the pitching angle Θ c increases. That is, the wing-body model cannot make a stable forward flight without control. Finally, we show a way to control the pitching motion by changing the lead–lag angle γ(t). We propose a simple proportional controller of γ(t) which makes stable flights within Θ c =±5 ∘ and works well even for a large disturbance. (paper)

  6. Morphing flight control surface for advanced flight performance

    Science.gov (United States)

    Detrick, Matt; Kwak, Seung-Keon; Yoon, Hwan-Sik

    2006-03-01

    A novel Morphing Flight Control Surface (MFCS) system has been developed. The distinction of this research effort is that the SenAnTech team has incorporated our innovative Highly Deformable Mechanism (HDM) into our MFCS. The feasibility of this novel technology for deformable wing structures, such as airfoil shaping, warping or twisting with a flexure-based high displacement PZT actuator has been demonstrated via computational simulations such as Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD). CFD was implemented to verify the accuracy of the complex potential flow theory for this application. Then, complex potential flow theory, kinematics, geometry, and static force analysis were incorporated into a multidisciplinary GUI simulation tool. This tool has been used to aid the design of the MFCS. The results show that we can achieve up to five degrees of wing twisting with our proposed system, while using minimal volume within the wing and adding little weight.

  7. Simulation model for the Boeing 720B aircraft-flight control system in continuous flight.

    Science.gov (United States)

    1971-08-01

    A mathematical model of the Boeing 720B aircraft and autopilot has been derived. The model is representative of the 720B aircraft for continuous flight within a flight envelope defined by a Mach number of .4 at 20,000 feet altitude in a cruise config...

  8. Integrated Test and Evaluation (ITE) Flight Test Series 4

    Science.gov (United States)

    Marston, Michael

    2016-01-01

    The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.

  9. Scaled Model Technology for Flight Research of General Aviation Aircraft, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Our proposed future Phase II activities are aimed at developing a scientifically based "tool box" for flight research using scaled models. These tools will be of...

  10. Fused Reality for Enhanced Flight Test Capabilities

    Science.gov (United States)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  11. Investigation of periodontal tissue during a long space flights

    Science.gov (United States)

    Solovyeva, Zoya; Viacheslav, Ilyin; Skedina, Marina

    Previous studies conducted on the International Space Station found that upon completion of the space flight there are significant changes in the local immunity and periodontal microflora of astronauts. Also research in ground-based experiments that simulate space flight factors showed that prolonged hypokinesia antiorthostatic leads to impaired functional indicators of the periodontal vascular system, an unidirectional change from the microbiota and the immune system. That results in the appearance and progressive increase of the parodontial pathogenic bacteria and increase of the content of immunoglobulins in the oral fluid. All these changes are classified as risk factors for the development of inflammatory periodontal diseases in astronauts. However, the studies were unable to determine whether the changes result from a long space flight and the peculiarities of formation the local immunity and periodontal microbiota during the space flight, or they are one of the specific manifestations of the readaptationary post-flight condition of the body. In this regard, the planned research in a long space flight suggests: to use the means of microbial control, which can retain of the anaerobes periodontal microbiota sampling directly in the space flight; to assess the specificity of changes of the periodontal immune status under the influence of the space flight factors, and to assess the state of microcirculation of periodontal tissue in astronauts. A comprehensive study of the reaction of dentition during the space flight will make it possible to study the pathogenesis of changes for developing an adequate prevention aimed at optimizing the state of dentition of the astronauts.

  12. Case Study: Test Results of a Tool and Method for In-Flight, Adaptive Control System Verification on a NASA F-15 Flight Research Aircraft

    Science.gov (United States)

    Jacklin, Stephen A.; Schumann, Johann; Guenther, Kurt; Bosworth, John

    2006-01-01

    Adaptive control technologies that incorporate learning algorithms have been proposed to enable autonomous flight control and to maintain vehicle performance in the face of unknown, changing, or poorly defined operating environments [1-2]. At the present time, however, it is unknown how adaptive algorithms can be routinely verified, validated, and certified for use in safety-critical applications. Rigorous methods for adaptive software verification end validation must be developed to ensure that. the control software functions as required and is highly safe and reliable. A large gap appears to exist between the point at which control system designers feel the verification process is complete, and when FAA certification officials agree it is complete. Certification of adaptive flight control software verification is complicated by the use of learning algorithms (e.g., neural networks) and degrees of system non-determinism. Of course, analytical efforts must be made in the verification process to place guarantees on learning algorithm stability, rate of convergence, and convergence accuracy. However, to satisfy FAA certification requirements, it must be demonstrated that the adaptive flight control system is also able to fail and still allow the aircraft to be flown safely or to land, while at the same time providing a means of crew notification of the (impending) failure. It was for this purpose that the NASA Ames Confidence Tool was developed [3]. This paper presents the Confidence Tool as a means of providing in-flight software assurance monitoring of an adaptive flight control system. The paper will present the data obtained from flight testing the tool on a specially modified F-15 aircraft designed to simulate loss of flight control faces.

  13. Computer-Aided Systems Engineering for Flight Research Projects Using a Workgroup Database

    Science.gov (United States)

    Mizukami, Masahi

    2004-01-01

    An online systems engineering tool for flight research projects has been developed through the use of a workgroup database. Capabilities are implemented for typical flight research systems engineering needs in document library, configuration control, hazard analysis, hardware database, requirements management, action item tracking, project team information, and technical performance metrics. Repetitive tasks are automated to reduce workload and errors. Current data and documents are instantly available online and can be worked on collaboratively. Existing forms and conventional processes are used, rather than inventing or changing processes to fit the tool. An integrated tool set offers advantages by automatically cross-referencing data, minimizing redundant data entry, and reducing the number of programs that must be learned. With a simplified approach, significant improvements are attained over existing capabilities for minimal cost. By using a workgroup-level database platform, personnel most directly involved in the project can develop, modify, and maintain the system, thereby saving time and money. As a pilot project, the system has been used to support an in-house flight experiment. Options are proposed for developing and deploying this type of tool on a more extensive basis.

  14. Comparison of flying qualities derived from in-flight and ground-based simulators for a jet-transport airplane for the approach and landing pilot tasks

    Science.gov (United States)

    Grantham, William D.

    1989-01-01

    The primary objective was to provide information to the flight controls/flying qualities engineer that will assist him in determining the incremental flying qualities and/or pilot-performance differences that may be expected between results obtained via ground-based simulation (and, in particular, the six-degree-of-freedom Langley Visual/Motion Simulator (VMS)) and flight tests. Pilot opinion and performance parameters derived from a ground-based simulator and an in-flight simulator are compared for a jet-transport airplane having 32 different longitudinal dynamic response characteristics. The primary pilot tasks were the approach and landing tasks with emphasis on the landing-flare task. The results indicate that, in general, flying qualities results obtained from the ground-based simulator may be considered conservative-especially when the pilot task requires tight pilot control as during the landing flare. The one exception to this, according to the present study, was that the pilots were more tolerant of large time delays in the airplane response on the ground-based simulator. The results also indicated that the ground-based simulator (particularly the Langley VMS) is not adequate for assessing pilot/vehicle performance capabilities (i.e., the sink rate performance for the landing-flare task when the pilot has little depth/height perception from the outside scene presentation).

  15. A MATLAB/Simulink based GUI for the CERES Simulator

    Science.gov (United States)

    Valencia, Luis H.

    1995-01-01

    The Clouds and The Earth's Radiant Energy System (CERES) simulator will allow flight operational familiarity with the CERES instrument prior to launch. It will provide a CERES instrument simulation facility for NASA Langley Research Center. NASA Goddard Space Flight Center and TRW. One of the objectives of building this simulator would be for use as a testbed for functionality checking of atypical memory uploads and for anomaly investigation. For instance, instrument malfunction due to memory damage requires troubleshooting on a simulator to determine the nature of the problem and to find a solution.

  16. Development and Evaluation of Fault-Tolerant Flight Control Systems

    Science.gov (United States)

    Song, Yong D.; Gupta, Kajal (Technical Monitor)

    2004-01-01

    The research is concerned with developing a new approach to enhancing fault tolerance of flight control systems. The original motivation for fault-tolerant control comes from the need for safe operation of control elements (e.g. actuators) in the event of hardware failures in high reliability systems. One such example is modem space vehicle subjected to actuator/sensor impairments. A major task in flight control is to revise the control policy to balance impairment detectability and to achieve sufficient robustness. This involves careful selection of types and parameters of the controllers and the impairment detecting filters used. It also involves a decision, upon the identification of some failures, on whether and how a control reconfiguration should take place in order to maintain a certain system performance level. In this project new flight dynamic model under uncertain flight conditions is considered, in which the effects of both ramp and jump faults are reflected. Stabilization algorithms based on neural network and adaptive method are derived. The control algorithms are shown to be effective in dealing with uncertain dynamics due to external disturbances and unpredictable faults. The overall strategy is easy to set up and the computation involved is much less as compared with other strategies. Computer simulation software is developed. A serious of simulation studies have been conducted with varying flight conditions.

  17. Performance Evaluation of Nose Cap to Silica Tile Joint of RLV-TD under the Simulated Flight Environment using Plasma Wind Tunnel Facility

    Science.gov (United States)

    Pillai, Aravindakshan; Krishnaraj, K.; Sreenivas, N.; Nair, Praveen

    2017-12-01

    Indian Space Research Organisation, India has successfully flight tested the reusable launch vehicle through launching of a demonstration flight known as RLV-TD HEX mission. This mission has given a platform for exposing the thermal protection system to the real hypersonic flight thermal conditions and thereby validated the design. In this vehicle, the nose cap region is thermally protected by carbon-carbon followed by silica tiles with a gap in between them for thermal expansion. The gap is filled with silica fibre. Base material on which the C-C is placed is made of molybdenum. Silica tile with strain isolation pad is bonded to aluminium structure. These interfaces with a variety of materials are characterised with different coefficients of thermal expansion joined together. In order to evaluate and qualify this joint, model tests were carried out in Plasma Wind Tunnel facility under the simultaneous simulation of heat flux and shear levels as expected in flight. The thermal and flow parameters around the model are determined and made available for the thermal analysis using in-house CFD code. Two tests were carried out. The measured temperatures at different locations were benign in both these tests and the SiC coating on C-C and the interface were also intact. These tests essentially qualified the joint interface between C-C and molybdenum bracket and C-C to silica tile interface of RLV-TD.

  18. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    Science.gov (United States)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  19. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    Science.gov (United States)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  20. STS payloads mission control study. Volume 2-A, Task 1: Joint products and functions for preflight planning of flight operations, training and simulations

    Science.gov (United States)

    1976-01-01

    Specific products and functions, and associated facility availability, applicable to preflight planning of flight operations were studied. Training and simulation activities involving joint participation of STS and payload operations organizations, are defined. The prelaunch activities required to prepare for the payload flight operations are emphasized.

  1. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    Science.gov (United States)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  2. Flight Planning

    Science.gov (United States)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  3. Flight Load Assessment for Light Aircraft Landing Trajectories in Windy Atmosphere and Near Wind Farms

    Directory of Open Access Journals (Sweden)

    Carmine Varriale

    2018-04-01

    Full Text Available This work focuses on the wake encounter problem occurring when a light, or very light, aircraft flies through or nearby a wind turbine wake. The dependency of the aircraft normal load factor on the distance from the turbine rotor in various flight and environmental conditions is quantified. For this research, a framework of software applications has been developed for generating and controlling a population of flight simulation scenarios in presence of assigned wind and turbulence fields. The JSBSim flight dynamics model makes use of several autopilot systems for simulating a realistic pilot behavior during navigation. The wind distribution, calculated with OpenFOAM, is a separate input for the dynamic model and is considered frozen during each flight simulation. The aircraft normal load factor during wake encounters is monitored at different distances from the rotor, aircraft speeds, rates of descent and crossing angles. Based on these figures, some preliminary guidelines and recommendations on safe encounter distances are provided for general aviation aircraft, with considerations on pilot comfort and flight safety. These are needed, for instance, when an accident risk assessment study is required for flight in proximity of aeolic parks. A link to the GitHub code repository is provided.

  4. Development of a Multi-Disciplinary Aerothermostructural Model Applicable to Hypersonic Flight

    Science.gov (United States)

    Kostyk, Chris; Risch, Tim

    2013-01-01

    The harsh and complex hypersonic flight environment has driven design and analysis improvements for many years. One of the defining characteristics of hypersonic flight is the coupled, multi-disciplinary nature of the dominant physics. In an effect to examine some of the multi-disciplinary problems associated with hypersonic flight engineers at the NASA Dryden Flight Research Center developed a non-linear 6 degrees-of-freedom, full vehicle simulation that includes the necessary model capabilities: aerothermal heating, ablation, and thermal stress solutions. Development of the tool and results for some investigations will be presented. Requirements and improvements for future work will also be reviewed. The results of the work emphasize the need for a coupled, multi-disciplinary analysis to provide accurate

  5. Simbol-X Formation Flight and Image Reconstruction

    Science.gov (United States)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  6. Stable Hovering Flight for a Small Unmanned Helicopter Using Fuzzy Control

    Directory of Open Access Journals (Sweden)

    Arbab Nighat Khizer

    2014-01-01

    Full Text Available Stable hover flight control for small unmanned helicopter under light air turbulent environment is presented. Intelligent fuzzy logic is chosen because it is a nonlinear control technique based on expert knowledge and is capable of handling sensor created noise and contradictory inputs commonly encountered in flight control. The fuzzy nonlinear control utilizes these distinct qualities for attitude, height, and position control. These multiple controls are developed using two-loop control structure by first designing an inner-loop controller for attitude angles and height and then by establishing outer-loop controller for helicopter position. The nonlinear small unmanned helicopter model used comes from X-Plane simulator. A simulation platform consisting of MATLAB/Simulink and X-Plane© flight simulator was introduced to implement the proposed controls. The main objective of this research is to design computationally intelligent control laws for hovering and to test and analyze this autopilot for small unmanned helicopter model on X-Plane under ideal and mild turbulent condition. Proposed fuzzy flight controls are validated using an X-Plane helicopter model before being embedded on actual helicopter. To show the effectiveness of the proposed fuzzy control method and its ability to cope with the external uncertainties, results are compared with a classical PD controller. Simulated results show that two-loop fuzzy controllers have a good ability to establish stable hovering for a class of unmanned rotorcraft in the presence of light turbulent environment.

  7. Evaluation of the Course of the Flight Simulators from the Perspective of Students and University Teachers

    Science.gov (United States)

    Kaysi, Feyzi; Bavli, Bünyamin; Gürol, Aysun

    2016-01-01

    The study evaluates the flight simulators course which was opened to fulfill the intermediate staff need of the sector. To collect data, Qualitative techniques were applied. Within this scope, the case study method was employed in the study. The study group consisted of students and instructors. In-depth and focus group interviews were conducted…

  8. Improving Aviation Safety with information Visualization: A Flight Simulation Study

    Science.gov (United States)

    Aragon, Cecilia R.; Hearst, Marti

    2005-01-01

    Many aircraft accidents each year are caused by encounters with invisible airflow hazards. Recent advances in aviation sensor technology offer the potential for aircraft-based sensors that can gather large amounts of airflow velocity data in real-time. With this influx of data comes the need to study how best to present it to the pilot - a cognitively overloaded user focused on a primary task other than that of information visualization. In this paper, we present the results of a usability study of an airflow hazard visualization system that significantly reduced the crash rate among experienced helicopter pilots flying a high fidelity, aerodynamically realistic fixed-base rotorcraft flight simulator into hazardous conditions. We focus on one particular aviation application, but the results may be relevant to user interfaces in other operationally stressful environments.

  9. Integrated Neural Flight and Propulsion Control System

    Science.gov (United States)

    Kaneshige, John; Gundy-Burlet, Karen; Norvig, Peter (Technical Monitor)

    2001-01-01

    This paper describes an integrated neural flight and propulsion control system. which uses a neural network based approach for applying alternate sources of control power in the presence of damage or failures. Under normal operating conditions, the system utilizes conventional flight control surfaces. Neural networks are used to provide consistent handling qualities across flight conditions and for different aircraft configurations. Under damage or failure conditions, the system may utilize unconventional flight control surface allocations, along with integrated propulsion control, when additional control power is necessary for achieving desired flight control performance. In this case, neural networks are used to adapt to changes in aircraft dynamics and control allocation schemes. Of significant importance here is the fact that this system can operate without emergency or backup flight control mode operations. An additional advantage is that this system can utilize, but does not require, fault detection and isolation information or explicit parameter identification. Piloted simulation studies were performed on a commercial transport aircraft simulator. Subjects included both NASA test pilots and commercial airline crews. Results demonstrate the potential for improving handing qualities and significantly increasing survivability rates under various simulated failure conditions.

  10. Space flight research leading to the development of enhanced plant products: Results from STS-94

    Science.gov (United States)

    Stodieck, Louis S.; Hoehn, Alex; Heyenga, A. Gerard

    1998-01-01

    Products derived from plants, such as foods, pharmaceuticals, lumber, paper, oils, etc., are pervasive in everyday life and generate revenues in the hundreds of billions of dollars. Research on space-grown plants has the potential to alter quantities, properties and types of plant-derived products in beneficial ways. Research on space grown plants may help expand the utilization of this resource for Earth based benefit to an even greater extent. The use of space flight conditions may help provide a greater understanding and ultimate manipulation of the metabolic and genetic control of commercially important plant products. Companies that derive and sell plant products could significantly benefit from investing in space research and development. A flight investigation was conducted on the Shuttle mission STS-94 to establish the initial experimental conditions necessary to test the hypothesis that the exposure of certain plant forms to an adequate period of microgravity may divert the cell metabolic expenditure on structural compounds such as lignin to alternative secondary metabolic compounds which are of commercial interest. Nine species of plants were grown for 16 days in the Astro/Plant Generic Bioprocessing Apparatus (Astro/PGBA) under well-controlled environmental conditions. Approximately half of the plant species exhibited significant growth comparable with synchronous ground controls. The other flight plant species were stunted and showed signs of stress with the cause still under investigation. For the plants that grew well, analyses are underway and are expected to demonstrate the potential for space flight biotechnology research.

  11. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    Science.gov (United States)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  12. Use of a Commercially Available Flight Simulator during Aircrew Performance Testing.

    Science.gov (United States)

    1991-11-01

    Automiated Battery of Performance-based Tests, NAMRL 1354, Naval Aerospace Medical Research Laboratory, Pensacola, FL, 1990. 13. Human Performance...ability of an aircraft to remain airborne well beyond the limits of its human operator. This capacity for longer flights, coupled with a tendency for short...Measurement, Final Report, Air Force Human Resources Laboratory, Brooks AFB, TX, 1983. 5. Stein, E.S., Measurement of Pilot Performance: A Master Journeyman

  13. Integrated technology rotor/flight research rotor hub concept definition

    Science.gov (United States)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  14. A stochastic six-degree-of-freedom flight simulator for passively controlled high power rockets

    OpenAIRE

    Box, Simon; Bishop, Christopher M.; Hunt, Hugh

    2011-01-01

    This paper presents a method for simulating the flight of a passively controlled rocket in six degrees of freedom, and the descent under parachute in three degrees of freedom, Also presented is a method for modelling the uncertainty in both the rocket dynamics and the atmospheric conditions using stochastic parameters and the Monte-Carlo method. Included within this we present a method for quantifying the uncertainty in the atmospheric conditions using historical atmospheric data. The core si...

  15. Flight Test Experience With an Electromechanical Actuator on the F-18 Systems Research Aircraft

    Science.gov (United States)

    Jensen, Stephen C.; Jenney, Gavin D.; Raymond, Bruce; Dawson, David

    2000-01-01

    Development of reliable power-by-wire actuation systems for both aeronautical and space applications has been sought recently to eliminate hydraulic systems from aircraft and spacecraft and thus improve safety, efficiency, reliability, and maintainability. The Electrically Powered Actuation Design (EPAD) program was a joint effort between the Air Force, Navy, and NASA to develop and fly a series of actuators validating power-by-wire actuation technology on a primary flight control surface of a tactical aircraft. To achieve this goal, each of the EPAD actuators was installed in place of the standard hydraulic actuator on the left aileron of the NASA F/A-18B Systems Research Aircraft (SRA) and flown throughout the SRA flight envelope. Numerous parameters were recorded, and overall actuator performance was compared with the performance of the standard hydraulic actuator on the opposite wing. This paper discusses the integration and testing of the EPAD electromechanical actuator (EMA) on the SRA. The architecture of the EMA system is discussed, as well as its integration with the F/A-18 Flight Control System. The flight test program is described, and actuator performance is shown to be very close to that of the standard hydraulic actuator it replaced. Lessons learned during this program are presented and discussed, as well as suggestions for future research.

  16. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  17. DAST in Flight

    Science.gov (United States)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  18. Design and Analysis of a Cable-Driven Test Apparatus for Flapping-Flight Research

    OpenAIRE

    Musick, Stephen J.

    2014-01-01

    The biology, physiology, kinematics, and aerodynamics of insect flight have been a longstanding fascination for biologists and engineers. The former three are easily obtained through the observation of the organic species. The latter though, is very difficult to study in this fashion. In many cases, aerodynamic forces and fluid-body interactions can be simulated with computational fluid dynamics; another option is to use dynamically-scaled, experimental set-ups to measure physically these val...

  19. Space Radiation Measurement on the Polar Route onboard the Korean Commercial Flights

    Directory of Open Access Journals (Sweden)

    Junga Hwang

    2010-03-01

    Full Text Available This study was performed by the policy research project of Ministry of Land, Transport and Maritime Affairs, which title is “Developing safety standards and management of space radiation on the polar route”. In this research, total six experiments were performed using Korean commercial flights (B747. Three of those are on the polar route and the other three are on the north pacific route. Space radiation exposure measured on the polar route is the average 84.7 uSv. The simulation result using CARI-6M program gives 84.9 uSv, which is very similar to measured value. For the departure flight using the north pacific route, the measured space radiation is the average 74.4 uSv. It seems that is not so different to use the polar route or not for the return flight because the higher latitude effect causing the increase of space radiation is compensated by the shortened flight time effect causing decreasing space radiation exposure.

  20. Recent estimates of capital flight

    OpenAIRE

    Claessens, Stijn; Naude, David

    1993-01-01

    Researchers and policymakers have in recent years paid considerable attention to the phenomenon of capital flight. Researchers have focused on four questions: What concept should be used to measure capital flight? What figure for capital flight will emerge, using this measure? Can the occurrence and magnitude of capital flight be explained by certain (economic) variables? What policy changes can be useful to reverse capital flight? The authors focus strictly on presenting estimates of capital...

  1. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    Science.gov (United States)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  2. Time-based MRPC detector response simulations for the CBM time-of-flight system

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Christian; Herrmann, Norbert [Physikalisches Institut und Fakultaet fuer Physik und Astronomie, Ruprecht-Karls-Universitaet Heidelberg (Germany); Collaboration: CBM-Collaboration

    2016-07-01

    The design goal of the future Compressed Baryonic Matter (CBM) experiment is to measure rare probes of dense strongly interacting matter with an unprecedented accuracy. Target interaction rates of up to 10 MHz need to be processed by the detector. The time-of-flight (TOF) wall of CBM which should provide hadron identification at particle fluxes of up to a few tens of kHz/cm{sup 2} is composed of high-resolution timing multi-gap resistive plate chambers (MRPCs). Due to the self-triggered digitization and readout scheme of CBM comprising online event reconstruction preparatory Monte Carlo (MC) transport and response simulations including the MRPC array need to be carried out in a time-based fashion. While in an event-based simulation mode interference between MC tracks in a detector volume owing to rate effects or electronics dead time is confined to a single event, time-based response simulations need to take into account track pile-up and interference across events. A proposed time-based digitizer class for CBM-TOF within the CbmRoot software framework is presented.

  3. Measurement and simulation of the in-flight radiation exposure on different air routes

    International Nuclear Information System (INIS)

    Hajek, M.; Berger, T.; Vana, N.

    2003-01-01

    The exposure of air-crew personnel to cosmic radiation is considered to be occupational exposure and requirements for dose assessment are given in the European Council Directive 96/29/EURATOM. The High-Temperature Ratio (HTR) Method for LiF: Mg, Ti TLDs utilizes the well-investigated relative intensity of the combined high-temperature glow peaks 6 and 7 compared with the dominant peak 5 (left-hand side of Figure 1) as an indication of the dose-average LET of a mixed radiation field of unknown composition. The difference in the peak-5 readings of the neutron-sensitive TLD-600 ( 6 LiF: Mg, Ti) and the neutron-insensitive TLD-700 ( 7 LiF: Mg, Ti) can be utilized to assess the neutron dose equivalent accumulated in-flight. For this purpose, the dosemeter crystals were calibrated individually in the CERN-EU High Energy Reference Field (CERF) [8] which simulates the cosmic-ray induced neutron spectrum in good detail. The experiments conducted onboard passenger aircraft on different north-bound and trans-equatorial flight routes were aimed at the following: to measure the total dose equivalent accumulated during the flight, to assess the contribution of neutrons, and to compare the results with calculations by means of the well-known CARI computer code. Measurements were performed on a series of eight north-bound flights between Cologne and Washington as well as on the routes Vienna-Atlanta, Vienna-Sydney and Vienna-Tokyo during different solar activity conditions. Precise altitude and route profiles were recorded by the pilots. The experimental results were compared with model calculations using the latest release 6M of the CARI code. Precise altitude and route data on a ten-minute to one-hour scale were taken as input. The calculated dose values indicate that the algorithms employed for the computational assessment of route doses have been significantly improved during the last decade. The CARI results generally tend to be in reasonable agreement with the measured

  4. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    Science.gov (United States)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  5. X-36 in Flight over Mojave Desert during 5th Flight

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  6. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    Science.gov (United States)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  7. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  8. Dryden Flight Research Center Critical Chain Project Management Implementation

    Science.gov (United States)

    Hines, Dennis O.

    2012-01-01

    In Fiscal Year 2011 Dryden Flight Research Center (DFRC) implemented a new project management system called Critical Chain Project Management (CCPM). Recent NASA audits have found that the Dryden workforce is strained under increasing project demand and that multi-tasking has been carried to a whole new level at Dryden. It is very common to have an individual work on 10 different projects during a single pay period. Employee surveys taken at Dryden have identified work/life balance as the number one issue concerning employees. Further feedback from the employees indicated that project planning is the area needing the most improvement. In addition, employees have been encouraged to become more innovative, improve job skills, and seek ways to improve overall job efficiency. In order to deal with these challenges, DFRC management decided to adopt the CCPM system that is specifically designed to operate in a resource constrained multi-project environment. This paper will discuss in detail the rationale behind the selection of CCPM and the goals that will be achieved through this implementation. The paper will show how DFRC is tailoring the CCPM system to the flight research environment as well as laying out the implementation strategy. Results of the ongoing implementation will be discussed as well as change management challenges and organizational cultural changes. Finally this paper will present some recommendations on how this system could be used by selected NASA projects or centers.

  9. Flocking and self-defense: experiments and simulations of avian mobbing

    Science.gov (United States)

    Kane, Suzanne Amador

    2011-03-01

    We have performed motion capture studies in the field of avian mobbing, in which flocks of prey birds harass predatory birds. Our empirical studies cover both field observations of mobbing occurring in mid-air, where both predator and prey are in flight, and an experimental system using actual prey birds and simulated predator ``perch and wait'' strategies. To model our results and establish the effectiveness of mobbing flight paths at minimizing risk of capture while optimizing predator harassment, we have performed computer simulations using the actual measured trajectories of mobbing prey birds combined with model predator trajectories. To accurately simulate predator motion, we also measured raptor acceleration and flight dynamics, well as prey-pursuit strategies. These experiments and theoretical studies were all performed with undergraduate research assistants in a liberal arts college setting. This work illustrates how biological physics provides undergraduate research projects well-suited to the abilities of physics majors with interdisciplinary science interests and diverse backgrounds.

  10. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    Science.gov (United States)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  11. Crafting Flight: Aircraft Pioneers and the Contributions of the Men and Women of NASA Langley Research Center

    Science.gov (United States)

    Schultz, James

    2003-01-01

    While this is a self-contained history of NASA Langley Research Center's contributions to flight, many other organizations around the country played a vital role in the work described in this book.When you pass through the front gates of NASA Langley Research Center you are entering an extraordinary place. You could easily miss that fact, however. A few years cross-state bicycle tour passed through the Center. As interesting as looping around Center was, the riders observed that nothing about the vaguely industrial site fit the conventional stereotypes of what high tech looks like. NASA Langley does not fit many stereotypes. It takes a close examination to discover the many ways it has contributed to development of flight. As part of the national celebrations commemorating the 100th anniversary of the Wright brothers first flight, James Schultz, an experienced journalist with a gift for translating the language of engineers and scientists into prose that nonspecialists can comprehend, has revised and expanded Winds of Change , his wonderful guide to the Center. This revised book, Crafting Flight , invites you inside. You will read about one of the Nation s oldest research and development facilities, a place of imagination and ingenuity.

  12. Intelligent Simulation-Based Tutor for Flight Training

    National Research Council Canada - National Science Library

    Remolina, Emilio; Ramachandran, Sowmya; Fu, Daniel; Stottler, Richard; Howse, William R

    2004-01-01

    .... However, flight training is still limited by the availability of instructor pilots. The adage "practice makes perfect" is nowhere truer than in the learning of psychomotor skills such as flying...

  13. A Simple Flight Mill for the Study of Tethered Flight in Insects.

    Science.gov (United States)

    Attisano, Alfredo; Murphy, James T; Vickers, Andrew; Moore, Patricia J

    2015-12-10

    Flight in insects can be long-range migratory flights, intermediate-range dispersal flights, or short-range host-seeking flights. Previous studies have shown that flight mills are valuable tools for the experimental study of insect flight behavior, allowing researchers to examine how factors such as age, host plants, or population source can influence an insects' propensity to disperse. Flight mills allow researchers to measure components of flight such as speed and distance flown. Lack of detailed information about how to build such a device can make their construction appear to be prohibitively complex. We present a simple and relatively inexpensive flight mill for the study of tethered flight in insects. Experimental insects can be tethered with non-toxic adhesives and revolve around an axis by means of a very low friction magnetic bearing. The mill is designed for the study of flight in controlled conditions as it can be used inside an incubator or environmental chamber. The strongest points are the very simple electronic circuitry, the design that allows sixteen insects to fly simultaneously allowing the collection and analysis of a large number of samples in a short time and the potential to use the device in a very limited workspace. This design is extremely flexible, and we have adjusted the mill to accommodate different species of insects of various sizes.

  14. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  15. Management Of Trainings With Use Of Flight Simulators In Compliance With Characteristic Parameters Of Equipment

    Directory of Open Access Journals (Sweden)

    Barszcz Piotr

    2015-12-01

    Full Text Available Flights conditions of combat aircrafts subject to dynamic changes in variable environment, where properly trained and skilled pilots, capable of perceiving stimuli from outside, play key roles in the decision-making process. The study discloses analyses that have been completed on grounds of survey results carried out for a specific population of cadets and pilots that had practiced on flight simulators. The surveys consisted in measurements of the human response time to artificially arranged emergency circumstances with counting of misbehaviour and errors. Then, upon analysis of correlation between skill features demonstrated by pilot candidates (cadets and trained pilots and with consideration to functions of probability distribution of these features it is possible to estimate expected results that should be achieved by cadets for specific exercises to assess the training system as efficient and suitable to provide intended results when real tasks are assigned to trainees flying eventual aircrafts.

  16. Manual Manipulation of Engine Throttles for Emergency Flight Control

    Science.gov (United States)

    Burcham, Frank W., Jr.; Fullerton, C. Gordon; Maine, Trindel A.

    2004-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only engines thrust. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. Flight test and simulation results on many airplanes have shown that pilot manipulation of throttles is usually adequate to maintain up-and-away flight, but is most often not capable of providing safe landings. There are techniques that will improve control and increase the chances of a survivable landing. This paper reviews the principles of throttles-only control (TOC), a history of accidents or incidents in which some or all flight controls were lost, manual TOC results for a wide range of airplanes from simulation and flight, and suggested techniques for flying with throttles only and making a survivable landing.

  17. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    Science.gov (United States)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements

  18. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    Science.gov (United States)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices

  19. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    International Nuclear Information System (INIS)

    Gruenwald, Oxana

    2011-01-01

    In 2007 a new project has been launched in a cooperation between the RWTH Aachen Physics Department, the University Hospital Aachen and the Philips Research Laboratories. The project aim is to validate and improve GEANT4 nuclear interaction models for use in proton and ion therapy. The method chosen here is the measurement of nuclear reaction cross sections which will not only provide a comparison to the simulation but will also allow to improve some of the parameters in the nuclear models. In the first phase of the project 200 MeV protons are used as a projectile in combination with a thin graphite target. For use in particle therapy the excitation functions of the most frequently produced isotopes need to be measured with an accuracy of 10% or less. For this purpose a dedicated detector system has been designed and implemented in GEANT4. The detection of target fragments produced by protons in graphite is achieved via time-of-flight spectrometry. In the setup presented here the primary beam first hits the Start detector and initiates the time-of-flight measurement before it passes through the apertures of two Veto detectors and impinges on the target. Successively, the secondary particles emanating from the target travel a short distance of 70/80 cm through vacuum (0.1 mbar) before they hit one of the 20 Stop detectors which end the time-of-flight measurement and record the energy deposited by the particle. The dissertation at hand describes the underlying detector concept and presents a detailed GEANT4 simulation of the setup which allows to evaluate the detector performance with respect to target fragment identification at a projectile energy of 200 MeV. At first, correlations of time-of-flight and energy deposition are built from simulated data and are subsequently used to reconstruct mass spectra of the detected fragments. Such influences on the detection performance as the target thickness, the residual pressure within the detector chamber, the Veto system

  20. GEANT4 simulation and evaluation of a time-of-flight spectrometer for nuclear cross section measurements in particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Gruenwald, Oxana

    2011-06-08

    In 2007 a new project has been launched in a cooperation between the RWTH Aachen Physics Department, the University Hospital Aachen and the Philips Research Laboratories. The project aim is to validate and improve GEANT4 nuclear interaction models for use in proton and ion therapy. The method chosen here is the measurement of nuclear reaction cross sections which will not only provide a comparison to the simulation but will also allow to improve some of the parameters in the nuclear models. In the first phase of the project 200 MeV protons are used as a projectile in combination with a thin graphite target. For use in particle therapy the excitation functions of the most frequently produced isotopes need to be measured with an accuracy of 10% or less. For this purpose a dedicated detector system has been designed and implemented in GEANT4. The detection of target fragments produced by protons in graphite is achieved via time-of-flight spectrometry. In the setup presented here the primary beam first hits the Start detector and initiates the time-of-flight measurement before it passes through the apertures of two Veto detectors and impinges on the target. Successively, the secondary particles emanating from the target travel a short distance of 70/80 cm through vacuum (0.1 mbar) before they hit one of the 20 Stop detectors which end the time-of-flight measurement and record the energy deposited by the particle. The dissertation at hand describes the underlying detector concept and presents a detailed GEANT4 simulation of the setup which allows to evaluate the detector performance with respect to target fragment identification at a projectile energy of 200 MeV. At first, correlations of time-of-flight and energy deposition are built from simulated data and are subsequently used to reconstruct mass spectra of the detected fragments. Such influences on the detection performance as the target thickness, the residual pressure within the detector chamber, the Veto system

  1. Implementation of Dryden Continuous Turbulence Model into Simulink for LSA-02 Flight Test Simulation

    Science.gov (United States)

    Ichwanul Hakim, Teuku Mohd; Arifianto, Ony

    2018-04-01

    Turbulence is a movement of air on small scale in the atmosphere that caused by instabilities of pressure and temperature distribution. Turbulence model is integrated into flight mechanical model as an atmospheric disturbance. Common turbulence model used in flight mechanical model are Dryden and Von Karman model. In this minor research, only Dryden continuous turbulence model were made. Dryden continuous turbulence model has been implemented, it refers to the military specification MIL-HDBK-1797. The model was implemented into Matlab Simulink. The model will be integrated with flight mechanical model to observe response of the aircraft when it is flight through turbulence field. The turbulence model is characterized by multiplying the filter which are generated from power spectral density with band-limited Gaussian white noise input. In order to ensure that the model provide a good result, model verification has been done by comparing the implemented model with the similar model that is provided in aerospace blockset. The result shows that there are some difference for 2 linear velocities (vg and wg), and 3 angular rate (pg, qg and rg). The difference is instantly caused by different determination of turbulence scale length which is used in aerospace blockset. With the adjustment of turbulence length in the implemented model, both model result the similar output.

  2. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    Science.gov (United States)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  3. A Model Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete Point Linear Models

    Science.gov (United States)

    2016-04-01

    AND ROTORCRAFT FROM DISCRETE -POINT LINEAR MODELS Eric L. Tobias and Mark B. Tischler Aviation Development Directorate Aviation and Missile...Stitching Architecture for Continuous Full Flight-Envelope Simulation of Fixed-Wing Aircraft and Rotorcraft from Discrete -Point Linear Models 5...of discrete -point linear models and trim data. The model stitching simulation architecture is applicable to any aircraft configuration readily

  4. Guidance concepts for time-based flight operations

    Science.gov (United States)

    Vicroy, Dan D.

    1990-01-01

    Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

  5. Flight Test Results of a GPS-Based Pitot-Static Calibration Method Using Output-Error Optimization for a Light Twin-Engine Airplane

    Science.gov (United States)

    Martos, Borja; Kiszely, Paul; Foster, John V.

    2011-01-01

    As part of the NASA Aviation Safety Program (AvSP), a novel pitot-static calibration method was developed to allow rapid in-flight calibration for subscale aircraft while flying within confined test areas. This approach uses Global Positioning System (GPS) technology coupled with modern system identification methods that rapidly computes optimal pressure error models over a range of airspeed with defined confidence bounds. This method has been demonstrated in subscale flight tests and has shown small 2- error bounds with significant reduction in test time compared to other methods. The current research was motivated by the desire to further evaluate and develop this method for full-scale aircraft. A goal of this research was to develop an accurate calibration method that enables reductions in test equipment and flight time, thus reducing costs. The approach involved analysis of data acquisition requirements, development of efficient flight patterns, and analysis of pressure error models based on system identification methods. Flight tests were conducted at The University of Tennessee Space Institute (UTSI) utilizing an instrumented Piper Navajo research aircraft. In addition, the UTSI engineering flight simulator was used to investigate test maneuver requirements and handling qualities issues associated with this technique. This paper provides a summary of piloted simulation and flight test results that illustrates the performance and capabilities of the NASA calibration method. Discussion of maneuver requirements and data analysis methods is included as well as recommendations for piloting technique.

  6. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2006-01-01

    In a 3-row, 21-seat section of a simulated aircraft cabin that had been installed in a climate chamber, 4 groups of 17 subjects, acting as passengers and crew, took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.......4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  7. Virtual environments simulation in research reactor

    Science.gov (United States)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  8. Flight Results of the NF-15B Intelligent Flight Control System (IFCS) Aircraft with Adaptation to a Longitudinally Destabilized Plant

    Science.gov (United States)

    Bosworth, John T.

    2008-01-01

    Adaptive flight control systems have the potential to be resilient to extreme changes in airplane behavior. Extreme changes could be a result of a system failure or of damage to the airplane. The goal for the adaptive system is to provide an increase in survivability in the event that these extreme changes occur. A direct adaptive neural-network-based flight control system was developed for the National Aeronautics and Space Administration NF-15B Intelligent Flight Control System airplane. The adaptive element was incorporated into a dynamic inversion controller with explicit reference model-following. As a test the system was subjected to an abrupt change in plant stability simulating a destabilizing failure. Flight evaluations were performed with and without neural network adaptation. The results of these flight tests are presented. Comparison with simulation predictions and analysis of the performance of the adaptation system are discussed. The performance of the adaptation system is assessed in terms of its ability to stabilize the vehicle and reestablish good onboard reference model-following. Flight evaluation with the simulated destabilizing failure and adaptation engaged showed improvement in the vehicle stability margins. The convergent properties of this initial system warrant additional improvement since continued maneuvering caused continued adaptation change. Compared to the non-adaptive system the adaptive system provided better closed-loop behavior with improved matching of the onboard reference model. A detailed discussion of the flight results is presented.

  9. Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    Science.gov (United States)

    Brown, Nelson A.

    2009-01-01

    This video presentation reviews the F-15 Intelligent Flight Control System and contains clips of flight tests and aircraft performance in the areas of target tracking, takeoff and differential stabilators. Video of the APG milestone flight 1g formation is included.

  10. Orion Exploration Flight Test Post-Flight Inspection and Analysis

    Science.gov (United States)

    Miller, J. E.; Berger, E. L.; Bohl, W. E.; Christiansen, E. L.; Davis, B. A.; Deighton, K. D.; Enriquez, P. A.; Garcia, M. A.; Hyde, J. L.; Oliveras, O. M.

    2017-01-01

    The principal mechanism for developing orbital debris environment models, is to make observations of larger pieces of debris in the range of several centimeters and greater using radar and optical techniques. For particles that are smaller than this threshold, breakup and migration models of particles to returned surfaces in lower orbit are relied upon to quantify the flux. This reliance on models to derive spatial densities of particles that are of critical importance to spacecraft make the unique nature of the EFT-1's return surface a valuable metric. To this end detailed post-flight inspections have been performed of the returned EFT-1 backshell, and the inspections identified six candidate impact sites that were not present during the pre-flight inspections. This paper describes the post-flight analysis efforts to characterize the EFT-1 mission craters. This effort included ground based testing to understand small particle impact craters in the thermal protection material, the pre- and post-flight inspection, the crater analysis using optical, X-ray computed tomography (CT) and scanning electron microscope (SEM) techniques, and numerical simulations.

  11. A simulator-based study of in-flight auscultation.

    Science.gov (United States)

    Tourtier, Jean-Pierre; Libert, Nicolas; Clapson, Patrick; Dubourdieu, Stéphane; Jost, Daniel; Tazarourte, Karim; Astaud, Cécil-Emmanuel; Debien, Bruno; Auroy, Yves

    2014-04-01

    The use of a stethoscope is essential to the delivery of continuous, supportive en route care during aeromedical evacuations. We compared the capability of 2 stethoscopes (electronic, Litmann 3000; conventional, Litmann Cardiology III) at detecting pathologic heart and lung sounds, aboard a C135, a medical transport aircraft. Sounds were mimicked using a mannequin-based simulator SimMan. Five practitioners examined the mannequin during a fly, with a variety of abnormalities as follows: crackles, wheezing, right and left lung silence, as well as systolic, diastolic, and Austin-Flint murmur. The comparison for diagnosis assessed (correct or wrong) between using the electronic and conventional stethoscopes were performed as a McNemar test. A total of 70 evaluations were performed. For cardiac sounds, diagnosis was right in 0/15 and 4/15 auscultations, respectively, with conventional and electronic stethoscopes (McNemar test, P = 0.13). For lung sounds, right diagnosis was found with conventional stethoscope in 10/20 auscultations versus 18/20 with electronic stethoscope (P = 0.013). Flight practitioners involved in aeromedical evacuation on C135 plane are more able to practice lung auscultation on a mannequin with this amplified stethoscope than with the traditional one. No benefit was found for heart sounds.

  12. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi; Garcia, Daniel; Calo, Victor M.

    2014-01-01

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  13. Enclosure enhancement of flight performance

    KAUST Repository

    Ghommem, Mehdi

    2014-08-19

    We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  14. Proposed Flight Research of a Dual-Bell Rocket Nozzle Using the NASA F-15 Airplane

    Science.gov (United States)

    Jones, Daniel S.; Bui, Trong T.; Ruf, Joseph H.

    2013-01-01

    For more than a half-century, several types of altitude-compensating rocket nozzles have been proposed and analyzed, but very few have been adequately tested in a relevant flight environment. One type of altitude-compensating nozzle is the dual-bell rocket nozzle, which was first introduced into literature in 1949. Despite the performance advantages that have been predicted, both analytically and through static test data, the dual-bell nozzle has still not been adequately tested in a relevant flight environment. This paper proposes a method for conducting testing and research with a dual-bell rocket nozzle in a flight environment. We propose to leverage the existing NASA F-15 airplane and Propulsion Flight Test Fixture as the flight testbed, with the dual-bell nozzle operating during captive-carried flights, and with the nozzle subjected to a local flow field similar to that of a launch vehicle. The primary objective of this effort is not only to advance the technology readiness level of the dual-bell nozzle, but also to gain a greater understanding of the nozzle mode transitional sensitivity to local flow-field effects, and to quantify the performance benefits with this technology. The predicted performance benefits are significant, and may result in reducing the cost of delivering payloads to low-Earth orbit.

  15. A time-compressed simulated geomagnetic storm influences the nest-exiting flight angles of the stingless bee Tetragonisca angustula

    Science.gov (United States)

    Esquivel, D. M. S.; Corrêa, A. A. C.; Vaillant, O. S.; de Melo, V. Bandeira; Gouvêa, G. S.; Ferreira, C. G.; Ferreira, T. A.; Wajnberg, E.

    2014-03-01

    Insects have been used as models for understanding animal orientation. It is well accepted that social insects such as honeybees and ants use different natural cues in their orientation mechanism. A magnetic sensitivity was suggested for the stingless bee Schwarziana quadripunctata, based on the observation of a surprising effect of a geomagnetic storm on the nest-exiting flight angles. Stimulated by this result, in this paper, the effects of a time-compressed simulated geomagnetic storm (TC-SGS) on the nest-exiting flight angles of another stingless bee, Tetragonisca angustula, are presented. Under an applied SGS, either on the horizontal or vertical component of the geomagnetic field, both nest-exiting flight angles, dip and azimuth, are statistically different from those under geomagnetic conditions. The angular dependence of ferromagnetic resonance (FMR) spectra of whole stingless bees shows the presence of organized magnetic nanoparticles in their bodies, which indicates this material as a possible magnetic detector.

  16. Plasma theory and simulation research

    International Nuclear Information System (INIS)

    Birdsall, C.K.

    1989-01-01

    Our research group uses both theory and simulation as tools in order to increase the understanding of instabilities, heating, diffusion, transport and other phenomena in plasmas. We also work on the improvement of simulation, both theoretically and practically. Our focus has been more and more on the plasma edge (the ''sheath''), interactions with boundaries, leading to simulations of whole devices (someday a numerical tokamak)

  17. Suborbital Science Program: Dryden Flight Research Center

    Science.gov (United States)

    DelFrate, John

    2008-01-01

    This viewgraph presentation reviews the suborbital science program at NASA Dryden Flight Research Center. The Program Objectives are given in various areas: (1) Satellite Calibration and Validation (Cal/val)--Provide methods to perform the cal/val requirements for Earth Observing System satellites; (2) New Sensor Development -- Provide methods to reduce risk for new sensor concepts and algorithm development prior to committing sensors to operations; (3) Process Studies -- Facilitate the acquisition of high spatial/temporal resolution focused measurements that are required to understand small atmospheric and surface structures which generate powerful Earth system effects; and (4) Airborne Networking -- Develop disruption-tolerant networking to enable integrated multiple scale measurements of critical environmental features. Dryden supports the NASA Airborne Science Program and the nation in several elements: ER-2, G-3, DC-8, Ikhana (Predator B) & Global Hawk and Reveal. These are reviewed in detail in the presentation.

  18. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    Science.gov (United States)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  19. Enclosure enhancement of flight performance

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available We use a potential flow solver to investigate the aerodynamic aspects of flapping flights in enclosed spaces. The enclosure effects are simulated by the method of images. Our study complements previous aerodynamic analyses which considered only the near-ground flight. The present results show that flying in the proximity of an enclosure affects the aerodynamic performance of flapping wings in terms of lift and thrust generation and power consumption. It leads to higher flight efficiency and more than 5% increase of the generation of lift and thrust.

  20. X-43A Flight Controls

    Science.gov (United States)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  1. The current state of bone loss research: data from spaceflight and microgravity simulators.

    Science.gov (United States)

    Nagaraja, Mamta Patel; Risin, Diana

    2013-05-01

    Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures. Copyright © 2012 Wiley Periodicals, Inc.

  2. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  3. Formation Flight Control System for In-Flight Sweet Spot Estimation

    NARCIS (Netherlands)

    Brodecki, M.; Subbarao, K.; Chu, Q.P.

    2013-01-01

    A formation flight control system has been designed that addresses the unique environment encountered by aircraft flying in formation and in the upwash of the leading aircraft. In order to test the control system a simulation environment has been created that adequately represents the aerodynamic

  4. System Engineering Strategy for Distributed Multi-Purpose Simulation Architectures

    Science.gov (United States)

    Bhula, Dlilpkumar; Kurt, Cindy Marie; Luty, Roger

    2007-01-01

    This paper describes the system engineering approach used to develop distributed multi-purpose simulations. The multi-purpose simulation architecture focuses on user needs, operations, flexibility, cost and maintenance. This approach was used to develop an International Space Station (ISS) simulator, which is called the International Space Station Integrated Simulation (ISIS)1. The ISIS runs unmodified ISS flight software, system models, and the astronaut command and control interface in an open system design that allows for rapid integration of multiple ISS models. The initial intent of ISIS was to provide a distributed system that allows access to ISS flight software and models for the creation, test, and validation of crew and ground controller procedures. This capability reduces the cost and scheduling issues associated with utilizing standalone simulators in fixed locations, and facilitates discovering unknowns and errors earlier in the development lifecycle. Since its inception, the flexible architecture of the ISIS has allowed its purpose to evolve to include ground operator system and display training, flight software modification testing, and as a realistic test bed for Exploration automation technology research and development.

  5. Simulating Non-Fickian Transport across Péclet Regimes by doing Lévy Flights in the Rank Space of Velocity

    Science.gov (United States)

    Most, S.; Dentz, M.; Bolster, D.; Bijeljic, B.; Nowak, W.

    2017-12-01

    Transport in real porous media shows non-Fickian characteristics. In the Lagrangian perspective this leads to skewed distributions of particle arrival times. The skewness is triggered by particles' memory of velocity that persists over a characteristic length. Capturing process memory is essential to represent non-Fickianity thoroughly. Classical non-Fickian models (e.g., CTRW models) simulate the effects of memory but not the mechanisms leading to process memory. CTRWs have been applied successfully in many studies but nonetheless they have drawbacks. In classical CTRWs each particle makes a spatial transition for which each particle adapts a random transit time. Consecutive transit times are drawn independently from each other, and this is only valid for sufficiently large spatial transitions. If we want to apply a finer numerical resolution than that, we have to implement memory into the simulation. Recent CTRW methods use transitions matrices to simulate correlated transit times. However, deriving such transition matrices require transport data of a fine-scale transport simulation, and the obtained transition matrix is solely valid for this single Péclet regime. The CTRW method we propose overcomes all three drawbacks: 1) We simulate transport without restrictions in transition length. 2) We parameterize our CTRW without requiring a transport simulation. 3) Our parameterization scales across Péclet regimes. We do so by sampling the pore-scale velocity distribution to generate correlated transit times as a Lévy flight on the CDF-axis of velocities with reflection at 0 and 1. The Lévy flight is parametrized only by the correlation length. We explicitly model memory including the evolution and decay of non-Fickianity, so it extends from local via pre-asymptotic to asymptotic scales.

  6. Building Airport Surface HITL Simulation Capability

    Science.gov (United States)

    Chinn, Fay Cherie

    2016-01-01

    FutureFlight Central is a high fidelity, real-time simulator designed to study surface operations and automation. As an air traffic control tower simulator, FFC allows stakeholders such as the FAA, controllers, pilots, airports, and airlines to develop and test advanced surface and terminal area concepts and automation including NextGen and beyond automation concepts and tools. These technologies will improve the safety, capacity and environmental issues facing the National Airspace system. FFC also has extensive video streaming capabilities, which combined with the 3-D database capability makes the facility ideal for any research needing an immersive virtual and or video environment. FutureFlight Central allows human in the loop testing which accommodates human interactions and errors giving a more complete picture than fast time simulations. This presentation describes FFCs capabilities and the components necessary to build an airport surface human in the loop simulation capability.

  7. Theseus Landing Following Maiden Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it comes in for a landing on Rogers Dry Lake after its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able

  8. Flight Test of an Intelligent Flight-Control System

    Science.gov (United States)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    inputs with the outputs provided to instrumentation only. The IFCS was not used to control the airplane. In another stage of the flight test, the Phase I pre-trained neural network was integrated into a Phase III version of the flight control system. The Phase I pretrained neural network provided realtime stability and control derivatives to a Phase III controller that was based on a stochastic optimal feedforward and feedback technique (SOFFT). This combined Phase I/III system was operated together with the research flight-control system (RFCS) of the F-15 ACTIVE during the flight test. The RFCS enables the pilot to switch quickly from the experimental- research flight mode back to the safe conventional mode. These initial IFCS ACP flight tests were completed in April 1999. The Phase I/III flight test milestone was to demonstrate, across a range of subsonic and supersonic flight conditions, that the pre-trained neural network could be used to supply real-time aerodynamic stability and control derivatives to the closed-loop optimal SOFFT flight controller. Additional objectives attained in the flight test included (1) flight qualification of a neural-network-based control system; (2) the use of a combined neural-network/closed-loop optimal flight-control system to obtain level-one handling qualities; and (3) demonstration, through variation of control gains, that different handling qualities can be achieved by setting new target parameters. In addition, data for the Phase-II (on-line-learning) neural network were collected, during the use of stacked-frequency- sweep excitation, for post-flight analysis. Initial analysis of these data showed the potential for future flight tests that will incorporate the real-time identification and on-line learning aspects of the IFCS.

  9. [Use of driving simulators in psychological research].

    Science.gov (United States)

    Andysz, Aleksandra; Waszkowska, Małgorzata; Merecz, Dorota; Drabek, Marcin

    2010-01-01

    The history of simulators dates back to the first decades of the twentieth century. At the beginning they were used to train pilots, and eventually they were used in the automotive industry for testing the strength of new vehicles and ergonomic solutions. With time research institutions and technical universities from outside the automotive industry have become more and more interested in simulators. Attractiveness of simulators for researchers is based on a number of important factors: they create the possibility of modeling, control and repeatability of different experimental situations, reducing at the same time the impact of confounding factors. Simulators have a great potential for data collection and processing. What's more, they are safe and ecologic. These values make them almost an ideal research tool. The article presents a review of psychological studies with use of vehicle driving simulators. It also points to advantages and disadvantages of these devices and outlines the future prospects for experimental research.

  10. A unified flight control methodology for a compound rotorcraft in fundamental and aerobatic maneuvering flight

    Science.gov (United States)

    Thorsen, Adam

    This study investigates a novel approach to flight control for a compound rotorcraft in a variety of maneuvers ranging from fundamental to aerobatic in nature. Fundamental maneuvers are a class of maneuvers with design significance that are useful for testing and tuning flight control systems along with uncovering control law deficiencies. Aerobatic maneuvers are a class of aggressive and complex maneuvers with more operational significance. The process culminating in a unified approach to flight control includes various control allocation studies for redundant controls in trim and maneuvering flight, an efficient methodology to simulate non-piloted maneuvers with varying degrees of complexity, and the setup of an unconventional control inceptor configuration along with the use of a flight simulator to gather pilot feedback in order to improve the unified control architecture. A flight path generation algorithm was developed to calculate control inceptor commands required for a rotorcraft in aerobatic maneuvers. This generalized algorithm was tailored to generate flight paths through optimization methods in order to satisfy target terminal position coordinates or to minimize the total time of a particular maneuver. Six aerobatic maneuvers were developed drawing inspiration from air combat maneuvers of fighter jet aircraft: Pitch-Back Turn (PBT), Combat Ascent Turn (CAT), Combat Descent Turn (CDT), Weaving Pull-up (WPU), Combat Break Turn (CBT), and Zoom and Boom (ZAB). These aerobatic maneuvers were simulated at moderate to high advance ratios while fundamental maneuvers of the compound including level accelerations/decelerations, climbs, descents, and turns were investigated across the entire flight envelope to evaluate controller performance. The unified control system was developed to allow controls to seamlessly transition between manual and automatic allocations while ensuring that the axis of control for a particular inceptor remained constant with flight

  11. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    (see Figure 1). The MSFC algorithm design was formulated during the Constellation Program and reached a high maturity level during SLS through simulation-based development and internal and external analytical review. The AAC algorithm design has three summary-level objectives: (1) "Do no harm;" return to baseline control design when not needed, (2) Increase performance; respond to error in ability of vehicle to track command, and (3) Regain stability; respond to undesirable control-structure interaction or other parasitic dynamics. AAC has been successfully implemented as part of the Space Launch System baseline design, including extensive testing in high-fidelity 6-DOF simulations the details of which are described in [1]. The Dryden Flight Research Center's F/A-18 Full-Scale Advanced Systems Testbed (FAST) platform is used to conduct an algorithm flight characterization experiment intended to fully vet the aforementioned design objectives. FAST was specifically designed with this type of test program in mind. The onboard flight control system has full-authority experiment control of ten aerodynamic effectors and two throttles. It has production and research sensor inputs and pilot engage/disengage and real-time configuration of up to eight different experiments on a single flight. It has failure detection and automatic reversion to fail-safe mode. The F/A-18 aircraft has an experiment envelope cleared for full-authority control and maneuvering and exhibits characteristics for robust recovery from unusual attitudes and configurations aided by the presence of a qualified test pilot. The F/A-18 aircraft has relatively high mass and inertia with exceptional performance; the F/A-18 also has a large thrust-to-weight ratio, owing to its military heritage. This enables the simulation of a portion of the ascent trajectory with a high degree of dynamic similarity to a launch vehicle, and the research flight control system can simulate unstable longitudinal dynamics. Parasitic

  12. Design Specification for a Thrust-Vectoring, Actuated-Nose-Strake Flight Control Law for the High-Alpha Research Vehicle

    Science.gov (United States)

    Bacon, Barton J.; Carzoo, Susan W.; Davidson, John B.; Hoffler, Keith D.; Lallman, Frederick J.; Messina, Michael D.; Murphy, Patrick C.; Ostroff, Aaron J.; Proffitt, Melissa S.; Yeager, Jessie C.; hide

    1996-01-01

    Specifications for a flight control law are delineated in sufficient detail to support coding the control law in flight software. This control law was designed for implementation and flight test on the High-Alpha Research Vehicle (HARV), which is an F/A-18 aircraft modified to include an experimental multi-axis thrust-vectoring system and actuated nose strakes for enhanced rolling (ANSER). The control law, known as the HARV ANSER Control Law, was designed to utilize a blend of conventional aerodynamic control effectors, thrust vectoring, and actuated nose strakes to provide increased agility and good handling qualities throughout the HARV flight envelope, including angles of attack up to 70 degrees.

  13. Aviation Safety Simulation Model

    Science.gov (United States)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  14. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  15. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  16. Rules for Flight Paths and Time of Flight for Flows in Porous Media with Heterogeneous Permeability and Porosity

    Directory of Open Access Journals (Sweden)

    Lihua Zuo

    2017-01-01

    Full Text Available Porous media like hydrocarbon reservoirs may be composed of a wide variety of rocks with different porosity and permeability. Our study shows in algorithms and in synthetic numerical simulations that the flow pattern of any particular porous medium, assuming constant fluid properties and standardized boundary and initial conditions, is not affected by any spatial porosity changes but will vary only according to spatial permeability changes. In contrast, the time of flight along the streamline will be affected by both the permeability and porosity, albeit in opposite directions. A theoretical framework is presented with evidence from flow visualizations. A series of strategically chosen streamline simulations, including systematic spatial variations of porosity and permeability, visualizes the respective effects on the flight path and time of flight. Two practical rules are formulated. Rule  1 states that an increase in permeability decreases the time of flight, whereas an increase in porosity increases the time of flight. Rule  2 states that the permeability uniquely controls the flight path of fluid flow in porous media; local porosity variations do not affect the streamline path. The two rules are essential for understanding fluid transport mechanisms, and their rigorous validation therefore is merited.

  17. Conceptual Design of Korea Aerospace Research Institute Lunar Explorer Dynamic Simulator

    Directory of Open Access Journals (Sweden)

    Dong-Young Rew

    2010-12-01

    Full Text Available In lunar explorer development program, computer simulator is necessary to provide virtual environments that vehicle confronts in lunar transfer, orbit, and landing missions, and to analyze dynamic behavior of the spacecraft under these environments. Objective of simulation differs depending on its application in spacecraft development cycle. Scope of use cases considered in this paper includes simulation of software based, processor and/or hardware in the loop, and support of ground-based flight test of developed vehicle. These use cases represent early phase in development cycle but reusability of modeling results in the next design phase is considered in defining requirements. A simulator architecture in which simulator platform is located in the middle and modules for modeling, analyzing, and three dimensional visualizing are connected to that platform is suggested. Baseline concepts and requirements for simulator development are described. Result of trade study for selecting simulation platform and approaches of defining other simulator components are summarized. Finally, characters of lunar elevation map data which is necessary for lunar terrain generation is described.

  18. Computer simulation of different designs of pseudo-random time-of-flight velocity analysers for molecular beam scattering experiments

    International Nuclear Information System (INIS)

    Rotzoll, G.

    1982-01-01

    After a brief summary of the pseudo-random time-of-flight (TOF) method, the design criteria for construction of a pseudo-random TOF disc are considered and complemented by computer simulations. The question of resolution and the choice of the sequence length and number of time channels per element are discussed. Moreover, the stability requirements of the chopper motor frequency are investigated. (author)

  19. Habitability and Behavioral Issues of Space Flight.

    Science.gov (United States)

    Stewart, R. A., Jr.

    1988-01-01

    Reviews group behavioral issues from past space missions and simulations such as the Skylab Medical Experiments Altitude Test, Skylab missions, and Shuttle Spacelab I mission. Makes recommendations for future flights concerning commandership, crew selection, and ground-crew communications. Pre- and in-flight behavioral countermeasures are…

  20. Aircraft Flight Modeling During the Optimization of Gas Turbine Engine Working Process

    Science.gov (United States)

    Tkachenko, A. Yu; Kuz'michev, V. S.; Krupenich, I. N.

    2018-01-01

    The article describes a method for simulating the flight of the aircraft along a predetermined path, establishing a functional connection between the parameters of the working process of gas turbine engine and the efficiency criteria of the aircraft. This connection is necessary for solving the optimization tasks of the conceptual design stage of the engine according to the systems approach. Engine thrust level, in turn, influences the operation of aircraft, thus making accurate simulation of the aircraft behavior during flight necessary for obtaining the correct solution. The described mathematical model of aircraft flight provides the functional connection between the airframe characteristics, working process of gas turbine engines (propulsion system), ambient and flight conditions and flight profile features. This model provides accurate results of flight simulation and the resulting aircraft efficiency criteria, required for optimization of working process and control function of a gas turbine engine.

  1. Rodent Research-1 (RR1) NASA Validation Flight: Mouse liver transcriptomic proteomic and epigenomic data

    Data.gov (United States)

    National Aeronautics and Space Administration — RR-1 is a validation flight to evaluate the hardware operational and science capabilities of the Rodent Research Project on the ISS. RNA DNA and protein were...

  2. Assessment of Turbulent CFD Against STS-128 Hypersonic Flight Data

    Science.gov (United States)

    Wood, William A.; Kleb, William L.; Hyatt, Andrew J.

    2010-01-01

    Turbulent CFD simulations are compared against surface temperature measurements of the space shuttle orbiter windward tiles at reentry flight conditions. Algebraic turbulence models are used within both the LAURA and DPLR CFD codes. The flight data are from temperature measurements obtained by seven thermocouples during the STS-128 mission (September 2009). The flight data indicate boundary layer transition onset over the Mach number range 13.5{15.5, depending upon the location on the vehicle. But the boundary layer flow appeared to be transitional down through Mach 12, based upon the flight data and CFD trends. At Mach 9 the simulations match the flight data on average within 20 F/11 C, where typical surface temperatures were approximately 1600 F/870 C.

  3. X-36 in Flight near Edge of Rogers Dry Lake during 5th Flight

    Science.gov (United States)

    1997-01-01

    This photo shows the X-36 Tailless Fighter Agility Research Aircraft passing over the edge of Rogers Dry Lake as the remotely-piloted aircraft flies over Edwards Air Force Base on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  4. Fused Reality for Enhanced Flight Test Capabilities, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — While modern ground-based flight simulators continue to improve in fidelity and effectiveness, there remains no substitute for flight test evaluations. In addition...

  5. Flight Operations . [Zero Knowledge to Mission Complete

    Science.gov (United States)

    Forest, Greg; Apyan, Alex; Hillin, Andrew

    2016-01-01

    Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.

  6. Flight Test Comparison of Different Adaptive Augmentations for Fault Tolerant Control Laws for a Modified F-15 Aircraft

    Science.gov (United States)

    Burken, John J.; Hanson, Curtis E.; Lee, James A.; Kaneshige, John T.

    2009-01-01

    This report describes the improvements and enhancements to a neural network based approach for directly adapting to aerodynamic changes resulting from damage or failures. This research is a follow-on effort to flight tests performed on the NASA F-15 aircraft as part of the Intelligent Flight Control System research effort. Previous flight test results demonstrated the potential for performance improvement under destabilizing damage conditions. Little or no improvement was provided under simulated control surface failures, however, and the adaptive system was prone to pilot-induced oscillations. An improved controller was designed to reduce the occurrence of pilot-induced oscillations and increase robustness to failures in general. This report presents an analysis of the neural networks used in the previous flight test, the improved adaptive controller, and the baseline case with no adaptation. Flight test results demonstrate significant improvement in performance by using the new adaptive controller compared with the previous adaptive system and the baseline system for control surface failures.

  7. Flight and full-scale wind-tunnel comparison of pressure distributions from an F-18 aircraft at high angles of attack. [Conducted in NASA Ames Research Center's 80 by 120 ft wind tunnel

    Science.gov (United States)

    Fisher, David F.; Lanser, Wendy R.

    1994-01-01

    Pressure distributions were obtained at nearly identical fuselage stations and wing chord butt lines in flight on the F-18 HARV at NASA Dryden Flight Research Center and in the NASA Ames Research Center's 80 by 120 ft wind tunnel on a full-scale F/A-18 aircraft. The static pressures were measured at the identical five stations on the forebody, three stations on the left and right leading-edge extensions, and three spanwise stations on the wing. Comparisons of the flight and wind-tunnel pressure distributions were made at alpha = 30 deg, 45 deg, and 60 deg/59 deg. In general, very good agreement was found. Minor differences were noted at the forebody at alpha = 45 deg and 60 deg in the magnitude of the vortex footprints and a Mach number effect was noted at the leading-edge extension at alpha = 30 deg. The inboard leading edge flap data from the wind tunnel at alpha = 59 deg showed a suction peak that did not appear in the flight data. This was the result of a vortex from the corner of the leading edge flap whose path was altered by the lack of an engine simulation in the wind tunnel.

  8. Aerospace Toolbox---a flight vehicle design, analysis, simulation ,and software development environment: I. An introduction and tutorial

    Science.gov (United States)

    Christian, Paul M.; Wells, Randy

    2001-09-01

    This paper presents a demonstrated approach to significantly reduce the cost and schedule of non real-time modeling and simulation, real-time HWIL simulation, and embedded code development. The tool and the methodology presented capitalize on a paradigm that has become a standard operating procedure in the automotive industry. The tool described is known as the Aerospace Toolbox, and it is based on the MathWorks Matlab/Simulink framework, which is a COTS application. Extrapolation of automotive industry data and initial applications in the aerospace industry show that the use of the Aerospace Toolbox can make significant contributions in the quest by NASA and other government agencies to meet aggressive cost reduction goals in development programs. The part I of this paper provides a detailed description of the GUI based Aerospace Toolbox and how it is used in every step of a development program; from quick prototyping of concept developments that leverage built-in point of departure simulations through to detailed design, analysis, and testing. Some of the attributes addressed include its versatility in modeling 3 to 6 degrees of freedom, its library of flight test validated library of models (including physics, environments, hardware, and error sources), and its built-in Monte Carlo capability. Other topics to be covered in this part include flight vehicle models and algorithms, and the covariance analysis package, Navigation System Covariance Analysis Tools (NavSCAT). Part II of this paper, to be published at a later date, will conclude with a description of how the Aerospace Toolbox is an integral part of developing embedded code directly from the simulation models by using the Mathworks Real Time Workshop and optimization tools. It will also address how the Toolbox can be used as a design hub for Internet based collaborative engineering tools such as NASA's Intelligent Synthesis Environment (ISE) and Lockheed Martin's Interactive Missile Design Environment

  9. Computer simulation studies in fluid and calcium regulation and orthostatic intolerance

    Science.gov (United States)

    1985-01-01

    The systems analysis approach to physiological research uses mathematical models and computer simulation. Major areas of concern during prolonged space flight discussed include fluid and blood volume regulation; cardiovascular response during shuttle reentry; countermeasures for orthostatic intolerance; and calcium regulation and bone atrophy. Potential contributions of physiologic math models to future flight experiments are examined.

  10. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    International Nuclear Information System (INIS)

    Caiani, Enrico G.; Martin-Yebra, Alba; Landreani, Federica; Bolea, Juan; Laguna, Pablo; Vaïda, Pierre

    2016-01-01

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  11. Weightlessness and Cardiac Rhythm Disorders: Current Knowledge from Space Flight and Bed-Rest Studies

    Energy Technology Data Exchange (ETDEWEB)

    Caiani, Enrico G. [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Martin-Yebra, Alba [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Landreani, Federica [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan (Italy); Bolea, Juan; Laguna, Pablo [Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza (Spain); Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Zaragoza (Spain); Vaïda, Pierre, E-mail: enrico.caiani@polimi.it [École Nationale Supérieure de Cognitique, Institut Polytechnique de Bordeaux, Université de Bordeaux, Bordeaux (France)

    2016-08-23

    Isolated episodes of heart rhythm disorders have been reported during 40 years of space flight, triggering research to evaluate the risk of developing life-threatening arrhythmias induced by prolonged exposure to weightlessness. In fact, these events could compromise astronaut performance during exploratory missions, as well as pose at risk the astronaut health, due to limited options of care on board the International Space Station. Starting from original observations, this mini review will explore the latest research in this field, considering results obtained both during space flight and on Earth, the latter by simulating long-term exposure to microgravity by head-down bed rest maneuver in order to elicit cardiovascular deconditioning on normal volunteers.

  12. X-36 during First Flight

    Science.gov (United States)

    1997-01-01

    The remotely-piloted X-36 Tailless Fighter Agility Research Aircraft climbs out from Rogers Dry Lake at the Dryden Flight Research Center on its first flight in May 1997. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19

  13. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    Science.gov (United States)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  14. Atmospheric Measurements for Flight Test at NASAs Neil A. Armstrong Flight Research Center

    Science.gov (United States)

    Teets, Edward H.

    2016-01-01

    Information enclosed is to be shared with students of Atmospheric Sciences, Engineering and High School STEM programs. Information will show the relationship between atmospheric Sciences and aeronautical flight testing.

  15. UAS-NAS Flight Test Series 3: Test Environment Report

    Science.gov (United States)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    complexity of the previous tests and technical simulations, resulting in research findings that support the development of regulations governing the access of UAS into the NAS. The integrated events started with two initial flight test used to develop and test early integrations and components of the test environment. Test subjects and a relevant test environment were brought in for the integrated HITL (or IHITL) conducted in 2014. The IHITL collected data to evaluate the effectiveness of DAA Well Clear (DWC) algorithms and the acceptability of UAS concepts integrated into the NAS. The first integrated flight test (and the subject of this report) followed the IHITL by replacing the simulation components with live aircraft. The project finishes the integrated events with a final flight test to be conducted in 2016 that provides the researchers with an opportunity to collect DWC and Collision Avoidance (CA) interoperability data during flight encounters.

  16. Simulation tools for robotics research and assessment

    Science.gov (United States)

    Fields, MaryAnne; Brewer, Ralph; Edge, Harris L.; Pusey, Jason L.; Weller, Ed; Patel, Dilip G.; DiBerardino, Charles A.

    2016-05-01

    The Robotics Collaborative Technology Alliance (RCTA) program focuses on four overlapping technology areas: Perception, Intelligence, Human-Robot Interaction (HRI), and Dexterous Manipulation and Unique Mobility (DMUM). In addition, the RCTA program has a requirement to assess progress of this research in standalone as well as integrated form. Since the research is evolving and the robotic platforms with unique mobility and dexterous manipulation are in the early development stage and very expensive, an alternate approach is needed for efficient assessment. Simulation of robotic systems, platforms, sensors, and algorithms, is an attractive alternative to expensive field-based testing. Simulation can provide insight during development and debugging unavailable by many other means. This paper explores the maturity of robotic simulation systems for applications to real-world problems in robotic systems research. Open source (such as Gazebo and Moby), commercial (Simulink, Actin, LMS), government (ANVEL/VANE), and the RCTA-developed RIVET simulation environments are examined with respect to their application in the robotic research domains of Perception, Intelligence, HRI, and DMUM. Tradeoffs for applications to representative problems from each domain are presented, along with known deficiencies and disadvantages. In particular, no single robotic simulation environment adequately covers the needs of the robotic researcher in all of the domains. Simulation for DMUM poses unique constraints on the development of physics-based computational models of the robot, the environment and objects within the environment, and the interactions between them. Most current robot simulations focus on quasi-static systems, but dynamic robotic motion places an increased emphasis on the accuracy of the computational models. In order to understand the interaction of dynamic multi-body systems, such as limbed robots, with the environment, it may be necessary to build component

  17. From Research to Flight: Thinking About Implementation While Performing Fundamental Research

    Science.gov (United States)

    Johnson, Les

    2010-01-01

    This slide presentation calls for a strategy to implement new technologies. Such a strategy would allow advanced space transportation technologies to mature for exploration beyond Earth orbit. It discusses the difference between technology push versus technology pull. It also reviews the three basic technology readiness levels (TRL). The presentation traces examples of technology development to flight application: the Space Shuttle Main Engine Advanced Health Management System, the Friction Stir Welding technology the (auto-adjustable pin tool). A couple of technologies currently not in flight, but are being reviewed for potential use are: cryogenic fluid management (CFM), and solar sail propulsion. There is also an attempt to explain why new technologies are so difficult to field.

  18. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    Science.gov (United States)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  19. Data of Simona population for MDHMS application : Collecting and deriving data for human modelling sotware to use in Flight Simulator Design

    NARCIS (Netherlands)

    Dekker, M.C.; Molenbroek, J.F.M.

    1999-01-01

    For the interior design of a flight simulator, the ergonomic software MDHMS has been used to test different interior layout issues. The MDHMS program includes an accommodation analysis capability, which generates a digital sample of the specific target group. This report shows the data required for

  20. Theseus First Flight - May 24, 1996

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft shows off its high aspect-ratio wing as it lifts off from Rogers Dry Lake during its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to

  1. F-14 in banked flight

    Science.gov (United States)

    1979-01-01

    NASA 991, an F-14 Navy Tomcat designated the F-14 (1X), is seen here in banked flight over the desert on a research flight at NASA's Dryden Flight Research Center, Edwards, California. The F-14 was used at Dryden between 1979 and 1985 in extensive high-angle-of-attack and spin-control-and-recovery tests. The NASA/Navy program, which included 212 total flights, acheived considerable improvement in the F-14 high-angle-of-attack flying qualities, improved departure and spin resistance, and contributed to substantial improvements in reducing 'wing rock,' (i.e., tilting from one side to another), at high angles of attack. The Navy had been experiencing inadvertant spin entries caused by the F-14's aileron rudder interconnect. The NASA/Navy/Grumman team developed and tested 4 different configurations of the aileron rudder interconnect to address the spin problem. These problems prompted the Navy to ask the manufacturer, Grumman, and NASA to investigate the issue. NASA 991 had numerous special additions for high-angle-of-attack and spin-recovery research. These included a battery-powered auxiliary power unit, a flight test nose boom, and a special spin recovery system, consisting of forward mounted, hydraulically actuated canards and an emergency spin chute. NASA's F-14 was first flown by NASA research pilots, but was later flown by Grumman, and by Navy test pilots from Patuxent River Naval Air Station (NAS). The Navy test flights with the spin research vehicle constituted the first program that incorporated air combat maneuvering in its test flights at Dryden. The Navy brought F-14s from Point Mugu and Miramar NAS in San Diego to test the new spin control laws in combat situations. Although the new control laws proved valuable, the Navy did not incorporate them into production F-14s until the F-14D, nearly 15 years later.

  2. PROCEDURE ENABLING SIMULATION AND IN-DEPTH ANALYSIS OF OPTICAL EFFECTS IN CAMERA-BASED TIME-OF-FLIGHT SENSORS

    Directory of Open Access Journals (Sweden)

    M. Baumgart

    2018-05-01

    Full Text Available This paper presents a simulation approach for Time-of-Flight cameras to estimate sensor performance and accuracy, as well as to help understanding experimentally discovered effects. The main scope is the detailed simulation of the optical signals. We use a raytracing-based approach and use the optical path length as the master parameter for depth calculations. The procedure is described in detail with references to our implementation in Zemax OpticStudio and Python. Our simulation approach supports multiple and extended light sources and allows accounting for all effects within the geometrical optics model. Especially multi-object reflection/scattering ray-paths, translucent objects, and aberration effects (e.g. distortion caused by the ToF lens are supported. The optical path length approach also enables the implementation of different ToF senor types and transient imaging evaluations. The main features are demonstrated on a simple 3D test scene.

  3. Looking Up: Multimedia about Space and Flight.

    Science.gov (United States)

    Walter, Virginia A.

    1998-01-01

    The best CD-ROMs for young people about space and flight exploit the promise of hypermedia to create informative simulations. This article provides an annotated bibliography of CD-ROMs on astronomy and flight for K-12 students; suggests book and Internet connections; and highlights poetry for astronomers, science fiction, a biography of Charles…

  4. Employing organizational modeling and simulation of the KC-135 depot's flight controls repair cell

    OpenAIRE

    Paskin, Matthew A.; Trevino, Alice W.; Ferrer, Geraldo; Dillard, John T.

    2008-01-01

    Today’s environment of increased operations tempo is stressing the KC- 135 Stratotanker fleet. With an 80-year life span expectancy, effectively maintaining these aircraft is challenging. This research modeled the KC- 135 programmed depot maintenance (PDM) flight controls repair cell to identify improvement opportunities within the repair process. Computational organizational modeling (COM) incorporates the human element along with organizational design theory. By employing ...

  5. Preliminary flight test results of a fly-by-throttle emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. G.; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies have been followed by flight tests. This paper discusses the principles of throttles-only control, the F-15 airplane, the augmented system, and the flight results including landing approaches with throttles-only control to within 10 ft of the ground.

  6. Aircraft interrogation and display system: A ground support equipment for digital flight systems

    Science.gov (United States)

    Glover, R. D.

    1982-01-01

    A microprocessor-based general purpose ground support equipment for electronic systems was developed. The hardware and software are designed to permit diverse applications in support of aircraft flight systems and simulation facilities. The implementation of the hardware, the structure of the software, describes the application of the system to an ongoing research aircraft project are described.

  7. An ergonomics based design research method for the arrangement of helicopter flight instrument panels.

    Science.gov (United States)

    Alppay, Cem; Bayazit, Nigan

    2015-11-01

    In this paper, we study the arrangement of displays in flight instrument panels of multi-purpose civil helicopters following a user-centered design method based on ergonomics principles. Our methodology can also be described as a user-interface arrangement methodology based on user opinions and preferences. This study can be outlined as gathering user-centered data using two different research methods and then analyzing and integrating the collected data to come up with an optimal instrument panel design. An interview with helicopter pilots formed the first step of our research. In that interview, pilots were asked to provide a quantitative evaluation of basic interface arrangement principles. In the second phase of the research, a paper prototyping study was conducted with same pilots. The final phase of the study entailed synthesizing the findings from interviews and observational studies to formulate an optimal flight instrument arrangement methodology. The primary results that we present in our paper are the methodology that we developed and three new interface arrangement concepts, namely relationship of inseparability, integrated value and locational value. An optimum instrument panel arrangement is also proposed by the researchers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. ASKA STOL research aircraft flight tests and evaluation. STOL jikkenki Asuka'' no hiko shiken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, M; Inoue, T; Tobinaga, Y; Tsuji, H [Kawasaki Heavy Industries, Ltd., Tokyo (Japan)

    1991-07-20

    The present report evaluated the powered high-lift device (PHLD) distance of upper surface blowing (USB) system, basing the materialization of short distance take-off and landing (STOL) performance, one of the main flight test purposes by the Aska'', quiet STOL research aircraft, which evaluation was then added with reporting its flight test result to cover several topics. As prototypical, a C-1 tactical transport aircraft produced by Kawasaki Heavy Industries was modified to the aska'' together with the following change in design for the STOL flight test: Adoption was made of a PHLD of USB system where the wing surface was mounted with four turbofan jet engines thereon. Application was made of a boundary layer control (BLC) to the main wing leading edge and aileron. Mounting was made of a stability and control augmentation system (SCAS) using a triple system digital computer. Fitting was made of a vortex generator for the prevention from peeling by jet exhaust. As a result of flight test, the recorded distance was confirmed to be 1580ft in landing and 1670ft in take-off. 5 refs., 15 figs., 2 tabs.

  9. Physiological Based Simulator Fidelity Design Guidance

    Science.gov (United States)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  10. Nutritional Biochemistry of Space Flight

    Science.gov (United States)

    Smith, Scott M.

    2000-01-01

    Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng

  11. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  12. Numerical CFD Simulation and Test Correlation in a Flight Project Environment

    Science.gov (United States)

    Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.

    2015-01-01

    This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.

  13. SEU ground and flight data in static random access memories

    International Nuclear Information System (INIS)

    Liu, J.; Duan, J.L.; Hou, M.D.; Sun, Y.M.; Yao, H.J.; Mo, D.; Zhang, Q.X.; Wang, Z.G.; Jin, Y.F.; Cai, J.R.; Ye, Z.H.; Han, J.W.; Lin, Y.L.; Huang, Z.

    2006-01-01

    This paper presents the vulnerabilities of single event effects (SEEs) simulated by heavy ions on ground and observed on SJ-5 research satellite in space for static random access memories (SRAMs). A single event upset (SEU) prediction code has been used to estimate the proton-induced upset rates based on the ground test curve of SEU cross-section versus heavy ion linear energy transfer (LET). The result agrees with that of the flight data

  14. Hypogravity Research and Educational Parabolic Flight Activities Conducted in Barcelona: a new Hub of Innovation in Europe

    Science.gov (United States)

    Perez-Poch, Antoni; González, Daniel Ventura; López, David

    2016-12-01

    We report on different research and educational activities related to parabolic flights conducted in Barcelona since 2008. We use a CAP10B single-engine aerobatic aircraft flying out of Sabadell Airport and operating in visual flight conditions providing up to 8 seconds of hypogravity for each parabola. Aside from biomedical experiments being conducted, different student teams have flown in parabolic flights in the framework of the international contest `Barcelona Zero-G Challenge', and have published their results in relevant symposiums and scientific journals. The platform can certainly be a good testbed for a proof-of-concept before accessing other microgravity platforms, and has proved to be excellent for motivational student campaigns.

  15. How Insects Initiate Flight: Computational Analysis of a Damselfly in Takeoff Flight

    Science.gov (United States)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo; Flow Simulation Research Group Team

    2017-11-01

    Flight initiation is essential for survival in biological fliers and can be classified into jumping and non-jumping takeoffs. During jumping takeoffs, the legs generate most of the initial impulse. Whereas the wings generate most of the forces in non-jumping takeoffs, which are usually voluntary, slow, and stable. It is of interest to understand how non-jumping takeoffs occur and what strategies insects use to generate the required forces. Using a high fidelity computational fluid dynamics simulation, we identify the flow features and compute the wing aerodynamic forces to elucidate how flight forces are generated by a damselfly performing a non-jumping takeoff. Our results show that a damselfly generates about three times its bodyweight during the first half-stroke for liftoff while flapping through a steeply inclined stroke plane and slicing the air at high angles of attack. Consequently, a Leading Edge Vortex (LEV) is formed during both the downstroke and upstroke on all the four wings. The formation of the LEV, however, is inhibited in the subsequent upstrokes following takeoff. Accordingly, we observe a drastic reduction in the magnitude of the aerodynamic force, signifying the importance of LEV in augmenting force production. This work was supported by National Science Foundation [CBET-1313217] and Air Force Research Laboratory [FA9550-12-1-007].

  16. Radiation measurement of civil air flight

    International Nuclear Information System (INIS)

    Winter, M.

    1999-01-01

    In order to aquire knowledge of the radiation exposure of civil aircrew members in common flight altitudes, it was necessary to develop a practicable measurement system. Radiation exposure was hereby estimated by using the ACREM-System, which is patented by the Austrian Research Centres Seibersdorf (OEFZS). Total Equivalent Dose could be estimated in a simple way by combining a measured component of the radiation field in flight altitudes and the results of simulation with LUIN 94 particle transport code (Keran O'Brian). To verify the results of the measurement system, a tissue equivalent proportional counter (TEPC) was used. Because of the difficult measurement conditions in cargo airplanes, special attention had to be taken to make the measurement equipment easy to use and transport. Special software has been developed to automate the measurement and the evaluation of the large amount of collected data. Measurements in standard calibration photon fields for the characterization of the equipment could be performed at the Primary Dosimetry Laboratory for Austria at the Austrian Research Centre (OEFZS) in Seibersdorf. Additional measurements were performed at Physikalisch Technische Bundesanstalt Braunschweig (PTB, Germany) and Paul Scherer Institute (PSI, Switzerland) to determine the reponse of the instruments to high energy photon and standard neutron fields. (author)

  17. Development flight tests of JetStar LFC leading-edge flight test experiment

    Science.gov (United States)

    Fisher, David F.; Fischer, Michael C.

    1987-01-01

    The overall objective of the flight tests on the JetStar aircraft was to demonstrate the effectiveness and reliability of laminar flow control under representative flight conditions. One specific objective was to obtain laminar flow on the JetStar leading-edge test articles for the design and off-design conditions. Another specific objective was to obtain operational experience on a Laminar Flow Control (LFC) leading-edge system in a simulated airline service. This included operational experience with cleaning requirements, the effect of clogging, possible foreign object damage, erosion, and the effects of ice particle and cloud encounters. Results are summarized.

  18. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    Science.gov (United States)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  19. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  20. Theseus on Take-off for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype research aircraft takes off for its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden

  1. Software for Engineering Simulations of a Spacecraft

    Science.gov (United States)

    Shireman, Kirk; McSwain, Gene; McCormick, Bernell; Fardelos, Panayiotis

    2005-01-01

    Spacecraft Engineering Simulation II (SES II) is a C-language computer program for simulating diverse aspects of operation of a spacecraft characterized by either three or six degrees of freedom. A functional model in SES can include a trajectory flight plan; a submodel of a flight computer running navigational and flight-control software; and submodels of the environment, the dynamics of the spacecraft, and sensor inputs and outputs. SES II features a modular, object-oriented programming style. SES II supports event-based simulations, which, in turn, create an easily adaptable simulation environment in which many different types of trajectories can be simulated by use of the same software. The simulation output consists largely of flight data. SES II can be used to perform optimization and Monte Carlo dispersion simulations. It can also be used to perform simulations for multiple spacecraft. In addition to its generic simulation capabilities, SES offers special capabilities for space-shuttle simulations: for this purpose, it incorporates submodels of the space-shuttle dynamics and a C-language version of the guidance, navigation, and control components of the space-shuttle flight software.

  2. Applied Virtual Reality Research and Applications at NASA/Marshall Space Flight Center

    Science.gov (United States)

    Hale, Joseph P.

    1995-01-01

    A Virtual Reality (VR) applications program has been under development at NASA/Marshall Space Flight Center (MSFC) since 1989. The objectives of the MSFC VR Applications Program are to develop, assess, validate, and utilize VR in hardware development, operations development and support, mission operations training and science training. Before this technology can be utilized with confidence in these applications, it must be validated for each particular class of application. That is, the precision and reliability with which it maps onto real settings and scenarios, representative of a class, must be calculated and assessed. The approach of the MSFC VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems. Specific validation studies for selected classes of applications have been completed or are currently underway. These include macro-ergonomic "control-room class" design analysis, Spacelab stowage reconfiguration training, a full-body micro-gravity functional reach simulator, and a gross anatomy teaching simulator. This paper describes the MSFC VR Applications Program and the validation studies.

  3. Employing Organizational Modeling and Simulation to Deconstruct the KC-135 Aircraft's Programmed Depot Maintenance Flight Controls Repair Cell

    National Research Council Canada - National Science Library

    Paskin, Matthew A; Trevino, Alice W

    2007-01-01

    ...), Tinker Air Force Base, Oklahoma. The researchers focused on the repair cell's internal formal and informal communication flows and information processing to evaluate the impact on flight controls repair throughput time...

  4. Dynamic modeling and ascent flight control of Ares-I Crew Launch Vehicle

    Science.gov (United States)

    Du, Wei

    This research focuses on dynamic modeling and ascent flight control of large flexible launch vehicles such as the Ares-I Crew Launch Vehicle (CLV). A complete set of six-degrees-of-freedom dynamic models of the Ares-I, incorporating its propulsion, aerodynamics, guidance and control, and structural flexibility, is developed. NASA's Ares-I reference model and the SAVANT Simulink-based program are utilized to develop a Matlab-based simulation and linearization tool for an independent validation of the performance and stability of the ascent flight control system of large flexible launch vehicles. A linearized state-space model as well as a non-minimum-phase transfer function model (which is typical for flexible vehicles with non-collocated actuators and sensors) are validated for ascent flight control design and analysis. This research also investigates fundamental principles of flight control analysis and design for launch vehicles, in particular the classical "drift-minimum" and "load-minimum" control principles. It is shown that an additional feedback of angle-of-attack can significantly improve overall performance and stability, especially in the presence of unexpected large wind disturbances. For a typical "non-collocated actuator and sensor" control problem for large flexible launch vehicles, non-minimum-phase filtering of "unstably interacting" bending modes is also shown to be effective. The uncertainty model of a flexible launch vehicle is derived. The robust stability of an ascent flight control system design, which directly controls the inertial attitude-error quaternion and also employs the non-minimum-phase filters, is verified by the framework of structured singular value (mu) analysis. Furthermore, nonlinear coupled dynamic simulation results are presented for a reference model of the Ares-I CLV as another validation of the feasibility of the ascent flight control system design. Another important issue for a single main engine launch vehicle is

  5. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  6. The Total In-Flight Simulator (TIFS) aerodynamics and systems: Description and analysis. [maneuver control and gust alleviators

    Science.gov (United States)

    Andrisani, D., II; Daughaday, H.; Dittenhauser, J.; Rynaski, E.

    1978-01-01

    The aerodynamics, control system, instrumentation complement and recording system of the USAF Total In/Flight Simulator (TIFS) airplane are described. A control system that would allow the ailerons to be operated collectively, as well as, differentially to entrance the ability of the vehicle to perform the dual function of maneuver load control and gust alleviation is emphasized. Mathematical prediction of the rigid body and the flexible equations of longitudinal motion using the level 2.01 FLEXSTAB program are included along with a definition of the vehicle geometry, the mass and stiffness distribution, the calculated mode frequencies and mode shapes, and the resulting aerodynamic equations of motion of the flexible vehicle. A complete description of the control and instrumentation system of the aircraft is presented, including analysis, ground test and flight data comparisons of the performance and bandwidth of the aerodynamic surface servos. Proposed modification for improved performance of the servos are also presented.

  7. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  8. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  9. Robust Decentralized Formation Flight Control

    Directory of Open Access Journals (Sweden)

    Zhao Weihua

    2011-01-01

    Full Text Available Motivated by the idea of multiplexed model predictive control (MMPC, this paper introduces a new framework for unmanned aerial vehicles (UAVs formation flight and coordination. Formulated using MMPC approach, the whole centralized formation flight system is considered as a linear periodic system with control inputs of each UAV subsystem as its periodic inputs. Divided into decentralized subsystems, the whole formation flight system is guaranteed stable if proper terminal cost and terminal constraints are added to each decentralized MPC formulation of the UAV subsystem. The decentralized robust MPC formulation for each UAV subsystem with bounded input disturbances and model uncertainties is also presented. Furthermore, an obstacle avoidance control scheme for any shape and size of obstacles, including the nonapriorily known ones, is integrated under the unified MPC framework. The results from simulations demonstrate that the proposed framework can successfully achieve robust collision-free formation flights.

  10. Rat maintenance in the Research Animal Holding Facility during the flight of Space Lab 3

    Science.gov (United States)

    Fast, T.; Grindeland, R.; Kraft, L.; Ruder, M.; Vasques, M.

    1985-01-01

    To test the husbandry capabilities of the Research Animal Holding Facility (RAHF) during space flight, 24 male rats were flown on Spacelab 3 for 7 days. Twelve large rats (400 g, LF), 5 of which had telemetry devices implanted (IF), and 12 small rats (200 g, SF) were housed in the RAHF. Examination 3 hr after landing (R + 3) revealed the rats to be free of injury, well nourished, and stained with urine. At R + 10 the rats were lethargic and atonic with hyperemia of the extremities and well groomed except for a middorsal area stained with urine and food. Both LF and SF rats showed weight gains comparable to their IG controls; IF rats grew less than controls. Food and water consumption were similar for flight and control groups. Plasma concentrations of total protein, sodium, albumin and creatinine did not differ between flight and control groups. LF and SF rats had elevated plasma glucose, and SF rats had increased blood urea nitrogen, potassium and glutamic pyruvic transaminase. These observations indicate that rats maintained in the RAHF were healthy, well nourished and experienced minimal stress; physiological changes in the rats can thus be attributed to the effects of space flight.

  11. Simulation of a pool type research reactor

    International Nuclear Information System (INIS)

    Oliveira, Andre Felipe da Silva de; Moreira, Maria de Lourdes

    2011-01-01

    Computational fluid dynamic is used to simulate natural circulation condition after a research reactor shutdown. A benchmark problem was used to test the viability of usage such code to simulate the reactor model. A model which contains the core, the pool, the reflector tank, the circulation pipes and chimney was simulated. The reactor core contained in the full scale model was represented by a porous media. The parameters of porous media were obtained from a separate CFD analysis of the full core model. Results demonstrate that such studies can be carried out for research and test of reactors design. (author)

  12. Steps Towards Scalable and Modularized Flight Software for Unmanned Aircraft Systems

    Directory of Open Access Journals (Sweden)

    Johann C. Dauer

    2014-05-01

    Full Text Available Unmanned aircraft (UA applications impose a variety of computing tasks on the on-board computer system. From a research perspective, it is often more convenient to evaluate algorithms on bigger aircraft as they are capable of lifting heavier loads and thus more powerful computational units. On the other hand, smaller systems are often less expensive and operation is less restricted in many countries. This paper thus presents a conceptual design for flight software that can be evaluated on the UA of convenient size. The integration effort required to transfer the algorithm to different sized UA is significantly reduced. This scalability is achieved by using exchangeable payload modules and a flexible process distribution on different processing units. The presented approach is discussed using the example of the flight software of a 14 kg unmanned helicopter and an equivalent of 1.5 kg. The proof of concept is shown by means of flight performance in a hardware-in-the-loop simulation.

  13. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  14. Flight Test and Handling Qualities Analysis of a Longitudinal Flight Control System Using Multiobjective Techniques

    National Research Council Canada - National Science Library

    Anderson, John

    1998-01-01

    ...) and AFIT MXTOOLS toolboxes were used to produce the optimal, multiobjective designs. These designs were implemented for flight test on the Calspan VSS I Learjet, simulating the unstable longitudinal dynamics of an F-16 type aircraft...

  15. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    Science.gov (United States)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  16. NASA/FAA Tailplane Icing Program: Flight Test Report

    Science.gov (United States)

    Ratvasky, Thomas P.; VanZante, Judith Foss; Sim, Alex

    2000-01-01

    This report presents results from research flights that explored the characteristics of an ice-contaminated tailplane using various simulated ice shapes attached to the leading edge of the horizontal tailplane. A clean leading edge provided the baseline case, then three ice shapes were flown in order of increasing severity. Flight tests included both steady state and dynamic maneuvers. The steady state points were 1G wings level and steady heading sideslips. The primary dynamic maneuvers were pushovers to various G-levels; elevator doublets; and thrust transitions. These maneuvers were conducted for a full range of flap positions and aircraft angle of attack where possible. The analysis of this data set has clearly demonstrated the detrimental effects of ice contamination on aircraft stability and controllability. Paths to tailplane stall were revealed through parameter isolation and transition studies. These paths are (1) increasing ice shape severity, (2) increasing flap deflection, (3) high or low speeds, depending on whether the aircraft is in a steady state (high speed) or pushover maneuver (low speed), and (4) increasing thrust. The flight research effort was very comprehensive, but did not examine effects of tailplane design and location, or other aircraft geometry configuration effects. However, this effort provided the role of some of the parameters in promoting tailplane stall. The lessons learned will provide guidance to regulatory agencies, aircraft manufacturers, and operators on ice-contaminated tailplane stall in the effort to increase aviation safety and reduce the fatal accident rate.

  17. The X-43A Hyper-X Mach 7 Flight 2 Guidance, Navigation, and Control Overview and Flight Test Results

    Science.gov (United States)

    Bahm, Catherine; Baumann, Ethan; Martin, John; Bose, David; Beck, Roger E.; Strovers, Brian

    2005-01-01

    The objective of the Hyper-X program was to flight demonstrate an airframe-integrated hypersonic vehicle. On March 27, 2004, the Hyper-X program team successfully conducted flight 2 and achieved all of the research objectives. The Hyper-X research vehicle successfully separated from the Hyper-X launch vehicle and achieved the desired engine test conditions before the experiment began. The research vehicle rejected the disturbances caused by the cowl door opening and the fuel turning on and off and maintained the engine test conditions throughout the experiment. After the engine test was complete, the vehicle recovered and descended along a trajectory while performing research maneuvers. The last data acquired showed that the vehicle maintained control to the water. This report will provide an overview of the research vehicle guidance and control systems and the performance of the vehicle during the separation event and engine test. The research maneuvers were performed to collect data for aerodynamics and flight controls research. This report also will provide an overview of the flight controls related research and results.

  18. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  19. Flight Demonstration of X-33 Vehicle Health Management System Components on the F/A-18 Systems Research Aircraft

    Science.gov (United States)

    Schweikhard, Keith A.; Richards, W. Lance; Theisen, John; Mouyos, William; Garbos, Raymond

    2001-01-01

    The X-33 reusable launch vehicle demonstrator has identified the need to implement a vehicle health monitoring system that can acquire data that monitors system health and performance. Sanders, a Lockheed Martin Company, has designed and developed a COTS-based open architecture system that implements a number of technologies that have not been previously used in a flight environment. NASA Dryden Flight Research Center and Sanders teamed to demonstrate that the distributed remote health nodes, fiber optic distributed strain sensor, and fiber distributed data interface communications components of the X-33 vehicle health management (VHM) system could be successfully integrated and flown on a NASA F-18 aircraft. This paper briefly describes components of X-33 VHM architecture flown at Dryden and summarizes the integration and flight demonstration of these X-33 VHM components. Finally, it presents early results from the integration and flight efforts.

  20. Building a Community of Practice for Researchers: The International Network for Simulation-Based Pediatric Innovation, Research and Education.

    Science.gov (United States)

    Cheng, Adam; Auerbach, Marc; Calhoun, Aaron; Mackinnon, Ralph; Chang, Todd P; Nadkarni, Vinay; Hunt, Elizabeth A; Duval-Arnould, Jordan; Peiris, Nicola; Kessler, David

    2018-06-01

    The scope and breadth of simulation-based research is growing rapidly; however, few mechanisms exist for conducting multicenter, collaborative research. Failure to foster collaborative research efforts is a critical gap that lies in the path of advancing healthcare simulation. The 2017 Research Summit hosted by the Society for Simulation in Healthcare highlighted how simulation-based research networks can produce studies that positively impact the delivery of healthcare. In 2011, the International Network for Simulation-based Pediatric Innovation, Research and Education (INSPIRE) was formed to facilitate multicenter, collaborative simulation-based research with the aim of developing a community of practice for simulation researchers. Since its formation, the network has successfully completed and published numerous collaborative research projects. In this article, we describe INSPIRE's history, structure, and internal processes with the goal of highlighting the community of practice model for other groups seeking to form a simulation-based research network.

  1. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    Science.gov (United States)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  2. Manual and automatic flight control during severe turbulence penetration

    Science.gov (United States)

    Johnston, D. E.; Klein, R. H.; Hoh, R. H.

    1976-01-01

    An analytical and experimental investigation of possible contributing factors in jet aircraft turbulence upsets was conducted. Major contributing factors identified included autopilot and display deficiencies, the large aircraft inertia and associated long response time, and excessive pilot workload. An integrated flight and thrust energy management director system was synthesized. The system was incorporated in a moving-base simulation and evaluated using highly experienced airline pilots. The evaluation included comparison of pilot workload and flight performance during severe turbulence penetration utilizing four control/display concepts: manual control with conventional full panel display, conventional autopilot (A/P-A) with conventional full panel display, improved autopilot (A/P-B) with conventional full panel display plus thrust director display, and longitudinal flight director with conventional full panel display plus thrust director display. Simulation results show improved performance, reduced pilot workload, and a pilot preference for the autopilot system controlling to the flight director command and manual control of thrust following the trim thrust director.

  3. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    Science.gov (United States)

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. © 2013 European Sleep Research Society.

  4. Design of Flight Control Panel Layout using Graphical User Interface in MATLAB

    Science.gov (United States)

    Wirawan, A.; Indriyanto, T.

    2018-04-01

    This paper introduces the design of Flight Control Panel (FCP) Layout using Graphical User Interface in MATLAB. The FCP is the interface to give the command to the simulation and to monitor model variables while the simulation is running. The command accommodates by the FCP are altitude command, the angle of sideslip command, heading command, and setting command for turbulence model. The FCP was also designed to monitor the flight parameter while the simulation is running.

  5. Dynamics of human flight on skis: improvements in safety and fairness in ski jumping.

    Science.gov (United States)

    Müller, W; Platzer, D; Schmölzer, B

    1996-08-01

    This study of ski jumping includes three areas of research: Wind tunnel measurements with world class athletes in various flight positions, field measurements during the World Championships in Ski Flying 1994 in Planica (Slovenia) and a highly reliable mapping of ski jumping to a computable simulation model. The results explain the effects of equipment, flight style changes, the reason for the enhanced tumbling risk and high gust sensitivity observed. Consequences can be drawn for changes to the FIS regulations, the design of jumping hills and training methods. The internationally induced anorexia of the athletes could be prohibited by a new ski length regulation. Women jumpers could become a real competitive threat.

  6. Probabilistic Risk Assessment for Astronaut Post Flight Bone Fracture

    Science.gov (United States)

    Lewandowski, Beth; Myers, Jerry; Licata, Angelo

    2015-01-01

    Introduction: Space flight potentially reduces the loading that bone can resist before fracture. This reduction in bone integrity may result from a combination of factors, the most common reported as reduction in astronaut BMD. Although evaluating the condition of bones continues to be a critical aspect of understanding space flight fracture risk, defining the loading regime, whether on earth, in microgravity, or in reduced gravity on a planetary surface, remains a significant component of estimating the fracture risks to astronauts. This presentation summarizes the concepts, development, and application of NASA's Bone Fracture Risk Module (BFxRM) to understanding pre-, post, and in mission astronaut bone fracture risk. The overview includes an assessment of contributing factors utilized in the BFxRM and illustrates how new information, such as biomechanics of space suit design or better understanding of post flight activities may influence astronaut fracture risk. Opportunities for the bone mineral research community to contribute to future model development are also discussed. Methods: To investigate the conditions in which spaceflight induced changes to bone plays a critical role in post-flight fracture probability, we implement a modified version of the NASA Bone Fracture Risk Model (BFxRM). Modifications included incorporation of variations in physiological characteristics, post-flight recovery rate, and variations in lateral fall conditions within the probabilistic simulation parameter space. The modeled fracture probability estimates for different loading scenarios at preflight and at 0 and 365 days post-flight time periods are compared. Results: For simple lateral side falls, mean post-flight fracture probability is elevated over mean preflight fracture probability due to spaceflight induced BMD loss and is not fully recovered at 365 days post-flight. In the case of more energetic falls, such as from elevated heights or with the addition of lateral movement

  7. Flight Test of L1 Adaptive Control Law: Offset Landings and Large Flight Envelope Modeling Work

    Science.gov (United States)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2011-01-01

    This paper presents new results of a flight test of the L1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented include control law evaluation for piloted offset landing tasks as well as results in support of nonlinear aerodynamic modeling and real-time dynamic modeling of the departure-prone edges of the flight envelope.

  8. Flight Research into Simple Adaptive Control on the NASA FAST Aircraft

    Science.gov (United States)

    Hanson, Curtis E.

    2011-01-01

    A series of simple adaptive controllers with varying levels of complexity were designed, implemented and flight tested on the NASA Full-Scale Advanced Systems Testbed (FAST) aircraft. Lessons learned from the development and flight testing are presented.

  9. Technology for the Stars: Extending Our Reach. [Research and Technology: 1995 Annual Report of the Marshall Space Flight Center.

    Science.gov (United States)

    1996-01-01

    Marshall Space Flight Center's (MSFC's) Advanced Studies, Research, Technology, and Technology Transfer projects are summarized in this report. The focus of the report is on the three spotlights at MSFC in 1995: space transportation technology, microgravity research, and technology transfer.

  10. High-performance multiple-reflection time-of-flight mass spectrometers for research with exotic nuclei and for analytical mass spectrometry

    Science.gov (United States)

    Plaß, Wolfgang R.; Dickel, Timo; Ayet San Andres, Samuel; Ebert, Jens; Greiner, Florian; Hornung, Christine; Jesch, Christian; Lang, Johannes; Lippert, Wayne; Majoros, Tamas; Short, Devin; Geissel, Hans; Haettner, Emma; Reiter, Moritz P.; Rink, Ann-Kathrin; Scheidenberger, Christoph; Yavor, Mikhail I.

    2015-11-01

    A class of multiple-reflection time-of-flight mass spectrometers (MR-TOF-MSs) has been developed for research with exotic nuclei at present and future accelerator facilities such as GSI and FAIR (Darmstadt), and TRIUMF (Vancouver). They can perform highly accurate mass measurements of exotic nuclei, serve as high-resolution, high-capacity mass separators and be employed as diagnostics devices to monitor the production, separation and manipulation of beams of exotic nuclei. In addition, a mobile high-resolution MR-TOF-MS has been developed for in situ applications in analytical mass spectrometry ranging from environmental research to medicine. Recently, the MR-TOF-MS for GSI and FAIR has been further developed. A novel RF quadrupole-based ion beam switchyard has been developed that allows merging and splitting of ion beams as well as transport of ions into different directions. It efficiently connects a test and reference ion source and an auxiliary detector to the system. Due to an increase in the kinetic energy of the ions in the time-of-flight analyzer of the MR-TOF-MS, a given mass resolving power is now achieved in less than half the time-of-flight. Conversely, depending on the time-of-flight, the mass resolving power has been increased by a factor of more than two.

  11. Review of research on simulation engineering in FY2009

    International Nuclear Information System (INIS)

    2011-03-01

    Research on simulation engineering for nuclear applications, based on 'the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems, Japan Atomic Energy Agency (CCSE/JAEA). CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes results of the evaluation by the committee on the followings. (1) Research and development on simulation engineering performed at CCSE/JAEA in FY2009. (2) Research and development on simulation engineering performed at CCSE/JAEA in the period of the midterm plan (October 1st, 2005 - March 31st, 2010). (author)

  12. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  13. Flight Control of the High Altitude Wind Power System

    NARCIS (Netherlands)

    Podgaets, A.R.; Ockels, W.J.

    2007-01-01

    Closed loop Laddermill flight control problem is considered in this paper. Laddermill is a high altitude kites system for energy production. The kites have been simulated as rigid bodies and the cable as a thin elastic line. Euler angles and cable speed are controls. Flight control is written as a

  14. X-36 Taking off During First Flight

    Science.gov (United States)

    1997-01-01

    The X-36 remotely piloted aircraft lifts off on its first flight, May 17, 1997, at NASA's Dryden Flight Research Center, Edwards, California. The aircraft flew for five minutes and reached an altitude of approximately 4,900 feet. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet

  15. Hypersonic Navier Stokes Comparisons to Orbiter Flight Data

    Science.gov (United States)

    Campbell, Charles H.; Nompelis, Ioannis; Candler, Graham; Barnhart, Michael; Yoon, Seokkwan

    2009-01-01

    Hypersonic chemical nonequilibrium simulations of low earth orbit entry flow fields are becoming increasingly commonplace as software and computational capabilities become more capable. However, development of robust and accurate software to model these environments will always encounter a significant barrier in developing a suite of high quality calibration cases. The US3D hypersonic nonequilibrium Navier Stokes analysis capability has been favorably compared to a number of wind tunnel test cases. Extension of the calibration basis for this software to Orbiter flight conditions will provide an incremental increase in confidence. As part of the Orbiter Boundary Layer Transition Flight Experiment and the Hypersonic Thermodynamic Infrared Measurements project, NASA is performing entry flight testing on the Orbiter to provide valuable aerothermodynamic heating data. An increase in interest related to orbiter entry environments is resulting from this activity. With the advent of this new data, comparisons of the US3D software to the new flight testing data is warranted. This paper will provide information regarding the framework of analyses that will be applied with the US3D analysis tool. In addition, comparisons will be made to entry flight testing data provided by the Orbiter BLT Flight Experiment and HYTHIRM projects. If data from digital scans of the Orbiter windward surface become available, simulations will also be performed to characterize the difference in surface heating between the CAD reference OML and the digitized surface provided by the surface scans.

  16. Research in Modeling and Simulation for Airspace Systems Innovation

    Science.gov (United States)

    Ballin, Mark G.; Kimmel, William M.; Welch, Sharon S.

    2007-01-01

    This viewgraph presentation provides an overview of some of the applied research and simulation methodologies at the NASA Langley Research Center that support aerospace systems innovation. Risk assessment methodologies, complex systems design and analysis methodologies, and aer ospace operations simulations are described. Potential areas for future research and collaboration using interactive and distributed simula tions are also proposed.

  17. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    A long, slender wing and a pusher propeller at the rear characterize the Perseus B remotely piloted research aircraft, seen here during a test flight in June 1998. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST

  18. Research of Simulation in Character Animation Based on Physics Engine

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-01-01

    Full Text Available Computer 3D character animation essentially is a product, which is combined with computer graphics and robotics, physics, mathematics, and the arts. It is based on computer hardware and graphics algorithms and related sciences rapidly developed new technologies. At present, the mainstream character animation technology is based on the artificial production of key technologies and capture frames based on the motion capture device technology. 3D character animation is widely used not only in the production of film, animation, and other commercial areas but also in virtual reality, computer-aided education, flight simulation, engineering simulation, military simulation, and other fields. In this paper, we try to study physics based character animation to solve these problems such as poor real-time interaction that appears in the character, low utilization rate, and complex production. The paper deeply studied the kinematics, dynamics technology, and production technology based on the motion data. At the same time, it analyzed ODE, PhysX, Bullet, and other variety of mainstream physics engines and studied OBB hierarchy bounding box tree, AABB hierarchical tree, and other collision detection algorithms. Finally, character animation based on ODE is implemented, which is simulation of the motion and collision process of a tricycle.

  19. Hybrid adaptive ascent flight control for a flexible launch vehicle

    Science.gov (United States)

    Lefevre, Brian D.

    hybrid adaptive flight controller, development of a Newton's method based online parameter update that is modified to include a step size which regulates the rate of change in the parameter estimates, comparison of the modified Newton's method and recursive least squares online parameter update algorithms, modification of the neural network's input structure to accommodate for the nature of the nonlinearities present in a launch vehicle's ascent flight, examination of both tracking error based and modeling error based neural network weight update laws, and integration of feedback filters for the purpose of preventing harmful interaction between the flight control system and flexible structural modes. To validate the hybrid adaptive controller, a high-fidelity Ares I ascent flight simulator and a classical gain-scheduled proportional-integral-derivative (PID) ascent flight controller were obtained from the NASA Marshall Space Flight Center. The classical PID flight controller is used as a benchmark when analyzing the performance of the hybrid adaptive flight controller. Simulations are conducted which model both nominal and off-nominal flight conditions with structural flexibility of the vehicle either enabled or disabled. First, rigid body ascent simulations are performed with the hybrid adaptive controller under nominal flight conditions for the purpose of selecting the update laws which drive the indirect and direct adaptive components. With the neural network disabled, the results revealed that the recursive least squares online parameter update caused high frequency oscillations to appear in the engine gimbal commands. This is highly undesirable for long and slender launch vehicles, such as the Ares I, because such oscillation of the rocket nozzle could excite unstable structural flex modes. In contrast, the modified Newton's method online parameter update produced smooth control signals and was thus selected for use in the hybrid adaptive launch vehicle flight

  20. Revalidation of the Selection Instrument for Flight Training

    Science.gov (United States)

    2017-07-01

    flight training . ( Technical Report No. 1195). Arlington, VA: U.S. Army Research Institute for the Behavioral and Social Sciences. Department of...Research Report 2002 Revalidation of the Selection Instrument for Flight Training Victor Ingurgio U.S. Army Research...MICHELLE SAMS, Ph.D. Director Research accomplished for the Department of the Army. Technical Review by Dr. William Bickley

  1. Flying Boresight for Advanced Testing and Calibration of Tracking Antennas and Flight Path Simulations

    Science.gov (United States)

    Hafner, D.

    2015-09-01

    The application of ground-based boresight sources for calibration and testing of tracking antennas usually entails various difficulties, mostly due to unwanted ground effects. To avoid this problem, DLR MORABA developed a small, lightweight, frequency-adjustable S-band boresight source, mounted on a small remote-controlled multirotor aircraft. Highly accurate GPS-supported, position and altitude control functions allow both, very steady positioning of the aircraft in mid-air, and precise waypoint-based, semi-autonomous flights. In contrast to fixed near-ground boresight sources this flying setup enables to avoid obstructions in the Fresnel zone between source and antenna. Further, it minimizes ground reflections and other multipath effects which can affect antenna calibration. In addition, the large operating range of a flying boresight simplifies measurements in the far field of the antenna and permits undisturbed antenna pattern tests. A unique application is the realistic simulation of sophisticated flight paths, including overhead tracking and demanding trajectories of fast objects such as sounding rockets. Likewise, dynamic tracking tests are feasible which provide crucial information about the antenna pedestal performance — particularly at high elevations — and reveal weaknesses in the autotrack control loop of tracking antenna systems. During acceptance tests of MORABA's new tracking antennas, a manned aircraft was never used, since the Flying Boresight surpassed all expectations regarding usability, efficiency, and precision. Hence, it became an integral part of MORABA's standard antenna setup and calibration procedures.

  2. Design and analysis of advanced flight planning concepts

    Science.gov (United States)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  3. Theseus Waits on Lakebed for First Flight

    Science.gov (United States)

    1996-01-01

    The Theseus prototype remotely-piloted aircraft (RPA) waits on the lakebed before its first test flight from NASA's Dryden Flight Research Center, Edwards, California, on May 24, 1996. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental

  4. Quantifying Pilot Contribution to Flight Safety During an In-Flight Airspeed Failure

    Science.gov (United States)

    Etherington, Timothy J.; Kramer, Lynda J.; Bailey, Randall E.; Kennedey, Kellie D.

    2017-01-01

    Accident statistics cite the flight crew as a causal factor in over 60% of large transport fatal accidents. Yet a well-trained and well-qualified crew is acknowledged as the critical center point of aircraft systems safety and an integral component of the entire commercial aviation system. A human-in-the-loop test was conducted using a Level D certified Boeing 737-800 simulator to evaluate the pilot's contribution to safety-of-flight during routine air carrier flight operations and in response to system failures. To quantify the human's contribution, crew complement was used as an independent variable in a between-subjects design. This paper details the crew's actions and responses while dealing with an in-flight airspeed failure. Accident statistics often cite flight crew error (Baker, 2001) as the primary contributor in accidents and incidents in transport category aircraft. However, the Air Line Pilots Association (2011) suggests "a well-trained and well-qualified pilot is acknowledged as the critical center point of the aircraft systems safety and an integral safety component of the entire commercial aviation system." This is generally acknowledged but cannot be verified because little or no quantitative data exists on how or how many accidents/incidents are averted by crew actions. Anecdotal evidence suggest crews handle failures on a daily basis and Aviation Safety Action Program data generally supports this assertion, even if the data is not released to the public. However without hard evidence, the contribution and means by which pilots achieve safety of flight is difficult to define. Thus, ways to improve the human ability to contribute or overcome deficiencies are ill-defined.

  5. Implementation and flight-test of a multi-mode rotorcraft flight-control system for single-pilot use in poor visibility

    Science.gov (United States)

    Hindson, William S.

    1987-01-01

    A flight investigation was conducted to evaluate a multi-mode flight control system designed according to the most recent recommendations for handling qualities criteria for new military helicopters. The modes and capabilities that were included in the system are those considered necessary to permit divided-attention (single-pilot) lowspeed and hover operations near the ground in poor visibility conditions. Design features included mode-selection and mode-blending logic, the use of an automatic position-hold mode that employed precision measurements of aircraft position, and a hover display which permitted manually-controlled hover flight tasks in simulated instrument conditions. Pilot evaluations of the system were conducted using a multi-segment evaluation task. Pilot comments concerning the use of the system are provided, and flight-test data are presented to show system performance.

  6. Proceedings of the meeting on large scale computer simulation research

    International Nuclear Information System (INIS)

    2004-04-01

    The meeting to summarize the collaboration activities for FY2003 on the Large Scale Computer Simulation Research was held January 15-16, 2004 at Theory and Computer Simulation Research Center, National Institute for Fusion Science. Recent simulation results, methodologies and other related topics were presented. (author)

  7. Human factors quantification via boundary identification of flight performance margin

    Directory of Open Access Journals (Sweden)

    Yang Changpeng

    2014-08-01

    Full Text Available A systematic methodology including a computational pilot model and a pattern recognition method is presented to identify the boundary of the flight performance margin for quantifying the human factors. The pilot model is proposed to correlate a set of quantitative human factors which represent the attributes and characteristics of a group of pilots. Three information processing components which are influenced by human factors are modeled: information perception, decision making, and action execution. By treating the human factors as stochastic variables that follow appropriate probability density functions, the effects of human factors on flight performance can be investigated through Monte Carlo (MC simulation. Kernel density estimation algorithm is selected to find and rank the influential human factors. Subsequently, human factors are quantified through identifying the boundary of the flight performance margin by the k-nearest neighbor (k-NN classifier. Simulation-based analysis shows that flight performance can be dramatically improved with the quantitative human factors.

  8. X-36 in Flight over Mojave Desert

    Science.gov (United States)

    1997-01-01

    The unusual lines of the X-36 technology demonstrator contrast sharply with the desert floor as the remotely piloted aircraft scoots across the California desert at low altitude during a research flight on October 30, 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with

  9. Ground-facilities at the DLR Institute of Aerospace Medicine for preparation of flight experiments

    Science.gov (United States)

    Hemmersbach, Ruth; Hendrik Anken, Ralf; Hauslage, Jens; von der Wiesche, Melanie; Baerwalde, Sven; Schuber, Marianne

    In order to investigate the influence of altered gravity on biological systems and to identify gravisensitive processes, various experimental platforms have been developed, which are useful to simulate weightlessness or are able to produce hypergravity. At the Institute of Aerospace Medicine, DLR Cologne, a broad spectrum of applications is offered to scientists: clinostats with one rotation axis and variable rotation speeds for cultivation of small objects (including aquatic organisms) in simulated weightlessness conditions, for online microscopic observations and for online kinetic measurements. Own research concentrates on comparative studies with other kinds of methods to simulate weightlessness, also available at the institute: Rotating Wall Vessel (RWV) for aquatic studies, Random Positioning Machine (RPM; manufactured by Dutch Space, Leiden, The Netherlands). Correspondingly, various centrifuge devices are available to study different test objects under hypergravity conditions -such as NIZEMI, a slow rotating centrifuge microscope, and MUSIC, a multi-sample centrifuge. Mainly for experiments with human test subjects (artificial gravity), but also for biological systems or for testing various kinds of (flight-) hardware, the SAHC, a short arm human centrifuge -loaned by ESA -was installed in Cologne and completes our experimental scenario. Furthermore, due to our specific tasks such as providing laboratories during the German Parabolic Flight Experiments starting from Cologne and being the Facility Responsible Center for BIOLAB, a science rack in the Columbus module aboard the ISS, scientists have the possibility for an optimal preparation of their flight experiments.

  10. Perseus Post-flight

    Science.gov (United States)

    1991-01-01

    Crew members check out the Perseus proof-of-concept vehicle on Rogers Dry Lake, adjacent to the Dryden Flight Research Center, Edwards, California, after a test flight in 1991. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved

  11. Daedalus - Last Dryden flight

    Science.gov (United States)

    1988-01-01

    The Daedalus 88, with Glenn Tremml piloting, is seen here on its last flight for the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  12. DAST in Flight Showing Diverging Wingtip Oscillations

    Science.gov (United States)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than

  13. DAST Being Calibrated for Flight in Hangar

    Science.gov (United States)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  14. COINTOF mass spectrometry: design of a time-of-flight analyzer and development of the analysis method

    International Nuclear Information System (INIS)

    Teyssier, C.

    2012-01-01

    DIAM (Device for the irradiation of molecular clusters) is a newly designed experimental setup to investigate processes resulting from the irradiation of molecular nano-systems by 20-150 keV protons. One of its specificities relies on the original technique of mass spectrometry named COINTOF (Correlated Ion and Neutral Time Of Flight) consisting in correlated measurements of the time of flight of charged and neutral fragments produced by the dissociation of a single molecular ion parent. A strategy of treatment and analysis of the detection signals was developed to distinguish two fragments close in time ( 3 O + and two water molecules. The distribution of the time of flight difference between the two neutral fragments is measured providing an estimate of the kinetic energy release of a few eV. In parallel, a second time-of-flight mass spectrometer was designed. It associates a linear time-of-flight and an orthogonal time-of-flight and integrates position detectors (delay line anode). Simulations demonstrate the potentials of the new analyzer. Finally, research works were led at the laboratory R.-J. A. Levesque (Universite de Montreal) on the imaging capabilities of the multi-pixel detectors of the MPX-ATLAS collaboration. (author)

  15. Ground testing and simulation. II - Aerodynamic testing and simulation: Saving lives, time, and money

    Science.gov (United States)

    Dayman, B., Jr.; Fiore, A. W.

    1974-01-01

    The present work discusses in general terms the various kinds of ground facilities, in particular, wind tunnels, which support aerodynamic testing. Since not all flight parameters can be simulated simultaneously, an important problem consists in matching parameters. It is pointed out that there is a lack of wind tunnels for a complete Reynolds-number simulation. Using a computer to simulate flow fields can result in considerable reduction of wind-tunnel hours required to develop a given flight vehicle.

  16. Ares I-X Launch Abort System, Crew Module, and Upper Stage Simulator Vibroacoustic Flight Data Evaluation, Comparison to Predictions, and Recommendations for Adjustments to Prediction Methodology and Assumptions

    Science.gov (United States)

    Smith, Andrew; Harrison, Phil

    2010-01-01

    The National Aeronautics and Space Administration (NASA) Constellation Program (CxP) has identified a series of tests to provide insight into the design and development of the Crew Launch Vehicle (CLV) and Crew Exploration Vehicle (CEV). Ares I-X was selected as the first suborbital development flight test to help meet CxP objectives. The Ares I-X flight test vehicle (FTV) is an early operational model of CLV, with specific emphasis on CLV and ground operation characteristics necessary to meet Ares I-X flight test objectives. The in-flight part of the test includes a trajectory to simulate maximum dynamic pressure during flight and perform a stage separation of the Upper Stage Simulator (USS) from the First Stage (FS). The in-flight test also includes recovery of the FS. The random vibration response from the ARES 1-X flight will be reconstructed for a few specific locations that were instrumented with accelerometers. This recorded data will be helpful in validating and refining vibration prediction tools and methodology. Measured vibroacoustic environments associated with lift off and ascent phases of the Ares I-X mission will be compared with pre-flight vibration predictions. The measured flight data was given as time histories which will be converted into power spectral density plots for comparison with the maximum predicted environments. The maximum predicted environments are documented in the Vibroacoustics and Shock Environment Data Book, AI1-SYS-ACOv4.10 Vibration predictions made using statistical energy analysis (SEA) VAOne computer program will also be incorporated in the comparisons. Ascent and lift off measured acoustics will also be compared to predictions to assess whether any discrepancies between the predicted vibration levels and measured vibration levels are attributable to inaccurate acoustic predictions. These comparisons will also be helpful in assessing whether adjustments to prediction methodologies are needed to improve agreement between the

  17. Micrometeoroid impact simulations using a railgun electromagnetic accelerator

    International Nuclear Information System (INIS)

    Upshaw, J.L.; Kajs, J.P.

    1991-01-01

    The Center for Electromechanics at The University of Texas at Austin (CEM-UT), using a railgun electromagnetic (EM) accelerator, has done a series of hypervelocity micrometeoroid impact simulations. Simulations done to date (78 tests) were carried out under contracts with Lockheed Palo Alto Research Laboratory and Martin Marietta Corporation. The tests were designed to demonstrate that railguns can provide a repeatable means of accelerating particles between 10 -4 and 10 -7 g to hypervelocities within a high-vacuum flight chamber. Sodalime glass beads were accelerated up to 11 km/s impacting into silicon, aluminum, quartz and various proprietary targets. At the muzzle of the gun was a 5.8-m-long, high-vacuum flight chamber. Targets were placed in this chamber at various distances from the gun. Impact craters on all the targets were examined using a light-source microscope and several targets were further examined using a scanning electron microscope. Gun and flight range diagnostics, along with experimental setups and results for several of the experiments, are presented in this paper

  18. Dynamics Modeling and Simulation of Large Transport Airplanes in Upset Conditions

    Science.gov (United States)

    Foster, John V.; Cunningham, Kevin; Fremaux, Charles M.; Shah, Gautam H.; Stewart, Eric C.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, research has been in progress to develop aerodynamic modeling methods for simulations that accurately predict the flight dynamics characteristics of large transport airplanes in upset conditions. The motivation for this research stems from the recognition that simulation is a vital tool for addressing loss-of-control accidents, including applications to pilot training, accident reconstruction, and advanced control system analysis. The ultimate goal of this effort is to contribute to the reduction of the fatal accident rate due to loss-of-control. Research activities have involved accident analyses, wind tunnel testing, and piloted simulation. Results have shown that significant improvements in simulation fidelity for upset conditions, compared to current training simulations, can be achieved using state-of-the-art wind tunnel testing and aerodynamic modeling methods. This paper provides a summary of research completed to date and includes discussion on key technical results, lessons learned, and future research needs.

  19. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  20. Development of an integrated configuration management/flight director system for piloted STOL approaches

    Science.gov (United States)

    Hoh, R. H.; Klein, R. H.; Johnson, W. A.

    1977-01-01

    A system analysis method for the development of an integrated configuration management/flight director system for IFR STOL approaches is presented. Curved descending decelerating approach trajectories are considered. Considerable emphasis is placed on satisfying the pilot centered requirements (acceptable workload) as well as the usual guidance and control requirements (acceptable performance). The Augmentor Wing Jet STOL Research Aircraft was utilized to allow illustration by example, and to validate the analysis procedure via manned simulation.

  1. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.

    Science.gov (United States)

    Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru

    2018-05-29

    Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.

  2. Perseus in Flight

    Science.gov (United States)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  3. Morphing Flight Control Surface for Advanced Flight Performance, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this SBIR project, a new Morphing Flight Control Surface (MFCS) will be developed. The distinction of the research effort is that the SenAnTech team will employ...

  4. In-flight cabin smoke control.

    Science.gov (United States)

    Eklund, T I

    1996-12-31

    Fatal accidents originating from in-flight cabin fires comprise only about 1% of all fatal accidents in the civil jet transport fleet. Nevertheless, the impossibility of escape during flight accentuates the hazards resulting from low visibility and toxic gases. Control of combustion products in an aircraft cabin is affected by several characteristics that make the aircraft cabin environment unique. The aircraft fuselage is pressurized in flight and has an air distribution system which provides ventilation jets from the ceiling level air inlets running along the cabin length. A fixed quantity of ventilation air is metered into the cabin and air discharge is handled primarily by pressure controlling outflow valves in the rear lower part of the fuselage. Earlier airplane flight tests on cabin smoke control used generators producing minimally buoyant smoke products that moved with and served as a telltales for overall cabin ventilation flows. Analytical studies were done with localized smoke production to predict the percent of cabin length that would remain smoke-free during continuous generation. Development of a buoyant smoke generator allowed simulation of a fire plume with controllable simulated temperature and heat release rates. Tests on a Boeing 757, modified to allow smoke venting out through the top of the cabin, showed that the buoyant smoke front moved at 0.46m/s (1.5ft/sec) with and 0.27m/sec (0.9ft/sec) against, the axial ventilation airflow. Flight tests in a modified Boeing 727 showed that a ceiling level counterflow of about 0.55m/sec (1.8ft/sec) was required to arrest the forward movement of buoyant smoke. A design goal of 0.61m/s (2ft/sec) axial cabin flow would require a flow rate of 99m3/min (3500ft3/min) in a furnished Boeing 757. The current maximum fresh air cabin ventilation flow is 78m3/min (2756 ft3/min). Experimental results indicate that buoyancy effects cause smoke movement behaviour that is not predicted by traditional design analyses and

  5. Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control

    Science.gov (United States)

    Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan

    2003-01-01

    An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.

  6. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  7. F-15 Intelligent Flight Control System and Aeronautics Research at NASA Dryden

    Science.gov (United States)

    Brown, Nelson A.

    2009-01-01

    This viewgraph presentation reviews the F-15 Intelligent Flight Control System and Aeronautics including Autonomous Aerial Refueling Demonstrations, X-48B Blended Wing Body, F-15 Quiet Spike, and NF-15 Intelligent Flight Controls.

  8. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    Science.gov (United States)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  9. Flight critical system design guidelines and validation methods

    Science.gov (United States)

    Holt, H. M.; Lupton, A. O.; Holden, D. G.

    1984-01-01

    Efforts being expended at NASA-Langley to define a validation methodology, techniques for comparing advanced systems concepts, and design guidelines for characterizing fault tolerant digital avionics are described with an emphasis on the capabilities of AIRLAB, an environmentally controlled laboratory. AIRLAB has VAX 11/750 and 11/780 computers with an aggregate of 22 Mb memory and over 650 Mb storage, interconnected at 256 kbaud. An additional computer is programmed to emulate digital devices. Ongoing work is easily accessed at user stations by either chronological or key word indexing. The CARE III program aids in analyzing the capabilities of test systems to recover from faults. An additional code, the semi-Markov unreliability program (SURE) generates upper and lower reliability bounds. The AIRLAB facility is mainly dedicated to research on designs of digital flight-critical systems which must have acceptable reliability before incorporation into aircraft control systems. The digital systems would be too costly to submit to a full battery of flight tests and must be initially examined with the AIRLAB simulation capabilities.

  10. Overheating Anomalies during Flight Test Due to the Base Bleeding

    Science.gov (United States)

    Luchinsky, Dmitry; Hafiychuck, Halyna; Osipov, Slava; Ponizhovskaya, Ekaterina; Smelyanskiy, Vadim; Dagostino, Mark; Canabal, Francisco; Mobley, Brandon L.

    2012-01-01

    In this paper we present the results of the analytical and numerical studies of the plume interaction with the base flow in the presence of base out-gassing. The physics-based analysis and CFD modeling of the base heating for single solid rocket motor performed in this research addressed the following questions: what are the key factors making base flow so different from that in the Shuttle [1]; why CFD analysis of this problem reveals small plume recirculation; what major factors influence base temperature; and why overheating was initiated at a given time in the flight. To answer these questions topological analysis of the base flow was performed and Korst theory was used to estimate relative contributions of radiation, plume recirculation, and chemically reactive out-gassing to the base heating. It was shown that base bleeding and small base volume are the key factors contributing to the overheating, while plume recirculation is effectively suppressed by asymmetric configuration of the flow formed earlier in the flight. These findings are further verified using CFD simulations that include multi-species gas environment both in the plume and in the base. Solid particles in the exhaust plume (Al2O3) and char particles in the base bleeding were also included into the simulations and their relative contributions into the base temperature rise were estimated. The results of simulations are in good agreement with the temperature and pressure in the base measured during the test.

  11. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  12. The AMADEE-15 Mars simulation

    Science.gov (United States)

    Groemer, Gernot; Losiak, Anna; Soucek, Alexander; Plank, Clemens; Zanardini, Laura; Sejkora, Nina; Sams, Sebastian

    2016-12-01

    We report on the AMADEE-15 mission, a 12-day Mars analog field test at the Kaunertal Glacier in Austria. Eleven experiments were conducted by a field crew at the test site under simulated martian surface exploration conditions and coordinated by a Mission Support Center in Innsbruck, Austria. The experiments' research fields encompassed geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. A Remote Science Support team analyzed field data in near real time, providing planning input for a flight control team to manage a complex system of field assets in a realistic work flow, including: two advanced space suit simulators; and four robotic and aerial vehicles. Field operations were supported by a dedicated flight planning group, an external control center tele-operating the PULI-rover, and a medical team. A 10-min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, with a focus on the mission's communication infrastructure. We report on the operational workflows and the experiments conducted, as well as a novel approach of measuring mission success through the introduction of general analog mission transferrable performance indicators.

  13. Measuring Workload Differences Between Short-term Memory and Long-term Memory Scenarios in a Simulated Flight Environment

    Science.gov (United States)

    Berg, S. L.; Sheridan, T. B.

    1984-01-01

    Four highly experienced Air Force pilots each flew four simulated flight scenarios. Two scenarios required a great deal of aircraft maneuvering. The other two scenarios involved less maneuvering, but required remembering a number of items. All scenarios were designed to be equaly challenging. Pilot's Subjective Ratings for Activity-level, Complexity, Difficulty, Stress, and Workload were higher for the manuevering scenarios than the memory scenarios. At a moderate workload level, keeping the pilots active resulted in better aircraft control. When required to monitor and remember items, aircraft control tended to decrease. Pilots tended to weigh information about the spatial positioning and performance of their aircraft more heavily than other items.

  14. Testing flight software on the ground: Introducing the hardware-in-the-loop simulation method to the Alpha Magnetic Spectrometer on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenhao, E-mail: wenhao_sun@126.com [Southeast University, Nanjing 210096 (China); Cai, Xudong [Massachusetts Institute of Technology, MA 02139-4307 (United States); Meng, Qiao [Southeast University, Nanjing 210096 (China)

    2016-04-11

    Complex automatic protection functions are being added to the onboard software of the Alpha Magnetic Spectrometer. A hardware-in-the-loop simulation method has been introduced to overcome the difficulties of ground testing that are brought by hardware and environmental limitations. We invented a time-saving approach by reusing the flight data as the data source of the simulation system instead of mathematical models. This is easy to implement and it works efficiently. This paper presents the system framework, implementation details and some application examples.

  15. Flight testing a propulsion-controlled aircraft emergency flight control system on an F-15 airplane

    Science.gov (United States)

    Burcham, F. W., Jr.; Burken, John; Maine, Trindel A.

    1994-01-01

    Flight tests of a propulsion-controlled aircraft (PCA) system on an F-15 airplane have been conducted at the NASA Dryden Flight Research Center. The airplane was flown with all flight control surfaces locked both in the manual throttles-only mode and in an augmented system mode. In the latter mode, pilot thumbwheel commands and aircraft feedback parameters were used to position the throttles. Flight evaluation results showed that the PCA system can be used to land an airplane that has suffered a major flight control system failure safely. The PCA system was used to recover the F-15 airplane from a severe upset condition, descend, and land. Pilots from NASA, U.S. Air Force, U.S. Navy, and McDonnell Douglas Aerospace evaluated the PCA system and were favorably impressed with its capability. Manual throttles-only approaches were unsuccessful. This paper describes the PCA system operation and testing. It also presents flight test results and pilot comments.

  16. F-16XL ship #1 (#849) during first flight of the Digital Flight Control System (DFCS)

    Science.gov (United States)

    1997-01-01

    After completing its first flight with the Digital Flight Control System on December 16, 1997, the F-16XL #1 aircraft began a series of envelope expansion flights. On January 27 and 29, 1998, it successfully completed structural clearance tests, as well as most of the load testing Only flights at Mach 1.05 at 10,000 feet, Mach 1.1 at 15,000 feet, and Mach 1.2 at 20,000 feet remained. During the next flight, on February 4, an instrumentation problem cut short the planned envelope expansion tests. After the problem was corrected, the F-16XL returned to flight status, and on February 18 and 20, flight control and evaluation flights were made. Two more research flights were planned for the following week, but another problem appeared. During the ground start up, project personnel noticed that the leading edge flap moved without being commanded. The Digital Flight Control Computer was sent to the Lockheed-Martin facility at Fort Worth, where the problem was traced to a defective chip in the computer. After it was replaced, the F-16XL #1 flew a highly successful flight controls and handling qualities evaluation flight on March 26, clearing the way for the final tests. The final limited loads expansion flight occurred on March 31, and was fully successful. As a result, the on-site Lockheed-Martin loads engineer cleared the aircraft to Mach 1.8. The remaining two handling qualities and flight control evaluation flights were both made on April 3, 1998. These three flights concluded the flight test portion of the DFCS upgrade.

  17. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  18. Organic scintillators response function modeling for Monte Carlo simulation of Time-of-Flight measurements

    Energy Technology Data Exchange (ETDEWEB)

    Carasco, C., E-mail: cedric.carasco@cea.fr [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 Saint-Paul-lez-Durance (France)

    2012-07-15

    In neutron Time-of-Flight (TOF) measurements performed with fast organic scintillation detectors, both pulse arrival time and amplitude are relevant. Monte Carlo simulation can be used to calculate the time-energy dependant neutron flux at the detector position. To convert the flux into a pulse height spectrum, one must calculate the detector response function for mono-energetic neutrons. MCNP can be used to design TOF systems, but standard MCNP versions cannot reliably calculate the energy deposited by fast neutrons in the detector since multiple scattering effects must be taken into account in an analog way, the individual recoil particles energy deposit being summed with the appropriate scintillation efficiency. In this paper, the energy response function of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime liquid scintillation BC-501 A (Bicron) detectors to fast neutrons ranging from 20 keV to 5.0 MeV is computed with GEANT4 to be coupled with MCNPX through the 'MCNP Output Data Analysis' software developed under ROOT (). - Highlights: Black-Right-Pointing-Pointer GEANT4 has been used to model organic scintillators response to neutrons up to 5 MeV. Black-Right-Pointing-Pointer The response of 2 Double-Prime Multiplication-Sign 2 Double-Prime and 5 Double-Prime Multiplication-Sign 5 Double-Prime BC501A detectors has been parameterized with simple functions. Black-Right-Pointing-Pointer Parameterization will allow the modeling of neutron Time of Flight measurements with MCNP using tools based on CERN's ROOT.

  19. Psychology of Flight Attendant’s Profession

    OpenAIRE

    Tatyana V. Filipieva

    2012-01-01

    The profession of a flight attendant appeared in aviation in the 1920s. Professional community of flight attendants is constantly growing with the growth of complexity of aviation technology, professional standards of passenger service and safety. The psychological scientific research was carried out by a psychologist who worked as a flight attendant. The study revealed the psychological content, demands, peculiarities in cabin crews' labor. A job description was accomplished. Temporal and sp...

  20. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    Science.gov (United States)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying

  1. NASA/RAE cooperation on a knowlede based flight status monitor

    Science.gov (United States)

    Butler, G. F.; Duke, E. L.

    1989-01-01

    As part of a US/UK cooperative aeronautical research pragram, a joint activity between the Dryden Flight Research Facility of the NASA Ames Research Center (Ames-Dryden) and the Royal Aerospace Establishment (RAE) on Knowledge Based Systems was established. Under the agreement, a Flight Status Monitor Knowledge base developed at Ames-Dryden was implemented using the real-time IKBS toolkit, MUSE, which was developed in the UK under RAE sponsorship. The Flight Status Monitor is designed to provide on-line aid to the flight test engineer in the interpretation of system health and status by storing expert knowledge of system behavior in an easily accessible form. The background to the cooperation is described and the details of the Flight Status Monitor, the MUSE implementation are presented.

  2. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  3. Review of research on simulation engineering in FY2007

    International Nuclear Information System (INIS)

    2009-02-01

    Research on simulation engineering for nuclear applications, based on the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems, Japan Atomic Energy Agency (CCSE/JAEA). CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the result of the evaluation by the committee on the research on simulation engineering performed at CCSE/JAEA in FY2007. (author)

  4. Review of research on simulation engineering in FY2008

    International Nuclear Information System (INIS)

    2010-02-01

    Research on simulation engineering for nuclear applications, based on 'the plan for meeting the mid-term goal of the Japan Atomic Energy Agency', has been performed at Center for Computational Science and e-Systems, Japan Atomic Energy Agency (CCSE/JAEA). CCSE established the committee consisting outside experts and authorities which does research evaluation and advices for the assistance of the research and development. This report summarizes the result of the evaluation by the committee on the research on simulation engineering performed at CCSE/JAEA in FY2008. (author)

  5. Europlanet Research Infrastructure: Planetary Simulation Facilities

    Science.gov (United States)

    Davies, G. R.; Mason, N. J.; Green, S.; Gómez, F.; Prieto, O.; Helbert, J.; Colangeli, L.; Srama, R.; Grande, M.; Merrison, J.

    2008-09-01

    EuroPlanet The Europlanet Research Infrastructure consortium funded under FP7 aims to provide the EU Planetary Science community greater access for to research infrastructure. A series of networking and outreach initiatives will be complimented by joint research activities and the formation of three Trans National Access distributed service laboratories (TNA's) to provide a unique and comprehensive set of analogue field sites, laboratory simulation facilities, and extraterrestrial sample analysis tools. Here we report on the infrastructure that comprises the second TNA; Planetary Simulation Facilities. 11 laboratory based facilities are able to recreate the conditions found in the atmospheres and on the surfaces of planetary systems with specific emphasis on Martian, Titan and Europa analogues. The strategy has been to offer some overlap in capabilities to ensure access to the highest number of users and to allow for progressive and efficient development strategies. For example initial testing of mobility capability prior to the step wise development within planetary atmospheres that can be made progressively more hostile through the introduction of extreme temperatures, radiation, wind and dust. Europlanet Research Infrastructure Facilties: Mars atmosphere simulation chambers at VUA and OU These relatively large chambers (up to 1 x 0.5 x 0.5 m) simulate Martian atmospheric conditions and the dual cooling options at VUA allows stabilised instrument temperatures while the remainder of the sample chamber can be varied between 220K and 350K. Researchers can therefore assess analytical protocols for instruments operating on Mars; e.g. effect of pCO2, temperature and material (e.g., ± ice) on spectroscopic and laser ablation techniques while monitoring the performance of detection technologies such as CCD at low T & variable p H2O & pCO2. Titan atmosphere and surface simulation chamber at OU The chamber simulates Titan's atmospheric composition under a range of

  6. Application of nonlinear transformations to automatic flight control

    Science.gov (United States)

    Meyer, G.; Su, R.; Hunt, L. R.

    1984-01-01

    The theory of transformations of nonlinear systems to linear ones is applied to the design of an automatic flight controller for the UH-1H helicopter. The helicopter mathematical model is described and it is shown to satisfy the necessary and sufficient conditions for transformability. The mapping is constructed, taking the nonlinear model to canonical form. The performance of the automatic control system in a detailed simulation on the flight computer is summarized.

  7. Research on Arrival/Departure Scheduling of Flights on Multirunways Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hang Zhou

    2014-01-01

    Full Text Available Aiming at the phenomenon of a large number of flight delays in the terminal area makes a reasonable scheduling for the approach and departure flights, which will minimize flight delay losses and improve runway utilization. This paper considered factors such as operating conditions and safety interval of multi runways; the maximum throughput and minimum flight delay losses as well as robustness were taken as objective functions; the model of optimization scheduling of approach and departure flights was established. Finally, the genetic algorithm was introduced to solve the model. The results showed that, in the program whose advance is not counted as a loss, its runway throughput is improved by 18.4%, the delay losses are reduced by 85.8%, and the robustness is increased by 20% compared with the results of FCFS (first come first served algorithm, while, compared with the program whose advance is counted as a loss, the runway throughput is improved by 15.16%, flight delay losses are decreased by 75.64%, and the robustness is also increased by 20%. The algorithm can improve the efficiency and reduce delay losses effectively and reduce the workload of controllers, thereby improving economic results.

  8. Initial virtual flight test for a dynamically similar aircraft model with control augmentation system

    Directory of Open Access Journals (Sweden)

    Linliang Guo

    2017-04-01

    Full Text Available To satisfy the validation requirements of flight control law for advanced aircraft, a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel. A 3-degree-of-freedom gimbal, ventrally installed in the model, was used in conjunction with an actively controlled dynamically similar model of aircraft, which was equipped with the inertial measurement unit, attitude and heading reference system, embedded computer and servo-actuators. The model, which could be rotated around its center of gravity freely by the aerodynamic moments, together with the flow field, operator and real time control system made up the closed-loop testing circuit. The model is statically unstable in longitudinal direction, and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws. The experimental results indicate that the model responds well to the operator’s instructions. The response of the model in the tests shows reasonable agreement with the simulation results. The difference of response of angle of attack is less than 0.5°. The effect of stability augmentation and attitude control law was validated in the test, meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.

  9. A rotorcraft flight/propulsion control integration study

    Science.gov (United States)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  10. ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation

    Science.gov (United States)

    Carter, A. B.; Klug, G. W.; Williams, N. W.

    1975-01-01

    Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.

  11. Anesthesia and critical-care delivery in weightlessness: A challenge for research in parabolic flight analogue space surgery studies

    Science.gov (United States)

    Ball, Chad G.; Keaney, Marilyn A.; Chun, Rosaleen; Groleau, Michelle; Tyssen, Michelle; Keyte, Jennifer; Broderick, Timothy J.; Kirkpatrick, Andrew W.

    2010-03-01

    BackgroundMultiple nations are actively pursuing manned exploration of space beyond low-earth orbit. The responsibility to improve surgical care for spaceflight is substantial. Although the use of parabolic flight as a terrestrial analogue to study surgery in weightlessness (0 g) is well described, minimal data is available to guide the appropriate delivery of anesthesia. After studying anesthetized pigs in a 0 g parabolic flight environment, our group developed a comprehensive protocol describing prolonged anesthesia in a parabolic flight analogue space surgery study (PFASSS). Novel challenges included a physically remote vivarium, prolonged (>10 h) anesthetic requirements, and the provision of veterinary operating room/intensive care unit (ICU) equivalency on-board an aircraft with physical dimensions of ethical approval, multiple ground laboratory sessions were conducted with combinations of anesthetic, pre-medication, and induction protocols on Yorkshire-cross specific pathogen-free (SPF) pigs. Several constant rate infusion (CRI) intravenous anesthetic combinations were tested. In each regimen, opioids were administered to ensure analgesia. Ventilation was supported mechanically with blended gradients of oxygen. The best performing terrestrial 1 g regime was flight tested in parabolic flight for its effectiveness in sustaining optimal and prolonged anesthesia, analgesia, and maintaining hemodynamic stability. Each flight day, a fully anesthetized, ventilated, and surgically instrumented pig was transported to the Flight Research Laboratory (FRL) in a temperature-controlled animal ambulance. A modular on-board surgical/ICU suite with appropriate anesthesia/ICU and surgical support capabilities was employed. ResultsThe mean duration of anesthesia (per flight day) was 10.28 h over four consecutive days. A barbiturate and ketamine-based CRI anesthetic regimen supplemented with narcotic analgesia by bolus administration offered the greatest prolonged hemodynamic

  12. Human Factors Research in Aircrew Performance and Training

    Science.gov (United States)

    1986-11-01

    three phases of research in the original proposal, a flight simulation study, conducted by the Army Aeroflight- dinamics Directorate (AAFD), to...identifying strengths and weaknesses in all aviation related programs; " to assess the aviation support facility’s (ASF) ability to support units assigned to...addition, data were compiled from questionnaires designed to assess students’ and IPs’ opinions about the relative strengths and weaknesses of the simulator

  13. Effects of external boundary layer flow on jet noise in flight

    Science.gov (United States)

    Sarohia, V.; Massier, P. F.

    1976-01-01

    The effects on jet flow of the external boundary layer flow emanating from the trailing edge of an engine cowl in flight has been shown to be the main reason for the disparity between predicted and experimental results obtained from flight measurements. Flight simulation experiments indicate that the external boundary layer flow tends to shield the jet flow in flight. This in turn modifies the jet noise source in flight and consequently the radiated noise from aircraft in flight. Close to 90 deg angle to the intake and in the forward quadrant, this study indicates that the far field jet noise and its spectrum scales approximately with the absolute jet velocity instead of the relative velocity as has been assumed in the existing prediction models.

  14. Application of CFD to a generic hypersonic flight research study

    Science.gov (United States)

    Green, Michael J.; Lawrence, Scott L.; Dilley, Arthur D.; Hawkins, Richard W.; Walker, Mary M.; Oberkampf, William L.

    1993-01-01

    Computational analyses have been performed for the initial assessment of flight research vehicle concepts that satisfy requirements for potential hypersonic experiments. Results were obtained from independent analyses at NASA Ames, NASA Langley, and Sandia National Labs, using sophisticated time-dependent Navier-Stokes and parabolized Navier-Stokes methods. Careful study of a common problem consisting of hypersonic flow past a slightly blunted conical forebody was undertaken to estimate the level of uncertainty in the computed results, and to assess the capabilities of current computational methods for predicting boundary-layer transition onset. Results of this study in terms of surface pressure and heat transfer comparisons, as well as comparisons of boundary-layer edge quantities and flow-field profiles are presented here. Sensitivities to grid and gas model are discussed. Finally, representative results are presented relating to the use of Computational Fluid Dynamics in the vehicle design and the integration/support of potential experiments.

  15. SEXTANT X-Ray Pulsar Navigation Demonstration: Flight System and Test Results

    Science.gov (United States)

    Winternitz, Luke; Mitchell, Jason W.; Hassouneh, Munther A.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2016-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. NICER is a NASA Explorer Mission of Opportunity that will be hosted on the International Space Station (ISS). SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper gives an overview of the SEXTANT system architecture and describes progress prior to environmental testing of the NICER flight instrument. It provides descriptions and development status of the SEXTANT flight software and ground system, as well as detailed description and results from the flight software functional and performance testing within the high-fidelity Goddard Space Flight Center (GSFC) X-ray Navigation Laboratory Testbed (GXLT) software and hardware simulation environment. Hardware-in-the-loop simulation results are presented, using the engineering model of the NICER timing electronics and the GXLT pulsar simulator-the GXLT precisely controls NASA GSFC's unique Modulated X-ray Source to produce X-rays that make the NICER detector electronics appear as if they were aboard the ISS viewing a sequence of millisecond pulsars

  16. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    Science.gov (United States)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  17. Integration of MATLAB Simulink(Registered Trademark) Models with the Vertical Motion Simulator

    Science.gov (United States)

    Lewis, Emily K.; Vuong, Nghia D.

    2012-01-01

    This paper describes the integration of MATLAB Simulink(Registered TradeMark) models into the Vertical Motion Simulator (VMS) at NASA Ames Research Center. The VMS is a high-fidelity, large motion flight simulator that is capable of simulating a variety of aerospace vehicles. Integrating MATLAB Simulink models into the VMS needed to retain the development flexibility of the MATLAB environment and allow rapid deployment of model changes. The process developed at the VMS was used successfully in a number of recent simulation experiments. This accomplishment demonstrated that the model integrity was preserved, while working within the hard real-time run environment of the VMS architecture, and maintaining the unique flexibility of the VMS to meet diverse research requirements.

  18. Final results of the supra project : Improved Simulation of Upset Recovery

    NARCIS (Netherlands)

    Fucke, L.; Groen, E.; Goman, M.; Abramov, N.; Wentink, M.; Nooij, S.; Zaichik, L.E.; Khrabrov, A.

    2012-01-01

    The objective of the European research project SUPRA (Simulation of Upset Recovery in Aviation) is to develop technologies that eventually contribute to a reduction of risk of Loss of control - in flight (LOC-I) accidents, today's major cause of fatal accidents in commercial aviation. To this end

  19. X-36 Being Prepared on Lakebed for First Flight

    Science.gov (United States)

    1997-01-01

    Lit by the rays of the morning sunrise on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California, technicians prepare the remotely-piloted X-36 Tailless Fighter Agility Research Aircraft for its first flight in May 1997. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet

  20. Supersonic Combustion in Air-Breathing Propulsion Systems for Hypersonic Flight

    Science.gov (United States)

    Urzay, Javier

    2018-01-01

    Great efforts have been dedicated during the last decades to the research and development of hypersonic aircrafts that can fly at several times the speed of sound. These aerospace vehicles have revolutionary applications in national security as advanced hypersonic weapons, in space exploration as reusable stages for access to low Earth orbit, and in commercial aviation as fast long-range methods for air transportation of passengers around the globe. This review addresses the topic of supersonic combustion, which represents the central physical process that enables scramjet hypersonic propulsion systems to accelerate aircrafts to ultra-high speeds. The description focuses on recent experimental flights and ground-based research programs and highlights associated fundamental flow physics, subgrid-scale model development, and full-system numerical simulations.

  1. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  2. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    Science.gov (United States)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  3. Flow Field Characteristics and Lift Changing Mechanism for Half-Rotating Wing in Hovering Flight

    Science.gov (United States)

    Li, Q.; Wang, X. Y.; Qiu, H.; Li, C. M.; Qiu, Z. Z.

    2017-12-01

    Half-rotating wing (HRW) is a new similar-flapping wing system based on half-rotating mechanism which could perform rotating-type flapping instead of oscillating-type flapping. The characteristics of flow field and lift changing mechanism for HRW in hovering flight are important theoretical basis to improve the flight capability of HRW aircraft. The driving mechanism and work process of HRW were firstly introduced in this paper. Aerodynamic simulation model of HRW in hovering flight was established and solved using XFlow software, by which lift changing rule of HRW was drawn from the simulation solution. On the other hand, the development and shedding of the distal vortex throughout one stroke would lead to the changes of the lift force. Based on analyzing distribution characteristics of vorticity, velocity and pressure around wing blade, the main features of the flow field for HRW were further given. The distal attached vortex led to the increase of the lift force, which would gradually shed into the wake with a decline of lift in the later downstroke. The wake ring directed by the distal end of the blade would generate the downward accelerating airflow which produced the upward anti-impulse to HRW. The research results mentioned above illustrated that the behavior characteristics of vortex formed in flow field were main cause of lift changing for HRW.

  4. Mini-Sniffer II in Flight

    Science.gov (United States)

    1976-01-01

    This photograph shows the second Mini-Sniffer undergoing flight testing over Rogers Dry Lake in Edwards, California. This version of the Mini-Sniffer lacked the canard of the original version and had wing tips and tail booms added. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.

  5. Flight Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in a Setup Simulating that Proposed for Captive-Flight Tests in a Hangar, TED No. NACA DE 368

    Science.gov (United States)

    Lovell, Powell M., Jr.

    1953-01-01

    An experimental investigation has been conducted to determine the dynamic stability and control characteristics of a 0.13-scale free-flight model of the Convair XFY-1 airplane in test setups representing the setup proposed for use in the first flight tests of the full-scale airplane in the Moffett Field airship hangar. The investigation was conducted in two parts: first, tests with the model flying freely in an enclosure simulating the hangar, and second, tests with the model partially restrained by an overhead line attached to the propeller spinner and ground lines attached to the wing and tail tips. The results of the tests indicated that the airplane can be flown without difficulty in the Moffett Field airship hangar if it does not approach too close to the hangar walls. If it does approach too close to the walls, the recirculation of the propeller slipstream might cause sudden trim changes which would make smooth flight difficult for the pilot to accomplish. It appeared that the tethering system proposed by Convair could provide generally satisfactory restraint of large-amplitude motions caused by control failure or pilot error without interfering with normal flying or causing any serious instability or violent jerking motions as the tethering lines restrained the model.

  6. Passengers waste production during flights.

    Science.gov (United States)

    Tofalli, Niki; Loizia, Pantelitsa; Zorpas, Antonis A

    2017-12-20

    We assume that during flights the amount of waste that is produced is limited. However, daily, approximately 8000 commercial airplanes fly above Europe's airspace while at the same time, more than 17,000 commercial flights exist in the entire world. Using primary data from airlines, which use the Larnaca's International Airport (LIA) in Cyprus, we have tried to understand why wastes are produced during a typical flight such as food waste, paper, and plastics, as well as how passengers affect the production of those wastes. The compositional analysis took place on 27 flights of 4 different airlines which used LIA as final destination. The evaluation indicated that the passenger's habits and ethics, and the policy of each airline produced different kinds of waste during the flights and especially food waste (FW). Furthermore, it was observed that the only waste management strategy that exists in place in the airport is the collection and the transportation of all those wastes from aircrafts and from the airport in the central unit for further treatment. Hence, this research indicated extremely difficulties to implement any specific waste minimization, or prevention practice or other sorting methods during the flights due to the limited time of the most flights (less than 3 h), the limited available space within the aircrafts, and the strictly safety roles that exist during the flights.

  7. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    Science.gov (United States)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  8. Closing Symposium of the German Research Initiative ComFliTe

    CERN Document Server

    Radespiel, Rolf; Burg, Jan; Sørensen, Kaare

    2013-01-01

    This book reports on the German research initiative ComFliTe (Computational Flight Testing), the main goal of which was to enhance the capabilities of and tools for numerical simulation in flight physics to support future aircraft design and development. The initiative was coordinated by the German Aerospace Center (DLR) and promoted collaboration between the aircraft industry and academia. Activities focused on improving physical modeling for separated flows, developing advanced numerical algorithms for series computations and sensitivity predictions, as well as surrogate and reduced order modeling for aero data production and developing robust fluid-, structure- and flight mechanics coupling procedures. Further topics included more efficient handling of aircraft control surfaces and improving simulation methods for maneuvers, such as gust encounter. The important results of this three-year initiative were presented during the ComFliTe closing symposium, which took place at the DLR in Braunschweig, Germany, ...

  9. Analytical properties of time-of-flight PET data

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sanghee; Ahn, Sangtae; Quanzheng, Li; Leahy, Richard M [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: leahy@sipi.usc.edu

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  10. Analytical properties of time-of-flight PET data

    Science.gov (United States)

    Cho, Sanghee; Ahn, Sangtae; Li, Quanzheng; Leahy, Richard M.

    2008-06-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  11. Analytical properties of time-of-flight PET data

    International Nuclear Information System (INIS)

    Cho, Sanghee; Ahn, Sangtae; Li Quanzheng; Leahy, Richard M

    2008-01-01

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data

  12. Analytical properties of time-of-flight PET data

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sanghee; Ahn, Sangtae; Li Quanzheng; Leahy, Richard M [Signal and Image Processing Institute, University of Southern California, Los Angeles, CA 90089 (United States)], E-mail: leahy@sipi.usc.edu

    2008-06-07

    We investigate the analytical properties of time-of-flight (TOF) positron emission tomography (PET) sinograms, where the data are modeled as line integrals weighted by a spatially invariant TOF kernel. First, we investigate the Fourier transform properties of 2D TOF data and extend the 'bow-tie' property of the 2D Radon transform to the time-of-flight case. Second, we describe a new exact Fourier rebinning method, TOF-FOREX, based on the Fourier transform in the time-of-flight variable. We then combine TOF-FOREX rebinning with a direct extension of the projection slice theorem to TOF data, to perform fast 3D TOF PET image reconstruction. Finally, we illustrate these properties using simulated data.

  13. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  14. Task complexity modulates pilot electroencephalographic activity during real flights.

    Science.gov (United States)

    Di Stasi, Leandro L; Diaz-Piedra, Carolina; Suárez, Juan; McCamy, Michael B; Martinez-Conde, Susana; Roca-Dorda, Joaquín; Catena, Andrés

    2015-07-01

    Most research connecting task performance and neural activity to date has been conducted in laboratory conditions. Thus, field studies remain scarce, especially in extreme conditions such as during real flights. Here, we investigated the effects of flight procedures of varied complexity on the in-flight EEG activity of military helicopter pilots. Flight procedural complexity modulated the EEG power spectrum: highly demanding procedures (i.e., takeoff and landing) were associated with higher EEG power in the higher frequency bands, whereas less demanding procedures (i.e., flight exercises) were associated with lower EEG power over the same frequency bands. These results suggest that EEG recordings may help to evaluate an operator's cognitive performance in challenging real-life scenarios, and thus could aid in the prevention of catastrophic events. © 2015 Society for Psychophysiological Research.

  15. Commercial air travel and in-flight pulmonary hypertension.

    Science.gov (United States)

    Smith, Thomas G; Chang, Rae W; Robbins, Peter A; Dorrington, Keith L

    2013-01-01

    It has recently been shown that commercial air travel triggers hypoxic pulmonary vasoconstriction and modestly increases pulmonary artery pressure in healthy passengers. There is large interindividual variation in hypoxic pulmonary vasoreactivity, and some passengers may be at risk of developing flight-induced pulmonary hypertension, with potentially dangerous consequences. This study sought to determine whether it is possible for a susceptible passenger to develop pulmonary hypertension in response to a routine commercial flight. Using in-flight echocardiography, a passenger was studied during a 6-h commercial flight from London to Dubai. The passenger was generally well and frequently traveled by air, but had been diagnosed with Chuvash polycythemia, a genetic condition that is associated with increased hypoxic pulmonary vasoreactivity. Hematocrit had been normalized with regular venesection. During the flight, arterial oxygen saturation fell to a minimum of 96% and systolic pulmonary artery pressure (sPAP) rapidly increased into the pulmonary hypertensive range. The in-flight increase in sPAP was 50%, reaching a peak of 45 mmHg. This study has established that an asymptomatic but susceptible passenger can rapidly develop in-flight pulmonary hypertension even during a medium-haul flight. Prospective passengers at risk from such responses, including those who have cardiopulmonary disease or increased hypoxic pulmonary vasoreactivity, could benefit from preflight evaluation with a hypoxia altitude simulation test combined with simultaneous echocardiography (HAST-echo). The use of in-flight supplementary oxygen should be considered for susceptible individuals, including all patients diagnosed with Chuvash polycythemia.

  16. Simulating 'the right stuff'

    Science.gov (United States)

    Fischetti, M. A.; Truxal, C.

    1985-03-01

    The present investigation is mainly concerned with simulators employed in the training of pilots in the Armed Services and other military personnel, taking into account certain problems and approaches for overcoming them. The use of simulators for training programs has a number of advantages compared to training involving a use of the actual equipment. Questions arise, however, regarding the value of such a training. Thus, it has been said that, while simulators gave students practice in manual skill, they could not teach them to handle the stress of being in a real aircraft. It has also been argued that some tasks are not represented accurately enough for proper training. In response to this criticism, the capacity of the simulators has been greatly improved. However, this development leads to problems related to the cost of simulator training. Attention is given to better visuals for flight simulators, the current generation of graphics imagery and expected improvements, possibilities for reducing flight simulator costs, and advances due to progress in microcomputers.

  17. Analysis of Pilot-Induced-Oscillation and Pilot Vehicle System Stability Using UAS Flight Experiments

    Directory of Open Access Journals (Sweden)

    Tanmay K. Mandal

    2016-11-01

    Full Text Available This paper reports the results of a Pilot-Induced Oscillation (PIO and human pilot control characterization study performed using flight data collected with a Remotely Controlled (R/C unmanned research aircraft. The study was carried out on the longitudinal axis of the aircraft. Several existing Category 1 and Category 2 PIO criteria developed for manned aircraft are first surveyed and their effectiveness for predicting the PIO susceptibility for the R/C unmanned aircraft is evaluated using several flight experiments. It was found that the Bandwidth/Pitch rate overshoot and open loop onset point (OLOP criteria prediction results matched flight test observations. However, other criteria failed to provide accurate prediction results. To further characterize the human pilot control behavior during these experiments, a quasi-linear pilot model is used. The parameters of the pilot model estimated using data obtained from flight tests are then used to obtain information about the stability of the Pilot Vehicle System (PVS for Category 1 PIOs occurred during straight and level flights. The batch estimation technique used to estimate the parameters of the quasi-linear pilot model failed to completely capture the compatibility nature of the human pilot. The estimation results however provided valuable insights into the frequency characteristics of the human pilot commands. Additionally, stability analysis of the Category 2 PIOs for elevator actuator rate limiting is carried out using simulations and the results are compared with actual flight results.

  18. Piloted simulation study of an ILS approach of a twin-pusher business/commuter turboprop aircraft configuration

    Science.gov (United States)

    Riley, Donald R.; Brandon, Jay M.; Glaab, Louis J.

    1994-01-01

    A six-degree-of-freedom nonlinear simulation of a twin-pusher, turboprop business/commuter aircraft configuration representative of the Cessna ATPTB (Advanced turboprop test bed) was developed for use in piloted studies with the Langley General Aviation Simulator. The math models developed are provided, simulation predictions are compared with with Cessna flight-test data for validation purposes, and results of a handling quality study during simulated ILS (instrument landing system) approaches and missed approaches are presented. Simulated flight trajectories, task performance measures, and pilot evaluations are presented for the ILS approach and missed-approach tasks conducted with the vehicle in the presence of moderate turbulence, varying horizontal winds and engine-out conditions. Six test subjects consisting of two research pilots, a Cessna test pilot, and three general aviation pilots participated in the study. This effort was undertaken in cooperation with the Cessna Aircraft Company.

  19. NASA's Rodent Research Project: Validation of Flight Hardware, Operations and Science Capabilities for Conducting Long Duration Experiments in Space

    Science.gov (United States)

    Choi, S. Y.; Beegle, J. E.; Wigley, C. L.; Pletcher, D.; Globus, R. K.

    2015-01-01

    Research using rodents is an essential tool for advancing biomedical research on Earth and in space. Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed at the NASA Ames Research Center. Twenty C57BL/6J adult female mice were launched on Sept 21, 2014 in a Dragon Capsule (SpaceX-4), then transferred to the ISS for a total time of 21-22 days (10 commercial mice) or 37 (10 validation mice). Tissues collected on-orbit were either rapidly frozen or preserved in RNA later at less than or equal to -80 C (n=2/group) until their return to Earth. Remaining carcasses were rapidly frozen for dissection post-flight. The three controls groups at Kennedy Space Center consisted of: Basal mice euthanized at the time of launch, Vivarium controls, housed in standard cages, and Ground Controls (GC), housed in flight hardware within an environmental chamber. FLT mice appeared more physically active on-orbit than GC, and behavior analysis are in progress. Upon return to Earth, there were no differences in body weights between FLT and GC at the end of the 37 days in space. RNA was of high quality (RIN greater than 8.5). Liver enzyme activity levels of FLT mice and all control mice were similar in magnitude to those of the samples that were optimally processed in the laboratory. Liver samples collected from the intact frozen FLT carcasses had RNA RIN of 7.27 +/- 0.52, which was lower than that of the samples processed on-orbit, but similar to those obtained from the control group intact carcasses. Nonetheless, the RNA samples from the intact carcasses were acceptable for the most demanding transcriptomic analyses. Adrenal glands, thymus and spleen (organs associated with stress response) showed no significant difference in weights between FLT and GC. Enzymatic activity was also not significantly different. Over 3,000 tissues collected from the four groups of mice have become available for the Biospecimen Sharing

  20. An Open Source-based Approach to the Development of Research Reactor Simulator

    International Nuclear Information System (INIS)

    Joo, Sung Moon; Suh, Yong Suk; Park, Cheol Park

    2016-01-01

    In reactor design, operator training, safety analysis, or research using a reactor, it is essential to simulate time dependent reactor behaviors such as neutron population, fluid flow, and heat transfer. Furthermore, in order to use the simulator to train and educate operators, a mockup of the reactor user interface is required. There are commercial software tools available for reactor simulator development. However, it is costly to use those commercial software tools. Especially for research reactors, it is difficult to justify the high cost as regulations on research reactor simulators are not as strict as those for commercial Nuclear Power Plants(NPPs). An open source-based simulator for a research reactor is configured as a distributed control system based on EPICS framework. To demonstrate the use of the simulation framework proposed in this work, we consider a toy example. This example approximates a 1-second impulse reactivity insertion in a reactor, which represents the instantaneous removal and reinsertion of a control rod. The change in reactivity results in a slightly delayed change in power and corresponding increases in temperatures throughout the system. We proposed an approach for developing research reactor simulator using open source software tools, and showed preliminary results. The results demonstrate that the approach presented in this work can provide economical and viable way of developing research reactor simulators