WorldWideScience

Sample records for requiring mechanical ventilation

  1. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  2. The Changing Role for Tracheostomy in Patients Requiring Mechanical Ventilation.

    Science.gov (United States)

    Mahmood, Kamran; Wahidi, Momen M

    2016-12-01

    Tracheostomy is performed in patients who require prolonged mechanical ventilation or have upper airway instability. Percutaneous tracheostomy with Ciaglia technique is commonly used and rivals the surgical approach. Percutaneous technique is associated with decreased risk of stomal inflammation, infection, and bleeding along with reduction in health resource utilization when performed at bedside. Bronchoscopy and ultrasound guidance improve the safety of percutaneous tracheostomy. Early tracheostomy decreases the need for sedation and intensive care unit stay but may be unnecessary in some patients who can be extubated later successfully. A multidisciplinary approach to tracheostomy care leads to improved outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. The growing role of noninvasive ventilation in patients requiring prolonged mechanical ventilation.

    Science.gov (United States)

    Hess, Dean R

    2012-06-01

    For many patients with chronic respiratory failure requiring ventilator support, noninvasive ventilation (NIV) is preferable to invasive support by tracheostomy. Currently available evidence does not support the use of nocturnal NIV in unselected patients with stable COPD. Several European studies have reported benefit for high intensity NIV, in which setting of inspiratory pressure and respiratory rate are selected to achieve normocapnia. There have also been studies reporting benefit for the use of NIV as an adjunct to exercise training. NIV may be useful as an adjunct to airway clearance techniques in patients with cystic fibrosis. Accumulating evidence supports the use of NIV in patients with obesity hypoventilation syndrome. There is considerable observational evidence supporting the use of NIV in patients with chronic respiratory failure related to neuromuscular disease, and one randomized controlled trial reported that the use of NIV was life-prolonging in patients with amyotrophic lateral sclerosis. A variety of interfaces can be used to provide NIV in patients with stable chronic respiratory failure. The mouthpiece is an interface that is unique in this patient population, and has been used with success in patients with neuromuscular disease. Bi-level pressure ventilators are commonly used for NIV, although there are now a new generation of intermediate ventilators that are portable, have a long battery life, and can be used for NIV and invasive applications. Pressure support ventilation, pressure controlled ventilation, and volume controlled ventilation have been used successfully for chronic applications of NIV. New modes have recently become available, but their benefits await evidence to support their widespread use. The success of NIV in a given patient population depends on selection of an appropriate patient, selection of an appropriate interface, selection of an appropriate ventilator and ventilator settings, the skills of the clinician, the

  4. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  5. Acute respiratory failure requiring mechanical ventilation in severe chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Gadre, Shruti K; Duggal, Abhijit; Mireles-Cabodevila, Eduardo; Krishnan, Sudhir; Wang, Xiao-Feng; Zell, Katrina; Guzman, Jorge

    2018-04-01

    There are limited data on the epidemiology of acute respiratory failure necessitating mechanical ventilation in patients with severe chronic obstructive pulmonary disease (COPD). The prognosis of acute respiratory failure requiring invasive mechanical ventilation is believed to be grim in this population. The purpose of this study was to illustrate the epidemiologic characteristics and outcomes of patients with underlying severe COPD requiring mechanical ventilation.A retrospective study of patients admitted to a quaternary referral medical intensive care unit (ICU) between January 2008 and December 2012 with a diagnosis of severe COPD and requiring invasive mechanical ventilation for acute respiratory failure.We evaluated 670 patients with an established diagnosis of severe COPD requiring mechanical ventilation for acute respiratory failure of whom 47% were male with a mean age of 63.7 ± 12.4 years and Acute physiology and chronic health evaluation (APACHE) III score of 76.3 ± 27.2. Only seventy-nine (12%) were admitted with a COPD exacerbation, 27(4%) had acute respiratory distress syndrome (ARDS), 78 (12%) had pneumonia, 78 (12%) had sepsis, and 312 (47%) had other causes of respiratory failure, including pulmonary embolism, pneumothorax, etc. Eighteen percent of the patients received a trial of noninvasive positive pressure ventilation. The median duration of mechanical ventilation was 3 days (interquartile range IQR 2-7); the median duration for ICU length of stay (LOS) was 5 (IQR 2-9) days and the median duration of hospital LOS was 12 (IQR 7-22) days. The overall ICU mortality was 25%. Patients with COPD exacerbation had a shorter median duration of mechanical ventilation (2 vs 4 days; P = .04), ICU (3 vs 5 days; P = .01), and hospital stay (10 vs 13 days; P = .01). The ICU mortality (9% vs 27%; P respiratory failure. A 1-unit increase in the APACHE III score was associated with a 1% decrease and having an active cancer was associated

  6. The ICU trial: a new admission policy for cancer patients requiring mechanical ventilation.

    Science.gov (United States)

    Lecuyer, Lucien; Chevret, Sylvie; Thiery, Guillaume; Darmon, Michael; Schlemmer, Benoît; Azoulay, Elie

    2007-03-01

    Cancer patients requiring mechanical ventilation are widely viewed as poor candidates for intensive care unit (ICU) admission. We designed a prospective study evaluating a new admission policy titled The ICU Trial. Prospective study. Intensive care unit. One hundred eighty-eight patients requiring mechanical ventilation and having at least one other organ failure. Over a 3-yr period, all patients with hematologic malignancies or solid tumors proposed for ICU admission underwent a triage procedure. Bedridden patients and patients in whom palliative care was the only cancer treatment option were not admitted to the ICU. Patients at earliest phase of the malignancy (diagnosis ventilation, vasopressors, or dialysis after 3 days in the ICU died. Survival was 40% in mechanically ventilated cancer patients who survived to day 5 and 21.8% overall. If these results are confirmed in future interventional studies, we recommend ICU admission with full-code management followed by reappraisal on day 6 in all nonbedridden cancer patients for whom lifespan-extending cancer treatment is available.

  7. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  8. Mechanical ventilation in neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Keshav Goyal

    2013-01-01

    Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.

  9. Mechanical ventilator - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007240.htm Mechanical ventilator - infants To use the sharing features on this page, please enable JavaScript. A mechanical ventilator is a machine that assists with breathing. ...

  10. Mechanical ventilation strategies.

    Science.gov (United States)

    Keszler, Martin

    2017-08-01

    Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Semi-recumbent position versus supine position for the prevention of ventilator-associated pneumonia in adults requiring mechanical ventilation.

    Science.gov (United States)

    Wang, Li; Li, Xiao; Yang, Zongxia; Tang, Xueli; Yuan, Qiang; Deng, Lijing; Sun, Xin

    2016-01-08

    Ventilator-associated pneumonia (VAP) is associated with increased mortality, prolonged length of hospital stay and increased healthcare costs in critically ill patients. Guidelines recommend a semi-recumbent position (30º to 45º) for preventing VAP among patients requiring mechanical ventilation. However, due to methodological limitations in existing systematic reviews, uncertainty remains regarding the benefits and harms of the semi-recumbent position for preventing VAP. To assess the effectiveness and safety of semi-recumbent positioning versus supine positioning to prevent ventilator-associated pneumonia (VAP) in adults requiring mechanical ventilation. We searched CENTRAL (2015, Issue 10), which includes the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (1946 to October 2015), EMBASE (2010 to October 2015), CINAHL (1981 to October 2015) and the Chinese Biomedical Literature Database (CBM) (1978 to October 2015). We included randomised controlled trials (RCTs) comparing semi-recumbent versus supine positioning (0º to 10º), or RCTs comparing alternative degrees of positioning in mechanically ventilated patients. Our outcomes included clinically suspected VAP, microbiologically confirmed VAP, intensive care unit (ICU) mortality, hospital mortality, length of ICU stay, length of hospital stay, duration of ventilation, antibiotic use and any adverse events. Two review authors independently and in duplicate screened titles, abstracts and full texts, assessed risk of bias and extracted data using standardised forms. We calculated the mean difference (MD) and 95% confidence interval (95% CI) for continuous data and the risk ratio (RR) and 95% CI for binary data. We performed meta-analysis using the random-effects model. We used the grading of recommendations, assessment, development and evaluation (GRADE) approach to grade the quality of evidence. We included 10 trials involving 878 participants, among which 28 participants in two

  12. A 17 year-old girl with a demyelinating disease requiring mechanical ventilation: a case report

    Directory of Open Access Journals (Sweden)

    Katsenos Chrysostomos

    2013-01-01

    Full Text Available Abstract Background Demyelinating diseases cause destruction of the myelin sheath, while axons are relatively spared. Pathologically, demyelination can be the result of an inflammatory process, viral infection, acquired metabolic derangement and ischemic insult. Three diseases that can cause inflammatory demyelination of the CNS are: Multiple sclerosis (MS, Acute disseminated encephalomyelitis (ADEM and Acute hemorrhagic leucoencephalitis. Differentiation is not always easy and there is considerable overlaping. Data about adults with acute demyelination requiring ICU admission is limited. Case presentation A 17 year old Greek female was hospitalised in the ICU because of acute respiratory failure requiring mechanical ventilation. She had a history of febrile disease one month before, acute onset of paraplegia, diplopia, progressive arm weakness and dyspnea. Her consciousness was not impaired. A demyelinating central nervous system (CNS disease, possibly post infectious encephalomyelitis (ADEM was the underlying condition. The MRI of the brain disclosed diffused expanded cerebral lesions involving the optic nerve, basal ganglia cerebellum, pons and medulla oblongata. There was also extended involvement of the cervical and thoracic part of the spinal cord. CSF leukocyte count was elevated with lymphocyte predominance. The patient required mechanical ventilation for two months. Then she was transferred to a rehabilitation centre. Three years later she remains paraplegic. Since then she has not suffered any other demyelination attack. Conclusions Demyelinating diseases can cause acute respiratory failure when the spinal cord is affected. Severe forms of these diseases, making necessary ICU admission, is less frequently reported. Intensivists should be aware of the features of these rare diseases.

  13. Decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Rose, Louise; Blackwood, Bronagh; Egerod, Ingrid

    2011-01-01

    Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our...

  14. Midline submental orotracheal intubation in maxillofacial injuries: A substitute to tracheostomy where postoperative mechanical ventilation is not required

    Directory of Open Access Journals (Sweden)

    Malti Agrawal

    2010-01-01

    Conclusion: There were no significant operative or postoperative complications. Postoperative submental scarring was acceptable [6] . We conclude that midline submental intubation is a simple and useful technique with low morbidity. It can be chosen in selected cases of maxillofacial trauma and is an excellent substitute to tracheostomy where postoperative mechanical ventilation is not required.

  15. [Oesophagitis during mechanical ventilation].

    Science.gov (United States)

    Gastinne, H; Canard, J M; Pillegand, B; Voultoury, J C; Catanzano, A; Claude, R; Gay, R

    1982-10-16

    Twenty-one patients whose condition required mechanical ventilation with nasogastric intubation were investigated for oesophagitis before the 3rd day and on the 15th day of treatment, including endoscopy and biopsy. Lesions of oesophagitis were detected in 14 cases during the initial examination and in 19 cases on the second endoscopy. The course of the lesions varied from one patient to another and appeared to be unrelated to the course of the primary disease. Oesophagitis in these patients is probably due to frequent episodes of gastro-oesophageal reflux encouraged by cough, impaired consciousness and the presence of a tube. Reflux may also be the cause of inapparent and recurrent lung aspiration.

  16. Patterns of Palliative Care Referral in Patients Admitted With Heart Failure Requiring Mechanical Ventilation.

    Science.gov (United States)

    Wiskar, Katie J; Celi, Leo Anthony; McDermid, Robert C; Walley, Keith R; Russell, James A; Boyd, John H; Rush, Barret

    2018-04-01

    Palliative care is recommended for advanced heart failure (HF) by several major societies, though prior studies indicate that it is underutilized. To investigate patterns of palliative care referral for patients admitted with HF exacerbations, as well as to examine patient and hospital factors associated with different rates of palliative care referral. Retrospective nationwide cohort analysis utilizing the National Inpatient Sample from 2006 to 2012. Patients referred to palliative care were compared to those who were not. Patients ≥18 years of age with a primary diagnosis of HF requiring mechanical ventilation (MV) were included. A cohort of non-HF patients with metastatic cancer was created for temporal comparison. Between 2006 and 2012, 74 824 patients underwent MV for HF. A referral to palliative care was made in 2903 (3.9%) patients. The rate of referral for palliative care in HF increased from 0.8% in 2006 to 6.4% in 2012 ( P care referral in patients with cancer increased from 2.9% in 2006 to 11.9% in 2012 ( P care ( P care. The use of palliative care for patients with advanced HF increased during the study period; however, palliative care remains underutilized in this setting. Patient factors such as race and SES affect access to palliative care.

  17. Long-term outcome in patients with Guillain-Barré syndrome requiring mechanical ventilation.

    Science.gov (United States)

    Witsch, J; Galldiks, N; Bender, A; Kollmar, R; Bösel, J; Hobohm, C; Günther, A; Schirotzek, I; Fuchs, K; Jüttler, E

    2013-05-01

    We aimed to determine long-term disability and quality of life in patients with Guillain-Barré syndrome (GBS) who required mechanical ventilation (MV) in the acute phase. Our retrospective cohort study included 110 GBS patients admitted to an intensive care unit and requiring MV (01/1999-08/2010) in nine German tertiary academic medical centers. Outcome was determined 1 year or longer after hospital admission using the GBS disability scale, Barthel index (BI), EuroQuol-5D (EQ-5D) and Fatigue Severity Scale. Linear/multivariate regression analysis was used to analyze predicting factors for outcome. Mean time to follow up was 52.6 months. Hospital mortality was 5.5 % and long-term mortality 13.6 %. Overall 53.8 % had a favorable outcome (GBS disability score 0-1) and 73.7 % of survivors had no or mild disability (BI 90-100). In the five dimensions of the EQ-5D "mobility", "self-care", "usual activities", "pain" and "anxiety/depression" no impairments were stated by 50.6, 58.4, 36.4, 36.4 and 50.6 % of patients, respectively. A severe fatigue syndrome was present in 30.4 % of patients. Outcome was statistically significantly correlated with age, type of therapy and number of immunoglobulin courses. In GBS-patients requiring MV in the acute phase in-hospital, and long-term mortality are lower than that in previous studies, while long-term quality of life is compromised in a large fraction of patients, foremost by immobility and chronic pain. Efforts towards improved treatment approaches should address autonomic dysfunction to further reduce hospital mortality while improved rehabilitation concepts might ameliorate long-term disability.

  18. Mechanical ventilation for severe asthma.

    Science.gov (United States)

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting.

  19. Clinical challenges in mechanical ventilation.

    Science.gov (United States)

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  1. Efficacy of continuous versus intermittent subglottic secretion drainage in preventing ventilator-associated pneumonia in patients requiring mechanical ventilation: A single-center randomized controlled trial.

    Science.gov (United States)

    Fujimoto, Hiroko; Yamaguchi, Osamu; Hayami, Hajime; Shimosaka, Mika; Tsuboi, Sayaka; Sato, Mitsunori; Takebayashi, Shigeo; Morita, Satoshi; Saito, Mari; Goto, Takahisa; Kurahashi, Kiyoyasu

    2018-03-23

    Aspiration of subglottic secretion is a widely used intervention to prevent ventilator-associated pneumonia (VAP). This study aimed to compare the efficacy of continuous and intermittent subglottic secretion drainage (SSD) in preventing VAP. A single-center randomized controlled trial was conducted on adult postoperative patients who were expected to undergo mechanical ventilation for more than 48 hours. Primary outcome measure was incidence of VAP and secondary outcome measures were length of mechanical ventilation and intensive-care unit (ICU) stay. Fifty-nine patients received continuous SSD, while 60 patients received intermittent SSD. Of these 119 patients, 88 (74%) were excluded and 15 and 16 patients were allocated to receive continuous and intermittent SSD, respectively. VAP was detected in 4 (26.7%) and 7 (43.8%) patients in the continuous and intermittent groups, respectively, (p=0.320). The length of mechanical ventilation was significantly shorter (p=0.034) in the continuous group (99.5±47.1 h) than in the intermittent group (159.9±94.5 h). The length of ICU stay was also shorter (p=0.0097) in the continuous group (6.3±2.1 days) than the intermittent group (9.8±4.8 days). Although continuous SSD did not reduce the incidence of VAP, it reduced the length of mechanical ventilation and ICU stay when compared to intermittent SSD.

  2. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  4. Innovation in home mechanical ventilation

    NARCIS (Netherlands)

    Hazenberg, Andrea

    2017-01-01

    Patients on home mechanical ventilation (HMV) are ventilator dependent, usually for the rest of their lives. In the past decades, the number of patients on HMV increased to nearly 3,000 in 2016 in the Netherlands. Current indications for HMV are patients diagnosed with either neuromuscular disease,

  5. Mechanical ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEPventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  6. Variation in Definition of Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  7. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  8. Mechanical ventilation of mice

    NARCIS (Netherlands)

    Schwarte, L. A.; Zuurbier, C. J.; Ince, C.

    2000-01-01

    Due to growing interest in murine functional genomics research, there is an increasing need for physiological stable in vivo murine models. Of special importance is support and control of ventilation by artificial respiration, which is difficult to execute as a consequence of the small size of the

  9. Intraoperative mechanical ventilation for the pediatric patient.

    Science.gov (United States)

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Special Considerations in Neonatal Mechanical Ventilation.

    Science.gov (United States)

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Secretion management in the mechanically ventilated patient.

    Science.gov (United States)

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  12. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    research is still required to identify the best practices capable to shorten the duration of mechanical ventilation in term and preterm infants, at the same time keeping to a minimum the risk of extubation failure. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  13. Iatrogenic pneumothorax related to mechanical ventilation

    Science.gov (United States)

    Hsu, Chien-Wei; Sun, Shu-Fen

    2014-01-01

    Pneumothorax is a potentially lethal complication associated with mechanical ventilation. Most of the patients with pneumothorax from mechanical ventilation have underlying lung diseases; pneumothorax is rare in intubated patients with normal lungs. Tension pneumothorax is more common in ventilated patients with prompt recognition and treatment of pneumothorax being important to minimize morbidity and mortality. Underlying lung diseases are associated with ventilator-related pneumothorax with pneumothoraces occurring most commonly during the early phase of mechanical ventilation. The diagnosis of pneumothorax in critical illness is established from the patients’ history, physical examination and radiological investigation, although the appearances of a pneumothorax on a supine radiograph may be different from the classic appearance on an erect radiograph. For this reason, ultrasonography is beneficial for excluding the diagnosis of pneumothorax. Respiration-dependent movement of the visceral pleura and lung surface with respect to the parietal pleura and chest wall can be easily visualized with transthoracic sonography given that the presence of air in the pleural space prevents sonographic visualization of visceral pleura movements. Mechanically ventilated patients with a pneumothorax require tube thoracostomy placement because of the high risk of tension pneumothorax. Small-bore catheters are now preferred in the majority of ventilated patients. Furthermore, if there are clinical signs of a tension pneumothorax, emergency needle decompression followed by tube thoracostomy is widely advocated. Patients with pneumothorax related to mechanical ventilation who have tension pneumothorax, a higher acute physiology and chronic health evaluation II score or PaO2/FiO2 < 200 mmHg were found to have higher mortality. PMID:24834397

  14. Predictive value of daily living score in acute respiratory failure of COPD patients requiring invasive mechanical ventilation pilot study

    Directory of Open Access Journals (Sweden)

    Langlet Ketty

    2012-10-01

    Full Text Available Abstract Background Mechanical ventilation (MV is imperative in many forms of acute respiratory failure (ARF in COPD patients. Previous studies have shown the difficulty to identify parameters predicting the outcome of COPD patients treated by invasive MV. Our hypothesis was that a non specialized score as the activities daily living (ADL score may help to predict the outcome of these patients. Methods We studied the outcome of 25 COPD patients admitted to the intensive care unit for ARF requiring invasive MV. The patients were divided into those weaning success (group A n = 17, 68% or failure (group B n = 8, 32%. We investigated the correlation between the ADL score and the outcome and mortality. Results The ADL score was higher in group A (5.1 ±1.1 vs 3.7 ± 0.7 in group B, p  Conclusion Our pilot study demonstrates that the ADL score is predictive of weaning success and mortality at 6 months, suggesting that the assessment of daily activities should be an important component of ARF management in COPD patients.

  15. Predictive value of daily living score in acute respiratory failure of COPD patients requiring invasive mechanical ventilation pilot study.

    Science.gov (United States)

    Langlet, Ketty; Van Der Linden, Thierry; Launois, Claire; Fourdin, Caroline; Cabaret, Philippe; Kerkeni, Nadia; Barbe, Coralie; Lebargy, François; Deslée, Gaetan

    2012-10-18

    Mechanical ventilation (MV) is imperative in many forms of acute respiratory failure (ARF) in COPD patients. Previous studies have shown the difficulty to identify parameters predicting the outcome of COPD patients treated by invasive MV. Our hypothesis was that a non specialized score as the activities daily living (ADL) score may help to predict the outcome of these patients. We studied the outcome of 25 COPD patients admitted to the intensive care unit for ARF requiring invasive MV. The patients were divided into those weaning success (group A n = 17, 68%) or failure (group B n = 8, 32%). We investigated the correlation between the ADL score and the outcome and mortality. The ADL score was higher in group A (5.1 ±1.1 vs 3.7 ± 0.7 in group B, p success and mortality at 6 months, suggesting that the assessment of daily activities should be an important component of ARF management in COPD patients.

  16. The fluid mechanics of natural ventilation

    Science.gov (United States)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  17. Flow measurement in mechanical ventilation: a review.

    Science.gov (United States)

    Schena, Emiliano; Massaroni, Carlo; Saccomandi, Paola; Cecchini, Stefano

    2015-03-01

    Accurate monitoring of flow rate and volume exchanges is essential to minimize ventilator-induced lung injury. Mechanical ventilators employ flowmeters to estimate the amount of gases delivered to patients and use the flow signal as a feedback to adjust the desired amount of gas to be delivered. Since flowmeters play a crucial role in this field, they are required to fulfill strict criteria in terms of dynamic and static characteristics. Therefore, mechanical ventilators are equipped with only the following kinds of flowmeters: linear pneumotachographs, fixed and variable orifice meters, hot wire anemometers, and ultrasonic flowmeters. This paper provides an overview of these sensors. Their working principles are described together with their relevant advantages and disadvantages. Furthermore, the most promising emerging approaches for flowmeters design (i.e., fiber optic technology and three dimensional micro-fabrication) are briefly reviewed showing their potential for this application. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    Science.gov (United States)

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  19. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  20. Artificial humidification for the mechanically ventilated patient

    OpenAIRE

    Selvaraj, Nelson

    2010-01-01

    Caring for patients who are mechanically ventilated poses many\\ud challenges for critical care nurses. It is important to humidify the\\ud patient’s airways artificially to prevent complications such as\\ud ventilator-associated pneumonia. There is no gold standard to\\ud determine which type of humidification is best for patients who\\ud are artificially ventilated. This article provides an overview of\\ud commonly used artificial humidification for mechanically ventilated\\ud patients and discuss...

  1. Artificial humidification for the mechanically ventilated patient.

    Science.gov (United States)

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  2. Mechanical ventilators in US acute care hospitals.

    Science.gov (United States)

    Rubinson, Lewis; Vaughn, Frances; Nelson, Steve; Giordano, Sam; Kallstrom, Tom; Buckley, Tim; Burney, Tabinda; Hupert, Nathaniel; Mutter, Ryan; Handrigan, Michael; Yeskey, Kevin; Lurie, Nicole; Branson, Richard

    2010-10-01

    The supply and distribution of mechanical ventilation capacity is of profound importance for planning for severe public health emergencies. However, the capability of US health systems to provide mechanical ventilation for children and adults remains poorly quantified. The objective of this study was to determine the quantity of adult and pediatric mechanical ventilators at US acute care hospitals. A total of 5,752 US acute care hospitals included in the 2007 American Hospital Association database were surveyed. We measured the quantities of mechanical ventilators and their features. Responding to the survey were 4305 (74.8%) hospitals, which accounted for 83.8% of US intensive care unit beds. Of the 52,118 full-feature mechanical ventilators owned by respondent hospitals, 24,204 (46.4%) are pediatric/neonatal capable. Accounting for nonrespondents, we estimate that there are 62,188 full-feature mechanical ventilators owned by US acute care hospitals. The median number of full-feature mechanical ventilators per 100,000 population for individual states is 19.7 (interquartile ratio 17.2-23.1), ranging from 11.9 to 77.6. The median number of pediatric-capable device full-feature mechanical ventilators per 100,000 population younger than 14 years old is 52.3 (interquartile ratio 43.1-63.9) and the range across states is 22.1 to 206.2. In addition, respondent hospitals reported owning 82,755 ventilators other than full-feature mechanical ventilators; we estimate that there are 98,738 devices other than full-feature ventilators at all of the US acute care hospitals. The number of mechanical ventilators per US population exceeds those reported by other developed countries, but there is wide variation across states in the population-adjusted supply. There are considerably more pediatric-capable ventilators than there are for adults only on a population-adjusted basis.

  3. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

    OpenAIRE

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Introduction Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we ...

  4. Analysis of a Pediatric Home Mechanical Ventilator Population.

    Science.gov (United States)

    Amirnovin, Rambod; Aghamohammadi, Sara; Riley, Carley; Woo, Marlyn S; Del Castillo, Sylvia

    2018-05-01

    The population of children requiring home mechanical ventilation has evolved over the years and has grown to include a variety of diagnoses and needs that have led to changes in the care of this unique population. The purpose of this study was to provide a descriptive analysis of pediatric patients requiring home mechanical ventilation after hospitalization and how the evolution of this technology has impacted their care. A retrospective, observational, longitudinal analysis of 164 children enrolled in a university-affiliated home mechanical ventilation program over 26 years was performed. Data included each child's primary diagnosis, date of tracheostomy placement, duration of mechanical ventilation during hospitalization that consisted of home mechanical ventilator initiation, total length of pediatric ICU stay, ventilator settings at time of discharge from pediatric ICU, and disposition (home, facility, or died). Univariate, bivariate, and regression analysis was used as appropriate. The most common diagnosis requiring the use of home mechanical ventilation was neuromuscular disease (53%), followed by chronic pulmonary disease (29%). The median length of stay in the pediatric ICU decreased significantly after the implementation of a ventilator ward (70 d [30-142] vs 36 d [18-67], P = .02). The distribution of subjects upon discharge was home (71%), skilled nursing facility (24%), and died (4%), with an increase in the proportion of subjects discharged on PEEP and those going to nursing facilities over time ( P = 0.02). The evolution of home mechanical ventilation has allowed earlier transition out of the pediatric ICU and with increasing disposition to skilled nursing facilities over time. There has also been a change in ventilator management, including increased use of PEEP upon discharge, possibly driven by changes in ventilators and in-patient practice patterns. Copyright © 2018 by Daedalus Enterprises.

  5. Humidification during invasive and noninvasive mechanical ventilation: 2012.

    Science.gov (United States)

    Restrepo, Ruben D; Walsh, Brian K

    2012-05-01

    We searched the MEDLINE, CINAHL, and Cochrane Library databases for articles published between January 1990 and December 2011. The update of this clinical practice guideline is based on 184 clinical trials and systematic reviews, and 10 articles investigating humidification during invasive and noninvasive mechanical ventilation. The following recommendations are made following the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) scoring system: 1. Humidification is recommended on every patient receiving invasive mechanical ventilation. 2. Active humidification is suggested for noninvasive mechanical ventilation, as it may improve adherence and comfort. 3. When providing active humidification to patients who are invasively ventilated, it is suggested that the device provide a humidity level between 33 mg H(2)O/L and 44 mg H(2)O/L and gas temperature between 34°C and 41°C at the circuit Y-piece, with a relative humidity of 100%. 4. When providing passive humidification to patients undergoing invasive mechanical ventilation, it is suggested that the HME provide a minimum of 30 mg H(2)O/L. 5. Passive humidification is not recommended for noninvasive mechanical ventilation. 6. When providing humidification to patients with low tidal volumes, such as when lung-protective ventilation strategies are used, HMEs are not recommended because they contribute additional dead space, which can increase the ventilation requirement and P(aCO(2)). 7. It is suggested that HMEs are not used as a prevention strategy for ventilator-associated pneumonia.

  6. Controlled invasive mechanical ventilation strategies in obese patients undergoing surgery.

    Science.gov (United States)

    Maia, Lígia de Albuquerque; Silva, Pedro Leme; Pelosi, Paolo; Rocco, Patricia Rieken Macedo

    2017-06-01

    The obesity prevalence is increasing in surgical population. As the number of obese surgical patients increases, so does the demand for mechanical ventilation. Nevertheless, ventilatory strategies in this population are challenging, since obesity results in pathophysiological changes in respiratory function. Areas covered: We reviewed the impact of obesity on respiratory system and the effects of controlled invasive mechanical ventilation strategies in obese patients undergoing surgery. To date, there is no consensus regarding the optimal invasive mechanical ventilation strategy for obese surgical patients, and no evidence that possible intraoperative beneficial effects on oxygenation and mechanics translate into better postoperative pulmonary function or improved outcomes. Expert commentary: Before determining the ideal intraoperative ventilation strategy, it is important to analyze the pathophysiology and comorbidities of each obese patient. Protective ventilation with low tidal volume, driving pressure, energy, and mechanical power should be employed during surgery; however, further studies are required to clarify the most effective ventilation strategies, such as the optimal positive end-expiratory pressure and whether recruitment maneuvers minimize lung injury. In this context, an ongoing trial of intraoperative ventilation in obese patients (PROBESE) should help determine the mechanical ventilation strategy that best improves clinical outcome in patients with body mass index≥35kg/m 2 .

  7. Mechanical Ventilation: State of the Art.

    Science.gov (United States)

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  8. [Mechanical ventilation in acute asthma crisis].

    Science.gov (United States)

    Barbas, Carmen Sílvia Valente; Pinheiro, Bruno do Valle; Vianna, Arthur; Magaldi, Ricardo; Casati, Ana; José, Anderson; Okamoto, Valdelis Novis

    2007-06-01

    The II Brazilian Consensus Conference on Mechanical Ventilation was published in 2000. Knowledge on the field of mechanical ventilation evolved rapidly since then, with the publication of numerous clinical studies with potential impact on the ventilatory management of critically ill patients. Moreover, the evolving concept of evidence - based medicine determined the grading of clinical recommendations according to the methodological value of the studies on which they are based. This explicit approach has broadened the understanding and adoption of clinical recommendations. For these reasons, AMIB - Associação de Medicina Intensiva Brasileira and SBPT - Sociedade Brasileira de Pneumologia e Tisiologia - decided to update the recommendations of the II Brazilian Consensus. Mechanical ventilation in the asthma attack has been one of the updated topics. Describe the most important topics on the mechanical ventilation during the asthma attack and suggest the main therapeutic approaches. Systematic review of the published literature and gradation of the studies in levels of evidence, using the key words "mechanical ventilation" and "asthma". We present recommendations on the ventilatory modes and settings to be adopted when ventilating a patient during an asthma attack, as well as the recommended monitoring. Alternative ventilation techniques are also presented. Protective ventilatory strategies are recommended when ventilating a patient during a severe asthma attack.

  9. Effect Of Pressure Support Versus Unassisted Breathing Through A Tracheostomy Collar On Weaning Duration In Patients Requiring Prolonged Mechanical Ventilation: A Randomized Trial

    Science.gov (United States)

    Jubran, Amal; Grant, Brydon J.B.; Duffner, Lisa A.; Collins, Eileen G.; Lanuza, Dorothy M.; Hoffman, Leslie A.; Tobin, Martin J.

    2013-01-01

    Context Patients requiring prolonged mechanical ventilation (more than 21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. Objective To compare weaning duration with pressure support versus unassisted breathing through a tracheostomy (trach collar) in patients transferred to a LTACH for weaning from prolonged ventilation. Design, Settings, and Participants Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a five-day screening procedure, 316 failed and were randomly assigned to wean with pressure support (n=155) or a trach collar (n=161). Six- and twelve-month survival was also determined. Main outcome measure Primary outcome was weaning duration. Secondary outcome was survival at six and twelve months after enrollment. Results Of 316 patients, four were withdrawn and not included in analysis. Of 152 patients in the pressure-support arm, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the trach-collar arm, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with trach collar than with pressure support: 15 [interquartile range, 8–25] versus 19 [12–31] days, p=0.004. The hazard ratio (HR) for successful weaning rate was higher with trach collar than with pressure support (HR, 1.43; 95% confidence interval [CI], 1.03–1.98, p<0.03) after adjusting for baseline clinical covariates. Trach collar achieved faster weaning than did pressure support among subjects who failed the screening procedure at 12–120 hours (HR, 3.33; 95% CI, 1.44–7.70, p<0.01), whereas weaning time was equivalent with the two methods in patients who failed the screening procedure within 0–12 hours. Mortality was equivalent in the pressure-support and trach-collar arms at six months (55.9% versus 51.3%; 4.7 difference, 95% CI −6

  10. Effect of pressure support vs unassisted breathing through a tracheostomy collar on weaning duration in patients requiring prolonged mechanical ventilation: a randomized trial.

    Science.gov (United States)

    Jubran, Amal; Grant, Brydon J B; Duffner, Lisa A; Collins, Eileen G; Lanuza, Dorothy M; Hoffman, Leslie A; Tobin, Martin J

    2013-02-20

    Patients requiring prolonged mechanical ventilation (>21 days) are commonly weaned at long-term acute care hospitals (LTACHs). The most effective method of weaning such patients has not been investigated. To compare weaning duration with pressure support vs unassisted breathing through a tracheostomy collar in patients transferred to an LTACH for weaning from prolonged ventilation. Between 2000 and 2010, a randomized study was conducted in tracheotomized patients transferred to a single LTACH for weaning from prolonged ventilation. Of 500 patients who underwent a 5-day screening procedure, 316 did not tolerate the procedure and were randomly assigned to receive weaning with pressure support (n = 155) or a tracheostomy collar (n = 161). Survival at 6- and 12-month time points was also determined. Primary outcome was weaning duration. Secondary outcome was survival at 6 and 12 months after enrollment. Of 316 patients, 4 were withdrawn and not included in analysis. Of 152 patients in the pressure-support group, 68 (44.7%) were weaned; 22 (14.5%) died. Of 160 patients in the tracheostomy collar group, 85 (53.1%) were weaned; 16 (10.0%) died. Median weaning time was shorter with tracheostomy collar use (15 days; interquartile range [IQR], 8-25) than with pressure support (19 days; IQR, 12-31), P = .004. The hazard ratio (HR) for successful weaning rate was higher with tracheostomy collar use than with pressure support (HR, 1.43; 95% CI, 1.03-1.98; P = .033) after adjusting for baseline clinical covariates. Use of the tracheostomy collar achieved faster weaning than did pressure support among patients who did not tolerate the screening procedure between 12 and 120 hours (HR, 3.33; 95% CI, 1.44-7.70; P = .005), whereas weaning time was equivalent with the 2 methods in patients who did not tolerate the screening procedure within 0 to 12 hours. Mortality was equivalent in the pressure-support and tracheostomy collar groups at 6 months (55.92% vs 51.25%; 4.67% difference, 95

  11. Determination of the energy requirements in mechanically ventilated critically ill elderly patients in different BMI groups using the Harris–Benedict equation

    Directory of Open Access Journals (Sweden)

    Pi-Hui Hsu

    2018-04-01

    Full Text Available Background: Due to studies on calorie requirement in mechanically ventilated critically ill elderly patients are few, and indirect calorimetry (IC is not available in every intensive care unit (ICU. The aim of this study was to compare IC and Harris–Benedict (HB predictive equation in different BMI groups. Methods: A total of 177 mechanically ventilated critically ill elderly patients (≧65 years old underwent IC for measured resting energy expenditure (MREE. Estimated calorie requirement was calculated by the HB equation, using actual body weight (ABW and ideal body weight (IBW separately. Patients were divided into four BMI groups. One-way ANOVA and Pearson's correlation coefficient were used for statistical analyses. Results: The mean MREE was 1443.6 ± 318.2 kcal/day, HB(ABW was 1110.9 ± 177.0 kcal/day and HB(IBW was 1101.5 ± 113.1 kcal/day. The stress factor (SFA = MREE ÷ HB(ABW was 1.43 ± 0.26 for the underweight, 1.30 ± 0.27 for the normal weight, 1.20 ± 0.19 for the overweight, and 1.20 ± 0.31 for the obese. The SFI (SFI = MREE ÷ HB(IBW was 1.24 ± 0.24 for the underweight, 1.31 ± 0.26 for the normal weight, 1.36 ± 0.21 for the overweight, and 1.52 ± 0.39 for the obese. MREE had significant correlation both with REE(ABW = HB(ABW × SFA (r = 0.46; P < 0.0001 and REE(IBW = HB(IBW × SFI (r = 0.43; P < 0.0001. Conclusion: IC is the best accurate method for assessing calorie requirement of mechanically ventilated critically ill elderly patients. When IC is not available, using the predictive HB equation is an alternative choice. Calorie requirement can be predicted by HB(ABW × 1.20–1.43 for critically ill elderly patients according to different BMI groups, or using HB(IBW × 1.24–1.52 for patients with edema, ascites or no available body weight data. Keywords: Body Mass Index, Elderly critical care, Harris–Benedict equation, Indirect calorimetry

  12. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  13. Echocardiographic evaluation during weaning from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luciele Medianeira Schifelbain

    2011-01-01

    Full Text Available INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. RESULTS: Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients

  14. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  15. Performance potential of mechanical ventilation systems with minimized pressure loss

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    2013-01-01

    simulations that quantify fan power consumption, heating demand and indoor environmental conditions. The system was designed with minimal pressure loss in the duct system and heat exchanger. Also, it uses state-of-the-art components such as electrostatic precipitators, diffuse ceiling inlets and demand......In many locations mechanical ventilation has been the most widely used principle of ventilation over the last 50 years but the conventional system design must be revised to comply with future energy requirements. This paper examines the options and describes a concept for the design of mechanical...... ventilation systems with minimal pressure loss and minimal energy use. This can provide comfort ventilation and avoid overheating through increased ventilation and night cooling. Based on this concept, a test system was designed for a fictive office building and its performance was documented using building...

  16. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers.

    Science.gov (United States)

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable, ensures prompt service, and, most importantly, enhances safe management of mechanical ventilators.

  17. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  18. Survival after Pneumocystis jirovecii pneumonia requiring ventilation ...

    African Journals Online (AJOL)

    Pneumocystis pneumonia (PCP) in patients with the human immunodeficiency virus (HIV) is associated with a high mortality rate, which increases substantially with the need for mechanical ventilation. Local experience of patients with PCP admitted to the intensive care unit has revealed mortality rates close to 100%.

  19. Humidification of inspired gases during mechanical ventilation.

    Science.gov (United States)

    Gross, J L; Park, G R

    2012-04-01

    Humidification of inspired gas is mandatory for all mechanically ventilated patients to prevent secretion retention, tracheal tube blockage and adverse changes occurring to the respiratory tract epithelium. However, the debate over "ideal" humidification continues. Several devices are available that include active and passive heat and moisture exchangers and hot water humidifiers Each have their advantages and disadvantages in mechanically ventilated patients. This review explores each device in turn and defines their role in clinical practice.

  20. Air change. Ventilation requirements of closed rooms

    Energy Technology Data Exchange (ETDEWEB)

    Cords, W

    1988-04-01

    Closed rooms have to be ventilated in order to compensate influences changing the composition and quality of air. Details are given on the conditions and factors determining the required change of air as well as the design of ventilation systems. Reference is made to the respiratory consumption of oxygen, the increase of hazardous carbon dioxide contents causing headaches and indispositions, water vapor exhalations, body heat, odors, cold air coming in from outside, bodily heat losses, carbon dioxide limiting values, air speeds, and air pressures inside rooms. The humidity and temperatures of frequented rooms should keep within the maximum values. (HWJ).

  1. Intraoperative mechanical ventilation: state of the art.

    Science.gov (United States)

    Ball, Lorenzo; Costantino, Federico; Orefice, Giulia; Chandrapatham, Karthikka; Pelosi, Paolo

    2017-10-01

    Mechanical ventilation is a cornerstone of the intraoperative management of the surgical patient and is still mandatory in several surgical procedures. In the last decades, research focused on preventing postoperative pulmonary complications (PPCs), both improving risk stratification through the use of predictive scores and protecting the lung adopting so-called protective ventilation strategies. The aim of this review was to give an up-to-date overview of the currently suggested intraoperative ventilation strategies, along with their pathophysiologic rationale, with a focus on challenging conditions, such as obesity, one-lung ventilation and cardiopulmonary bypass. While anesthesia and mechanical ventilation are becoming increasingly safe practices, the contribution to surgical mortality attributable to postoperative lung injury is not negligible: for these reasons, the prevention of PPCs, including the use of protective mechanical ventilation is mandatory. Mechanical ventilation should be optimized providing an adequate respiratory support while minimizing unwanted negative effects. Due to the high number of surgical procedures performed daily, the impact on patients' health and healthcare costs can be relevant, even when new strategies result in an apparently small improvement of outcome. A protective intraoperative ventilation should include a low tidal volume of 6-8 mL/kg of predicted body weight, plateau pressures ideally below 16 cmH2O, the lowest possible driving pressure, moderate-low PEEP levels except in obese patients, laparoscopy and long surgical procedures that might benefit of a slightly higher PEEP. The work of the anesthesiologist should start with a careful preoperative visit to assess the risk, and a close postoperative monitoring.

  2. Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Kacmarek, Robert M

    2008-09-01

    To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Experimental bench study. The respiratory care laboratory of a university-affiliated teaching hospital. A computerized mechanical lung model, the IngMar ASL5000. Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Performance varied widely among ventilators. Mean inspiratory trigger time was ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

  3. Design Features of Modern Mechanical Ventilators.

    Science.gov (United States)

    MacIntyre, Neil

    2016-12-01

    A positive-pressure breath ideally should provide a V T that is adequate for gas exchange and appropriate muscle unloading while minimizing any risk for injury or discomfort. The latest generation of ventilators uses sophisticated feedback systems to sculpt positive-pressure breaths according to patient effort and respiratory system mechanics. Currently, however, these new control strategies are not totally closed-loop systems. This is because the automatic input variables remain limited, some clinician settings are still required, and the specific features of the perfect breath design still are not entirely clear. Despite these limitations, there are some rationale for many of these newer feedback features. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC).

    Science.gov (United States)

    Kneyber, Martin C J; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jürg; Macrae, Duncan; Markhorst, Dick G; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C

    2017-12-01

    Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific and targeted interventions. We aim to establish a European consensus guideline on mechanical ventilation of critically children. The European Society for Paediatric and Neonatal Intensive Care initiated a consensus conference of international European experts in paediatric mechanical ventilation to provide recommendations using the Research and Development/University of California, Los Angeles, appropriateness method. An electronic literature search in PubMed and EMBASE was performed using a combination of medical subject heading terms and text words related to mechanical ventilation and disease-specific terms. The Paediatric Mechanical Ventilation Consensus Conference (PEMVECC) consisted of a panel of 15 experts who developed and voted on 152 recommendations related to the following topics: (1) general recommendations, (2) monitoring, (3) targets of oxygenation and ventilation, (4) supportive measures, (5) weaning and extubation readiness, (6) normal lungs, (7) obstructive diseases, (8) restrictive diseases, (9) mixed diseases, (10) chronically ventilated patients, (11) cardiac patients and (12) lung hypoplasia syndromes. There were 142 (93.4%) recommendations with "strong agreement". The final iteration of the recommendations had none with equipoise or disagreement. These recommendations should help to harmonise the approach to paediatric mechanical ventilation and can be proposed as a standard-of-care applicable in daily clinical practice and clinical research.

  5. Phrenic pacing compared with mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Morten Packert; Laub, Michael; Biering-Sørensen, Fin

    2017-01-01

    mechanical ventilator dependent tetraplegics met the inclusion criteria. Data were retrieved from medical records and a structured follow-up interview with seven individuals from each group. RESULTS: No significant differences were found when comparing age at injury, time since injury, length...... of hospitalization, incidence of pneumonia, number of pneumonia hospitalizations, number of tracheal suctions, speech quality and activities of daily living or quality of life. On the Short Form Health Survey (SF36) mental health summary the median for both users of phrenic nerve pacing and users of mechanical...... ventilation was one s.d. above the mean of a standard population. CONCLUSIONS: Nine people have had a phrenic nerve pacer implanted. They do not significantly differ from a group of home mechanical ventilator dependent tetraplegics on a number of performance measures, but both groups seem to have better...

  6. Indirect Calorimetry in Mechanically Ventilated Patients

    DEFF Research Database (Denmark)

    Allingstrup, Matilde Jo; Kondrup, Jens; Perner, Anders

    2017-01-01

    Background and Aims: The 2 currently available indirect calorimeters, CCM Express Indirect Calorimeter (MedGraphics, St Paul, MN) and Quark RMR ICU Indirect Calorimeter (COSMED, Rome, Italy), have not been validated against a gold standard in mechanically ventilated patients. Our aim was to do so...... using a gold-standard, modified Tissot bell-spirometer method in mechanically ventilated patients who were hemodynamically, respiratory, and metabolically stable. Methods: We studied 30 patients undergoing general anesthesia and major gynecological surgery. We measured oxygen consumption ((Formula...... of 77 (167) with limits of agreement −249 to 404 kcal/d. Conclusions: The QUARK RMR ICU Indirect Calorimeter compared better with the gold standard for values of (Formula presented.) O2 and REE than did the CCM Express Indirect Calorimeter in mechanically ventilated patients who were circulatory...

  7. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers

    OpenAIRE

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable...

  8. Protective mechanical ventilation, why use it?

    Science.gov (United States)

    Seiberlich, Emerson; Santana, Jonas Alves; Chaves, Renata de Andrade; Seiberlich, Raquel Carvalho

    2011-01-01

    Mechanical ventilation (MV) strategies have been modified over the last decades with a tendency for increasingly lower tidal volumes (VT). However, in patients without acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) the use of high VTs is still very common. Retrospective studies suggest that this practice can be related to mechanical ventilation-associated ALI. The objective of this review is to search for evidence to guide protective MV in patients with healthy lungs and to suggest strategies to properly ventilate lungs with ALI/ARDS. A review based on the main articles that focus on the use of strategies of mechanical ventilation was performed. Consistent studies to determine which would be the best way to ventilate a patient with healthy lungs are lacking. Expert recommendations and current evidence presented in this article indicate that the use of a VT lower than 10 mL.kg(-1), associated with positive end-expiratory pressure (PEEP) ≥ 5 cmH(2)O without exceeding a pressure plateau of 15 to 20 cmH(2)O could minimize alveolar stretching at the end of inspiration and avoid possible inflammation or alveolar collapse. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.

  9. No-sedation during mechanical ventilation

    DEFF Research Database (Denmark)

    Laerkner, Eva; Stroem, Thomas; Toft, Palle

    2016-01-01

    BACKGROUND: Evidence is growing that less or no-sedation is possible and beneficial for patients during mechanical ventilation. AIM: To investigate if there was a difference in patient consciousness and nursing workload comparing a group of patients receiving no-sedation with a group of sedated...... patients with daily wake up, and also to estimate economic consequences of a no-sedation strategy. DESIGN AND METHODS: Data were collected during a prospective trial of 140 mechanically ventilated patients randomized to either no-sedation or to sedation with daily wake up. From day 1 to 7 in the intensive...

  10. Can mechanical ventilation strategies reduce chronic lung disease?

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2003-12-01

    Chronic lung disease (CLD) continues to be a significant complication in newborn infants undergoing mechanical ventilation for respiratory failure. Although the aetiology of CLD is multifactorial, specific factors related to mechanical ventilation, including barotrauma, volutrauma and atelectrauma, have been implicated as important aetiologic mechanisms. This article discusses the ways in which these factors might be manipulated by various mechanical ventilatory strategies to reduce ventilator-induced lung injury. These include continuous positive airway pressure, permissive hypercapnia, patient-triggered ventilation, volume-targeted ventilation, proportional assist ventilation, high-frequency ventilation and real-time monitoring.

  11. Investigation of continuous effect modifiers in a meta-analysis on higher versus lower PEEP in patients requiring mechanical ventilation--protocol of the ICEM study.

    Science.gov (United States)

    Kasenda, Benjamin; Sauerbrei, Willi; Royston, Patrick; Briel, Matthias

    2014-05-20

    Categorizing an inherently continuous predictor in prognostic analyses raises several critical methodological issues: dependence of the statistical significance on the number and position of the chosen cut-point(s), loss of statistical power, and faulty interpretation of the results if a non-linear association is incorrectly assumed to be linear. This also applies to a therapeutic context where investigators of randomized clinical trials (RCTs) are interested in interactions between treatment assignment and one or more continuous predictors. Our goal is to apply the multivariable fractional polynomial interaction (MFPI) approach to investigate interactions between continuous patient baseline variables and the allocated treatment in an individual patient data meta-analysis of three RCTs (N = 2,299) from the intensive care field. For each study, MFPI will provide a continuous treatment effect function. Functions from each of the three studies will be averaged by a novel meta-analysis approach for functions. We will plot treatment effect functions separately for each study and also the averaged function. The averaged function with a related confidence interval will provide a suitable basis to assess whether a continuous patient characteristic modifies the treatment comparison and may be relevant for clinical decision-making. The compared interventions will be a higher or lower positive end-expiratory pressure (PEEP) ventilation strategy in patients requiring mechanical ventilation. The continuous baseline variables body mass index, PaO2/FiO2, respiratory compliance, and oxygenation index will be the investigated potential effect modifiers. Clinical outcomes for this analysis will be in-hospital mortality, time to death, time to unassisted breathing, and pneumothorax. This project will be the first meta-analysis to combine continuous treatment effect functions derived by the MFPI procedure separately in each of several RCTs. Such an approach requires individual

  12. Aerosol delivery in intubated, mechanically ventilated patients

    International Nuclear Information System (INIS)

    MacIntyre, N.R.; Silver, R.M.; Miller, C.W.; Schuler, F.; Coleman, R.E.

    1985-01-01

    To study the effects of respiratory failure and mechanical ventilation on aerosol delivery to the lungs, nuclear scans were performed after aerosolization of 5 to 9 mCi of Tc-99m diethylenetriamine pentaacetic acid in seven stable, intubated, and mechanically ventilated patients. The radioactivity reaching the lungs was 2.9 +/- .7% (mean +/- SD) of the administered dose, an amount significantly less than that in three healthy nonintubated subjects and also less than what would be expected in nonintubated subjects from other published reports. A subsequent study was performed in 15 additional mechanically ventilated patients who were receiving aerosolized bronchodilators through their endotracheal tube. In these patients, heart rate and lung mechanical function values before and after treatment were not significantly different. It is concluded from these studies that aerosol delivery in mechanically ventilated patients is significantly reduced and that this is probably due to a combination of suboptimal breathing pattern, intrinsic airway disease, and the endotracheal tube functioning as both a site for aerosol deposition through impaction as well as a barrier to gastrointestinal absorption

  13. Enteral alimentation and gastrointestinal bleeding in mechanically ventilated patients.

    Science.gov (United States)

    Pingleton, S K; Hadzima, S K

    1983-01-01

    The incidence of upper gastrointestinal (GI) bleeding in mechanically ventilated ICU patients receiving enteral alimentation was reviewed and compared to bleeding occurring in ventilated patients receiving prophylactic antacids or cimetidine. Of 250 patients admitted to our ICU during a 1-yr time period, 43 ventilated patients were studied. Patients in each group were comparable with respect to age, respiratory diagnosis, number of GI hemorrhage risk factors, and number of ventilator, ICU, and hospital days. Twenty-one patients had evidence of GI bleeding. Fourteen of 20 patients receiving antacids and 7 of 9 patients receiving cimetidine had evidence of GI bleeding. No bleeding occurred in 14 patients receiving enteral alimentation. Complications of enteral alimentation were few and none required discontinuation of enteral alimentation. Our preliminary data suggest the role of enteral alimentation in critically ill patients may include not only protection against malnutrition but also protection against GI bleeding.

  14. Time required for partial pressure of arterial oxygen equilibration during mechanical ventilation after a step change in fractional inspired oxygen concentration.

    Science.gov (United States)

    Cakar, N; Tuŏrul, M; Demirarslan, A; Nahum, A; Adams, A; Akýncý, O; Esen, F; Telci, L

    2001-04-01

    To determine the time required for the partial pressure of arterial oxygen (PaO2) to reach equilibrium after a 0.20 increment or decrement in fractional inspired oxygen concentration (FIO2) during mechanical ventilation. A multi-disciplinary ICU in a university hospital. Twenty-five adult, non-COPD patients with stable blood gas values (PaO2/FIO2 > or = 180 on the day of the study) on pressure-controlled ventilation (PCV). Following a baseline PaO2 (PaO2b) measurement at FIO2 = 0.35, the FIO2 was increased to 0.55 for 30 min and then decreased to 0.35 without any other change in ventilatory parameters. Sequential blood gas measurements were performed at 3, 5, 7, 9, 11, 15, 20, 25 and 30 min in both periods. The PaO2 values measured at the 30th min after a step change in FIO2 (FIO2 = 0.55, PaO2[55] and FIO2 = 0.35, PaO2[35]) were accepted as representative of the equilibrium values for PaO2. Each patient's rise and fall in PaO2 over time, PaO2(t), were fitted to the following respective exponential equations: PaO2b + (PaO2[55]-PaO2b)(1-e-kt) and PaO2[55] + (PaO2[35]-PaO2[55])(e-kt) where "t" refers to time, PaO2[55] and PaO2[35] are the final PaO2 values obtained at a new FIO2 of 0.55 and 0.35, after a 0.20 increment and decrement in FIO2, respectively. Time constant "k" was determined by a non-linear fitting curve and 90% oxygenation times were defined as the time required to reach 90% of the final equilibrated PaO2 calculated by using the non-linear fitting curves. Time constant values for the rise and fall periods were 1.01 +/- 0.71 min-1, 0.69 +/- 0.42 min-1, respectively, and 90% oxygenation times for rises and falls in PaO2 periods were 4.2 +/- 4.1 min-1 and 5.5 +/- 4.8 min-1, respectively. There was no significant difference between the rise and fall periods for the two parameters (p > 0.05). We conclude that in stable patients ventilated with PCV, after a step change in FIO2 of 0.20, 5-10 min will be adequate for obtaining a blood gas sample to measure a Pa

  15. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  16. Management of mechanical ventilation during laparoscopic surgery.

    Science.gov (United States)

    Valenza, Franco; Chevallard, Giorgio; Fossali, Tommaso; Salice, Valentina; Pizzocri, Marta; Gattinoni, Luciano

    2010-06-01

    Laparoscopy is widely used in the surgical treatment of a number of diseases. Its advantages are generally believed to lie on its minimal invasiveness, better cosmetic outcome and shorter length of hospital stay based on surgical expertise and state-of-the-art equipment. Thousands of laparoscopic surgical procedures performed safely prove that mechanical ventilation during anaesthesia for laparoscopy is well tolerated by a vast majority of patients. However, the effects of pneumoperitoneum are particularly relevant to patients with underlying lung disease as well as to the increasing number of patients with higher-than-normal body mass index. Moreover, many surgical procedures are significantly longer in duration when performed with laparoscopic techniques. Taken together, these factors impose special care for the management of mechanical ventilation during laparoscopic surgery. The purpose of the review is to summarise the consequences of pneumoperitoneum on the standard monitoring of mechanical ventilation during anaesthesia and to discuss the rationale of using a protective ventilation strategy during laparoscopic surgery. The consequences of chest wall derangement occurring during pneumoperitoneum on airway pressure and central venous pressure, together with the role of end-tidal-CO2 monitoring are emphasised. Ventilatory and non-ventilatory strategies to protect the lung are discussed.

  17. Epithelial and endothelial damage induced by mechanical ventilation modes.

    Science.gov (United States)

    Suki, Béla; Hubmayr, Rolf

    2014-02-01

    The adult respiratory distress syndrome (ARDS) is a common cause of respiratory failure with substantial impact on public health. Patients with ARDS generally require mechanical ventilation, which risks further lung damage. Recent improvements in ARDS outcomes have been attributed to reductions in deforming stress associated with lung protective mechanical ventilation modes and settings. The following review details the mechanics of the lung parenchyma at different spatial scales and the response of its resident cells to deforming stress in order to provide the biologic underpinnings of lung protective care. Although lung injury is typically viewed through the lens of altered barrier properties and mechanical ventilation-associated immune responses, in this review, we call attention to the importance of heterogeneity and the physical failure of the load bearing cell and tissue elements in the pathogenesis of ARDS. Specifically, we introduce a simple elastic network model to better understand the deformations of lung regions, intra-acinar alveoli and cells within a single alveolus, and consider the role of regional distension and interfacial stress-related injury for various ventilation modes. Heterogeneity of stiffness and intercellular and intracellular stress failure are fundamental components of ARDS and their development also depends on the ventilation mode.

  18. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    International Nuclear Information System (INIS)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing

    2015-01-01

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  19. Dimensionless study on dynamics of pressure controlled mechanical ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yan; Niu, Jinglong; Cai, Maolin; Xu, Weiqing [Beihang University, Beijing (Korea, Republic of)

    2015-02-15

    Dynamics of mechanical ventilation system can be referred in pulmonary diagnostics and treatments. In this paper, to conveniently grasp the essential characteristics of mechanical ventilation system, a dimensionless model of mechanical ventilation system is presented. For the validation of the mathematical model, a prototype mechanical ventilation system of a lung simulator is proposed. Through the simulation and experimental studies on the dimensionless dynamics of the mechanical ventilation system, firstly, the mathematical model is proved to be authentic and reliable. Secondly, the dimensionless dynamics of the mechanical ventilation system are obtained. Last, the influences of key parameters on the dimensionless dynamics of the mechanical ventilation system are illustrated. The study provides a novel method to study the dynamic of mechanical ventilation system, which can be referred in the respiratory diagnostics and treatment.

  20. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    Science.gov (United States)

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  1. 46 CFR 154.1200 - Mechanical ventilation system: General.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: General. 154.1200 Section... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1200 Mechanical ventilation system: General. (a...

  2. 46 CFR 154.1205 - Mechanical ventilation system: Standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Mechanical ventilation system: Standards. 154.1205... CARGOES SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1205 Mechanical ventilation system: Standards. (a...

  3. Criteria for Postoperative Mechanical Ventilation After Thymectomy in Patients With Myasthenia Gravis: A Retrospective Analysis.

    Science.gov (United States)

    Chigurupati, Keerthi; Gadhinglajkar, Shrinivas; Sreedhar, Rupa; Nair, Muraleedharan; Unnikrishnan, Madathipat; Pillai, Manjusha

    2018-02-01

    To determine the criteria for postoperative mechanical ventilation after thymectomy in patients with Myasthenia Gravis. Retrospective study. Teritiary care centre. 77 Myasthenia gravis patients operated for thymectomy were studied. After obtaining clearance from Institutional ethics committee, medical records of 77 patients with MG, who were operated for thymectomy between January 2005 and December 2015 were reviewed in a retrospective manner. Perioperative variables collected from the patient records were demographic data, duration of the disease, Osserman and Genkin classification, Anti-acetylcholine antibody (AChR) positivity, preoperative daily dose of drug, history of preoperative myasthenic crisis, preoperative vital capacity, technique of anesthesia, drugs used for anesthesia, perioperative complications, and duration of postoperative mechanical ventilation. The patients were divided into two groups, group I and group II consisting of those who required postoperative ventilation for 300 minutes, respectively. The determinants of prolonged postoperative ventilation were studied. The requirement of mechanical ventilation was higher in patients with higher Osserman's grade of myasthenia gravis. Duration of the disease had no effect on the duration of mechanical ventilation in myasthenic patients post thymectomy (p = 0.89). The patients with a preoperative history of myasthenic crisis had a requirement for prolonged mechanical ventilation (p=0.03). Patients with preoperative vital capacity mechanical ventilation with p values mechanical ventilation (p=0.026). Preoperative dose of pyridostigmine and the choice of continuation or discontinuation of antcholinesterases on the day of surgery had no influence on the duration of mechanical ventilation (p value of 0.19 and 0.36 respectively). Epidural analgesia intra and postoperatively significantly reduced the requirement of mechanical ventilation (p=0.006). The predictors of postoperative ventilation in myasthenic

  4. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    Science.gov (United States)

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Testing of mechanical ventilators and infant incubators in healthcare institutions.

    Science.gov (United States)

    Badnjevic, Almir; Gurbeta, Lejla; Jimenez, Elvira Ruiz; Iadanza, Ernesto

    2017-01-01

    The medical device industry has grown rapidly and incessantly over the past century. The sophistication and complexity of the designed instrumentation is nowadays rising and, with it, has also increased the need to develop some better, more effective and efficient maintenance processes, as part of the safety and performance requirements. This paper presents the results of performance tests conducted on 50 mechanical ventilators and 50 infant incubators used in various public healthcare institutions. Testing was conducted in accordance to safety and performance requirements stated in relevant international standards, directives and legal metrology policies. Testing of output parameters for mechanical ventilators was performed in 4 measuring points while testing of output parameters for infant incubators was performed in 7 measuring points for each infant incubator. As performance criteria, relative error of output parameters for mechanical ventilators and absolute error of output parameters for infant incubators was calculated. The ranges of permissible error, for both groups of devices, are regulated by the Rules on Metrological and Technical Requirements published in the Official Gazette of Bosnia and Herzegovina No. 75/14, which are defined based on international recommendations, standards and guidelines. All ventilators and incubators were tested by etalons calibrated in an ISO 17025 accredited laboratory, which provides compliance to international standards for all measured parameters.The results show that 30% of the tested medical devices are not operating properly and should be serviced, recalibrated and/or removed from daily application.

  6. Optimizing Oxygenation in the Mechanically Ventilated Patient: Nursing Practice Implications.

    Science.gov (United States)

    Barton, Glenn; Vanderspank-Wright, Brandi; Shea, Jacqueline

    2016-12-01

    Critical care nurses constitute front-line care provision for patients in the intensive care unit (ICU). Hypoxemic respiratory compromise/failure is a primary reason that patients require ICU admission and mechanical ventilation. Critical care nurses must possess advanced knowledge, skill, and judgment when caring for these patients to ensure that interventions aimed at optimizing oxygenation are both effective and safe. This article discusses fundamental aspects of respiratory physiology and clinical indices used to describe oxygenation status. Key nursing interventions including patient assessment, positioning, pharmacology, and managing hemodynamic parameters are discussed, emphasizing their effects toward mitigating ventilation-perfusion mismatch and optimizing oxygenation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Directory of Open Access Journals (Sweden)

    Raffaele L. Dellaca’

    2017-06-01

    To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice. To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients. To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment. To better understand and classify ventilation modes. To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  8. Management of critically ill patients receiving noninvasive and invasive mechanical ventilation in the emergency department

    Directory of Open Access Journals (Sweden)

    Rose L

    2012-03-01

    Full Text Available Louise RoseLawrence S Bloomberg Faculty of Nursing, University of Toronto, Toronto, Ontario, CanadaAbstract: Patients requiring noninvasive and invasive ventilation frequently present to emergency departments, and may remain for prolonged periods due to constrained critical care services. Emergency clinicians often do not receive the same education on management of mechanical ventilation or have similar exposure to these patients as do their critical care colleagues. The aim of this review was to synthesize the evidence on management of patients requiring noninvasive and invasive ventilation in the emergency department including indications, clinical applications, monitoring priorities, and potential complications. Noninvasive ventilation is recommended for patients with acute exacerbation of chronic obstructive pulmonary disease or cardiogenic pulmonary edema. Less evidence supports its use in asthma and other causes of acute respiratory failure. Use of noninvasive ventilation in the prehospital setting is relatively new, and some evidence suggests benefit. Monitoring priorities for noninvasive ventilation include response to treatment, respiratory and hemodynamic stability, noninvasive ventilation tolerance, detection of noninvasive ventilation failure, and identification of air leaks around the interface. Application of injurious ventilation increases patient morbidity and mortality. Lung-protective ventilation with low tidal volumes based on determination of predicted body weight and control of plateau pressure has been shown to reduce mortality in patients with acute respiratory distress syndrome, and some evidence exists to suggest this strategy should be used in patients without lung injury. Monitoring of the invasively ventilated patient should focus on assessing response to mechanical ventilation and other interventions, and avoiding complications, such as ventilator-associated pneumonia. Several key aspects of management of noninvasive

  9. Cellular phone interference with the operation of mechanical ventilators.

    Science.gov (United States)

    Shaw, Cheryl I; Kacmarek, Robert M; Hampton, Rickey L; Riggi, Vincent; El Masry, Ashraf; Cooper, Jeffrey B; Hurford, William E

    2004-04-01

    To determine whether a cellular phone would interfere with the operation of mechanical ventilators. Laboratory study. University medical center. Fourteen mechanical ventilators. We evaluated change in operation and malfunction of the mechanical ventilators. The cellular phone (Nokia 6120i) was computer controlled, operating at 828.750 MHz analog modulation. It was operated at 16, 40, 100, 250, and 600 mW, 30 cm from the floor and 30, 15, and ventilator. Six of the 14 ventilators tested malfunctioned when a cellular phone at maximum power output was placed ventilating when the cellular phone at maximum power output was placed ventilator. One ventilator doubled the ventilatory rate and another increased the displayed tidal volume from 350 to 1033 mL. In one of the infant ventilators, displayed tidal volume increased from 21 to 100 mL. In another ventilator, the high respiratory rate alarm sounded but the rate had not changed. In a controlled laboratory setting, cellular phones placed in close proximity to some commercially available intensive care ventilators can cause malfunctions, including irrecoverable cessation of ventilation. This is most likely to occur if the cellular phone is or =3 feet from all medical devices. The current electromagnetic compatibility standards for mechanical ventilators are inadequate to prevent malfunction. Manufacturers should ensure that their products are not affected by wireless technology even when placed immediately next to the device.

  10. Collective fluid mechanics of honeybee nest ventilation

    Science.gov (United States)

    Gravish, Nick; Combes, Stacey; Wood, Robert J.; Peters, Jacob

    2014-11-01

    Honeybees thermoregulate their brood in the warm summer months by collectively fanning their wings and creating air flow through the nest. During nest ventilation workers flap their wings in close proximity in which wings continuously operate in unsteady oncoming flows (i.e. the wake of neighboring worker bees) and near the ground. The fluid mechanics of this collective aerodynamic phenomena are unstudied and may play an important role in the physiology of colony life. We have performed field and laboratory observations of the nest ventilation wing kinematics and air flow generated by individuals and groups of honeybee workers. Inspired from these field observations we describe here a robotic model system to study collective flapping wing aerodynamics. We microfabricate arrays of 1.4 cm long flapping wings and observe the air flow generated by arrays of two or more fanning robotic wings. We vary phase, frequency, and separation distance among wings and find that net output flow is enhanced when wings operate at the appropriate phase-distance relationship to catch shed vortices from neighboring wings. These results suggest that by varying position within the fanning array honeybee workers may benefit from collective aerodynamic interactions during nest ventilation.

  11. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial

    NARCIS (Netherlands)

    Spieth, Peter M.; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J.; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-01-01

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary

  12. [Lung-brain interaction in the mechanically ventilated patient].

    Science.gov (United States)

    López-Aguilar, J; Fernández-Gonzalo, M S; Turon, M; Quílez, M E; Gómez-Simón, V; Jódar, M M; Blanch, L

    2013-10-01

    Patients with acute lung injury or acute respiratory distress syndrome (ARDS) admitted to the ICU present neuropsychological alterations, which in most cases extend beyond the acute phase and have an important adverse effect upon quality of life. The aim of this review is to deepen in the analysis of the complex interaction between lung and brain in critically ill patients subjected to mechanical ventilation. This update first describes the neuropsychological alterations occurring both during the acute phase of ICU stay and at discharge, followed by an analysis of lung-brain interactions during mechanical ventilation, and finally explores the etiology and mechanisms leading to the neurological disorders observed in these patients. The management of critical patients requires an integral approach focused on minimizing the deleterious effects over the short, middle or long term. Copyright © 2012 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  13. Use of noninvasive and invasive mechanical ventilation in cardiogenic shock

    DEFF Research Database (Denmark)

    Hongisto, Mari; Lassus, Johan; Tarvasmaki, Tuukka

    2017-01-01

    BACKGROUND: Despite scarce data, invasive mechanical ventilation (MV) is widely recommended over non-invasive ventilation (NIV) for ventilatory support in cardiogenic shock (CS). We assessed the real-life use of different ventilation strategies in CS and their influence on outcome focusing on the...

  14. Mechanical ventilation during extracorporeal membrane oxygenation. An international survey.

    Science.gov (United States)

    Marhong, Jonathan D; Telesnicki, Teagan; Munshi, Laveena; Del Sorbo, Lorenzo; Detsky, Michael; Fan, Eddy

    2014-07-01

    In patients with severe, acute respiratory failure undergoing venovenous extracorporeal membrane oxygenation (VV-ECMO), the optimal strategy for mechanical ventilation is unclear. Our objective was to describe ventilation practices used in centers registered with the Extracorporeal Life Support Organization (ELSO). We conducted an international cross-sectional survey of medical directors and ECMO program coordinators from all ELSO-registered centers. The survey was distributed using a commercial website that collected information on center characteristics, the presence of a mechanical ventilator protocol, ventilator settings, and weaning practices. E-mails were sent out to medical directors or coordinators at each ELSO center and their responses were pooled for analysis. We analyzed 141 (50%) individual responses from the 283 centers contacted across 28 countries. Only 27% of centers reported having an explicit mechanical ventilation protocol for ECMO patients. The majority of these centers (77%) reported "lung rest" to be the primary goal of mechanical ventilation, whereas 9% reported "lung recruitment" to be their ventilation strategy. A tidal volume of 6 ml/kg or less was targeted by 76% of respondents, and 58% targeted a positive end-expiratory pressure of 6-10 cm H2O while ventilating patients on VV-ECMO. Centers prioritized weaning VV-ECMO before mechanical ventilation. Although ventilation practices in patients supported by VV-ECMO vary across ELSO centers internationally, the majority of centers used a strategy that targeted lung-protective thresholds and prioritized weaning VV-ECMO over mechanical ventilation.

  15. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC)

    NARCIS (Netherlands)

    Kneyber, Martin C. J.; de Luca, Daniele; Calderini, Edoardo; Jarreau, Pierre-Henri; Javouhey, Etienne; Lopez-Herce, Jesus; Hammer, Jurg; Macrae, Duncan; Markhorst, Dick G.; Medina, Alberto; Pons-Odena, Marti; Racca, Fabrizio; Wolf, Gerhard; Biban, Paolo; Brierley, Joe; Rimensberger, Peter C.

    2017-01-01

    Purpose: Much of the common practice in paediatric mechanical ventilation is based on personal experiences and what paediatric critical care practitioners have adopted from adult and neonatal experience. This presents a barrier to planning and interpretation of clinical trials on the use of specific

  16. Music interventions for mechanically ventilated patients.

    Science.gov (United States)

    Bradt, Joke; Dileo, Cheryl

    2014-01-01

    Mechanical ventilation often causes major distress and anxiety in patients. The sensation of breathlessness, frequent suctioning, inability to talk, uncertainty regarding surroundings or condition, discomfort, isolation from others, and fear contribute to high levels of anxiety. Side effects of analgesia and sedation may lead to the prolongation of mechanical ventilation and, subsequently, to a longer length of hospitalization and increased cost. Therefore, non-pharmacological interventions should be considered for anxiety and stress management. Music interventions have been used to reduce anxiety and distress and improve physiological functioning in medical patients; however, their efficacy for mechanically ventilated patients needs to be evaluated. This review was originally published in 2010 and was updated in 2014. To update the previously published review that examined the effects of music therapy or music medicine interventions (as defined by the authors) on anxiety and other outcomes in mechanically ventilated patients. Specifically, the following objectives are addressed in this review.1. To conduct a meta-analysis to compare the effects of participation in standard care combined with music therapy or music medicine interventions with standard care alone.2. To compare the effects of patient-selected music with researcher-selected music.3. To compare the effects of different types of music interventions (e.g., music therapy versus music medicine). We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, Issue 2), MEDLINE (1950 to March 2014), CINAHL (1980 to March 2014), EMBASE (1980 to March 2014), PsycINFO (1967 to March 2014), LILACS (1982 to March 2014), Science Citation Index (1980 to March 2014), www.musictherapyworld.net (1 March 2008) (database is no longer functional), CAIRSS for Music (to March 2014), Proquest Digital Dissertations (1980 to March 2014), ClinicalTrials.gov (2000 to March 2014), Current

  17. Anaesthesia ventilators

    Directory of Open Access Journals (Sweden)

    Rajnish K Jain

    2013-01-01

    Full Text Available Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV. PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  18. Anaesthesia ventilators.

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  19. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  20. Academic Emergency Medicine Physicians’ Knowledge of Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Susan R. Wilcox

    2016-05-01

    Full Text Available Introduction: Although emergency physicians frequently intubate patients, management of mechanical ventilation has not been emphasized in emergency medicine (EM education or clinical practice. The objective of this study was to quantify EM attendings’ education, experience, and knowledge regarding mechanical ventilation in the emergency department. Methods: We developed a survey of academic EM attendings’ educational experiences with ventilators and a knowledge assessment tool with nine clinical questions. EM attendings at key teaching hospitals for seven EM residency training programs in the northeastern United States were invited to participate in this survey study. We performed correlation and regression analyses to evaluate the relationship between attendings’ scores on the assessment instrument and their training, education, and comfort with ventilation. Results: Of 394 EM attendings surveyed, 211 responded (53.6%. Of respondents, 74.5% reported receiving three or fewer hours of ventilation-related education from EM sources over the past year and 98 (46% reported receiving between 0-1 hour of education. The overall correct response rate for the assessment tool was 73.4%, with a standard deviation of 19.9. The factors associated with a higher score were completion of an EM residency, prior emphasis on mechanical ventilation during one’s own residency, working in a setting where an emergency physician bears primary responsibility for ventilator management, and level of comfort with managing ventilated patients. Physicians’ comfort was associated with the frequency of ventilator changes and EM management of ventilation, as well as hours of education. Conclusion: EM attendings report caring for mechanically ventilated patients frequently, but most receive fewer than three educational hours a year on mechanical ventilation, and nearly half receive 0-1 hour. Physicians’ performance on an assessment tool for mechanical ventilation is

  1. Two Cases of Pneumatoceles in Mechanically Ventilated Infants

    Directory of Open Access Journals (Sweden)

    Mohammed Al-Ghafri

    2015-07-01

    Full Text Available Pulmonary pneumatocele is a thin-walled, gas-filled space within the lung that usually occurs in association with bacterial pneumonia and is usually transient. The majority of pneumatoceles resolve spontaneously without active intervention, but in some cases they might lead to pneumothorax with subsequent hemodynamic instability. We report two cases presented to the pediatric intensive care unit at the Royal Hospital, Oman with pneumatoceles. The first was a 14-day-old baby who underwent surgical repair of total anomalous pulmonary venous connection (TAPVC requiring extracorporeal membrane oxygenation (ECMO support following surgery. He was initially on conventional mechanical ventilation. Seven days after the surgery, he started to develop bilateral pneumatoceles. The pneumatoceles were not regressing and they did not respond to three weeks of conservative management with high-frequency oscillation ventilation (HFOV. He failed four attempts of weaning from HFOV to conventional ventilation. Each time he was developing tachypnea and carbon dioxide retention. Percutaneous intercostal chest drain (ICD insertion was needed to evacuate one large pneumatocele. Subsequently, he improved and we were able to wean and extubate him. The second case was a two-month-old male admitted with severe respiratory distress secondary to respiratory syncytial virus (RSV pneumonitis. After intubation, he required a high conventional ventilation setting and within 24 hours he was on HFOV. Conservative management with HFOV was sufficient to treat the pneumatoceles and no further intervention was needed. Our cases demonstrate two different approaches in the management of pneumatoceles in mechanically ventilated children. Each approach was case dependent and could not be used interchangeably.

  2. Personalizing mechanical ventilation for acute respiratory distress syndrome.

    Science.gov (United States)

    Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul

    2016-03-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation.

  3. Outcomes management of mechanically ventilated patients: utilizing informatics technology.

    Science.gov (United States)

    Smith, K R

    1998-11-01

    This article examines an informatics system developed for outcomes management of the mechanically ventilated adult population, focusing on weaning the patient from mechanical ventilation. The link between medical informatics and outcomes management is discussed, along with the development of methods, tools, and data sets for outcomes management of the mechanically ventilated adult population at an acute care academic institution. Pros and cons of this system are identified, and specific areas for improvement of future health care outcomes medical informatics systems are discussed.

  4. Home Mechanical Ventilation: A Canadian Thoracic Society Clinical Practice Guideline

    OpenAIRE

    McKim, Douglas A; Road, Jeremy; Avendano, Monica; Abdool, Steve; Côté, Fabien; Duguid, Nigel; Fraser, Janet; Maltais, François; Morrison, Debra L; O’Connell, Colleen; Petrof, Basil J; Rimmer, Karen; Skomro, Robert

    2011-01-01

    Increasing numbers of patients are surviving episodes of prolonged mechanical ventilation or benefitting from the recent availability of user-friendly noninvasive ventilators. Although many publications pertaining to specific aspects of home mechanical ventilation (HMV) exist, very few comprehensive guidelines that bring together all of the current literature on patients at risk for or using mechanical ventilatory support are available. The Canadian Thoracic Society HMV Guideline Committee ha...

  5. Humidification and secretion volume in mechanically ventilated patients.

    Science.gov (United States)

    Solomita, Mario; Palmer, Lucy B; Daroowalla, Feroza; Liu, Jeffrey; Miller, Dori; LeBlanc, Deniese S; Smaldone, Gerald C

    2009-10-01

    To determine potential effects of humidification on the volume of airway secretions in mechanically ventilated patients. Water vapor delivery from devices providing non-heated-wire humidification, heated-wire humidification, and heat and moisture exchanger (HME) were quantified on the bench. Then, patients requiring 24-hour mechanical ventilation were exposed sequentially to each of these humidification devices, and secretions were removed and measured by suctioning every hour during the last 4 hours of the 24-hour study period. In vitro water vapor delivery was greater using non-heated-wire humidification, compared to heated-wire humidification and HME. In vivo, a total of 9 patients were studied. Secretion volume following humidification by non-heated-wire humidification was significantly greater than for heated-wire humidification and HME (P=.004). The volume of secretions appeared to be linked to humidification, as greater water vapor delivery measured in vitro was associated with greater secretion volume in vivo.

  6. Depressive disorders during weaning from prolonged mechanical ventilation.

    Science.gov (United States)

    Jubran, Amal; Lawm, Gerald; Kelly, Joanne; Duffner, Lisa A; Gungor, Gokay; Collins, Eileen G; Lanuza, Dorothy M; Hoffman, Leslie A; Tobin, Martin J

    2010-05-01

    Patients who require mechanical ventilation are at risk of emotional stress because of total dependence on a machine for breathing. The stress may negatively impact ventilator weaning and survival. The purpose of this study was to determine whether depressive disorders in patients being weaned from prolonged mechanical ventilation are linked to weaning failure and decreased survival. A prospective study of 478 consecutive patients transferred to a long-term acute care hospital for weaning from prolonged ventilation was undertaken. A clinical psychologist conducted a psychiatric interview to assess for the presence of depressive disorders. Of the 478 patients, 142 had persistent coma or delirium and were unable to be evaluated for depressive disorders. Of the remaining 336 patients, 142 (42%) were diagnosed with depressive disorders. In multivariate analysis, co-morbidity score [odds ratio (OR), 1.23; P = 0.007], functional dependence before the acute illness (OR, 1.70, P = 0.03) and history of psychiatric disorders (OR, 3.04, P = 0.0001) were independent predictors of depressive disorders. The rate of weaning failure was higher in patients with depressive disorders than in those without such disorders (61 vs. 33%, P = 0.0001), as was mortality (24 vs. 10%, P = 0.0008). The presence of depressive disorders was independently associated with mortality (OR, 4.3; P = 0.0002); age (OR, 1.06; P = 0.001) and co-morbidity score (OR, 1.24; P = 0.02) also predicted mortality. Depressive disorders were diagnosed in 42% of patients who were being weaned from prolonged ventilation. Patients with depressive disorders were more likely to experience weaning failure and death.

  7. Duration of Mechanical Ventilation in the Emergency Department

    Directory of Open Access Journals (Sweden)

    Lauren B. Angotti

    2017-07-01

    Full Text Available Introduction: Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED before intensive care unit (ICU admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS. Methods: This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. Results: We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. Conclusion: In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to

  8. Duration of Mechanical Ventilation in the Emergency Department.

    Science.gov (United States)

    Angotti, Lauren B; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey D; Seigel, Todd A; Al Ashry, Haitham S; Wilcox, Susan R

    2017-08-01

    Due to hospital crowding, mechanically ventilated patients are increasingly spending hours boarding in emergency departments (ED) before intensive care unit (ICU) admission. This study aims to evaluate the association between time ventilated in the ED and in-hospital mortality, duration of mechanical ventilation, ICU and hospital length of stay (LOS). This was a multi-center, prospective, observational study of patients ventilated in the ED, conducted at three academic Level I Trauma Centers from July 2011 to March 2013. All consecutive adult patients on invasive mechanical ventilation were eligible for enrollment. We performed a Cox regression to assess for a mortality effect for mechanically ventilated patients with each hour of increasing LOS in the ED and multivariable regression analyses to assess for independently significant contributors to in-hospital mortality. Our primary outcome was in-hospital mortality, with secondary outcomes of ventilator days, ICU LOS and hospital LOS. We further commented on use of lung protective ventilation and frequency of ventilator changes made in this cohort. We enrolled 535 patients, of whom 525 met all inclusion criteria. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Using iterated Cox regression, a mortality effect occurred at ED time of mechanical ventilation > 7 hours, and the longer ED stay was also associated with a longer total duration of intubation. However, adjusted multivariable regression analysis demonstrated only older age and admission to the neurosciences ICU as independently associated with increased mortality. Of interest, only 23.8% of patients ventilated in the ED for over seven hours had changes made to their ventilator. In a prospective observational study of patients mechanically ventilated in the ED, there was a significant mortality benefit to expedited transfer of patients into an appropriate ICU setting.

  9. Automatic detection of AutoPEEP during controlled mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Nguyen Quang-Thang

    2012-06-01

    Full Text Available Abstract Background Dynamic hyperinflation, hereafter called AutoPEEP (auto-positive end expiratory pressure with some slight language abuse, is a frequent deleterious phenomenon in patients undergoing mechanical ventilation. Although not readily quantifiable, AutoPEEP can be recognized on the expiratory portion of the flow waveform. If expiratory flow does not return to zero before the next inspiration, AutoPEEP is present. This simple detection however requires the eye of an expert clinician at the patient’s bedside. An automatic detection of AutoPEEP should be helpful to optimize care. Methods In this paper, a platform for automatic detection of AutoPEEP based on the flow signal available on most of recent mechanical ventilators is introduced. The detection algorithms are developed on the basis of robust non-parametric hypothesis testings that require no prior information on the signal distribution. In particular, two detectors are proposed: one is based on SNT (Signal Norm Testing and the other is an extension of SNT in the sequential framework. The performance assessment was carried out on a respiratory system analog and ex-vivo on various retrospectively acquired patient curves. Results The experiment results have shown that the proposed algorithm provides relevant AutoPEEP detection on both simulated and real data. The analysis of clinical data has shown that the proposed detectors can be used to automatically detect AutoPEEP with an accuracy of 93% and a recall (sensitivity of 90%. Conclusions The proposed platform provides an automatic early detection of AutoPEEP. Such functionality can be integrated in the currently used mechanical ventilator for continuous monitoring of the patient-ventilator interface and, therefore, alleviate the clinician task.

  10. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    OpenAIRE

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arr...

  11. Home Mechanical Ventilation: A Canadian Thoracic Society Clinical Practice Guideline

    Directory of Open Access Journals (Sweden)

    Douglas A McKim

    2011-01-01

    Full Text Available Increasing numbers of patients are surviving episodes of prolonged mechanical ventilation or benefitting from the recent availability of user-friendly noninvasive ventilators. Although many publications pertaining to specific aspects of home mechanical ventilation (HMV exist, very few comprehensive guidelines that bring together all of the current literature on patients at risk for or using mechanical ventilatory support are available. The Canadian Thoracic Society HMV Guideline Committee has reviewed the available English literature on topics related to HMV in adults, and completed a detailed guideline that will help standardize and improve the assessment and management of individuals requiring noninvasive or invasive HMV. The guideline provides a disease-specific review of illnesses including amyotrophic lateral sclerosis, spinal cord injury, muscular dystrophies, myotonic dystrophy, kyphoscoliosis, post-polio syndrome, central hypoventilation syndrome, obesity hypoventilation syndrome, and chronic obstructive pulmonary disease as well as important common themes such as airway clearance and the process of transition to home. The guidelines have been extensively reviewed by international experts, allied health professionals and target audiences. They will be updated on a regular basis to incorporate any new information.

  12. Home mechanical ventilation: a Canadian Thoracic Society clinical practice guideline.

    Science.gov (United States)

    McKim, Douglas A; Road, Jeremy; Avendano, Monica; Abdool, Steve; Cote, Fabien; Duguid, Nigel; Fraser, Janet; Maltais, Fracois; Morrison, Debra L; O'Connell, Colleen; Petrof, Basil J; Rimmer, Karen; Skomro, Robert

    2011-01-01

    Increasing numbers of patients are surviving episodes of prolonged mechanical ventilation or benefitting from the recent availability of userfriendly noninvasive ventilators. Although many publications pertaining to specific aspects of home mechanical ventilation (HMV) exist, very few comprehensive guidelines that bring together all of the current literature on patients at risk for or using mechanical ventilatory support are available. The Canadian Thoracic Society HMV Guideline Committee has reviewed the available English literature on topics related to HMV in adults, and completed a detailed guideline that will help standardize and improve the assessment and management of individuals requiring noninvasive or invasive HMV. The guideline provides a disease-specific review of illnesses including amyotrophic lateral sclerosis, spinal cord injury, muscular dystrophies, myotonic dystrophy, kyphoscoliosis, post-polio syndrome, central hypoventilation syndrome, obesity hypoventilation syndrome, and chronic obstructive pulmonary disease as well as important common themes such as airway clearance and the process of transition to home. The guidelines have been extensively reviewed by international experts, allied health professionals and target audiences. They will be updated on a regular basis to incorporate any new information.

  13. "Living with dying": the evolution of family members' experience of mechanical ventilation.

    Science.gov (United States)

    Sinuff, Tasnim; Giacomini, Mita; Shaw, Rhona; Swinton, Marilyn; Cook, Deborah J

    2009-01-01

    Communication with families about mechanical ventilation may be more effective once we gain a better understanding of what families experience and understand about this life support technology when their loved ones are admitted to the intensive care unit (ICU). We conducted in-depth interviews with family members of 27 critically ill patients who required mechanical ventilation for > or = 7 days and had an estimated ICU mortality of > or = 50%. Team members reviewed transcripts independently and used grounded theory analysis. The central theme of family members' experience with mechanical ventilation was "living with dying." Initial reactions to the ventilator were of shock and surprise. Family members perceived no option except mechanical ventilation. Although the ventilator kept the patient alive, it also symbolized proximity to death. In time, families became accustomed to images of the ICU as ventilation became more familiar and routine. Their shock and horror were replaced by hope that the ventilator would allow the body to rest, heal, and recover. However, ongoing exposure to their loved one's critical illness and the new role as family spokesperson were traumatizing. Family members' experiences and their understanding of mechanical ventilation change over time, influenced by their habituation to the ICU environment and its routines. They face uncertainty about death, but maintain hope. Understanding these experiences may engender more respectful, meaningful communication about life support with families.

  14. Multicenter comparative study of conventional mechanical gas ventilation to tidal liquid ventilation in oleic acid injured sheep.

    Science.gov (United States)

    Wolfson, Marla R; Hirschl, Ronald B; Jackson, J Craig; Gauvin, France; Foley, David S; Lamm, Wayne J E; Gaughan, John; Shaffer, Thomas H

    2008-01-01

    We performed a multicenter study to test the hypothesis that tidal liquid ventilation (TLV) would improve cardiopulmonary, lung histomorphological, and inflammatory profiles compared with conventional mechanical gas ventilation (CMV). Sheep were studied using the same volume-controlled, pressure-limited ventilator systems, protocols, and treatment strategies in three independent laboratories. Following baseline measurements, oleic acid lung injury was induced and animals were randomized to 4 hours of CMV or TLV targeted to "best PaO2" and PaCO2 35 to 60 mm Hg. The following were significantly higher (p ventilation, physiologic shunt, plasma lactate, lung interleukin-6, interleukin-8, myeloperoxidase, and composite total injury score. No significant laboratories by treatment group interactions were found. In summary, TLV resulted in improved cardiopulmonary physiology at lower ventilatory requirements with more favorable histological and inflammatory profiles than CMV. As such, TLV offers a feasible ventilatory alternative as a lung protective strategy in this model of acute lung injury.

  15. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    Science.gov (United States)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  16. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    NARCIS (Netherlands)

    Beurskens, Charlotte J.; Brevoord, Daniel; Lagrand, Wim K.; van den Bergh, Walter M.; Vroom, Margreeth B.; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P.

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical

  17. Education on invasive mechanical ventilation involving intensive care nurses: a systematic review.

    Science.gov (United States)

    Guilhermino, Michelle C; Inder, Kerry J; Sundin, Deborah

    2018-03-26

    continuing education programmes on mechanical ventilation involving nurses in improving patient outcomes exists. Comprehensive continuing education is required. Well-designed trials are required to confirm that comprehensive continuing education involving intensive care nurses about mechanical ventilation improves patient outcomes. © 2018 British Association of Critical Care Nurses.

  18. Respiratory mechanics to understand ARDS and guide mechanical ventilation.

    Science.gov (United States)

    Mauri, Tommaso; Lazzeri, Marta; Bellani, Giacomo; Zanella, Alberto; Grasselli, Giacomo

    2017-11-30

    As precision medicine is becoming a standard of care in selecting tailored rather than average treatments, physiological measurements might represent the first step in applying personalized therapy in the intensive care unit (ICU). A systematic assessment of respiratory mechanics in patients with the acute respiratory distress syndrome (ARDS) could represent a step in this direction, for two main reasons. Approach and Main results: On the one hand, respiratory mechanics are a powerful physiological method to understand the severity of this syndrome in each single patient. Decreased respiratory system compliance, for example, is associated with low end expiratory lung volume and more severe lung injury. On the other hand, respiratory mechanics might guide protective mechanical ventilation settings. Improved gravitationally dependent regional lung compliance could support the selection of positive end-expiratory pressure and maximize alveolar recruitment. Moreover, the association between driving airway pressure and mortality in ARDS patients potentially underlines the importance of sizing tidal volume on respiratory system compliance rather than on predicted body weight. The present review article aims to describe the main alterations of respiratory mechanics in ARDS as a potent bedside tool to understand severity and guide mechanical ventilation settings, thus representing a readily available clinical resource for ICU physicians.

  19. Technology for noninvasive mechanical ventilation: looking into the black box

    Directory of Open Access Journals (Sweden)

    Ramon Farré

    2016-03-01

    Full Text Available Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support.

  20. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Science.gov (United States)

    Dellaca', Raffaele L; Veneroni, Chiara; Farre', Ramon

    2017-06-01

    This review addresses how the combination of physiology, medicine and engineering principles contributed to the development and advancement of mechanical ventilation, emphasising the most urgent needs for improvement and the most promising directions of future development. Several aspects of mechanical ventilation are introduced, highlighting on one side the importance of interdisciplinary research for further development and, on the other, the importance of training physicians sufficiently on the technological aspects of modern devices to exploit properly the great complexity and potentials of this treatment. To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice.To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients.To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment.To better understand and classify ventilation modes.To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  1. Home Mechanical Ventilation: A 12-Year Population-Based Retrospective Cohort Study.

    Science.gov (United States)

    Povitz, Marcus; Rose, Louise; Shariff, Salimah Z; Leonard, Sean; Welk, Blayne; Jenkyn, Krista Bray; Leasa, David J; Gershon, Andrea S

    2018-04-01

    Increasing numbers of individuals are being initiated on home mechanical ventilation, including noninvasive (bi-level) and invasive mechanical ventilation delivered via tracheostomy due to chronic respiratory failure to enable symptom management and promote quality of life. Given the high care needs of these individuals, a better understanding of the indications for home mechanical ventilation, and health-care utilization is needed. We performed a retrospective cohort study using provincial health administrative data from Ontario, Canada (population ∼13,000,000). Home mechanical ventilation users were characterized using health administrative data to determine the indications for home mechanical ventilation, the need for acute care at the time of ventilation approval, and their health service use and mortality rates following approval. The annual incidence of home mechanical ventilation approval rose from 1.8/100,000 in 2000 to 5.0/100,000 in 2012, or an annual increase of approximately 0.3/100,000 persons/y. The leading indications were neuromuscular disease, thoracic restriction, and COPD. The indication for the remainder could not be determined due to limitations of the administrative databases. Of the 4,670 individuals, 23.0% commenced home mechanical ventilation following an acute care hospitalization. Among individuals who survived at least 1 y, fewer required hospitalization in the year that followed home mechanical ventilation approval (29.9% vs 39.8%) as compared with the year prior. Utilization of home mechanical ventilation is increasing in Ontario, Canada, and further study is needed to clarify the factors contributing to this and to further optimize utilization of health-care resources. Copyright © 2018 by Daedalus Enterprises.

  2. Continuous positive airway pressure and conventional mechanical ventilation in the treatment of meconium aspiration syndrome.

    Science.gov (United States)

    Goldsmith, J P

    2008-12-01

    Meconium aspiration syndrome (MAS) is a complex syndrome that ranges in severity from mild respiratory distress to severe respiratory failure, persistent pulmonary hypertension of the newborn and sometimes death. Understanding of the syndrome's complicated pathophysiology will help determine the appropriate treatment strategy, including the use of continuous positive airway pressure (CPAP), conventional mechanical ventilation (CMV) and other therapies. Approximately 30 to 50% of infants diagnosed with MAS will require CPAP or mechanical ventilation. The optimum modes of ventilation for MAS are not known. Very few studies have been conducted to determine 'best' ventilatory strategies. Despite the introduction, over the last two decades, of innovative ventilatory treatments for this disease (for example, surfactant, high-frequency ventilation, inhaled nitric oxide, extracorporeal membrane oxygenation), the majority of infants can be successfully managed with CPAP or mechanical ventilation alone.

  3. Development of an Outdoor Temperature-Based Control Algorithm for Residential Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tang, Yihuan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Smart ventilation systems use controls to ventilate more during those periods that provide either an energy or IAQ advantage (or both) and less during periods that provide a dis advantage. Using detailed building simulations, this study addresses one of the simplest and lowest cost types of smart controllers —outdoor temperature- based control. If the outdoor temperature falls below a certain cut- off, the fan is simply turned off. T he main principle of smart ventilation used in this study is to shift ventilation from time periods with large indoor -outdoor temperature differences, to periods where these differences are smaller, and their energy impacts are expected to be less. Energy and IAQ performance are assessed relative to a base case of a continuously operated ventilation fan sized to comply with ASHRAE 62.2-2013 whole house ventilation requirements. In order to satisfy 62.2-2013, annual pollutant exposure must be equivalent between the temperature controlled and continuous fan cases. This requires ventilation to be greater than 62.2 requirements when the ventilation system operates. This is achieved by increasing the mechanical ventilation system air flow rates.

  4. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation

    NARCIS (Netherlands)

    Cortjens, Bart; Royakkers, Annick A. N. M.; Determann, Rogier M.; van Suijlen, Jeroen D. E.; Kamphuis, Stephan S.; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W.; Spronk, Peter E.; Schultz, Marcus J.; Bouman, Catherine S. C.

    2012-01-01

    Introduction: Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. Objective: To determine whether ventilator settings in critically ill patients without

  5. Mechanical ventilation for a child with quadriplegia.

    Science.gov (United States)

    Novotny, William E; Perkin, Ronald M; Mukherjee, Debjani; Lantos, John D

    2014-09-01

    Parents generally have the right to make medical decisions for their children. This right can be challenged when the parents' decision seems to go against the child's interests. The toughest such decisions are for a child who will survive with physical and neurocognitive impairments. We discuss a case of a 5-year-old boy who suffered a spinal injury as a result of a motor vehicle accident and whose father requests discontinuation of life support. Many experts recommend a "trial of therapy" to clarify both prognosis and quality of life. The key ethical question, then, is not whether to postpone a decision to forego mechanical ventilation. Instead, the key question is how long to wait. Parents should be allowed time to see what life will be like for themselves and for their child. Most of the time, life turns out better than they might have imagined. Comments are provided by 2 pediatric intensivists, Drs William Novotny and Ronald Perkin of East Carolina University, and by a specialist in rehabilitation, Dr Debjani Mukherjee of the Rehabilitation Institute of Chicago. Copyright © 2014 by the American Academy of Pediatrics.

  6. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  7. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics.

    Science.gov (United States)

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we found that ventilating the normal lung with high peak pressure (45 cmH(2)0) and low positive end-expiratory pressure (PEEP of 3 cmH(2)O) did not initially result in altered alveolar mechanics, but alveolar instability developed over time. Anesthetized rats underwent tracheostomy, were placed on pressure control ventilation, and underwent sternotomy. Rats were then assigned to one of three ventilation strategies: control group (n = 3, P control = 14 cmH(2)O, PEEP = 3 cmH(2)O), high pressure/low PEEP group (n = 6, P control = 45 cmH(2)O, PEEP = 3 cmH(2)O), and high pressure/high PEEP group (n = 5, P control = 45 cmH(2)O, PEEP = 10 cmH(2)O). In vivo microscopic footage of subpleural alveolar stability (that is, recruitment/derecruitment) was taken at baseline and than every 15 minutes for 90 minutes following ventilator adjustments. Alveolar recruitment/derecruitment was determined by measuring the area of individual alveoli at peak inspiration (I) and end expiration (E) by computer image analysis. Alveolar recruitment/derecruitment was quantified by the percentage change in alveolar area during tidal ventilation (%I - E Delta). Alveoli were stable in the control group for the entire experiment (low %I - E Delta). Alveoli in the high pressure/low PEEP group were initially stable (low %I - E Delta), but with time alveolar recruitment/derecruitment developed. The development of alveolar instability in the high pressure/low PEEP group was associated with histologic lung injury. A large change in

  8. Mechanical ventilation strategies for the surgical patient

    NARCIS (Netherlands)

    Schultz, Marcus J.; Abreu, Marcelo Gama de; Pelosi, Paolo

    2015-01-01

    Purpose of review To summarize clinical evidence for intraoperative ventilation settings, which could protect against postoperative pulmonary complications (PPCs) in surgical patients with uninjured lungs. Recent findings There is convincing evidence for protection against PPCs by low tidal volumes:

  9. Comparison of usual and alternative methods to measure height in mechanically ventilated patients: potential impact on protective ventilation.

    Science.gov (United States)

    Bojmehrani, Azadeh; Bergeron-Duchesne, Maude; Bouchard, Carmelle; Simard, Serge; Bouchard, Pierre-Alexandre; Vanderschuren, Abel; L'Her, Erwan; Lellouche, François

    2014-07-01

    Protective ventilation implementation requires the calculation of predicted body weight (PBW), determined by a formula based on gender and height. Consequently, height inaccuracy may be a limiting factor to correctly set tidal volumes. The objective of this study was to evaluate the accuracy of different methods in measuring heights in mechanically ventilated patients. Before cardiac surgery, actual height was measured with a height gauge while subjects were standing upright (reference method); the height was also estimated by alternative methods based on lower leg and forearm measurements. After cardiac surgery, upon ICU admission, a subject's height was visually estimated by a clinician and then measured with a tape measure while the subject was supine and undergoing mechanical ventilation. One hundred subjects (75 men, 25 women) were prospectively included. Mean PBW was 61.0 ± 9.7 kg, and mean actual weight was 30.3% higher. In comparison with the reference method, estimating the height visually and using the tape measure were less accurate than both lower leg and forearm measurements. Errors above 10% in calculating the PBW were present in 25 and 40 subjects when the tape measure or visual estimation of height was used in the formula, respectively. With lower leg and forearm measurements, 15 subjects had errors above 10% (P bedridden patients on mechanical ventilation. Alternative methods based on lower leg and forearm measurements are potentially interesting solutions to facilitate the accurate application of protective ventilation. Copyright © 2014 by Daedalus Enterprises.

  10. Integrated Stress Response Mediates Epithelial Injury in Mechanical Ventilation.

    Science.gov (United States)

    Dolinay, Tamas; Himes, Blanca E; Shumyatcher, Maya; Lawrence, Gladys Gray; Margulies, Susan S

    2017-08-01

    Ventilator-induced lung injury (VILI) is a severe complication of mechanical ventilation that can lead to acute respiratory distress syndrome. VILI is characterized by damage to the epithelial barrier with subsequent pulmonary edema and profound hypoxia. Available lung-protective ventilator strategies offer only a modest benefit in preventing VILI because they cannot impede alveolar overdistension and concomitant epithelial barrier dysfunction in the inflamed lung regions. There are currently no effective biochemical therapies to mitigate injury to the alveolar epithelium. We hypothesize that alveolar stretch activates the integrated stress response (ISR) pathway and that the chemical inhibition of this pathway mitigates alveolar barrier disruption during stretch and mechanical ventilation. Using our established rat primary type I-like alveolar epithelial cell monolayer stretch model and in vivo rat mechanical ventilation that mimics the alveolar overdistension seen in acute respiratory distress syndrome, we studied epithelial responses to mechanical stress. Our studies revealed that the ISR signaling pathway is a key modulator of epithelial permeability. We show that prolonged epithelial stretch and injurious mechanical ventilation activate the ISR, leading to increased alveolar permeability, cell death, and proinflammatory signaling. Chemical inhibition of protein kinase RNA-like endoplasmic reticulum kinase, an upstream regulator of the pathway, resulted in decreased injury signaling and improved barrier function after prolonged cyclic stretch and injurious mechanical ventilation. Our results provide new evidence that therapeutic targeting of the ISR can mitigate VILI.

  11. Alcohol use disorders increase the risk for mechanical ventilation in medical patients.

    Science.gov (United States)

    de Wit, Marjolein; Best, Al M; Gennings, Chris; Burnham, Ellen L; Moss, Marc

    2007-07-01

    Annually, more than 300,000 patients receive mechanical ventilation in an intensive care unit in the United States. The hospital mortality for ventilated patients may approach 50%, depending on the primary diagnosis. In trauma and surgical patients, a diagnosis of alcohol use disorder (AUD) is common and is associated with a prolonged duration of mechanical ventilation. The objective of this study is to determine whether the presence of AUD and the development of alcohol withdrawal are associated with an increased use and duration of mechanical ventilation in patients with medical disorders that commonly require intensive care unit admission. We performed a retrospective cohort study using the Nationwide Inpatient Sample, a large all-payer inpatient database representing approximately 1,000 hospitals. For the years 2002 to 2003, adult patients with 1 of the 6 most common diagnoses associated with medical intensive care unit admission were included in the study. Both univariate analysis and multivariable logistic regression were performed to determine whether AUD and alcohol withdrawal were independently associated with the use and duration of mechanical ventilation in these patients. There were a total 785,602 patients who fulfilled 1 of the 6 diagnoses, 26,577 (3.4%) had AUD, 3,967 (0.5%) had alcohol withdrawal, and 65,071 (8.3%) underwent mechanical ventilation (53% or =96 hours). Independent of the medical diagnosis, AUD was associated with an increased risk of requiring mechanical ventilation (13.7 vs 8.1%, odds ratio=1.49, 95% confidence interval [1.414; 1.574], palcohol withdrawal was associated with a longer duration of mechanical ventilation (57 vs 47%> or =96 hours, odds ratio=1.48, 95% confidence interval [1.266; 1.724], palcohol withdrawal is associated with a longer duration of mechanical ventilation.

  12. Mechanical ventilation with heat recovery in cold climates

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen; Svendsen, Svend

    2005-01-01

    Building ventilation is necessary to achieve a healthy and comfortable indoor environment, but as energy prices continue to rise it is necessary to reduce the energy consumption. Using mechanical ventilation with heat recovery reduces the ventilation heat loss significantly, but in cold climates...... freezes to ice. The analysis of measurements from existing ventilation systems with heat recovery used in single-family houses in Denmark and a test of a standard heat recovery unit in the laboratory have clearly shown that this problem occurs when the outdoor temperature gets below approximately –5º......C. Due to the ice problem mechanical ventilation systems with heat recovery are often installed with an extra preheating system reducing the energy saving potential significantly. New designs of high efficient heat recovery units capable of continuously defrosting the ice without using extra energy...

  13. A Porcine Model for Initial Surge Mechanical Ventilator Assessment and Evaluation of Two Limited Function Ventilators

    Science.gov (United States)

    Dickson, Robert P; Hotchkin, David L; Lamm, Wayne JE; Hinkson, Carl; Pierson, David J; Glenny, Robb W; Rubinson, Lewis

    2013-01-01

    Objective To adapt an animal model of acute lung injury for use as a standard protocol for a screening, initial evaluation of limited function, or “surge,” ventilators for use in mass casualty scenarios. Design Prospective, experimental animal study. Setting University research laboratory. Subjects 12 adult pigs. Interventions 12 spontaneously breathing pigs (6 in each group) were subjected to acute lung injury/acute respiratory distress syndrome (ALI/ARDS) via pulmonary artery infusion of oleic acid. Following development of respiratory failure, animals were mechanically ventilated with a limited function ventilator (Simplified Automatic Ventilator [SAVe] I or II; Automedx) for one hour or until the ventilator could not support the animal. The limited function ventilator was then exchanged for a full function ventilator (Servo 900C; Siemens). Measurements and Main Results Reliable and reproducible levels of ALI/ARDS were induced. The SAVe I was unable to adequately oxygenate 5 animals, with PaO2 (52.0 ± 11.1 torr) compared to the Servo (106.0 ± 25.6 torr; p=0.002). The SAVe II was able to oxygenate and ventilate all 6 animals for one hour with no difference in PaO2 (141.8 ± 169.3 torr) compared to the Servo (158.3 ± 167.7 torr). Conclusions We describe a novel in vivo model of ALI/ARDS that can be used to initially screen limited function ventilators considered for mass respiratory failure stockpiles, and is intended to be combined with additional studies to defintively assess appropriateness for mass respiratory failure. Specifically, during this study we demonstrate that the SAVe I ventilator is unable to provide sufficient gas exchange, while the SAVe II, with several more functions, was able to support the same level of hypoxemic respiratory failure secondary to ALI/ARDS for one hour. PMID:21187747

  14. Non-invasive mechanical ventilation with spinal anesthesia for cesarean delivery.

    Science.gov (United States)

    Erdogan, G; Okyay, D Z; Yurtlu, S; Hanci, V; Ayoglu, H; Koksal, B; Turan, I O

    2010-10-01

    We present the successful use of perioperative non-invasive mechanical ventilation in a morbidly obese pregnant woman with bronchial asthma, severe preeclampsia and pulmonary edema undergoing an emergency cesarean delivery with spinal anesthesia. The combination of non-invasive mechanical ventilation with neuraxial anesthesia may be of value in selected parturients with acute or chronic respiratory insufficiency requiring surgery. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effects of Conventional Mechanical Ventilation Performed by Two Neonatal Ventilators on the Lung Functions of Rabbits with Meconium-Induced Acute Lung Injury

    Directory of Open Access Journals (Sweden)

    Mokra D

    2016-12-01

    Full Text Available Severe meconium aspiration syndrome (MAS in the neonates often requires a ventilatory support. As a method of choice, a conventional mechanical ventilation with small tidal volumes (VT<6 ml/kg and appropriate ventilatory pressures is used. The purpose of this study was to assess the short-term effects of the small-volume CMV performed by two neonatal ventilators: Aura V (Chirana Stara Tura a.s., Slovakia and SLE5000 (SLE Ltd., UK on the lung functions of rabbits with experimentally-induced MAS and to estimate whether the newly developed neonatal version of the ventilator Aura V is suitable for ventilation of the animals with MAS.

  16. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Fenaughty, Karen [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States); Lubliner, Michael [Washington State Univ., Pullman, WA (United States); Howard, Luke [Washington State Univ., Pullman, WA (United States)

    2018-01-15

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies amongst regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  17. Field and Laboratory Testing of Approaches to Smart Whole-House Mechanical Ventilation Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Florida Solar Energy Center, Cocoa, FL (United States); Fenaughty, Karen [Florida Solar Energy Center, Cocoa, FL (United States); Parker, Danny [Florida Solar Energy Center, Cocoa, FL (United States); Lubiner, Michael [Washington State Univ., Pullman, WA (United States); Howard, Luke [Washington State Univ., Pullman, WA (United States)

    2018-01-29

    Whole-house mechanical ventilation is a critical component to a comprehensive strategy for good indoor air quality (IAQ). However, due to lack of integration with standard heating and cooling systems, and perceptions from a portion of the homebuilding industry about risks related to increased energy use, increased cost, and decreased comfort, voluntary and code-required adoption varies among regions. Smart ventilation controls (SVC) balance energy consumption, comfort, and IAQ by optimizing mechanical ventilation operation to reduce the heating and/or cooling loads, improve management of indoor moisture, and maintain IAQ equivalence according to ASHRAE 62.2.

  18. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Charlotte J. Beurskens

    2014-01-01

    Full Text Available Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2 diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen. A fixed protective ventilation protocol (6 mL/kg was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P<0.017. Results. During heliox ventilation, respiratory rate decreased (25±4 versus 23±5 breaths min−1, P=0.010. Minute volume ventilation showed a trend to decrease compared to baseline (11.1±1.9 versus 9.9±2.1 L min−1, P=0.026, while reducing PaCO2 levels (5.0±0.6 versus 4.5±0.6 kPa, P=0.011 and peak pressures (21.1±3.3 versus 19.8±3.2 cm H2O, P=0.024. Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  19. Personalizing mechanical ventilation for acute respiratory distress syndrome

    OpenAIRE

    Berngard, S. Clark; Beitler, Jeremy R.; Malhotra, Atul

    2016-01-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response ...

  20. Humidification during Mechanical Ventilation in the Adult Patient

    OpenAIRE

    Al Ashry, Haitham S.; Modrykamien, Ariel M.

    2014-01-01

    Humidification of inhaled gases has been standard of care in mechanical ventilation for a long period of time. More than a century ago, a variety of reports described important airway damage by applying dry gases during artificial ventilation. Consequently, respiratory care providers have been utilizing external humidifiers to compensate for the lack of natural humidification mechanisms when the upper airway is bypassed. Particularly, active and passive humidification devices have rapidly evo...

  1. Lung-protective perioperative mechanical ventilation

    NARCIS (Netherlands)

    Hemmes, S.N.T.

    2015-01-01

    Intraoperative ventilation has the potential to cause lung injury and possibly increase risk of pulmonary complications after surgery. Use of large tidal volumes could cause overdistension of lung tissue, which can be aggravated by too high levels of positive end-expiratory pressure (PEEP). Too low

  2. Defining a Ventilation Strategy for Flexible Bronchoscopy on Mechanically Ventilated Patients in the Medical Intensive Care Unit.

    Science.gov (United States)

    Greenstein, Yonatan Y; Shakespeare, Eric; Doelken, Peter; Mayo, Paul H

    2017-07-01

    Flexible bronchoscopy (FB) in intubated patients on mechanical ventilation increases airway resistance. During FB, two ventilatory strategies are possible: maintaining tidal volume (VT) while maintaining baseline CO2 or allowing reduction of VT. The former strategy carries risk of hyperinflation due to expiratory flow limitation with FB. The aim of the authors was too study end expiratory lung volume (EELV) during FB of intubated subjects while limiting VT. We studied 16 subjects who were intubated on mechanical ventilation and required FB. Changes in EELV were measured by respiratory inductance plethysmography. Ventilator mechanics, EELV, and arterial blood gases, were measured. FB insertions decreased EELV in 64% of cases (-325±371 mL) and increased it in 32% of cases (65±59 mL). Suctioning decreased EELV in 76% of cases (-120±104 mL) and increased it in 16% of cases (29±33 mL). Respiratory mechanics were unchanged. Pre-FB and post-FB, PaO2 decreased by 61±96 mm Hg and PaCO2 increased by 15±7 mm Hg. There was no clinically significant increase in EELV in any subject during FB. Decreases in EELV coincided with FB-suctioning maneuvers. Peak pressure limiting ventilation protected the subject against hyperinflation with a consequent, well-tolerated reduction in VT, and hypercapnea. Suctioning should be limited, especially in patients vulnerable to derecruitment effect.

  3. Pulmonary Contusion in Mechanically Ventilated Subjects After Severe Trauma.

    Science.gov (United States)

    Dhar, Sakshi Mathur; Breite, Matthew D; Barnes, Stephen L; Quick, Jacob A

    2018-03-13

    Pulmonary contusions are thought to worsen outcomes. We aimed to evaluate the effects of pulmonary contusion on mechanically ventilated trauma subjects with severe thoracic injuries and hypothesized that contusion would not increase morbidity. We conducted a single-center, retrospective review of 163 severely injured trauma subjects (injury severity score ≥ 15) with severe thoracic injury (chest abbreviated injury score ≥ 3), who required mechanical ventilation for >24 h at a verified Level 1 trauma center. Subject data were analyzed for those with radiographic documentation of pulmonary contusion and those without. Statistical analysis was performed to determine the effects of coexisting pulmonary contusion in severe thoracic trauma. Pulmonary contusion was present in 91 subjects (55.8%), whereas 72 (44.2%) did not have pulmonary contusions. Mean chest abbreviated injury score (3.54 vs 3.47, P = .53) and mean injury severity score (32.6 vs 30.2, P = .12) were similar. There was no difference in mortality (11 [12.1%] vs 9 [12.5%], P > .99) or length of stay (16.29 d vs 17.29 d, P = .60). Frequency of ventilator-associated pneumonia was comparable (43 [47.3%] vs 32 [44.4%], P = .75). Subjects with contusions were more likely to grow methicillin-sensitive Staphylococcus aureus in culture (33 vs 10, P = .004) as opposed to Pseudomonas aeruginosa in culture (6 vs 13, P = .003). Overall, no significant differences were noted in mortality, length of stay, or pneumonia rates between severely injured trauma subjects with and without pulmonary contusions. Copyright © 2018 by Daedalus Enterprises.

  4. Perceived decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Haugdahl, Hege S; Storli, Sissel; Rose, Louise

    2014-01-01

    AIM: To explore variability in perceptions of nurse managers and physician directors regarding roles, responsibilities and clinical-decision making related to mechanical ventilator weaning in Norwegian intensive care units (ICUs). BACKGROUND: Effective teamwork is crucial for providing optimal...... patient care in ICU. More knowledge on nurses' and physicians' perceptions of responsibility in clinical decision-making for mechanical ventilation is needed. METHODS: Self-administered survey of mechanical ventilation and weaning responsibilities was sent to nurse managers and physician directors...... of Norwegian adult ICUs. Nurses' decisional influence and autonomy were estimated on a numeric rating scale (NRS) from 0 to 10 (least to most). RESULTS: Response rate was 38/60 (63%) nurses and 38/52 (73%) physicians. On the NRS nurse managers perceived the autonomy and influence of nurses' ventilator...

  5. Ventilator associated pneumonia among patients on mechanical ventilation at tertiary care centres

    International Nuclear Information System (INIS)

    Rafiq, M.Y.; Ikram, A.; Ayyub, M.

    2018-01-01

    Objective: To determine the frequency of ventilator associated pneumonia (VAP) among patients on mechanical ventilation, and to identify the causative bacterial pathogens and antibiotic susceptibility pattern of isolated microorganisms in intensive care units of tertiary care settings. Study Design: Descriptive cross sectional. Place and Duration of Study: This study was conducted at Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from Dec 2014 to Aug 2015. Material and Methods: A total of 176 patients on mechanical ventilation were included in the study; patients having respiratory tract infection before putting on ventilator were excluded. Endotracheal aspirate (ETA) and Bronchoalveolar lavage (BAL) samples were collected aseptically from patients on mechanical ventilation on day zero i.e. the day on which the patient was put on ventilator to rule out any previous respiratory tract infection and then after 48 hours to observe the development of VAP. Samples were processed in the laboratory by standard culture techniques, pathogens were identified and their antibiotic susceptibility was performed as per CLSI guidelines. Results: Out of 176 patients on mechanical ventilation, 59 (33.5%) developed VAP. Acinetobacter baumanii being the predominant pathogen isolated from 32 (54.2%) patients followed by MRSA 11 (18.6%), Klebsiella pneumoniae 9 (15.2%), Pseudomonas aeruginosa 5 (8.47%) and Stenotrophomonas maltophila from 2 (3.38%) patients. Conclusion: Frequency of VAP is quite high in our setup, identification of causative bacterial pathogensand their antibiotic susceptibility pattern will not only help in providing effective treatment to the patients but will also help in the formulation of antibiogram according to local resistance patterns for empirical therapy and to reduce the morbidity and mortality. (author)

  6. Preemptive mechanical ventilation can block progressive acute lung injury.

    Science.gov (United States)

    Sadowitz, Benjamin; Jain, Sumeet; Kollisch-Singule, Michaela; Satalin, Joshua; Andrews, Penny; Habashi, Nader; Gatto, Louis A; Nieman, Gary

    2016-02-04

    Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS.

  7. The Study of Pulmonary Complication of Neonatal Mechanical Ventilation in NICU

    Directory of Open Access Journals (Sweden)

    M.K. Sabzeie

    2016-01-01

    Full Text Available Introduction & Objective: The main indication of mechanical ventilation is in the treatment of neonates with respiratory failure. With the increased use of mechanical ventilation, its complications have increased too. The aim of this study was to evaluate the prevalence of complications and short-term improvement in infants undergoing mechanical ventilation in the neonatal intensive care unit (NICU. Materials & Methods: In this prospective-analytic study, all infants requiring mechanical ventilation and admitted in the neonatal intensive care unit of Fatemiyeh and Be’sat hospitals, have been evaluated for one year (2012. Their data included: neonatal age, sex, gestational age, birth weight, weight at admission, diagnosis, length of hospitalization, disease outcome (improvement-died, need for mechanical ventilation, complications and culture results (blood, endotracheal tube, urine, CSF insert in check list. The data were analysed by SPSS and c2 statistical test. Results: In this study, a total of 114 infants hospitalized in intensive care unit and needed mechanical ventilation was studied of whom 72 were male and 42 were female. The mean of gestational age in the admitted neonates was 32.9 ± 0.85 weeks. The majority of neonates (80.70% were undergoing mechanical ventilation with respiratory distress syndrome (RDS. 67% of neonates were suffering from complications of mechanical ventilation. The prevalent complication was seen in the neonates was narrowing or obstruction of the endotracheal tube (52.63%. 47.37% of infants died and respiratory distress syndrome was the common cause of death in these neonates (46.29%. In our study, there was significant relationship between resuscitation at birth (P=0.002, time required for mechanical ventilation (P=0.0000 and Apgar score (P=0.0000 and complications of mechanical ventilation. Conclusions: The results show that the high prevalence of pulmonary complications is associated with mechanical

  8. Outcome of Concurrent Occult Hemothorax and Pneumothorax in Trauma Patients Who Required Assisted Ventilation

    Directory of Open Access Journals (Sweden)

    Ismail Mahmood

    2015-01-01

    Full Text Available Background. The management and outcomes of occult hemopneumothorax in blunt trauma patients who required mechanical ventilation are not well studied. We aimed to study patients with occult hemopneumothorax on mechanical ventilation who could be carefully managed without tube thoracostomy. Methods. Chest trauma patients with occult hemopneumothorax who were on mechanical ventilation were prospectively evaluated. The presence of hemopneumothorax was confirmed by CT scanning. Hospital length of stay, complications, and outcome were recorded. Results. A total of 56 chest trauma patients with occult hemopneumothorax who were on ventilatory support were included with a mean age of 36 ± 13 years. Hemopneumothorax was managed conservatively in 72% cases and 28% underwent tube thoracostomy as indicated. 29% of patients developed pneumonia, 16% had Acute Respiratory Distress Syndrome (ARDS, and 7% died. Thickness of hemothorax, duration of mechanical ventilation, and development of ARDS were significantly associated with tube thoracostomy in comparison to no-chest tube group. Conclusions. The majority of occult hemopneumothorax can be carefully managed without tube thoracostomy in patients who required positive pressure ventilation. Tube thoracotomy could be restricted to those who had evidence of increase in the size of the hemothorax or pneumothorax on follow-up chest radiographs or developed respiratory compromise.

  9. Synchronized mechanical ventilation for respiratory support in newborn infants.

    Science.gov (United States)

    Greenough, Anne; Murthy, Vadivelam; Milner, Anthony D; Rossor, Thomas E; Sundaresan, Adesh

    2016-08-19

    During synchronised mechanical ventilation, positive airway pressure and spontaneous inspiration coincide. If synchronous ventilation is provoked, adequate gas exchange should be achieved at lower peak airway pressures, potentially reducing baro/volutrauma, air leak and bronchopulmonary dysplasia. Synchronous ventilation can potentially be achieved by manipulation of rate and inspiratory time during conventional ventilation and employment of patient-triggered ventilation. To compare the efficacy of:(i) synchronised mechanical ventilation, delivered as high-frequency positive pressure ventilation (HFPPV) or patient-triggered ventilation (assist control ventilation (ACV) and synchronous intermittent mandatory ventilation (SIMV)), with conventional ventilation or high-frequency oscillation (HFO);(ii) different types of triggered ventilation (ACV, SIMV, pressure-regulated volume control ventilation (PRVCV), SIMV with pressure support (PS) and pressure support ventilation (PSV)). We used the standard search strategy of the Cochrane Neonatal Review group to search the Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 5), MEDLINE via PubMed (1966 to June 5 2016), EMBASE (1980 to June 5 2016), and CINAHL (1982 to June 5 2016). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomised controlled trials and quasi-randomised trials. Randomised or quasi-randomised clinical trials comparing synchronised ventilation delivered as HFPPV to CMV, or ACV/SIMV to CMV or HFO in neonates. Randomised trials comparing different triggered ventilation modes (ACV, SIMV, SIMV plus PS, PRVCV and PSV) in neonates. Data were collected regarding clinical outcomes including mortality, air leaks (pneumothorax or pulmonary interstitial emphysema (PIE)), severe intraventricular haemorrhage (grades 3 and 4), bronchopulmonary dysplasia (BPD) (oxygen dependency beyond 28 days), moderate/severe BPD (oxygen

  10. Cardiac output estimation using pulmonary mechanics in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Hann Christopher E

    2010-11-01

    Full Text Available Abstract The application of positive end expiratory pressure (PEEP in mechanically ventilated (MV patients with acute respiratory distress syndrome (ARDS decreases cardiac output (CO. Accurate measurement of CO is highly invasive and is not ideal for all MV critically ill patients. However, the link between the PEEP used in MV, and CO provides an opportunity to assess CO via MV therapy and other existing measurements, creating a CO measure without further invasiveness. This paper examines combining models of diffusion resistance and lung mechanics, to help predict CO changes due to PEEP. The CO estimator uses an initial measurement of pulmonary shunt, and estimations of shunt changes due to PEEP to predict CO at different levels of PEEP. Inputs to the cardiac model are the PV loops from the ventilator, as well as the oxygen saturation values using known respiratory inspired oxygen content. The outputs are estimates of pulmonary shunt and CO changes due to changes in applied PEEP. Data from two published studies are used to assess and initially validate this model. The model shows the effect on oxygenation due to decreased CO and decreased shunt, resulting from increased PEEP. It concludes that there is a trade off on oxygenation parameters. More clinically importantly, the model also examines how the rate of CO drop with increased PEEP can be used as a method to determine optimal PEEP, which may be used to optimise MV therapy with respect to the gas exchange achieved, as well as accounting for the impact on the cardiovascular system and its management.

  11. Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine.

    Science.gov (United States)

    Batchinsky, Andriy I; Burkett, Samuel E; Zanders, Thomas B; Chung, Kevin K; Regn, Dara D; Jordan, Bryan S; Necsoiu, Corina; Nguyen, Ruth; Hanson, Margaret A; Morris, Michael J; Cancio, Leopoldo C

    2011-10-01

    The role of airway pressure release ventilation in the management of early smoke inhalation injury has not been studied. We compared the effects of airway pressure release ventilation and conventional mechanical ventilation on oxygenation in a porcine model of acute respiratory distress syndrome induced by wood smoke inhalation. Prospective animal study. Government laboratory animal intensive care unit. Thirty-three Yorkshire pigs. Smoke inhalation injury. Anesthetized female Yorkshire pigs (n = 33) inhaled room-temperature pine-bark smoke. Before injury, the pigs were randomized to receive conventional mechanical ventilation (n = 15) or airway pressure release ventilation (n = 12) for 48 hrs after smoke inhalation. As acute respiratory distress syndrome developed (PaO2/Fio2 ratio conventional mechanical ventilation for 48 hrs and served as time controls. Changes in PaO2/Fio2 ratio, tidal volume, respiratory rate, mean airway pressure, plateau pressure, and hemodynamic variables were recorded. Survival was assessed using Kaplan-Meier analysis. PaO2/Fio2 ratio was lower in airway pressure release ventilation vs. conventional mechanical ventilation pigs at 12, 18, and 24 hrs (p conventional mechanical ventilation animals between 30 and 48 hrs post injury (p animals between 6 and 48 hrs (p conventional mechanical ventilation and airway pressure release ventilation pigs. In this model of acute respiratory distress syndrome caused by severe smoke inhalation in swine, airway pressure release ventilation-treated animals developed acute respiratory distress syndrome faster than conventional mechanical ventilation-treated animals, showing a lower PaO2/Fio2 ratio at 12, 18, and 24 hrs after injury. At other time points, PaO2/Fio2 ratio was not different between conventional mechanical ventilation and airway pressure release ventilation.

  12. Fuzzy logic controller for weaning neonates from mechanical ventilation.

    OpenAIRE

    Hatzakis, G. E.; Davis, G. M.

    2002-01-01

    Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the he...

  13. Modes of mechanical ventilation for the operating room.

    Science.gov (United States)

    Ball, Lorenzo; Dameri, Maddalena; Pelosi, Paolo

    2015-09-01

    Most patients undergoing surgical procedures need to be mechanically ventilated, because of the impact of several drugs administered at induction and during maintenance of general anaesthesia on respiratory function. Optimization of intraoperative mechanical ventilation can reduce the incidence of post-operative pulmonary complications and improve the patient's outcome. Preoxygenation at induction of general anaesthesia prolongs the time window for safe intubation, reducing the risk of hypoxia and overweighs the potential risk of reabsorption atelectasis. Non-invasive positive pressure ventilation delivered through different interfaces should be considered at the induction of anaesthesia morbidly obese patients. Anaesthesia ventilators are becoming increasingly sophisticated, integrating many functions that were once exclusive to intensive care. Modern anaesthesia machines provide high performances in delivering the desired volumes and pressures accurately and precisely, including assisted ventilation modes. Therefore, the physicians should be familiar with the potential and pitfalls of the most commonly used intraoperative ventilation modes: volume-controlled, pressure-controlled, dual-controlled and assisted ventilation. Although there is no clear evidence to support the advantage of any one of these ventilation modes over the others, protective mechanical ventilation with low tidal volume and low levels of positive end-expiratory pressure (PEEP) should be considered in patients undergoing surgery. The target tidal volume should be calculated based on the predicted or ideal body weight rather than on the actual body weight. To optimize ventilation monitoring, anaesthesia machines should include end-inspiratory and end-expiratory pause as well as flow-volume loop curves. The routine administration of high PEEP levels should be avoided, as this may lead to haemodynamic impairment and fluid overload. Higher PEEP might be considered during surgery longer than 3 h

  14. Effects of staff training on the care of mechanically ventilated patients: a prospective cohort study.

    Science.gov (United States)

    Bloos, F; Müller, S; Harz, A; Gugel, M; Geil, D; Egerland, K; Reinhart, K; Marx, G

    2009-08-01

    Adherence to guidelines to avoid complications associated with mechanical ventilation is often incomplete. The goal of this study was to assess whether staff training in pre-defined interventions (bundle) improves the quality of care in mechanically ventilated patients. This study was performed on a 50-bed intensive care unit of a tertiary care university hospital. Application of a ventilator bundle consisting of semirecumbent positioning, lung protective ventilation in patients with acute lung injury (ALI), ulcer prophylaxis, and deep vein thrombosis prophylaxis (DVTP) was assessed before and after staff training in post-surgical patients requiring mechanical ventilation for at least 24 h. A total of 133 patients before and 141 patients after staff training were included. Overall bundle adherence increased from 15 to 33.8% (Pposition was achieved in 24.9% of patient days before and 46.9% of patient days after staff training (P90% was achieved in both groups. Median tidal volume in patients with ALI remained unaltered. Days on mechanical ventilation were reduced from 6 (interquartile range 2.0-15.0) to 4 (2.0-9.0) (P=0.017). Rate of ventilator-associated pneumonia (VAP), ICU length of stay, and ICU mortality remained unaffected. In patients with VAP, the median ICU length of stay was reduced by 9 days (P=0.04). Staff training by an ICU change team improved compliance to a pre-defined ventilator bundle. This led to a reduction in the days spent on mechanical ventilation, despite incomplete bundle implementation.

  15. Coexistence of Ureaplasma and chorioamnionitis is associated with prolonged mechanical ventilation.

    Science.gov (United States)

    Jung, Euiseok; Choi, Chang Won; Kim, Su Yeong; Sung, Tae-Jung; Kim, Haeryoung; Park, Kyoung Un; Kim, Han-Suk; Kim, Beyong Il; Choi, Jung-Hwan

    2017-01-01

    Both histologic chorioamnionitis (HCAM) and Ureaplasma infection are considered important contributors to perinatal lung injury. We tested the hypothesis that coexistence of maternal HCAM and perinatal Ureaplasma exposure increases the risk of prolonged mechanical ventilation in extremely low-birthweight (ELBW) infants. A retrospective cohort study was carried out of all ELBW infants born between January 2008 and December 2013 at a single academic center. Placental pathology and gastric fluid Ureaplasma data were available for all infants. Culture and polymerase chain reaction were used to detect Ureaplasma in gastric fluid. Prolonged mechanical ventilation was defined as mechanical ventilation that began within 28 days after birth and continued. Of 111 ELBW infants enrolled, 84 survived beyond 36 weeks of postmenstrual age (PMA) and were included in the analysis. Eighteen infants (21.4%) had both HCAM and Ureaplasma exposure. Seven infants (8.3%) required mechanical ventilation beyond 36 weeks of PMA. Coexistence of HCAM and Ureaplasma in gastric fluid was significantly associated with prolonged mechanical ventilation after adjustment for gestational age, sex, mode of delivery, and use of macrolide antibiotics (OR, 8.7; 95%CI: 1.1-67.2). Coexistence of maternal HCAM and perinatal Ureaplasma exposure significantly increases the risk of prolonged mechanical ventilation in ELBW infants. © 2016 Japan Pediatric Society.

  16. Impact of Prolonged Mechanical Ventilation in Very Low Birth Weight Infants: Results From a National Cohort Study.

    Science.gov (United States)

    Choi, Young-Bin; Lee, Juyoung; Park, Jisun; Jun, Yong Hoon

    2018-03-01

    To evaluate the in-hospital consequences of prolonged respiratory support with invasive mechanical ventilation in very low birth weight infants. A cohort study was performed using prospectively collected data from 69 neonatal intensive care units participating in the Korean national registry. In total, 3508 very low birth weight infants born between January 1, 2013 and December 31, 2014 were reviewed. The adjusted hazard ratio for death increased significantly for infants who received mechanical ventilation for more than 2 weeks compared with those were mechanically ventilated for 7 days or less. The individual mortality rate increased after 8 weeks, reaching 50% and 60% at 14 and 16 weeks of cumulative mechanical ventilation, respectively. After adjusting for potential confounders, the cumulative duration of mechanical ventilation was associated with a clinically significant increase in the odds of bronchopulmonary dysplasia and pulmonary hypertension. Mechanical ventilation exposure for longer than 2 weeks, compared with 7 days or less, was associated with retinopathy of prematurity requiring laser coagulation and periventricular leukomalacia. The odds of abnormal auditory screening test results were significantly increased in infants who needed mechanical ventilation for more than 4 weeks. A longer cumulative duration of mechanical ventilation was associated with increased lengths of hospitalization and parenteral nutrition and a higher probability of discharge with poor achievement of physical growth. Although mechanical ventilation is a life-saving intervention for premature infants, these results indicate that it is associated with negative consequences when applied for prolonged periods. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome.

    Science.gov (United States)

    Zhou, Yongfang; Jin, Xiaodong; Lv, Yinxia; Wang, Peng; Yang, Yunqing; Liang, Guopeng; Wang, Bo; Kang, Yan

    2017-11-01

    Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). A total of 138 patients with ARDS who received mechanical ventilation for mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, P plat , respiratory system compliance, and patient outcomes. Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P mechanical ventilation and ICU stay.

  18. Humidification during mechanical ventilation in the adult patient.

    Science.gov (United States)

    Al Ashry, Haitham S; Modrykamien, Ariel M

    2014-01-01

    Humidification of inhaled gases has been standard of care in mechanical ventilation for a long period of time. More than a century ago, a variety of reports described important airway damage by applying dry gases during artificial ventilation. Consequently, respiratory care providers have been utilizing external humidifiers to compensate for the lack of natural humidification mechanisms when the upper airway is bypassed. Particularly, active and passive humidification devices have rapidly evolved. Sophisticated systems composed of reservoirs, wires, heating devices, and other elements have become part of our usual armamentarium in the intensive care unit. Therefore, basic knowledge of the mechanisms of action of each of these devices, as well as their advantages and disadvantages, becomes a necessity for the respiratory care and intensive care practitioner. In this paper, we review current methods of airway humidification during invasive mechanical ventilation of adult patients. We describe a variety of devices and describe the eventual applications according to specific clinical conditions.

  19. Efficacy of respiratory muscle training in weaning of mechanical ventilation in patients with mechanical ventilation for 48hours or more: A Randomized Controlled Clinical Trial.

    Science.gov (United States)

    Sandoval Moreno, L M; Casas Quiroga, I C; Wilches Luna, E C; García, A F

    2018-02-02

    To evaluate the efficacy of respiratory muscular training in the weaning of mechanical ventilation and respiratory muscle strength in patients on mechanical ventilation of 48hours or more. Randomized controlled trial of parallel groups, double-blind. Ambit: Intensive Care Unit of a IV level clinic in the city of Cali. 126 patients in mechanical ventilation for 48hours or more. The experimental group received daily a respiratory muscle training program with treshold, adjusted to 50% of maximal inspiratory pressure, additional to standard care, conventional received standard care of respiratory physiotherapy. MAIN INTEREST VARIABLES: weaning of mechanical ventilation. Other variables evaluated: respiratory muscle strength, requirement of non-invasive mechanical ventilation and frequency of reintubation. intention-to-treat analysis was performed with all variables evaluated and analysis stratified by sepsis condition. There were no statistically significant differences in the median weaning time of the MV between the groups or in the probability of extubation between groups (HR: 0.82 95% CI: 0.55-1.20 P=.29). The maximum inspiratory pressure was increased in the experimental group on average 9.43 (17.48) cmsH20 and in the conventional 5.92 (11.90) cmsH20 (P=.48). The difference between the means of change in maximal inspiratory pressure was 0.46 (P=.83 95%CI -3.85 to -4.78). respiratory muscle training did not demonstrate efficacy in the reduction of the weaning period of mechanical ventilation nor in the increase of respiratory muscle strength in the study population. Registered study at ClinicalTrials.gov (NCT02469064). Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  20. [Neurally adjusted ventilatory assist (NAVA). A new mode of assisted mechanical ventilation].

    Science.gov (United States)

    Moerer, O; Barwing, J; Quintel, M

    2008-10-01

    The aim of mechanical ventilation is to assure gas exchange while efficiently unloading the respiratory muscles and mechanical ventilation is an integral part of the care of patients with acute respiratory failure. Modern lung protective strategies of mechanical ventilation include low-tidal-volume ventilation and the continuation of spontaneous breathing which has been shown to be beneficial in reducing atelectasis and improving oxygenation. Poor patient-ventilator interaction is a major issue during conventional assisted ventilation. Neurally adjusted ventilator assist (NAVA) is a new mode of mechanical ventilation that uses the electrical activity of the diaphragm (EAdi) to control the ventilator. First experimental studies showed an improved patient-ventilator synchrony and an efficient unloading of the respiratory muscles. Future clinical studies will have to show that NAVA is of clinical advantage when compared to conventional modes of assisted mechanical ventilation. This review characterizes NAVA according to current publications on this topic.

  1. Basement depressurization using dwelling mechanical exhaust ventilation system

    International Nuclear Information System (INIS)

    Collignan, B.; O'Kelly, P.; Pilch, E.

    2004-01-01

    The mechanical ventilation exhaust system is commonly used in France to generate air renewal into building and especially into dwelling. It consists of a permanent mechanical air extraction from technical rooms (kitchen, bathrooms and toilets) using a unique fan connected to exhaust ducts. Natural air inlets in living room and bed rooms ensure an air flow from living spaces towards technical rooms. To fight against radon into building, the most recognised efficient technique is the Soil Depressurization System (S.D.S.) consisting in depressurizing the house basement. The aim of this study is to test the ability of the dwelling mechanical ventilation system to depressurize the basement in conjunction with air renewal of a house. For that purpose, a S.D.S. has been installed in an experimental house at CSTB during its construction. At first, tests undertaken with a variable velocity fan connected to the S.D.S. have characterised the permeability of the basement. It is shown that basement can be depressurized adequately with a relatively low air flow rate. At a second stage, S.D.S. has been connected to the exhaust ventilation fan used for the mechanical ventilation of the house. Results obtained show the ability of such ventilation system to generate sufficient depressurization in the basement and to ensure simultaneously adequate air change rate in the dwelling. (author)

  2. Impact of Different Ventilation Strategies on Driving Pressure, Mechanical Power, and Biological Markers During Open Abdominal Surgery in Rats

    NARCIS (Netherlands)

    Maia, Lígia de A.; Samary, Cynthia S.; Oliveira, Milena V.; Santos, Cintia L.; Huhle, Robert; Capelozzi, Vera L.; Morales, Marcelo M.; Schultz, Marcus J.; Abreu, Marcelo G.; Pelosi, Paolo; Silva, Pedro L.; Rocco, Patricia Rieken Macedo

    2017-01-01

    Intraoperative mechanical ventilation may yield lung injury. To date, there is no consensus regarding the best ventilator strategy for abdominal surgery. We aimed to investigate the impact of the mechanical ventilation strategies used in 2 recent trials (Intraoperative Protective Ventilation

  3. Assessment of factors that influence weaning from long-term mechanical ventilation after cardiac surgery

    Directory of Open Access Journals (Sweden)

    Emília Nozawa

    2003-03-01

    Full Text Available OBJECTIVE: To analyze parameters of respiratory system mechanics and oxygenation and cardiovascular alterations involved in weaning tracheostomized patients from long-term mechanical ventilation after cardiac surgery. METHODS: We studied 45 patients in their postoperative period of cardiac surgery, who required long-term mechanical ventilation for more than 10 days and had to undergo tracheostomy due to unsuccessful weaning from mechanical ventilation. The parameters of respiratory system mechanics, oxigenation and the following factors were analyzed: type of surgical procedure, presence of cardiac dysfunction, time of extracorporeal circulation, and presence of neurologic lesions. RESULTS: Of the 45 patients studied, successful weaning from mechanical ventilation was achieved in 22 patients, while the procedure was unsuccessful in 23 patients. No statistically significant difference was observed between the groups in regard to static pulmonary compliance (p=0.23, airway resistance (p=0.21, and the dead space/tidal volume ratio (p=0.54. No difference was also observed in regard to the variables PaO2/FiO2 ratio (p=0.86, rapid and superficial respiration index (p=0.48, and carbon dioxide arterial pressure (p=0.86. Cardiac dysfunction and time of extracorporeal circulation showed a significant difference. CONCLUSION: Data on respiratory system mechanics and oxygenation were not parameters for assessing the success or failure. Cardiac dysfunction and time of cardiopulmonary bypass, however, significantly interfered with the success in weaning patients from mechanical ventilation.

  4. Closed-loop mechanical ventilation for lung injury: a novel physiological-feedback mode following the principles of the open lung concept.

    Science.gov (United States)

    Schwaiberger, David; Pickerodt, Philipp A; Pomprapa, Anake; Tjarks, Onno; Kork, Felix; Boemke, Willehad; Francis, Roland C E; Leonhardt, Steffen; Lachmann, Burkhard

    2018-06-01

    Adherence to low tidal volume (V T ) ventilation and selected positive end-expiratory pressures are low during mechanical ventilation for treatment of the acute respiratory distress syndrome. Using a pig model of severe lung injury, we tested the feasibility and physiological responses to a novel fully closed-loop mechanical ventilation algorithm based on the "open lung" concept. Lung injury was induced by surfactant washout in pigs (n = 8). Animals were ventilated following the principles of the "open lung approach" (OLA) using a fully closed-loop physiological feedback algorithm for mechanical ventilation. Standard gas exchange, respiratory- and hemodynamic parameters were measured. Electrical impedance tomography was used to quantify regional ventilation distribution during mechanical ventilation. Automatized mechanical ventilation provided strict adherence to low V T -ventilation for 6 h in severely lung injured pigs. Using the "open lung" approach, tidal volume delivery required low lung distending pressures, increased recruitment and ventilation of dorsal lung regions and improved arterial blood oxygenation. Physiological feedback closed-loop mechanical ventilation according to the principles of the open lung concept is feasible and provides low tidal volume ventilation without human intervention. Of importance, the "open lung approach"-ventilation improved gas exchange and reduced lung driving pressures by opening atelectasis and shifting of ventilation to dorsal lung regions.

  5. Newer techniques of mechanical ventilation: an overview.

    Science.gov (United States)

    Donn, Steven M; Sinha, Sunil K

    2002-10-01

    The introduction of newer, state-of-the-art, microprocessor controlled ventilator systems provides clinicians with opportunities to apply a number of advanced ventilatory modalities which were not previously available for treating newborns. Some of these techniques will need further scientific evaluation in controlled trials, but this should not preclude their use in clinical settings, as their safety has already been proved by "standard setters" for use in neonates. There is a firm physiological rationale for their use, and individual centres have already acquired substantial experience in the application of these modalities. The trend towards increasing sophistication and greater versatility is likely to continue, and clinicians involved in the care of sick newborn infants must keep abreast of these developments.

  6. Postoperative Complications Leading to Death after Coagulum Pyelolithotomy in a Tetraplegic Patient: Can We Prevent Prolonged Ileus, Recurrent Intestinal Obstruction due to Adhesions Requiring Laparotomies, Chest Infection Warranting Tracheostomy, and Mechanical Ventilation?

    Directory of Open Access Journals (Sweden)

    Subramanian Vaidyanathan

    2013-01-01

    Full Text Available A 22-year-old male sustained C-6 tetraplegia in 1992. In 1993, intravenous pyelography revealed normal kidneys. Suprapubic cystostomy was performed. He underwent open cystolithotomy in 2004 and 2008. In 2009, computed tomography revealed bilateral renal calculi. Coagulum pyelolithotomy of left kidney was performed. Pleura and peritoneum were opened. Peritoneum could not be closed. Following surgery, he developed pulmonary atelectasis; he required tracheostomy and mechanical ventilation. He did not tolerate nasogastric feeding. CT of abdomen revealed bilateral renal calculi and features of proximal small bowel obstruction. Laparotomy revealed small bowel obstruction due to dense inflammatory adhesions involving multiple small bowel loops which protruded through the defect in sigmoid mesocolon and fixed posteriorly over the area of previous intervention. All adhesions were divided. The wide defect in mesocolon was not closed. In 2010, this patient again developed vomiting and distension of abdomen. Laparotomy revealed multiple adhesions. He developed chest infection and required ventilatory support again. He developed pressure sores and depression. Later abdominal symptoms recurred. This patient’s general condition deteriorated and he expired in 2011. Conclusion. Risk of postoperative complications could have been reduced if minimally invasive surgery had been performed instead of open surgery to remove stones from left kidney. Suprapubic cystostomy predisposed to repeated occurrence of stones in urinary bladder and kidneys. Spinal cord physicians should try to establish intermittent catheterisation regime in tetraplegic patients.

  7. Mechanical ventilation in patients subjected to extracorporeal membrane oxygenation (ECMO).

    Science.gov (United States)

    López Sanchez, M

    2017-11-01

    Mechanical ventilation (MV) is a crucial element in the management of acute respiratory distress syndrome (ARDS), because there is high level evidence that a low tidal volume of 6ml/kg (protective ventilation) improves survival. In these patients with refractory respiratory insufficiency, venovenous extracorporeal membrane oxygenation (ECMO) can be used. This salvage technique improves oxygenation, promotes CO 2 clearance, and facilitates protective and ultraprotective MV, potentially minimizing ventilation-induced lung injury. Although numerous trials have investigated different ventilation strategies in patients with ARDS, consensus is lacking on the optimal MV settings during venovenous ECMO. Although the concept of "lung rest" was introduced years ago, there are no evidence-based guidelines on its use in application to MV in patients supported by ECMO. How MV in ECMO patients can promote lung recovery and weaning from ventilation is not clear. The purpose of this review is to describe the ventilation strategies used during venovenous ECMO in clinical practice. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  8. Acceptance of low-flow mechanical ventilation in dwellings

    International Nuclear Information System (INIS)

    Mueller, V.; Peters, M.; Gubler, M.; Maillard, S.; Keller, L.

    2001-01-01

    This report presents the findings of a survey carried out on the acceptance of 'low-flow mechanical ventilation' (a fan-assisted balanced ventilation with heat recovery) for houses and apartments in Switzerland. The results were obtained on the one hand by reviewing and analysing articles appearing on the subject in the professional and daily press and by telephone interviews with 100 randomly chosen architects and 100 investors in the German and French-speaking parts of Switzerland on the other. These survey participants were asked to express their views on low-flow mechanical ventilation and experience already gained in this area. Further Interviews with tenants, 150 of whom lived in buildings fitted with low-flow mechanical ventilation and 300 in dwellings without this form of ventilation, provided information on the attitude of those directly affected, their satisfaction with the systems or their wishes. The report analyses the results of the surveys and proposes a plan of action to improve information and training for architects, owners and tenants

  9. Prolonged Mechanical Ventilation as a Predictor of Mortality After Cardiac Surgery.

    Science.gov (United States)

    Fernandez-Zamora, Maria Dolores; Gordillo-Brenes, Antonio; Banderas-Bravo, Esther; Arboleda-Sánchez, José Andrés; Hinojosa-Pérez, Rafael; Aguilar-Alonso, Eduardo; Herruzo-Aviles, Ángel; Curiel-Balsera, Emilio; Sánchez-Rodríguez, Ángel; Rivera-Fernández, Ricardo

    2018-05-01

    Mortality among the small percentage of cardiac surgery patients receiving prolonged mechanical ventilation is high, but this issue appears to be inadequately addressed in guidelines. This study is a retrospective analysis of prospective, multi-center, and observational study in Spain including all adults undergoing cardiac surgery in 3 Andalusian hospitals between June 2008 and December 2012. The study included 3,588 adults with mean ± SD age of 63.5 ± 12.8 y and with median (interquartile range) EuroSCORE of 5 (3-7) points. Prolonged mechanical ventilation (> 24 h) was required by 415 subjects (11.6%), with ICU mortality of 44.3% (184 subjects), and was not required by 3,173 subjects (88.4%), with ICU mortality of 3.1% (99 subjects, P mechanical ventilation was associated with more complications and was required by 4.5% of subjects with a EuroSCORE 10. In the multivariable analysis, ICU mortality was associated with illness severity, duration of bypass surgery, surgery type, and prolonged mechanical ventilation (odds ratio 15.19, 95% CI 11.56-22.09). The main cause of death was multiple organ failure and sepsis in subjects who required prolonged mechanical ventilation (50.3%) and cardiogenic shock in those who did not (59.2%). Prolonged postoperative mechanical ventilation was required by 10-20% of cardiac surgery subjects, who constitute a specific group that represents most of the postoperative mortality, which is associated with multiple organ failure and sepsis. Copyright © 2018 by Daedalus Enterprises.

  10. Noninvasive Positive Pressure Ventilation or Conventional Mechanical Ventilation for Neonatal Continuous Positive Airway Pressure Failure

    Directory of Open Access Journals (Sweden)

    Zohreh Badiee

    2014-01-01

    Full Text Available Background: The aim of this study was to assess the success rate of nasal intermittent positive pressure ventilation (NIPPV for treatment of continuous positive airway pressure (CPAP failure and prevention of conventional ventilation (CV in preterm neonates. Methods: Since November 2012 to April 2013, a total number of 55 consecutive newborns with gestational ages of 26-35 weeks who had CPAP failure were randomly assigned to one of the two groups. The NIPPV group received NIPPV with the initial peak inspiratory pressure (PIP of 16-20 cmH 2 O and frequency of 40-60 breaths/min. The CV group received PIP of 12-20 cmH 2 O and frequency of 40-60 breaths/min. Results: About 74% of newborns who received NIPPV for management of CPAP failure responded to NIPPV and did not need intubation and mechanical ventilation. Newborns with lower postnatal age at entry to the study and lower 5 min Apgar score more likely had NIPPV failure. In addition, treatment failure was higher in newborns who needed more frequent doses of surfactant. Duration of oxygen therapy was 9.28 days in CV group and 7.77 days in NIPPV group (P = 0.050. Length of hospital stay in CV group and NIPPV groups were 48.7 and 41.7 days, respectively (P = 0.097. Conclusions: NIPPV could decrease the need for intubation and mechanical ventilation in preterm infants with CPAP failure.

  11. Reduction of duration and cost of mechanical ventilation in an intensive care unit by use of a ventilatory management team.

    Science.gov (United States)

    Cohen, I L; Bari, N; Strosberg, M A; Weinberg, P F; Wacksman, R M; Millstein, B H; Fein, I A

    1991-10-01

    To test the hypothesis that a formal interdisciplinary team approach to managing ICU patients requiring mechanical ventilation enhances ICU efficiency. Retrospective review with cost-effectiveness analysis. A 20-bed medical-surgical ICU in a 450-bed community referral teaching hospital with a critical care fellowship training program. All patients requiring mechanical ventilation in the ICU were included, comparing patients admitted 1 yr before the inception of the ventilatory management team (group 1) with those patients admitted for 1 yr after the inception of the team (group 2). Group 1 included 198 patients with 206 episodes of mechanical ventilation and group 2 included 165 patients with 183 episodes of mechanical ventilation. A team consisting of an ICU attending physician, nurse, and respiratory therapist was formed to conduct rounds regularly and supervise the ventilatory management of ICU patients who were referred to the critical care service. The two study groups were demographically comparable. However, there were significant reductions in resource use in group 2. The number of days on mechanical ventilation decreased (3.9 days per episode of mechanical ventilation [95% confidence interval 0.3 to 7.5 days]), as did days in the ICU (3.3 days per episode of mechanical ventilation [90% confidence interval 0.3 to 6.3 days]), numbers of arterial blood gases (23.2 per episode of mechanical ventilation; p less than .001), and number of indwelling arterial catheters (1 per episode of mechanical ventilation; p less than .001). The estimated cost savings from these reductions was $1,303 per episode of mechanical ventilation. We conclude that a ventilatory management team, or some component thereof, can significantly and safely expedite the process of "weaning" patients from mechanical ventilatory support in the ICU.

  12. Influences of Duration of Inspiratory Effort, Respiratory Mechanics, and Ventilator Type on Asynchrony With Pressure Support and Proportional Assist Ventilation.

    Science.gov (United States)

    Vasconcelos, Renata S; Sales, Raquel P; Melo, Luíz H de P; Marinho, Liégina S; Bastos, Vasco Pd; Nogueira, Andréa da Nc; Ferreira, Juliana C; Holanda, Marcelo A

    2017-05-01

    Pressure support ventilation (PSV) is often associated with patient-ventilator asynchrony. Proportional assist ventilation (PAV) offers inspiratory assistance proportional to patient effort, minimizing patient-ventilator asynchrony. The objective of this study was to evaluate the influence of respiratory mechanics and patient effort on patient-ventilator asynchrony during PSV and PAV plus (PAV+). We used a mechanical lung simulator and studied 3 respiratory mechanics profiles (normal, obstructive, and restrictive), with variations in the duration of inspiratory effort: 0.5, 1.0, 1.5, and 2.0 s. The Auto-Trak system was studied in ventilators when available. Outcome measures included inspiratory trigger delay, expiratory trigger asynchrony, and tidal volume (V T ). Inspiratory trigger delay was greater in the obstructive respiratory mechanics profile and greatest with a effort of 2.0 s (160 ms); cycling asynchrony, particularly delayed cycling, was common in the obstructive profile, whereas the restrictive profile was associated with premature cycling. In comparison with PSV, PAV+ improved patient-ventilator synchrony, with a shorter triggering delay (28 ms vs 116 ms) and no cycling asynchrony in the restrictive profile. V T was lower with PAV+ than with PSV (630 mL vs 837 mL), as it was with the single-limb circuit ventilator (570 mL vs 837 mL). PAV+ mode was associated with longer cycling delays than were the other ventilation modes, especially for the obstructive profile and higher effort values. Auto-Trak eliminated automatic triggering. Mechanical ventilation asynchrony was influenced by effort, respiratory mechanics, ventilator type, and ventilation mode. In PSV mode, delayed cycling was associated with shorter effort in obstructive respiratory mechanics profiles, whereas premature cycling was more common with longer effort and a restrictive profile. PAV+ prevented premature cycling but not delayed cycling, especially in obstructive respiratory mechanics

  13. Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information

    DEFF Research Database (Denmark)

    Aganovic, Amar; Hamon, Mathieu; Kolarik, Jakub

    Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review...... of the existing literature, to establish a link between ventilation rate and key indoor air pollutants. Design characteristics of a mechanical ventilation system such as supply/exhaustairflow, system and design of supply and exhaust outlets were considered. The performance of various ventilation solutionswas......-house ventilation rate was reported below 0.5h-1 or 14 l/s·person in bedrooms, the concentrations of the pollutants elevated above minimum threshold limits (CO2>1350 ppm; TVOC >3000 μg/m3) defined by the standard. Insufficient or non-existent supply of air was related to significantly higher pollutant...

  14. Nonassociative learning promotes respiratory entrainment to mechanical ventilation.

    Directory of Open Access Journals (Sweden)

    Shawna M MacDonald

    Full Text Available BACKGROUND: Patient-ventilator synchrony is a major concern in critical care and is influenced by phasic lung-volume feedback control of the respiratory rhythm. Routine clinical application of positive end-expiratory pressure (PEEP introduces a tonic input which, if unopposed, might disrupt respiratory-ventilator entrainment through sustained activation of the vagally-mediated Hering-Breuer reflex. We suggest that this potential adverse effect may be averted by two differentiator forms of nonassociative learning (habituation and desensitization of the Hering-Breuer reflex via pontomedullary pathways. METHODOLOGY/PRINCIPAL FINDINGS: We tested these hypotheses in 17 urethane-anesthetized adult Sprague-Dawley rats under controlled mechanical ventilation. Without PEEP, phrenic discharge was entrained 1:1 to the ventilator rhythm. Application of PEEP momentarily dampened the entrainment to higher ratios but this effect was gradually adapted by nonassociative learning. Bilateral electrolytic lesions of the pneumotaxic center weakened the adaptation to PEEP, whereas sustained stimulation of the pneumotaxic center weakened the entrainment independent of PEEP. In all cases, entrainment was abolished after vagotomy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate an important functional role for pneumotaxic desensitization and extra-pontine habituation of the Hering-Breuer reflex elicited by lung inflation: acting as buffers or high-pass filters against tonic vagal volume input, these differentiator forms of nonassociative learning help to restore respiratory-ventilator entrainment in the face of PEEP. Such central sites-specific habituation and desensitization of the Hering-Breuer reflex provide a useful experimental model of nonassociative learning in mammals that is of particular significance in understanding respiratory rhythmogenesis and coupled-oscillator entrainment mechanisms, and in the clinical management of mechanical ventilation in

  15. Variable versus conventional lung protective mechanical ventilation during open abdominal surgery: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Spieth, Peter M; Güldner, Andreas; Uhlig, Christopher; Bluth, Thomas; Kiss, Thomas; Schultz, Marcus J; Pelosi, Paolo; Koch, Thea; Gama de Abreu, Marcelo

    2014-05-02

    General anesthesia usually requires mechanical ventilation, which is traditionally accomplished with constant tidal volumes in volume- or pressure-controlled modes. Experimental studies suggest that the use of variable tidal volumes (variable ventilation) recruits lung tissue, improves pulmonary function and reduces systemic inflammatory response. However, it is currently not known whether patients undergoing open abdominal surgery might benefit from intraoperative variable ventilation. The PROtective VARiable ventilation trial ('PROVAR') is a single center, randomized controlled trial enrolling 50 patients who are planning for open abdominal surgery expected to last longer than 3 hours. PROVAR compares conventional (non-variable) lung protective ventilation (CV) with variable lung protective ventilation (VV) regarding pulmonary function and inflammatory response. The primary endpoint of the study is the forced vital capacity on the first postoperative day. Secondary endpoints include further lung function tests, plasma cytokine levels, spatial distribution of ventilation assessed by means of electrical impedance tomography and postoperative pulmonary complications. We hypothesize that VV improves lung function and reduces systemic inflammatory response compared to CV in patients receiving mechanical ventilation during general anesthesia for open abdominal surgery longer than 3 hours. PROVAR is the first randomized controlled trial aiming at intra- and postoperative effects of VV on lung function. This study may help to define the role of VV during general anesthesia requiring mechanical ventilation. Clinicaltrials.gov NCT01683578 (registered on September 3 3012).

  16. Patients' experiences of being mechanically ventilated in an ICU

    DEFF Research Database (Denmark)

    Baumgarten, Mette; Poulsen, Ingrid

    2015-01-01

    and synthesise interpreted knowledge from qualitative studies about Patients' experiences of being mechanically ventilated in an ICU. METHOD: A qualitative metasynthesis was conducted on findings from nine qualitative studies performed in the period from 1994 to 2012. The studies were critically appraised...

  17. Respiratory mechanics in ventilated preterm infants : early determinants and outcome

    NARCIS (Netherlands)

    Snepvangers, Dimphn Adriana Cornelia Maria

    2003-01-01

    The studies in this thesis show that in the current surfactant era, the majority of ventilated preterm infants are still suffering from respiratory morbidity and substantial respiratory function abnormalities throughout the early years of life. Since respiratory function testing during mechanical

  18. Liberation From Mechanical Ventilation in Critically Ill Adults

    DEFF Research Database (Denmark)

    Ouellette, Daniel R; Patel, Sheena; Girard, Timothy D

    2017-01-01

    BACKGROUND: An update of evidence-based guidelines concerning liberation from mechanical ventilation is needed as new evidence has become available. The American College of Chest Physicians (CHEST) and the American Thoracic Society (ATS) have collaborated to provide recommendations to clinicians ...

  19. Liberation From Mechanical Ventilation in Critically Ill Adults

    DEFF Research Database (Denmark)

    Schmidt, Gregory A; Girard, Timothy D; Kress, John P

    2017-01-01

    BACKGROUND: This clinical practice guideline addresses six questions related to liberation from mechanical ventilation in critically ill adults. It is the result of a collaborative effort between the American Thoracic Society (ATS) and the American College of Chest Physicians (CHEST). METHODS: A ...

  20. Mitigation of indoor radon using balanced mechanical ventilation

    International Nuclear Information System (INIS)

    Wellford, B.W.

    1986-01-01

    Previous research has shown that, for a given source strength, the concentration of Rn 222 in the home is inversely proportional to the ventilation rate. Further reductions in the concentration of the decay products of radon can be achieved due to the decrease in residence time of the parent gas as well as increased plate-out of the progeny. Natural and mechanical ventilation can affect the distribution of pressure across the building envelope potentially increasing the flow of radon bearing soil gas into the home gas into the home and/or promoting mixing of areas of higher and lower concentration. Balanced heat recovery ventilation systems were installed in ten homes in the Boyertown, Pennsylvania area. Ventilation was restricted initially to the basement area. Five installations were later modified to introduce supply air to upstairs living spaces while continuing to exhaust from the basement. An independent contractor measured Rn 222 concentrations and decay product activity in the basement and first floor living area before and after installation or modification of the heat recovery ventilation system. Additional experiments to evaluate the effect of house tightening techniques and positive pressurization of the basement were conducted. With balanced ventilation of the basement only, the mean reduction in Working Level was 92.8% with a high of 98% and a low of 76%. Mean reduction of radon gas concentration was 79.1%. When modified to supply air upstairs, mean reduction in Working Level in the living area was 90%. House tightening measures to reduce stack effect were observed to reduce radon concentration. Results indicate that balanced ventilation is an effective strategy for radon mitigation and can be expected to achieve recommended levels in a majority of homes. 9 references, 2 figures, 2 tables

  1. The influence of mechanical ventilation on physiological parameters in ball pythons (Python regius).

    Science.gov (United States)

    Jakobsen, Sashia L; Williams, Catherine J A; Wang, Tobias; Bertelsen, Mads F

    2017-05-01

    Mechanical ventilation is widely recommended for reptiles during anesthesia, and while it is well-known that their low ectothermic metabolism requires much lower ventilation than in mammals, very little is known about the influence of ventilation protocol on the recovery from anesthesia. Here, 15 ball pythons (Python regius) were induced and maintained with isoflurane for 60min at one of three ventilation protocols (30, 125, or 250mlmin -1 kg -1 body mass) while an arterial catheter was inserted, and ventilation was then continued on 100% oxygen at the specified rate until voluntary extubation. Mean arterial blood pressure and heart rate (HR) were measured, and arterial blood samples collected at 60, 80, 180min and 12 and 24h after intubation. In all three groups, there was evidence of a metabolic acidosis, and snakes maintained at 30mlmin -1 kg -1 experienced an additional respiratory acidosis, while the two other ventilation protocols resulted in normal or low arterial PCO 2 . In general, normal acid-base status was restored within 12h in all three protocols. HR increased by 143±64% during anesthesia with high mechanical ventilation (250mlmin -1 kg -1 ) in comparison with recovered values. Recovery times after mechanical ventilation at 30, 125, or 250mlmin -1 kg -1 were 289±70, 126±16, and 68±7min, respectively. Mild overventilation may result in a faster recovery, and the associated lowering of arterial PCO 2 normalised arterial pH in the face of metabolic acidosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  3. Experimental Assessment of Mechanical Night Ventilation on Inner Wall Surfaces

    DEFF Research Database (Denmark)

    Ji, Wenhui; Heiselberg, Per Kvols; Wang, Houhua

    2016-01-01

    The cooling potential of night ventilation largely depends on the heat exchange at the internal room surfaces. During night time, increased heat transfer on a vertical wall is expected due to cool supply air that flows along the internal wall surface from the top of the wall. This paper presents ...... an experimental study of the cooling of wall surfaces in a test room by mechanical night-time ventilation. Significant improvement of indoor thermal environment is presented resulting from the enhanced internal convection heat transfer....

  4. Management of Mechanical Ventilation in Decompensated Heart Failure

    Directory of Open Access Journals (Sweden)

    Brooks T. Kuhn

    2016-12-01

    Full Text Available Mechanical ventilation (MV is a life-saving intervention for respiratory failure, including decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages of positive pressure ventilation must be balanced with potential harm from MV: volutrauma, hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing on practical considerations for management and supporting evidence.

  5. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  6. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position.

    Science.gov (United States)

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation.

  7. Automated Weaning from Mechanical Ventilation after Off-Pump Coronary Artery Bypass Grafting.

    Science.gov (United States)

    Fot, Evgenia V; Izotova, Natalia N; Yudina, Angelika S; Smetkin, Aleksei A; Kuzkov, Vsevolod V; Kirov, Mikhail Y

    2017-01-01

    The discontinuation of mechanical ventilation after coronary surgery may prolong and significantly increase the load on intensive care unit personnel. We hypothesized that automated mode using INTELLiVENT-ASV can decrease duration of postoperative mechanical ventilation, reduce workload on medical staff, and provide safe ventilation after off-pump coronary artery bypass grafting (OPCAB). The primary endpoint of our study was to assess the duration of postoperative mechanical ventilation during different modes of weaning from respiratory support (RS) after OPCAB. The secondary endpoint was to assess safety of the automated weaning mode and the number of manual interventions to the ventilator settings during the weaning process in comparison with the protocolized weaning mode. Forty adult patients undergoing elective OPCAB were enrolled into a prospective single-center study. Patients were randomized into two groups: automated weaning ( n  = 20) using INTELLiVENT-ASV mode with quick-wean option; and protocolized weaning ( n  = 20), using conventional synchronized intermittent mandatory ventilation (SIMV) + pressure support (PS) mode. We assessed the duration of postoperative ventilation, incidence and duration of unacceptable RS, and the load on medical staff. We also performed the retrospective analysis of 102 patients (standard weaning) who were weaned from ventilator with SIMV + PS mode based on physician's experience without prearranged algorithm. Realization of the automated weaning protocol required change in respiratory settings in 2 patients vs. 7 (5-9) adjustments per patient in the protocolized weaning group. Both incidence and duration of unacceptable RS were reduced significantly by means of the automated weaning approach. The FiO 2 during spontaneous breathing trials was significantly lower in the automated weaning group: 30 (30-35) vs. 40 (40-45) % in the protocolized weaning group ( p  ventilation in a more protective way, reduces the

  8. History of mechanical ventilation may affect respiratory mechanics evolution in acute respiratory distress syndrome.

    Science.gov (United States)

    Koutsoukou, Antonia; Perraki, Helen; Orfanos, Stylianos E; Koulouris, Nikolaos G; Tromaropoulos, Andreas; Sotiropoulou, Christina; Roussos, Charis

    2009-12-01

    The aim of this study was to investigate the effect of mechanical ventilation (MV) before acute respiratory distress syndrome (ARDS) on subsequent evolution of respiratory mechanics and blood gases in protectively ventilated patients with ARDS. Nineteen patients with ARDS were stratified into 2 groups according to ARDS onset relative to the onset of MV: In group A (n = 11), MV was applied at the onset of ARDS; in group B (n = 8), MV had been initiated before ARDS. Respiratory mechanics and arterial blood gas were assessed in early (protectively ventilated patients with ARDS, late alteration of respiratory mechanics occurs more commonly in patients who have been ventilated before ARDS onset, suggesting that the history of MV affects the subsequent progress of ARDS even when using protective ventilation.

  9. Evaluation of a computerized system for mechanical ventilation of infants.

    Science.gov (United States)

    Tehrani, Fleur T; Abbasi, Soraya

    2009-04-01

    To evaluate a computerized system for mechanical ventilation of infants. FLEX is a computerized system that includes the features of a patented mode known as adaptive-support ventilation (ASV). In addition, it has many other features including adjustment of positive end-expiratory pressure (PEEP), fraction of inspired oxygen (F(IO2)), minute ventilation, and control of weaning. It is used as an open-loop decision support system or as a closed-loop technique. Blood gas and ventilation data were collected from 12 infants in the neonatal intensive care at baseline and at the next round of evaluation. This data were input to open-loop version of FLEX. The system recommendations were compared to clinical determinations. FLEX recommended values for ventilation were on the average within 25% and 16.5% of the measured values at baseline and at the next round of evaluation, respectively. For F(IO2) and PEEP, FLEX recommended values were in general agreement with the clinical settings. FLEX recommendations for weaning were the same as the clinical determinations 50% of the time at baseline and 55% of the time at the next round of evaluation. FLEX did not recommend weaning for infants with weak spontaneous breathing effort or those who showed signs of dyspnea. A computerized system for mechanical ventilation is evaluated for treatment of infants. The results of the study show that the system has good potential for use in neonatal ventilatory care. Further refinements can be made in the system for very low-birth-weight infants.

  10. Activation of respiratory muscles during weaning from mechanical ventilation.

    Science.gov (United States)

    Walterspacher, Stephan; Gückler, Julia; Pietsch, Fabian; Walker, David Johannes; Kabitz, Hans-Joachim; Dreher, Michael

    2017-04-01

    Respiratory muscle dysfunction is a key component of weaning failure. Balancing respiratory muscle loading and unloading by applying different ventilation modes along with spontaneous breathing episodes are established weaning strategies. However, the effects of body positioning on the respiratory muscles during weaning remains unclear. This study aimed at assessing respiratory drive by surface electromyography (EMG) of the diaphragm (EMG dia ) and parasternal muscles (EMG para ) in tracheotomized patients during prolonged weaning in 3 randomized body positions-supine, 30° semirecumbent, and 80° sitting-during mechanical ventilation and spontaneous breathing. Nine patients were included for analysis. Cardiorespiratory parameters (heart rate, blood pressure, arterial oxygen saturation, dyspnea) did not change under each condition (all P>.05). EMG para and EMG dia did not change under mechanical ventilation (both P>.05). EMG dia changed under spontaneous breathing from supine to sitting (0.45±0.26 vs 0.32±0.19; P=.012) and between semirecumbent to sitting (0.41±0.23 vs 0.32±0.19; P=.039), whereas EMG para did not change. This is the first study to show that body positioning influences respiratory drive to the diaphragm in tracheotomized patients with prolonged weaning from mechanical ventilation during unassisted breathing. Sitting position reduces respiratory drive compared with semirecumbent and supine positioning and might therefore be favored during spontaneous breathing trials. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ventilator assessment of respiratory mechanics in paediatric intensive care

    Science.gov (United States)

    Harikumar, Gopinathannair; Greenough, Anne; Rafferty, Gerrard F

    2009-01-01

    Many modern “paediatric” mechanical ventilators have in-built features for estimation of respiratory mechanics which could be useful in the management of ventilated infants and children. The aim of this study was to determine if such measurements were reproducible and accurate. Ventilator (Draeger Evita 4) displayed compliance (Cvent) and resistance (Rvent) values were assessed and compared to the results of respiratory system mechanics (respiratory system compliance (Crs) and resistance (Rrs)) measurements obtained using a single breath occlusion technique. Seventeen children (median age 5.1; range 0.3 to 16 yrs) were studied on 24 occasions. The mean coefficients of variations for the techniques were similar (Cvent 13%; Crs 11%; Rvent 16%; Rrs 14%). The mean (SD) Crs (22.8 (12.3) ml/cmH2O) did not differ significantly from Cvent (22.1 (12.7) ml/cm H2O) but the mean Rrs 21.0 (12.7) cmH2O/l/sec was significantly higher than the mean Rvent 32.0 (32.0) cmH2O/l/sec (p=0.03). Bland and Altman analysis demonstrated a mean difference of −10.94 cmH2O/l/sec (SD 24.1) between Rrs and Rvent; the agreement between Rrs and Rvent decreased as Rrs increased (p=0.008). Conclusions: Ventilator assessment of compliance, but not resistance, using the Evita 4 is reproducible and reliable. PMID:17394017

  12. Evaluation of the predictors for duration of mechanical ventilation in respiratory intensive care unit

    Directory of Open Access Journals (Sweden)

    Hira H

    2006-01-01

    Full Text Available Background: Mechanical ventilation (MV is a life saving modality. Till no method is evolved to predict the duration of this treatment. This study is undertaken to evaluate the clinical and laboratory parameters at initiation and 48 hour of the patient being treated by mechanical ventilation; and correlate these parameters with the duration of MV required. Methods: It was prospective observational study conducted in the respiratory intensive care unit (RICU of a tertiary referral and teaching hospital. Thirty consecutive patients suffering from various medical diseases requiring MV were the participants. Clinical, laboratory, ventilatory parameters and six severity scores viz.; GCS, APACHE-II, SAPS, OSF, ALI/ARDS and Sepsis/Septic shock criteria of each patient, both at initiation and at 48 hour of MV were recorded. Correlation between various severity scores at initiation and at 48 hour of initiation with duration of mechanical ventilation was computed. Results: Based on the duration of mechanical ventilation required, the patients were divided in two groups. Those requiring mechanical ventilation < 7 days and> 7 days were designated Group I and Group II respectively. Three out of 6 severity scores (GCS, APACHE-II, SAPS recorded at 48 hour of MV showed statistically significant difference between the both groups with p value of 0.010, 0.009 and 0.006 respectively. Further stepwise logistic regression analysis showed that SAPS score at 48 hour of initiation was the best predictor of duration of MV. It was found that a cut off value of 15 for SAPS score at 48 hour might predict the duration of MV i.e. < 7days or> 7 days. Based on linear regression analysis a simple equation was formulated by putting the SAPS value at 48 hour, the value of Y was computed. If MV required was less than 7 days, the value of Y was more than - 0.172 and if need of mechanical ventilation was more than 7 days, Y was less than -0.1720. Conclusions: For patients requiring

  13. Risk factors for endotracheal intubation and mechanical ventilation in patients with opioids intoxication

    International Nuclear Information System (INIS)

    Mirmoghtadaee, P.; Mood, N.E.; Sabzghabaee, A.M.; Yaraghi, A.

    2012-01-01

    Objectives: Patients poisoned with opioids sometimes need endotracheal intubation with or without the use of mechanical ventilation. This study was done to determine the prognostic risk factors for of the need for endotracheal intubation and mechanical ventilation. Methodology: In this cross-sectional study which was performed in Isfahan (Iran), one hundred (n=100) opioid poisoned patients whom their overdoses were diagnosed by their full and reliable history, physical examination and positive response to naloxone; vital signs at the hospital admission, blood biochemistry, ABG details and also the type and estimated dosage of opioid, route of consumption, and their need to mechanical ventilation were evaluated. Results: Patients were mostly aged between 20-40 years old. Seventy nine patients were male and 26 cases (21 men) required endotracheal intubation and 15 cases (14 men) needed both intubation and mechanical ventilation. The most consumed opiates among the poisoned patients were opium (35%), heroin (16%), Tramadol (15%), Methadone (9%), crack (6%), Diphenoxylate (4%) and others (15%). There was a significant difference between the mean heart rates and respiratory rate of the patients who were connected to the ventilator and others (99.8 +- 21.8 and 87.3 +- 16.3; p=0.01). The lower level of consciousness [OR: 2.2 95% Confidence Interval (CI): 1.2-4.2], and lower admission level of hemoglobin (OR: 3.6; CI:1.2-10.8) were among the factors for predicting the need for intubation and ventilation. Conclusion: Determining the risk factors with prognostic value for the need to intubation or ventilation seems to be necessary for improving the standard of therapy in opioids poisoned patients. (author)

  14. Microbial profiling of dental plaque from mechanically ventilated patients.

    Science.gov (United States)

    Sands, Kirsty M; Twigg, Joshua A; Lewis, Michael A O; Wise, Matt P; Marchesi, Julian R; Smith, Ann; Wilson, Melanie J; Williams, David W

    2016-02-01

    Micro-organisms isolated from the oral cavity may translocate to the lower airways during mechanical ventilation (MV) leading to ventilator-associated pneumonia (VAP). Changes within the dental plaque microbiome during MV have been documented previously, primarily using culture-based techniques. The aim of this study was to use community profiling by high throughput sequencing to comprehensively analyse suggested microbial changes within dental plaque during MV. Bacterial 16S rDNA gene sequences were obtained from 38 samples of dental plaque sampled from 13 mechanically ventilated patients and sequenced using the Illumina platform. Sequences were processed using Mothur, applying a 97% gene similarity cut-off for bacterial species level identifications. A significant 'microbial shift' occurred in the microbial community of dental plaque during MV for nine out of 13 patients. Following extubation, or removal of the endotracheal tube that facilitates ventilation, sampling revealed a decrease in the relative abundance of potential respiratory pathogens and a compositional change towards a more predominantly (in terms of abundance) oral microbiota including Prevotella spp., and streptococci. The results highlight the need to better understand microbial shifts in the oral microbiome in the development of strategies to reduce VAP, and may have implications for the development of other forms of pneumonia such as community-acquired infection.

  15. Successful Treatment of Carcinomatous Central Airway Obstruction with Bronchoscopic Electrocautery Using Hot Biopsy Forceps during Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Motoi Ugajin

    2017-01-01

    Full Text Available We report the case of a 72-year-old man with occlusion of the left main bronchus due to squamous cell carcinoma of the lung. He required tracheal intubation and mechanical ventilation because of the aggravation of atelectasis and obstructive pneumonia. Electrocautery using hot biopsy forceps was performed during mechanical ventilation with a 40% fraction of inspired oxygen. He was extubated following improvement in the atelectasis and obstructive pneumonia and discharged with shrinkage of the tumor after chemotherapy. We describe a safe electrocautery procedure using hot biopsy forceps during mechanical ventilation with reference to previous reports.

  16. Tracheostomy and invasive mechanical ventilation in amyotrophic lateral sclerosis: decision-making factors and survival analysis.

    Science.gov (United States)

    Kimura, Fumiharu

    2016-04-28

    Invasive and/or non-invasive mechanical ventilation are most important options of respiratory management in amyotrophic lateral sclerosis. We evaluated the frequency, clinical characteristics, decision-making factors about ventilation and survival analysis of 190 people with amyotrophic lateral sclerosis patients from 1990 until 2013. Thirty-one percentage of patients underwent tracheostomy invasive ventilation with the rate increasing more than the past 20 years. The ratio of tracheostomy invasive ventilation in patients >65 years old was significantly increased after 2000 (25%) as compared to before (10%). After 2010, the standard use of non-invasive ventilation showed a tendency to reduce the frequency of tracheostomy invasive ventilation. Mechanical ventilation prolonged median survival (75 months in tracheostomy invasive ventilation, 43 months in non-invasive ventilation vs natural course, 32 months). The life-extending effects by tracheostomy invasive ventilation were longer in younger patients ≤65 years old at the time of ventilation support than in older patients. Presence of partners and care at home were associated with better survival. Following factors related to the decision to perform tracheostomy invasive ventilation: patients ≤65 years old: greater use of non-invasive ventilation: presence of a spouse: faster tracheostomy: higher progression rate; and preserved motor functions. No patients who underwent tracheostomy invasive ventilation died from a decision to withdraw mechanical ventilation. The present study provides factors related to decision-making process and survival after tracheostomy and help clinicians and family members to expand the knowledge about ventilation.

  17. Clonidine for sedation and analgesia for neonates receiving mechanical ventilation.

    Science.gov (United States)

    Romantsik, Olga; Calevo, Maria Grazia; Norman, Elisabeth; Bruschettini, Matteo

    2017-05-10

    Although routine administration of pharmacologic sedation or analgesia during mechanical ventilation in preterm neonates is not recommended, its use in clinical practice remains common. Alpha-2 agonists, mainly clonidine and dexmedetomidine, are used as adjunctive (or alternative) sedative agents alongside opioids and benzodiazepines. Clonidine has not been systematically assessed for use in neonatal sedation during ventilation. To assess whether clonidine administered to term and preterm newborn infants receiving mechanical ventilation reduces morbidity and mortality rates. To compare the intervention versus placebo, no treatment, and dexmedetomidine; and to assess the safety of clonidine infusion for potential harms.To perform subgroup analyses according to gestational age; birth weight; administration method (infusion or bolus therapy); dose, duration, and route of clonidine administration; and pharmacologic sedation as a co-intervention. We used the standard search strategy of the Cochrane Neonatal Review Group to search the Cochrane Central Register of Controlled Trials (CENTRAL; 2016, Issue 12) in the Cochrane Library, MEDLINE via PubMed (1966 to January 10, 2017), Embase (1980 to January 10, 2017), and the Cumulative Index to Nursing and Allied Health Literature (CINAHL; 1982 to January 10, 2017). We also searched clinical trials databases, conference proceedings, and the reference lists of retrieved articles for randomized controlled trials and quasi-randomized trials. We searched for randomized controlled trials, quasi-randomized controlled trials, and cluster trials comparing clonidine versus placebo, no treatment, or dexmedetomidine administered to term and preterm newborns receiving mechanical ventilation via an endotracheal tube. For the included trial, two review authors independently extracted data (e.g. number of participants, birth weight, gestational age, all-cause death during initial hospitalization, duration of respiratory support, sedation

  18. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure

    Directory of Open Access Journals (Sweden)

    Zhongheng Zhang

    2017-01-01

    Full Text Available Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.

  19. Mechanical Ventilation during Extracorporeal Membrane Oxygenation in Patients with Acute Severe Respiratory Failure.

    Science.gov (United States)

    Zhang, Zhongheng; Gu, Wan-Jie; Chen, Kun; Ni, Hongying

    2017-01-01

    Conventionally, a substantial number of patients with acute respiratory failure require mechanical ventilation (MV) to avert catastrophe of hypoxemia and hypercapnia. However, mechanical ventilation per se can cause lung injury, accelerating the disease progression. Extracorporeal membrane oxygenation (ECMO) provides an alternative to rescue patients with severe respiratory failure that conventional mechanical ventilation fails to maintain adequate gas exchange. The physiology behind ECMO and its interaction with MV were reviewed. Next, we discussed the timing of ECMO initiation based on the risks and benefits of ECMO. During the running of ECMO, the protective ventilation strategy can be employed without worrying about catastrophic hypoxemia and carbon dioxide retention. There is a large body of evidence showing that protective ventilation with low tidal volume, high positive end-expiratory pressure, and prone positioning can provide benefits on mortality outcome. More recently, there is an increasing popularity on the use of awake and spontaneous breathing for patients undergoing ECMO, which is thought to be beneficial in terms of rehabilitation.

  20. High-frequency oscillatory ventilation is not superior to conventional mechanical ventilation in surfactant-treated rabbits with lung injury

    NARCIS (Netherlands)

    D.A.M.P.J. Gommers (Diederik); A. Hartog (Anneke); R. Schnabel; A. de Jaegere (Anne); B.F. Lachmann (Burkhard)

    1999-01-01

    textabstractThe aim of this study was to compare high-frequency oscillatory ventilation (HFOV) with conventional mechanical ventilation (CMV) with and without surfactant in the treatment of surfactant-deficient rabbits. A previously described saline lung lavage model of

  1. A Case of Shunting Postoperative Patent Foramen Ovale Under Mechanical Ventilation Controlled by Different Ventilator Settings.

    Science.gov (United States)

    Pragliola, Claudio; Di Michele, Sara; Galzerano, Domenico

    2017-06-07

    A 56-year old male with ischemic heart disease and an unremarkable preoperative echocardiogram underwent surgical coronary revascularization. An intraoperative post pump trans-esophageal echocardiogram (TOE) performed while the patient was being ventilated at a positive end expiratory pressure (PEEP) of 8 cm H 2 O demonstrated a right to left interatrial shunt across a patent foramen ovale (PFO). Whereas oxygen saturation was normal, a reduction of the PEEP to 3 cm H 2 O led to the complete resolution of the shunt with no change in arterial blood gases. Attempts to increase the PEEP level above 3 mmHg resulted in recurrence of the interatrial shunt. The remaining of the TEE was unremarkable. Mechanical ventilation, particularly with PEEP, causes an increase in intrathoracic pressure. The resulting rise in right atrial pressure, mostly during inspiration, may unveil and pop open an unrecognized PFO, thus provoking a right to left shunt across a seemingly intact interatrial septum. This phenomenon increases the risk of paradoxical embolism and can lead to hypoxemia. The immediate management would be to adjust the ventilatory settings to a lower PEEP level. A routine search for a PFO should be performed in ventilated patients who undergo a TEE.

  2. A case of shunting postoperative patent foramen ovale under mechanical ventilation controlled by different ventilator settings

    Directory of Open Access Journals (Sweden)

    Claudio Pragliola

    2017-08-01

    Full Text Available A 56-year old male with ischemic heart disease and an unremarkable preoperative echocardiogram underwent surgical coronary revascularization. An intraoperative post pump trans-esophageal echocardiogram (TOE performed while the patient was being ventilated at a positive end expiratory pressure (PEEP of 8 cm H2O demonstrated a right to left interatrial shunt across a patent foramen ovale (PFO. Whereas oxygen saturation was normal, a reduction of the PEEP to 3 cm H2O led to the complete resolution of the shunt with no change in arterial blood gases. Attempts to increase the PEEP level above 3 mmHg resulted in recurrence of the interatrial shunt. The remaining of the TEE was unremarkable. Mechanical ventilation, particularly with PEEP, causes an increase in intrathoracic pressure. The resulting rise in right atrial pressure, mostly during inspiration, may unveil and pop open an unrecognized PFO, thus provoking a right to left shunt across a seemingly intact interatrial septum. This phenomenon increases the risk of paradoxical embolism and can lead to hypoxemia. The immediate management would be to adjust the ventilatory settings to a lower PEEP level. A routine search for a PFO should be performed in ventilated patients who undergo a TEE.

  3. NanoClusters Enhance Drug Delivery in Mechanical Ventilation

    Science.gov (United States)

    Pornputtapitak, Warangkana

    The overall goal of this thesis was to develop a dry powder delivery system for patients on mechanical ventilation. The studies were divided into two parts: the formulation development and the device design. The pulmonary system is an attractive route for drug delivery since the lungs have a large accessible surface area for treatment or drug absorption. For ventilated patients, inhaled drugs have to successfully navigate ventilator tubing and an endotracheal tube. Agglomerates of drug nanoparticles (also known as 'NanoClusters') are fine dry powder aerosols that were hypothesized to enable drug delivery through ventilator circuits. This Thesis systematically investigated formulations of NanoClusters and their aerosol performance in a conventional inhaler and a device designed for use during mechanical ventilation. These engineered powders of budesonide (NC-Bud) were delivered via a MonodoseRTM inhaler or a novel device through commercial endotracheal tubes, and analyzed by cascade impaction. NC-Bud had a higher efficiency of aerosol delivery compared to micronized stock budesonide. The delivery efficiency was independent of ventilator parameters such as inspiration patterns, inspiration volumes, and inspiration flow rates. A novel device designed to fit directly to the ventilator and endotracheal tubing connections and the MonodoseRTM inhaler showed the same efficiency of drug delivery. The new device combined with NanoCluster formulation technology, therefore, allowed convenient and efficient drug delivery through endotracheal tubes. Furthermore, itraconazole (ITZ), a triazole antifungal agent, was formulated as a NanoCluster powder via milling (top-down process) or precipitation (bottom-up process) without using any excipients. ITZ NanoClusters prepared by wet milling showed better aerosol performance compared to micronized stock ITZ and ITZ NanoClusters prepared by precipitation. ITZ NanoClusters prepared by precipitation methods also showed an amorphous state

  4. Postoperative Pulmonary Dysfunction and Mechanical Ventilation in Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Rafael Badenes

    2015-01-01

    Full Text Available Postoperative pulmonary dysfunction (PPD is a frequent and significant complication after cardiac surgery. It contributes to morbidity and mortality and increases hospitalization stay and its associated costs. Its pathogenesis is not clear but it seems to be related to the development of a systemic inflammatory response with a subsequent pulmonary inflammation. Many factors have been described to contribute to this inflammatory response, including surgical procedure with sternotomy incision, effects of general anesthesia, topical cooling, and extracorporeal circulation (ECC and mechanical ventilation (VM. Protective ventilation strategies can reduce the incidence of atelectasis (which still remains one of the principal causes of PDD and pulmonary infections in surgical patients. In this way, the open lung approach (OLA, a protective ventilation strategy, has demonstrated attenuating the inflammatory response and improving gas exchange parameters and postoperative pulmonary functions with a better residual functional capacity (FRC when compared with a conventional ventilatory strategy. Additionally, maintaining low frequency ventilation during ECC was shown to decrease the incidence of PDD after cardiac surgery, preserving lung function.

  5. Nebulized antibiotics in mechanically ventilated patients: roadmap and challenges.

    Science.gov (United States)

    Poulakou, G; Siakallis, G; Tsiodras, S; Arfaras-Melainis, A; Dimopoulos, G

    2017-03-01

    Nebulized antibiotics use has become common practice in the therapeutics of pneumonia in cystic fibrosis patients. There is an increasing interest in their use for respiratory infections in mechanically ventilated (MV) patients in order to a) overcome pharmacokinetic issues in the lung compartment with traditional systemic antibiotic use and b) prevent the emergence of multi-drug-resistant (MDR) pathogens. Areas covered: The beneficial effects of antibiotic nebulization in MV patients e.g. increasing efficacy, reduced toxicity and prevention of resistance are described. Physicochemical parameters of optimal lung deposition, characteristics of currently available nebulizers, practical aspects of the procedure, including drug preparation and adjustments of ventilator and circuit parameter are presented. Antibiotics used in nebulized route, along with efficacy in various clinical indications and safety issues are reviewed. Expert commentary: The safety of nebulization of antibiotics has been proven in numerous studies; efficacy as adjunctive treatment to intravenous regimens or as monotherapy has been demonstrated in ventilator-associated pneumonia or ventilator-associated tracheobronchitis due to MDR or susceptible pathogens. However, due to the heterogeneity of studies, multiple meta-analyses fail to demonstrate a clear effect. Clarification of indications, standardization of technique and implementation of clinical practice guidelines, based on new large-scale trials will lead to the optimal use of nebulized antibiotics.

  6. Ventilation area measured with eit in order to optimize peep settings in mechanically ventilated patients

    NARCIS (Netherlands)

    Blankman, P; Groot Jebbink, E; Preis, C; Bikker, I.; Gommers, D.

    2012-01-01

    INTRODUCTION. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique, which can be used to visualize ventilation. Ventilation will be measured by impedance changes due to ventilation. OBJECTIVES. The aim of this study was to optimize PEEP settings based on the ventilation area of

  7. Inspired gas humidity and temperature during mechanical ventilation with the Stephanie ventilator.

    Science.gov (United States)

    Preo, Bianca L; Shadbolt, Bruce; Todd, David A

    2013-11-01

    To measure inspired gas humidity and temperature delivered by a Stephanie neonatal ventilator with variations in (i) circuit length; (ii) circuit insulation; (iii) proximal airway temperature probe (pATP) position; (iv) inspiratory temperature (offset); and (v) incubator temperatures. Using the Stephanie neonatal ventilator, inspired gas humidity and temperature were measured during mechanical ventilation at the distal inspiratory limb and 3 cm down the endotracheal tube. Measurements were made with a long or short circuit; with or without insulation of the inspiratory limb; proximal ATP (pATP) either within or external to the incubator; at two different inspiratory temperature (offset) of 37(-0.5) and 39(-2.0)°C; and at three different incubator temperatures of 32, 34.5, and 37°C. Long circuits produced significantly higher inspired humidity than short circuits at all incubator settings, while only at 32°C was the inspired temperature higher. In the long circuits, insulation further improved the inspired humidity especially at 39(-2.0)°C, while only at incubator temperatures of 32 and 37°C did insulation significantly improve inspired temperature. Positioning the pATP outside the incubator did not result in higher inspired humidity but did significantly improve inspired temperature. An inspiratory temperature (offset) of 39(-2.0)°C delivered significantly higher inspired humidity and temperature than the 37(-0.5)°C especially when insulated. Long insulated Stephanie circuits should be used for neonatal ventilation when the infant is nursed in an incubator. The recommended inspiratory temperature (offset) of 37(-0.5)°C produced inspired humidity and temperature below international standards, and we suggest an increase to 39(-2.0)°C. © 2013 John Wiley & Sons Ltd.

  8. Spontaneous blood pressure oscillations in mechanically ventilated patients with sepsis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Plovsing, Ronni R; Greve, Anders M

    2016-01-01

    OBJECTIVE: In the present hypothesis-generating study, we investigated whether spontaneous blood pressure oscillations are suppressed to lower frequencies, and whether abolished oscillations are associated with an adverse outcome in mechanically ventilated patients with sepsis. METHODS: We...... retrospectively subjected invasive steady-state blood pressure recordings from 65 mechanically ventilated patients with sepsis to spectral analysis. Modified spectral bands were visually identified by plotting spectral power against frequency. RESULTS: Modified middle-frequency and low-frequency (MF' and LF......') oscillations were absent in 9% and 22% of the patients, respectively. In patients in whom spontaneous blood pressure oscillations were preserved, the MF' oscillations occurred at 0.021 Hz (median, interquartile range 0.013-0.030), whereas the LF' oscillations occurred at 0.009 Hz (median, interquartile range 0...

  9. Airway Humidification Reduces the Inflammatory Response During Mechanical Ventilation.

    Science.gov (United States)

    Jiang, Min; Song, Jun-Jie; Guo, Xiao-Li; Tang, Yong-Lin; Li, Hai-Bo

    2015-12-01

    Currently, no clinical or animal studies have been performed to establish the relationship between airway humidification and mechanical ventilation-induced lung inflammatory responses. Therefore, an animal model was established to better define this relationship. Rabbits (n = 40) were randomly divided into 6 groups: control animals, sacrificed immediately after anesthesia (n = 2); dry gas group animals, subjected to mechanical ventilation for 8 h without humidification (n = 6); and experimental animals, subjected to mechanical ventilation for 8 h under humidification at 30, 35, 40, and 45°C, respectively (n = 8). Inflammatory cytokines in the bronchi alveolar lavage fluid (BALF) were measured. The integrity of the airway cilia and the tracheal epithelium was examined by scanning and transmission electron microscopy, respectively. Peripheral blood white blood cell counts and the wet to dry ratio and lung pathology were determined. Dry gas group animals showed increased tumor necrosis factor alpha levels in BALF compared with control animals (P humidification temperature was increased to 40°C. Scanning and transmission electron microscopy analysis revealed that cilia integrity was maintained in the 40°C groups. Peripheral white blood cell counts were not different among those groups. Compared with control animals, the wet to dry ratio was significantly elevated in the dry gas group (P humidification at 40°C resulted in reduced pathologic injury compared with the other groups based on the histologic score. Pathology and reduced inflammation observed in animals treated at 40°C was similar to that observed in the control animals, suggesting that appropriate humidification reduced inflammatory responses elicited as a consequence of mechanical ventilation, in addition to reducing damage to the cilia and reducing water loss in the airway. Copyright © 2015 by Daedalus Enterprises.

  10. Comparison of Active and Passive Humidifiers on Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    H. Dilek Mersin Özcanoğlu

    2010-12-01

    Full Text Available Objective: To research the effectiveness on humidifying, respiratory mechanics, bacterial colonization and infection rates of continuous usage for 96 hours of active and passive humidifiers which are used for heating and moisturizing the inspired gases in patients under mechanical ventilation. Materials and Methods: Adult patients who are expected to support at least 4 days under mechanical ventilation, excluding patients with primary lung disease and sepsis, are included in the research. Patients are separated in two groups as a passive humidifier group (heat moisture exchange filter (n=16 and an active humidifier group (n=14. In passive humidifier group, humidifier is used continuously for 96 hours without change. In active humidifier group moisturizing is obtained by using sterile distilled water in heated humidifier. Patients whose demographic characteristics were recorded and first 24 hour APACHE II scores were calculated, were taking chest X-Ray’s daily. Respiratory mechanics measurements were recorded twice a day which were watched in Servo300A ventilators respiratory mechanics monitor, in patients under volume controlled ventilation. The amount of moisture and liquidity of the secretion in endotracheal tube were recorded and scored visually. The endotracheal aspiration samples at the beginning and at the end of 96th hour and respiratory circuits ventilator side sample taken at 96th hour were studied microbiologically. Cultures and colonial counts were studied at Cerrahpasa Medical Faculty Microbiology Laboratory. Results: There were no significant difference in two groups by demographic data, APACHE II scores and illness diagnoses. In passive humidifier group, respiratory mechanics showed no significant difference between the beginning and the 4th day (p>0.05. In active humidifier group when MAP, PEEPtot, EEF, Rins, Rexp values showed no significant difference between the beginning and the 4th day but PIP values showed significant

  11. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation.

    Science.gov (United States)

    Cortjens, Bart; Royakkers, Annick A N M; Determann, Rogier M; van Suijlen, Jeroen D E; Kamphuis, Stephan S; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W; Spronk, Peter E; Schultz, Marcus J; Bouman, Catherine S C

    2012-06-01

    Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. To determine whether ventilator settings in critically ill patients without acute lung injury (ALI) at onset of mechanical ventilation affect the development of AKI. Secondary analysis of a randomized controlled trial (N = 150), comparing conventional tidal volume (V(T), 10 mL/kg) with low tidal volume (V(T), 6 mL/kg) mechanical ventilation in critically ill patients without ALI at randomization. During the first 5 days of mechanical ventilation, the RIFLE class was determined daily, whereas neutrophil gelatinase-associated lipocalin and cystatin C levels were measured in plasma collected on days 0, 2, and 4. Eighty-six patients had no AKI at inclusion, and 18 patients (21%) subsequently developed AKI, but without significant difference between ventilation strategies. (Cumulative hazard, 0.26 vs 0.23; P = .88.) The courses of neutrophil gelatinase-associated lipocalin and cystatin C plasma levels did not differ significantly between randomization groups. In the present study in critically patients without ALI at onset of mechanical ventilation, lower tidal volume ventilation did not reduce the development or worsening of AKI compared with conventional tidal volume ventilation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Low tidal volume ventilation ameliorates left ventricular dysfunction in mechanically ventilated rats following LPS-induced lung injury.

    Science.gov (United States)

    Cherpanath, Thomas G V; Smeding, Lonneke; Hirsch, Alexander; Lagrand, Wim K; Schultz, Marcus J; Groeneveld, A B Johan

    2015-10-07

    High tidal volume ventilation has shown to cause ventilator-induced lung injury (VILI), possibly contributing to concomitant extrapulmonary organ dysfunction. The present study examined whether left ventricular (LV) function is dependent on tidal volume size and whether this effect is augmented during lipopolysaccharide(LPS)-induced lung injury. Twenty male Wistar rats were sedated, paralyzed and then randomized in four groups receiving mechanical ventilation with tidal volumes of 6 ml/kg or 19 ml/kg with or without intrapulmonary administration of LPS. A conductance catheter was placed in the left ventricle to generate pressure-volume loops, which were also obtained within a few seconds of vena cava occlusion to obtain relatively load-independent LV systolic and diastolic function parameters. The end-systolic elastance / effective arterial elastance (Ees/Ea) ratio was used as the primary parameter of LV systolic function with the end-diastolic elastance (Eed) as primary LV diastolic function. Ees/Ea decreased over time in rats receiving LPS (p = 0.045) and high tidal volume ventilation (p = 0.007), with a lower Ees/Ea in the rats with high tidal volume ventilation plus LPS compared to the other groups (p tidal volume ventilation without LPS (p = 0.223). A significant interaction (p tidal ventilation and LPS for Ees/Ea and Eed, and all rats receiving high tidal volume ventilation plus LPS died before the end of the experiment. Low tidal volume ventilation ameliorated LV systolic and diastolic dysfunction while preventing death following LPS-induced lung injury in mechanically ventilated rats. Our data advocates the use of low tidal volumes, not only to avoid VILI, but to avert ventilator-induced myocardial dysfunction as well.

  13. Multicenter Evaluation of a Novel Surveillance Paradigm for Complications of Mechanical Ventilation

    Science.gov (United States)

    Klompas, Michael; Khan, Yosef; Kleinman, Kenneth; Evans, R. Scott; Lloyd, James F.; Stevenson, Kurt; Samore, Matthew; Platt, Richard

    2011-01-01

    Background Ventilator-associated pneumonia (VAP) surveillance is time consuming, subjective, inaccurate, and inconsistently predicts outcomes. Shifting surveillance from pneumonia in particular to complications in general might circumvent the VAP definition's subjectivity and inaccuracy, facilitate electronic assessment, make interfacility comparisons more meaningful, and encourage broader prevention strategies. We therefore evaluated a novel surveillance paradigm for ventilator-associated complications (VAC) defined by sustained increases in patients' ventilator settings after a period of stable or decreasing support. Methods We assessed 600 mechanically ventilated medical and surgical patients from three hospitals. Each hospital contributed 100 randomly selected patients ventilated 2–7 days and 100 patients ventilated >7 days. All patients were independently assessed for VAP and for VAC. We compared incidence-density, duration of mechanical ventilation, intensive care and hospital lengths of stay, hospital mortality, and time required for surveillance for VAP and for VAC. A subset of patients with VAP and VAC were independently reviewed by a physician to determine possible etiology. Results Of 597 evaluable patients, 9.3% had VAP (8.8 per 1,000 ventilator days) and 23% had VAC (21.2 per 1,000 ventilator days). Compared to matched controls, both VAP and VAC prolonged days to extubation (5.8, 95% CI 4.2–8.0 and 6.0, 95% CI 5.1–7.1 respectively), days to intensive care discharge (5.7, 95% CI 4.2–7.7 and 5.0, 95% CI 4.1–5.9), and days to hospital discharge (4.7, 95% CI 2.6–7.5 and 3.0, 95% CI 2.1–4.0). VAC was associated with increased mortality (OR 2.0, 95% CI 1.3–3.2) but VAP was not (OR 1.1, 95% CI 0.5–2.4). VAC assessment was faster (mean 1.8 versus 39 minutes per patient). Both VAP and VAC events were predominantly attributable to pneumonia, pulmonary edema, ARDS, and atelectasis. Conclusions Screening ventilator settings for VAC captures a

  14. Performance of mechanical ventilators at the patient's home: a multicentre quality control study.

    Science.gov (United States)

    Farré, R; Navajas, D; Prats, E; Marti, S; Guell, R; Montserrat, J M; Tebe, C; Escarrabill, J

    2006-05-01

    Quality control procedures vary considerably among the providers of equipment for home mechanical ventilation (HMV). A multicentre quality control survey of HMV was performed at the home of 300 patients included in the HMV programmes of four hospitals in Barcelona. It consisted of three steps: (1) the prescribed ventilation settings, the actual settings in the ventilator control panel, and the actual performance of the ventilator measured at home were compared; (2) the different ventilator alarms were tested; and (3) the effect of differences between the prescribed settings and the actual performance of the ventilator on non-programmed readmissions of the patient was determined. Considerable differences were found between actual, set, and prescribed values of ventilator variables; these differences were similar in volume and pressure preset ventilators. The percentage of patients with a discrepancy between the prescribed and actual measured main ventilator variable (minute ventilation or inspiratory pressure) of more than 20% and 30% was 13% and 4%, respectively. The number of ventilators with built in alarms for power off, disconnection, or obstruction was 225, 280 and 157, respectively. These alarms did not work in two (0.9%), 52 (18.6%) and eight (5.1%) ventilators, respectively. The number of non-programmed hospital readmissions in the year before the study did not correlate with the index of ventilator error. This study illustrates the current limitations of the quality control of HMV and suggests that improvements should be made to ensure adequate ventilator settings and correct ventilator performance and ventilator alarm operation.

  15. The impacts of balanced and exhaust mechanical ventilation on indoor radon

    International Nuclear Information System (INIS)

    Fisk, W.J.; Mowris, R.J.

    1987-02-01

    Models for estimating radon entry rates, indoor radon concentrations, and ventilation rates in houses with a basement or a vented crawl-space and ventilated by natural infiltration, mechanical exhaust ventilation, or balanced mechanical ventilation are described. Simulations are performed for a range of soil and housing characteristics using hourly weather data for the heating season in Spokane, WA. For a house with a basement, we show that any ventilation technique should be acceptable when the soil permeability is less than approximately 10 -12 m 2 . However, exhaust ventilation leads to substantially higher indoor radon concentrations than infiltration or balanced ventilation with the same average air exchange rate when the soil permeability is 10 -10 m 2 or greater. For houses with a crawl-space, indoor radon concentrations are lowest with balanced ventilation, intermediate with exhaust ventilation, and highest with infiltration

  16. Spatial distribution of sequential ventilation during mechanical ventilation of the uninjured lung: an argument for cyclical airway collapse and expansion

    Directory of Open Access Journals (Sweden)

    Altemeier William A

    2010-05-01

    Full Text Available Abstract Background Ventilator-induced lung injury (VILI is a recognized complication of mechanical ventilation. Although the specific mechanism by which mechanical ventilation causes lung injury remains an active area of study, the application of positive end expiratory pressure (PEEP reduces its severity. We have previously reported that VILI is spatially heterogeneous with the most severe injury in the dorsal-caudal lung. This regional injury heterogeneity was abolished by the application of PEEP = 8 cm H2O. We hypothesized that the spatial distribution of lung injury correlates with areas in which cyclical airway collapse and recruitment occurs. Methods To test this hypothesis, rabbits were mechanically ventilated in the supine posture, and regional ventilation distribution was measured under four conditions: tidal volumes (VT of 6 and 12 ml/kg with PEEP levels of 0 and 8 cm H2O. Results We found that relative ventilation was sequentially redistributed towards dorsal-caudal lung with increasing tidal volume. This sequential ventilation redistribution was abolished with the addition of PEEP. Conclusions These results suggest that cyclical airway collapse and recruitment is regionally heterogeneous and spatially correlated with areas most susceptible to VILI.

  17. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function

    NARCIS (Netherlands)

    Severgnini, Paolo; Selmo, Gabriele; Lanza, Christian; Chiesa, Alessandro; Frigerio, Alice; Bacuzzi, Alessandro; Dionigi, Gianlorenzo; Novario, Raffaele; Gregoretti, Cesare; de Abreu, Marcelo Gama; Schultz, Marcus J.; Jaber, Samir; Futier, Emmanuel; Chiaranda, Maurizio; Pelosi, Paolo

    2013-01-01

    The impact of intraoperative ventilation on postoperative pulmonary complications is not defined. The authors aimed at determining the effectiveness of protective mechanical ventilation during open abdominal surgery on a modified Clinical Pulmonary Infection Score as primary outcome and

  18. Automatic control of arterial carbon dioxide tension in mechanically ventilated patients.

    Science.gov (United States)

    Fernando, Tyrone; Cade, John; Packer, John

    2002-12-01

    This paper presents a method of controlling the arterial carbon dioxide tension of patients receiving mechanical ventilation. Controlling of the CO2 tension is achieved by regulating the ventilator initiated breath frequency and also volume per breath.

  19. Numerical simulation of volume-controlled mechanical ventilated respiratory system with 2 different lungs.

    Science.gov (United States)

    Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas

    2017-09-01

    Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    Science.gov (United States)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  1. [Difficult Ventilation Requiring Emergency Endotracheal Intubation during Awake Craniotomy Managed by Laryngeal Mask Airway].

    Science.gov (United States)

    Matsuda, Asako; Mizota, Toshiyuki; Tanaka, Tomoharu; Segawa, Hajime; Fukuda, Kazuhiko

    2016-04-01

    We report a case of difficult ventilation requiring emergency endotracheal intubation during awake craniotomy managed by laryngeal mask airway (LMA). A 45-year-old woman was scheduled to receive awake craniotomy for brain tumor in the frontal lobe. After anesthetic induction, airway was secured using ProSeal LMA and patient was mechanically ventilated in pressure-control mode. Patient's head was fixed with head-pins at anteflex position, and the operation started. About one hour after the start of the operation, tidal volume suddenly decreased. We immediately started manual ventilation, but the airway resistance was extremely high and we could not adequately ventilate the patient. We administered muscle relaxant for suspected laryngospasm, but ventilatory status did not improve; so we decided to conduct emergency endotracheal intubation. We tried to intubate using Airwayscope or LMA-Fastrach, but they were not effective in our case. Finally trachea was intubated using transnasal fiberoptic bronchoscopy. We discuss airway management during awake craniotomy, focusing on emergency endotracheal intubation during surgery.

  2. Mechanical obstruction to ventilation from an ovarian cyst during pregnancy.

    Science.gov (United States)

    Beng, D T; Choon, L T

    1991-05-01

    This report documents the danger of the gravid uterus fixing a large ovarian cyst in a position disadvantageous to diaphragmatic excursion and thereby obstructing ventilation. A 34-year-old pregnant patient presented at 18 weeks amenorrhoea with a large ovarian cyst. She gave a history of exertional dyspnoea and orthopnoea. Clinical examination revealed a grossly enlarged abdomen and a respiratory rate of 28 breaths.min-1. Intraoperatively, ventilation was markedly impaired resulting in cyanosis and bradycardia. This was relieved by drainage of the ovarian cyst. A left lateral tilt with manual traction on the tumour may have avoided this problem. Should the above measures be inadequate, immediate drainage of the cyst is essential. Severe respiratory distress may require ultrasound-guided, percutaneous, aspiration of the cyst preoperatively. However, as in this patient, the absence of gross signs of respiratory failure does not preclude acute ventilatory failure after induction of anaesthesia.

  3. Key considerations on nebulization of antimicrobial agents to mechanically ventilated patients.

    Science.gov (United States)

    Rello, J; Rouby, J J; Sole-Lleonart, C; Chastre, J; Blot, S; Luyt, C E; Riera, J; Vos, M C; Monsel, A; Dhanani, J; Roberts, J A

    2017-09-01

    Nebulized antibiotics have an established role in patients with cystic fibrosis or bronchiectasis. Their potential benefit to treat respiratory infections in mechanically ventilated patients is receiving increasing interest. In this consensus statement of the European Society of Clinical Microbiology and Infectious Diseases, the body of evidence of the therapeutic utility of aerosolized antibiotics in mechanically ventilated patients was reviewed and resulted in the following recommendations: Vibrating-mesh nebulizers should be preferred to jet or ultrasonic nebulizers. To decrease turbulence and limit circuit and tracheobronchial deposition, we recommend: (a) the use of specifically designed respiratory circuits avoiding sharp angles and characterized by smooth inner surfaces, (b) the use of specific ventilator settings during nebulization including use of a volume controlled mode using constant inspiratory flow, tidal volume 8 mL/kg, respiratory frequency 12 to 15 bpm, inspiratory:expiratory ratio 50%, inspiratory pause 20% and positive end-expiratory pressure 5 to 10 cm H 2 O and (c) the administration of a short-acting sedative agent if coordination between the patient and the ventilator is not obtained, to avoid patient's flow triggering and episodes of peak decelerating inspiratory flow. A filter should be inserted on the expiratory limb to protect the ventilator flow device and changed between each nebulization to avoid expiratory flow obstruction. A heat and moisture exchanger and/or conventional heated humidifier should be stopped during the nebulization period to avoid a massive loss of aerosolized particles through trapping and condensation. If these technical requirements are not followed, there is a high risk of treatment failure and adverse events in mechanically ventilated patients receiving nebulized antibiotics for pneumonia. Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights

  4. Stomach as a source of colonization of the respiratory tract during mechanical ventilation: association with ventilator-associated pneumonia.

    Science.gov (United States)

    Torres, A; El-Ebiary, M; Soler, N; Montón, C; Fàbregas, N; Hernández, C

    1996-08-01

    The aetiopathogenesis of ventilator-associated pneumonia (VAP) requires abnormal oropharyngeal and gastric colonization and the further aspiration of their contents to the lower airways. VAP develops easily if aspiration or inoculation of microorganisms occur in patients with artificial airways, in whom mechanical, cellular and/or humoral defences are altered. Well-known risk factors for gastric colonization include: alterations in gastric juice secretion; alkalinization of gastric contents; administration of enteral nutrition; and the presence of bilirubin. However, the role of the colonized gastric reservoir in the development of VAP remains debatable. Evidence in favour of the role of the stomach in the development of VAP comes mainly from randomized, controlled trials of selective gut decontamination and stress ulcer prophylaxis in the intensive care unit (ICU), in which reducing the bacterial burden of the stomach decreases the incidence of nosocomial respiratory infections. However, at least three studies of flora have found an absence of stomach origin of pneumonia occurring during mechanical ventilation. Prophylactic measures suggested to prevent VAP in relation to the gastric reservoir include: treatment for stress ulcers with sucralfate; prevention of duodenal reflux with metoclopramide; reduction of gastric burden and bacterial translocation by selective digestive decontamination; acidification of enteral feeding; and jejunal feeding. Gastro-oesophageal reflux can be prevented by using small bore nasogastric tubes and jejunal feeding. The aspiration of gastric contents can be reduced by positioning patients in a semirecumbent position, checking the patency of the tube cuff, and aspiration of subglottic secretions. The role of the stomach as a reservoir for microorganisms causing ventilator-associated pneumonia is still controversial but despite the debate, there is major evidence in the literature in favour of the gastric origin of part of these

  5. Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass heart surgery (MECANO): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nguyen, Lee S; Merzoug, Messaouda; Estagnasie, Philippe; Brusset, Alain; Law Koune, Jean-Dominique; Aubert, Stephane; Waldmann, Thierry; Grinda, Jean-Michel; Gibert, Hadrien; Squara, Pierre

    2017-12-02

    Postoperative pulmonary complications are a leading cause of morbidity and mortality after cardiac surgery. There are no recommendations on mechanical ventilation associated with cardiopulmonary bypass (CPB) during surgery and anesthesiologists perform either no ventilation (noV) at all during CPB or maintain low tidal volume (LTV) ventilation. Indirect evidence points towards better pulmonary outcomes when LTV is performed but no large-scale prospective trial has yet been published in cardiac surgery. The MECANO trial is a single-center, double-blind, randomized, controlled trial comparing two mechanical ventilation strategies, noV and LTV, during cardiac surgery with CPB. In total, 1500 patients are expected to be included, without any restrictions. They will be randomized between noV and LTV on a 1:1 ratio. The noV group will receive no ventilation during CPB. The LTV group will receive 5 breaths/minute with a tidal volume of 3 mL/kg and positive end-expiratory pressure of 5 cmH2O. The primary endpoint will be a composite of all-cause mortality, early respiratory failure defined as a ratio of partial pressure of oxygen/fraction of inspired oxygen ventilation, mechanical ventilation or high-flow oxygen) at 2 days after arrival in the ICU or ventilator-acquired pneumonia defined by the Center of Disease Control. Lung recruitment maneuvers will be performed in the noV and LTV groups at the end of surgery and at arrival in ICU with an insufflation at +30 cmH20 for 5 seconds. Secondary endpoints are those composing the primary endpoint with the addition of pneumothorax, CPB duration, quantity of postoperative bleeding, red blood cell transfusions, revision surgery requirements, length of stay in the ICU and in the hospital and total hospitalization costs. Patients will be followed until hospital discharge. The MECANO trial is the first of its kind to compare in a double-blind design, a no-ventilation to a low-tidal volume strategy for mechanical ventilation during

  6. Chest physiotherapy in mechanically ventilated children: a review.

    Science.gov (United States)

    Krause, M F; Hoehn, T

    2000-05-01

    Many physicians, nurses, and respiratory care practitioners consider chest physiotherapy (CP) a standard therapy in mechanically ventilated children beyond the newborn period. CP includes percussion, vibration, postural drainage, assisted coughing, and suctioning via the endotracheal tube. We searched the medical literature by using the key words "chest physiotherapy" and "chest physical therapy" (among others) by means of the MEDLINE and Current Contents databases. Because of the paucity of objective data, we examined all reports dealing with this topic, including studies on adult patients. For data extraction, not enough material existed to perform a meta-analysis. Despite its widespread use, almost no literature dealing with this treatment modality in pediatric patients exists. Studies with mechanically ventilated pediatric and adult patients have shown that CP is the most irritating routine intensive care procedure to patients. An increase in oxygen consumption often occurs when a patient receives CP accompanied by an elevation in heart rate, blood pressure, and intracranial pressure. CP leads to short-term decreases in oxygen, partial pressure in the blood, and major fluctuations in cardiac output. Changes in these vital signs and other variables may be even more pronounced in pediatric patients because the lung of a child is characterized by a higher closing capacity and the chest walls are characterized by a much higher compliance, thus predisposing the child to the development of atelectasis secondary to percussion and vibration. CP in mechanically ventilated children may not be considered a standard therapy. Controlled studies examining the impact of CP on the duration of mechanical ventilatory support, critical illness, and hospital stay are needed.

  7. Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study.

    Science.gov (United States)

    Ladha, Karim; Vidal Melo, Marcos F; McLean, Duncan J; Wanderer, Jonathan P; Grabitz, Stephanie D; Kurth, Tobias; Eikermann, Matthias

    2015-07-14

    To evaluate the effects of intraoperative protective ventilation on major postoperative respiratory complications and to define safe intraoperative mechanical ventilator settings that do not translate into an increased risk of postoperative respiratory complications. Hospital based registry study. Academic tertiary care hospital and two affiliated community hospitals in Massachusetts, United States. 69,265 consecutively enrolled patients over the age of 18 who underwent a non-cardiac surgical procedure between January 2007 and August 2014 and required general anesthesia with endotracheal intubation. Protective ventilation, defined as a median positive end expiratory pressure (PEEP) of 5 cmH2O or more, a median tidal volume of less than 10 mL/kg of predicted body weight, and a median plateau pressure of less than 30 cmH2O. Composite outcome of major respiratory complications, including pulmonary edema, respiratory failure, pneumonia, and re-intubation. Of the 69,265 enrolled patients 34,800 (50.2%) received protective ventilation and 34,465 (49.8%) received non-protective ventilation intraoperatively. Protective ventilation was associated with a decreased risk of postoperative respiratory complications in multivariable regression (adjusted odds ratio 0.90, 95% confidence interval 0.82 to 0.98, P=0.013). The results were similar in the propensity score matched cohort (odds ratio 0.89, 95% confidence interval 0.83 to 0.97, P=0.004). A PEEP of 5 cmH2O and median plateau pressures of 16 cmH2O or less were associated with the lowest risk of postoperative respiratory complications. Intraoperative protective ventilation was associated with a decreased risk of postoperative respiratory complications. A PEEP of 5 cmH2O and a plateau pressure of 16 cmH2O or less were identified as protective mechanical ventilator settings. These findings suggest that protective thresholds differ for intraoperative ventilation in patients with normal lungs compared with those used for patients

  8. Pleural liquid and kinetic friction coefficient of mesothelium after mechanical ventilation.

    Science.gov (United States)

    Bodega, Francesca; Sironi, Chiara; Porta, Cristina; Zocchi, Luciano; Agostoni, Emilio

    2015-01-15

    Volume and protein concentration of pleural liquid in anesthetized rabbits after 1 or 3h of mechanical ventilation, with alveolar pressure equal to atmospheric at end expiration, were compared to those occurring after spontaneous breathing. Moreover, coefficient of kinetic friction between samples of visceral and parietal pleura, obtained after spontaneous or mechanical ventilation, sliding in vitro at physiological velocity under physiological load, was determined. Volume of pleural liquid after mechanical ventilation was similar to that previously found during spontaneous ventilation. This finding is contrary to expectation of Moriondo et al. (2005), based on measurement of lymphatic and interstitial pressure. Protein concentration of pleural liquid after mechanical ventilation was also similar to that occurring after spontaneous ventilation. Coefficient of kinetic friction after mechanical ventilation was 0.023±0.001, similar to that obtained after spontaneous breathing. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Implementation of a Goal-Directed Mechanical Ventilation Order Set Driven by Respiratory Therapists Improves Compliance With Best Practices for Mechanical Ventilation.

    Science.gov (United States)

    Radosevich, Misty A; Wanta, Brendan T; Meyer, Todd J; Weber, Verlin W; Brown, Daniel R; Smischney, Nathan J; Diedrich, Daniel A

    2017-01-01

    Data regarding best practices for ventilator management strategies that improve outcomes in acute respiratory distress syndrome (ARDS) are readily available. However, little is known regarding processes to ensure compliance with these strategies. We developed a goal-directed mechanical ventilation order set that included physician-specified lung-protective ventilation and oxygenation goals to be implemented by respiratory therapists (RTs). We sought as a primary outcome to determine whether an RT-driven order set with predefined oxygenation and ventilation goals could be implemented and associated with improved adherence with best practice. We evaluated 1302 patients undergoing invasive mechanical ventilation (1693 separate episodes of invasive mechanical ventilation) prior to and after institution of a standardized, goal-directed mechanical ventilation order set using a controlled before-and-after study design. Patient-specific goals for oxygenation partial pressure of oxygen in arterial blood (Pao 2 ), ARDS Network [Net] positive end-expiratory pressure [PEEP]/fraction of inspired oxygen [Fio 2 ] table use) and ventilation (pH, partial pressure of carbon dioxide) were selected by prescribers and implemented by RTs. Compliance with the new mechanical ventilation order set was high: 88.2% compliance versus 3.8% before implementation of the order set ( P mechanical ventilation, intensive care unit (ICU) length of stay, and in-hospital or ICU mortality. A standardized best practice mechanical ventilation order set can be implemented by a multidisciplinary team and is associated with improved compliance to written orders and adherence to the ARDSNet PEEP/Fio 2 table.

  10. Monitoring carbon dioxide in mechanically ventilated patients during hyperbaric treatment

    DEFF Research Database (Denmark)

    Bjerregård, Asger; Jansen, Erik

    2012-01-01

    Measurement of the arterial carbon dioxide (P(a)CO(2)) is an established part of the monitoring of mechanically ventilated patients. Other ways to get information about carbon dioxide in the patient are measurement of end-tidal carbon dioxide (P(ET)CO(2)) and transcutaneous carbon dioxide (PTCCO2......). Carbon dioxide in the blood and cerebral tissue has great influence on vasoactivity and thereby blood volume of the brain. We have found no studies on the correlation between P(ET)CO(2) or P(TC)CO(2), and P(a)CO(2) during hyperbaric oxygen therapy (HBOT)....

  11. Peak Pressures and PaO2/FiO2 Ratios Are Associated With Adverse Outcomes in Patients on Mechanical Ventilators.

    Science.gov (United States)

    Whiting, Jeremy; Edriss, Hawa; Yang, Shengping; Nugent, Kenneth

    2016-06-01

    Patients requiring mechanical ventilation can have complications related to their underlying diseases and hospital-related events. It is possible that easily obtained information early in the course of mechanical ventilation can provide information about important outcomes. Medical records from 281 episodes of mechanical ventilation in the medical intensive care unit were reviewed to collect information on patient demographics, admitting diagnoses, laboratory tests, duration of mechanical ventilation, the development of ventilator-associated events and mortality. Ventilator pressures from day 2 were analyzed for this study. Most patients (72.7%) were ≥50 years, 53.8% were men and 66.3% had a body mass index (BMI) ≥ 25kg/m(2).The mean Acute Physiology and Chronic Healthy Evaluation II score was 13.6 ± 5.9. The median initial PaO2/FiO2 was 240 with interquartile range of 177-414. The median duration of ventilation was 4 days (interquartile range: 2-9 days). A PaO2/FiO2 ratio 500, and a BMI > 30kg/m(2) was associated with decreased mortality compared with normal BMIs. A PaO2/FiO2 ratio 30kg/m(2) were all associated with having a ventilator-associated event. There was a positive correlation between peak pressure (day 2) and the duration of ventilation (r = 0.263, P = 0.007). Easily available information collected on day 2 of mechanical ventilation can help identify patients at risk for poor outcomes, including the duration of mechanical ventilation, the development of ventilator-associated complications and mortality. Prospective studies measuring peak pressures are needed to evaluate the utility of this simple measurement in the management of patients requiring mechanical ventilation. Published by Elsevier Inc.

  12. Optimal delivery of aerosols to infants during mechanical ventilation.

    Science.gov (United States)

    Longest, P Worth; Azimi, Mandana; Hindle, Michael

    2014-10-01

    The objective of this study was to determine optimal aerosol delivery conditions for a full-term (3.6 kg) infant receiving invasive mechanical ventilation by evaluating the effects of aerosol particle size, a new wye connector, and timing of aerosol delivery. In vitro experiments used a vibrating mesh nebulizer and evaluated drug deposition fraction and emitted dose through ventilation circuits containing either a commercial (CM) or new streamlined (SL) wye connector and 3-mm endotracheal tube (ETT) for aerosols with mass median aerodynamic diameters of 880 nm, 1.78 μm, and 4.9 μm. The aerosol was released into the circuit either over the full inhalation cycle (T1 delivery) or over the first half of inhalation (T2 delivery). Validated computational fluid dynamics (CFD) simulations and whole-lung model predictions were used to assess lung deposition and exhaled dose during cyclic ventilation. In vitro experiments at a steady-state tracheal flow rate of 5 L/min resulted in 80-90% transmission of the 880-nm and 1.78-μm aerosols from the ETT. Based on CFD simulations with cyclic ventilation, the SL wye design reduced depositional losses in the wye by a factor of approximately 2-4 and improved lung delivery efficiencies by a factor of approximately 2 compared with the CM device. Delivery of the aerosol over the first half of the inspiratory cycle (T2) reduced exhaled dose from the ventilation circuit by a factor of 4 compared with T1 delivery. Optimal lung deposition was achieved with the SL wye connector and T2 delivery, resulting in 45% and 60% lung deposition for optimal polydisperse (∼1.78 μm) and monodisperse (∼2.5 μm) particle sizes, respectively. Optimization of selected factors and use of a new SL wye connector can substantially increase the lung delivery efficiency of medical aerosols to infants from current values of <1-10% to a range of 45-60%.

  13. Noninvasive Mechanical Ventilation in Acute Ventilatory Failure: Rationale and Current Applications.

    Science.gov (United States)

    Esquinas, Antonio M; Benhamou, Maly Oron; Glossop, Alastair J; Mina, Bushra

    2017-12-01

    Noninvasive ventilation plays a pivotal role in acute ventilator failure and has been shown, in certain disease processes such as acute exacerbation of chronic obstructive pulmonary disease, to prevent and shorten the duration of invasive mechanical ventilation, reducing the risks and complications associated with it. The application of noninvasive ventilation is relatively simple and well tolerated by patients and in the right setting can change the course of their illness. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. How is mechanical ventilation employed in a pediatric intensive care unit in Brazil?

    Directory of Open Access Journals (Sweden)

    Dafne Cardoso Bourguignon da Silva

    2009-01-01

    Full Text Available OBJECTIVE: to investigate the relationship between mechanical ventilation and mortality and the practice of mechanical ventilation applied in children admitted to a high-complexity pediatric intensive care unit in the city of São Paulo, Brazil. DESIGN: Prospective cohort study of all consecutive patients admitted to a Brazilian high-complexity PICU who were placed on mechanical ventilation for 24 hours or more, between October 1st, 2005 and March 31st, 2006. RESULTS: Of the 241 patients admitted, 86 (35.7% received mechanical ventilation for 24 hours or more. Of these, 49 met inclusion criteria and were thus eligible to participate in the study. Of the 49 patients studied, 45 had chronic functional status. The median age of participants was 32 months and the median length of mechanical ventilation use was 6.5 days. The major indication for mechanical ventilation was acute respiratory failure, usually associated with severe sepsis / septic shock. Pressure ventilation modes were the standard ones. An overall 10.37% incidence of Acute Respiratory Distress Syndrome was found, in addition to tidal volumes > 8 ml/kg, as well as normo- or hypocapnia. A total of 17 children died. Risk factors for mortality within 28 days of admission were initial inspiratory pressure, pH, PaO2/FiO2 ratio, oxygenation index and also oxygenation index at 48 hours of mechanical ventilation. Initial inspiratory pressure was also a predictor of mechanical ventilation for periods longer than 7 days. CONCLUSION: Of the admitted children, 35.7% received mechanical ventilation for 24 h or more. Pressure ventilation modes were standard. Of the children studied, 91% had chronic functional status. There was a high incidence of Acute Respiratory Distress Syndrome, but a lung-protective strategy was not fully implemented. Inspiratory pressure at the beginning of mechanical ventilation was a predictor of mortality within 28 days and of a longer course of mechanical ventilation.

  15. Diaphragmatic excursion: does it predict successful weaning from mechanical ventilation?

    International Nuclear Information System (INIS)

    Hayat, A.; Khalil, A.

    2017-01-01

    To measure the diaphragmatic excursion and its outcome on weani ng from mechanical ventilation. Study Design: Cross-sectional comparative study. Place and Duration of Study: Medical Intensive Care Unit (ICU), Military Hospital (MH), Rawalpindi, Pakistan, from January to December 2014. Methodology: Diaphragmatic excursion (DE) in cm was measured through ultrasound by marking liver and spleen displacement in patients who fulfilled the criteria of removal from ventilatory support. The patients were followed up for 48 hours and classified according to the outcome as successful weaning and weaning failure. Results: Out of 100 cases, 76 patients had a successful weaning while 24 had a failed weaning outcome. At a diaphragmatic excursion of 1.2 cm and more, out of 67 cases, 60 had a successful weaning (89.55%) while 7 cases (10.45%) had a weaning failure. At an excursion of less than 1. 2 cm, 17 out of 33 cases (51.5%) had successful weaning while 16 (48.48%) had weaning failure. At this cut off point (1.2 cm), the sensitivity and specificity for successful weaning were 78.95% and 70.83%, respectively. The positive and negative likelihood ratio (LR) for these values being 2.70 and 0.29, respectively. The positive predictive value was 82.35% and negative predictive value 60.00%. Conclusion: Ultrasonographic measurement of diaphragmatic excursion is a good method for predicting weaning outcome from mechanical ventilation. (author)

  16. Measures to prevent nosocomial infections during mechanical ventilation.

    Science.gov (United States)

    Ramirez, Paula; Bassi, Gianluigi L; Torres, Antonio

    2012-02-01

    Endotracheal intubation and mechanical ventilation are lifesaving measures in critically ill patients. However, these interventions increase the risk of respiratory infections, particularly ventilator-associated pneumonia (VAP). VAP constitutes a serious burden for the healthcare system and worsens the patient's outcomes; thus, several preventive strategies have been implemented. This communication reviews the current knowledge on VAP pathogenesis and the latest preventive measures. Pathogen-laden oropharyngeal secretions leak across the endotracheal tube (ETT) cuff; thus, a continuous control of the internal cuff pressure and cuffs made of polyurethane improve sealing effectiveness and associated risks of infections. Subglottic secretions aspiration prevents VAP, and the latest evidence demonstrated a reduction in the incidence of late-onset VAP. The role of ETT biofilm in the pathogenesis of VAP is not fully elucidated. Nevertheless, antimicrobial-coated ETTs have showed beneficial effects in VAP incidence. Recent experimental evidence has challenged the benefits associated with the use of the semirecumbent position; yet, these findings need to be corroborated in clinical trials. The latest results from trials testing the effects of selective digestive decontamination (SDD) showed beneficial effects on patients' outcomes, but concerns remain regarding the emergence of bacterial resistance, specifically upon digestive tract re-colonization. The use of oropharyngeal decontamination with antiseptics and the use of probiotics are potential alternatives to SDD. There is consistent evidence that strategies affecting the primary mechanisms of VAP pathogenesis efficiently reduce the occurrence of the disease. Preventive measures should be implemented grouped into bundles to improve overall efficacy.

  17. Fuzzy logic controller for weaning neonates from mechanical ventilation.

    Science.gov (United States)

    Hatzakis, G E; Davis, G M

    2002-01-01

    Weaning from mechanical ventilation is the gradual detachment from any ventilatory support till normal spontaneous breathing can be fully resumed. To date, we have developed a fuzzy logic controller for weaning COPD adults using pressure support ventilation (PS). However, adults and newborns differ in the pathophysiology of lung disease. We therefore used our fuzzy logic-based weaning platform to develop modularized components for weaning newborns with lung disease. Our controller uses the heart rate (HR), respiratory rate (RR), tidal volume (VT) and oxygen saturation (SaO2) and their trends deltaHR/deltat, deltaVT/deltat and deltaSaO2/deltat to evaluate, respectively, the Current and Trend weaning status of the newborn. Through appropriate fuzzification of these vital signs, Current and Trend weaning status can quantitatively determine the increase/decrease in the synchronized intermittent mandatory ventilation (SIMV) setting. The post-operative weaning courses of 10 newborns, 82+/-162 days old, were assessed at 2-hour intervals for 68+/-39 days. The SIMV levels, proposed by our algorithm, were matched to those levels actually applied. For 60% of the time both values coincided. For the remaining 40%, our algorithm suggested lower SIMV support than what was applied. The Area Under the Curve for integrated ventilatory support over time was 1203+/-846 for standard ventilatory strategies and 1152+/-802 for fuzzy controller. This suggests that the algorithm, approximates the actual weaning progression, and may advocate a more aggressive strategy. Moreover, the core of the fuzzy controller facilitates adaptation for body size and diversified disease patterns and sets the premises as an infant-weaning tool.

  18. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  19. Chest radiological patterns predict the duration of mechanical ventilation in children with RSV infection

    International Nuclear Information System (INIS)

    Prodhan, Parthak; Westra, Sjirk J.; Lin, James; Karni-Sharoor, Sarit; Regan, Susan; Noviski, Natan

    2009-01-01

    RSV-infected children demonstrate various radiographic features, some of which are associated with worse clinical outcomes. To investigate whether specific chest radiological patterns in RSV-infected children with acute respiratory failure (ARF) in the peri-intubation period are associated with prolonged duration of mechanical ventilation. We included RSV-infected children 8 days, a backward stepwise regression arrived at a model that included age and right and left lung atelectasis. Using day 2 chest radiograph results, the best model included age and left lung atelectasis. A model combining the two days' findings yielded an area under the ROC curve of 0.92 with a satisfactory fit (P = 0.95). Chest radiological patterns around the time of intubation can identify children with RSV-associated ARF who would require prolonged mechanical ventilation. (orig.)

  20. Model-based PEEP optimisation in mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Chiew Yeong Shiong

    2011-12-01

    Full Text Available Abstract Background Acute Respiratory Distress Syndrome (ARDS patients require mechanical ventilation (MV for breathing support. Patient-specific PEEP is encouraged for treating different patients but there is no well established method in optimal PEEP selection. Methods A study of 10 patients diagnosed with ALI/ARDS whom underwent recruitment manoeuvre is carried out. Airway pressure and flow data are used to identify patient-specific constant lung elastance (Elung and time-variant dynamic lung elastance (Edrs at each PEEP level (increments of 5cmH2O, for a single compartment linear lung model using integral-based methods. Optimal PEEP is estimated using Elung versus PEEP, Edrs-Pressure curve and Edrs Area at minimum elastance (maximum compliance and the inflection of the curves (diminishing return. Results are compared to clinically selected PEEP values. The trials and use of the data were approved by the New Zealand South Island Regional Ethics Committee. Results Median absolute percentage fitting error to the data when estimating time-variant Edrs is 0.9% (IQR = 0.5-2.4 and 5.6% [IQR: 1.8-11.3] when estimating constant Elung. Both Elung and Edrs decrease with PEEP to a minimum, before rising, and indicating potential over-inflation. Median Edrs over all patients across all PEEP values was 32.2 cmH2O/l [IQR: 26.1-46.6], reflecting the heterogeneity of ALI/ARDS patients, and their response to PEEP, that complicates standard approaches to PEEP selection. All Edrs-Pressure curves have a clear inflection point before minimum Edrs, making PEEP selection straightforward. Model-based selected PEEP using the proposed metrics were higher than clinically selected values in 7/10 cases. Conclusion Continuous monitoring of the patient-specific Elung and Edrs and minimally invasive PEEP titration provide a unique, patient-specific and physiologically relevant metric to optimize PEEP selection with minimal disruption of MV therapy.

  1. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    Science.gov (United States)

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  2. Accuracy of tidal volume delivered by home mechanical ventilation during mouthpiece ventilation

    Science.gov (United States)

    Prigent, Helene; Falaize, Line; Leroux, Karl; Santos, Dante; Vaugier, Isabelle; Orlikowski, David; Lofaso, Frederic

    2016-01-01

    The aim of our study was to evaluate efficacy and reliability of currently available ventilators for mouthpiece ventilation (MPV). Five life-support home ventilators were assessed in a bench test using different settings simulating the specificities of MPV, such as intermittent circuit disconnection and presence of continuous leaks. The intermittent disconnection of the circuit caused relevant swings in the delivered tidal volume (VT), showing a VT overshoot during the disconnection periods and a VT decrease when the interface was reconnected to the test lung. The five ventilators showed substantial differences in the number of respiratory cycles necessary to reach a stable VT in the volume-controlled setting, ranging from 1.3 ± 0.6 to 7.3 ± 1.2 cycles. These differences were less accentuated in the volume-assisted setting (MPV-dedicated mode, when available). Our data show large differences in the capacity of the different ventilators to deal with the rapidly changing respiratory load features that characterize MPV, which can be further accentuated according to the used ventilator setting. The dedicated MPV modes allow improvement in the performance of ventilators only in some defined situations. This has practical consequences for the choice of the ventilator to be used for MPV in a specific patient. PMID:27146811

  3. Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD in a Cross-Mechanically Ventilated Broiler Farm

    Directory of Open Access Journals (Sweden)

    Antonio Hospitaler

    2013-05-01

    Full Text Available Broiler production in modern poultry farms commonly uses mechanical ventilation systems. This mechanical ventilation requires an amount of electric energy and a high level of investment in technology. Nevertheless, broiler production is affected by periodic problems of mortality because of thermal stress, thus being crucial to explore the ventilation efficiency. In this article, we analyze a cross-mechanical ventilation system focusing on air velocity distribution. In this way, two methodologies were used to explore indoor environment in livestock buildings: Computational Fluid Dynamics (CFD simulations and direct measurements for verification and validation (V&V of CFD. In this study, a validation model using a Generalized Linear Model (GLM was conducted to compare these methodologies. The results showed that both methodologies were similar in results: the average of air velocities values were 0.60 ± 0.56 m s−1 for CFD and 0.64 ± 0.54 m s−1 for direct measurements. In conclusion, the air velocity was not affected by the methodology (CFD or direct measurements, and the CFD simulations were therefore validated to analyze indoor environment of poultry farms and its operations. A better knowledge of the indoor environment may contribute to reduce the demand of electric energy, increasing benefits and improving the thermal comfort of broilers.

  4. Optical Coherence Tomography (OCT for Time-Resolved Imaging of Alveolar Dynamics in Mechanically Ventilated Rats

    Directory of Open Access Journals (Sweden)

    Christian Schnabel

    2017-03-01

    Full Text Available Though artificial ventilation is an essential life-saving treatment, the mechanical behavior of lung tissue at the alveolar level is still unknown. Therefore, we need to understand the tissue response during artificial ventilation at this microscale in order to develop new and more protective ventilation methods. Optical coherence tomography (OCT combined with intravital microscopy (IVM is a promising tool for visualizing lung tissue dynamics with a high spatial and temporal resolution in uninterruptedly ventilated rats. We present a measurement setup using a custom-made animal ventilator and a gating technique for data acquisition of time-resolved sequences.

  5. Protective mechanical ventilation does not exacerbate lung function impairment or lung inflammation following influenza A infection.

    Science.gov (United States)

    Zosky, Graeme R; Cannizzaro, Vincenzo; Hantos, Zoltan; Sly, Peter D

    2009-11-01

    The degree to which mechanical ventilation induces ventilator-associated lung injury is dependent on the initial acute lung injury (ALI). Viral-induced ALI is poorly studied, and this study aimed to determine whether ALI induced by a clinically relevant infection is exacerbated by protective mechanical ventilation. Adult female BALB/c mice were inoculated with 10(4.5) plaque-forming units of influenza A/Mem/1/71 in 50 microl of medium or medium alone. This study used a protective ventilation strategy, whereby mice were anesthetized, tracheostomized, and mechanically ventilated for 2 h. Lung mechanics were measured periodically throughout the ventilation period using a modification of the forced oscillation technique to obtain measures of airway resistance and coefficients of tissue damping and tissue elastance. Thoracic gas volume was measured and used to obtain specific airway resistance, tissue damping, and tissue elastance. At the end of the ventilation period, a bronchoalveolar lavage sample was collected to measure inflammatory cells, macrophage inflammatory protein-2, IL-6, TNF-alpha, and protein leak. Influenza infection caused significant increases in inflammatory cells, protein leak, and deterioration in lung mechanics that were not exacerbated by mechanical ventilation, in contrast to previous studies using bacterial and mouse-specific viral infection. This study highlighted the importance of type and severity of lung injury in determining outcome following mechanical ventilation.

  6. Resolution of obstructive atelectasis with non-invasive mechanical ventilation.

    Science.gov (United States)

    Mirambeaux Villalona, Rosa; Mayoralas Alises, Sagrario; Díaz Lobato, Salvador

    2014-10-01

    Bronchoscopy is a commonly used technique in patients with atelectasis due to mucus plugs. We present here the case of an 82-year-old patient with a history of Meige's syndrome who developed acute respiratory failure due to atelectasis of the right upper lobe associated with hospital-acquired pneumonia. The patient had a severely reduced level of consciousness, significant work-of-breathing and severe hypercapnic acidosis, all of which contraindicated bronchoscopy. Bi-level noninvasive mechanical ventilation (NIMV) was initiated by way of a face mask. Progress was favourable, with clear clinical and gasometric improvement. The chest X-ray performed 12hours later showed complete resolution of the atelectasis. These data suggest that NIMV may be useful in the treatment of atelectasis is some critical patients. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. Mechanical ventilation with heat recovery in arctic climate

    DEFF Research Database (Denmark)

    Kragh, Jesper; Svendsen, Svend

    2005-01-01

    Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...... pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...

  8. Factors Associated with Postoperative Prolonged Mechanical Ventilation in Pediatric Liver Transplant Recipients

    Directory of Open Access Journals (Sweden)

    Olubukola O. Nafiu

    2017-01-01

    Full Text Available Introduction. Almost all pediatric orthotopic liver transplant (OLT recipients require mechanical ventilation in the early postoperative period. Prolonged postoperative mechanical ventilation (PPMV may be a marker of severe disease and may be associated with morbidity and mortality. We determined the incidence and risk factors for PPMV in children who underwent OLT. Methods. This was a retrospective analysis of data collected on 128 pediatric OLT recipients. PPMV was defined as postoperative ventilation ≥ 4 days. Perioperative characteristics were compared between cases and control groups. Multivariable logistic regression analysis was used to calculate odds ratios for PPMV after controlling for relevant cofactors. Results. An estimated 25% (95% CI, 17.4%–32.6% required PPMV. The overall incidence of PPMV varied significantly by age group with the highest incidence among infants. PPMV was associated with higher postoperative mortality (p=0.004 and longer intensive care unit (p<0.001 and hospital length of stay (p<0.001. Multivariable analysis identified young patient age, preoperative hypocalcemia, and increasing duration of surgery as independent predictors of PPMV following OLT. Conclusion. The incidence of PPMV is high and it was associated with prolonged ICU and hospital LOS and higher posttransplant mortality. Surgery duration appears to be the only modifiable predictor of PPMV.

  9. Bronchoalveolar lavage with diluted porcine surfactant in mechanically ventilated term infants with meconium aspiration syndrome.

    Science.gov (United States)

    Lista, Gianluca; Bianchi, Silvia; Castoldi, Francesca; Fontana, Paola; Cavigioli, Francesco

    2006-01-01

    To evaluate the efficacy and safety of bronchoalveolar lavage (BAL) with diluted porcine surfactant in mechanically ventilated term infants with severe acute respiratory distress syndrome (ARDS) due to meconium aspiration syndrome (MAS). Eight consecutive mechanically ventilated term infants with severe ARDS due to MAS underwent BAL with 15 mL/kg of diluted (5.3mg phospholipid/mL) surfactant saline suspension (porcine surfactant [Curosurf]). Treatment was administered slowly in aliquots of 2.5 mL. The mean age of neonates at treatment was 3.5 (range 1-8) hours. Heart rate, systemic blood pressure and oxygen saturation were monitored continuously. Arterial blood gases were measured immediately before treatment, and again at 3 and 6 hours post-treatment. Chest x-rays were taken 6 and 24 hours after treatment. Radiological improvement was evident in all eight patients 6 hours post-treatment. Compared with pre-BAL values, significant improvements (p fluids that had been meconium-stained prior to BAL were clear of meconium after BAL. Only one patient required nitric oxide therapy for transient pulmonary hypertension. No adverse sequelae of treatment occurred during the study. BAL with dilute porcine surfactant administered slowly in 2.5 mL aliquots improved oxygenation and chest x-ray findings, without causing major adverse effects, in mechanically ventilated term infants with ARDS due to MAS.

  10. Holistic Care for Patients During Weaning from Mechanical Ventilation: A Qualitative Study.

    Science.gov (United States)

    Khalafi, Ali; Elahi, Nasrin; Ahmadi, Fazlollah

    2016-11-01

    Weaning patients from mechanical ventilation is a complex and highly challenging process. It requires continuity of care, the overall assessment of patients, and a focus on all aspects of patients' needs by critical care nurses. The aim of the present study was to explore holistic care while patients are being weaned from mechanical ventilation from the perspective of the critical care nurses. The study was carried out in the intensive care units (ICUs) of six hospitals in Ahvaz, Iran, from 2014 to 2015. In this qualitative study, 25 ICU staff including nurses, nurse managers, and nurse educators were selected by means of purposive sampling. Semi-structured interviews were used for data collection. The interview transcripts were then analyzed using qualitative content analysis. The four main themes that emerged to explain nurses' experiences of holistic care when weaning patients from mechanical ventilation include continuous care, a holistic overview of the patient, promoting human dignity, and the overall development of well-being. It was found that avoiding routine pivotal expertise, increasing consciousness of the nonphysical aspects of patients while providing treatment and presenting exclusive care, utilizing experienced ICU nurses, and placing more emphasis on effective communication with patients in order to honor them as human beings can all enhance the holistic quality of care.

  11. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice

    NARCIS (Netherlands)

    Wolthuis, Esther K; Vlaar, Alexander P J; Choi, Goda; Roelofs, Joris J T H; Juffermans, Nicole P; Schultz, Marcus J

    2009-01-01

    INTRODUCTION: Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI). Present models of VILI use exceptionally large tidal volumes, causing gross lung injury and haemodynamic shock. In addition, animals are ventilated for a relative short period of time and only after a

  12. Mechanical ventilation using non-injurious ventilation settings causes lung injury in the absence of pre-existing lung injury in healthy mice

    NARCIS (Netherlands)

    Wolthuis, Esther K.; Vlaar, Alexander Pj; Choi, Goda; Roelofs, Joris J. T. H.; Juffermans, Nicole P.; Schultz, Marcus J.

    2009-01-01

    Introduction Mechanical ventilation (MV) may cause ventilator-induced lung injury (VILI). Present models of VILI use exceptionally large tidal volumes, causing gross lung injury and haemodynamic shock. In addition, animals are ventilated for a relative short period of time and only after a 'priming'

  13. [Optimal energy supply in different age groups of critically ill children on mechanical ventilation].

    Science.gov (United States)

    Li, X H; Ji, J; Qian, S Y

    2018-01-02

    Objective: To analyze the resting energy expenditure and optimal energy supply in different age groups of critically ill children on mechanical ventilation in pediatric intensive care unit (PICU). Methods: Patients on mechanical ventilation hospitalized in PICU of Beijing Children's Hospital from March 2015 to March 2016 were enrolled prospectively. Resting energy expenditure of patients was calculated by US Med Graphic company critical care management (CCM) energy metabolism test system after mechanical ventilation. Patients were divided into three groups:10 years. The relationship between the measured and predictive resting energy expenditure was analyzed with correlation analysis; while the metabolism status and the optimal energy supply in different age groups were analyzed with chi square test and variance analysis. Results: A total of 102 patients were enrolled, the measured resting energy expenditure all correlated with predictive resting energy expenditure in different age groups (10 years ( r= 0.5, P= 0.0) ) . A total of 40 cases in group, including: 14 cases of low metabolism (35%), 14 cases of normal metabolism (35%), and 12 cases of high metabolism (30%); 45 cases in 3-10 years group, including: 22 cases of low metabolism (49%), 19 cases of normal metabolism (42%), 4 cases of high metabolism (9%); 17 cases in > 10 years group, including: 12 cases of low metabolism (71%), 4 cases of normal metabolism (23%), 1 case of high metabolism (6%). Metabolism status showed significant differences between different age groups ( χ (2)=11.30, P age groups ( F= 46.57, Pgroup, (184±53) kJ/ (kg⋅d) in 3-10 years group, and (120±30) kJ/ (kg⋅d) in > 10 years group. Conclusion: The resting energy metabolism of the critically ill children on mechanical ventilation is negatively related to the age. The actual energy requirement should be calculated according to different ages.

  14. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    Science.gov (United States)

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  15. Evaluation of the user interface simplicity in the modern generation of mechanical ventilators.

    Science.gov (United States)

    Uzawa, Yoshihiro; Yamada, Yoshitsugu; Suzukawa, Masayuki

    2008-03-01

    We designed this study to evaluate the simplicity of the user interface in modern-generation mechanical ventilators. We hypothesized that different designs in the user interface could result in different rates of operational failures. A laboratory in a tertiary teaching hospital. Crossover design. Twenty-one medical resident physicians who did not possess operating experience with any of the selected ventilators. Four modern mechanical ventilators were selected: Dräger Evita XL, Maquet Servo-i, Newport e500, and Puritan Bennett 840. Each subject was requested to perform 8 tasks on each ventilator. Two objective variables (the number of successfully completed tasks without operational failures and the operational time) and the overall subjective rating of the ease of use, measured with a 100-mm visual analog scale were recorded. The total percentage of operational failures made for all subjects, for all tasks, was 23%. There were significant differences in the rates of operational failures and operational time among the 4 ventilators. Subjects made more operational failures in setting up the ventilators and in making ventilator-setting changes than in reacting to alarms. The subjective feeling of the ease of use was also significantly different among the ventilators. The design of the user interface is relevant to the occurrence of operational failures. Our data indicate that ventilator designers could optimize the user-interface design to reduce the operational failures; therefore, basic user interface should be standardized among the clinically used mechanical ventilators.

  16. Intraoperative mechanical ventilation strategies in patients undergoing one-lung ventilation: a meta-analysis.

    Science.gov (United States)

    Liu, Zhen; Liu, Xiaowen; Huang, Yuguang; Zhao, Jing

    2016-01-01

    Postoperative pulmonary complications (PPCs), which are not uncommon in one-lung ventilation, are among the main causes of postoperative death after lung surgery. Intra-operative ventilation strategies can influence the incidence of PPCs. High tidal volume (V T) and increased airway pressure may lead to lung injury, while pressure-controlled ventilation and lung-protective strategies with low V T may have protective effects against lung injury. In this meta-analysis, we aim to investigate the effects of different ventilation strategies, including pressure-controlled ventilation (PCV), volume-controlled ventilation (VCV), protective ventilation (PV) and conventional ventilation (CV), on PPCs in patients undergoing one-lung ventilation. We hypothesize that both PV with low V T and PCV have protective effects against PPCs in one-lung ventilation. A systematic search (PubMed, EMBASE, the Cochrane Library, and Ovid MEDLINE; in May 2015) was performed for randomized trials comparing PCV with VCV or comparing PV with CV in one-lung ventilation. Methodological quality was evaluated using the Cochrane tool for risk. The primary outcome was the incidence of PPCs. The secondary outcomes included the length of hospital stay, intraoperative plateau airway pressure (Pplateau), oxygen index (PaO2/FiO2) and mean arterial pressure (MAP). In this meta-analysis, 11 studies (436 patients) comparing PCV with VCV and 11 studies (657 patients) comparing PV with CV were included. Compared to CV, PV decreased the incidence of PPCs (OR 0.29; 95 % CI 0.15-0.57; P < 0.01) and intraoperative Pplateau (MD -3.75; 95 % CI -5.74 to -1.76; P < 0.01) but had no significant influence on the length of hospital stay or MAP. Compared to VCV, PCV decreased intraoperative Pplateau (MD -1.46; 95 % CI -2.54 to -0.34; P = 0.01) but had no significant influence on PPCs, PaO2/FiO2 or MAP. PV with low V T was associated with the reduced incidence of PPCs compared to CV. However, PCV and VCV had similar

  17. [Evolution in muscle strength in critical patients with invasive mechanical ventilation].

    Science.gov (United States)

    Via Clavero, G; Sanjuán Naváis, M; Menéndez Albuixech, M; Corral Ansa, L; Martínez Estalella, G; Díaz-Prieto-Huidobro, A

    2013-01-01

    To assess the evolution of muscle strength in critically ill patients with mechanical ventilation (MV) from withdrawal of sedatives to hospital discharge. A cohort study was conducted in two intensive care units in the Hospital Universitari de Bellvitge from November 2011 to March 2012. Consecutive patients with MV > 72h. Dependent outcome: Muscle strength measured with the Medical Research Council (MRC) scale beginning on the first day the patient was able to answer 3 out of 5 simple orders (day 1), every week, at ICU discharge and at hospital discharge or at day 60 Independent outcomes: factors associated with muscle strength loss, ventilator-free days, ICU length of stay and hospital length of stay. The patients were distributed into two groups (MRC2 (P 2 and costicosteroids. Patients with a MRC < 48 required more days with MV and a longer ICU stay. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.

  18. Nosocomial Pneumonia in Mechanically Ventilated Patients Receiving Ranitidine or Sucralfate as Stress Ulcer Prophylaxis

    Directory of Open Access Journals (Sweden)

    Smita Prakash

    2008-01-01

    We concluded that stress ulcer prophylaxis with ranitidine increases the risk for late- onset pneumonia in mechanically ventilated critically ill patients by favoring gastric colonization by gram- negative bacilli compared with sucralfate. In patients receiving mechanical ventilation, the use of sucralfate may be preferable to H 2 blockers.

  19. Inadequate humidification of respiratory gases during mechanical ventilation of the newborn.

    Science.gov (United States)

    Tarnow-Mordi, W O; Sutton, P; Wilkinson, A R

    1986-01-01

    Proximal airway humidity was measured during mechanical ventilation in 14 infants using an electronic hygrometer. Values below recommended minimum humidity of adult inspired gas were recorded on 251 of 396 occasions. Inadequate humidification, largely due to inadequate proximal airway temperature, is commoner than recognised in infants receiving mechanical ventilation. PMID:3740912

  20. Pulmonary Mechanics and Mortality in Mechanically Ventilated Patients Without Acute Respiratory Distress Syndrome: A Cohort Study.

    Science.gov (United States)

    Fuller, Brian M; Page, David; Stephens, Robert J; Roberts, Brian W; Drewry, Anne M; Ablordeppey, Enyo; Mohr, Nicholas M; Kollef, Marin H

    2018-03-01

    Driving pressure has been proposed as a major determinant of outcome in patients with acute respiratory distress syndrome (ARDS), but there is little data examining the association between pulmonary mechanics, including driving pressure, and outcomes in mechanically ventilated patients without ARDS. Secondary analysis from 1,705 mechanically ventilated patients enrolled in a clinical study that examined outcomes associated with the use of early lung-protective mechanical ventilation. The primary outcome was mortality and the secondary outcome was the incidence of ARDS. Multivariable models were constructed to: define the association between pulmonary mechanics (driving pressure, plateau pressure, and compliance) and mortality; and evaluate if driving pressure contributed information beyond that provided by other pulmonary mechanics. The mortality rate for the entire cohort was 26.0%. Compared with survivors, non-survivors had significantly higher driving pressure [15.9 (5.4) vs. 14.9 (4.4), P = 0.005] and plateau pressure [21.4 (5.7) vs. 20.4 (4.6), P = 0.001]. Driving pressure was independently associated with mortality [adjusted OR, 1.04 (1.01-1.07)]. Models related to plateau pressure also revealed an independent association with mortality, with similar effect size and interval estimates as driving pressure. There were 152 patients who progressed to ARDS (8.9%). Along with driving pressure and plateau pressure, mechanical power [adjusted OR, 1.03 (1.00-1.06)] was also independently associated with ARDS development. In mechanically ventilated patients, driving pressure and plateau pressure are risk factors for mortality and ARDS, and provide similar information. Mechanical power is also a risk factor for ARDS.

  1. Protective mechanical ventilation in United Kingdom critical care units: A multicentre audit.

    Science.gov (United States)

    Newell, Christopher P; Martin, Matthew J; Richardson, Neil; Bourdeaux, Christopher P

    2017-05-01

    Lung protective ventilation is becoming increasingly used for all critically ill patients being mechanically ventilated on a mandatory ventilator mode. Compliance with the universal application of this ventilation strategy in intensive care units in the United Kingdom is unknown. This 24-h audit of ventilation practice took place in 16 intensive care units in two regions of the United Kingdom. The mean tidal volume for all patients being ventilated on a mandatory ventilator mode was 7.2(±1.4) ml kg -1 predicted body weight and overall compliance with low tidal volume ventilation (≤6.5 ml kg -1 predicted body weight) was 34%. The mean tidal volume for patients ventilated with volume-controlled ventilation was 7.0(±1.2) ml kg -1 predicted body weight and 7.9(±1.8) ml kg -1 predicted body weight for pressure-controlled ventilation ( P  < 0.0001). Overall compliance with recommended levels of positive end-expiratory pressure was 72%. Significant variation in practice existed both at a regional and individual unit level.

  2. BSim models for 2 case-studies of naturally and mechanically ventilated daycare institutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanova, O.; Heiselberg, P.

    2009-06-15

    The report intends to provide complete information necessary for evaluation of assumptions made in the models and conclusions derived from the results of simulation of two different institutions in various operational modes. Thermal models are prepared for two day-care buildings, one which is mechanically ventilated and one which is naturally ventilated. All simulations were preformed in BSim, and all the models are simulated in the current version og BSim which is version 6,8,9,8. The results of the simulations showed that it is possible to reduce energy use for ventilation, both in mechanically and naturally ventilated child care center without compromising indoor air quality. (ln)

  3. Increasing the inspiratory time and I:E ratio during mechanical ventilation aggravates ventilator-induced lung injury in mice.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Felten, Matthias; Hellwig, Katharina; Wienhold, Sandra-Maria; Naujoks, Jan; Opitz, Bastian; Kershaw, Olivia; Gruber, Achim D; Suttorp, Norbert; Witzenrath, Martin

    2015-01-28

    Lung-protective ventilation reduced acute respiratory distress syndrome (ARDS) mortality. To minimize ventilator-induced lung injury (VILI), tidal volume is limited, high plateau pressures are avoided, and positive end-expiratory pressure (PEEP) is applied. However, the impact of specific ventilatory patterns on VILI is not well defined. Increasing inspiratory time and thereby the inspiratory/expiratory ratio (I:E ratio) may improve oxygenation, but may also be harmful as the absolute stress and strain over time increase. We thus hypothesized that increasing inspiratory time and I:E ratio aggravates VILI. VILI was induced in mice by high tidal-volume ventilation (HVT 34 ml/kg). Low tidal-volume ventilation (LVT 9 ml/kg) was used in control groups. PEEP was set to 2 cm H2O, FiO2 was 0.5 in all groups. HVT and LVT mice were ventilated with either I:E of 1:2 (LVT 1:2, HVT 1:2) or 1:1 (LVT 1:1, HVT 1:1) for 4 hours or until an alternative end point, defined as mean arterial blood pressure below 40 mm Hg. Dynamic hyperinflation due to the increased I:E ratio was excluded in a separate group of animals. Survival, lung compliance, oxygenation, pulmonary permeability, markers of pulmonary and systemic inflammation (leukocyte differentiation in lung and blood, analyses of pulmonary interleukin-6, interleukin-1β, keratinocyte-derived chemokine, monocyte chemoattractant protein-1), and histopathologic pulmonary changes were analyzed. LVT 1:2 or LVT 1:1 did not result in VILI, and all individuals survived the ventilation period. HVT 1:2 decreased lung compliance, increased pulmonary neutrophils and cytokine expression, and evoked marked histologic signs of lung injury. All animals survived. HVT 1:1 caused further significant worsening of oxygenation, compliance and increased pulmonary proinflammatory cytokine expression, and pulmonary and blood neutrophils. In the HVT 1:1 group, significant mortality during mechanical ventilation was observed. According to the "baby lung

  4. Development of a research-oriented system for collecting mechanical ventilator waveform data.

    Science.gov (United States)

    Rehm, Gregory B; Kuhn, Brooks T; Delplanque, Jean-Pierre; Guo, Edward C; Lieng, Monica K; Nguyen, Jimmy; Anderson, Nicholas R; Adams, Jason Y

    2017-10-28

    Lack of access to high-frequency, high-volume patient-derived data, such as mechanical ventilator waveform data, has limited the secondary use of these data for research, quality improvement, and decision support. Existing methods for collecting these data are obtrusive, require high levels of technical expertise, and are often cost-prohibitive, limiting their use and scalability for research applications. We describe here the development of an unobtrusive, open-source, scalable, and user-friendly architecture for collecting, transmitting, and storing mechanical ventilator waveform data that is generalizable to other patient care devices. The system implements a software framework that automates and enforces end-to-end data collection and transmission. A web-based data management application facilitates nontechnical end users' abilities to manage data acquisition devices, mitigates data loss and misattribution, and automates data storage. Using this integrated system, we have been able to collect ventilator waveform data from >450 patients as part of an ongoing clinical study. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Independent risk of mechanical ventilation for AIDS-related Pneumocystis carinii pneumonia associated with bronchoalveolar lavage neutrophilia

    DEFF Research Database (Denmark)

    Bang, D.; Emborg, J.; Elkjaer, J.

    2001-01-01

    The use of mechanical ventilation (MV) for AIDS-related Pneumocystis carinii pneumonia (PCP) has varied over time. The introduction of adjunctive corticosteroid therapy has changed the pathophysiology of PCP. In the present study, we attempted to identify factors predictive of severe respiratory......%). In a logistic regression analysis, higher age, increased bronchoalveolar lavage (BAL) neutrophilia and a positive BAL cytomegalovirus CMV culture were associated with the need of MV. In multivariate analyses, only BAL neutrophilia remained independently predictive of mechanical ventilation. In conclusion, short......-term mortality remained high after the introduction of adjunctive corticosteroid therapy. BAL neutrophilia may be a useful prognostic marker to identify patients at high risk of requiring mechanical ventilation Udgivelsesdato: 2001/8...

  6. The comparison of manual and LabVIEW-based fuzzy control on mechanical ventilation.

    Science.gov (United States)

    Guler, Hasan; Ata, Fikret

    2014-09-01

    The aim of this article is to develop a knowledge-based therapy for management of rats with respiratory distress. A mechanical ventilator was designed to achieve this aim. The designed ventilator is called an intelligent mechanical ventilator since fuzzy logic was used to control the pneumatic equipment according to the rat's status. LabVIEW software was used to control all equipments in the ventilator prototype and to monitor respiratory variables in the experiment. The designed ventilator can be controlled both manually and by fuzzy logic. Eight female Wistar-Albino rats were used to test the designed ventilator and to show the effectiveness of fuzzy control over manual control on pressure control ventilation mode. The anesthetized rats were first ventilated for 20 min manually. After that time, they were ventilated for 20 min by fuzzy logic. Student's t-test for p < 0.05 was applied to the measured minimum, maximum and mean peak inspiration pressures to analyze the obtained results. The results show that there is no statistical difference in the rat's lung parameters before and after the experiments. It can be said that the designed ventilator and developed knowledge-based therapy support artificial respiration of living things successfully. © IMechE 2014.

  7. Performance of low pressure mechanical ventilation concept with diffuse ceiling inlet for renovation of school classrooms

    DEFF Research Database (Denmark)

    Terkildsen, Søren; Svendsen, Svend

    In a great portion of Danish primary schools the mechanical ventilation systems is outdated or simply rely on opening of windows to ventilate the classrooms. This leads to high energy consumption for fans and/or ventilation heat losses and poor indoor environment, as the ventilation systems cannot...... provide a sufficient ventilation rate. A recent study with 750 Danish classrooms show that 56 % had CO2-concentrations over a 1000 ppm, which is the recommended limit by the Danish working environment authority and this adversely affects the performance and well being of the pupils. This paper describes...... a mechanical ventilation concept to lower energy consumption and improve the indoor environment, developed for refurbishment of school classrooms. The performance of the concept is investigated through computer simulations and measurements of energy consumption and indoor environment. The measurements are made...

  8. TLR2 deficiency aggravates lung injury caused by mechanical ventilation

    NARCIS (Netherlands)

    Kuipers, Maria Theresa; Jongsma, Geartsje; Hegeman, Maria A; Tuip-de Boer, Anita M; Wolthuis, Esther K; Choi, Goda; Bresser, Paul; van der Poll, Tom; Schultz, Marcus J; Wieland, Catharina W

    Innate immunity pathways are found to play an important role in ventilator-induced lung injury. We analyzed pulmonary expression of Toll-like receptor 2 (TLR2) in humans and mice and determined the role of TLR2 in the pathogenesis of ventilator-induced lung injury in mice. Toll-like receptor 2 gene

  9. Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems

    Science.gov (United States)

    2017-02-22

    Endotracheal tubes, high-volume, low-pressure, tracheal wall injury 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF...ventilators to the LOX devices. Ventilator settings were as follows : respiratory rate 35 breaths/min, inspiratory time 0.8 seconds, tidal volume 450 mL

  10. Mechanical Ventilation, Weaning Practices, and Decision Making in European PICUs

    NARCIS (Netherlands)

    Tume, Lyvonne N.; Kneyber, Martin C. J.; Blackwood, Bronagh; Rose, Louise

    2017-01-01

    Objectives: This survey had three key objectives: 1) To describe responsibility for key ventilation and weaning decisions in European PICUs and explore variations across Europe; 2) To describe the use of protocols, spontaneous breathing trials, noninvasive ventilation, high-flow nasal cannula use,

  11. Outcome of mechanical ventilation in patients of Guillain-Barre syndrome: An audit from a tertiary care centre

    Directory of Open Access Journals (Sweden)

    Afzal Azim

    2013-01-01

    Full Text Available Background: About a third of patients with Guillain-Barre Syndrome (GBS presents with acute respiratory failure requiring invasive mechanical ventilation. We studied the outcome of patients with GBS. Material and Methods: A retrospective data extraction was done on clinical records of 103 patients with diagnosis of GBS admitted in intensive care unit (ICU over a period of 7 years. All patients requiring ICU admission and mechanical ventilation for more than 48 h were included in the study. Demographic profile, clinical characteristics, treatment given, duration of mechanical ventilation, ICU acquired infections, incidence of pressure sores, and length of ICU stay was noted. Results: Eighty six patients fulfilled the inclusion criteria. The mean age of patients was 32.4 (± 18.12 years. Mean duration of ICU stay was 28.9 (± 26.99 days. Majority (82% of our patients were male. The most common co-morbidities were diabetes mellitus and hypertension. Axonal neuropathy was the most common (76% lesion. Autonomic dysfunction was present in 35% of patients. Fifty two percent of patients received immunoglobulin therapy while 64% of required mechanical ventilation for more than 14 days. Tracheostomy was performed in 85% of patients. Ventilator associated pneumonia (VAP was seen in 33% of patients, blood stream infection in 11% and urinary tract infection in 7%. Forty percent of patients developed bed sore grade 1-2. Seven (8.3% patients died perhaps due to complications including VAP and sepsis. Conclusions: GBS has a good outcome despite prolonged mechanical ventilation and ICU stay.

  12. The clinical impact and preventability of ventilator-associated conditions in critically ill patients who are mechanically ventilated.

    Science.gov (United States)

    Muscedere, John; Sinuff, Tasnim; Heyland, Daren K; Dodek, Peter M; Keenan, Sean P; Wood, Gordon; Jiang, Xuran; Day, Andrew G; Laporta, Denny; Klompas, Michael

    2013-11-01

    Ventilator-associated conditions (VACs) and infection-related ventilator-associated complications (iVACs) are the Centers for Disease Control and Prevention's new surveillance paradigms for patients who are mechanically ventilated. Little is known regarding the clinical impact and preventability of VACs and iVACs and their relationship to ventilator-associated pneumonia (VAP). We evaluated these using data from a large, multicenter, quality-improvement initiative. We retrospectively applied definitions for VAC and iVAC to data from a prospective time series study in which VAP clinical practice guidelines were implemented in 11 North American ICUs. Each ICU enrolled 30 consecutive patients mechanically ventilated > 48 h during each of four study periods. Data on clinical outcomes and concordance with prevention recommendations were collected. VAC, iVAC, and VAP rates over time, the agreement (κ statistic) between definitions, associated morbidity/mortality, and independent risk factors for each were determined. Of 1,320 patients, 139 (10.5%) developed a VAC, 65 (4.9%) developed an iVAC, and 148 (11.2%) developed VAP. The agreement between VAP and VAC was 0.18, and between VAP and iVAC it was 0.19. Patients who developed a VAC or iVAC had significantly more ventilator days, hospital days, and antibiotic days and higher hospital mortality than patients who had neither of these conditions. Increased concordance with VAP prevention guidelines during the study was associated with decreased VAP and VAC rates but no change in iVAC rates. VACs and iVACs are associated with significant morbidity and mortality. Although the agreement between VAC, iVAC, and VAP is poor, a higher adoption of measures to prevent VAP was associated with lower VAP and VAC rates.

  13. Non-Invasive Mechanic Ventilation Using in Flail Chest, Caused By Blunt Chest Trauma

    Directory of Open Access Journals (Sweden)

    Serdar Onat

    2008-01-01

    Full Text Available A 75-year-old woman admitted our faculty emergency room with shortness of breath, and chest pain after traffic accident’s second hour. She was diagnosed as bilateral multipl rib fractures, left clavicula fracture, and left flail chest by phsical and radiological examinations. She was transfered to Chest Surgery Depatment’s intensive care unit. The patient was undergone non-invasive mask mechanic ventilation support, because of the decreasing of blood oxygen saturation and increasing of arteriel blood partial carbondioxide pressure. The treatment of non-invasive mechanic ventilation was succesfull for ventilation support. With this report, we would like to attentioned that non-invasive mechanic ventilation for blunt chest trauma patients could be used succesfully and could be used instead of endotracheal invasive mechanic ventilation.

  14. The Society for Translational Medicine: clinical practice guidelines for mechanical ventilation management for patients undergoing lobectomy.

    Science.gov (United States)

    Gao, Shugeng; Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I; He, Jianxing; He, Jie; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua

    2017-09-01

    Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50-70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH 2 O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs

  15. The Society for Translational Medicine: clinical practice guidelines for mechanical ventilation management for patients undergoing lobectomy

    Science.gov (United States)

    Zhang, Zhongheng; Brunelli, Alessandro; Chen, Chang; Chen, Chun; Chen, Gang; Chen, Haiquan; Chen, Jin-Shing; Cassivi, Stephen; Chai, Ying; Downs, John B.; Fang, Wentao; Fu, Xiangning; Garutti, Martínez I.; He, Jianxing; Hu, Jian; Huang, Yunchao; Jiang, Gening; Jiang, Hongjing; Jiang, Zhongmin; Li, Danqing; Li, Gaofeng; Li, Hui; Li, Qiang; Li, Xiaofei; Li, Yin; Li, Zhijun; Liu, Chia-Chuan; Liu, Deruo; Liu, Lunxu; Liu, Yongyi; Ma, Haitao; Mao, Weimin; Mao, Yousheng; Mou, Juwei; Ng, Calvin Sze Hang; Petersen, René H.; Qiao, Guibin; Rocco, Gaetano; Ruffini, Erico; Tan, Lijie; Tan, Qunyou; Tong, Tang; Wang, Haidong; Wang, Qun; Wang, Ruwen; Wang, Shumin; Xie, Deyao; Xue, Qi; Xue, Tao; Xu, Lin; Xu, Shidong; Xu, Songtao; Yan, Tiansheng; Yu, Fenglei; Yu, Zhentao; Zhang, Chunfang; Zhang, Lanjun; Zhang, Tao; Zhang, Xun; Zhao, Xiaojing; Zhao, Xuewei; Zhi, Xiuyi; Zhou, Qinghua

    2017-01-01

    Patients undergoing lobectomy are at significantly increased risk of lung injury. One-lung ventilation is the most commonly used technique to maintain ventilation and oxygenation during the operation. It is a challenge to choose an appropriate mechanical ventilation strategy to minimize the lung injury and other adverse clinical outcomes. In order to understand the available evidence, a systematic review was conducted including the following topics: (I) protective ventilation (PV); (II) mode of mechanical ventilation [e.g., volume controlled (VCV) versus pressure controlled (PCV)]; (III) use of therapeutic hypercapnia; (IV) use of alveolar recruitment (open-lung) strategy; (V) pre-and post-operative application of positive end expiratory pressure (PEEP); (VI) Inspired Oxygen concentration; (VII) Non-intubated thoracoscopic lobectomy; and (VIII) adjuvant pharmacologic options. The recommendations of class II are non-intubated thoracoscopic lobectomy may be an alternative to conventional one-lung ventilation in selected patients. The recommendations of class IIa are: (I) Therapeutic hypercapnia to maintain a partial pressure of carbon dioxide at 50–70 mmHg is reasonable for patients undergoing pulmonary lobectomy with one-lung ventilation; (II) PV with a tidal volume of 6 mL/kg and PEEP of 5 cmH2O are reasonable methods, based on current evidence; (III) alveolar recruitment [open lung ventilation (OLV)] may be beneficial in patients undergoing lobectomy with one-lung ventilation; (IV) PCV is recommended over VCV for patients undergoing lung resection; (V) pre- and post-operative CPAP can improve short-term oxygenation in patients undergoing lobectomy with one-lung ventilation; (VI) controlled mechanical ventilation with I:E ratio of 1:1 is reasonable in patients undergoing one-lung ventilation; (VII) use of lowest inspired oxygen concentration to maintain satisfactory arterial oxygen saturation is reasonable based on physiologic principles; (VIII) Adjuvant drugs

  16. Ventil

    OpenAIRE

    Schmidt, U.; Schuetz, H.G.; Meinel, M.; Buehling, H.

    1998-01-01

    The valve, especially as an overload safety valve for a mechanical press, has a mechanical lock on the valve piston (1) in the pressure medium flow path between an entry (7) and outlet (9) opening. The lock is a screw which is broken by a pyrotechnic or explosive action. The valve piston (1) has the structure of a step piston, where it is under loading from the pressure medium. USE - The safety valve is for protection of a mechanical press from damage through overloading. ADVANTAGE - The stru...

  17. Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease.

    Science.gov (United States)

    Radunovic, Aleksandar; Annane, Djillali; Rafiq, Muhammad K; Brassington, Ruth; Mustfa, Naveed

    2017-10-06

    Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease, is a fatal neurodegenerative disease. Neuromuscular respiratory failure is the most common cause of death, which usually occurs within two to five years of the disease onset. Supporting respiratory function with mechanical ventilation may improve survival and quality of life. This is the second update of a review first published in 2009. To assess the effects of mechanical ventilation (tracheostomy-assisted ventilation and non-invasive ventilation (NIV)) on survival, functional measures of disease progression, and quality of life in ALS, and to evaluate adverse events related to the intervention. We searched the Cochrane Neuromuscular Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, CINAHL Plus, and AMED on 30 January 2017. We also searched two clinical trials registries for ongoing studies. Randomised controlled trials (RCTs) and quasi-RCTs involving non-invasive or tracheostomy-assisted ventilation in participants with a clinical diagnosis of ALS, independent of the reported outcomes. We included comparisons with no intervention or the best standard care. For the original review, four review authors independently selected studies for assessment. Two review authors reviewed searches for this update. All review authors independently extracted data from the full text of selected studies and assessed the risk of bias in studies that met the inclusion criteria. We attempted to obtain missing data where possible. We planned to collect adverse event data from the included studies. For the original Cochrane Review, the review authors identified two RCTs involving 54 participants with ALS receiving NIV. There were no new RCTs or quasi-RCTs at the first update. One new RCT was identified in the second update but was excluded for the reasons outlined below.Incomplete data were available for one published study comparing early and late initiation of

  18. Comparing the effects of rise time and inspiratory cycling criteria on 6 different mechanical ventilators.

    Science.gov (United States)

    Gonzales, Joshua F; Russian, Christopher J; Gregg Marshall, S; Collins, Kevin P

    2013-03-01

    Inspiratory rise time and cycling criteria are important settings in pressure support ventilation. The purpose of this study was to investigate the impact of minimum and maximum rise time and inspiratory cycling criteria settings on 6 new generation ventilators. Our hypothesis was there would be a difference in the exhaled tidal volume, inspiratory time, and peak flow among 6 different ventilators, based, on change in rise time and cycling criteria. The research utilized a breathing simulator and 4 different ventilator models. All mechanical ventilators were set to a spontaneous mode of ventilation with settings of pressure support 8 cm H2O and PEEP of 5 cm H2O. A minimum and maximum setting for rise time and cycling criteria were examined. Exhaled tidal volume, inspiratory time, and peak flow measurements were recorded for each simulation. Significant (P ventilator. Significant differences in exhaled tidal volume, inspiratory time, and peak flow were observed by adjusting rise time and cycling criteria. This research demonstrates that during pressure support ventilation strategy, adjustments in rise time and/or cycling criteria can produce changes in inspiratory parameters. Obviously, this finding has important implications for practitioners who utilize a similar pressure support strategy when conducting a ventilator wean. Additionally, this study outlines major differences among ventilator manufacturers when considering inspiratory rise time and cycling criteria.

  19. Predictors of successful weaning from prolonged mechanical ventilation in Taiwan.

    Science.gov (United States)

    Wu, Yao-Kuang; Kao, Kuo-Chin; Hsu, Kuang-Hung; Hsieh, Meng-Jer; Tsai, Ying-Huang

    2009-08-01

    For adult patients on prolonged mechanical ventilation (PMV, >/=21 days), successful weaning has been attributed to various factors. The purpose of this study was to describe patient outcomes, weaning rates and factors in successful weaning at a hospital-based respiratory care center (RCC) in Taiwan. This was a retrospective observational study performed in a 24-bed RCC over six years. A total of 1307 patients on PMV were included in the study. The overall survival rate was 62%. Fifty-six percent of patients were successfully weaned. Unsuccessfully weaned patients had higher MICU transfer rates, higher Acute Physiology and Chronic Health Evaluation II scores, longer duration of RCC stay, higher rates of being bed-ridden prior to admission, increased hemodialysis rates, higher modified Glasgow Coma Scale scores, higher rapid shallow breathing index, lower inspiratory pressure at residual volume (PImax) and lower blood urea nitrogen (BUN) and creatinine levels. Factors found to be associated with unsuccessful weaning were length of RCC stay (OR=1.04, Pventilator independence can be achieved in an RCC setting as an alternative to ICU care. Factors associated with unsuccessful weaning included longer duration of RCC stay, elevated BUN levels and lower modified GCS scores, serum albumin and PImax levels.

  20. Evaluation of the user-friendliness of 11 home mechanical ventilators.

    Science.gov (United States)

    Gonzalez-Bermejo, J; Laplanche, V; Husseini, F E; Duguet, A; Derenne, J-P; Similowski, T

    2006-06-01

    The home ventilator market has grown in size and complexity. The aim of this study was to determine if common home ventilators are user-friendly for trained intensive care unit (ICU) physicians. Eleven ventilator models were tested by 13 ICU physicians without practical experience in home mechanical ventilation. Six tests were defined (start-up, unlocking, mode and setting recognition, mode change, pressure setting and alarm). For each test, the physicians were timed and their performance compared with a reference time established by a technician. The physicians also had to rate their global assessment of each machine on a visual analogue scale. The start-up test was the only test for which there was no significant difference between the physicians and the technician, except for two ventilators. The physicians were slower than the technician to unlock the ventilator and change the ventilatory mode, with some complete failures during these tests and heterogeneous results between physicians and between ventilators. Mistakes occurred in close to 50% of cases during the ventilatory mode and settings recognition test. The mean time for the most rapid of the physicians for all the tests was 58+/-53 s, compared with 15+/-9 s for the technician. In conclusion, trained intensive care unit physicians perform poorly when confronted with home mechanical ventilators without specific prior training. Therefore, it is hypothesised that the user-friendliness of home ventilators for other categories of users might be questionable.

  1. Recent advances in mechanical ventilation in patients without acute respiratory distress syndrome

    NARCIS (Netherlands)

    Serpa Neto, Ary; Filho, Roberto R.; Rocha, Leonardo L.; Schultz, Marcus J.

    2014-01-01

    While being an essential part of general anesthesia for surgery and at times even a life-saving intervention in critically ill patients, mechanical ventilation has a strong potential to cause harm. Certain ventilation strategies could prevent, at least to some extent, the injury caused by this

  2. Institutional Care for Long-Term Mechanical Ventilation in Canada: A National Survey

    Directory of Open Access Journals (Sweden)

    Louise Rose

    2014-01-01

    Full Text Available INTRODUCTION: No national Canadian data define resource requirements and care delivery for ventilator-assisted individuals (VAIs requiring long-term institutional care. Such data will assist in planning health care services to this population.

  3. Experimental evaluation of air distribution in mechanically ventilated residential rooms

    DEFF Research Database (Denmark)

    Tomasi, R.; Krajčík, M.; Simone, A.

    2013-01-01

    The effect of low ventilation rates (1 or 0.5 air change per hour) on thermal comfort and ventilation effectiveness was experimentally studied in a simulated residential room equipped with radiant floor heating/cooling and mixing ventilation systems. The tests were performed for various positions...... of supply and extract air terminals and different winter and summer boundary conditions. Vertical air temperature, operative temperature and air velocity profiles were measured in different positions in the room, and equivalent temperatures were derived, in order to characterize thermal comfort. Contaminant...... with unconditioned outdoor air supply, i.e. at the supply air temperatures higher than the room air temperature. Moreover, low floor temperatures were needed to maintain the desired reference temperature in the stratified thermal environment. Mainly in cooling conditions the ventilation effectiveness depended...

  4. Mechanical ventilation and the total artificial heart: optimal ventilator trigger to avoid post-operative autocycling - a case series and literature review

    Directory of Open Access Journals (Sweden)

    Arabia Francisco A

    2010-05-01

    Full Text Available Abstract Many patients with end-stage cardiomyopathy are now being implanted with Total Artificial Hearts (TAHs. We have observed individual cases of post-operative mechanical ventilator autocycling with a flow trigger, and subsequent loss of autocycling after switching to a pressure trigger. These observations prompted us to do a retrospective review of all TAH devices placed at our institution between August 2007 and May 2009. We found that in the immediate post-operative period following TAH placement, autocycling was present in 50% (5/10 of cases. There was immediate cessation of autocycling in all patients after being changed from a flow trigger of 2 L/minute to a pressure trigger of 2 cm H2O. The autocycling group was found to have significantly higher CVP values than the non-autocycling group (P = 0.012. Our data suggest that mechanical ventilator autocycling may be resolved or prevented by the use of a pressure trigger rather than a flow trigger setting in patients with TAHs who require mechanical ventilation.

  5. First reported experience with intramuscular diaphragm pacing in replacing positive pressure mechanical ventilators in children.

    Science.gov (United States)

    Onders, Raymond P; Ponsky, Todd A; Elmo, MaryJo; Lidsky, Karen; Barksdale, Edward

    2011-01-01

    Diaphragm pacing (DP) has been shown to successfully replace mechanical ventilators for adult tetraplegic patients with chronic respiratory insufficiency. This is the first report of DP in ventilator-dependent children. This was a prospective interventional experience under institutional review board approval. Diaphragm pacing involves outpatient laparoscopic diaphragm motor point mapping to identify the site where stimulation causes maximum diaphragm contraction with implantation of 4 percutaneous intramuscular electrodes. Diaphragm conditioning ensues to wean the child from the ventilator. Six children were successfully implanted ranging from 5 to 17 years old with the smallest 15 kg in weight. Length of time on mechanical ventilation ranged from 11 days to 7.6 years with an average of 3.2 years. In all patients, DP provided tidal volumes above basal needs. Five of the patients underwent a home-based weaning program, whereas one patient who was implanted only 11 days post spinal cord injury never returned to the ventilator with DP use. Another patient was weaned from the ventilator full time but died of complications of his underlying brain stem tumor. The remaining patients weaned from the ventilator for over 14 hours a day and/or are actively conditioning their diaphragms. Diaphragm pacing successfully replaced mechanical ventilators, which improves quality of life. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Assessment of the impact of dipped guideways on urban rail transit systems: Ventilation and safety requirements

    Science.gov (United States)

    1982-01-01

    The ventilation and fire safety requirements for subway tunnels with dipped profiles between stations as compared to subway tunnels with level profiles were evaluated. This evaluation is based upon computer simulations of a train fire emergency condition. Each of the tunnel configurations evaluated was developed from characteristics that are representative of modern transit systems. The results of the study indicate that: (1) The level tunnel system required about 10% more station cooling than dipped tunnel systems in order to meet design requirements; and (2) The emergency ventilation requirements are greater with dipped tunnel systems than with level tunnel systems.

  7. The mechanical ventilation of suspended timber floors for radon remediation - a simple analysis

    International Nuclear Information System (INIS)

    Woolliscroft, M.

    1994-01-01

    Mechanical ventilation of the underfloor space is one of the most effective ways of reducing radon levels in buildings with suspended timber floors. There is a question, however, whether this ventilation should be supply or extract, sometimes extract is more effective, sometimes supply is more effective. This report presents a simple analysis of the problem and suggests the hypothesis that the relative effectiveness of supply or extract ventilation to the underfloor space depends on the relative airtightness of the floor and the soil or oversite surface. The analysis suggests that if the floor is relatively tight then supply ventilation may be more effective whereas if the floor is relatively leaky or there is oversite concrete then extract may be better. It is suggested that in either case it is better to keep the underfloor pressure low and that when mechanical ventilation is provided to the underfloor space it may be necessary to increase the number of airbricks. (author)

  8. Home mechanical ventilation in Canada: a national survey.

    Science.gov (United States)

    Rose, Louise; McKim, Douglas A; Katz, Sherri L; Leasa, David; Nonoyama, Mika; Pedersen, Cheryl; Goldstein, Roger S; Road, Jeremy D

    2015-05-01

    No comprehensive Canadian national data describe the prevalence of and service provision for ventilator-assisted individuals living at home, data critical to health-care system planning for appropriate resourcing. Our objective was to generate national data profiling service providers, users, types of services, criteria for initiation and monitoring, ventilator servicing arrangements, education, and barriers to home transition. Eligible providers delivering services to ventilator-assisted individuals (adult and pediatric) living at home were identified by our national provider inventory and referrals from other providers. The survey was administered via a web link from August 2012 to April 2013. The survey response rate was 152/171 (89%). We identified 4,334 ventilator-assisted individuals: an estimated prevalence of 12.9/100,000 population, with 73% receiving noninvasive ventilation (NIV) and 18% receiving intermittent mandatory ventilation (9% not reported). Services were delivered by 39 institutional providers and 113 community providers. We identified variation in initiation criteria for NIV, with polysomnography demonstrating nocturnal hypoventilation (57%), daytime hypercapnia (38%), and nocturnal hypercapnia (32%) as the most common criteria. Various models of ventilator servicing were reported. Most providers (64%) stated that caregiver competency was a prerequisite for home discharge; however, repeated competency assessment and retraining were offered by only 45%. Important barriers to home transition were: insufficient funding for paid caregivers, equipment, and supplies; a shortage of paid caregivers; and negotiating public funding arrangements. Ventilatory support in the community appears well-established, with most individuals managed with NIV. Although caregiver competency is a prerequisite to discharge, ongoing assessment and retraining were infrequent. Funding and caregiver availability were important barriers to home transition. Copyright © 2015

  9. Evaluation of an Incremental Ventilation Energy Model for Estimating Impacts of Air Sealing and Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, Willliam JN [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    Changing the rate of airflow through a home affects the annual thermal conditioning energy. Large-scale changes to airflow rates of the housing stock can significantly alter the energy consumption of the residential energy sector. However, the complexity of existing residential energy models hampers the ability to estimate the impact of policy changes on a state or nationwide level. The Incremental Ventilation Energy (IVE) model developed in this study was designed to combine the output of simple airflow models and a limited set of home characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modelers to use existing databases of home characteristics to determine the impact of policy on ventilation at a population scale. In this report, we describe the IVE model and demonstrate that its estimates of energy change are comparable to the estimates of a wellvalidated, complex residential energy model when applied to homes with limited parameterization. Homes with extensive parameterization would be more accurately characterized by complex residential energy models. The demonstration included a range of home types, climates, and ventilation systems that cover a large fraction of the residential housing sector.

  10. Is type 2 diabetes mellitus in mechanically ventilated adult trauma patients potentially related to the occurrence of ventilator-associated pneumonia?

    Directory of Open Access Journals (Sweden)

    Hadi Darvishi Khezri

    2016-01-01

    Full Text Available Background: Ventilator-associated pneumonia (VAP is a type of lung infection that typically affects critically ill patients undergoing mechanical ventilation (MV in the intensive care unit (ICU. Patients with type 2 diabetes mellitus (T2DM are considered to be more susceptible to several types of infections including community-acquired pneumonia. However, it is not clear whether T2DM is a risk factor for the development of VAP. The purpose of this study was to determine the risk of VAP for diabetic and nondiabetic mechanically ventilated trauma patients. Materials and Methods: This study is a secondary analysis of a prospective observational study of the history of T2DM in the ICU over a period of 1 year at Imam Khomeini Hospital in Iran. A total of 186 critically ill trauma patients who required at least 48 h of MV were monitored for the occurrence of VAP by their clinical pulmonary infection score (CPIS until ICU discharge, VAP diagnosis, or death. Results: Forty-one of the 186 patients developed VAP. The median time from hospitalization to VAP was 29.09 days (95% CI: 26.27-31.9. The overall incidence of VAP was 18.82 cases per 1,000 days of intubation (95% CI: 13.86-25.57. Risk of VAP in diabetic patients was greater than nondiabetic patients after adjustments for other potential factors [hazard ratio (HR: 10.12 [95% confidence interval (CI: 5.1-20.2; P < 0.0001]. Conclusion: The findings show that T2DM is associated with a significant increase in the occurrence of VAP in mechanically ventilated adult trauma patients.

  11. Using artificial intelligence to predict prolonged mechanical ventilation and tracheostomy placement.

    Science.gov (United States)

    Parreco, Joshua; Hidalgo, Antonio; Parks, Jonathan J; Kozol, Robert; Rattan, Rishi

    2018-08-01

    Early identification of critically ill patients who will require prolonged mechanical ventilation (PMV) has proven to be difficult. The purpose of this study was to use machine learning to identify patients at risk for PMV and tracheostomy placement. The Multiparameter Intelligent Monitoring in Intensive Care III database was queried for all intensive care unit (ICU) stays with mechanical ventilation. PMV was defined as ventilation >7 d. Classifiers with a gradient-boosted decision trees algorithm were created for the outcomes of PMV and tracheostomy placement. The variables used were six different severity-of-illness scores calculated on the first day of ICU admission including their components and 30 comorbidities. Mean receiver operating characteristic curves were calculated for the outcomes, and variable importance was quantified. There were 20,262 ICU stays identified. PMV was required in 13.6%, and tracheostomy was performed in 6.6% of patients. The classifier for predicting PMV was able to achieve a mean area under the curve (AUC) of 0.820 ± 0.016, and tracheostomy was predicted with an AUC of 0.830 ± 0.011. There were 60.7% patients admitted to a surgical ICU, and the classifiers for these patients predicted PMV with an AUC of 0.852 ± 0.017 and tracheostomy with an AUC of 0.869 ± 0.015. The variable with the highest importance for predicting PMV was the logistic organ dysfunction score pulmonary component (13%), and the most important comorbidity in predicting tracheostomy was cardiac arrhythmia (12%). This study demonstrates the use of artificial intelligence through machine-learning classifiers for the early identification of patients at risk for PMV and tracheostomy. Application of these identification techniques could lead to improved outcomes by allowing for early intervention. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Comparison of two humidification systems for long-term noninvasive mechanical ventilation.

    Science.gov (United States)

    Nava, S; Cirio, S; Fanfulla, F; Carlucci, A; Navarra, A; Negri, A; Ceriana, P

    2008-08-01

    There is no consensus concerning the best system of humidification during long-term noninvasive mechanical ventilation (NIMV). In a technical pilot randomised crossover 12-month study, 16 patients with stable chronic hypercapnic respiratory failure received either heated humidification or heat and moisture exchanger. Compliance with long-term NIMV, airway symptoms, side-effects and number of severe acute pulmonary exacerbations requiring hospitalisation were recorded. Two patients died. Intention-to-treat statistical analysis was performed on 14 patients. No significant differences were observed in compliance with long-term NIMV, but 10 out of 14 patients decided to continue long-term NIMV with heated humidification at the end of the trial. The incidence of side-effects, except for dry throat (significantly more often present using heat and moisture exchanger), hospitalisations and pneumonia were not significantly different. In the present pilot study, the use heated humidification and heat and moisture exchanger showed similar tolerance and side-effects, but a higher number of patients decided to continue long-term noninvasive mechanical ventilation with heated humidification. Further larger studies are required in order to confirm these findings.

  13. A guide to ventilation requirements for uranium mines and mills. Regulatory guide G-221

    International Nuclear Information System (INIS)

    2003-06-01

    The purpose of G-221 is to help persons address the requirements for the submission of ventilation-related information when applying for a Canadian Nuclear Safety Commission (CNSC) licence to site and construct, operate or decommission a uranium mine or mill. This guide is also intended to help applicants for a uranium mine or mill licence understand their operational and maintenance obligations with respect to ventilation systems, and to help CNSC staff evaluate the adequacy of applications for uranium mine and mill licences. This guide is relevant to any application for a CNSC licence to prepare a site for and construct, operate or decommission a uranium mine or mill. In addition to summarizing the ventilation-related obligations or uranium mine and mill licensee, the guide describes and discusses the ventilation-related information that licence applicants should typically submit to meet regulatory requirements. The guide pertains to any ventilation of uranium mines and mills for the purpose of assuring the radiation safety of workers and on-site personnel. This ventilation may be associated with any underground or surface area or premise that is licensable by the CNSC as part of a uranium mine or mill. These areas and premises typically include mine workings, mill buildings, and other areas or premises involving or potentially affected by radiation or radioactive materials. Some examples of the latter include offices, effluent treatment plants, cafeterias, lunch rooms and personnel change-rooms. (author)

  14. A Contemporary Assessment of Acute Mechanical Ventilation in Beijing: Description, Costs, and Outcomes.

    Science.gov (United States)

    Ye, Yanping; Zhu, Bo; Jiang, Li; Jiang, Qi; Wang, Meiping; Hua, Lin; Xi, Xiuming

    2017-07-01

    To evaluate the contemporary practice, outcomes, and costs related to mechanical ventilation among ICUs in China. A prospective observational cohort study. Fourteen ICUs among 13 hospitals in Beijing, China. Seven hundred ninety-three patients who received at least 24 hours of mechanical ventilation within the first 48 hours of ICU stay. None. The mean age was 64 years. Sixty-three percent were male. New acute respiratory failure accounted for 85.5% of mechanical ventilation cases. Only 4.7% of the patients received mechanical ventilation for acute exacerbation of chronic obstructive pulmonary disease. The most widely used ventilation mode was the combination of synchronized intermittent mandatory ventilation and pressure support (43.6%). Use of lung-protective ventilation is widespread with tidal volumes of 7.1 mL/kg (2.1 mL/kg). The ICU/hospital mortality was 27.6%/29.3%, respectively (8.5%/9.7% for surgical patients and 41.3%/43.2% for medical patients, respectively). The mean level of ICU/hospital cost per patient was $15,271 (18,940)/$22,946 (25,575), respectively. The mean daily ICU cost per patient was $1,212. For the first time, we obtained a preliminary epidemiology data of mechanical ventilation in Beijing, China, through the study. Compared with the other nations, our patients are older, predominantly male, and treated according to prevailing international guidelines yet at a relatively high cost and high mortality. The expanding elderly population predicts increase demand for mechanical ventilation that must be met by continuous improvement in quality and efficiency of critical care services.

  15. Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung.

    Directory of Open Access Journals (Sweden)

    Andreas A Kroon

    Full Text Available RATIONALE: The molecular mechanism(s by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown. OBJECTIVE: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats. METHODS: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg⁻¹. MEASUREMENT AND MAIN RESULTS: Ventilation for 24 h (h decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8-24 h of ventilation, while that of p27(Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57(Kip2, decreased that of p16(INK4a, while the levels of p21(Waf/Cip1 and p15(INK4b were unchanged. Increased p27(Kip1 expression coincided with reduced phosphorylation of p27(Kip1 at Thr¹⁵⁷, Thr¹⁸⁷ and Thr¹⁹⁸ (p<0.05, thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg⁻¹ and when fetal lung epithelial cells were subjected to a continuous (17% elongation cyclic stretch. CONCLUSION: This is the first demonstration that prolonged (24 h of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G₁ and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27(Kip1, p57(Kip2 from the Kip family.

  16. Comparison of Invasive and Noninvasive Mechanical Ventilation for Patients with COPD:Randomised Prospective Study

    Directory of Open Access Journals (Sweden)

    Ivo Matic

    2008-01-01

    Full Text Available Acute respiratory failure due to chronic obstructive pulmonary disease presents an increasing problem for both health and economics in the modern world. The goal of this study was to compare invasive and noninvasive mechani-cal ventilation for patients with COPD. A prospective, randomized trial was performed in a multidisciplinary intensive care unit. Of 614 patients requiring mechanical ventilation (MV longer than 24h, after excluding those who didn′t meet the inclusion criteria, 72 patients with COPD remained the research sample. The MV procedure was per-formed using standard methods, applying two MV methods: invasive MV and noninvasive MV. Patients were ran-domized into two groups for MV application using closed, non transparent envelopes. Comparison was made based on patient characteristics, objective parameters 1h, 4h, 24h, and 48h after admission and finally treatment outcome. In patients with COPD NIMV had statistically better outcome compared to IMV with MV duration NIMV:IMV 102:187h, p < 0.001, time spent in ICU 127:233h, p < 0.001. Need for intubation/reintubation 16 (42.1%:34 (100%/4 (11.8%, p < 0.001, hospital pneumonia 2 (5.3%:18 (52.9%, p =0.001. Applying strict application protocols, and based on com-parison of objective parameters of pulmonary mechanics, biochemistry and finally treatment outcome, high advantage of NIMV method was confirmed.

  17. Liquid ventilation.

    Science.gov (United States)

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  18. Effects of thoracic squeezing on airway secretion removal in mechanically ventilated patients

    Directory of Open Access Journals (Sweden)

    Farkhondeh Yousefnia-Darzi

    2016-01-01

    Conclusions: According to the study findings, endotracheal suction with thoracic squeezing on expiration helps airway secretion discharge more than suction alone in patients on mechanical ventilators and can be used as an effective method.

  19. Experts' opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation

    NARCIS (Netherlands)

    Vieillard-Baron, A.; Matthay, M.; Teboul, J. L.; Bein, T.; Schultz, M.; Magder, S.; Marini, J. J.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is frequently associated with hemodynamic instability which appears as the main factor associated with mortality. Shock is driven by pulmonary hypertension, deleterious effects of mechanical ventilation (MV) on right ventricular (RV) function, and

  20. [Phrenic nerve stimulation protects against mechanical ventilation-induced diaphragmatic dysfunction through myogenic regulatory factors].

    Science.gov (United States)

    An, G H; Chen, M; Zhan, W F; Hu, B; Zhang, H X

    2018-02-12

    Objective: To explore the protective effect of electrical stimulation of phrenic nerve on diaphragmatic function during mechanical ventilation. Methods: Forty healthy adult SD rats were randomly divided into 5 groups: blank control group (BC), spontaneous breathing group (SB), electrical stimulation group (ES), mechanical ventilation group (MV), and electrical stimulation and mechanical ventilation group (MS). The rats in each group were treated for 18 h except for the BC group. After treatment, the diaphragm muscle tissue was obtained and the diaphragm contractility including peak-to-peak value(Vpp) and maximum rate of contraction(+ dT/dt max) were measured. Expression of MyoD and myogenin were detected. Results: Except for the ES and the MS groups, there was a significant difference for peak-to-peak value (Vpp) between each 2 groups ( P mechanical ventilation induced diaphragmatic function damage, and therefore plays a protective effect on the diaphragm.

  1. Case Report of the Use of Mechanical Ventilation Protective Modes in Werdnig-Hoffmann Disease Domiciliary

    Directory of Open Access Journals (Sweden)

    I.V. Gutsul

    2014-08-01

    Full Text Available The article describes our own clinical observation of using mechanical ventilation protective modes in a child with Werdnig-Hoffmann disease and contracture of the upper and lower extremities.

  2. MEASUREMENT OF AMMONIA EMISSIONS FROM MECHANICALLY VENTILATED POULTRY HOUSES USING MULTIPATH TUNABLE DIODE LASER SPECTROSCOPY

    Science.gov (United States)

    Ammonia emissions from mechanically ventilated poultry operations are an important environmental concern. Open Path Tunable Diode Laser Absorption Spectroscopy has emerged as a robust real-time method for gas phase measurement of ammonia concentrations in agricultural settings. ...

  3. Assessing the influence of mechanical ventilation on blood gases and blood pressure in rattlesnakes

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Buchanan, Rasmus; Jensen, Heidi Meldgaard

    2014-01-01

    OBJECTIVE: To characterize the impact of mechanical positive pressure ventilation on heart rate (HR), arterial blood pressure, blood gases, lactate, glucose, sodium, potassium and calcium concentrations in rattlesnakes during anesthesia and the subsequent recovery period. STUDY DESIGN: Prospectiv...

  4. The Use of Noninvasive Mechanical Ventilation for the Treatment of Acute Exacerbations of Copd in Canada

    Directory of Open Access Journals (Sweden)

    Jennifer Drummond

    2005-01-01

    Full Text Available BACKGROUND: Noninvasive mechanical ventilation (NIMV is accepted as a life-saving treatment for patients presenting to the emergency department and other acute care settings with severe exacerbations of chronic obstructive pulmonary disease (COPD.

  5. [Likeness between respiratory responses on CO2 in conditions of natural breathing and voluntary-controlled mechanical ventilation].

    Science.gov (United States)

    Pogodin, M A; Granstrem, M P; Dimitrienko, A I

    2007-04-01

    We did Read CO2 rebreathing tests in 8 adult males. Both at natural breathing, and at self-controlled mechanical ventilation, volunteers increased ventilation proportionally to growth end-tidal PCO2. Inside individual distinctions of responses to CO2 during controlled mechanical ventilation are result of the voluntary motor control.

  6. The impact of aerosolized mucolytic agents on the airflow resistance of bacterial filters used in mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Han-Chung Hu

    2015-08-01

    Conclusion: This study demonstrated the aerosolized mucolytic agents could increase the pressure drop of the bacterial filters during mechanical ventilation. The pressure drop of the bacterial filters was higher with 10% acetylcysteine. It is critical to continuously monitor the expiration resistance, auto-positive end-expiratory pressure, and ventilator output waveform when aerosolized 10% acetylcysteine was used in mechanical ventilation patients.

  7. Effects of pleural effusion drainage on oxygenation, respiratory mechanics, and hemodynamics in mechanically ventilated patients.

    Science.gov (United States)

    Razazi, Keyvan; Thille, Arnaud W; Carteaux, Guillaume; Beji, Olfa; Brun-Buisson, Christian; Brochard, Laurent; Mekontso Dessap, Armand

    2014-09-01

    In mechanically ventilated patients, the effect of draining pleural effusion on oxygenation is controversial. We investigated the effect of large pleural effusion drainage on oxygenation, respiratory function (including lung volumes), and hemodynamics in mechanically ventilated patients after ultrasound-guided drainage. Arterial blood gases, respiratory mechanics (airway, pleural and transpulmonary pressures, end-expiratory lung volume, respiratory system compliance and resistance), and hemodynamics (blood pressure, heart rate, and cardiac output) were recorded before and at 3 and 24 hours (H24) after pleural drainage. The respiratory settings were kept identical during the study period. The mean volume of effusion drained was 1,579 ± 684 ml at H24. Uncomplicated pneumothorax occurred in two patients. Respiratory mechanics significantly improved after drainage, with a decrease in plateau pressure and a large increase in end-expiratory transpulmonary pressure. Respiratory system compliance, end-expiratory lung volume, and PaO2/FiO2 ratio all improved. Hemodynamics were not influenced by drainage. Improvement in the PaO2/FiO2 ratio from baseline to H24 was positively correlated with the increase in end-expiratory lung volume during the same time frame (r = 0.52, P = 0.033), but not with drained volume. A high value of pleural pressure or a highly negative transpulmonary pressure at baseline predicted limited lung expansion following effusion drainage. A lesser improvement in oxygenation occurred in patients with ARDS. Drainage of large (≥500 ml) pleural effusion in mechanically ventilated patients improves oxygenation and end-expiratory lung volume. Oxygenation improvement correlated with an increase in lung volume and a decrease in transpulmonary pressure, but was less so in patients with ARDS.

  8. Establishing Trailer Ventilation (Boarding) Requirements for Finishing Pigs during Transport.

    Science.gov (United States)

    McGlone, John; Sapkota, Avi; Johnson, Anna; Kephart, Rebecca

    2014-08-19

    Specifically, this study aimed to establish the effects on mortality and morbidity of boarding levels (amount of side-wall trailer ventilation) for finishing pigs in mild weather (8.80 ± 0.30 °C, 71.70% ± 1.12% humidity). Pigs from commercial finishing sites were transported in 302 pot-bellied trailers to commercial processing plants. Measures collected at the processing plant were rates of dead on arrival (DOA), non-ambulatory, non-injured (NANI), non-ambulatory, injured (NAI), and total dead and down (D&D). Boarding levels (% that side walls were closed off with inserted boards) were divided into 3 bins: low, medium, and high, and outside temperature was divided into 4 bins 15 °C. Average rates of DOA, NANI, NAI, and D&D were approximately 0.30%, 0.12%, 0.04%, and 0.46%, respectively. The D&D was highest when boarding level was low with temperatures boarding level (medium and high boarding) in the temperature range of 5.10 °C to 23.30 °C did not affect pig losses.

  9. Low skeletal muscle area is a risk factor for mortality in mechanically ventilated critically ill patients

    OpenAIRE

    Weijs, Peter JM; Looijaard, Wilhelmus GPM; Dekker, Ingeborg M; Stapel, Sandra N; Girbes, Armand R; Straaten, Heleen M Oudemans-van; Beishuizen, Albertus

    2014-01-01

    Introduction Higher body mass index (BMI) is associated with lower mortality in mechanically ventilated critically ill patients. However, it is yet unclear which body component is responsible for this relationship. Methods This retrospective analysis in 240 mechanically ventilated critically ill patients included adult patients in whom a computed tomography (CT) scan of the abdomen was made on clinical indication between 1 day before and 4 days after admission to the intensive care unit. CT s...

  10. Open-lung protective ventilation with pressure control ventilation, high-frequency oscillation, and intratracheal pulmonary ventilation results in similar gas exchange, hemodynamics, and lung mechanics.

    Science.gov (United States)

    Sedeek, Khaled A; Takeuchi, Muneyuki; Suchodolski, Klaudiusz; Vargas, Sara O; Shimaoka, Motomu; Schnitzer, Jay J; Kacmarek, Robert M

    2003-11-01

    Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial. Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 > 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h. There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV. These data indicate that HFO, ITPV, and PCV when applied with an open-lung protective ventilatory strategy results in the same gas exchange, lung mechanics, and hemodynamic response, but pilot data indicate that lung injury may be greater with PCV.

  11. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [Building Science Corporation, Westford, MA (United States)

    2014-01-01

    Optimizing whole house mechanical ventilation as part of the Building Ameerica program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this report is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  12. Benefits and complications of noninvasive mechanical ventilation for acute exacerbation of chronic obstructive pulmonary disease.

    Science.gov (United States)

    Rocha, Eduardo; Carneiro, Elida Mara

    2008-06-01

    Chronic obstructive pulmonary disease (COPD) is defined as a syndrome characterized by usually progressive chronic airflow limitation which is associated to a bronchial hyperresponsiveness and is partially reversible. Noninvasive mechanical ventilation is an alternative treatment for patients with COPD exacerbations. The objective of the literature reviews was to verify noninvasive mechanical ventilation benefits and complications in acute exacerbations of chronic obstructive pulmonary disease in patients. This national and international's scientific literature review was developed according to criteria established for documentary research in the MedLine, LILACS, SciElo, PubMed and Cochrane, databases using the key words: chronic obstructive pulmonary disease and noninvasive mechanical ventilation. Inclusion criteria were articles published from 1995 to 2007; in English, Spanish and Portuguese; studies in the human model and with no gender restriction. Noninvasive mechanical ventilation can reduce partial pressure of carbon dioxide, improve gas exchange, alleviate symptoms as dyspnea caused by fatigue of the respiratory muscles, reduce duration of hospitalization, decrease need for invasive mechanical ventilation, reduce number of complications and also lessen hospital mortality. The main complications found were: facial skin erythema, claustrophobia, nasal congestion, face pain, eye irritation, aspiration pneumonia, hypotension, pneumothorax, aerophagia, hypercapnia, gastric insufflation, vomit, bronchoaspiration, morning headaches, face injuries, air embolism and, last but not least, discomfort of the patient. Noninvasive mechanical ventilation can be more effective in patients with moderate-severe exacerbations of COPD and these complications can be minimized by an adequate interface also by the contribution of the physiotherapist experience.

  13. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  14. [A young child with respiratory acidosis and hypoxia from mechanical ventilation with equipment made for adults].

    Science.gov (United States)

    Joor, Fleur; Markhorst, Dick G; Kneyber, Martin C J; van Heerde, Marc

    2011-01-01

    During mechanical ventilation of young children, problems may arise due to the additional dead space of the ventilation circuit. This may lead to respiratory acidosis and even hypoxia in the child. A 3-month-old boy suffered from frequent apnoea. He was mechanically ventilated for this. Shortly after its initiation, he developed severe respiratory acidosis, hypoxemia and circulatory insufficiency. This was due to a large additional dead space caused by the use of equipment components made for adults. After he was switched to a circuit suitable for himself, he recovered rapidly. As a rule of thumb, an additional dead space of 1.5-2 ml/kg body weight is acceptable in young children. Emergency wards for young children should have specific equipment to mechanically ventilate them, and have a protocol paying explicit attention to the dead space.

  15. Influence of tidal volume on ventilation inhomogeneity assessed by electrical impedance tomography during controlled mechanical ventilation

    International Nuclear Information System (INIS)

    Becher, T; Kott, M; Schädler, D; Vogt, B; Meinel, T; Weiler, N; Frerichs, I

    2015-01-01

    The global inhomogeneity (GI) index is a parameter of ventilation inhomogeneity that can be calculated from images of tidal ventilation distribution obtained by electrical impedance tomography (EIT). It has been suggested that the GI index may be useful for individual adjustment of positive end-expiratory pressure (PEEP) and for guidance of ventilator therapy. The aim of the present work was to assess the influence of tidal volume (V_T) on the GI index values. EIT data from 9 patients with acute respiratory distress syndrome ventilated with a low and a high V_T of 5   ±   1 (mean  ±  SD) and 9   ±   1 ml kg"−"1 predicted body weight at a high and a low level of PEEP (PEEP_h_i_g_h, PEEP_l_o_w) were analyzed. PEEP_h_i_g_h and PEEP_l_o_w were set 2 cmH_2O above and 5 cmH_2O below the lower inflection point of a quasi-static pressure volume loop, respectively. The lower inflection point was identified at 8.1   ±   1.4 (mean  ±  SD) cmH_2O, resulting in a PEEP_h_i_g_h of 10.1   ±   1.4 and a PEEP_l_o_w of 3.1   ±   1.4 cmH_2O. At PEEP_h_i_g_h, we found no significant trend in GI index with low V_T when compared to high V_T (0.49   ±   0.15 versus 0.44   ±   0.09, p = 0.13). At PEEP_l_o_w, we found a significantly higher GI index with low V_T compared to high V_T (0.66   ±   0.19 versus 0.59   ±   0.17, p = 0.01). When comparing the PEEP levels, we found a significantly lower GI index at PEEP_h_i_g_h both for high and low V_T. We conclude that high V_T may lead to a lower GI index, especially at low PEEP settings. This should be taken into account when using the GI index for individual adjustment of ventilator settings. (paper)

  16. Weaning from mechanical ventilation: factors that influence intensive care nurses' decision-making.

    Science.gov (United States)

    Tingsvik, Catarina; Johansson, Karin; Mårtensson, Jan

    2015-01-01

    The aim of the study was to describe the factors that influence intensive care nurses' decision-making when weaning patients from mechanical ventilation. Patients with failing vital function may require respiratory support. Weaning from mechanical ventilation is a process in which the intensive care nurse participates in both planning and implementation. A qualitative approach was used. The data were collected by means of semi-structured interviews with 22 intensive care nurses. The interviews were transcribed and analysed using qualitative content analysis. One theme emerged: 'A complex nursing situation where the patient receives attention and which is influenced by the current care culture'. There was consensus that the overall assessment of the patient made by the intensive care nurse was the main factor that influenced the decision-making process. This assessment was a continuous process consisting of three factors: the patient's perspective as well as her/his physical and mental state. On the other hand, there was a lack of consensus about what other factors influenced the decision-making process. These factors included the care culture constituted by the characteristics of the team, the intensive care nurses' professional skills, personalities and ability to be present. The individual overall assessment of the patient enabled nursing care from a holistic perspective. Furthermore, the weaning process can be more effective and potential suffering reduced by creating awareness of the care culture's impact on the decision-making process. © 2014 British Association of Critical Care Nurses.

  17. Stressful experiences in relation to depth of sedation in mechanically ventilated patients.

    Science.gov (United States)

    Samuelson, Karin A M; Lundberg, Dag; Fridlund, Bengt

    2007-01-01

    In mechanically ventilated patients, sedatives and analgesics are commonly used to ensure comfort, but there is no documented knowledge about the impact of depth of sedation on patients' perception of discomfort. The aim of this study was, therefore, to investigate the relationship between stressful experiences and intensive care sedation, including the depth of sedation. During 18 months, 313 intubated mechanically ventilated adults admitted to two general intensive care units (ICU) for more than 24 h were included. Patients (n = 250) were interviewed on the general ward 5 days after ICU discharge using the ICU Stressful Experiences Questionnaire. Patient data including sedation scores as measured by the Motor Activity Assessment Scale (MAAS) were collected from hospital records after the interview. Of the 206 patients with memories of the intensive care, 82% remembered at least one experience as quite a bit or extremely bothersome. Multivariate analyses showed that higher proportion of MAAS score 3 (indicating more periods of wakefulness), longer ICU stay and being admitted emergent were factors associated with remembering stressful experiences of the ICU as more bothersome. The findings indicate that the depth of sedation has an impact on patients' perception of stressful experiences and that light sedation compared with heavy seems to increase the risk of perceiving experiences in the ICU as more bothersome. In reducing discomfort, depth of sedation and patient comfort should be assessed regularly, non-pharmacological interventions taken into account and the use of sedatives and analgesics adapted to the individual requirements of the patient.

  18. [Nasal CPAP versus mechanical ventilation in 28 to 32-week preterm infants with early surfactant administration].

    Science.gov (United States)

    Pérez, Luis Alfonso; González, Diana Marcela; Álvarez, Karen Margarita de Jesús; Díaz-Martínez, Luis Alfonso

    2014-01-01

    Continuous positive airway pressure (CPAP) is useful in low birth weight infants with respiratory distress, but it is not known if it is a better alternative to mechanical ventilation after early pulmonary surfactant administration. To compare the incidence of adverse events in 28 to 32-week newborns with respiratory distress managed with mechanical ventilation or CPAP after early surfactant administration. In total, 176 newborns were treated with CPAP and 147 with mechanical ventilation, all with Apgar scores >3 at five minutes and without apnea. The incidence of CPAP failure was 6.5% (95% CI: 11.3-22.8%); 29 patients died: 7 with CPAP (4.0%) and 22 with mechanical ventilation (15.0%, pmechanical ventilation was 0.27 (95% CI: 0.12-0.61), but after adjusting for confounding factors, CPAP use did not imply a higher risk of dying (RR=0.60; 95% CI: 0.29-1.24). Mechanical ventilation fatality rate was 5.70 (95% CI: 3.75-8.66) deaths/1,000 days-patient, while with CPAP it was 1.37 (95% CI: 0.65-2.88, pmechanical ventilation (RR=0.71; 95% CI: 0.54-0.96), as were intracranial hemorrhage (RR=0.28, 95% CI: 0.09-0.84) and sepsis (RR=0.67; 95%CI: 0.52-0.86), and it was similar for air leaks (RR=2.51; 95% CI: 0.83-7.61) and necrotizing enterocolitis (RR=1.68, 95% CI: 0.59-4.81). CPAP exposure of premature infants with respiratory distress syndrome is protective against chronic lung disease, intraventricular hemorrhage and sepsis compared to mechanical ventilation. No differences were observed regarding air leak syndrome or death.

  19. Wind- and stack-assisted mechanical ventilation with heat recovery and night cooling

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    presented the outline of a heat recovery concept suitable for stack and wind-assisted mechanical ventilation systems with total system pressure losses of 74Pa. The heat recovery concept is based on two air-to-water exchangers connected by a liquid loop powered by a pump. The core element of the concept......, a prototype of a heat exchanger, was developed based on design criteria about pressure drop, eciency and production concerns. The exchanger is based on banks of plastic tubing cris-crossing the air flow, thus creating approximate counter flow between air and water. Round PE plastic tubing is used. The tubing...... is commonly used for water-based floor-heating systems. Oval or even wing shaped tubes may have better heat transfer and lower drag coecient, but round tubes require less meticulous production procedures. The tubing used here is mass-produced, cheap, and flexible but the current design does require many...

  20. Mechanical ventilation in patients with most severe forms of influenza a H1N1

    Directory of Open Access Journals (Sweden)

    Romić Predrag

    2011-01-01

    Full Text Available Background/Aim. Pandemic of A H1N1 influenza is noted for its rapid spreading and life-threatening consequences like acute respiratory distress syndrome (ARDS which requires mechanical ventilation (MV and intensive therapy (IT. The aim of the study was to determine the significance of mechanical ventilation application in the presence of comorbidities on the outcome of the disease and patients with severe forms of acute influenza caused by A H1N1 virus. Methods. Five patients with acute respiratory failure caused by A H1N1 influenza that required MV were included in the study. Course and outcome of the treatment were monitored in relation to age and sex of the patients, concomitant diseases, time of influenza beginning, a time of admittance in an intensive care unit, a time of an endotracheal intubation and MV beginning, MV duration and occurrence of secondary infections. Results. Three patients were on a very prolonged MV (39, 43 and 20 days, respectively and they all survived. Two patients with a significantly shorter duration of MV (14 and 12 days, respectively died because of a very severe clinical course and concomitant diseases. Unexpectedly, we found a positive correlation between duration of MV and survival although two patients, who were on MV for the longest period of time (43 and 39 days, respectively, developed, as a complication, secondary bacterial pneumonia. Conclusion. Intensive therapy of patients with ARDS due to A H1N1 influenza virus requires MV which should be carried out according to guidelines of international expert forums. That is in accordance with our unexpected observation on negative correlation between duration of MV and fatal outcome. Intensive treatment of these patients, specially MV, can be very prolonged and, therefore, requires specialized teams of anesthesiologists, separate, isolated intensive therapy units and high level of medical staff protection, as was the case in this study, so no member of medical

  1. Change-over natural and mechanical ventilation system energy consumption in single-family buildings

    Science.gov (United States)

    Kostka, Maria; Szulgowska-Zgrzywa, Małgorzata

    2017-11-01

    The parameters of the outside air in Poland cause that in winter it is reasonable to use a mechanical ventilation equipped with a heat recovery exchanger. The time of spring, autumn, summer evenings and nights are often characterized by the parameters of the air, which allow for a natural ventilation and reduce the electricity consumption. The article presents the possibilities of energy consumption reduction for three energy standards of buildings located in Poland, ventilated by a change-over hybrid system. The analysis was prepared on the assumption that the air-to-water heat pump is the heat source for the buildings.

  2. Endoscopic Intubation with Aid of Mechanical Ventilation via a Dedicated Nasopharyngeal Airway

    Directory of Open Access Journals (Sweden)

    Wen-Jue Soong

    2007-09-01

    Full Text Available A young child with jaw-neck-sternum immobility suffering from acute upper airway obstruction was treated with nasotracheal intubation using flexible endoscope (FE. During this difficult intubation, an inserted trimming endotracheal tube acted as a nasopharyngeal airway and simultaneous supplement with mechanical ventilation through the tube successfully resuscitated and improved the patient's ventilation and oxygenation. This management can greatly facilitate visualization of the laryngeal apparatus and translaryngeal passage of the FE. This technique can be helpful in resuscitative ventilation and difficult intubation in a critical upper airway emergency.

  3. Theoretical study of inspiratory flow waveforms during mechanical ventilation on pulmonary blood flow and gas exchange.

    Science.gov (United States)

    Niranjan, S C; Bidani, A; Ghorbel, F; Zwischenberger, J B; Clark, J W

    1999-08-01

    A lumped two-compartment mathematical model of respiratory mechanics incorporating gas exchange and pulmonary circulation is utilized to analyze the effects of square, descending and ascending inspiratory flow waveforms during mechanical ventilation. The effects on alveolar volume variation, alveolar pressure, airway pressure, gas exchange rate, and expired gas species concentration are evaluated. Advantages in ventilation employing a certain inspiratory flow profile are offset by corresponding reduction in perfusion rates, leading to marginal effects on net gas exchange rates. The descending profile provides better CO2 exchange, whereas the ascending profile is more advantageous for O2 exchange. Regional disparities in airway/lung properties create maldistribution of ventilation and a concomitant inequality in regional alveolar gas composition and gas exchange rates. When minute ventilation is maintained constant, for identical time constant disparities, inequalities in compliance yield pronounced effects on net gas exchange rates at low frequencies, whereas the adverse effects of inequalities in resistance are more pronounced at higher frequencies. Reduction in expiratory air flow (via increased airway resistance) reduces the magnitude of upstroke slope of capnogram and oxigram time courses without significantly affecting end-tidal expired gas compositions, whereas alterations in mechanical factors that result in increased gas exchanges rates yield increases in CO2 and decreases in O2 end-tidal composition values. The model provides a template for assessing the dynamics of cardiopulmonary interactions during mechanical ventilation by combining concurrent descriptions of ventilation, capillary perfusion, and gas exchange. Copyright 1999 Academic Press.

  4. Mechanical ventilators availability survey in Thai ICUs (ICU-RESOURCE I Study).

    Science.gov (United States)

    Chittawatanarat, Kaweesak; Bunburaphong, Thananchai; Champunot, Ratapum

    2014-01-01

    Mechanical ventilators (MV) have been progressing rapidly. New ventilator modes and supportive equipments have been developed. However; the MV status in Thai ICUs was not available. The objective of this report was to describe the MV supply and availability in Thai ICUs and review some important characteristics regarding of the availability of MV MATERIAL AND METHOD: The ICU RESOURCE I study (Mechanical ventilator part) database was used in the present study. Hospital types, MV brands and models were recorded. Statistically significant differences between and among groups were defined as p-value ventilators were also a high proportion of the MVs in Thai ICUs. Bennette and Hamilton were the most highly available MVin this survey. Advanced MV models were more available in academic ICUs (Thai Clinical Trial Registry: TCTR-201200005).

  5. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Science.gov (United States)

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  6. Radon mitigation with mechanical supply and exhaust ventilation adjusted by a pressure control unit

    International Nuclear Information System (INIS)

    Kokotti, H.; Keskikuru, T.; Kalliokoski, P.

    1993-01-01

    Effective ventilation and positive or low negative pressure indoors are suggested to low indoor radon levels. The aim of this study is to develop and to test an equipment, which makes it possible to achieve simultaneously effective ventilation and minimum outdoor-pressure difference. The unit includes mechanical supply and exhaust air fans, a exchanger and a pressure control unit in direct digital control (DDC), which adjusts continuously air exchange based on the pressure difference transmitter information. (orig.). (8 refs., 6 figs.)

  7. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation.

    Science.gov (United States)

    Chen, Yen-Huey; Lin, Hui-Ling; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Kao, Kuo-Chin; Huang, Chung-Chi; Tsai, Ying-Huang

    2012-05-01

    The functional status and outcomes in patients with prolonged mechanical ventilation (PMV) are often limited by poor endurance and pulmonary mechanics, which result from the primary diseases or prolonged time bedridden. We evaluate the impact of exercise training on pulmonary mechanics, physical functional status, and hospitalization outcomes in PMV patients. Twenty-seven subjects with PMV in our respiratory care center (RCC) were divided randomly into an exercise training group (n = 12) and a control group (n = 15). The exercise program comprised 10 sessions of exercise training. The measurement of pulmonary mechanics and physical functional status (Functional Independence Measurement and Barthel index) were performed pre-study and post-study. The hospitalization outcomes included: days of mechanical ventilation, hospitalization days, and weaning and mortality rates during RCC stay. The training group had significant improvement in tidal volume (143.6 mL vs 192.5 mL, P = .02) and rapid shallow breathing index after training (162.2 vs 110.6, P = .009). No significant change was found in the control group except respiratory rate. Both groups had significant improvement in functional status during the study. However, the training group had greater changes in FIM score than the control group (44.6 vs 34.2, P = .024). The training group also had shorter RCC stay and higher weaning and survival rates than the control group, although no statistical difference was found. Subjects with PMV in our RCC demonstrated significant improvement in pulmonary mechanics and functional status after exercise training. The application of exercise training may be helpful for PMV patients to improve hospitalization outcomes.

  8. A study of the protective effect and mechanism of ketamine on acute lung injury induced by mechanical ventilation.

    Science.gov (United States)

    Wang, W-F; Liu, S; Xu, B

    2017-03-01

    To investigate the protective effects and mechanism of ketamine on acute lung injury induced by mechanical ventilation. 63 patients with acute lung injury caused by mechanical ventilation in our hospital between June 2014 and May 2015 were chosen and divided into three groups: group A, B, and C. Group A (20 cases) received conventional treatment. Group B (21 cases) was treated with propofol and group C (22 cases) with ketamine. The ventilator application time, the success rate of weaning, the mortality rate, inflammation index (IL-1, Caspase-1, and NF-κB), pulmonary function index and oxygen saturation were compared. The ventilator application time and the mortality rate of group B and group C were significantly (p 0.05). After the intervention, the levels of FEV1, FEV1/FVC, FVC and PEER in the three groups increased, but more remarkably in group B and group C (p mechanical ventilation. They shorten the application time of ventilator, improve the success rate of weaning and reduce the mortality rate which is probably related to the reduction of the degree of inflammatory reaction. Ketamine is more effective in reducing inflammatory factors including IL-1β, Caspase-1, and NF-κB than propofol.

  9. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery.

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation.

  10. Population pharmacodynamic model of bicarbonate response to acetazolamide in mechanically ventilated chronic obstructive pulmonary disease patients

    Science.gov (United States)

    2011-01-01

    Introduction Acetazolamide is commonly given to chronic obstructive pulmonary disease (COPD) patients with metabolic alkalosis. Little is known of the pharmacodynamics of acetazolamide in the critically ill. We undertook the pharmacodynamic modeling of bicarbonate response to acetazolamide in COPD patients under mechanical ventilation. Methods This observational, retrospective study included 68 invasively ventilated COPD patients who received one or multiple doses of 250 or 500 mg of acetazolamide during the weaning period. Among the 68 investigated patients, 207 time-serum bicarbonate observations were available for analysis. Population pharmacodynamics was modeled using a nonlinear mixedeffect model. The main covariates of interest were baseline demographic data, Simplified Acute Physiology Score II (SAPS II) at ICU admission, cause of respiratory failure, co-prescription of drugs interfering with the acid-base equilibrium, and serum concentrations of protein, creatinin, potassium and chloride. The effect of acetazolamide on serum bicarbonate levels at different doses and in different clinical conditions was subsequently simulated in silico. Results The main covariates interacting with acetazolamide pharmacodynamics were SAPS II at ICU admission (P = 0.01), serum chloride (P 500 mg twice daily is required to reduce serum bicarbonate concentrations > 5 mmol/L in the presence of high serum chloride levels or coadministration of systemic corticosteroids or furosemide. Conclusions This study identified several covariates that influenced acetazolamide pharmacodynamics and could allow a better individualization of acetazolamide dosing when treating COPD patients with metabolic alkalosis. PMID:21917139

  11. The effects of pleural fluid drainage on respiratory function in mechanically ventilated patients after cardiac surgery

    Science.gov (United States)

    Brims, Fraser J H; Davies, Michael G; Elia, Andy; Griffiths, Mark J D

    2015-01-01

    Background Pleural effusions occur commonly after cardiac surgery and the effects of drainage on gas exchange in this population are not well established. We examined pulmonary function indices following drainage of pleural effusions in cardiac surgery patients. Methods We performed a retrospective study examining the effects of pleural fluid drainage on the lung function indices of patients recovering from cardiac surgery requiring mechanical ventilation for more than 7 days. We specifically analysed patients who had pleural fluid removed via an intercostal tube (ICT: drain group) compared with those of a control group (no effusion, no ICT). Results In the drain group, 52 ICTs were sited in 45 patients. The mean (SD) volume of fluid drained was 1180 (634) mL. Indices of oxygenation were significantly worse in the drain group compared with controls prior to drainage. The arterial oxygen tension (PaO2)/fractional inspired oxygen (FiO2) (P/F) ratio improved on day 1 after ICT placement (mean (SD), day 0: 31.01 (8.92) vs 37.18 (10.7); pdrain group patients were more likely to have an improved mode of ventilation on day 1 compared with controls (p=0.028). Conclusions Pleural effusion after cardiac surgery may impair oxygenation. Drainage of pleural fluid is associated with a rapid and sustained improvement in oxygenation. PMID:26339492

  12. Mechanical Ventilation and ARDS in the ED: A Multicenter, Observational, Prospective, Cross-sectional Study.

    Science.gov (United States)

    Fuller, Brian M; Mohr, Nicholas M; Miller, Christopher N; Deitchman, Andrew R; Levine, Brian J; Castagno, Nicole; Hassebroek, Elizabeth C; Dhedhi, Adam; Scott-Wittenborn, Nicholas; Grace, Edward; Lehew, Courtney; Kollef, Marin H

    2015-08-01

    There are few data regarding mechanical ventilation and ARDS in the ED. This could be a vital arena for prevention and treatment. This study was a multicenter, observational, prospective, cohort study aimed at analyzing ventilation practices in the ED. The primary outcome was the incidence of ARDS after admission. Multivariable logistic regression was used to determine the predictors of ARDS. We analyzed 219 patients receiving mechanical ventilation to assess ED ventilation practices. Median tidal volume was 7.6 mL/kg predicted body weight (PBW) (interquartile range, 6.9-8.9), with a range of 4.3 to 12.2 mL/kg PBW. Lung-protective ventilation was used in 122 patients (55.7%). The incidence of ARDS after admission from the ED was 14.7%, with a mean onset of 2.3 days. Progression to ARDS was associated with higher illness severity and intubation in the prehospital environment or transferring facility. Of the 15 patients with ARDS in the ED (6.8%), lung-protective ventilation was used in seven (46.7%). Patients who progressed to ARDS experienced greater duration in organ failure and ICU length of stay and higher mortality. Lung-protective ventilation is infrequent in patients receiving mechanical ventilation in the ED, regardless of ARDS status. Progression to ARDS is common after admission, occurs early, and worsens outcome. Patient- and treatment-related factors present in the ED are associated with ARDS. Given the limited treatment options for ARDS, and the early onset after admission from the ED, measures to prevent onset and to mitigate severity should be instituted in the ED. ClinicalTrials.gov; No.: NCT01628523; URL: www.clinicaltrials.gov.

  13. Lung protective mechanical ventilation strategies in cardiothoracic critical care: a retrospective study.

    Science.gov (United States)

    Zochios, Vasileios; Hague, Matthew; Giraud, Kimberly; Jones, Nicola

    2016-01-01

    A body of evidence supports the use of low tidal volumes in ventilated patients without lung pathology to slow progress to acute respiratory distress syndrome (ARDS) due to ventilator associated lung injury. We undertook a retrospective chart review and tested the hypothesis that tidal volume is a predictor of mortality in cardiothoracic (medical and surgical) critical care patients receiving invasive mechanical ventilation. Independent predictors of mortality in our study included: type of surgery, albumin, H + , bilirubin, and fluid balance. In particular, it is important to note that cardiac, thoracic, and transplant surgical patients were associated with lower mortality. However, our study did not sample equally from The Berlin Definition of ARDS severity categories (mild, moderate, and severe hypoxemia). Although our study was not adequately powered to detect a difference in mortality between these groups, it will inform the development of a large prospective cohort study exploring the role of low tidal volume ventilation in cardiothoracic critically ill patients.

  14. Acute respiratory failure and mechanical ventilation in pregnant patient: A narrative review of literature

    Directory of Open Access Journals (Sweden)

    Pradeep Kumar Bhatia

    2016-01-01

    Full Text Available Physiological changes of pregnancy imposes higher risk of acute respiratory failure (ARF with even a slight insult and remains an important cause of maternal and fetal morbidity and mortality. Although pregnant women have different respiratory physiology and different causes of ARF, guidelines specific to ventilatory settings, goals of oxygenation and weaning process could not be framed due to lack of large-scale randomized controlled trials. During the 2009 H1N1 pandemic, pregnant women had higher morbidity and mortality compared to nonpregnant women. During this period, alternative strategies of ventilation such as high-frequency oscillatory ventilation, inhalational of nitric oxide, prone positioning, and extra corporeal membrane oxygenation were increasingly used as a desperate measure to rescue pregnant patients with severe hypoxemia who were not improving with conventional mechanical ventilation. This article highlights the causes of ARF and recent advances in invasive, noninvasive and alternative strategies of ventilation used during pregnancy.

  15. Effect of percutaneous endoscopic gastrostomy on gastro-esophageal reflux in mechanically-ventilated patients.

    Science.gov (United States)

    Douzinas, Emmanuel E; Tsapalos, Andreas; Dimitrakopoulos, Antonios; Diamanti-Kandarakis, Evanthia; Rapidis, Alexandros D; Roussos, Charis

    2006-01-07

    To investigate the effect of percutaneous endoscopic gastrostomy (PEG) on gastroesophageal reflux (GER) in mechanically-ventilated patients. In a prospective, randomized, controlled study 36 patients with recurrent or persistent ventilator-associated pneumonia (VAP) and GER > 6% were divided into PEG group (n = 16) or non-PEG group (n = 20). Another 11 ventilated patients without reflux (GER Patients were strictly followed up for semi-recumbent position and control of gastric nutrient residue. A significant decrease of median (range) reflux was observed in PEG group from 7.8 (6.2 - 15.6) at baseline to 2.7 (0 - 10.4) on d 7 post-gastrostomy (P position and absence of nutrient gastric residue reduces the gastroesophageal reflux in ventilated patients.

  16. Optimal support techniques when providing mechanical ventilation to patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Parissopoulos, Stelios; Mpouzika, Meropi DA; Timmins, Fiona

    2017-01-01

    Adult respiratory distress syndrome (ARDS) is a type of acute diffuse lung injury characterized by severe inflammation, increased pulmonary vascular permeability and a loss of aerated lung tissue. The effects of high fraction of inspired oxygen (FiO 2 ) include oxygen toxicity manifested by damage to the lung parenchyma in the acute phase of lung injury. There is still a high mortality rate among this group of patients, so clinically sensitive evidence-based interventions are paramount to maximize survival chances during critical care. The aim of this article is to explore the current opinion concerning optimal mechanical ventilation support techniques for patients with acute respiratory distress syndrome. A literature search of clinical trials and observation studies, reviews, discussion papers, meta-analyses and clinical guidelines written in English up to 2015, derived from the databases of Scopus, CINAHL, Cochrane Library databases and PubMed was conducted. Low tidal volume, pressure limitation and prone positioning in severe ARDS patients appear to be of some benefit. More research is required and further development and use of standardized protocols is an important strategy for reducing practice variations across disciplines, as well as giving clear guidelines to nurses practising in critical care. There is also evidence that this syndrome is under-diagnosed and the utilization of lung protective ventilation is still variable. It is important that nurses have underlying knowledge of both aetiology of ARDS and ventilation management, and that they monitor patients very closely. The adoption of a low tidal ventilation protocol, which is based on quality evidence guidelines, the value of rescue therapies and patient observation practices in the overall patient management, and the need to place emphasis on long-term patient outcomes, all these emerge as key factors for consideration and future research. However, there is also a need for more research that would

  17. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    Science.gov (United States)

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  18. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function.

    Science.gov (United States)

    Severgnini, Paolo; Selmo, Gabriele; Lanza, Christian; Chiesa, Alessandro; Frigerio, Alice; Bacuzzi, Alessandro; Dionigi, Gianlorenzo; Novario, Raffaele; Gregoretti, Cesare; de Abreu, Marcelo Gama; Schultz, Marcus J; Jaber, Samir; Futier, Emmanuel; Chiaranda, Maurizio; Pelosi, Paolo

    2013-06-01

    The impact of intraoperative ventilation on postoperative pulmonary complications is not defined. The authors aimed at determining the effectiveness of protective mechanical ventilation during open abdominal surgery on a modified Clinical Pulmonary Infection Score as primary outcome and postoperative pulmonary function. Prospective randomized, open-label, clinical trial performed in 56 patients scheduled to undergo elective open abdominal surgery lasting more than 2 h. Patients were assigned by envelopes to mechanical ventilation with tidal volume of 9 ml/kg ideal body weight and zero-positive end-expiratory pressure (standard ventilation strategy) or tidal volumes of 7 ml/kg ideal body weight, 10 cm H2O positive end-expiratory pressure, and recruitment maneuvers (protective ventilation strategy). Modified Clinical Pulmonary Infection Score, gas exchange, and pulmonary functional tests were measured preoperatively, as well as at days 1, 3, and 5 after surgery. Patients ventilated protectively showed better pulmonary functional tests up to day 5, fewer alterations on chest x-ray up to day 3 and higher arterial oxygenation in air at days 1, 3, and 5 (mmHg; mean ± SD): 77.1 ± 13.0 versus 64.9 ± 11.3 (P = 0.0006), 80.5 ± 10.1 versus 69.7 ± 9.3 (P = 0.0002), and 82.1 ± 10.7 versus 78.5 ± 21.7 (P = 0.44) respectively. The modified Clinical Pulmonary Infection Score was lower in the protective ventilation strategy at days 1 and 3. The percentage of patients in hospital at day 28 after surgery was not different between groups (7 vs. 15% respectively, P = 0.42). A protective ventilation strategy during abdominal surgery lasting more than 2 h improved respiratory function and reduced the modified Clinical Pulmonary Infection Score without affecting length of hospital stay.

  19. Home tracheotomy mechanical ventilation in patients with amyotrophic lateral sclerosis: causes, complications and 1-year survival.

    Science.gov (United States)

    Sancho, Jesús; Servera, Emilio; Díaz, José Luis; Bañuls, Pilar; Marín, Julio

    2011-11-01

    Home tracheotomy mechanical ventilation (HTMV) can prolong survival in patients with amyotrophic lateral sclerosis (ALS) when non-invasive ventilation (NIV) fails, but knowledge about HTMV is scarce. The aim of this study was to determine the causes of tracheotomy and the main issues of 1-year HTMV in a cohort of patients with ALS. A prospective study of all patients needing HTMV was performed in a referral respiratory care unit (RCU) from April 2001 to January 2010. Patients' informed decisions about HTMV were fully respected. Caregivers were trained and could telephone the RCU. Hospital staff made home visits. All patients (n=116) agreed to participate and a tracheotomy was needed for 76, mainly due to bulbar dysfunction. Of the 38 who had a tracheotomy, in 21 it was performed in an acute setting and in 17 as a non-emergency procedure. In 19 patients the tracheotomy was related to the inadequacy of mechanically assisted coughing (MAC) to maintain normal oxygen saturation. During HTMV, 19 patients required hospitalisation, 12 with respiratory problems. The 1-year survival rate was 78.9%, with a mean survival of 10.39 months (95% CI 9.36 to 11.43). Sudden death was the main cause of death (n=9) and only one patient died from respiratory causes. No predictive factors for survival were found. Besides NIV inadequacy, the ineffectiveness of mechanically assisted coughing appears to be a relevant cause of tracheotomy for patients with ALS with severe bulbar dysfunction. Patients choosing HTMV provided by a referral RCU could have a good 1-year survival rate, respiratory problems being the main cause of hospitalisation but not of death.

  20. Poor Adherence to Lung-Protective Mechanical Ventilation in Pediatric Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Ward, Shan L; Quinn, Carson M; Valentine, Stacey L; Sapru, Anil; Curley, Martha A Q; Willson, Douglas F; Liu, Kathleen D; Matthay, Michael A; Flori, Heidi R

    2016-10-01

    To determine the frequency of low-tidal volume ventilation in pediatric acute respiratory distress syndrome and assess if any demographic or clinical factors improve low-tidal volume ventilation adherence. Descriptive post hoc analysis of four multicenter pediatric acute respiratory distress syndrome studies. Twenty-six academic PICU. Three hundred fifteen pediatric acute respiratory distress syndrome patients. All patients who received conventional mechanical ventilation at hours 0 and 24 of pediatric acute respiratory distress syndrome who had data to calculate ideal body weight were included. Two cutoff points for low-tidal volume ventilation were assessed: less than or equal to 6.5 mL/kg of ideal body weight and less than or equal to 8 mL/kg of ideal body weight. Of 555 patients, we excluded 240 for other respiratory support modes or missing data. The remaining 315 patients had a median PaO2-to-FIO2 ratio of 140 (interquartile range, 90-201), and there were no differences in demographics between those who did and did not receive low-tidal volume ventilation. With tidal volume cutoff of less than or equal to 6.5 mL/kg of ideal body weight, the adherence rate was 32% at hour 0 and 33% at hour 24. A low-tidal volume ventilation cutoff of tidal volume less than or equal to 8 mL/kg of ideal body weight resulted in an adherence rate of 58% at hour 0 and 60% at hour 24. Low-tidal volume ventilation use was no different by severity of pediatric acute respiratory distress syndrome nor did adherence improve over time. At hour 0, overweight children were less likely to receive low-tidal volume ventilation less than or equal to 6.5 mL/kg ideal body weight (11% overweight vs 38% nonoverweight; p = 0.02); no difference was noted by hour 24. Furthermore, in the overweight group, using admission weight instead of ideal body weight resulted in misclassification of up to 14% of patients as receiving low-tidal volume ventilation when they actually were not. Low

  1. Efficacy of Hi-Lo Evac Endotracheal Tube in Prevention of Ventilator-Associated Pneumonia in Mechanically Ventilated Poisoned Patients.

    Science.gov (United States)

    Ghoochani Khorasani, Ahmad; Shadnia, Shahin; Mashayekhian, Mohammad; Rahimi, Mitra; Aghabiklooei, Abbas

    2016-01-01

    Background. Ventilator-associated pneumonia (VAP) is the most common health care-associated infection. To prevent this complication, aspiration of subglottic secretions using Hi-Lo Evac endotracheal tube (Evac ETT) is a recommended intervention. However, there are some reports on Evac ETT dysfunction. We aimed to compare the incidence of VAP (per ventilated patients) in severely ill poisoned patients who were intubated using Evac ETT versus conventional endotracheal tubes (C-ETT) in our toxicology ICU. Materials and Methods. In this clinical randomized trial, 91 eligible patients with an expected duration of mechanical ventilation of more than 48 hours were recruited and randomly assigned into two groups: (1) subglottic secretion drainage (SSD) group who were intubated by Evac ETT (n = 43) and (2) control group who were intubated by C-ETT (n = 48). Results. Of the 91 eligible patients, 56 (61.5%) were male. VAP was detected in 24 of 43 (55.8%) patients in the case group and 23 of 48 (47.9%) patients in the control group (P = 0.45). The most frequently isolated microorganisms were S. aureus (54.10%) and Acinetobacter spp. (19.68%). The incidence of VAP and ICU length of stay were not significantly different between the two groups, but duration of intubation was statistically different and was longer in the SSD group. Mortality rate was less in SSD group but without a significant difference (P = 0.68). Conclusion. The SSD procedure was performed intermittently with one-hour intervals using 10 mL syringe. Subglottic secretion drainage does not significantly reduce the incidence of VAP in patients receiving MV. This strategy appears to be ineffective in preventing VAP among ICU patients.

  2. Efficacy of Hi-Lo Evac Endotracheal Tube in Prevention of Ventilator-Associated Pneumonia in Mechanically Ventilated Poisoned Patients

    Directory of Open Access Journals (Sweden)

    Ahmad Ghoochani Khorasani

    2016-01-01

    Full Text Available Background. Ventilator-associated pneumonia (VAP is the most common health care-associated infection. To prevent this complication, aspiration of subglottic secretions using Hi-Lo Evac endotracheal tube (Evac ETT is a recommended intervention. However, there are some reports on Evac ETT dysfunction. We aimed to compare the incidence of VAP (per ventilated patients in severely ill poisoned patients who were intubated using Evac ETT versus conventional endotracheal tubes (C-ETT in our toxicology ICU. Materials and Methods. In this clinical randomized trial, 91 eligible patients with an expected duration of mechanical ventilation of more than 48 hours were recruited and randomly assigned into two groups: (1 subglottic secretion drainage (SSD group who were intubated by Evac ETT (n=43 and (2 control group who were intubated by C-ETT (n=48. Results. Of the 91 eligible patients, 56 (61.5% were male. VAP was detected in 24 of 43 (55.8% patients in the case group and 23 of 48 (47.9% patients in the control group (P=0.45. The most frequently isolated microorganisms were S. aureus (54.10% and Acinetobacter spp. (19.68%. The incidence of VAP and ICU length of stay were not significantly different between the two groups, but duration of intubation was statistically different and was longer in the SSD group. Mortality rate was less in SSD group but without a significant difference (P=0.68. Conclusion. The SSD procedure was performed intermittently with one-hour intervals using 10 mL syringe. Subglottic secretion drainage does not significantly reduce the incidence of VAP in patients receiving MV. This strategy appears to be ineffective in preventing VAP among ICU patients.

  3. Music preferences of mechanically ventilated patients participating in a randomized controlled trial.

    Science.gov (United States)

    Heiderscheit, Annie; Breckenridge, Stephanie J; Chlan, Linda L; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients' preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process.

  4. Music preferences of mechanically ventilated patients participating in a randomized controlled trial

    Science.gov (United States)

    Heiderscheit, Annie; Breckenridge, Stephanie J.; Chlan, Linda L.; Savik, Kay

    2014-01-01

    Mechanical ventilation (MV) is a life-saving measure and supportive modality utilized to treat patients experiencing respiratory failure. Patients experience pain, discomfort, and anxiety as a result of being mechanically ventilated. Music listening is a non-pharmacological intervention used to manage these psychophysiological symptoms associated with mechanical ventilation. The purpose of this secondary analysis was to examine music preferences of 107 MV patients enrolled in a randomized clinical trial that implemented a patient-directed music listening protocol to help manage the psychophysiological symptom of anxiety. Music data presented includes the music genres and instrumentation patients identified as their preferred music. Genres preferred include: classical, jazz, rock, country, and oldies. Instrumentation preferred include: piano, voice, guitar, music with nature sounds, and orchestral music. Analysis of three patients’ preferred music received throughout the course of the study is illustrated to demonstrate the complexity of assessing MV patients and the need for an ongoing assessment process. PMID:25574992

  5. Minimization of Ventilator-Induced Lung Injury in ARDS Patients – Part I: Complex Model of Mechanically Ventilated ARDS Lungs

    Directory of Open Access Journals (Sweden)

    Glapiński Jarosław

    2017-12-01

    Full Text Available A complex model of mechanically ventilated ARDS lungs is proposed in the paper. This analogue is based on a combination of four components that describe breathing mechanics: morphology, mechanical properties of surfactant, tissue and chest wall characteristics. Physical-mathematical formulas attained from experimental data have been translated into their electrical equivalents and implemented in MultiSim software. To examine the adequacy of the forward model to the properties and behaviour of mechanically ventilated lungs in patients with ARDS symptoms, several computer simulations have been performed and reported in the paper. Inhomogeneous characteristics observed in the physical properties of ARDS lungs were mapped in a multi-lobe model and the measured outputs were compared with the data from physiological reports. In this way clinicians and scientists can obtain the knowledge on the moment of airway zone reopening/closure expressed as a function of pressure, volume or even time. In the paper, these trends were assessed for inhomogeneous distributions (proper for ARDS of surfactant properties and airway geometry in consecutive lung lobes. The proposed model enables monitoring of temporal alveolar dynamics in successive lobes as well as those occurring at a higher level of lung structure organization, i.e. in a point P0 which can be used for collection of respiratory data during indirect management of recruitment/de-recruitment processes in ARDS lungs. The complex model and synthetic data generated for various parametrization scenarios make possible prospective studies on designing an indirect mode of alveolar zone management, i.e. with

  6. The effect of combined conventional and modified ultrafiltration on mechanical ventilation and hemodynamic changes in congenital heart surgery

    Directory of Open Access Journals (Sweden)

    Mohsen Ziyaeifard

    2016-01-01

    Full Text Available Background: Cardiopulmonary bypass is associated with increased fluid accumulation around the heart which influences pulmonary and cardiac diastolic function. The aim of this study was to compare the effects of modified ultrafiltration (MUF versus conventional ultrafiltration (CUF on duration of mechanical ventilation and hemodynamic status in children undergoing congenital heart surgery. Materials and Methods: A randomized clinical trial was conducted on 46 pediatric patients undergoing cardiopulmonary bypass throughout their congenital heart surgery. Arteriovenous MUF plus CUF was performed in 23 patients (intervention group and sole CUF was performed for other 23 patients (control group. In MUF group, arterial cannula was linked to the filter inlet through the arterial line, and for 10 min, 10 ml/kg/min of blood was filtered and returned via cardioplegia line to the right atrium. Different parameters including hemodynamic variables, length of mechanical ventilation, Intensive Care Unit (ICU stay, and inotrope requirement were compared between the two groups. Results: At immediate post-MUF phase, there was a statistically significant increase in the mean arterial pressure, systolic blood pressure, and diastolic blood pressure (P < 0.05 only in the study group. Furthermore, there was a significant difference in time of mechanical ventilation (P = 0.004 and ICU stay (P = 0.007 between the two groups. Inotropes including milrinone (P = 0.04, epinephrine (P = 0.001, and dobutamine (P = 0.002 were used significantly less frequently for patients in the intervention than the control group. Conclusion: Administration of MUF following surgery improves hemodynamic status of patients and also significantly decreases the duration of mechanical ventilation and inotrope requirement within 48 h after surgery.

  7. Chest compression with a higher level of pressure support ventilation: effects on secretion removal, hemodynamics, and respiratory mechanics in patients on mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Wagner da Silva Naue

    2014-01-01

    Full Text Available OBJECTIVE: To determine the efficacy of chest compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation, in comparison with that of aspiration alone, in removing secretions, normalizing hemodynamics, and improving respiratory mechanics in patients on mechanical ventilation. METHODS: This was a randomized crossover clinical trial involving patients on mechanical ventilation for more than 48 h in the ICU of the Porto Alegre Hospital de Clínicas, in the city of Porto Alegre, Brazil. Patients were randomized to receive aspiration alone (control group or compression accompanied by a 10-cmH2O increase in baseline inspiratory pressure on pressure support ventilation (intervention group. We measured hemodynamic parameters, respiratory mechanics parameters, and the amount of secretions collected. RESULTS: We included 34 patients. The mean age was 64.2 ± 14.6 years. In comparison with the control group, the intervention group showed a higher median amount of secretions collected (1.9 g vs. 2.3 g; p = 0.004, a greater increase in mean expiratory tidal volume (16 ± 69 mL vs. 56 ± 69 mL; p = 0.018, and a greater increase in mean dynamic compliance (0.1 ± 4.9 cmH2O vs. 2.8 ± 4.5 cmH2O; p = 0.005. CONCLUSIONS: In this sample, chest compression accompanied by an increase in pressure support significantly increased the amount of secretions removed, the expiratory tidal volume, and dynamic compliance. (ClinicalTrials.gov Identifier:NCT01155648 [http://www.clinicaltrials.gov/

  8. Variability in usual care mechanical ventilation for pediatric acute lung injury: the potential benefit of a lung protective computer protocol.

    Science.gov (United States)

    Khemani, Robinder G; Sward, Katherine; Morris, Alan; Dean, J Michael; Newth, Christopher J L

    2011-11-01

    Although pediatric intensivists claim to embrace lung protective ventilation for acute lung injury (ALI), ventilator management is variable. We describe ventilator changes clinicians made for children with hypoxemic respiratory failure, and evaluate the potential acceptability of a pediatric ventilation protocol. This was a retrospective cohort study performed in a tertiary care pediatric intensive care unit (PICU). The study period was from January 2000 to July 2007. We included mechanically ventilated children with PaO(2)/FiO(2) (P/F) ratio less than 300. We assessed variability in ventilator management by evaluating actual changes to ventilator settings after an arterial blood gas (ABG). We evaluated the potential acceptability of a pediatric mechanical ventilation protocol we adapted from National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI) Acute Respiratory Distress Syndrome (ARDS) Network protocols by comparing actual practice changes in ventilator settings to changes that would have been recommended by the protocol. A total of 2,719 ABGs from 402 patients were associated with 6,017 ventilator settings. Clinicians infrequently decreased FiO(2), even when the PaO(2) was high (>68 mmHg). The protocol would have recommended more positive end expiratory pressure (PEEP) than was used in actual practice 42% of the time in the mid PaO(2) range (55-68 mmHg) and 67% of the time in the low PaO(2) range (ventilator rate (VR) when the protocol would have recommended a change, even when the pH was greater than 7.45 with PIP at least 35 cmH(2)O. There may be lost opportunities to minimize potentially injurious ventilator settings for children with ALI. A reproducible pediatric mechanical ventilation protocol could prompt clinicians to make ventilator changes that are consistent with lung protective ventilation.

  9. Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs.

    Science.gov (United States)

    Beda, Alessandro; Güldner, Andreas; Simpson, David M; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; Pelosi, Paolo; de Abreu, Marcelo Gama

    2012-03-01

    The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V(T)), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V(T), on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V(T) did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV.

  10. Effects of assisted and variable mechanical ventilation on cardiorespiratory interactions in anesthetized pigs

    International Nuclear Information System (INIS)

    Beda, Alessandro; Güldner, Andreas; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; De Abreu, Marcelo Gama; Simpson, David M; Pelosi, Paolo

    2012-01-01

    The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V T ), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V T , on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V T did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV. (paper)

  11. Lung protective mechanical ventilation and two year survival in patients with acute lung injury: prospective cohort study.

    Science.gov (United States)

    Needham, Dale M; Colantuoni, Elizabeth; Mendez-Tellez, Pedro A; Dinglas, Victor D; Sevransky, Jonathan E; Dennison Himmelfarb, Cheryl R; Desai, Sanjay V; Shanholtz, Carl; Brower, Roy G; Pronovost, Peter J

    2012-04-05

    To evaluate the association of volume limited and pressure limited (lung protective) mechanical ventilation with two year survival in patients with acute lung injury. Prospective cohort study. 13 intensive care units at four hospitals in Baltimore, Maryland, USA. 485 consecutive mechanically ventilated patients with acute lung injury. Two year survival after onset of acute lung injury. 485 patients contributed data for 6240 eligible ventilator settings, as measured twice daily (median of eight eligible ventilator settings per patient; 41% of which adhered to lung protective ventilation). Of these patients, 311 (64%) died within two years. After adjusting for the total duration of ventilation and other relevant covariates, each additional ventilator setting adherent to lung protective ventilation was associated with a 3% decrease in the risk of mortality over two years (hazard ratio 0.97, 95% confidence interval 0.95 to 0.99, P=0.002). Compared with no adherence, the estimated absolute risk reduction in two year mortality for a prototypical patient with 50% adherence to lung protective ventilation was 4.0% (0.8% to 7.2%, P=0.012) and with 100% adherence was 7.8% (1.6% to 14.0%, P=0.011). Lung protective mechanical ventilation was associated with a substantial long term survival benefit for patients with acute lung injury. Greater use of lung protective ventilation in routine clinical practice could reduce long term mortality in patients with acute lung injury. Clinicaltrials.gov NCT00300248.

  12. Transitions to Home Mechanical Ventilation: The Experiences of Canadian Ventilator-Assisted Adults and Their Family Caregivers.

    Science.gov (United States)

    Dale, Craig M; King, Judy; Nonoyama, Mika; Carbone, Sarah; McKim, Douglas; Road, Jeremy; Rose, Louise

    2017-12-28

    Several studies have explored the experience of ventilator-assisted individual (VAIs) living at home with family caregivers. However, few explore the experiences of these individuals as they transition from a hospital setting to living at home with a view to identifying modifiable processes that could optimize transition. This descriptive, qualitative study sought to elucidate barriers to, and facilitators of, transition to home mechanical ventilation (HMV) from the perspective of Canadian VAIs and their family caregivers. Participant recruitment occurred through hospital and community respiratory clinicians based in the four Canadian provinces of Alberta, British Columbia, Ontario, and Saskatchewan. Semi-structured telephone or face-to-face interviews at home were undertaken with 33 individuals including 19 VAIs and 14 family caregivers between 3 to 24 months of transitioning to HMV. Interview data was analyzed using content analysis. Formal teaching of knowledge and skills relevant to HMV within the hospital setting prior to transition was perceived as having an immediate and enduring positive impact on transition. However, family-clinician conflict, information gaps, and persistent lack of trained personal support workers (PSWs) to provide care in the home contributed to maladjustment relating to transition. Participants strongly recommended improved transitional care in the form of respiratory health professional telephone support, home outreach, in addition to training of PSWs. Transition to HMV is a complex and demanding process. Extended HMV training and support may be helpful in mediating adjustment challenges thus reducing stress, caregiver burden and improving health related quality of life for VAIs and family caregivers.

  13. Variability in the Use of Protective Mechanical Ventilation During General Anesthesia.

    Science.gov (United States)

    Ladha, Karim S; Bateman, Brian T; Houle, Timothy T; De Jong, Myrthe A C; Vidal Melo, Marcos F; Huybrechts, Krista F; Kurth, Tobias; Eikermann, Matthias

    2018-02-01

    The purpose of this study was to determine whether significant variation exists in the use of protective ventilation across individual anesthesia providers and whether this difference can be explained by patient, procedure, and provider-related characteristics. The cohort consisted of 262 anesthesia providers treating 57,372 patients at a tertiary care hospital between 2007 and 2014. Protective ventilation was defined as a median positive end-expiratory pressure of 5 cm H2O or more, tidal volume of protective ventilation was modified in sensitivity analyses. In unadjusted analysis, the mean probability of administering protective ventilation was 53.8% (2.5th percentile of provider 19.9%, 97.5th percentile 80.8%). After adjustment for a large number of covariates, there was little change in the results with a mean probability of 51.1% (2.5th percentile 24.7%, 97.5th percentile 77.2%). The variations persisted when the thresholds for protective ventilation were changed. There was significant variability across individual anesthesia providers in the use of intraoperative protective mechanical ventilation. Our data suggest that this variability is highly driven by individual preference, rather than patient, procedure, or provider-related characteristics.

  14. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  15. Mechanical ventilation drives pneumococcal pneumonia into lung injury and sepsis in mice: protection by adrenomedullin.

    Science.gov (United States)

    Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin

    2014-04-14

    Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.

  16. Animal Assisted Interactions to Alleviate Psychological Symptoms in Patients on Mechanical Ventilation.

    Science.gov (United States)

    Hetland, Breanna; Bailey, Tanya; Prince-Paul, Maryjo

    2017-12-01

    Mechanical ventilation is a common life support intervention for critically ill patients that can cause stressful psychological symptoms. Animal assisted interactions have been used in variety of inpatient settings to reduce symptom burden and promote overall well-being. Due to the severity of illness associated with critical care, use of highly technological equipment, and heightened concern for infection control and patient safety, animal-assisted interaction has not been widely adopted in the intensive care unit. This case study of the therapeutic interaction between a canine and a mechanically ventilated patient provides support for the promotion of animal-assisted interactions as an innovative symptom management strategy in the intensive care unit.

  17. Early Caffeine and Weaning from Mechanical Ventilation in Preterm Infants: A Randomized, Placebo-Controlled Trial.

    Science.gov (United States)

    Amaro, Cynthia M; Bello, Jose A; Jain, Deepak; Ramnath, Alexandra; D'Ugard, Carmen; Vanbuskirk, Silvia; Bancalari, Eduardo; Claure, Nelson

    2018-05-01

    To evaluate in a randomized, double-blind, placebo-controlled trial the effect of early caffeine on the age of first successful extubation in preterm infants. Preterm infants born at 23-30 weeks of gestation requiring mechanical ventilation in the first 5 postnatal days were randomized to receive a 20 mg/kg loading dose followed by 5 mg/kg/day of caffeine or placebo until considered ready for extubation. The placebo group received a blinded loading dose of caffeine before extubation. Infants were randomized to receive caffeine (n = 41) or placebo (n = 42). Age at first successful extubation did not differ between early caffeine (median, 24 days; IQR, 10-41 days) and control groups (median, 20 days; IQR, 9-43 days; P = .7). An interim analysis at 75% enrollment showed a trend toward higher mortality in 1 of the groups and the data safety and monitoring board recommended stopping the trial. Unblinded analysis revealed mortality did not differ significantly between the early caffeine (9 [22%]) and control groups (5 [12%]; P = .22). Early initiation of caffeine in this group of premature infants did not reduce the age of first successful extubation. A nonsignificant trend toward higher mortality in the early caffeine group led to a cautious decision to stop the trial. These findings suggest caution with early use of caffeine in mechanically ventilated preterm infants until more efficacy and safety data become available. ClinicalTrials.gov: NCT01751724. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Variability in Usual Care Mechanical Ventilation for Pediatric Acute Respiratory Distress Syndrome: Time for a Decision Support Protocol?

    Science.gov (United States)

    Newth, Christopher J L; Sward, Katherine A; Khemani, Robinder G; Page, Kent; Meert, Kathleen L; Carcillo, Joseph A; Shanley, Thomas P; Moler, Frank W; Pollack, Murray M; Dalton, Heidi J; Wessel, David L; Berger, John T; Berg, Robert A; Harrison, Rick E; Holubkov, Richard; Doctor, Allan; Dean, J Michael; Jenkins, Tammara L; Nicholson, Carol E

    2017-11-01

    Although pediatric intensivists philosophically embrace lung protective ventilation for acute lung injury and acute respiratory distress syndrome, we hypothesized that ventilator management varies. We assessed ventilator management by evaluating changes to ventilator settings in response to blood gases, pulse oximetry, or end-tidal CO2. We also assessed the potential impact that a pediatric mechanical ventilation protocol adapted from National Heart Lung and Blood Institute acute respiratory distress syndrome network protocols could have on reducing variability by comparing actual changes in ventilator settings to those recommended by the protocol. Prospective observational study. Eight tertiary care U.S. PICUs, October 2011 to April 2012. One hundred twenty patients (age range 17 d to 18 yr) with acute lung injury/acute respiratory distress syndrome. Two thousand hundred arterial and capillary blood gases, 3,964 oxygen saturation by pulse oximetry, and 2,757 end-tidal CO2 values were associated with 3,983 ventilator settings. Ventilation mode at study onset was pressure control 60%, volume control 19%, pressure-regulated volume control 18%, and high-frequency oscillatory ventilation 3%. Clinicians changed FIO2 by ±5 or ±10% increments every 8 hours. Positive end-expiratory pressure was limited at ~10 cm H2O as oxygenation worsened, lower than would have been recommended by the protocol. In the first 72 hours of mechanical ventilation, maximum tidal volume/kg using predicted versus actual body weight was 10.3 (8.5-12.9) (median [interquartile range]) versus 9.2 mL/kg (7.6-12.0) (p Ventilator management varies substantially in children with acute respiratory distress syndrome. Opportunities exist to minimize variability and potentially injurious ventilator settings by using a pediatric mechanical ventilation protocol offering adequately explicit instructions for given clinical situations. An accepted protocol could also reduce confounding by mechanical

  19. A law of removing radon by ventilation and air requirement calculation for eliminating radon daughters in uranium mines

    International Nuclear Information System (INIS)

    Wu Gang

    1988-06-01

    In accordance with testing data of removing radon and its daughters by ventilation from shrinkage and filling stopes of uranium mines, a law of removing radon by ventilation from the stopes is analyzed and summed. According to the decay law of radon and its daughters, an accumulation equation of potential alpha energy from radon daughters is presented with hyperbolic regression equation. the calculating formulae of ventilation flow are derived from the accumulation equation for eliminating radon daughters in inlet flow with or without contamination. It has been proved that the amount of ventilation air calcuated could meet the requirements of radiation safety rationally and economically

  20. Expert clinical reasoning and pain assessment in mechanically ventilated patients: A descriptive study.

    Science.gov (United States)

    Gerber, Anne; Thevoz, Anne-Laure; Ramelet, Anne-Sylvie

    2015-02-01

    Pain assessment in mechanically ventilated patients is challenging, because nurses need to decode pain behaviour, interpret pain scores, and make appropriate decisions. This clinical reasoning process is inherent to advanced nursing practice, but is poorly understood. A better understanding of this process could contribute to improved pain assessment and management. This study aimed to describe the indicators that influence expert nurses' clinical reasoning when assessing pain in critically ill nonverbal patients. This descriptive observational study was conducted in the adult intensive care unit (ICU) of a tertiary referral hospital in Western Switzerland. A purposive sample of expert nurses, caring for nonverbal ventilated patients who received sedation and analgesia, were invited to participate in the study. Data were collected in "real life" using recorded think-aloud combined with direct non-participant observation and brief interviews. Data were analysed using deductive and inductive content analyses using a theoretical framework related to clinical reasoning and pain. Seven expert nurses with an average of 7.85 (±3.1) years of critical care experience participated in the study. The patients had respiratory distress (n=2), cardiac arrest (n=2), sub-arachnoid bleeding (n=1), and multi-trauma (n=2). A total of 1344 quotes in five categories were identified. Patients' physiological stability was the principal indicator for making decision in relation to pain management. Results also showed that it is a permanent challenge for nurses to discriminate situations requiring sedation from situations requiring analgesia. Expert nurses mainly used working knowledge and patterns to anticipate and prevent pain. Patient's clinical condition is important for making decision about pain in critically ill nonverbal patients. The concept of pain cannot be assessed in isolation and its assessment should take the patient's clinical stability and sedation into account. Further

  1. In vitro evaluation of aerosol delivery by different nebulization modes in pediatric and adult mechanical ventilators.

    Science.gov (United States)

    Wan, Gwo-Hwa; Lin, Hui-Ling; Fink, James B; Chen, Yen-Hey; Wang, Wei-Jhen; Chiu, Yu-Chun; Kao, Yu-Yao; Liu, Chia-Jung

    2014-10-01

    Aerosol delivery through mechanical ventilation is influenced by the type of aerosol generator, pattern of nebulization, and a patient's breathing pattern. This study compares the efficiency of pneumatic nebulization modes provided by a ventilator with adult and pediatric in vitro lung models. Three pneumatic nebulization modes (inspiratory intermittent [IIM], continuous [CM], and expiratory intermittent [EIM]) provided by the Galileo Gold ventilator delivered medical aerosol to collection filters distal to an endotracheal tube with adult and pediatric test lungs. A unit dose of 5 mg/2.5 mL albuterol was diluted into 4 mL with distilled water and added to a jet nebulizer. The nebulizer was placed proximal to the ventilator, 15 cm from the inlet of the heated humidifier chamber with a T-piece and corrugated aerosol tubing and powered by gas from the ventilator in each of the 3 modes. Time for nebulization was recorded in minutes. Albuterol samples collected in the inhalation filter, nebulizer, T-piece, and corrugated tubing were eluted with distilled water and analyzed with a spectrophotometer. The inhaled drug, as a percentage of total dose in both lung models, was 5.1-7.5%, without statistical significance among the 3 modes. Median nebulization times for IIM, CM, and EIM were 38.9, 14.3, and 17.7 min, respectively, and nebulization time for the 3 modes significantly differed (P ventilator was not dependent on nebulization mode during simulated pediatric and adult conventional mechanical ventilation. Use of expiratory intermittent mode and continuous nebulization should be considered to reduce treatment time. Copyright © 2014 by Daedalus Enterprises.

  2. Performance characteristics of seven bilevel mechanical ventilators in pressure-support mode with different cycling criteria: a comparative bench study.

    Science.gov (United States)

    Chen, Yuqing; Cheng, Kewen; Zhou, Xin

    2015-01-26

    Pressure support ventilation from a bilevel device is a standard technique for non-invasive home ventilation. A bench study was designed to compare the performance and patient-ventilator synchronization of 7 bilevel ventilators, in the presence of system leaks. Ventilators were connected to a Hans Rudolph Series 1101 lung simulator (compliance, 50 mL/cmH2O; expiratory resistance, 20 cmH2O/L/s; respiratory rate, 15 breaths/min; inspiratory time, 1.0 s). All ventilators were set at 15 cmH2O pressure support and 5 cmH2O positive end-expiratory pressure. Tests were conducted at 2 system leaks (12-15 and 25-28 L/min). The performance characteristics and patient-ventilator asynchrony were assessed, including flow, airway pressure, time, and workload. The Breas Vivo30 could not synchronize with the simulator (frequent auto-triggering) at a leak of 25-28 L/min, but provided stable assisted ventilation when the leak was 12-15 L/min. Missed efforts and back-up ventilation occurred for the Weinmann VENTImotion and Airox Smartair Plus, requiring adjustment of trigger effort. All ventilators had a short trigger delay time (ventilators, possibly due to software algorithm differences. Adjusting the cycling criteria settings can alter the shape of the inspiratory phase and peak expiratory flow, and improve patient-ventilator synchrony.

  3. Effect of technique and timing of tracheostomy in patients with acute traumatic spinal cord injury undergoing mechanical ventilation

    Science.gov (United States)

    Ganuza, Javier Romero; Forcada, Angel Garcia; Gambarrutta, Claudia; De La Lastra Buigues, Elena Diez; Gonzalez, Victoria Eugenia Merlo; Fuentes, Fátima Paz; Luciani, Alejandro A.

    2011-01-01

    Objective To assess the effect of timing and techniques of tracheostomy on morbidity, mortality, and the burden of resources in patients with acute traumatic spinal cord injuries (SCIs) undergoing mechanical ventilation. Design Review of a prospectively collected database. Setting Intensive and intermediate care units of a monographic hospital for the treatment of SCI. Participants Consecutive patients admitted to the intensive care unit (ICU) during their first inpatient rehabilitation for cervical and thoracic traumatic SCI. A total of 323 patients were included: 297 required mechanical ventilation and 215 underwent tracheostomy. Outcome measures Demographic data, data relevant to the patients’ neurological injuries (level and grade of spinal cord damage), tracheostomy technique and timing, duration of mechanical ventilation, length of stay at ICU, incidence of pneumonia, incidence of perioperative and early postoperative complications, and mortality. Results Early tracheostomy (tracheostomy was performed in 101 patients (47%) and late (≥7 days) in 114 (53%). Surgical tracheostomy was employed in 119 cases (55%) and percutaneous tracheostomy in 96 (45%). There were 61 complications in 53 patients related to all tracheostomy procedures. Two were qualified as serious (tracheoesophageal fistula and mediastinal abscess). Other complications were mild. Bleeding was moderate in one case (late, percutaneous tracheostomy). Postoperative infection rate was low. Mortality of all causes was also low. Conclusion Early tracheostomy may have favorable effects in patients with acute traumatic SC. Both techniques, percutaneous and surgical tracheostomy, can be performed safely in the ICU. PMID:21528630

  4. Nurses' communication with patients who are mechanically ventilated in intensive care: the Botswana experience.

    Science.gov (United States)

    Dithole, K S; Sibanda, S; Moleki, M M; Thupayagale-Tshweneagae, G

    2016-09-01

    Communication is an integral part of nursing practice not just only for therapeutic reasons but also for sharing information. Nurses working in intensive care experience challenges when communicating with patients who are mechanically ventilated due to lack of knowledge and skill. These challenges infringe on the patients' rights to receive information and as such they may impact negatively on the patients' outcomes. This study determined the existing knowledge and skills of intensive care nurses working with mechanically ventilated patients in Botswana. A retrospective descriptive and explorative research design with a quantitative approach was used to audit patients' records. This was augmented by further interviewing nurses for their knowledge and skills when communicating with ventilated patients within the two intensive care units in Botswana. The American Association of Critical Nurses Synergy Model was used to guide the study. One hundred and fifty-nine (159) patients' files were audited and 50 nurses chosen by purposive sampling completed a self-administered 42-item questionnaire. Statistical Package for Social Sciences version 10 and Microsoft Excel were used to analyse the data. Assessment of patients' ability to communicate was recorded in more than 90% of files audited. Four per cent (4%) of the respondents only communicated essential information and no other strategies or devices were used to aid communication. Communication with ventilated patients can be quite challenging to nurses working in the intensive care unit. There is a need for communication skills training to ensure that all nurses working with mechanically ventilated patients are properly trained, equipped and capable of communicating effectively with the patient. A greater understanding of communication dynamics with the intensive care unit with patients who are mechanically ventilated is crucial to enable nurses to improve their care and improve patients' comfort. Incorporating

  5. [Effect of 45 degree angle semirecumbent position on ventilator-associated pneumonia in mechanical ventilated patients: a meta-analysis].

    Science.gov (United States)

    Leng, Yu-xin; Song, Ya-han; Yao, Zhi-yuan; Zhu, Xi

    2012-10-01

    To systemically analyze the effect of 45 degree angle semirecumbent position on the incidence of ventilator-associated pneumonia (VAP) and other outcomes in mechanical ventilated patients, and to evaluate whether 45 degree angle semirecumbent position is superior to 25 degree angle-30 degree angle head of bed (HOB). The randomized controlled trials (RCTs) comparing the effect of different HOB on the outcomes of mechanical ventilated patients were searched (from 1st January 1990 to 20th July 2012) from five databases including the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, China Knowledge Resource Integrated Database (CNKI), and Wanfang Database. Meta analysis was conducted using RevMan 5.0 software. Data extracted from five RCTs with a total of 427 patients were analyzed. The risks of developing clinically diagnosed VAP were significantly lower among the patients in semirecumbent 45 degree angle position compared to the patients in lower position [15.96% (34/213) vs. 26.64% (57/214), relative risk (RR)=0.57, 95% confidence interval (95%CI) 0.39 to 0.83, P=0.003], while no significant differences were detected between the two groups regarding the mortality rate [27.04% (53/196) vs. 28.22% (57/202), RR=0.93, 95%CI 0.68 to 1.27, P=0.66], the length of intensive care unit (ICU) stay [weighted mean difference (WMD)=-0.45, 95%CI -1.08 to 0.18, P=0.16] and the percentage of antibiotics treatment [71.11% (32/45) vs. 60.87% (28/46), RR=1.14, 95%CI 0.85 to 1.53, P=0.37]. Two of the five trials (91 patients) were included in the sub-analysis between 45 degree angle group (45 patients) and 25 degree angle-30 degree angle group (46 patients). The results showed that comparing with 25 degree angle-30 degree angle, 45 degree angle semirecumbent position had no significance in improving patients' clinical outcomes. This study proved that the clinically preferred semirecumbent 45 degree angle position did have effect in reducing the incidence of VAP

  6. Predicting the lung compliance of mechanically ventilated patients via statistical modeling

    International Nuclear Information System (INIS)

    Ganzert, Steven; Kramer, Stefan; Guttmann, Josef

    2012-01-01

    To avoid ventilator associated lung injury (VALI) during mechanical ventilation, the ventilator is adjusted with reference to the volume distensibility or ‘compliance’ of the lung. For lung-protective ventilation, the lung should be inflated at its maximum compliance, i.e. when during inspiration a maximal intrapulmonary volume change is achieved by a minimal change of pressure. To accomplish this, one of the main parameters is the adjusted positive end-expiratory pressure (PEEP). As changing the ventilator settings usually produces an effect on patient's lung mechanics with a considerable time delay, the prediction of the compliance change associated with a planned change of PEEP could assist the physician at the bedside. This study introduces a machine learning approach to predict the nonlinear lung compliance for the individual patient by Gaussian processes, a probabilistic modeling technique. Experiments are based on time series data obtained from patients suffering from acute respiratory distress syndrome (ARDS). With a high hit ratio of up to 93%, the learned models could predict whether an increase/decrease of PEEP would lead to an increase/decrease of the compliance. However, the prediction of the complete pressure–volume relation for an individual patient has to be improved. We conclude that the approach is well suitable for the given problem domain but that an individualized feature selection should be applied for a precise prediction of individual pressure–volume curves. (paper)

  7. [Effects of sucralfate and acid-suppressive drugs on preventing ventilator- associated pneumonia of mechanically ventilated patients: a meta-analysis].

    Science.gov (United States)

    He, Hongli; Hu, Shuling; Chen, Qihong; Liu, Ling; Huang, Yingzi; Yang, Yi; Qiu, Haibo

    2014-01-01

    To evaluate the effect of sucralfate and acid-suppressive drugs on preventing ventilator-associated pneumonia (VAP) in mechanically ventilated patients. All randomized controlled trials (RCTs), which studied the effect of sucralfate and acid-suppressive drugs on the incidence of VAP in mechanically ventilated patients, were searched from PubMed, Embase and the Cochrane Library during January 1966 to March 2013 via manual and computer retrieval. All related data were extracted. Meta analysis was conducted using the statistical software RevMan 5.2 and the quality of the RCTs was strictly evaluated with the methods recommended by the Cochrane Collaboration. A total of 15 RCTs involving 1315 patients in the sucralfate group and 1568 patients in the acid-suppressive drug group were included in this study. The incidence of VAP was significantly reduced in the sucralfate group (RR = 0.81, 95%CI 0.7-0.95, P = 0.008), while no difference was found between the two groups in the incidence of stress-related gastrointestinal bleeding (RR = 0.96, 95%CI 0.59-1.58, P = 0.88). No statistical difference was found in the days on ventilator, duration of ICU stay and ICU mortality in the two groups (all P values > 0.05). In patients with mechanical ventilation, sucralfate could decrease the incidence of VAP, while has no such effect on the stress-related gastrointestinal bleeding, the days on ventilator, duration of ICU stay and ICU mortality.

  8. [Ten-year evolution of mechanical ventilation in acute respiratory failure in the hematogical patient admitted to the intensive care unit].

    Science.gov (United States)

    Belenguer-Muncharaz, A; Albert-Rodrigo, L; Ferrandiz-Sellés, A; Cebrián-Graullera, G

    2013-10-01

    A comparison was made between invasive mechanical ventilation (IMV) and noninvasive positive pressure ventilation (NPPV) in haematological patients with acute respiratory failure. A retrospective observational study was made from 2001 to December 2011. A clinical-surgical intensive care unit (ICU) in a tertiary hospital. Patients with hematological malignancies suffering acute respiratory failure (ARF) and requiring mechanical ventilation in the form of either IMV or NPPV. Analysis of infection and organ failure rates, duration of mechanical ventilation and ICU and hospital stays, as well as ICU, hospital and mortality after 90 days. The same variables were analyzed in the comparison between NPPV success and failure. Forty-one patients were included, of which 35 required IMV and 6 NPPV. ICU mortality was higher in the IMV group (100% vs 37% in NPPV, P=.006). The intubation rate in NPPV was 40%. Compared with successful NPPV, failure in the NPPV group involved more complications, a longer duration of mechanical ventilation and ICU stay, and greater ICU and hospital mortality. Multivariate analysis of mortality in the NPPV group identified NPPV failure (OR 13 [95%CI 1.33-77.96], P=.008) and progression to acute respiratory distress syndrome (OR 10 [95%CI 1.95-89.22], P=.03) as prognostic factors. The use of NPPV reduced mortality compared with IMV. NPPV failure was associated with more complications. Copyright © 2012 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  9. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Directory of Open Access Journals (Sweden)

    Xianming Zhang

    Full Text Available It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS, but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS.Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB and abdominal muscle paralysis group (BIPAPAP. All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment.For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml and oxygenation index (293±36 vs. 226±31 mmHg, lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7 and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9 in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1.Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  10. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang

    2016-01-01

    It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35-60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury.

  11. Design and operation of ventilation in low energy residences – A survey on code requirements and building reality from six European countries and China

    DEFF Research Database (Denmark)

    del Carmen Bocanegra-Yanez, Maria; Rojas, Gabriel; Zukowska-Tejsen, Daria

    involved in the Annex. There were two main objectives, firstly, to describe and analyse a transition between actual requirements (national building codes and standards) and current practice. Secondly, to investigate current barriers and challenges regarding installation of mechanical ventilation......One of the key objectives of the IEA Annex 68 research programme entitled “Indoor Air Quality Design and Control in Low Energy Residential Buildings” is to provide a generic guideline for the design and operation of ventilation in residential buildings. Modern and refurnished domestic buildings...

  12. [Cases and duration of mechanical ventilation in German hospitals : An analysis of DRG incentives and developments in respiratory medicine].

    Science.gov (United States)

    Biermann, A; Geissler, A

    2016-09-01

    Diagnosis-related groups (DRGs) have been used to reimburse hospitals services in Germany since 2003/04. Like any other reimbursement system, DRGs offer specific incentives for hospitals that may lead to unintended consequences for patients. In the German context, specific procedures and their documentation are suspected to be primarily performed to increase hospital revenues. Mechanical ventilation of patients and particularly the duration of ventilation, which is an important variable for the DRG-classification, are often discussed to be among these procedures. The aim of this study was to examine incentives created by the German DRG-based payment system with regard to mechanical ventilation and to identify factors that explain the considerable increase of mechanically ventilated patients in recent years. Moreover, the assumption that hospitals perform mechanical ventilation in order to gain economic benefits was examined. In order to gain insights on the development of the number of mechanically ventilated patients, patient-level data provided by the German Federal Statistical Office and the German Institute for the Hospital Remuneration System were analyzed. The type of performed ventilation, the total number of ventilation hours, the age distribution, mortality and the DRG distribution for mechanical ventilation were calculated, using methods of descriptive and inferential statistics. Furthermore, changes in DRG-definitions and changes in respiratory medicine were compared for the years 2005-2012. Since the introduction of the DRG-based payment system in Germany, the hours of ventilation and the number of mechanically ventilated patients have substantially increased, while mortality has decreased. During the same period there has been a switch to less invasive ventilation methods. The age distribution has shifted to higher age-groups. A ventilation duration determined by DRG definitions could not be found. Due to advances in respiratory medicine, new

  13. Effects of Natural Sounds on Pain: A Randomized Controlled Trial with Patients Receiving Mechanical Ventilation Support.

    Science.gov (United States)

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Vaismoradi, Mojtaba; Jordan, Sue

    2015-08-01

    Nonpharmacologic pain management in patients receiving mechanical ventilation support in critical care units is under investigated. Natural sounds may help reduce the potentially harmful effects of anxiety and pain in hospitalized patients. The aim of this study was to examine the effect of pleasant, natural sounds on self-reported pain in patients receiving mechanical ventilation support, using a pragmatic parallel-arm, randomized controlled trial. The study was conducted in a general adult intensive care unit of a high-turnover teaching hospital, in Tehran, Iran. Between October 2011 and June 2012, we recruited 60 patients receiving mechanical ventilation support to the intervention (n = 30) and control arms (n = 30) of a pragmatic parallel-group, randomized controlled trial. Participants in both arms wore headphones for 90 minutes. Those in the intervention arm heard pleasant, natural sounds, whereas those in the control arm heard nothing. Outcome measures included the self-reported visual analog scale for pain at baseline; 30, 60, and 90 minutes into the intervention; and 30 minutes post-intervention. All patients approached agreed to participate. The trial arms were similar at baseline. Pain scores in the intervention arm fell and were significantly lower than in the control arm at each time point (p natural sounds via headphones is a simple, safe, nonpharmacologic nursing intervention that may be used to allay pain for up to 120 minutes in patients receiving mechanical ventilation support. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  14. Feedback and education improve physician compliance in use of lung-protective mechanical ventilation

    NARCIS (Netherlands)

    Wolthuis, Esther K.; Korevaar, Johanna C.; Spronk, Peter; Kuiper, Michael A.; Dzoljic, Misa; Vroom, Margreeth B.; Schultz, Marcus J.

    2005-01-01

    Objective: Use of lung-protective mechanical ventilation (MV) by applying lower tidal volumes is recommended in patients suffering from acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Recent data suggest that lung-protective MV may benefit non-ALI/ARDS patients as well. This

  15. Respiratory Care year in review 2013: airway management, noninvasive monitoring, and invasive mechanical ventilation.

    Science.gov (United States)

    Durbin, Charles G; Blanch, Lluís; Fan, Eddy; Hess, Dean R

    2014-04-01

    Fundamental to respiratory care practice are airway management, noninvasive monitoring, and invasive mechanical ventilation. The purpose of this paper is to review the recent literature related to these topics in a manner that is most likely to have interest to the readers of Respiratory Care.

  16. The effect of induced hypothermia on respiratory parameters in mechanically ventilated patients

    NARCIS (Netherlands)

    Aslami, Hamid; Binnekade, Jan M.; Horn, Janneke; Huissoon, Sandra; Juffermans, Nicole P.

    2010-01-01

    Aim: Mild hypothermia is increasingly applied in the intensive care unit. Knowledge on the effects of hypothermia on respiratory parameters during mechanical ventilation is limited. In this retrospective study, we describe the effect of hypothermia on gas exchange in patients cooled for 24 h after a

  17. A student paper: music in critical care setting for clients on mechanical ventilators: a student perspective.

    Science.gov (United States)

    Ho, Van; Chang, Sue; Olivas, Rosa; Almacen, Catherine; Dimanlig, Marbert; Rodriguez, Heather

    2012-01-01

    This article written by baccalaureate nursing students briefly discusses the use of music therapy in clients on mechanical ventilation in intensive care units. The article explores the possible benefits of music therapy and its use in other aspects of health care.

  18. Bed Microenvironment in Hospital Patient Rooms with Natural or Mechanical Ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Li, Yuguo; Georgiev, Emanuil

    2012-01-01

    We studied how to provide patients in bed with thermally comfortable microenvironment in both naturally and mechanically ventilated hospital rooms for both winter and summer seasons. A climate chamber was used to resemble a hospital room and thermal manikin to simulate a patient lying in a bed...

  19. Effect of acute kidney injury on weaning from mechanical ventilation in critically ill patients.

    Science.gov (United States)

    Vieira, José M; Castro, Isac; Curvello-Neto, Américo; Demarzo, Sérgio; Caruso, Pedro; Pastore, Laerte; Imanishe, Marina H; Abdulkader, Regina C R M; Deheinzelin, Daniel

    2007-01-01

    Acute kidney injury (AKI) worsens outcome in various scenarios. We sought to investigate whether the occurrence of AKI has any effect on weaning from mechanical ventilation. Observational, retrospective study in a 23-bed medical/surgical intensive care unit (ICU) in a cancer hospital from January to December 2003. The inclusion criterion was invasive mechanical ventilation for > or =48 hrs. AKI was defined as at least one measurement of serum creatinine of > or =1.5 mg/dL during the ICU stay. Patients were then separated into AKI and non-AKI patients (control group). The criterion for weaning was the combination of positive end-expiratory pressure of or =85% increase in baseline serum creatinine (hazard rate, 2.30; 95% confidence interval, 1.30-4.08), oliguria (hazard rate, 2.51; 95% confidence interval, 1.24-5.08), and the number of antibiotics (hazard rate, 2.64; 95% confidence interval, 1.51-4.63) predicted longer duration of weaning. The length of ICU stay and ICU mortality rate were significantly greater in the AKI patients. After adjusting for Simplified Acute Physiology Score II, oliguria (odds ratio, 30.8; 95% confidence interval, 7.7-123.0) remained as a strong risk factor for mortality. This study shows that renal dysfunction has serious consequences in the duration of mechanical ventilation, weaning from mechanical ventilation, and mortality in critically ill cancer patients.

  20. An evidence-based recommendation on bed head elevation for mechanically ventilated patients.

    Science.gov (United States)

    Niël-Weise, Barbara S; Gastmeier, Petra; Kola, Axel; Vonberg, Ralf P; Wille, Jan C; van den Broek, Peterhans J

    2011-01-01

    A semi-upright position in ventilated patients is recommended to prevent ventilator-associated pneumonia (VAP) and is one of the components in the Ventilator Bundle of the Institute for Health Care Improvement. This recommendation, however, is not an evidence-based one. A systematic review on the benefits and disadvantages of semi-upright position in ventilated patients was done according to PRISMA guidelines. Then a European expert panel developed a recommendation based on the results of the systematic review and considerations beyond the scientific evidence in a three-round electronic Delphi procedure. Three trials (337 patients) were included in the review. The results showed that it was uncertain whether a 45° bed head elevation was effective or harmful with regard to the occurrence of clinically suspected VAP, microbiologically confirmed VAP, decubitus and mortality, and that it was unknown whether 45° elevation for 24 hours a day increased the risk for thromboembolism or hemodynamic instability. A group of 22 experts recommended elevating the head of the bed of mechanically ventilated patients to a 20 to 45° position and preferably to a ≥ 30° position as long as it does not pose risks or conflicts with other nursing tasks, medical interventions or patients' wishes. Although the review failed to prove clinical benefits of bed head elevation, experts prefer this position in ventilated patients. They made clear that the position of a ventilated patient in bed depended on many determinants. Therefore, given the scientific uncertainty about the benefits and harms of a semi-upright position, this position could only be recommended as the preferred position with the necessary restrictions.

  1. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    OpenAIRE

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung inj...

  2. Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation.

    Science.gov (United States)

    Cruces, Pablo; González-Dambrauskas, Sebastián; Quilodrán, Julio; Valenzuela, Jorge; Martínez, Javier; Rivero, Natalia; Arias, Pablo; Díaz, Franco

    2017-10-06

    Analysis of respiratory mechanics during mechanical ventilation (MV) is able to estimate resistive, elastic and inertial components of the working pressure of the respiratory system. Our aim was to discriminate the components of the working pressure of the respiratory system in infants on MV with severe bronchiolitis admitted to two PICU's. Infants younger than 1 year old with acute respiratory failure caused by severe bronchiolitis underwent neuromuscular blockade, tracheal intubation and volume controlled MV. Shortly after intubation studies of pulmonary mechanics were performed using inspiratory and expiratory breath hold. The maximum inspiratory and expiratory flow (QI and QE) as well as peak inspiratory (PIP), plateau (PPL) and total expiratory pressures (tPEEP) were measured. Inspiratory and expiratory resistances (RawI and RawE) and Time Constants (K TI and K TE ) were calculated. We included 16 patients, of median age 2.5 (1-5.8) months. Bronchiolitis due to respiratory syncytial virus was the main etiology (93.8%) and 31.3% had comorbidities. Measured respiratory pressures were PIP 29 (26-31), PPL 24 (20-26), tPEEP 9 [8-11] cmH2O. Elastic component of the working pressure was significantly higher than resistive and both higher than threshold (tPEEP - PEEP) (P mechanics of infants with severe bronchiolitis receiving MV shows that the elastic component of the working pressure of the respiratory system is the most important. The elastic and resistive components in conjunction with flow profile are characteristic of restrictive diseases. A better understanding of lung mechanics in this group of patients may lead to change the traditional ventilatory approach to severe bronchiolitis.

  3. BSim Models for 2 Case-studies of Naturally and Mechanically Ventilated Daycare Institutions

    DEFF Research Database (Denmark)

    Larsen, Olena Kalyanova; Heiselberg, Per

    and conclusions derived from the results of simulation of two different institutions in various operational modes. Thermal models are prepared for two buildings, which are: SFO Nymarken in Kerterminde and SFO Spirehuset in Hirtshals. The main operational principles in these buildings are significantly different......, as SFO Nymarken is mechanically ventilated and SFO Spirehuset is naturally ventilated. All of the simulations were carried in BSim, and all of the models are simulated in the current version of BSim, which is version 6,8,9,8....

  4. Cytomegalovirus and herpes simplex virus effect on the prognosis of mechanically ventilated patients suspected to have ventilator-associated pneumonia.

    Directory of Open Access Journals (Sweden)

    Yannael Coisel

    Full Text Available OBJECTIVE: Cytomegalovirus (CMV and herpes simplex virus (HSV are common viruses that can affect critically ill patients who are not immunocompromised. The aim of this study was to determine whether the identification of CMV and/or HSV in mechanically ventilated critically ill patients suspected of having pneumonia was associated with an increased mortality. DESIGN: Prospective epidemiological study. SETTING: Medical intensive care unit of a tertiary medical center. PATIENTS: Ninety-three patients with suspected pneumonia. INTERVENTIONS: Patients with suspected pneumonia had bronchoalveolar lavage and blood samples taken to confirm the diagnosis. Antigenemia was used to detect CMV in the blood. Bronchoalveolar lavage samples were submitted to testing using quantitative real-time Polymerase Chain Reaction. MEASUREMENTS AND MAIN RESULTS: We identified 22 patients with a CMV infection, 26 patients with an HSV infection and 45 patients without CMV or HSV infection (control group. Mortality at day 60 was higher in patients with a CMV infection than in patients from the control group (55% vs. 20%, P<0.01. Mortality at day 60 was not significantly increased in the group with HSV infection. Duration of ICU stay and ICU mortality were significantly higher in patients with CMV infections when compared to patients from the control group, whereas ventilator free days were significantly lower in patients with CMV infections when compared to patients from the control group. CONCLUSIONS: In critically ill patients, a CMV infection is associated with an increased mortality. Further interventional studies are needed to evaluate whether treatment could improve the prognosis.

  5. Older patients with late-stage COPD: Their illness experiences and involvement in decision-making regarding mechanical ventilation and noninvasive ventilation.

    Science.gov (United States)

    Jerpseth, Heidi; Dahl, Vegard; Nortvedt, Per; Halvorsen, Kristin

    2018-02-01

    To explore the illness experiences of older patients with late-stage chronic obstructive pulmonary disease and to develop knowledge about how patients perceive their preferences to be taken into account in decision-making processes concerning mechanical ventilation and/or noninvasive ventilation. Decisions about whether older patients with late-stage chronic obstructive pulmonary disease will benefit from noninvasive ventilation treatment or whether the time has come for palliative treatment are complicated, both medically and ethically. Knowledge regarding patients' values and preferences concerning ventilation support is crucial yet often lacking. Qualitative design with a hermeneutic-phenomenological approach. The data consist of qualitative in-depth interviews with 12 patients from Norway diagnosed with late-stage chronic obstructive pulmonary disease. The data were analysed within the three interpretative contexts described by Kvale and Brinkmann. The participants described their lives as fragile and burdensome, frequently interrupted by unpredictable and frightening exacerbations. They lacked information about their diagnosis and prognosis and were often not included in decisions about noninvasive ventilation or mechanical ventilation. Findings indicate that these patients are highly vulnerable and have complex needs in terms of nursing care and medical treatment. Moreover, they need access to proactive advanced care planning and an opportunity to discuss their wishes for treatment and care. To provide competent care for these patients, healthcare personnel must be aware of how patients experience being seriously ill. Advanced care planning and shared decision-making should be initiated alongside the curative treatment. © 2017 John Wiley & Sons Ltd.

  6. Impact of Residential Mechanical Ventilation on Energy Cost and Humidity Control

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    The DOE Building America program has been conducting research leading to cost effective high performance homes since the early 1990's. Optimizing whole house mechanical ventilation as part of the program's systems engineered approach to constructing housing has been an important subject of the program's research. Ventilation in residential buildings is one component of an effective, comprehensive strategy for creation and maintenance of a comfortable and healthy indoor air environment. The study described in this white paper is based on building energy modeling with an important focus on the indoor humidity impacts of ventilation. The modeling tools used were EnergyPlus version 7.1 (E+) and EnergyGauge USA (EGUSA). Twelve U.S. cities and five climate zones were represented. A total of 864 simulations (2*2*3*3*12= 864) were run using two building archetypes, two building leakage rates, two building orientations, three ventilation systems, three ventilation rates, and twelve climates.

  7. Experimental and numerical study of smoke propagation through a vent separating two mechanically ventilated rooms

    International Nuclear Information System (INIS)

    Audouin, Laurent; Pretrel, Hugues; Vaux, Samuel

    2015-01-01

    The paper presents an experimental and numerical study about smoke propagation through a horizontal opening between two superposed compartments, as can be encountered in nuclear installations, in case of a fire taking place in the lower room. The experimental configuration proposed in this study consists in two rooms mechanically ventilated and connected each other by a horizontal opening. The fire source is simulated by a propane burner located in the lower room. The inlet ventilation duct is located in the lower room and the exhaust ventilation duct is located in the upper room. For such experimental configuration, several flow regimes at the horizontal opening connecting the two rooms can be encountered depending on the fire power, the opening size (diameter, depth) and the ventilation set-up (location of inlet/outlet ducts, flow rate). Indeed, flow at the opening is governed by buoyant forces due to the hot gases produced by the fire, the inertia effect due to the forced ventilation and the momentum effect due to smoke flow nearby the horizontal opening (for instance, ceiling jet or thermal plume from fire). Consequently, such complex mixed (natural/ forced) convective flows are still a challenge for CFD fire codes to make properly calculations of these experimental scenarios. The objective of this paper is to assess the capability of ISIS code (CFD) to simulate the behaviour of smoke propagation inside these two superposed compartments. Results of this study are presented with details (especially, thermal stratification and flow rates through the horizontal vent) and are discussed thoroughly.

  8. Experimental and numerical study of smoke propagation through a vent separating two mechanically ventilated rooms

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, Laurent; Pretrel, Hugues; Vaux, Samuel [Institut de Radioprotection et de Surete Nucleaire (IRSN), Saint Paul Lez Durance (France)

    2015-12-15

    The paper presents an experimental and numerical study about smoke propagation through a horizontal opening between two superposed compartments, as can be encountered in nuclear installations, in case of a fire taking place in the lower room. The experimental configuration proposed in this study consists in two rooms mechanically ventilated and connected each other by a horizontal opening. The fire source is simulated by a propane burner located in the lower room. The inlet ventilation duct is located in the lower room and the exhaust ventilation duct is located in the upper room. For such experimental configuration, several flow regimes at the horizontal opening connecting the two rooms can be encountered depending on the fire power, the opening size (diameter, depth) and the ventilation set-up (location of inlet/outlet ducts, flow rate). Indeed, flow at the opening is governed by buoyant forces due to the hot gases produced by the fire, the inertia effect due to the forced ventilation and the momentum effect due to smoke flow nearby the horizontal opening (for instance, ceiling jet or thermal plume from fire). Consequently, such complex mixed (natural/ forced) convective flows are still a challenge for CFD fire codes to make properly calculations of these experimental scenarios. The objective of this paper is to assess the capability of ISIS code (CFD) to simulate the behaviour of smoke propagation inside these two superposed compartments. Results of this study are presented with details (especially, thermal stratification and flow rates through the horizontal vent) and are discussed thoroughly.

  9. Noninvasive mechanical ventilation in chronic obstructive pulmonary disease and in acute cardiogenic pulmonary edema.

    Science.gov (United States)

    Rialp Cervera, G; del Castillo Blanco, A; Pérez Aizcorreta, O; Parra Morais, L

    2014-03-01

    Noninvasive ventilation (NIV) with conventional therapy improves the outcome of patients with acute respiratory failure due to hypercapnic decompensation of chronic obstructive pulmonary disease (COPD) or acute cardiogenic pulmonary edema (ACPE). This review summarizes the main effects of NIV in these pathologies. In COPD, NIV improves gas exchange and symptoms, reducing the need for endotracheal intubation, hospital mortality and hospital stay compared with conventional oxygen therapy. NIV may also avoid reintubation and may decrease the length of invasive mechanical ventilation. In ACPE, NIV accelerates the remission of symptoms and the normalization of blood gas parameters, reduces the need for endotracheal intubation, and is associated with a trend towards lesser mortality, without increasing the incidence of myocardial infarction. The ventilation modality used in ACPE does not affect the patient prognosis. Copyright © 2012 Elsevier España, S.L. y SEMICYUC. All rights reserved.

  10. Impact of whole-body rehabilitation in patients receiving chronic mechanical ventilation.

    Science.gov (United States)

    Martin, Ubaldo J; Hincapie, Luis; Nimchuk, Mark; Gaughan, John; Criner, Gerard J

    2005-10-01

    To evaluate the prevalence and magnitude of weakness in patients receiving chronic mechanical ventilation and the impact of providing aggressive whole-body rehabilitation on conventional weaning variables, muscle strength, and overall functional status. Retrospective analysis of 49 consecutive patients. Multidisciplinary ventilatory rehabilitation unit in an academic medical center. Forty-nine consecutive chronic ventilator-dependent patients referred to a tertiary care hospital ventilator rehabilitation unit. None. Patients were 58 +/- 7 yrs old with multiple etiologies for respiratory failure. On admission, all patients were bedridden and had severe weakness of upper and lower extremities measured by a 5-point muscle strength score and a 7-point Functional Independence Measurement. Postrehabilitation, patients had increases in upper and lower extremity strength (p respiratory muscle training with an improvement in strength, weaning outcome, and functional status. Whole-body rehabilitation should be considered a significant component of their therapy.

  11. Y-piece temperature and humidification during mechanical ventilation.

    Science.gov (United States)

    Solomita, Mario; Daroowalla, Feroza; Leblanc, Deniese S; Smaldone, Gerald C

    2009-04-01

    Practitioners often presume there is adequate humidification in the ventilator circuit if the Y-piece is at a specified temperature, but control of Y-piece temperature may be inadequate to ensure adequate humidification. In an in vitro bench model we measured water-vapor delivery with several heated humidification setups and a wide range of minute volume (V (E)) values. The setup included a condenser, hygrometry, and thermometer. First, we calibrated the system with a point-source humidifier and water pump. Then we tested the water-vapor delivery during non-heated-wire humidification and during heated-wire humidification with a temperature gradient of +3 degrees C, 0 degrees C, and -3 degrees C between the humidifier and the Y-piece. We compared the results to 2 recommended humidification values: 100% saturated (absolute humidity 44 mg H(2)O/L) gas at 37 degrees C (saturated/37 degrees C); and 75% saturated (absolute humidity 33 mg H(2)O/L), which is the humidity recommended by the International Organization for Standardization (the ISO standard). In all the experiments the setup was set to provide 35 degrees C at the Y-piece. Our method for measuring water-vapor delivery closely approximated the amount delivered by a calibrated pump, but slightly underestimated the water-vapor delivery in all the experiments and the whole V (E) range. At all V (E) values, water-vapor delivery during non-heated-wire humidification matched or exceeded saturated/37 degrees C and was significantly greater than that during heated-wire humidification. During heated-wire humidification, water-vapor delivery varied with the temperature gradient and did not reach saturated/37 degrees C at V (E) > 6 L/min. Water-vapor delivery with the negative temperature gradient was below the ISO standard. Maintaining temperature at one point in the inspiratory circuit (eg, Y-piece), does not ensure adequate water-vapor delivery. Other factors (humidification system, V (E), gradient setting) are critical

  12. Influence of Positive End-Expiratory Pressure on Myocardial Strain Assessed by Speckle Tracking Echocardiography in Mechanically Ventilated Patients

    Directory of Open Access Journals (Sweden)

    Federico Franchi

    2013-01-01

    Full Text Available Purpose. The effects of mechanical ventilation (MV on speckle tracking echocardiography- (STE-derived variables are not elucidated. The aim of the study was to evaluate the effects of positive end-expiratory pressure (PEEP ventilation on 4-chamber longitudinal strain (LS analysis by STE. Methods. We studied 20 patients admitted to a mixed intensive care unit who required intubation for MV and PEEP titration due to hypoxia. STE was performed at three times: (T1 PEEP = 5 cmH2O; (T2 PEEP = 10 cmH2O; and (T3 PEEP = 15 cmH2O. STE analysis was performed offline using a dedicated software (XStrain MyLab 70 Xvision, Esaote. Results. Left peak atrial-longitudinal strain (LS was significantly reduced from T1 to T2 and from T2 to T3 (. Right peak atrial-LS and right ventricular-LS showed a significant reduction only at T3 (. Left ventricular-LS did not change significantly during titration of PEEP. Cardiac chambers’ volumes showed a significant reduction at higher levels of PEEP (. Conclusions. We demonstrated for the first time that incremental PEEP affects myocardial strain values obtained with STE in intubated critically ill patients. Whenever performing STE in mechanically ventilated patients, care must be taken when PEEP is higher than 10 cmH2O to avoid misinterpreting data and making erroneous decisions.

  13. Low-Flow Extracorporeal Carbon Dioxide Removal Using the Hemolung Respiratory Dialysis System® to Facilitate Lung-Protective Mechanical Ventilation in Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Akkanti, Bindu; Rajagopal, Keshava; Patel, Kirti P; Aravind, Sangeeta; Nunez-Centanu, Emmanuel; Hussain, Rahat; Shabari, Farshad Raissi; Hofstetter, Wayne L; Vaporciyan, Ara A; Banjac, Igor S; Kar, Biswajit; Gregoric, Igor D; Loyalka, Pranav

    2017-06-01

    Extracorporeal carbon dioxide removal (ECCO 2 R) permits reductions in alveolar ventilation requirements that the lungs would otherwise have to provide. This concept was applied to a case of hypercapnia refractory to high-level invasive mechanical ventilator support. We present a case of an 18-year-old man who developed post-pneumonectomy acute respiratory distress syndrome (ARDS) after resection of a mediastinal germ cell tumor involving the left lung hilum. Hypercapnia and hypoxemia persisted despite ventilator support even at traumatic levels. ECCO 2 R using a miniaturized system was instituted and provided effective carbon dioxide elimination. This facilitated establishment of lung-protective ventilator settings and lung function recovery. Extracorporeal lung support increasingly is being applied to treat ARDS. However, conventional extracorporeal membrane oxygenation (ECMO) generally involves using large cannulae capable of carrying high flow rates. A subset of patients with ARDS has mixed hypercapnia and hypoxemia despite high-level ventilator support. In the absence of profound hypoxemia, ECCO 2 R may be used to reduce ventilator support requirements to lung-protective levels, while avoiding risks associated with conventional ECMO.

  14. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  15. Lung protective mechanical ventilation strategies in cardiothoracic critical care: a retrospective study

    Directory of Open Access Journals (Sweden)

    Zochios V

    2016-11-01

    Full Text Available Vasileios Zochios,1–3 Matthew Hague,3,4 Kimberly Giraud,5 Nicola Jones3 1Department of Intensive Care Medicine, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, 2Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, 3Department of Anesthesia and Intensive Care Medicine, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridge, 4Department of Medicine, Colchester Hospital University NHS Foundation Trust, Colchester General Hospital, Colchester, 5Research and Development Department, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridge, UK Abstract: A body of evidence supports the use of low tidal volumes in ventilated patients without lung pathology to slow progress to acute respiratory distress syndrome (ARDS due to ventilator associated lung injury. We undertook a retrospective chart review and tested the hypothesis that tidal volume is a predictor of mortality in cardiothoracic (medical and surgical critical care patients receiving invasive mechanical ventilation. Independent predictors of mortality in our study included: type of surgery, albumin, H+, bilirubin, and fluid balance. In particular, it is important to note that cardiac, thoracic, and transplant surgical patients were associated with lower mortality. However, our study did not sample equally from The Berlin Definition of ARDS severity categories (mild, moderate, and severe hypoxemia. Although our study was not adequately powered to detect a difference in mortality between these groups, it will inform the development of a large prospective cohort study exploring the role of low tidal volume ventilation in cardiothoracic critically ill patients. Keywords: lung protective ventilation, cardiothoracic critical care, acute respiratory distress syndrome, invasive mechanical ventilation

  16. Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients.

    Science.gov (United States)

    Marino, Poala J; Wise, Matt P; Smith, Ann; Marchesi, Julian R; Riggio, Marcello P; Lewis, Michael A O; Williams, David W

    2017-06-01

    Mechanically ventilated patients are at risk for developing ventilator-associated pneumonia, and it has been reported that dental plaque provides a reservoir of respiratory pathogens that may aspirate to the lungs and endotracheal tube (ETT) biofilms. For the first time, metataxonomics was used to simultaneously characterize the microbiome of dental plaque, ETTs, and non-directed bronchial lavages (NBLs) in mechanically ventilated patients to determine similarities in respective microbial communities and therefore likely associations. Bacterial 16S rRNA gene sequences from 34 samples of dental plaque, NBLs, and ETTs from 12 adult mechanically ventilated patients were analyzed. No significant differences in the microbial communities of these samples were evident. Detected bacteria were primarily oral species (e.g., Fusobacterium nucleatum, Streptococcus salivarius, Prevotella melaninogenica) with respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcuspneumoniae, and Haemophilus influenzae) also in high abundance. The high similarity between the microbiomes of dental plaque, NBLs, and ETTs suggests that the oral cavity is indeed an important site involved in microbial aspiration to the lower airway and ETT. As such, maintenance of good oral hygiene is likely to be highly important in limiting aspiration of bacteria in this vulnerable patient group. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Parameters affecting the tidal volume during expiratory abdominal compression in patients with prolonged tracheostomy mechanical ventilation.

    Science.gov (United States)

    Morino, Akira; Shida, Masahiro; Tanaka, Masashi; Sato, Kimihiro; Seko, Toshiaki; Ito, Shunsuke; Ogawa, Shunichi; Takahashi, Naoaki

    2015-07-01

    [Purpose] The aim of this study was to clarify physical parameters affecting the tidal volume during expiratory abdominal compression in patients with prolonged tracheostomy mechanical ventilation. [Methods] Eighteen patients with prolonged mechanical ventilation were included in this study. Expiratory abdominal compression was performed on patients lying in a supine position. The abdomen above the navel was vertically compressed in synchronization with expiration and released with inspiration. We measured the tidal volume during expiratory abdominal compression. [Results] The mean tidal volume during expiratory abdominal compression was higher than that at rest (430.6 ± 127.1 mL vs. 344.0 ± 94.3 mL). The tidal volume during expiratory abdominal compression was correlated with weight, days of ventilator support, dynamic compliance and abdominal expansion. Stepwise multiple regression analysis revealed that weight (β = 0.499), dynamic compliance (β = 0.387), and abdominal expansion (β = 0.365) were factors contributing to the tidal volume during expiratory abdominal compression. [Conclusion] Expiratory abdominal compression increased the tidal volume in patients with prolonged tracheostomy mechanical ventilation. The tidal volume during expiratory abdominal compression was influenced by each of the pulmonary conditions and the physical characteristics.

  18. Energy and exergy performance of residential heating systems with separate mechanical ventilation

    International Nuclear Information System (INIS)

    Zmeureanu, Radu; Yu Wu, Xin

    2007-01-01

    The paper brings new evidence on the impact of separate mechanical ventilation system on the annual energy and exergy performance of several design alternatives of residential heating systems, when they are designed for a house in Montreal. Mathematical models of residential heating, ventilation and domestic hot water (HVAC-DHW) systems, which are needed for this purpose, are developed and furthermore implemented in the Engineering Equation Solver (EES) environment. The Coefficient of Performance and the exergy efficiency are estimated as well as the entropy generation and exergy destruction of the overall system. The equivalent greenhouse gas emissions due to the on-site and off-site use of primary energy sources are also estimated. The addition of a mechanical ventilation system with heat recovery to any HVAC-DHW system discussed in the paper increases the energy efficiency; however, it decreases the exergy efficiency, which indicates a potential long-term damaging impact on the natural environment. Therefore, the use of a separate mechanical ventilation system in a house should be considered with caution, and recommended only when other means for controlling the indoor air quality cannot be applied

  19. [Sedation with stimulative circadian rhythm in mechanically ventilation patients in intensive care unit].

    Science.gov (United States)

    Guo, Jian-ying; Deng, Qun; Guo, Xu-sheng; Liu, Shuang-qing; Zhang, Yu-hong; He, Zhong-jie; Yao, Yong-ming; Lin, Hong-yuan

    2012-07-01

    To sedate the mechanically ventilation patients in intensive care unit (ICU) with stimulative circadian rhythm, and evaluate whether the protocol has advantages in recovering natural circadian rhythm, duration of mechanical ventilation, and length of ICU stay after weaning of sedation. A prospective random control trial was conducted. One hundred and twenty ventilated patients in ICU were randomly assigned to four groups: circadian rhythm (CR), daily interruption (DI), continuous sedation (CS) or demand sedation (DS) group, each n = 30. Given more complications, DS group was deleted after recruiting 10 cases and 90 patients were admitted ultimately. Patients' age, gender, body weight, acute physiology and chronic health evaluation II (APACHE II) scores, sedatives dosages, daily arousal time, duration of mechanical ventilation, length of ICU stay, complications (ventilator-associated pneumonia, barotrauma with intrathoracic drain tube) and untoward reactions (accidental extubation, reintubation, tracheotomy, death) were recorded, the biochemical indicators were determined, as well as number of nurses on duty at 10:00 and 22:00. The patients' sex ratio, age, body weight, APACHEII scores, duration of mechanical ventilation, length of ICU stay showed no difference among CR, DI and CS groups. The total sedatives dosages (mg: 5466.7 ± 620.4) and average sedatives dosages [mg×h(-1) ×kg(-1): 2.19 ± 0.61] in CS group were significantly higher than those in CR group (4344.5 ± 816.0, 1.00 ± 0.51) and DI group (4154.3 ± 649.4, 1.23 ± 0.62, all P nurses on duty in the daytime (1.65, 1.41, 1.14, all P biochemistry index showed no difference in each group. It demonstrated that sedation with stimulative circadian rhythm be helpful to create circadian rhythm after weaning of sedation. While complications and untoward reactions did not increase, as well as duration of mechanical ventilation and length of ICU stay. Therefore, the clinical applicability of this sedative

  20. Predictors of need for mechanical ventilation at discharge after tracheostomy in the PICU.

    Science.gov (United States)

    McCrory, Michael C; Lee, K Jane; Scanlon, Matthew C; Wakeham, Martin K

    2016-01-01

    The objective of this study was to determine factors predictive of need for mechanical ventilation (MV) upon discharge from the pediatric intensive care unit (PICU) among patients who receive a tracheostomy during their stay. This was a retrospective cohort study using the Virtual PICU Systems (VPS) database. Patients tracheostomy during their PICU stay were included. A total of 680 pediatric patients from 74 PICUs were included, of whom 347 (51%) remained on MV at the time of PICU discharge. Neonates (30/38, 79%) and infants (129/203, 64%) required MV at PICU discharge after tracheostomy more often than adolescents (66/141, 47%) and children (122/298, 41%). Time on MV pre-tracheostomy was longer among those who required MV at discharge (median 18.3 vs. 13.8 days, P tracheostomy (OR 1.01, 95%CI 1.0-1.02, P = 0.01) were significantly associated with increased odds of MV upon PICU discharge, while being a trauma admission was associated with decreased odds (OR 0.45, 95%CI 0.28-0.73, P = 0.001). Younger patients and those with prolonged courses of MV prior to tracheostomy are more likely to continue to need MV upon PICU discharge. © 2015 Wiley Periodicals, Inc.

  1. Influence of Mechanical Ventilation on the Incidence of Pneumothorax During Infraclavicular Subclavian Vein Catheterization: A Prospective Randomized Noninferiority Trial.

    Science.gov (United States)

    Kim, Eugene; Kim, Hyun Joo; Hong, Deok Man; Park, Hee-Pyoung; Bahk, Jae-Hyon

    2016-09-01

    It remains unclear whether we have to interrupt mechanical ventilation during infraclavicular subclavian venous catheterization. In practice, the clinicians' choice about lung deflation depends on their own discretion. The purpose of this study was to assess the influence of mechanical ventilation on the incidence of pneumothorax during infraclavicular subclavian venous catheterization. A total of 332 patients, who needed subclavian venous catheterization, were randomly assigned to 1 of the 2 groups: catheterizations were performed with the patients' lungs under mechanical ventilation (ventilation group, n = 165) or without mechanical ventilation (deflation group, n = 167). The incidences of pneumothorax and other complications such as arterial puncture, hemothorax, or catheter misplacements and the success rate of catheterization were compared. The incidences of pneumothorax were 0% (0/165) in the ventilation group and 0.6% (1/167) in the deflation group. The incidence of pneumothorax in the deflation group was 0.6% higher than that in the ventilation group and the 2-sided 90% confidence interval for the difference was (-1.29% to 3.44%). Because the lower bound for the 2-sided 90% confidence interval, -1.29%, was higher than the predefined noninferiority margin of -3%, the inferiority of the ventilation group over the deflation group was rejected at the .05 level of significance. Other complication rates and success rates of catheterization were comparable between 2 groups. The oxygen saturation dropped below 95% in 9 patients in the deflation group, while none in the ventilation group (P = .007). The success and complication rates were similar regardless of mechanical ventilation. During infraclavicular subclavian venous catheterization, interruption of mechanical ventilation does not seem to be necessary for the prevention of pneumothorax.

  2. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Jed Lipes

    2012-01-01

    Full Text Available Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI and acute respiratory distress syndrome (ARDS. Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges.

  3. Low Tidal Volume Ventilation in Patients without Acute Respiratory Distress Syndrome: A Paradigm Shift in Mechanical Ventilation

    Science.gov (United States)

    Lipes, Jed; Bojmehrani, Azadeh; Lellouche, Francois

    2012-01-01

    Protective ventilation with low tidal volume has been shown to reduce morbidity and mortality in patients suffering from acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Low tidal volume ventilation is associated with particular clinical challenges and is therefore often underutilized as a therapeutic option in clinical practice. Despite some potential difficulties, data have been published examining the application of protective ventilation in patients without lung injury. We will briefly review the physiologic rationale for low tidal volume ventilation and explore the current evidence for protective ventilation in patients without lung injury. In addition, we will explore some of the potential reasons for its underuse and provide strategies to overcome some of the associated clinical challenges. PMID:22536499

  4. Correlation between timing of tracheostomy and duration of mechanical ventilation in patients with potentially normal lungs admitted to intensive care unit

    Directory of Open Access Journals (Sweden)

    Mehrdad Masoudifar

    2012-01-01

    Conclusion: Our study with mentioned sample size could not show any relationship between timing of tracheostomy and duration of mechanical ventilation in patients under mechanical ventilation with good pulmonary function in ICU.

  5. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  6. Large eddy simulation of a mechanically ventilated compartment fire for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bao P. [Dalian Univ. of Technology (China). Faculty of Energy and Power Engineering; Wen, Jennifer X. [Warwick Univ. (United Kingdom). Warwick FIRE, School of Engineering

    2015-12-15

    This paper deals with the modelling of a mechanically ventilated compartment fire which is a commonplace in nuclear fire scenarios. An advanced Computational Fluid Dynamics (CFD) field model with a wall conjugate heat transfer treatment is proposed. It simultaneously solves the compartment fire flow and the wall heat conduction. The flow solver is based on the Large Eddy Simulation (LES) based fire simulation solver FireFOAM within the frame of open source CFD code OpenFOAM {sup registered}. An extended eddy dissipation model is used to calculate the chemical reaction rate. A soot model based on the concept of smoke point height is employed to model the soot formation and oxidation. A finite volume method is adopted to model the radiative heat transfer. The ventilation flow is modelled by a simplified Bernoulli equation neglecting the detailed information on the ventilation system. The proposed model is validated against a single room fire test with forced mechanical ventilations. The predictions are in reasonably good agreement with experimental data.

  7. Improving aerosol drug delivery during invasive mechanical ventilation with redesigned components.

    Science.gov (United States)

    Longest, P Worth; Azimi, Mandana; Golshahi, Laleh; Hindle, Michael

    2014-05-01

    Patients receiving invasive mechanical ventilation with an endotracheal tube (ETT) can often benefit from pharmaceutical aerosols; however, drug delivery through the ventilator circuit is known to be very inefficient. The objective of this study was to improve the delivery of aerosol through an invasive mechanical ventilation system by redesigning circuit components using a streamlining approach. Redesigned components were the T-connector interface between the nebulizer and ventilator line and the Y-connector leading to the ETT. The streamlining approach seeks to minimize aerosol deposition and loss by eliminating sharp changes in flow direction and tubing diameter that lead to flow disruption. Both in vitro experiments and computational fluid dynamic (CFD) simulations were applied to analyze deposition and emitted dose of drug for multiple droplet size distributions, flows, and ETT sizes used in adults. The experimental results demonstrated that the streamlined components improved delivery through the circuit by factors ranging from 1.3 to 1.5 compared with a commercial system for adult ETT sizes of 8 and 9 mm. The overall delivery efficiency was based on the bimodal aspect of the aerosol distributions and could not be predicted by median diameter alone. CFD results indicated a 20-fold decrease in turbulence in the junction region for the streamlined Y resulting in a maximum 9-fold decrease in droplet deposition. The relative effectiveness of the streamlined designs was found to increase with increasing particle size and increasing flow, with a maximum improvement in emitted dose of 1.9-fold. Streamlined components can significantly improve the delivery of pharmaceutical aerosols during mechanical ventilation based on an analysis of multiple aerosol generation devices, ETT sizes, and flows.

  8. Low tidal volume and high positive end-expiratory pressure mechanical ventilation results in increased inflammation and ventilator-associated lung injury in normal lungs.

    Science.gov (United States)

    Hong, Caron M; Xu, Da-Zhong; Lu, Qi; Cheng, Yunhui; Pisarenko, Vadim; Doucet, Danielle; Brown, Margaret; Aisner, Seena; Zhang, Chunxiang; Deitch, Edwin A; Delphin, Ellise

    2010-06-01

    Protective mechanical ventilation with low tidal volume (Vt) and low plateau pressure reduces mortality and decreases the length of mechanical ventilation in patients with acute respiratory distress syndrome. Mechanical ventilation that will protect normal lungs during major surgical procedures of long duration may improve postoperative outcomes. We performed an animal study comparing 3 ventilation strategies used in the operating room in normal lungs. We compared the effects on pulmonary mechanics, inflammatory mediators, and lung tissue injury. Female pigs were randomized into 3 groups. Group H-Vt/3 (n = 6) was ventilated with a Vt of 15 mL/kg predicted body weight (PBW)/positive end-expiratory pressure (PEEP) of 3 cm H(2)O, group L-Vt/3 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 3 cm H(2)O, and group L-Vt/10 (n = 6) with a Vt of 6 mL/kg PBW/PEEP of 10 cm H(2)O, for 8 hours. Hemodynamics, airway mechanics, arterial blood gases, and inflammatory markers were monitored. Bronchoalveolar lavage (BAL) was analyzed for inflammatory markers and protein concentration. The right lower lobe was assayed for mRNA of specific cytokines. The right lower lobe and right upper lobe were evaluated histologically. In contrast to groups H-Vt/3 and L-Vt/3, group L-Vt/10 exhibited a 6-fold increase in inflammatory mediators in BAL (P ventilation with high PEEP resulted in increased production of inflammatory markers. Low PEEP resulted in lower levels of inflammatory markers. High Vt/low PEEP resulted in less histologic lung injury.

  9. Mechanical ventilation and volutrauma: study in vivo of a healthy pig model

    Directory of Open Access Journals (Sweden)

    Camilla V Pastore

    2011-01-01

    Full Text Available Mechanical ventilation is essential in intensive care units. However, it may itself induce lung injury. Current studies are based on rodents, using exceptionally large tidal volumes for very short periods, often after a "priming" pulmonary insult. Our study deepens a clinically relevant large animal model, closely resembling human physiology and the ventilator setting used in clinic settings. Our aim was to evaluate the pathophysiological mechanisms involved in alveolo/capillary barrier damage due to mechanical stress in healthy subjects. We randomly divided 18 pigs (sedated with medetomidine/tiletamine-zolazepam and anesthetised with thiopental sodium into three groups (n=6: two were mechanically ventilated (tidal volume of 8 or 20 ml/kg, the third breathed spontaneously for 4 hours, then animals were sacrificed (thiopental overdose. We analyzed every 30' hemogasanalysis and the main circulatory and respiratory parameters. Matrix gelatinase expression was evaluated on bronchoalveolar lavage fluid after surgery and before euthanasia. On autoptic samples we performed zymographic analysis of lung, kidney and liver tissues and histological examination of lung. Results evidenced that high Vt evoked profound alterations of lung mechanics and structure, although low Vt strategy was not devoid of side effects, too. Unexpectedly, also animals that were spontaneously breathing showed a worsening of the respiratory functions.

  10. Inhibition of HMGCoA reductase by simvastatin protects mice from injurious mechanical ventilation.

    Science.gov (United States)

    Manitsopoulos, Nikolaos; Orfanos, Stylianos E; Kotanidou, Anastasia; Nikitopoulou, Ioanna; Siempos, Ilias; Magkou, Christina; Dimopoulou, Ioanna; Zakynthinos, Spyros G; Armaganidis, Apostolos; Maniatis, Nikolaos A

    2015-02-14

    Mortality from severe acute respiratory distress syndrome exceeds 40% and there is no available pharmacologic treatment. Mechanical ventilation contributes to lung dysfunction and mortality by causing ventilator-induced lung injury. We explored the utility of simvastatin in a mouse model of severe ventilator-induced lung injury. Male C57BL6 mice (n = 7/group) were pretreated with simvastatin or saline and received protective (8 mL/kg) or injurious (25 mL/kg) ventilation for four hours. Three doses of simvastatin (20 mg/kg) or saline were injected intraperitoneally on days -2, -1 and 0 of the experiment. Lung mechanics, (respiratory system elastance, tissue damping and airway resistance), were evaluated by forced oscillation technique, while respiratory system compliance was measured with quasi-static pressure-volume curves. A pathologist blinded to treatment allocation scored hematoxylin-eosin-stained lung sections for the presence of lung injury. Pulmonary endothelial dysfunction was ascertained by bronchoalveolar lavage protein content and lung tissue expression of endothelial junctional protein Vascular Endothelial cadherin by immunoblotting. To assess the inflammatory response in the lung, we determined bronchoalveolar lavage fluid total cell content and neutrophil fraction by microscopy and staining in addition to Matrix-Metalloprotease-9 by ELISA. For the systemic response, we obtained plasma levels of Tumor Necrosis Factor-α, Interleukin-6 and Matrix-Metalloprotease-9 by ELISA. Statistical hypothesis testing was undertaken using one-way analysis of variance and Tukey's post hoc tests. Ventilation with high tidal volume (HVt) resulted in significantly increased lung elastance by 3-fold and decreased lung compliance by 45% compared to low tidal volume (LVt) but simvastatin abrogated lung mechanical alterations of HVt. Histologic lung injury score increased four-fold by HVt but not in simvastatin-pretreated mice. Lavage pleocytosis and neutrophilia were

  11. Assessment of dynamic mechanical properties of the respiratory system during high-frequency oscillatory ventilation*.

    Science.gov (United States)

    Dellacà, Raffaele L; Zannin, Emanuela; Ventura, Maria L; Sancini, Giulio; Pedotti, Antonio; Tagliabue, Paolo; Miserocchi, Giuseppe

    2013-11-01

    continuous distending pressure close to the point of maximal curvature of the deflation limb of quasi-static pressure-volume curve can be identified by measuring Zrs during a decreasing continuous distending pressure trial. Zrs might constitute a useful bedside tool for monitoring lung mechanics and improving the continuous distending pressure optimization during high-frequency oscillatory ventilation.

  12. Actual performance of mechanical ventilators in ICU: a multicentric quality control study

    Directory of Open Access Journals (Sweden)

    Govoni L

    2012-12-01

    Full Text Available Leonardo Govoni,1 Raffaele L Dellaca,1 Oscar Peñuelas,2,3 Giacomo Bellani,4,5 Antonio Artigas,3,6 Miquel Ferrer,3,7 Daniel Navajas,3,8,9 Antonio Pedotti,1 Ramon Farré3,81TBM-Lab, Dipartimento di Bioingegneria, Politecnico di Milano University, Milano, Italy; 2Hospital Universitario de Getafe – CIBERES, Madrid, Spain; 3CIBER de Enfermedades Respiratorias, Bunyola, Spain; 4Department of Experimental Medicine, University of Milan, Bicocca, Italy; 5Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital, Monza (MI, Italy; 6Critical Care Center, Sabadell Hospital, Corporació Sanitaria Universitaria Parc Tauli, Universitat Autonoma de Barcelona, CIBERES, Spain; 7Department of Pneumology, Hospital Clinic, IDIBAPS, Barcelona, Spain; 8Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universidad de Barcelona-IDIBAPS, Barcelona, Spain; 9Institut de Bioenginyeria de Catalunya, Barcelona, SpainAbstract: Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH2O/L/s – elastance (100 mL/cmH2O test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66. Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP = 8 cmH2O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min–max of the ventilatory parameters were the following: inspired

  13. Comparison of INSURE method with conventional mechanical ventilation after surfactant administration in preterm infants with respiratory distress syndrome: therapeutic challenge.

    Directory of Open Access Journals (Sweden)

    Fatemeh Sadat Nayeri

    2014-08-01

    Full Text Available Administration of endotracheal surfactant is potentially the main treatment for neonates suffering from RDS (Respiratory Distress Syndrome, which is followed by mechanical ventilation. Late and severe complications may develop as a consequence of using mechanical ventilation. In this study, conventional methods for treatment of RDS are compared with surfactant administration, use of mechanical ventilation for a brief period and NCPAP (Nasal Continuous Positive Airway Pressure, (INSURE method ((Intubation, Surfactant administration and extubation. A randomized clinical trial study was performed, including all newborn infants with diagnosed RDS and a gestational age of 35 weeks or less, who were admitted in NICU of Valiasr hospital. The patients were then divided randomly into two CMV (Conventional Mechanical Ventilation and INSURE groups. Surfactant administration and consequent long-term mechanical ventilation were done in the first group (CMV group. In the second group (INSURE group, surfactant was administered followed by a short-term period of mechanical ventilation. The infants were then extubated, and NCPAP was embedded. The comparison included crucial duration of mechanical ventilation and oxygen therapy, IVH (Intraventricular Hemorrhage, PDA (Patent Ductus Arteriosus, air-leak syndromes, BPD (Broncho-Pulmonary Dysplasia and mortality rate. The need for mechanical ventilation in 5th day of admission was 43% decreased (P=0.005 in INSURE group in comparison to CMV group. A decline (P=0.01 in the incidence of IVH and PDA was also achieved. Pneumothorax, chronic pulmonary disease and mortality rates, were not significantly different among two groups. (P=0.25, P=0.14, P=0.25, respectively. This study indicated that INSURE method in the treatment of RDS decreases the need for mechanical ventilation and oxygen-therapy in preterm neonates. Moreover, relevant complications as IVH and PDA were observed to be reduced. Thus, it seems rationale to

  14. Non-invasive mechanical ventilation and mortality in elderly immunocompromised patients hospitalized with pneumonia: a retrospective cohort study.

    Science.gov (United States)

    Johnson, Christopher S; Frei, Christopher R; Metersky, Mark L; Anzueto, Antonio R; Mortensen, Eric M

    2014-01-27

    Mortality after pneumonia in immunocompromised patients is higher than for immunocompetent patients. The use of non-invasive mechanical ventilation for patients with severe pneumonia may provide beneficial outcomes while circumventing potential complications associated with invasive mechanical ventilation. The aim of our study was to determine if the use of non-invasive mechanical ventilation in elderly immunocompromised patients with pneumonia is associated with higher all-cause mortality. In this retrospective cohort study, data were obtained from the Department of Veterans Affairs administrative databases. We included veterans age ≥65 years who were immunocompromised and hospitalized due to pneumonia. Multilevel logistic regression analysis was used to determine the relationship between the use of invasive versus non-invasive mechanical ventilation and 30-day and 90-day mortality. Of 1,946 patients in our cohort, 717 received non-invasive mechanical ventilation and 1,229 received invasive mechanical ventilation. There was no significant association between all-cause 30-day mortality and non-invasive versus invasive mechanical ventilation in our adjusted model (odds ratio (OR) 0.85, 95% confidence interval (CI) 0.66-1.10). However, those patients who received non-invasive mechanical ventilation had decreased 90-day mortality (OR 0.66, 95% CI 0.52-0.84). Additionally, receipt of guideline-concordant antibiotics in our immunocompromised cohort was significantly associated with decreased odds of 30-day mortality (OR 0.31, 95% CI 0.24-0.39) and 90-day mortality (OR 0.41, 95% CI 0.31-0.53). Our findings suggest that physicians should consider the use of non-invasive mechanical ventilation, when appropriate, for elderly immunocompromised patients hospitalized with pneumonia.

  15. Disinfection of corrugated tubing by ozone and ultrasound in mechanically ventilated tracheostomized patients.

    Science.gov (United States)

    Lopes, M S; Ferreira, J R F; da Silva, K B; de Oliveira Bacelar Simplício, I; de Lima, C J; Fernandes, A B

    2015-08-01

    Medical equipment coming into contact with non-intact skin or mucous membranes is classified as semi-critical material. This equipment requires at least high-level disinfection, as the major risk in all invasive procedures is the introduction of pathogenic microbes causing hospital-associated infections. To evaluate the capacity of ozone gas and ultrasound to disinfect semi-critical, thermally sensitive material. Used corrugated tubing from mechanically ventilated tracheostomized patients in the intensive care unit was obtained. Enzymatic detergent was applied for 15min before different disinfection techniques were evaluated as follows: Group A (0.2% peracetic acid); Group B (ultrasound for 60min); Group C (application of ozone gas at a concentration of 33mg/L for 15min); Group D (ultrasound for 30min and ozone for 15min); Group E (ultrasound for 60min and ozone for 15min). Application of ultrasound for 60min reduced the level of microbial contamination by 4 log10, whereas ozone alone and the other two combined techniques (ultrasound and ozone) and the peracetic acid reduced the level of microbial contamination by 5 log10. Ozone was the most advantageous technique taking into consideration processing time, ease of use, effectiveness, and cost. The use of ozone gas to disinfect semi-critical material proved to be technically feasible and extremely promising. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  16. Performance of a demand controlled mechanical extract ventilation system for dwellings

    Directory of Open Access Journals (Sweden)

    I. Pollet

    2013-10-01

    Full Text Available The main aim of ventilation is to guarantee a good indoor air quality, related to the energy consumed for heating and fan(s. Active or passive heat recovery systems seem to focus on the reduction of heating consumption at the expense of fan electricity consumption and maintenance. In this study, demandcontrolled mechanical extract ventilation systems of Renson (DCV1 and DCV2, based on natural supply in the habitable rooms and mechanical extraction in the wet rooms (or even the bedrooms, was analysed for one year by means of multi-zone Contam simulations on a reference detached house and compared with standard MEV and mechanical extract ventilation systems with heat recovery (MVHR. To this end, IAQ, total energy consumption, CO2 emissions and total cost of the systems are determined. The results show that DCV systems with increased supply air flow rates or direct mechanical extract from bedrooms can significantly improve IAQ, while reducing total energy consumption compared to MEV. Applying DCV reduces primary heating energy consumption and yearly fan electricity consumption at most by 65% to 50% compared to MEV. Total operational energy costs and CO2 emissions of DCV are similar when compared to MVHR. Total costs of DCV systems over 15 years are smaller when compared to MVHR due to lower investment and maintenance costs.

  17. Evaluation of the minute ventilation recovery time as a predictor of weaning in mechanically ventilated COPD patients in respiratory failure

    Directory of Open Access Journals (Sweden)

    Alaa Eldin Elgazzar

    2013-04-01

    Conclusion: The minute ventilation recovery time is a good, reliable predictor of weaning success and it is the most independent parameter among other weaning predictors that can predict a successful spontaneous breathing trial (SBT.

  18. Can Tracheostomy Improve Outcome and Lower Resource Utilization for Patients with Prolonged Mechanical Ventilation?

    Science.gov (United States)

    Yuan, Ciou-Rong; Lan, Tzuo-Yun; Tang, Gau-Jun

    2015-01-01

    Background: It is not clear whether the benefits of tracheostomy remain the same in the population. This study aimed to better examine the effect of tracheostomy on clinical outcome among prolonged ventilator patients. Methods: Data were from the medical claims data in Taiwan. A total of 3880 patients with ventilator use for more than 14 days between 2005 and 2009 were identified. Among them, 645 patients with tracheostomy conducted within 30 days of ventilator use were compared to 2715 patients without tracheostomy on death during hospitalization and study period, and successful weaning and medical utilization during hospitalization. Cox proportional hazards and linear regression models were used to examine the associations between tracheostomy and the main outcomes. Results: The tracheostomy rate was 30%, and 55% of tracheostomies were performed within 30 days of mechanical ventilation. After adjustments, patients with tracheostomy were at a lower risk of death during hospitalization (hazard ratio [HR] =0.51; 95% confidence interval [CI] =0.43–0.61) and 5-year observation (HR = 0.73; 95% CI = 0.66–0.81), and a lower probability of successful weaning (HR = 0.88; 95% CI = 0.79–0.99). Higher medical use was also observed in patients with tracheostomy. Conclusions: The beneficial effect for tracheostomy observed in our data was the reduction of death. However, patients with tracheostomy were less likely to wean and more likely to consume medical resources. PMID:26415799

  19. Noninvasive Ventilation in Premature Neonates.

    Science.gov (United States)

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  20. Nursing diagnoses in patients having mechanical ventilation support in a respiratory intensive care unit in Turkey.

    Science.gov (United States)

    Yücel, Şebnem Çinar; Eşer, Ismet; Güler, Elem Kocaçal; Khorshid, Leyla

    2011-10-01

    This research was carried out to find out the nursing diagnoses in patients who have mechanical ventilation support in a respiratory intensive care unit. The study was conducted with 51 evaluations of critically ill adult patients who underwent invasive and non-invasive mechanical ventilation therapy in 2008. Data collection was based on Gordon's 11 Functional Health Patterns, and nursing diagnoses were determined according to North American Nursing Diagnosis Association-International (NANDA-I) Taxonomy II. The nursing diagnoses were determined by two researchers separately. The consistency between the nursing diagnoses defined by the two researchers was evaluated by using Cohen's kappa (κ). Forty men (78.4%) and 11 women (21.6%) whose mean ages were 70.19 (SD = 8.96) years were included in the study. Nineteen subgroups of nursing diagnoses about safety/protection domain, and 15 subgroups about activity/rest domain were seen at different rates in the patients. There was a statistically significant difference between mechanical ventilation via tracheostomy or endotracheal tube and decreased cardiac output (d.f. = 1, χ(2) = 4.760, P = 0.029). The relationship between the length of time under mechanical ventilation and impaired physical mobility was considerably significant (d.f. = 3, χ(2) = 24.459, P = 0.000). It was found out that there was a high degree of agreement (96.8%) between the nursing diagnoses defined by the two researchers separately (κ = 0.936, SE = 0.08). © 2011 Blackwell Publishing Asia Pty Ltd.

  1. Outcome of Hematopoietic Stem Cell Recipients Who Were Mechanically Ventilated and Admitted to Intensive Care Units

    Directory of Open Access Journals (Sweden)

    Tsung-Ming Yang

    2007-01-01

    Conclusion: The ICU mortality rate of mechanically ventilated HSCT recipients was high. Factors associated with ICU mortality were older age, high APACHE II score, presence of shock, and higher respiratory or heart rate at the time of ICU admission. SLB might provide specific diagnosis in HSCT recipients with unexplained pulmonary infiltrates and aid modification of treatment. [J Formos Med Assoc 2007;106(4:295-301

  2. Memory in relation to depth of sedation in adult mechanically ventilated intensive care patients.

    OpenAIRE

    Samuelson, Karin; Lundberg, Dag; Fridlund, Bengt

    2006-01-01

    Objective: To investigate the relationship between memory and intensive care sedation. Design and setting: Prospective cohort study over 18 months in two general intensive care units (ICUs) in district university hospitals. Patients: 313 intubated mechanically ventilated adults admitted for more than 24 h, 250 of whom completed the study. Measurements: Patients (n = 250) were interviewed in the ward 5 days after discharge from the ICU using the ICU Memory Tool. Patient characteristics, doses ...

  3. Physiologic Evaluation of Ventilation Perfusion Mismatch and Respiratory Mechanics at Different Positive End-expiratory Pressure in Patients Undergoing Protective One-lung Ventilation.

    Science.gov (United States)

    Spadaro, Savino; Grasso, Salvatore; Karbing, Dan Stieper; Fogagnolo, Alberto; Contoli, Marco; Bollini, Giacomo; Ragazzi, Riccardo; Cinnella, Gilda; Verri, Marco; Cavallesco, Narciso Giorgio; Rees, Stephen Edward; Volta, Carlo Alberto

    2018-03-01

    Arterial oxygenation is often impaired during one-lung ventilation, due to both pulmonary shunt and atelectasis. The use of low tidal volume (VT) (5 ml/kg predicted body weight) in the context of a lung-protective approach exacerbates atelectasis. This study sought to determine the combined physiologic effects of positive end-expiratory pressure and low VT during one-lung ventilation. Data from 41 patients studied during general anesthesia for thoracic surgery were collected and analyzed. Shunt fraction, high V/Q and respiratory mechanics were measured at positive end-expiratory pressure 0 cm H2O during bilateral lung ventilation and one-lung ventilation and, subsequently, during one-lung ventilation at 5 or 10 cm H2O of positive end-expiratory pressure. Shunt fraction and high V/Q were measured using variation of inspired oxygen fraction and measurement of respiratory gas concentration and arterial blood gas. The level of positive end-expiratory pressure was applied in random order and maintained for 15 min before measurements. During one-lung ventilation, increasing positive end-expiratory pressure from 0 cm H2O to 5 cm H2O and 10 cm H2O resulted in a shunt fraction decrease of 5% (0 to 11) and 11% (5 to 16), respectively (P ventilation, high positive end-expiratory pressure levels improve pulmonary function without increasing high V/Q and reduce driving pressure.

  4. Drainage of pleural effusion improves diaphragmatic function in mechanically ventilated patients.

    Science.gov (United States)

    Umbrello, Michele; Mistraletti, Giovanni; Galimberti, Andrea; Piva, Ilaria R; Cozzi, Ottavia; Formenti, Paolo

    2017-03-01

    Pleural effusion adversely affects the pressuregenerating capacity of the diaphragm. It uncouples the lung and chest wall, which may result in diaphragmatic dysfunction. Information on the effects of effusion drainage on diaphragmatic function is limited, but several studies report relief of dyspnoea after drainage, which was attributed to improved diaphragmatic mechanics, even if this issue was never formally addressed. To investigate the effect of drainage of unilateral pleural effusion on diaphragmatic function. In a prospective twostep protocol (at baseline and after drainage of effusion), we conducted a spontaneous breathing trial in fourteen critically ill, mechanically ventilated patients undergoing pressure support ventilation. We used ultrasonography of the ipsilateral hemidiaphragm to evaluate and record respiratory displacement and thickening during tidal and maximal breathing efforts. We recorded and analysed airway pressures, respiratory system compliance, vital capacity, indices of respiratory effort and arterial blood gases. After drainage of the effusion, the respiratory rate decreased and tidal volume increased, but haemodynamic parameters were unaffected and oxygenation levels showed a non-significant increase. Drainage was associated with significant decreases in indices of respiratory drive and the maximal pressure generated by the respiratory muscles, as well as an increased compliance of the respiratory system. Diaphragmatic displacement and thickening significantly increased after drainage. We found there was a significant correlation between the volume of the effusion drained and the increase in tidal diaphragmatic thickening. Drainage of a unilateral pleural effusion during weaning from mechanical ventilation improves diaphragmatic contractile activity and respiratory system performance.

  5. Sedation and memories of patients subjected to mechanical ventilation in an intensive care unit.

    Science.gov (United States)

    Costa, Jaquilene Barreto da; Marcon, Sonia Silva; Macedo, Claudia Rejane Lima de; Jorge, Amaury Cesar; Duarte, Péricles Almeida Delfino

    2014-01-01

    To investigate the relationship between sedation and the memories reported by patients subjected to mechanical ventilation following discharge from the intensive care unit. This prospective, observational, cohort study was conducted with individuals subjected to mechanical ventilation who remained in the intensive care unit for more than 24 hours. Clinical statistics and sedation records were extracted from the participants' clinical records; the data relative to the participants' memories were collected using a specific validated instrument. Assessment was performed three months after discharge from the intensive care unit. A total of 128 individuals were assessed, most of whom (84.4%) reported recollections from their stay in the intensive care unit as predominantly a combination of real and illusory events. The participants subjected to sedation (67.2%) at deep levels (Richmond Agitation-Sedation Scale [RASS] -4 and -5) for more than two days and those with psychomotor agitation (33.6%) exhibited greater susceptibility to occurrence of illusory memories (p>0.001). The probability of the occurrence of illusory memories was greater among the participants who were subjected to deep sedation. Sedation seems to be an additional factor that contributed to the occurrence of illusory memories in severely ill individuals subjected to mechanical ventilation.

  6. Are daily routine chest radiographs useful in critically ill, mechanically ventilated patients? A randomized study.

    Science.gov (United States)

    Clec'h, Christophe; Simon, Paul; Hamdi, Aïcha; Hamza, Lilia; Karoubi, Philippe; Fosse, Jean-Philippe; Gonzalez, Frédéric; Vincent, François; Cohen, Yves

    2008-02-01

    Whether chest radiographs (CXRs) in mechanically ventilated patients should be routinely obtained or only when an abnormality is anticipated remains debated. We aimed to compare the diagnostic, therapeutic and outcome efficacy of a restrictive prescription of CXRs with that of a routine prescription, focusing on delayed diagnoses and treatments potentially related to the restrictive prescription. Randomized controlled trial. Intensive care unit of the Avicenne Teaching Hospital, Bobigny, France. All consecutive patients mechanically ventilated for > or = 48h between January and June 2006. Patients were randomly assigned to have daily routine CXRs (routine prescription group) or clinically indicated CXRs (restrictive prescription group). For each CXR, a questionnaire was completed addressing the reason for the CXR, the new findings, and any subsequent therapeutic intervention. The endpoints were the rates of new findings, the rates of new findings that prompted therapeutic intervention, the rate of delayed diagnoses, and mortality. Eighty-four patients were included in the routine prescription group and 81 in the restrictive prescription group. The rates of new findings and the rates of new findings that prompted therapeutic intervention in the restrictive prescription group and in the routine prescription group were 66% vs. 7.2% (p < 0.0001), and 56.4% vs. 5.5% (p < 0.0001) respectively. The rate of delayed diagnoses in the restrictive prescription group was 0.7%. Mortality was similar. Restrictive use of CXRs in mechanically ventilated patients was associated with better diagnostic and therapeutic efficacies without impairing outcome.

  7. Particle size distribution and composition in a mechanically ventilated school building during air pollution episodes.

    Science.gov (United States)

    Parker, J L; Larson, R R; Eskelson, E; Wood, E M; Veranth, J M

    2008-10-01

    Particle count-based size distribution and PM(2.5) mass were monitored inside and outside an elementary school in Salt Lake City (UT, USA) during the winter atmospheric inversion season. The site is influenced by urban traffic and the airshed is subject to periods of high PM(2.5) concentration that is mainly submicron ammonium and nitrate. The school building has mechanical ventilation with filtration and variable-volume makeup air. Comparison of the indoor and outdoor particle size distribution on the five cleanest and five most polluted school days during the study showed that the ambient submicron particulate matter (PM) penetrated the building, but indoor concentrations were about one-eighth of outdoor levels. The indoor:outdoor PM(2.5) mass ratio averaged 0.12 and particle number ratio for sizes smaller than 1 microm averaged 0.13. The indoor submicron particle count and indoor PM(2.5) mass increased slightly during pollution episodes but remained well below outdoor levels. When the building was occupied the indoor coarse particle count was much higher than ambient levels. These results contribute to understanding the relationship between ambient monitoring station data and the actual human exposure inside institutional buildings. The study confirms that staying inside a mechanically ventilated building reduces exposure to outdoor submicron particles. This study supports the premise that remaining inside buildings during particulate matter (PM) pollution episodes reduces exposure to submicron PM. New data on a mechanically ventilated institutional building supplements similar studies made in residences.

  8. The Clinical Utilisation of Respiratory Elastance Software (CURE Soft): a bedside software for real-time respiratory mechanics monitoring and mechanical ventilation management.

    Science.gov (United States)

    Szlavecz, Akos; Chiew, Yeong Shiong; Redmond, Daniel; Beatson, Alex; Glassenbury, Daniel; Corbett, Simon; Major, Vincent; Pretty, Christopher; Shaw, Geoffrey M; Benyo, Balazs; Desaive, Thomas; Chase, J Geoffrey

    2014-09-30

    Real-time patient respiratory mechanics estimation can be used to guide mechanical ventilation settings, particularly, positive end-expiratory pressure (PEEP). This work presents a software, Clinical Utilisation of Respiratory Elastance (CURE Soft), using a time-varying respiratory elastance model to offer this ability to aid in mechanical ventilation treatment. CURE Soft is a desktop application developed in JAVA. It has two modes of operation, 1) Online real-time monitoring decision support and, 2) Offline for user education purposes, auditing, or reviewing patient care. The CURE Soft has been tested in mechanically ventilated patients with respiratory failure. The clinical protocol, software testing and use of the data were approved by the New Zealand Southern Regional Ethics Committee. Using CURE Soft, patient's respiratory mechanics response to treatment and clinical protocol were monitored. Results showed that the patient's respiratory elastance (Stiffness) changed with the use of muscle relaxants, and responded differently to ventilator settings. This information can be used to guide mechanical ventilation therapy and titrate optimal ventilator PEEP. CURE Soft enables real-time calculation of model-based respiratory mechanics for mechanically ventilated patients. Results showed that the system is able to provide detailed, previously unavailable information on patient-specific respiratory mechanics and response to therapy in real-time. The additional insight available to clinicians provides the potential for improved decision-making, and thus improved patient care and outcomes.

  9. Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1997-01-01

    We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.

  10. Post-traumatic stress disorder after weaning from prolonged mechanical ventilation.

    Science.gov (United States)

    Jubran, Amal; Lawm, Gerald; Duffner, Lisa A; Collins, Eileen G; Lanuza, Dorothy M; Hoffman, Leslie A; Tobin, Martin J

    2010-12-01

    Weaning from prolonged mechanical ventilation may be associated with mental discomfort. It is not known whether such discomfort is linked with the development of post-traumatic stress disorder (PTSD). Accordingly, we investigated whether PTSD occurs in patients after weaning from prolonged ventilation. We also determined whether administering a questionnaire would identify patients at risk for developing PTSD. A prospective longitudinal study of patients transferred to a long-term acute-care hospital for weaning from prolonged ventilation was undertaken: 72 patients were studied 1 week after weaning, and 41 patients were studied again 3 months later. An experienced psychologist conducted a structured clinical interview 3 months after weaning to establish a diagnosis of PTSD. To assess for the presence of PTSD-related symptoms, the post-traumatic stress syndrome (PTSS-10) questionnaire was administered 1 week after weaning and 3 months later. The psychologist diagnosed PTSD in 12% of patients 3 months after ventilator weaning. Patients who developed PTSD were more likely to have a previous history of psychiatric disorders (P 20 one week after weaning reliably identified patients who were diagnosed with PTSD 3 months later: sensitivity 1.0; specificity 0.76; area under the receiver-operating characteristic curve 0.91. PTSD was diagnosed in 12% of patients who were weaned from prolonged ventilation. A PTSS-10 score >20 one week after weaning identified patients diagnosed with PTSD 3 months later. This finding suggests that a simple questionnaire administered before hospital discharge can identify patients at risk for developing PTSD.

  11. Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre

    Energy Technology Data Exchange (ETDEWEB)

    Kavgic, M.; Mumovic, D.; Young, A. [The Bartlett School of Graduate Studies, University College London, Gower Street, London, WC1E 6BT, England (United Kingdom); Stevanovic, Z. [Institute of Nuclear Sciences - Vinca, P.O. Box 522, 11001 Belgrade (RS)

    2008-07-01

    Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO{sub 2}, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants' feet. (author)

  12. Evaluation of a flexible bronchoscope prototype designed for bronchoscopy during mechanical ventilation: a proof-of-concept study.

    Science.gov (United States)

    Nay, M-A; Auvet, A; Mankikian, J; Herve, V; Dequin, P-F; Guillon, A

    2017-06-01

    Bronchoscopy during mechanical ventilation of patients' lungs significantly affects ventilation because of partial obstruction of the tracheal tube, and may thus be omitted in the most severely ill patients. It has not previously been possible to reduce the external diameter of the bronchoscope without reducing the diameter of the suction channel, thus reducing the suctioning capacity of the device. We believed that a better-designed bronchoscope could improve the safety of bronchoscopy in patients whose lungs were ventilated. We designed a flexible bronchoscope prototype with a drumstick-shaped head consisting of a long, thin proximal portion; a short and large distal portion for camera docking; and a large suction channel throughout the length of the device. The aims of our study were to test the impact of our prototype on mechanical ventilation when inserted into the tracheal tube, and to assess suctioning capacity. We first tested the efficiency of the suction channel, and demonstrated that the suction flow of the prototype was similar to that of conventional adult bronchoscopes. We next evaluated the consequences of bronchoscopy when using the prototype on minute ventilation and intrathoracic pressures during mechanical ventilation: firstly, in vitro using a breathing simulator; and secondly, in vivo using a porcine model of pulmonary ventilation. The insertion of adult bronchoscopes into the tracheal tube immediately impaired the protective ventilation strategy employed, whereas the prototype preserved it. For the first time, we have developed an innovative flexible bronchoscope designed for bronchoscopy during invasive mechanical ventilation, that both preserved the protective ventilation strategy, and enabled efficient suction flow. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  13. Mechanical ventilators in the hot zone: effects of a CBRN filter on patient protection and battery life.

    Science.gov (United States)

    Blakeman, Thomas C; Toth, Peter; Rodriquez, Dario; Branson, Richard D

    2010-09-01

    In a contaminated environment, respiratory protection for ventilator dependent patients can be achieved by attaching a chemical, biological, radiological, or nuclear (CBRN) filter to the air intake port of a portable ventilator. We evaluated the effect of the filter on battery performance of four portable ventilators in a laboratory setting. Each ventilator was attached to a test lung. Ventilator settings were: assist control (AC) mode, respiratory rate 35 bpm, tidal volume 450 ml, positive end-expiratory pressure (PEEP) 10 cm H(2)O, inspiratory time 0.8 s, and FIO(2) 0.21. Ventilators were operated until the battery was fully discharged. We also evaluated the ventilators' ability to deliver all the gas through the CBRN filter and analyzed the pressures required to breathe through the anti-asphyxiation valve of a failed device. The range of battery life varied widely across different ventilator models (99.8-562.6 min). There was no significant difference in battery life (pventilator dependent patients when environmental contamination is present, although conditions exist where all gas does not pass through the filter with some ventilators under normal operating conditions. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Time of elevation of head of bed for patients receiving mechanical ventilation and its related factors.

    Science.gov (United States)

    Martí-Hereu, L; Arreciado Marañón, A

    The semirecumbent position is a widespread recommendation for the prevention of pneumonia associated with mechanical ventilation. To identify the time of elevation of head of bed for patients under mechanical ventilation and the factors related to such elevation in an intensive care unit. An observational, descriptive cross-sectional study. Conducted in an intensive care unit of a tertiary hospital from April to June 2015. The studied population were mechanically ventilated patients. Daily hours in which patients remained with the head of the bed elevated (≥30°), socio-demographic data and clinical variables were recorded. 261 head elevation measurements were collected. The average daily hours that patients remained at ≥30° was 16h28' (SD ±5h38'), equivalent to 68.6% (SD ±23.5%) of the day. Factors related to elevations ≥30° for longer were: enteral nutrition, levels of deep sedation, cardiac and neurocritical diagnostics. Factors that hindered the position were: sedation levels for agitation and abdominal pathologies. Sex, age and ventilation mode did not show a significant relationship with bed head elevation. Although raising the head of the bed is an easy to perform, economical and measurable preventive measure, its compliance is low due to specific factors specific related o the patient's clinical condition. Using innovations such as continuous measurement of the head position helps to evaluate clinical practice and allows to carry out improvement actions whose impact is beneficial to the patient. Copyright © 2017 Sociedad Española de Enfermería Intensiva y Unidades Coronarias (SEEIUC). Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Non-invasive mechanical ventilation after the successful weaning: a comparison with the venturi mask

    Directory of Open Access Journals (Sweden)

    Esra Adıyeke

    Full Text Available Abstract Background and objectives: This study compared the rates of acute respiratory failure, reintubation, length of intensive care stay and mortality in patients in whom the non-invasive mechanical ventilation (NIMV was applied instead of the routine venturi face mask (VM application after a successful weaning. Methods: Following the approval of the hospital ethics committee, 62 patients who were under mechanical ventilation for at least 48 hours were scheduled for this study. 12 patients were excluded because of the weaning failure during T-tube trial. The patients who had optimum weaning criteria after the T-tube trial of 30 minutes were extubated. The patients were kept on VM for 1 hour to observe the hemodynamic and respiratory stability. The group of 50 patients who were successful to wean randomly allocated to have either VM (n = 25, or NIV (n = 25. Systolic arterial pressure (SAP, heart rate (HR, respiratory rate (RR, PaO2, PCO2, and pH values were recorded. Results: The number of patients who developed respiratory failure in the NIV group was significantly less than VM group of patients (3 reintubation vs. 14 NIV + 5 reintubation in the VM group. The length of stay in the ICU was also significantly shorter in NIV group (5.2 ± 4.9 vs. 16.7 ± 7.7 days. Conclusions: The ratio of the respiratory failure and the length of stay in the ICU were lower when non-invasive mechanical ventilation was used after extubation even if the patient is regarded as ‘successfully weaned’. We recommend the use of NIMV in such patients to avoid unexpected ventilator failure.

  16. Practice patterns and outcomes associated with early sedation depth in mechanically ventilated patients: a systematic review protocol.

    Science.gov (United States)

    Stephens, Robert J; Dettmer, Matthew R; Roberts, Brian W; Fowler, Susan A; Fuller, Brian M

    2017-06-09

    Mechanical ventilation is a commonly performed intervention in critically ill patients. Frequently, these patients experience deep sedation early in their clinical course. Emerging data suggest that the practice of early deep sedation may negatively impact patient outcomes. The purpose of this review is to assess the world's literature to describe and determine the impact of early deep sedation on the outcomes of mechanically ventilated patients. Randomised controlled trials and non-randomised studies will be eligible for inclusion in this systematic review. With the assistance of a medical librarian, we will comprehensively search MEDLINE, Embase, Scopus, Cochrane Central Register of Controlled Trials, Database of Abstracts of Reviews and Effects, and Cochrane Database of Systematic Reviews for peer-reviewed literature. Grey literature from appropriate professional society conferences, held from 2010 to 2017, will be reviewed manually. Two authors will independently review all search results, and disagreements will be resolved through arbitration by a third author. If appropriate, meta-analysis will be used for quantitative analysis of the data. Heterogeneity between studies will be assessed using the I 2 statistic. The proposed systematic review will not collect data that are associated with individual patients and does not require ethical approval. Results of this study will contribute to the understanding of early sedation, identify future research targets and guide early care in mechanically ventilated patients. This systematic review has been registered in the international prospective register of systematic reviews (PROSPERO #CRD42017057264). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. Physiologically based indices of volumetric capnography in patients receiving mechanical ventilation.

    Science.gov (United States)

    Romero, P V; Lucangelo, U; Lopez Aguilar, J; Fernandez, R; Blanch, L

    1997-06-01

    Several indices of ventilatory heterogeneity can be identified from the expiratory CO2 partial pressure or CO2 elimination versus volume curves. The aims of this study were: 1) to analyse several computerizable indices of volumetric capnography in order to detect ventilatory disturbances; and 2) to establish the relationship between those indices and respiratory system mechanics in subjects with normal lungs and in patients with acute respiratory distress syndrome (ARDS), both receiving mechanical ventilation. We studied six normal subjects and five patients with early ARDS mechanically ventilated at three levels of tidal volume (VT). Respiratory system mechanics were assessed by end-expiratory and end-inspiratory occlusion methods, respectively. We determined Phase III slopes, Fletcher's efficiency index, Bohr's dead space (VD,Bohr/VT), and the ratio of alveolar ejection volume to tidal volume (VAE/VT) from expiratory capnograms, as a function of expired volume. Differences between normal subjects and ARDS patients were significant both for capnographic and mechanical parameters. Changes in VT significantly altered capnographic indices in normal subjects, but failed to change ventilatory mechanics and VAE/VT in ARDS patients. After adjusting for breathing pattern, VAE/VT exhibited the best correlation with the mechanical parameters. In conclusion, volumetric capnography, and, specifically, the ratio of alveolar ejection volume to tidal volume allows evaluation and monitoring of ventilatory disturbances in patients with adult respiratory distress syndrome.

  18. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs.

    Science.gov (United States)

    Hernández-Jiménez, Claudia; García-Torrentera, Rogelio; Olmos-Zúñiga, J Raúl; Jasso-Victoria, Rogelio; Gaxiola-Gaxiola, Miguel O; Baltazares-Lipp, Matilde; Gutiérrez-González, Luis H

    2014-01-01

    The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5), mechanical ventilation with dry oxygen dispensation, and Group II (n = 5), mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77). This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05). Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02). Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.

  19. Respiratory mechanics and plasma levels of tumor necrosis factor alpha and interleukin 6 are affected by gas humidification during mechanical ventilation in dogs.

    Directory of Open Access Journals (Sweden)

    Claudia Hernández-Jiménez

    Full Text Available The use of dry gases during mechanical ventilation has been associated with the risk of serious airway complications. The goal of the present study was to quantify the plasma levels of TNF-alpha and IL-6 and to determine the radiological, hemodynamic, gasometric, and microscopic changes in lung mechanics in dogs subjected to short-term mechanical ventilation with and without humidification of the inhaled gas. The experiment was conducted for 24 hours in 10 dogs divided into two groups: Group I (n = 5, mechanical ventilation with dry oxygen dispensation, and Group II (n = 5, mechanical ventilation with oxygen dispensation using a moisture chamber. Variance analysis was used. No changes in physiological, hemodynamic, or gasometric, and radiographic constants were observed. Plasma TNF-alpha levels increased in group I, reaching a maximum 24 hours after mechanical ventilation was initiated (ANOVA p = 0.77. This increase was correlated to changes in mechanical ventilation. Plasma IL-6 levels decreased at 12 hours and increased again towards the end of the study (ANOVA p>0.05. Both groups exhibited a decrease in lung compliance and functional residual capacity values, but this was more pronounced in group I. Pplat increased in group I (ANOVA p = 0.02. Inhalation of dry gas caused histological lesions in the entire respiratory tract, including pulmonary parenchyma, to a greater extent than humidified gas. Humidification of inspired gases can attenuate damage associated with mechanical ventilation.

  20. The effect of neuromuscular blockade on oxygen consumption in sedated and mechanically ventilated pediatric patients after cardiac surgery.

    NARCIS (Netherlands)

    Lemson, J.; Driessen, J.J.; Hoeven, J.G. van der

    2008-01-01

    OBJECTIVE: To measure the effect of intense neuromuscular blockade (NMB) on oxygen consumption (VO(2)) in deeply sedated and mechanically ventilated children on the first day after complex congenital cardiac surgery. DESIGN: Prospective clinical interventional study. SETTING: Pediatric intensive

  1. Natural history of dental plaque accumulation in mechanically ventilated adults: a descriptive correlational study.

    Science.gov (United States)

    Jones, Deborah J; Munro, Cindy L; Grap, Mary Jo

    2011-12-01

    The purpose of this study was to describe the pattern of dental plaque accumulation in mechanically ventilated adults. Accumulation of dental plaque and bacterial colonisation of the oropharynx is associated with a number of systemic diseases including ventilator associated pneumonia. Data were collected from mechanically ventilated critically ill adults (n=137), enrolled within 24 hours of intubation. Dental plaque, counts of decayed, missing and filled teeth and systemic antibiotic use was assessed on study days 1, 3, 5 and 7. Dental plaque averages per study day, tooth type and tooth location were analysed. Medical respiratory, surgical trauma and neuroscience ICU's of a large tertiary care centre in the southeast United States. Plaque: all surfaces >60% plaque coverage from day 1 to day 7; molars and premolars contained greatest plaque average >70%. Systemic antibiotic use on day 1 had no significant effect on plaque accumulation on day 3 (p=0.73). Patients arrive in critical care units with preexisting oral hygiene issues. Dental plaque tends to accumulate in the posterior teeth (molars and premolars) that may be hard for nurses to visualise and reach; this problem may be exacerbated by endotracheal tubes and other equipment. Knowing accumulation trends of plaque will guide the development of effective oral care protocols. Published by Elsevier Ltd.

  2. A mathematical model for carbon dioxide elimination: an insight for tuning mechanical ventilation.

    Science.gov (United States)

    Pomprapa, Anake; Schwaiberger, David; Lachmann, Burkhard; Leonhardt, Steffen

    2014-01-01

    The aim is to provide better understanding of carbon dioxide (CO2) elimination during ventilation for both the healthy and atelectatic condition, derived in a pressure-controlled mode. Therefore, we present a theoretical analysis of CO2 elimination of healthy and diseased lungs. Based on a single-compartment model, CO2 elimination is mathematically modeled and its contours were plotted as a function of temporal settings and driving pressure. The model was validated within some level of tolerance on an average of 4.9% using porcine dynamics. CO2 elimination is affected by various factors, including driving pressure, temporal variables from mechanical ventilator settings, lung mechanics and metabolic rate. During respiratory care, CO2 elimination is a key parameter for bedside monitoring, especially for patients with pulmonary disease. This parameter provides valuable insight into the status of an atelectatic lung and of cardiopulmonary pathophysiology. Therefore, control of CO2 elimination should be based on the fine tuning of the driving pressure and temporal ventilator settings. However, for critical condition of hypercapnia, airway resistance during inspiration and expiration should be additionally measured to determine the optimal percent inspiratory time (%TI) to maximize CO2 elimination for treating patients with hypercapnia.

  3. Development of a computer code to predict a ventilation requirement for an underground radioactive waste storage tank

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.J.; Dalpiaz, E.L. [ICF Kaiser Hanford Co., Richland, WA (United States)

    1997-08-01

    Computer code, WTVFE (Waste Tank Ventilation Flow Evaluation), has been developed to evaluate the ventilation requirement for an underground storage tank for radioactive waste. Heat generated by the radioactive waste and mixing pumps in the tank is removed mainly through the ventilation system. The heat removal process by the ventilation system includes the evaporation of water from the waste and the heat transfer by natural convection from the waste surface. Also, a portion of the heat will be removed through the soil and the air circulating through the gap between the primary and secondary tanks. The heat loss caused by evaporation is modeled based on recent evaporation test results by the Westinghouse Hanford Company using a simulated small scale waste tank. Other heat transfer phenomena are evaluated based on well established conduction and convection heat transfer relationships. 10 refs., 3 tabs.

  4. Retrieval effects on ventilation and cooling requirements for a nuclear waste repository

    International Nuclear Information System (INIS)

    Hambley, D.F.

    1985-01-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the regulations promulgated in Title 10, Part 60 of the Code of Federal Regulations (10CFR60) by the US Nuclear Regulatory Commission (NRC) for an underground repository for spent fuel and high level nuclear waste (HLW) require that it is possible to retrieve waste, for whatever reason, from such a facility for a period of 50 years from initial storage or until the completion of the performance confirmation period, whichever comes first. This paper considers the effects that the retrievability option mandates on ventilation and cooling systems required for normal repository operations. An example is given for a hypothetical repository in salt. 18 refs., 1 tab

  5. Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants.

    Science.gov (United States)

    Woodgate, P G; Davies, M W

    2001-01-01

    Experimental animal data and uncontrolled, observational studies in human infants have suggested that hyperventilation and hypocapnia may be associated with increased pulmonary and neurodevelopmental morbidity. Protective ventilatory strategies allowing higher levels of arterial CO2 (permissive hypercapnia) are now widely used in adult critical care. The aggressive pursuit of normocapnia in ventilated newborn infants may contribute to the already present burden of lung disease. However, the safe or ideal range for PCO2 in this vulnerable population has not been established. To assess whether, in mechanically ventilated neonates, a strategy of permissive hypercapnia improves short and long term outcomes (esp. mortality, duration of respiratory support, incidence of chronic lung disease and neurodevelopmental outcome). Standard strategies of the Cochrane Neonatal Review Group were used. Searches were made of the Oxford Database of Perinatal Trials, MEDLINE, CINAHL, and Current Contents. Searches were also made of previous reviews including cross-referencing, abstracts, and conference and symposia proceedings published in Pediatric Research. All randomised controlled trials in which a strategy of permissive hypercapnia was compared with conventional strategies aimed at achieving normocapnia (or lower levels of hypercapnia) in newborn infants who are mechanically ventilated were eligible. Standard methods of the Cochrane Neonatal Review Group were used. Trials identified by the search strategy were independently reviewed by each author and assessed for eligibility and trial quality. Data were extracted separately. Differences were compared and resolved. Additional information was requested from trial authors. Only published data were available for review. Results are expressed as relative risk and risk difference for dichotomous outcomes, and weighted mean difference for continuous variables. Two trials involving 269 newborn infants were included. Meta-analysis of

  6. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    Science.gov (United States)

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Mechanics of lung ventilation in a post-metamorphic salamander, Ambystoma Tigrinum.

    Science.gov (United States)

    Simons, R S; Bennett, W O; Brainerd, E L

    2000-03-01

    The mechanics of lung ventilation in frogs and aquatic salamanders has been well characterized, whereas lung ventilation in terrestrial-phase (post-metamorphic) salamanders has received little attention. We used electromyography (EMG), X-ray videography, standard videography and buccal and body cavity pressure measurements to characterize the ventilation mechanics of adult (post-metamorphic) tiger salamanders (Ambystoma tigrinum). Three results emerged: (i) under terrestrial conditions or when floating at the surface of the water, adult A. tigrinum breathed through their nares using a two-stroke buccal pump; (ii) in addition to this narial two-stroke pump, adult tiger salamanders also gulped air in through their mouths using a modified two-stroke buccal pump when in an aquatic environment; and (iii) exhalation in adult tiger salamanders is active during aquatic gulping breaths, whereas exhalation appears to be passive during terrestrial breathing at rest. Active exhalation in aquatic breaths is indicated by an increase in body cavity pressure during exhalation and associated EMG activity in the lateral hypaxial musculature, particularly the M. transversus abdominis. In terrestrial breathing, no EMG activity in the lateral hypaxial muscles is generally present, and body cavity pressure decreases during exhalation. In aquatic breaths, tidal volume is larger than in terrestrial breaths, and breathing frequency is much lower (approximately 1 breath 10 min(-)(1 )versus 4-6 breaths min(-)(1)). The use of hypaxial muscles to power active exhalation in the aquatic environment may result from the need for more complete exhalation and larger tidal volumes when breathing infrequently. This hypothesis is supported by previous findings that terrestrial frogs ventilate their lungs with small tidal volumes and exhale passively, whereas aquatic frogs and salamanders use large tidal volumes and and exhale actively.

  8. Energy-Efficient Management of Mechanical Ventilation and Relative Humidity in Hot-Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Withers, Jr., Charles R. [Building America Partnership for Improved Residential Construction, Cocoa, FL (United States)

    2016-12-01

    In hot and humid climates, it is challenging to energy-efficiently maintain indoor RH at acceptable levels while simultaneously providing required ventilation, particularly in high performance low cooling load homes. The fundamental problem with solely relying on fixed capacity central cooling systems to manage moisture during low sensible load periods is that they are oversized for cooler periods of the year despite being 'properly sized' for a very hot design cooling day. The primary goals of this project were to determine the impact of supplementing a central space conditioning system with 1) a supplemental dehumidifier and 2) a ductless mini-split on seasonal energy use and summer peak power use as well as the impact on thermal distribution and humidity control inside a completely furnished lab home that was continuously ventilated in accordance with ASHRAE 62.2-2013.

  9. Early tracheostomy in severe traumatic brain injury: evidence for decreased mechanical ventilation and increased hospital mortality

    Science.gov (United States)

    Dunham, C Michael; Cutrona, Anthony F; Gruber, Brian S; Calderon, Javier E; Ransom, Kenneth J; Flowers, Laurie L

    2014-01-01

    tracheostomy (OR 1.97; p tracheostomy. Further, this study implies that mechanical ventilation is reduced with early tracheostomy. Both the randomized trial and retrospective meta-analysis indicate that risk for hospital death increases with early tracheostomy. Findings imply that early tracheostomy for severe brain injury is not a prudent routine policy. PMID:24624310

  10. Survival in amyotrophic lateral sclerosis with home mechanical ventilation: the impact of systematic respiratory assessment and bulbar involvement.

    Science.gov (United States)

    Farrero, Eva; Prats, Enric; Povedano, Mónica; Martinez-Matos, J Antonio; Manresa, Frederic; Escarrabill, Joan

    2005-06-01

    To analyze (1) the impact of a protocol of early respiratory evaluation of the indications for home mechanical ventilation (HMV) in patients with amyotrophic lateral sclerosis (ALS), and (2) the effects of the protocol and of bulbar involvement on the survival of patients receiving noninvasive ventilation (NIV). Retrospective study in a tertiary care referral center. HMV was indicated in 86 patients with ALS, with 22 patients (25%) presenting with intolerance to treatment associated with bulbar involvement. Treatment with HMV had been initiated in 15 of 64 patients prior to initiating the protocol (group A) and in the remaining 49 patients after protocol initiation (group B). In group A, the majority of patients began treatment with HMV during an acute episode requiring ICU admission (p = 0.001) and tracheal ventilation (p = 0.025), with a lower percentage of patients beginning HMV treatment without respiratory insufficiency (p = 0.013). No significant differences in survival rates were found between groups A and B among patients treated with NIV. Greater survival was observed in group B (p = 0.03) when patients with bulbar involvement were excluded (96%). Patients without bulbar involvement at the start of therapy with NIV presented a significantly better survival rate (p = 0.03). Multivariate analysis showed bulbar involvement to be an independent prognostic factor for survival (relative risk, 1.6; 95% confidence interval, 1.01 to 2.54; p = 0.04). No significant differences in survival were observed between patients with bulbar involvement following treatment with NIV and those with intolerance, except for the subgroup of patients who began NIV treatment with hypercapnia (p = 0.0002). Early systematic respiratory evaluation in patients with ALS is necessary to improve the results of HMV. Further studies are required to confirm the benefits of NIV treatment in patients with bulbar involvement, especially in the early stages.

  11. Invasive Mechanical Ventilation in California Over 2000-2009: Implications for Emergency Medicine

    Directory of Open Access Journals (Sweden)

    Seshadri C. Mudumbai

    2015-10-01

    Full Text Available Introduction: Patients who require invasive mechanical ventilation (IMV often represent a sequence of care between the emergency department (ED and intensive care unit (ICU. Despite being the most populous state, little information exists to define patterns of IMV use within the state of California. Methods: We examined data from the masked Patient Discharge Database of California’s Office of Statewide Health Planning and Development from 2000-2009. Adult patients who received IMV during their stay were identified using the International Classification of Diseases 9th Revision and Clinical Modification procedure codes (96.70, 96.71, 96.72. Patients were divided into age strata (18-34yr, 35-64yr, and >65yr. Using descriptive statistics and regression analyses, for IMV discharges during the study period, we quantified the number of ED vs. non-ED based admissions; changes in patient characteristics and clinical outcome; evaluated the marginal costs for IMV; determined predictors for prolonged acute mechanical ventilation (PAMV, i.e. IMV>96hr; and projected the number of IMV discharges and ED-based admissions by year 2020. Results: There were 696,634 IMV discharges available for analysis. From 2000–2009, IMV discharges increased by 2.8%/year: n=60,933 (293/100,000 persons in 2000 to n=79,868 (328/100,000 persons in 2009. While ED-based admissions grew by 3.8%/year, non-ED-based admissions remained stable (0%. During 2000-2009, fastest growth was noted for 1 the 35–64 year age strata; 2 Hispanics; 3 patients with non-Medicare public insurance; and 4 patients requiring PAMV. Average total patient cost-adjusted charges per hospital discharge increased by 29% from 2000 (from $42,528 to $60,215 in 2014 dollars along with increases in the number of patients discharged to home and skilled nursing facilities. Higher marginal costs were noted for younger patients (ages 18-34yr, non-whites, and publicly insured patients. Some of the strongest predictors

  12. Trend analysis of hospital resource utilization for prolonged mechanical ventilation patients in Taiwan: a population-based study.

    Science.gov (United States)

    Hung, Tien-Chiung; Lai, Yung-Fa; Tseng, Ching-Wan; Hong, Yong-Han; Shi, Hon-Yi

    2013-04-01

    The aging Taiwan population is expected to require vast medical resources, including prolonged mechanical ventilation (PMV). This study determined the trends in hospital resource utilization and associated factors in PMV patients in Taiwan. All patients who had received mechanical ventilation for > 21 days (International Classification of Diseases, 9th Revision, Clinical Modification codes 518.81-518.89) during 2004-2007 were recruited to the study. Administrative claims data obtained from the Bureau of National Health Insurance of Taiwan were analyzed. The study analyzed 65,181 patients who had received PMV during 2004-2007. The number of PMVs per 100,000 persons was 94.30 in 2004, and it gradually decreased to 89.38 in 2007, which was a change rate of -5.22%. During the study period, stay significantly decreased, from 35.12 days to 31.61 days, whereas hospital treatment costs significantly increased, from $7,933.17 to $8,257.52 (P providers and patients should recognize that attributes of both the patient and the hospital may affect hospital resource utilization. Additionally, these analytical results should be applicable to similar populations in other countries.

  13. Invasive fungal infection among hematopoietic stem cell transplantation patients with mechanical ventilation in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Hung Chen-Yiu

    2012-02-01

    Full Text Available Abstract Background Invasive fungal infection (IFI is associated with high morbidity and high mortality in hematopoietic stem cell transplantation (HSCT patientsThe purpose of this study was to assess the characteristics and outcomes of HSCT patients with IFIs who are undergoing MV at a single institution in Taiwan. Methods We performed an observational retrospective analysis of IFIs in HSCT patients undergoing mechanical ventilation (MV in an intensive care unit (ICU from the year 2000 to 2009. The characteristics of these HSCT patients and risk factors related to IFIs were evaluated. The status of discharge, length of ICU stay, date of death and cause of death were also recorded. Results There were 326 HSCT patients at the Linkou Chang-Gung Memorial Hospital (Taipei, Taiwan during the study period. Sixty of these patients (18% were transferred to the ICU and placed on mechanical ventilators. A total of 20 of these 60 patients (33% had IFIs. Multivariate analysis indicated that independent risk factors for IFI were admission to an ICU more than 40 days after HSCT, graft versus host disease (GVHD, and high dose corticosteroid (p p = 0.676. Conclusion There was a high incidence of IFIs in HSCT patients requiring MV in the ICU in our study cohort. The independent risk factors for IFI are ICU admission more than 40 days after HSCT, GVHD, and use of high-dose corticosteroid.

  14. Ammonia emissions from a naturally and a mechanically ventilated broiler house in Brazil

    Directory of Open Access Journals (Sweden)

    Luciano B. Mendes

    2014-11-01

    Full Text Available This study was conducted with the aim of monitoring NH3 emissions from a mechanically and a naturally ventilated broiler house (MVB and NVB, respectively and calculate their ammonia emission factors (fNH3. Bird stocking density was 13.5 and 11.1 birds m-2 for the MVB and NVB, respectively. The marketing age was 43 days and bedding consisted of dried coffee husks in its first time of use. Ventilation rates were calculated with the metabolic carbon dioxide mass balance method. Values of fNH3 were 0.32 ± 0.10 and 0.27 ± 0.07 g bird-1 d-1 for the MVB and NVB, respectively, and are in agreement to what was presented in other studies performed under similar conditions. The fNH3 estimated on yearly basis was 58 g bird-place-1 year-1. It was concluded that the different types of ventilation system between the studied broiler barns did not signi