Sample records for requires lipid interaction

  1. Anesthetics interacting with lipid rafts.

    Bandeiras, Cátia; Serro, Ana Paula; Luzyanin, Konstantin; Fernandes, Anabela; Saramago, Benilde


    The exact mechanism by which anesthetics induce cell membrane-mediated modifications is still an open question. Although the fluidization effect of the anesthetic molecules on the cellular membrane is widely recognized, it is not known if anesthetics show any preference for specific membrane domains, namely the lipid rafts. The importance of these membrane micro-domains derives from the fact that they have been associated with cell signaling pathways, as well as with specific drug interactions. The objective of this work is to contribute for the elucidation of this question through the comparison of the anesthetic interactions with membranes of various lipid compositions. Liposomes prepared with an equimolar mixture of POPC, sphingomyelin and cholesterol, were chosen as models for lipid rafts. The interactions of these liposomes with two local anesthetics, tetracaine and lidocaine, and one general anesthetic, propofol, were studied. The effect of cholesterol was investigated by comparing anesthetic interactions with POPC/SM liposomes and POPC/SM/CHOL liposomes. The following experimental techniques were used: quartz crystal microbalance with dissipation, differential scanning calorimetry and phosphorus nuclear magnetic resonance. Although the liposomes investigated by the different techniques are not in the same conditions, it is possible to assemble the information obtained from all experimental techniques employed to reach a general conclusion. Tetracaine interacts more with raftlike domains, lidocaine induces stronger modifications on POPC/SM liposomes and the results for propofol are not fully conclusive but it seems to be the least prone to lipid interactions. The results were compared with those obtained with DMPC-containing liposomes, reported in a previous work.

  2. Lipid nanoparticle interactions and assemblies

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  3. Nanoparticle-lipid bilayer interactions studied with lipid bilayer arrays

    Lu, Bin; Smith, Tyler; Schmidt, Jacob J.


    The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which can provide insight into the nature of the particle-membrane interaction through variation of membrane and solution properties not possible with cell-based assays. However, the scope of these studies can be limited because of the low throughput characteristic of lipid bilayer platforms. We have recently described an easy to use, parallel lipid bilayer platform which we have used to electrically investigate the activity of 60 nm diameter amine and carboxyl modified polystyrene nanoparticles (NH2-NP and COOH-NP) with over 1000 lipid bilayers while varying lipid composition, bilayer charge, ionic strength, pH, voltage, serum, particle concentration, and particle charge. Our results confirm recent studies finding activity of NH2-NP but not COOH-NP. Detailed analysis shows that NH2-NP formed pores 0.3-2.3 nm in radius, dependent on bilayer and solution composition. These interactions appear to be electrostatic, as they are regulated by NH2-NP surface charge, solution ionic strength, and bilayer charge. The ability to rapidly measure a large number of nanoparticle and membrane parameters indicates strong potential of this bilayer array platform for additional nanoparticle bilayer studies.The widespread environmental presence and commercial use of nanoparticles have raised significant health concerns as a result of many in vitro and in vivo assays indicating toxicity of a wide range of nanoparticle species. Many of these assays have identified the ability of nanoparticles to damage cell membranes. These interactions can be studied in detail using artificial lipid bilayers, which

  4. Lipids in plant-microbe interactions.

    Siebers, Meike; Brands, Mathias; Wewer, Vera; Duan, Yanjiao; Hölzl, Georg; Dörmann, Peter


    Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ionic interaction of sulfatide with choline lipids.

    Abramson, M B; Katzman, R


    Aqueous systems of sphingomyelin-sulfatide and lecithin-sulfatide were compared with aqueous systems of the individual lipids. The acid capacity of the mixed lipids increased, a result of the formation of an ionic bond between the sulfate of one molecule and the positive nitrogen of the other, making the phosphate available for direct titration. Cholesterol reduces this ionic interaction, probably because of the increased spacing of the ionized groups.

  6. Interaction of antimicrobial peptides with lipid membranes

    Hanulova, Maria


    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  7. Interaction of Hematoporphyrin with Lipid Membranes

    Stepniewski, M.; Kepczynski, M.; Jamroz, D.


    Natural or synthetic porphyrins are being used as photosensitizers in photodiagnosis (PD) and photodynamic therapy (PDT) of malignancies and some other diseases. Understanding the interactions between porphyrins and cell membranes is therefore important to rationalize the uptake of photosensitizers....... The dye molecules were found to reside in the phospholipid headgroup area close to the carbonyl groups of the POPC acyl chains. Their orientations were dependent on the protonation state of two propionic groups. Hp(2-) was found to have a lower affinity to enter the membrane than the neutral form....... The dianions, being in the aqueous phase, formed stable dimers with a strictly determined geometry. Our results fully supported the experimental data and provide a more detailed molecular-level description of the interactions of photosensitizers with lipid membranes....

  8. Lipid-lipid and lipid-drug interactions in biological membranes

    Martynowycz, Michael W.

    Interactions between lipids and drug molecules in biological membranes help govern proper biological function in organisms. The mechanisms responsible for hydrophobic drug permeation remain elusive. Many small molecule drugs are hydrophobic. These drugs inhibit proteins in the cellular interior. The rise of antibiotic resistance in bacteria is thought to be caused by mutations in protein structure, changing drug kinetics to favor growth. However, small molecule drugs have been shown to have different mechanisms depending in the structure of the lipid membrane of the target cell. Biological membranes are investigated using Langmuir monolayers at the air-liquid interface. These offer the highest level of control in the mimetic system and allow them to be investigated using complementary techniques. Langmuir isotherms and insertion assays are used to determine the area occupied by each lipid in the membrane and the change in area caused by the introduction of a drug molecule, respectively. Specular X-ray reflectivity is used to determine the electron density of the monolayer, and grazing incidence X-ray diffraction is used to determine the in-plane order of the monolayer. These methods determine the affinity of the drug and the mechanism of action. Studies are presented on hydrophobic drugs with mammalian membrane mimics using warfarin along with modified analogues, called superwarfarins. Data shows that toxicity of these modified drugs are modulated by the membrane cholesterol content in cells; explaining several previously unexplained effects of the drugs. Membrane mimics of bacteria are investigated along with their interactions with a hydrophobic antibiotic, novobiocin. Data suggests that permeation of the drug is mediated by modifications to the membrane lipids, and completely ceases translocation under certain circumstances. Circumventing deficiencies in small, hydrophobic drugs is approached by using biologically mimetic oligomers. Peptoids, mimetic of host

  9. Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data

    Goldmann Wolfgang H


    Full Text Available Abstract Background Over the past decade our laboratory has focused on understanding how soluble cytoskeleton-associated proteins interact with membranes and other lipid aggregates. Many protein domains mediating specific cell membrane interactions appear by fluorescence microscopy and other precision techniques to be partially inserted into the lipid bilayer. It is unclear whether these protein-lipid-interactions are dependent on shared protein motifs or unique regional physiochemistry, or are due to more global characteristics of the protein. Results We have developed a novel computational program that predicts a protein's lipid-binding site(s from primary sequence data. Hydrophobic labeling, Fourier transform infrared spectroscopy (FTIR, film balance, T-jump, CD spectroscopy and calorimetry experiments confirm that the interfaces predicted for several key cytoskeletal proteins (alpha-actinin, Arp2, CapZ, talin and vinculin partially insert into lipid aggregates. The validity of these predictions is supported by an analysis of the available three-dimensional structural data. The lipid interfaces predicted by our algorithm generally contain energetically favorable secondary structures (e.g., an amphipathic alpha-helix flanked by a flexible hinge or loop region, are solvent-exposed in the intact protein, and possess favorable local or global electrostatic properties. Conclusion At present, there are few reliable methods to determine the region of a protein that mediates biologically important interactions with lipids or lipid aggregates. Our matrix-based algorithm predicts lipid interaction sites that are consistent with the available biochemical and structural data. To determine whether these sites are indeed correctly identified, and whether use of the algorithm can be safely extended to other classes of proteins, will require further mapping of these sites, including genetic manipulation and/or targeted crystallography.

  10. Molecular restructuring of water and lipids upon the interaction of DNA with lipid monolayers.

    Campen, R Kramer; Ngo, Thuy T M; Sovago, Maria; Ruysschaert, Jean-Marie; Bonn, Mischa


    Understanding the molecular mechanism of DNA/lipid interaction is critical in optimizing the use of lipid cofactors in gene therapy. Here, we address this question by employing label-free vibrational sum frequency (VSF) spectroscopy to study the interaction of DNA with lipid monolayers of the cationic lipids DPTAP(1,2-dipalmitoyl-3-trimethylammonium-propane) and diC14-amidine as well as the zwitterionic lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) in the presence and absence of calcium. Our approach has the advantage both of allowing us to explicitly probe intermolecular interactions and of providing insight into the structure of water and lipids around DNA at the lipid interface. We find, by examination of the OD stretch of interfacial D(2)O, that water structure differs markedly between systems containing DNA adsorbed to cationic and those that contain DNA adsorbed to zwitterionic lipid monolayers (in the presence or absence of Ca(2+)). The spectral response of interfacial water in the cationic system is consistent with a highly structured, undercoordinated, structural 'type' of water. Further, by investigation of CH stretch modes of the diC14-amidine lipid tails, we demonstrate that the adsorption of DNA to this lipid leads to increased ordering of lipid tails.

  11. Ionic channels and nerve membrane lipids. Cholesterol-tetrodotoxin interaction.

    Villegas, R; Barnola, F V; Camejo, G


    Experiments were carried out to investigate possible interactions of tetrodotoxin (TTX) with lipid molecules isolated from nerve fiber plasma membranes of the squid Dosidicus gigas. TTX has a highly selective ability to block the channel normally used by Na(+) to cross the axolemma during nervous impulse conduction. In order to investigate the interaction each lipid sample was spread on 5 x 10(-7)M TTX and TTX-free 0.15 M NaCl solutions adjusted to pH 7.4 with 7 x 10(-3)M phosphate buffer. The surface pressure-area diagrams of the lipid monolayers revealed that TTX interacts only with cholesterol. The expansion of the cholesterol monolayers at 5 x 10(-7)M TTX was 2 A(2)/molecule at zero pressure for the experiments at 20 degrees C and 2.5 A(2)/molecule for those at 25 degrees C. Similar results were obtained in KCl subphases. The apparent dissociation constant of the cholesterol-TTX complex calculated from dose-response experiments is 2.6 x 10(-7)M. Experiments at pH 10.1 revealed that the zwitter ionic form of TTX is less active. Experiments with cholesterol derivatives (cholesteryl acetate, cholesterol methyl ether, cholestanol, and cholestanyl acetate) indicate that for the interaction with TTX a partial negatively charged group at C-3 and a double bond between C-5 and C-6 on the steroid nucleus are required. Tetrodonic acid, a biologically inactive derivative of TTX, does not interact with cholesterol. The results lead us to propose that cholesterol is part of the Na(+) channel.

  12. Protein-lipid interactions at interfaces

    Wilde, P.


    Full Text Available Foams and emulsions are both types of multiphase foods and are a dispersion of one immiscible phase (e.g. air or oil in another (e.g. water. Amphiphilic molecules (either proteins or chemical compounds are able to stabilise the interface between these phases and are termed emulsifiers. The ability of protein emulsifiers to bind lipid is reviewed, and the mechanisms underlying the behaviour of these and low molecular weight surfactants (LMWS at the interface are summarised. New research, exploiting atomic force microscopy, has given fresh insights into the mechanisms by which proteins and LMWS interact when both are present at the interface, compromising the stability of foams and emulsions stabilised by these mixtures. The understanding of component interactions at the interfacial level is essential if advances are to be made in the control and manipulation of multiphase foods during production and storage.Las espumas y las emulsiones son dispersiones de una fase inmiscible (ejemplo aire o aceite en otra (ejemplo agua. Las moléculas anfifílicas (bien proteínas o compuestos químicos pueden estabilizar la interfase y se denominan emulsionantes. En este artículo se revisa la habilidad de los emulsionantes proteínicos para enlazar lípidos y los mecanismos que subyacen en el comportamiento de estas moléculas así como de los tensioactivos de bajo peso molecular en la interfase. Recientes investigaciones que usan la microscopía han ofrecido visiones nuevas de los mecanismos mediante los cuales las proteínas y los tensioactivos de bajo peso molecular interaccionan cuando ambos están presentes en la interfase, comprometiendo la estabilidad de espumas y emulsiones estabilizadas por estas mezclas. El entendimiento de las interacciones entre componentes a nivel interfacial es esencial para lograr avances en el control y manipulación de alimentos multifases durante la producción y el almacenamiento.

  13. Interactions and Translational Dynamics of Phosphatidylinositol Bisphosphate (PIP2) Lipids in Asymmetric Lipid Bilayers.

    Shi, Xiaojun; Kohram, Maryam; Zhuang, Xiaodong; Smith, Adam W


    Phosphatidylinositol phosphate (PIP) lipids are critical to many cell signaling pathways, in part by acting as molecular beacons that recruit peripheral membrane proteins to specific locations within the plasma membrane. Understanding the biophysics of PIP-protein interactions is critical to developing a chemically detailed model of cell communication. Resolving such interactions is challenging, even in model membrane systems, because of the difficulty in preparing PIP-containing membranes with high fluidity and integrity. Here we report on a simple, vesicle-based protocol for preparing asymmetric supported lipid bilayers in which fluorescent PIP lipid analogues are found only on the top leaflet of the supported membrane facing the bulk solution. With this asymmetric distribution of lipids between the leaflets, the fluorescent signal from the PIP lipid analogue reports directly on interactions between the peripheral molecules and the top leaflet of the membrane. Asymmetric PIP-containing bilayers are an ideal platform to investigate the interaction of PIP with peripheral membrane proteins using fluorescence-based imaging approaches. We demonstrate their usefulness here with a combined fluorescence correlation spectroscopy and single particle tracking study of the interaction between PIP2 lipids and a polycationic polymer, quaternized polyvinylpyridine (QPVP). With this approach we are able to quantify the microscopic features of the mobility coupling between PIP2 lipids and polybasic QPVP. With single particle tracking we observe individual PIP2 lipids switch from Brownian to intermittent motion as they become transiently trapped by QPVP.

  14. Lipid - Motor Interactions: Soap Opera or Symphony?

    Pathak, Divya; Mallik, Roop


    Intracellular transport of organelles can be driven by multiple motor proteins that bind to the lipid membrane of the organelle and work as a team. We review present knowledge on how lipids orchestrate the recruitment of motors to a membrane. Looking beyond recruitment, we also discuss how heterogeneity and local mechanical properties of the membrane may influence function of motor-teams. These issues gain importance because phagocytosed pathogens use lipid-centric strategies to manipulate motors and survive in host cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Interaction of lipids with the neurotensin receptor 1.

    Bolivar, Juan H; Muñoz-García, Juan C; Castro-Dopico, Tomas; Dijkman, Patricia M; Stansfeld, Phillip J; Watts, Anthony


    Information about lipid-protein interactions for G protein-coupled receptors (GPCRs) is scarce. Here, we use electron spin resonance (ESR) and spin-labelled lipids to study lipid interactions with the rat neurotensin receptor 1 (NTS1). A fusion protein containing rat NTS1 fully able to bind its ligand neurotensin was reconstituted into phosphatidylcholine (PC) bilayers at specific lipid:protein molar ratios. The fraction of motionally restricted lipids in the range of 40:1 to 80:1 lipids per receptor suggested an oligomeric state of the protein, and the result was unaffected by increasing the hydrophobic thickness of the lipid bilayer from C-18 to C-20 or C-22 chain length PC membranes. Comparison of the ESR spectra of different spin-labelled lipids allowed direct measurement of lipid binding constants relative to PC (Kr), with spin-labelled phosphatidylethanolamine (PESL), phosphatidylserine (PSSL), stearic acid (SASL), and a spin labelled cholesterol analogue (CSL) Kr values of 1.05±0.05, 1.92±0.08, 5.20±0.51 and 0.91±0.19, respectively. The results contrast with those from rhodopsin, the only other GPCR studied this way, which has no selectivity for the lipids analysed here. Molecular dynamics simulations of NTS1 in bilayers are in agreement with the ESR data, and point to sites in the receptor where PS could interact with higher affinity. Lipid selectivity could be necessary for regulation of ligand binding, oligomerisation and/or G protein activation processes. Our results provide insight into the potential modulatory mechanisms that lipids can exert on GPCRs.

  16. Lipid requirements for entry of protein toxins into cells.

    Sandvig, Kirsten; Bergan, Jonas; Kavaliauskiene, Simona; Skotland, Tore


    The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.

    Páli, Tibor; Kóta, Zoltán


    Spin label electron paramagnetic resonance (EPR) of lipid-protein interactions reveals crucial features of the structure and assembly of integral membrane proteins. Spin label EPR spectroscopy is the technique of choice to characterize the protein-solvating lipid shell in its highly dynamic nature, because the EPR spectra of lipids that are spin labeled close to the terminal methyl end of their acyl chains display two spectral components, those corresponding to lipids directly contacting the protein and those corresponding to lipids in the bulk fluid bilayer regions of the membrane. In this chapter, typical spin label EPR procedures are presented that allow determination of the stoichiometry of interaction of spin-labeled lipids with the intra-membranous region of membrane proteins or polypeptides, as well as the association constant of the spin-labeled lipid with respect to the host lipid. The lipids giving rise to the so-called immobile spectral component in the EPR spectrum of such samples are identified as the motionally restricted first-shell lipids solvating membrane proteins in biomembranes. Stoichiometry and selectivity are directly related to the structure of the intra-membranous sections of membrane-associated proteins or polypeptides and can be used to study the state of assembly of such proteins in the membrane. Since these characteristics of lipid-protein interactions are discussed in detail in the literature [see Marsh (Eur Biophys J 39:513-525, 2010) for a most recent review], here we focus more on how to spin label model and biomembranes and how to measure and analyze the two-component EPR spectra of spin-labeled lipids in phospholipid bilayers that contain proteins or polypeptides. After a description of how to prepare spin-labeled model and native biological membranes, we present the reader with computational procedures for determining the molar fraction of motionally restricted lipids when both, one, or none of the pure isolated-mobile or

  18. Seipin is required for converting nascent to mature lipid droplets

    Wang, Huajin; Becuwe, Michel; Housden, Benjamin E;


    How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation-the conversion of small, nascent LDs to larger, mature LDs. Seipin...... forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually...... leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent...

  19. Atom-scale molecular interactions in lipid raft mixtures

    Niemelä, Perttu S; Hyvönen, Marja T; Vattulainen, Ilpo


    We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecul....... As a particularly intriguing example of this, the lateral pressure profiles of raft-like and non-raft systems indicate that the lipid composition of membrane domains may have a major impact on membrane protein activation.......We review the relationship between molecular interactions and the properties of lipid environments. A specific focus is given on bilayers which contain sphingomyelin (SM) and sterols due to their essential role for the formation of lipid rafts. The discussion is based on recent atom-scale molecular...

  20. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J


    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage.

  1. The adrenal specific toxicant mitotane directly interacts with lipid membranes and alters membrane properties depending on lipid composition.

    Scheidt, Holger A; Haralampiev, Ivan; Theisgen, Stephan; Schirbel, Andreas; Sbiera, Silviu; Huster, Daniel; Kroiss, Matthias; Müller, Peter


    Mitotane (o,p'.-DDD) is an orphan drug approved for the treatment of adrenocortical carcinoma. The mechanisms, which are responsible for this activity of the drug, are not completely understood. It can be hypothesized that an impact of mitotane is mediated by the interaction with cellular membranes. However, an interaction of mitotane with (lipid) membranes has not yet been investigated in detail. Here, we characterized the interaction of mitotane and its main metabolite o,p'-dichlorodiphenyldichloroacetic acid (o,p'-DDA) with lipid membranes by applying a variety of biophysical approaches of nuclear magnetic resonance, electron spin resonance, and fluorescence spectroscopy. We found that mitotane and o,p'-DDA bind to lipid membranes by inserting into the lipid-water interface of the bilayer. Mitotane but not o,p'-DDA directly causes a disturbance of bilayer structure leading to an increased permeability of the membrane for polar molecules. Mitotane induced alterations of the membrane integrity required the presence of phosphatidylethanolamine and/or cholesterol. Collectively, our data for the first time characterize the impact of mitotane on the lipid membrane structure and dynamics, which may contribute to a better understanding of specific mitotane effects and side effects.

  2. Lipid rafts and Alzheimer’s disease: protein-lipid interactions and perturbation of signalling

    David A. Hicks


    Full Text Available Lipid rafts are membrane domains, more ordered than the bulk membrane and enriched in cholesterol and sphingolipids. They represent a platform for protein-lipid and protein-protein interactions and for cellular signalling events. In addition to their normal functions, including membrane trafficking, ligand binding (including viruses, axonal development and maintenance of synaptic integrity, rafts have also been implicated in the pathogenesis of several neurodegenerative diseases including Alzheimer’s disease (AD. Lipid rafts promote interaction of the amyloid precursor protein (APP with the secretase (BACE-1 responsible for generation of the amyloid β peptide, Aβ. Rafts also regulate cholinergic signalling as well as acetylcholinesterase and Aβ interaction. In addition, such major lipid raft components as cholesterol and GM1 ganglioside have been directly implicated in pathogenesis of the disease. Perturbation of lipid raft integrity can also affect various signalling pathways leading to cellular death and AD. In this review, we discuss modulation of APP cleavage by lipid rafts and their components, while also looking at more recent findings on the role of lipid rafts in signalling events.

  3. Nucleic acid-lipid membrane interactions studied by DSC.

    Giatrellis, Sarantis; Nounesis, George


    The interactions of nucleic acids with lipid membranes are of great importance for biological mechanisms as well as for biotechnological applications in gene delivery and drug carriers. The optimization of liposomal vectors for clinical use is absolutely dependent upon the formation mechanisms, the morphology, and the molecular organization of the lipoplexes, that is, the complexes of lipid membranes with DNA. Differential scanning calorimetry (DSC) has emerged as an efficient and relatively easy-to-operate experimental technique that can straightforwardly provide data related to the thermodynamics and the kinetics of the DNA-lipid complexation and especially to the lipid organization and phase transitions within the membrane. In this review, we summarize DSC studies considering nucleic acid-membrane systems, accentuating DSC capabilities, and data analysis. Published work involving cationic, anionic, and zwitterionic lipids as well as lipid mixtures interacting with RNA and DNA of different sizes and conformations are included. It is shown that despite limitations, issues such as DNA- or RNA-induced phase separation and microdomain lipid segregation, liposomal aggregation and fusion, alterations of the lipid long-range molecular order, as well as membrane-induced structural changes of the nucleic acids can be efficiently treated by systematic high-sensitivity DSC studies.

  4. Nucleic acid-lipid membrane interactions studied by DSC

    Sarantis Giatrellis


    Full Text Available The interactions of nucleic acids with lipid membranes are of great importance for biological mechanisms as well as for biotechnological applications in gene delivery and drug carriers. The optimization of liposomal vectors for clinical use is absolutely dependent upon the formation mechanisms, the morphology, and the molecular organization of the lipoplexes, that is, the complexes of lipid membranes with DNA. Differential scanning calorimetry (DSC has emerged as an efficient and relatively easy-to-operate experimental technique that can straightforwardly provide data related to the thermodynamics and the kinetics of the DNA-lipid complexation and especially to the lipid organization and phase transitions within the membrane. In this review, we summarize DSC studies considering nucleic acid-membrane systems, accentuating DSC capabilities, and data analysis. Published work involving cationic, anionic, and zwitterionic lipids as well as lipid mixtures interacting with RNA and DNA of different sizes and conformations are included. It is shown that despite limitations, issues such as DNA- or RNA-induced phase separation and microdomain lipid segregation, liposomal aggregation and fusion, alterations of the lipid long-range molecular order, as well as membrane-induced structural changes of the nucleic acids can be efficiently treated by systematic high-sensitivity DSC studies.

  5. Protein-lipid interactions in the purple bacterial reaction centre.

    Jones, Michael R; Fyfe, Paul K; Roszak, Aleksander W; Isaacs, Neil W; Cogdell, Richard J


    The purple bacterial reaction centre uses the energy of sunlight to power energy-requiring reactions such as the synthesis of ATP. During the last 20 years, a combination of X-ray crystallography, spectroscopy and mutagenesis has provided a detailed insight into the mechanism of light energy transduction in the bacterial reaction centre. In recent years, structural techniques including X-ray crystallography and neutron scattering have also been used to examine the environment of the reaction centre. This mini-review focuses on recent studies of the surface of the reaction centre, and briefly discusses the importance of the specific protein-lipid interactions that have been resolved for integral membrane proteins.

  6. Selective Interaction of a Cationic Polyfluorene with Model Lipid Membranes: Anionic versus Zwitterionic Lipids

    Zehra Kahveci


    Full Text Available This paper explores the interaction mechanism between the conjugated polyelectrolyte {[9,9-bis(6'-N,N,N-trimethylammoniumhexyl]fluorene-phenylene}bromide (HTMA-PFP and model lipid membranes. The study was carried out using different biophysical techniques, mainly fluorescence spectroscopy and microscopy. Results show that despite the preferential interaction of HTMA-PFP with anionic lipids, HTMA-PFP shows affinity for zwitterionic lipids; although the interaction mechanism is different as well as HTMA-PFP’s final membrane location. Whilst the polyelectrolyte is embedded within the lipid bilayer in the anionic membrane, it remains close to the surface, forming aggregates that are sensitive to the physical state of the lipid bilayer in the zwitterionic system. The different interaction mechanism is reflected in the polyelectrolyte fluorescence spectrum, since the maximum shifts to longer wavelengths in the zwitterionic system. The intrinsic fluorescence of HTMA-PFP was used to visualize the interaction between polymer and vesicles via fluorescence microscopy, thanks to its high quantum yield and photostability. This technique allows the selectivity of the polyelectrolyte and higher affinity for anionic membranes to be observed. The results confirmed the appropriateness of using HTMA-PFP as a membrane fluorescent marker and suggest that, given its different behaviour towards anionic and zwitterionic membranes, HTMA-PFP could be used for selective recognition and imaging of bacteria over mammalian cells.

  7. Protein-lipid interactions in bilayer membranes: a lattice model.

    Pink, D A; Chapman, D


    A lattice model has been developed to study the effects of intrinsic membrane proteins upon the thermodynamic properties of a lipid bilayer membrane. We assume that only nearest-neighbor van der Waals and steric interactions are important and that the polar group interactions can be represented by effective pressure-area terms. Phase diagrams, the temperature T(0), which locates the gel-fluid melting, the transition enthalpy, and correlations were calculated by mean field and cluster approximations. Average lipid chain areas and chain areas when the lipid is in a given protein environment were obtained. Proteins that have a "smooth" homogeneous surface ("cholesterol-like") and those that have inhomogeneous surfaces or that bind lipids specifically were considered. We find that T(0) can vary depending upon the interactions and that another peak can appear upon the shoulder of the main peak which reflects the melting of a eutectic mixture. The transition enthalpy decreases generally, as was found before, but when a second peak appears departures from this behavior reflect aspects of the eutectic mixture. We find that proteins have significant nonzero probabilities for being adjacent to one another so that no unbroken "annulus" of lipid necessarily exists around a protein. If T(0) does not increase much, or decreases, with increasing c, then lipids adjacent to a protein cannot all be all-trans on the time scale (10(-7) sec) of our system. Around a protein the lipid correlation depth is about one lipid layer, and this increases with c. Possible consequences of ignoring changes in polar group interactions due to clustering of proteins are discussed.

  8. Differential scanning calorimetry of protein-lipid interactions.

    Cañadas, Olga; Casals, Cristina


    Differential scanning calorimetry (DSC) is a highly sensitive non-perturbing technique for measuring the thermodynamic properties of thermally induced transitions. This technique is particularly useful for the characterization of lipid/protein interactions. This chapter presents an introduction to DSC instrumentation, basic theory, and methods and describes DSC applications for characterizing protein effects on model lipid membranes. Examples of the use of DSC for the evaluation of protein effects on modulation of membrane domains and membrane stability are given.

  9. Interactions between HIV-1 Neutralizing Antibodies and Model Lipid Membranes imaged with AFM

    Zauscher, Stefan; Hardy, Gregory; Alam, Munir; Shapter, Joseph


    Lipid membrane interactions with rare, broadly neutralizing antibodies (NAbs), 2F5 and 4E10, play a critical role in HIV-1 neutralization. Our research is motivated by recent immunization studies that have shown that induction of antibodies that avidly bind the gp41-MPER antigen is not sufficient for neutralization. Rather, it is required that antigen designs induce polyreactive antibodies that recognize MPER antigens as well as the viral lipid membrane. However, the mechanistic details of how membrane properties influence NAb-lipid and NAb-antigen interactions remain unknown. Furthermore, it is well established that the native viral membrane is heterogeneous, representing a mosaic of lipid rafts and protein clustering. However, the size, physical properties, and dynamics of these regions are poorly characterized and their potential roles in HIV-1 neutralization are also unknown. To understand how membrane properties contribute to 2F5/4E10 membrane interactions, we have engineered biomimetic supported lipid bilayers (SLBs) and use atomic force microscopy to visualize membrane domains, antigen clustering, and antibody-membrane interactions at sub-nanometer z-resolution. Our results show that localized binding of HIV-1 antigens and NAbs occur preferentially with the most fluid membrane domain. This supports the theory that NAbs may interact with regions of low lateral lipid forces that allow antibody insertion into the bilayer.

  10. Interactions between hepatic iron and lipid metabolism with possible relevance to steatohepatitis

    Umbreen Ahmed; Patricia S Latham; Phillip S Oates


    The liver is an important site for iron and lipid metabolism and the main site for the interactions between these two metabolic pathways.Although conflicting results have been obtained,most studies support the hypothesis that iron plays a role in hepatic lipogenesis.Iron is an integral part of some enzymes and transporters involved in lipid metabolism and,as such,may exert a direct effect on hepatic lipid load,intrahepatic metabolic pathways and hepatic lipid secretion.On the other hand,iron in its ferrous form may indirectly affect lipid metabolism through its ability to induce oxidative stress and inflammation,a hypothesis which is currently the focus of much research in the field of nonalcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH).The present review will first discuss how iron might directly interact with the metabolism of hepatic lipids and then consider a new perspective on the way in which iron may have a role in the two hit hypothesis for the progression of NAFLD via ferroportin and the iron regulatory molecule hepcidin.The review concludes that iron has important interactions with lipid metabolism in the liver that can impact on the development of NAFLD/NASH.More defined studies are required to improve our understanding of these effects.

  11. The role of lipids in host microbe interactions.

    Lang, Roland; Mattner, Jochen


    Lipids are one of the major subcellular constituents and serve as signal molecules, energy sources, metabolic precursors and structural membrane components in various organisms. The function of lipids can be modified by multiple biochemical processes such as (de-)phosphorylation or (de-)glycosylation, and the organization of fatty acids into distinct cellular pools and subcellular compartments plays a pivotal role for the morphology and function of various cell populations. Thus, lipids regulate, for example, phagosome formation and maturation within host cells and thus, are critical for the elimination of microbial pathogens. Vice versa, microbial pathogens can manipulate the lipid composition of phagosomal membranes in host cells, and thus avoid their delivery to phagolysosomes. Lipids of microbial origin belong also to the strongest and most versatile inducers of mammalian immune responses upon engagement of distinct receptors on myeloid and lymphoid cells. Furthermore, microbial lipid toxins can induce membrane injuries and cell death. Thus, we will review here selected examples for mutual host-microbe interactions within the broad and divergent universe of lipids in microbial defense, tissue injury and immune evasion.

  12. Interactions of polyphenols with carbohydrates, lipids and proteins.

    Jakobek, Lidija


    Polyphenols are secondary metabolites in plants, investigated intensively because of their potential positive effects on human health. Their bioavailability and mechanism of positive effects have been studied, in vitro and in vivo. Lately, a high number of studies takes into account the interactions of polyphenols with compounds present in foods, like carbohydrates, proteins or lipids, because these food constituents can have significant effects on the activity of phenolic compounds. This paper reviews the interactions between phenolic compounds and lipids, carbohydrates and proteins and their impact on polyphenol activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Seipin is required for converting nascent to mature lipid droplets

    Wang, Huajin; Becuwe, Michel; Housden, Benjamin E; Chitraju, Chandramohan; Porras, Ashley J; Graham, Morven M; Liu, Xinran N; Thiam, Abdou Rachid; Savage, David B; Agarwal, Anil K; Garg, Abhimanyu; Olarte, Maria-Jesus; Lin, Qingqing; Fröhlich, Florian; Hannibal-Bach, Hans Kristian; Upadhyayula, Srigokul; Perrimon, Norbert; Kirchhausen, Tomas; Ejsing, Christer S; Walther, Tobias C; Farese, Robert V


    How proteins control the biogenesis of cellular lipid droplets (LDs) is poorly understood. Using Drosophila and human cells, we show here that seipin, an ER protein implicated in LD biology, mediates a discrete step in LD formation—the conversion of small, nascent LDs to larger, mature LDs. Seipin forms discrete and dynamic foci in the ER that interact with nascent LDs to enable their growth. In the absence of seipin, numerous small, nascent LDs accumulate near the ER and most often fail to grow. Those that do grow prematurely acquire lipid synthesis enzymes and undergo expansion, eventually leading to the giant LDs characteristic of seipin deficiency. Our studies identify a discrete step of LD formation, namely the conversion of nascent LDs to mature LDs, and define a molecular role for seipin in this process, most likely by acting at ER-LD contact sites to enable lipid transfer to nascent LDs. DOI: PMID:27564575

  14. Lipid requirements in the nutrition of dairy ewes

    Andrea Serra


    Full Text Available The aim of this review was to contribute to the knowledge of lipid requirements in dairy ewes, by reviewing experi- mental papers about lipid supplementation in dairy ewe feeding. The number of trials in ewe feeding is lower than that in dairy cow feeding and, leaving calcium soap of palm oil out of consideration, there is a lack of knowledge regarding the effects of protected and unprotected lipid sources on milk yield and quality from dairy ewes. On the basis of data reported in the literature, the optimal dose of calcium soap of palm oil resulted to be 100-120 g/d. Also, milk fatty acid composition may be improved by adding calcium soap of fatty acids to ewe diets. The general effect of calcium salt sup- plementation is an increase in milk unsaturated fatty acids and a decrease in saturated ones. However, more research is needed in order to explain the effect of different fat sources (protected and unprotected on milk yield and quality from dairy ewes.

  15. Protein-Lipid Interactions New Approaches and Emerging Concepts

    Mateo, C. Reyes; Villalaín, José; González-Ros, José M


    Biological membranes have long been identified as key elements in a wide variety of cellular processes including cell defense communication, photosynthesis, signal transduction, and motility; thus they emerge as primary targets in both basic and applied research. This book brings together in a single volume the most recent views of experts in the area of protein–lipid interactions, providing an overview of the advances that have been achieved in the field in recent years, from very basic aspects to specialized technological applications. Topics include the application of X-ray and neutron diffraction, infrared and fluorescence spectroscopy, and high-resolution NMR to the understanding of the specific interactions between lipids and proteins within biological membranes, their structural relationships, and the implications for the biological functions that they mediate. Also covered in this volume are the insertion of proteins and peptides into the membrane and the concomitant formation of definite lipid doma...

  16. Lipid domains control myelin basic protein adsorption and membrane interactions between model myelin lipid bilayers.

    Lee, Dong Woog; Banquy, Xavier; Kristiansen, Kai; Kaufman, Yair; Boggs, Joan M; Israelachvili, Jacob N


    The surface forces apparatus and atomic force microscope were used to study the effects of lipid composition and concentrations of myelin basic protein (MBP) on the structure of model lipid bilayers, as well as the interaction forces and adhesion between them. The lipid bilayers had a lipid composition characteristic of the cytoplasmic leaflets of myelin from "normal" (healthy) and "disease-like" [experimental allergic encephalomyelitis (EAE)] animals. They showed significant differences in the adsorption mechanism of MBP. MBP adsorbs on normal bilayers to form a compact film (3-4 nm) with strong intermembrane adhesion (∼0.36 mJ/m(2)), in contrast to its formation of thicker (7-8 nm) swelled films with weaker intermembrane adhesion (∼0.13 mJ/m(2)) on EAE bilayers. MBP preferentially adsorbs to liquid-disordered submicron domains within the lipid membranes, attributed to hydrophobic attractions. These results show a direct connection between the lipid composition of membranes and membrane-protein adsorption mechanisms that affects intermembrane spacing and adhesion and has direct implications for demyelinating diseases.

  17. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique


    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  18. Synergistic interactions of lipids and myelin basic protein

    Hu, Yufang; Doudevski, Ivo; Wood, Denise; Moscarello, Mario; Husted, Cynthia; Genain, Claude; Zasadzinski, Joseph A.; Israelachvili, Jacob


    This report describes force measurements and atomic force microscope imaging of lipid-protein interactions that determine the structure of a model membrane system that closely mimics the myelin sheath. Our results suggest that noncovalent, mainly electrostatic and hydrophobic, interactions are responsible for the multilamellar structure and stability of myelin. We find that myelin basic protein acts as a lipid coupler between two apposed bilayers and as a lipid "hole-filler," effectively preventing defect holes from developing. From our protein-mediated-adhesion and force-distance measurements, we develop a simple quantitative model that gives a reasonably accurate picture of the molecular mechanism and adhesion of bilayer-bridging proteins by means of noncovalent interactions. The results and model indicate that optimum myelin adhesion and stability depend on the difference between, rather than the product of, the opposite charges on the lipid bilayers and myelin basic protein, as well as on the repulsive forces associated with membrane fluidity, and that small changes in any of these parameters away from the synergistically optimum values can lead to large changes in the adhesion or even its total elimination. Our results also show that the often-asked question of which membrane species, the lipids or the proteins, are the "important ones" may be misplaced. Both components work synergistically to provide the adhesion and overall structure. A better appreciation of the mechanism of this synergy may allow for a better understanding of stacked and especially myelin membrane structures and may lead to better treatments for demyelinating diseases such as multiple sclerosis. lipid-protein interactions | myelin membrane structure | membrane adhesion | membrane regeneration/healing | demyelinating diseases

  19. The lipid bilayer membrane and its interactions with additives

    Meijer, L.A.


    The aim of this study was to make accurate predictions on the interaction of biologically relevant molecules with lipid bilayer membranes. We emphasised on the partitioning of these molecules between the membrane phase, and the aqueous phase quantified by the partition coefficient. To make

  20. The lipid bilayer membrane and its interactions with additives.

    Meijer, L.A.


    The aim of this study was to make accurate predictions on the interaction of biologically relevant molecules with lipid bilayer membranes. We emphasised on the partitioning of these molecules between the membrane phase, and the aqueous phase quantified by the partition coefficient. To make detailed

  1. Phosphorylation of lipid metabolic enzymes by yeast protein kinase C requires phosphatidylserine and diacylglycerol.

    Dey, Prabuddha; Su, Wen-Min; Han, Gil-Soo; Carman, George M


    Protein kinase C in Saccharomyces cerevisiae, i.e., Pkc1, is an enzyme that plays an important role in signal transduction and the regulation of lipid metabolic enzymes. Pkc1 is structurally similar to its counterparts in higher eukaryotes, but its requirement of phosphatidylserine (PS) and diacylglycerol (DAG) for catalytic activity has been unclear. In this work, we examined the role of these lipids in Pkc1 activity with protein and peptide substrates. In agreement with previous findings, yeast Pkc1 did not require PS and DAG for its activity on the peptide substrates derived from lipid metabolic proteins such as Pah1 [phosphatidate (PA) phosphatase], Nem1 (PA phosphatase phosphatase), and Spo7 (protein phosphatase regulatory subunit). However, the lipids were required for Pkc1 activity on the protein substrates Pah1, Nem1, and Spo7. Compared with DAG, PS had a greater effect on Pkc1 activity, and its dose-dependent interaction with the protein kinase was shown by the liposome binding assay. The Pkc1-mediated degradation of Pah1 was attenuated in the cho1Δ mutant, which is deficient in PS synthase, supporting the notion that the phospholipid regulates Pkc1 activity in vivo. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Lipids in Aspergillus flavus-maize interaction

    Massimo eReverberi


    Full Text Available In sSome filamentous fungi, the pathways related to the oxidative stress and oxylipins production are involved both in the process of host-recognition of the host that and in the pathogenic phase. In fact, recent studies have shown that the production of oxylipins in filamentous fungi, yeasts and chromists is also related to the development of the organism itself and to mechanisms of communication with the host at the cellular level. The oxylipins, also involved produced in by the host during defense reactions, are able to induce sporulation and to modulate regulate the biosynthesis of mycotoxins in numerous several pathogenic fungi, apparently replacing the endogenous ones. In A. flavus, the oxylipins play a crucial role as signals for the regulation regulatingof the biosynthesis of aflatoxins, the conidiogenesis and the formation of sclerotia.To investigate the involvement of the an oxylipins based cross-talk into Z. mays and A. flavus interaction, we analyzed the oxylipins profile of the wild type strain and of three mutants of A. flavus that are deleted at the Aflox1 gene level also during maize kernel invasion; Aflox1 encodes for a manganese lipoxygenase.A lipidomic approach has been addressed through the use of LC-ToF-MS, followed by a statistical analysis of the principal components (PCA. The results showed the existence of a difference between the oxylipins profile generated by the WT and the mutants onto challenged maize. In relation to this, aflatoxin synthesis which is largely hampered in vitro, is intriguingly restored. These results highlight the important role of maize oxylipin in driving secondary metabolism in A. flavus.

  3. Interaction of articaine hydrochloride with prokaryotic membrane lipids.

    Lygre, Henning; Moe, Grete; Nerdal, Willy; Holmsen, Holm


    Local anesthetics are the most commonly used drugs in dentistry, with a wide range of effects, including antimicrobial activity. High antimicrobial effects have recently been reported on oral microbes from articaine hydrochloride, revealed by the minimum inhibitory concentration and minimal bactericidal concentration. Additionally, articaine has recently been used as an alkaline component in endodontic materials with a proposed antibacterial activity. However, the detailed mechanisms of action have not been discussed. We determined the Langmuir surface pressure/molecular area isotherms of prokaryotic lipid monolayers, as well as the phospholipid phase transitions, by employing differential scanning calorimetry on unilamellar prokaryotic liposomes (bilayers). Articaine hydrochloride was found to interact with the prokaryotic membrane lipids in both monolayers and bilayers. An increase of the phospholipid molecular area of acidic glycerophospholipids as well as a decrease in phase transition temperature and enthalpy were found with increasing articaine hydrochloride concentration. The thermodynamic changes by adding articaine hydrochloride to prokaryotic membrane lipids are potentially related to the effects observed from antimicrobial peptides resulting from membrane insertion, aggregate composition, pore formation, and lysis. Interaction of articaine hydrochloride with prokaryotic membrane lipids is indicated. Hence, further research is necessary to gain insight into where these compounds exert their effects at the molecular level.

  4. Lipid-protein interactions: Lessons learned from stress.

    Battle, A R; Ridone, P; Bavi, N; Nakayama, Y; Nikolaev, Y A; Martinac, B


    Biological membranes are essential for normal function and regulation of cells, forming a physical barrier between extracellular and intracellular space and cellular compartments. These physical barriers are subject to mechanical stresses. As a consequence, nature has developed proteins that are able to transpose mechanical stimuli into meaningful intracellular signals. These proteins, termed Mechanosensitive (MS) proteins provide a variety of roles in response to these stimuli. In prokaryotes these proteins form transmembrane spanning channels that function as osmotically activated nanovalves to prevent cell lysis by hypoosmotic shock. In eukaryotes, the function of MS proteins is more diverse and includes physiological processes such as touch, pain and hearing. The transmembrane portion of these channels is influenced by the physical properties such as charge, shape, thickness and stiffness of the lipid bilayer surrounding it, as well as the bilayer pressure profile. In this review we provide an overview of the progress to date on advances in our understanding of the intimate biophysical and chemical interactions between the lipid bilayer and mechanosensitive membrane channels, focusing on current progress in both eukaryotic and prokaryotic systems. These advances are of importance due to the increasing evidence of the role the MS channels play in disease, such as xerocytosis, muscular dystrophy and cardiac hypertrophy. Moreover, insights gained from lipid-protein interactions of MS channels are likely relevant not only to this class of membrane proteins, but other bilayer embedded proteins as well. This article is part of a Special Issue entitled: Lipid-protein interactions. Copyright © 2015. Published by Elsevier B.V.

  5. Interaction of pristine and functionalized carbon nanotubes with lipid membranes.

    Baoukina, Svetlana; Monticelli, Luca; Tieleman, D Peter


    Carbon nanotubes are widely used in a growing number of applications. Their interactions with biological materials, cell membranes in particular, is of interest in applications including drug delivery and for understanding the toxicity of carbon nanotubes. We use extensive molecular dynamics simulations with the MARTINI model to study the interactions of model nanotubes of different thickness, length, and patterns of chemical modification with model membranes. In addition, we characterize the interactions of small bundles of carbon nanotubes with membrane models. Short pristine carbon nanotubes readily insert into membranes and adopt an orientation parallel to the plane of the membrane in the center of the membrane. Larger aggregates and functionalized nanotubes exhibit a range of possible interactions. The distribution and orientation of carbon nanotubes can be controlled by functionalizing the nanotubes. Free energy calculations provide thermodynamic insight into the preferred orientations of different nanotubes and quantify structural defects in the lipid matrix.

  6. Analysis of Multi-Stakeholder Requirements Using Requirement Interaction Matrix

    Rohayanti Hassan


    Full Text Available Software requirements engineering is an imperative phase in the software development life cycle in every project regardless of the project size. In a project, different people are involved in the requirements engineering process, including requirement engineers, stakeholders, end users, and system designers. Amongst them, stakeholders play an essential role. Differences in goals and priorities of multiple stakeholders would make requirements management complex and difficult, which is a huge challenge for requirement engineers. From time to time, new requirements emerge and existing requirements need changes to fulfil stakeholders’ goals. Thus, such situation leads to high requirements volatility and low stability which causes overlapping and conflicting of requirements. The correctness and validity of requirements are of paramount importance as they are the key factors toward a successful system. A deep understanding of requirement management technique that conforms to users’ needs is crucial. Such technique of the concept is applied to the Labour Management System. In this study, we have discussed the implementation of analysis of multi-stakeholder requirements using requirement interaction matrix in the f. The study used real requirements to yield a solid and dependable result. We have documented the requirements using a template and assessed their respective volatility level. An algorithm is constructed to   show   that   the   technique has managed to minimize   the time   used   when   checking requirements.

  7. Quantitative studies of antimicrobial peptide-lipid membrane interactions

    Kristensen, Kasper

    into such novel therapeutics. However, limited understanding of the mechanisms underlying microbicidal activity of antimicrobial peptides has slowed down this development. A central step toward understanding the microbicidal mechanisms of action of antimicrobial peptides is to understand the mechanisms by which......The increasing occurrence of multi-drug-resistant bacteria poses a serious threat to modern society. Therefore, novel types of anti-infective therapeutics are highly warranted. Antimicrobial peptides are a class of naturally occurring host-defense molecules that potentially might be developed...... antimicrobial peptides interact with phospholipid membranes. Motivated by that fact, the scope of this thesis is to study these antimicrobial peptide-lipid membrane interactions. In particular, we attempt to study these interactions with a quantitative approach. For that purpose, we consider the three...

  8. Interaction of curcumin with lipid monolayers and liposomal bilayers.

    Karewicz, Anna; Bielska, Dorota; Gzyl-Malcher, Barbara; Kepczynski, Mariusz; Lach, Radosław; Nowakowska, Maria


    Curcumin shows huge potential as an anticancer and anti-inflammatory agent. However, to achieve a satisfactory bioavailability and stability of this compound, its liposomal form is preferable. Our detailed studies on the curcumin interaction with lipid membranes are aimed to obtain better understanding of the mechanism and eventually to improve the efficiency of curcumin delivery to cells. Egg yolk phosphatidylcholine (EYPC) one-component monolayers and bilayers, as well as mixed systems containing additionally dihexadecyl phosphate (DHP) and cholesterol, were studied. Curcumin binding constant to EYPC liposomes was determined based on two different methods: UV/Vis absorption and fluorescence measurements to be 4.26×10(4)M(-1) and 3.79×10(4)M(-1), respectively. The fluorescence quenching experiment revealed that curcumin locates in the hydrophobic region of EYPC liposomal bilayer. It was shown that curcumin impacts the size and stability of the liposomal carriers significantly. Loaded into the EYPC/DPH/cholesterol liposomal bilayer curcumin stabilizes the system proportionally to its content, while the EYPC/DPH system is destabilized upon drug loading. The three-component lipid composition of the liposome seems to be the most promising system for curcumin delivery. An interaction of free and liposomal curcumin with EYPC and mixed monolayers was also studied using Langmuir balance measurements. Monolayer systems were treated as a simple model of cell membrane. Condensing effect of curcumin on EYPC and EYPC/DHP monolayers and loosening influence on EYPC/DHP/chol ones were observed. It was also demonstrated that curcumin-loaded EYPC liposomes are more stable upon interaction with the model lipid membrane than the unloaded ones.

  9. The Interaction between Pesticide Use and Genetic Variants Involved in Lipid Metabolism on Prostate Cancer Risk

    Gabriella Andreotti


    Full Text Available Background. Lipid metabolism processes have been implicated in prostate carcinogenesis. Since several pesticides are lipophilic or are metabolized via lipid-related mechanisms, they may interact with variants of genes in the lipid metabolism pathway. Methods. In a nested case-control study of 776 cases and 1444 controls from the Agricultural Health Study (AHS, a prospective cohort study of pesticide applicators, we examined the interactions between 39 pesticides (none, low, and high exposure and 220 single nucleotide polymorphisms (SNPs in 59 genes. The false discovery rate (FDR was used to account for multiple comparisons. Results. We found 17 interactions that displayed a significant monotonic increase in prostate cancer risk with pesticide exposure in one genotype and no significant association in the other genotype. The most noteworthy association was for ALOXE3 rs3027208 and terbufos, such that men carrying the T allele who were low users had an OR of 1.86 (95% CI = 1.16–2.99 and high users an OR of 2.00 (95% CI = 1.28–3.15 compared to those with no use of terbufos, while men carrying the CC genotype did not exhibit a significant association. Conclusion. Genetic variation in lipid metabolism genes may modify pesticide associations with prostate cancer; however our results require replication.

  10. Caveolin interaction governs Kv1.3 lipid raft targeting.

    Pérez-Verdaguer, Mireia; Capera, Jesusa; Martínez-Mármol, Ramón; Camps, Marta; Comes, Núria; Tamkun, Michael M; Felipe, Antonio


    The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel's spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.

  11. Interaction of aspirin (acetylsalicylic acid) with lipid membranes.

    Barrett, Matthew A; Zheng, Songbo; Roshankar, Golnaz; Alsop, Richard J; Belanger, Randy K R; Huynh, Chris; Kučerka, Norbert; Rheinstädter, Maikel C


    We studied the interaction of Aspirin (acetylsalicylic acid) with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core.

  12. Interaction of aspirin (acetylsalicylic acid with lipid membranes.

    Matthew A Barrett

    Full Text Available We studied the interaction of Aspirin (acetylsalicylic acid with lipid membranes using x-ray diffraction for bilayers containing up to 50 mol% of aspirin. From 2D x-ray intensity maps that cover large areas of reciprocal space we determined the position of the ASA molecules in the phospholipid bilayers and the molecular arrangement of the molecules in the plane of the membranes. We present direct experimental evidence that ASA molecules participate in saturated lipid bilayers of DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine and preferably reside in the head group region of the membrane. Up to 50 mol% ASA molecules can be dissolved in this type of bilayer before the lateral membrane organization is disturbed and the membranes are found to form an ordered, 2D crystal-like structure. Furthermore, ASA and cholesterol were found to co-exist in saturated lipid bilayers, with the ASA molecules residing in the head group region and the cholesterol molecules participating in the hydrophobic membrane core.

  13. Interaction measurement of particles bound to a lipid membrane

    Sarfati, Raphael; Dufresne, Eric


    The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.

  14. Involvement of lipid-protein complexes in plant-microorganism interactions

    Blein Jean-Pierre


    Full Text Available Increasing concerns about the environmental impact of modern agricultural have prompted research for alternate practices to pesticide treatments, notably using plant defense mechanisms. Thus, isolation and characterization of plant defense elicitors have been the main step of studies in many groups. Moreover, in the global concept of interactions between organisms and their environment, a major concern is to discriminate recognition between exogenous and endogenous signals, notably during pathogenic or allergenic interactions involving small proteins, such as elicitins or lipid transfer proteins (LTPs. Elicitins and lipid transfer proteins (LTP are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defense mechanisms, the biological function of LTPs is still an enigma. They are ubiquitous plant proteins able to load and transfer hydrophobic molecules such as fatty acids or phospholipids. Among them, LTPs1 (type 1 lipid transfer proteins constitute a multigenic family of secreted plant lipid binding proteins that are constitutively expressed in specific tissues and/or induced in response to biotic and abiotic stress (for reviews [1-4]. Their biological function is still unknown, even if some data provide arguments for a role of these proteins in the assembly of extracellular hydrophobic polymers (i.e., cutin and suberin [2, 4] and/or in plant defense against fungal pathogens [1, 3]. Beside their involvement in plant defense, LTPs1 are also known to be pan-allergens of plant-derived foods [5]. Finally, the discovery of the sterol carrier-properties of elicitins has opened new perspectives dealing with the relationship between this function and the elicitor activity of these small cystein-rich proteins. Nevertheless, this elicitor activity is restrained to few plant species, and thus does not appear in accordance with a universal lipid transfer


    Stefania ePizzimenti


    Full Text Available A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.

  16. Interaction of carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP) with lipid membrane systems: a biophysical approach with relevance to mitochondrial uncoupling.

    Monteiro, João P; Martins, André F; Lúcio, Marlene; Reis, Salette; Geraldes, Carlos F G C; Oliveira, Paulo J; Jurado, Amália S


    FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone), a classical uncoupler of mitochondrial oxidative phosphorylation, is used in this study as a model to clarify how interactions of uncouplers with membrane lipid bilayers may influence membrane biophysics and their protonophoric activity itself. In order to disclose putative effects that may be important when considering using uncouplers for pharmacological purposes, an extensive characterization of FCCP membrane lipid interactions using accurate biophysical approaches and simple model lipid systems was carried out. Differential scanning calorimetry studies showed that FCCP molecules disturb lipid bilayers and favor lateral phase separation in mixed lipid systems. (31)P NMR assays indicated that FCCP alters the curvature elastic properties of membrane models containing non-bilayer lipids, favoring lamellar/H(II) transition, probably by alleviation of hydrocarbon-packing constraints in the inverted hexagonal phase. Taking advantage of FCCP quenching effects on the fluorescent probes DPH (1,6-diphenyl-1,3,5-hexatriene) and DPH-PA (3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid), it is demonstrated that FCCP distributes across the bilayer thickness in both a single and a ternary lipid system mimicking the inner mitochondrial membrane. This behavior is consistent with the ability of the compound to migrate through the thickness of the inner mitochondrial membrane, an event required for its protonophoric activity. Finally, the study of the membrane fluidity in different lipid systems, as reported by the rotational correlation time (θ) of DPH or DPH-PA, showed that the extension at which FCCP disturbs membrane properties associated with the dynamics and the order of lipid molecules depends on the lipid composition of the model lipid system assayed.

  17. The interaction between purple membrane and membrane lipid


    Bacteriorhodopsin in purple membrane was reconstituted into different lipid vesicles. The effect of three different lipids on the structure and function of bacteriorhodopsin in lipid vesicles was studied by the observation on freeze-fracture eletron microscopy, the rotational diffusion of bacteriorhodopsin in lipid vesicles, the measurement of absorption spectrum, and the absorbance change with time. For these prepared samples, the results showed that DMPC was the stable lipid environment of bacteriorhodopsin; egg-pc causeed the loss of retinal chromophore of bacteriorhodopsin and it was not reversible change, cholesterol could stabilize the bacteriorhodopsin in lipid environment,but it caused the aggregation of bacteriorhodopsin.

  18. Lipid droplets interact with mitochondria using SNAP23

    Jägerström, Sara; Polesie, Sam; Wickström, Ylva


    factors are involved. Moreover, the presence of LD markers in mitochondria isolated by subcellular fractionations is demonstrated. Finally, ablation of SNAP23 using siRNA reduced complex formation and beta oxidation, which suggests that the LD-mitochondria complex is functional in the cell.......Triglyceride-containing lipid droplets (LD) are dynamic organelles stored on demand in all cells. These droplets grow through a fusion process mediated by SNARE proteins, including SNAP23. The droplets have also been shown to be highly motile and interact with other cell organelles, including...... peroxisomes and the endoplasmic reticulum. We have used electron and confocal microscopy to demonstrate that LD form complexes with mitochondria in NIH 3T3 fibroblasts. Using an in vitro system of purified LD and mitochondria, we also show the formation of the LD-mitochondria complex, in which cytosolic...

  19. Functionality of lipids and lipid-protein interactions in cereal-derived food products

    Marion Didier


    Full Text Available Lipids and especially cereal lipids play a significant role in the processing and quality of cereals and baked cereal foods (bread, biscuits and beverages (beer. Most of the physico-chemical mechanisms responsible for the lipid functionality has been investigated and recently the specific role of lipid-binding proteins, e.g. lipid transfer proteins and puroindolines, has been highlighted. The state of the researches performed in this field are briefly presented in this review and the data obtained until now show that new perspectives are opened in cereal breeding and processing for improving the quality of cereals and cereal products.

  20. Thermodynamic and physical interactions between novel polymeric surfactants and lipids: toward designing stable polymer-lipid complexes.

    Harmon, Alexander M; Lash, Melissa H; Tishbi, Nasim; Lent, Danielle; Mintzer, Evan A; Uhrich, Kathryn E


    Surfactant amphiphilic macromolecules (AMs) were complexed with a 1:1 ratio of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), either by a coevaporation (CE) or postaddition (PA) method, to form AM-lipid complexes with enhanced drug delivery applications. By characterizing the surfactant-lipid interactions, these heterogeneous drug delivery systems can be better controlled and engineered for optimal therapeutic outcomes. In this study, the physical interactions between DOPE:DOTAP liposomes and AM surfactants were investigated. Langmuir film balance and isothermal calorimetry studies showed cooperative intermolecular interactions between pure lipids and AM in monolayers and high thermostability of structure formed by the addition of AM micelles to DOTAP:DOPE vesicles in buffer solution respectively. Increasing the AM weight ratio in the complexes via the CE method led to complete vesicle solubilization--from lamellar aggregates, to a mixture of coexisting vesicles and micelles, to mixed micelles. Isothermal calorimetry evaluation of AM-lipid complexes shows that, at higher AM weight ratios, PA-produced complexes exhibit greater stability than complexes at lower AM weight ratios. Similar studies show that AM-lipid complexes produced by the CE methods display stronger interactions between AM-lipid components than complexes produced by the PA method. The results suggest that the PA method produces vesicles with AM molecules associated with its outer leaflet only (i.e., an AM-coated vesicle), while the CE method produces complexes ranging from mixed vesicles to mixed micelle in which the AM-lipid components are more intimately associated. These results will be helpful in the design of AM-lipid complexes as structurally defined, stable, and effective drug delivery systems.

  1. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy.

    Leftin, Avigdor; Molugu, Trivikram R; Job, Constantin; Beyer, Klaus; Brown, Michael F


    Investigations of lipid membranes using NMR spectroscopy generally require isotopic labeling, often precluding structural studies of complex lipid systems. Solid-state (13)C magic-angle spinning NMR spectroscopy at natural isotopic abundance gives site-specific structural information that can aid in the characterization of complex biomembranes. Using the separated local-field experiment DROSS, we resolved (13)C-(1)H residual dipolar couplings that were interpreted with a statistical mean-torque model. Liquid-disordered and liquid-ordered phases were characterized according to membrane thickness and average cross-sectional area per lipid. Knowledge of such structural parameters is vital for molecular dynamics simulations, and provides information about the balance of forces in membrane lipid bilayers. Experiments were conducted with both phosphatidylcholine (dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC)) and egg-yolk sphingomyelin (EYSM) lipids, and allowed us to extract segmental order parameters from the (13)C-(1)H residual dipolar couplings. Order parameters were used to calculate membrane structural quantities, including the area per lipid and bilayer thickness. Relative to POPC, EYSM is more ordered in the ld phase and experiences less structural perturbation upon adding 50% cholesterol to form the lo phase. The loss of configurational entropy is smaller for EYSM than for POPC, thus favoring its interaction with cholesterol in raftlike lipid systems. Our studies show that solid-state (13)C NMR spectroscopy is applicable to investigations of complex lipids and makes it possible to obtain structural parameters for biomembrane systems where isotope labeling may be prohibitive.

  2. Interactions between charged nanoparticles and giant vesicles fabricated from inverted-headgroup lipids

    Wang, Lu; Malmstadt, Noah


    The surface chemistry of the cell membrane plays an important role in how cells interact with particulate species. These interactions are dictated in large part by lipid headgroup charge. To investigate the nature of electrostatic interactions between lipid bilayers and nanoparticles in solution, we studied nanoparticles interacting with the zwitterionic lipid 1,2-dioleoyl-glycero-3-phosphocholine (DOPC), and its inverted-headgroup analog DOCP. These interactions were investigated by fabricating giant unilamellar vesicles (GUVs) with DOPC lipids and DOCP lipids respectively, and introducing nanoparticles to suspensions of both. GUVs displayed various deformational modes depending on the charge and size of the nanoparticles as well as the compositions of the GUVs. The differences in the responses of the two lipid species illuminate how the phosphate and choline groups on the lipid interact with charged nanoparticles. This study suggests that the phosphate group dominates the lipid-nanoparticle electrostatic interaction. We speculate that the formation of water clathrate structures around the choline group inhibits interactions between negatively charged nanoparticles and the positively charged choline.

  3. Tuning molecular interactions in lipid-oligonucleotides assemblies via locked nucleic acid (LNA)-based lipids.

    Patwa, Amit; Salgado, Gilmar; Dole, François; Navailles, Laurence; Barthélémy, Philippe


    Hybrid nucleotide-lipids containing locked nucleic acid (LNA) show enhanced hybridization properties with complementary single strand RNAs compared to DNA lipid analogues. The LNA adenosine lipid features unique binding properties with a high binding affinity for poly-uridine and the entropically driven formation of a stable complex (K(d) ≈ 43 nM). Enhanced hybridization properties of LNA-based lipids should be applicable for the development of oligonucleotide (ON) delivery systems or as small molecule binders to RNA for novel therapeutic strategies.

  4. Quantifying Pseudomonas aeruginosa quinolones and examining their interactions with lipids.

    Palmer, Gregory C; Schertzer, Jeffrey W; Mashburn-Warren, Lauren; Whiteley, Marvin


    Pseudomonas aeruginosa produces a quorum sensing molecule termed the Pseudomonas Quinolone Signal (2-heptyl-3-hydroxy-4-quinolone; PQS) that regulates an array of genes involved in virulence. This chapter addresses four related techniques useful for detecting and quantifying PQS. First, extraction of PQS from complex mixtures (e.g. cell cultures) is described. Separation of PQS from extracts by Thin-Layer Chromatography (TLC) is used in combination with the natural fluorescence of the molecule for quantification. A second separation technique for the PQS precursor HHQ using High-Performance Liquid Chromatography (HPLC) is also described, and this assay exploits the molecule's characteristic absorbance for quantification. A third method for quantification of PQS from simple mixtures (e.g. enzyme assays) using fluorescence is outlined. Finally, a protocol for determining PQS interactions with membrane lipids through Fluorescence Resonance Energy Transfer (FRET) is presented. These techniques allow for quantification and characterization of PQS from diverse environments, a prerequisite to understanding the biological functions of QS molecules.

  5. Dietary Lipid and Carbohydrate Interactions: Implications on Lipid and Glucose Absorption, Transport in Gilthead Sea Bream (Sparus aurata) Juveniles.

    Castro, Carolina; Corraze, Geneviève; Basto, Ana; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires


    A digestibility trial was performed with gilthead sea bream juveniles (IBW = 72 g) fed four diets differing in lipid source (fish oil, FO; or a blend of vegetable oil, VO) and starch content (0 %, CH-; or 20 %, CH+) to evaluate the potential interactive effects between carbohydrates and VO on the processes involved in digestion, absorption and transport of lipids and glucose. In fish fed VO diets a decrease in lipid digestibility and in cholesterol (C), High Density Lipoprotein(HDL)-C and Low Density Lipoprotein (LDL)-C (only in CH+ group) were recorded. Contrarily, dietary starch induced postprandial hyperglycemia and time related alterations on serum triacylglycerol (TAG), phospholipid (PL) and C concentrations. Fish fed a CH+ diet presented lower serum TAG than CH- group at 6 h post-feeding, and the reverse was observed at 12 h post-feeding for TAG and PL. Lower serum C and PL at 6 h post-feeding were recorded only in VOCH+ group. No differences between groups were observed in hepatic and intestinal transcript levels of proteins involved in lipid transport and hydrolysis (FABP, DGAT, GPAT, MTP, LPL, LCAT). Lower transcript levels of proteins related to lipid transport (ApoB, ApoA1, FABP2) were observed in the intestine of fish fed the CH+ diet, but remained unchanged in the liver. Overall, transcriptional mechanisms involved in lipid transport and absorption were not linked to changes in lipid serum and digestibility. Dietary starch affected lipid absorption and transport, probably due to a delay in lipid absorption. This study suggests that a combination of dietary VO and starch may negatively affect cholesterol absorption and transport.

  6. Ionic protein-lipid interaction at the plasma membrane: what can the charge do?

    Li, Lunyi; Shi, Xiaoshan; Guo, Xingdong; Li, Hua; Xu, Chenqi


    Phospholipids are the major components of cell membranes, but they have functional roles beyond forming lipid bilayers. In particular, acidic phospholipids form microdomains in the plasma membrane and can ionically interact with proteins via polybasic sequences, which can have functional consequences for the protein. The list of proteins regulated by ionic protein-lipid interaction has been quickly expanding, and now includes membrane proteins, cytoplasmic soluble proteins, and viral proteins. Here we review how acidic phospholipids in the plasma membrane regulate protein structure and function via ionic interactions, and how Ca(2+) regulates ionic protein-lipid interactions via direct and indirect mechanisms.

  7. The Use of Kits in the Analysis of Tissue Lipids Requires Validation.

    Rider, T; LeBoeuf, R C; Tso, Patrick; Jandacek, R J


    The ready availability and ease of use of kits for the measurement of serum lipids has greatly facilitated these measurements. In many cases it would be convenient to use these kits in the determination of lipid concentrations in tissues. The successful application of serum kits in tissue analysis requires that two important issues be considered. First, the solvent system for the extraction of the lipids and the solvent used for analysis by the kit must be compatible with the reactions in the kit. Second, the concentration range in the analyzed solution must be within the range for which the kit is used. We report here that lipids in liver and adipose tissues may be significantly underestimated by the use of some kits. We recommend that the use of kits for tissue analysis of lipids be validated for the specific analysis.

  8. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions.

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S


    Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.

  9. Energy of the interaction between membrane lipid domains calculated from splay and tilt deformations

    Galimzyanov, T. R.; Molotkovsky, R. J.; Kheyfets, B. B.; Akimov, S. A.


    Specific domains, called rafts, are formed in cell membranes. Similar lipid domains can be formed in model membranes as a result of phase separation with raft size may remaining small (˜10-100 nm) for a long time. The characteristic lifetime of a nanoraft ensemble strongly depends on the nature of mutual raft interactions. The interaction energy between the boundaries of two rafts has been calculated under the assumption that the thickness of the raft bilayer is greater than that of the surrounding membrane, and elastic deformations appear in order to smooth the thickness mismatch at the boundary. When rafts approach each other, deformations from their boundaries overlap, making interaction energy profile sophisticated. It has been shown that raft merger occurs in two stages: rafts first merge in one monolayer of the lipid bilayer and then in another monolayer. Each merger stage requires overcoming of an energy barrier of about 0.08-0.12 k BT per 1 nm of boundary length. These results allow us to explain the stability of the ensemble of finite sized rafts.

  10. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.; Hu, Dehong; Orr, Galya; Murphy, Catherine J.; Hamers, Robert J.; Pedersen, Joel A.


    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.

  11. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    Loo, Tip W; Clarke, David M


    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids.

  12. Data supporting beta-amyloid dimer structural transitions and protein–lipid interactions on asymmetric lipid bilayer surfaces using MD simulations on experimentally derived NMR protein structures

    Sara Y. Cheng


    Full Text Available This data article supports the research article entitled “Maximally Asymmetric Transbilayer Distribution of Anionic Lipids Alters the Structure and interaction with Lipids of an Amyloidogenic Protein Dimer Bound to the Membrane Surface” [1]. We describe supporting data on the binding kinetics, time evolution of secondary structure, and residue-contact maps of a surface-absorbed beta-amyloid dimer protein on different membrane surfaces. We further demonstrate the sorting of annular and non-annular regions of the protein/lipid bilayer simulation systems, and the correlation of lipid-number mismatch and surface area per lipid mismatch of asymmetric lipid membranes.

  13. Interaction of a patterned amphiphilic polyphenylene dendrimer with a lipid monolayer: electrostatic interactions dominate.

    Okuno, Masanari; Mezger, Markus; Stangenberg, René; Baumgarten, Martin; Müllen, Klaus; Bonn, Mischa; Backus, Ellen H G


    Dendrimeric macromolecules with defined shape and size are promising candidates for delivering drug or DNA molecules into cells. In this work we study the influence of an amphiphilic polyphenylene dendrimer on a model cell membrane consisting of a condensed 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid monolayer. A small surface pressure decrease is observed when the dendrimer solution is injected into the aqueous phase below the monolayer. X-ray reflectivity measurements show that the surface monolayer remains intact. The molecular-scale picture is obtained with sum-frequency generation spectroscopy. With this technique, we observe that the tails of the surfactant molecules become less ordered upon interaction with the amphiphilic polyphenylene dendrimer. In contrast, the water molecules below the DPPC layer become more ordered. Our observations suggest that electrostatic interactions between the negative charge of the dendrimer and the positively charged part of the DPPC headgroup keep the dendrimer located below the headgroup. No evidence of dendrimer insertion into the membrane has been observed. Apparently before entering the cell membrane the dendrimer can stick at the hydrophilic part of the lipids.

  14. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  15. Interactive protein network of FXIII-A1 in lipid rafts of activated and non-activated platelets.

    Rabani, Vahideh; Montange, Damien; Davani, Siamak


    Lipid-rafts are defined as membrane microdomains enriched in cholesterol and glycosphingolipids within platelet plasma membrane. Lipid raft-mediated clot retraction requires factor XIII and other interacting proteins. The aim of this study was to investigate the proteins that interact with factor XIII in raft and non-raft domains of activated and non-activated platelet plasma membrane. By lipidomics analysis, we identified cholesterol- and sphingomyelin-enriched areas as lipid rafts. Platelets were activated by thrombin. Proteomics analysis provided an overview of the pathways in which proteins of rafts and non-rafts participated in the interaction network of FXIII-A1, a catalytic subunit of FXIII. "Platelet activation" was the principal pathway among KEGG pathways for proteins of rafts, both before and after activation. Network analysis showed four types of interactions (activation, binding, reaction, and catalysis) in raft and non-raft domains in interactive network of FXIII-A1. FXIII-A1 interactions with other proteins in raft domains and their role in homeostasis highlight the specialization of the raft domain in clot retraction via the Factor XIII protein network.

  16. Probing the thermodynamics of protein-lipid interactions by isothermal titration calorimetry.

    Swamy, Musti J; Sankhala, Rajeshwer S


    Isothermal titration calorimetry is a highly sensitive technique for the study of molecular interactions. This method has been applied quite extensively to investigate the interaction of proteins with small ligands, other proteins, and nucleic acids as well as with drugs and metal ions. In this chapter, we describe the application of ITC for the investigation of thermodynamics of protein-lipid interaction. A number of parameters such as enthalpy of binding (ΔH), entropy of binding (ΔS), association constant (K (a)), binding stoichiometry (n), and free energy of binding (ΔG) can be obtained from a single calorimetric titration, providing a complete thermodynamic characterization of the interaction. The method is described in detail taking the major protein of the bovine seminal plasma, PDC-109, which exhibits a high preference for interaction with choline-containing lipids, as an example. The method can be applied to investigate the thermodynamics of the interaction of other soluble proteins with lipid membranes.

  17. Atomic-level description of protein-lipid interactions using an accelerated membrane model.

    Baylon, Javier L; Vermaas, Josh V; Muller, Melanie P; Arcario, Mark J; Pogorelov, Taras V; Tajkhorshid, Emad


    Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.

  18. UV-Visible and Infrared Methods for Investigating Lipid-Rhodopsin Membrane Interactions

    Brown, Michael F.


    Summary Experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods are described for characterizing lipid-protein interactions for the example of rhodopsin in a membrane bilayer environment. The combined use of FTIR and UV-visible difference spectroscopy monitors the structural and functional changes during rhodopsin activation. Such studies investigate how membrane lipids stabilize the various rhodopsin photoproducts, analogous to mutating the protein. Interpretation of the results entails a non-specific flexible surface model for explaining the role of membrane lipid-protein interactions in biological functions. PMID:22976026

  19. UV-visible and infrared methods for investigating lipid-rhodopsin membrane interactions.

    Brown, Michael F


    We describe experimental UV-visible and Fourier transform infrared (FTIR) spectroscopic methods for characterizing lipid-protein interactions for rhodopsin in a membrane bilayer environment. The combination of FTIR and UV-visible difference spectroscopy is used to monitor the structural and functional changes during rhodopsin activation. Investigations of how membrane lipids stabilize various rhodopsin photoproducts are analogous to mutating the protein in terms of gain or loss of function. Interpretation of the results entails a flexible surface model for explaining membrane lipid-protein interactions through material properties relevant to biological activity.

  20. Charged particles interacting with a mixed supported lipid bilayer as a biomimetic pulmonary surfactant.

    Munteanu, B; Harb, F; Rieu, J P; Berthier, Y; Tinland, B; Trunfio-Sfarghiu, A-M


    This study shows the interactions of charged particles with mixed supported lipid bilayers (SLB) as biomimetic pulmonary surfactants. We tested two types of charged particles: positively charged and negatively charged particles. Two parameters were measured: adsorption density of particles on the SLB and the diffusion coefficient of lipids by FRAPP techniques as a measure of interaction strength between particles and lipids. We found that positively charged particles do not adsorb on the bilayer, probably due to the electrostatic repulsion between positively charged parts of the lipid head and the positive groups on the particle surface, therefore no variation in diffusion coefficient of lipid molecules was observed. On the contrary, the negatively charged particles, driven by electrostatic interactions are adsorbed onto the supported bilayer. The adsorption of negatively charged particles increases with the zeta-potential of the particle. Consecutively, the diffusion coefficient of lipids is reduced probably due to binding onto the lipid heads which slows down their Brownian motion. The results are directly relevant for understanding the interactions of particulate matter with pulmonary structures which could lead to pulmonary surfactant inhibition or deficiency causing severe respiratory distress or pathologies.

  1. Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles

    Bingham, Richard J; Smye, Stephen W


    Bilayer lipid membranes [BLMs] are an essential component of all biological systems, forming a functional barrier for cells and organelles from the surrounding environment. The lipid molecules that form membranes contain both permanent and induced dipoles, and an electric field can induce the formation of pores when the transverse field is sufficiently strong (electroporation). Here, a phenomenological free energy is constructed to model the response of a BLM to a transverse static electric field. The model contains a continuum description of the membrane dipoles and a coupling between the headgroup dipoles and the membrane tilt. The membrane is found to become unstable through buckling modes, which are weakly coupled to thickness fluctuations in the membrane. The thickness fluctuations, along with the increase in interfacial area produced by membrane buckling, increase the probability of localized membrane breakdown, which may lead to pore formation. The instability is found to depend strongly on the strengt...

  2. Brownian dynamics simulations of lipid bilayer membrane with hydrodynamic interactions in LAMMPS

    Fu, Szu-Pei; Young, Yuan-Nan; Peng, Zhangli; Yuan, Hongyan


    Lipid bilayer membranes have been extensively studied by coarse-grained molecular dynamics simulations. Numerical efficiencies have been reported in the cases of aggressive coarse-graining, where several lipids are coarse-grained into a particle of size 4 6 nm so that there is only one particle in the thickness direction. Yuan et al. proposed a pair-potential between these one-particle-thick coarse-grained lipid particles to capture the mechanical properties of a lipid bilayer membrane (such as gel-fluid-gas phase transitions of lipids, diffusion, and bending rigidity). In this work we implement such interaction potential in LAMMPS to simulate large-scale lipid systems such as vesicles and red blood cells (RBCs). We also consider the effect of cytoskeleton on the lipid membrane dynamics as a model for red blood cell (RBC) dynamics, and incorporate coarse-grained water molecules to account for hydrodynamic interactions. The interaction between the coarse-grained water molecules (explicit solvent molecules) is modeled as a Lennard-Jones (L-J) potential. We focus on two sets of LAMMPS simulations: 1. Vesicle shape transitions with varying enclosed volume; 2. RBC shape transitions with different enclosed volume. This work is funded by NSF under Grant DMS-1222550.

  3. Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments.

    Tsanova, A; Jordanova, A; Dzimbova, T; Pajpanova, T; Golovinsky, E; Lalchev, Z


    Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir's monolayer technique in combination with Wilhelmy's method for measuring the surface pressure, the interaction of synthetic methionine-enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid-peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid-peptide interactions at the plane of biomembranes.

  4. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger


    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  5. Perillyl alcohol: Dynamic interactions with the lipid bilayer and implications for long‐term inhalational chemotherapy for gliomas

    Orlando da Fonseca, Clovis; Khandelia, Himanshu; D’Alincourt Salazar, Marcela


    Background: Gliomas display a high degree of intratumor heterogeneity, including changes in physiological parameters and lipid composition of the plasma membrane, which may contribute to the development of drug resistance. Biophysical interactions between therapeutic agents and the lipid componen...

  6. The lipid moiety of brincidofovir is required for in vitro antiviral activity against Ebola virus.

    McMullan, Laura K; Flint, Mike; Dyall, Julie; Albariño, César; Olinger, Gene G; Foster, Scott; Sethna, Phiroze; Hensley, Lisa E; Nichol, Stuart T; Lanier, E Randall; Spiropoulou, Christina F


    Brincidofovir (BCV) is the 3-hexadecyloxy-1-propanol (HDP) lipid conjugate of the acyclic nucleoside phosphonate cidofovir (CDV). BCV has established broad-spectrum activity against double-stranded DNA (dsDNA) viruses; however, its activity against RNA viruses has been less thoroughly evaluated. Here, we report that BCV inhibited infection of Ebola virus in multiple human cell lines. Unlike the mechanism of action for BCV against cytomegalovirus and other dsDNA viruses, phosphorylation of CDV to the diphosphate form appeared unnecessary. Instead, antiviral activity required the lipid moiety and in vitro activity against EBOV was observed for several HDP-nucleotide conjugates.

  7. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    Caesar, Robert; Nygren, Heli; Orešič, Matej;


    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...... esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota...

  8. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.

    Lai, Kan; Wang, Biao; Zhang, Yong; Zheng, Yue


    Pore formation of lipid bilayers under mechanical stress is critical to biological processes. A series of coarse grained molecular dynamics simulations of lipid bilayers with carbon nanoparticles different in size have been performed. Surface tension was applied to study the disruption of lipid bilayers by nanoparticles and the formation of pores inside the bilayers. The presence of small nanoparticles enhances the probability of water penetration thus decreasing the membrane rupture tension, while big nanoparticles have the opposite effect. Nanoparticle volume affects bilayer strength indirectly, and particle surface density can complicate the interaction. The structural, dynamic, elastic properties and lateral densities of lipid bilayers with nanoparticles under mechanical stress were analyzed. The results demonstrate the ability of nanoparticles to adjust the structural and dynamic properties of a lipid membrane, and to efficiently regulate the pore formation behavior and hydrophobicity of membranes.

  9. Advanced interactive television services require content synchronization

    Deventer, M.O. van; Stokking, H.M.; Niamut, O.A.; Walraven, F.A.; Klos, V.B.


    Advanced interactive television services, e.g. using IMS-based IPTV technology, enable users to interact with other users within the context of simultaneously consumed content, like broadcast television channels. Differences of content arrival time of 100 ms may already have a perceivable effect on

  10. The Interaction of Polyglutamine Peptides with Lipid Membranes Is Regulated by Flanking Sequences Associated with Huntingtin*

    Burke, Kathleen A.; Kauffman, Karlina J.; Umbaugh, C. Samuel; Frey, Shelli L.; Legleiter, Justin


    Huntington disease (HD) is caused by an expanded polyglutamine (poly(Q)) repeat near the N terminus of the huntingtin (htt) protein. Expanded poly(Q) facilitates formation of htt aggregates, eventually leading to deposition of cytoplasmic and intranuclear inclusion bodies containing htt. Flanking sequences directly adjacent to the poly(Q) domain, such as the first 17 amino acids on the N terminus (Nt17) and the polyproline (poly(P)) domain on the C-terminal side of the poly(Q) domain, heavily influence aggregation. Additionally, htt interacts with a variety of membraneous structures within the cell, and Nt17 is implicated in lipid binding. To investigate the interaction between htt exon1 and lipid membranes, a combination of in situ atomic force microscopy, Langmuir trough techniques, and vesicle permeability assays were used to directly monitor the interaction of a variety of synthetic poly(Q) peptides with different combinations of flanking sequences (KK-Q35-KK, KK-Q35-P10-KK, Nt17-Q35-KK, and Nt17-Q35-P10-KK) on model membranes and surfaces. Each peptide aggregated on mica, predominately forming extended, fibrillar aggregates. In contrast, poly(Q) peptides that lacked the Nt17 domain did not appreciably aggregate on or insert into lipid membranes. Nt17 facilitated the interaction of peptides with lipid surfaces, whereas the poly(P) region enhanced this interaction. The aggregation of Nt17-Q35-P10-KK on the lipid bilayer closely resembled that of a htt exon1 construct containing 35 repeat glutamines. Collectively, this data suggests that the Nt17 domain plays a critical role in htt binding and aggregation on lipid membranes, and this lipid/htt interaction can be further modulated by the presence of the poly(P) domain. PMID:23572526

  11. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation.

    Mashburn-Warren, Lauren; Howe, Jörg; Garidel, Patrick; Richter, Walter; Steiniger, Frank; Roessle, Manfred; Brandenburg, Klaus; Whiteley, Marvin


    Bacteria have evolved elaborate communication strategies to co-ordinate their group activities, a process termed quorum sensing (QS). Pseudomonas aeruginosa is an opportunistic pathogen that utilizes QS for diverse activities, including disease pathogenesis. P. aeruginosa has evolved a novel communication system in which the signal molecule 2-heptyl-3-hydroxy-4-quinolone (Pseudomonas Quinolone Signal, PQS) is trafficked between cells via membrane vesicles (MVs). Not only is PQS packaged into MVs, it is required for MV formation. Although MVs are involved in important biological processes aside from signalling, the molecular mechanism of MV formation is unknown. To provide insight into the molecular mechanism of MV formation, we examined the interaction of PQS with bacterial lipids. Here, we show that PQS interacts strongly with the acyl chains and 4'-phosphate of bacterial lipopolysaccharide (LPS). Using PQS derivatives, we demonstrate that the alkyl side-chain and third position hydroxyl of PQS are critical for these interactions. Finally, we show that PQS stimulated purified LPS to form liposome-like structures. These studies provide molecular insight into P. aeruginosa MV formation and demonstrate that quorum signals serve important non-signalling functions.

  12. Denervation alters protein-lipid interactions in membrane fractions from electrocytes of Electrophorus electricus (L.).

    Barriviera, M L; Louro, S R; Wajnberg, E; Hasson-Voloch, A


    Protein-lipid interactions are studied in normal and denervated electrocytes from Electrophorus electricus (L.). Structural modifications of the lipid micro-environment encircling integral membrane proteins in membrane fractions presenting Na(+),K(+)-ATPase activity are investigated using ESR spectroscopy of stearic acid spin labeled at the 14th carbon (14-SASL). The microsomal fraction derived from the innervated electric organ exhibits, on a discontinuous sucrose gradient, a bimodal distribution of the Na(+),K(+)-ATPase activity, bands a and b. Band b is almost absent in microsomes from the denervated organ, and band a', with the same density as band a has lower Na(+),K(+)-ATPase activity. Band a' presents a larger ratio of protein-interacting lipids than band a. Analysis of the lipid stoichiometry at the protein interface indicates that denervation causes at least a twofold average decrease on protein oligomerization. Physical inactivity and denervation have similar effects on protein-lipid interactions. Denervation also influences the selectivity of proteins for fatty acids. Experiments in decreasing pH conditions performed to verify the influence of stearic acid negative charge on protein interaction revealed that denervation produces loss of charge selectivity. The observed modifications on molecular interactions induced by denervation may have importance to explain modulation of enzyme activity.

  13. How cholesterol interacts with proteins and lipids during its intracellular transport.

    Wüstner, Daniel; Solanko, Katarzyna


    Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions. Similarly, membrane lipids and their physico-chemical properties directly affect cholesterol partitioning and thereby contribute to the highly heterogeneous intracellular cholesterol distribution. Movement of cholesterol in cells is mediated by vesicle trafficking along the endocytic and secretory pathways as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics in membranes and explain how such models are related to sterol flux between organelles. An overview of various sterol-transfer proteins is given, and the physico-chemical principles of their function in non-vesicular sterol transport are explained. We also discuss selected experimental approaches for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how specific protein-lipid and protein-protein interactions help overcoming the extremely low water solubility of cholesterol, thereby controlling intracellular cholesterol movement. This article is part of a Special Issue entitled: Lipid-protein interactions.

  14. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne


    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

  15. Probing the interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring

    Yousefi, Nariman; Tufenkji, Nathalie


    There is increasing interest in using quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate the interaction of nanoparticles (NPs) with model surfaces. The high sensitivity, ease of use and the ability to monitor interactions in real-time has made it a popular technique for colloid chemists, biologists, bioengineers and biophysicists. QCM-D has been recently used to probe the interaction of NPs with supported lipid bilayers (SLBs) as model cell membranes. The interaction of NPs with SLBs is highly influenced by the quality of the lipid bilayers. Unlike many surface sensitive techniques, using QCM-D, the quality of SLBs can be assessed in real-time, hence QCM-D studies on SLB-NP interactions are less prone to the artefacts arising from bilayers that are not well formed. The ease of use and commercial availability of a wide range of sensor surfaces also have made QCM-D a versatile tool for studying NP interactions with lipid bilayers. In this review, we summarize the state-of-the-art on QCM-D based techniques for probing the interactions of NPs with lipid bilayers.

  16. Characterization of Membrane Protein-Lipid Interactions by Mass Spectrometry Ion Mobility Mass Spectrometry

    Liu, Yang; Cong, Xiao; Liu, Wen; Laganowsky, Arthur


    Lipids in the biological membrane can modulate the structure and function of integral and peripheral membrane proteins. Distinguishing individual lipids that bind selectively to membrane protein complexes from an ensemble of lipid-bound species remains a daunting task. Recently, ion mobility mass spectrometry (IM-MS) has proven to be invaluable for interrogating the interactions between protein and individual lipids, where the complex undergoes collision induced unfolding followed by quantification of the unfolding pathway to assess the effect of these interactions. However, gas-phase unfolding experiments for membrane proteins are typically performed on the entire ensemble (apo and lipid bound species), raising uncertainty to the contribution of individual lipids and the species that are ejected in the unfolding process. Here, we describe the application of mass spectrometry ion mobility mass spectrometry (MS-IM-MS) for isolating ions corresponding to lipid-bound states of a model integral membrane protein, ammonia channel (AmtB) from Escherichia coli. Free of ensemble effects, MS-IM-MS reveals that bound lipids are ejected as neutral species; however, no correlation was found between the lipid-induced stabilization of complex and their equilibrium binding constants. In comparison to data obtained by IM-MS, there are surprisingly limited differences in stability measurements from IM-MS and MS-IM-MS. The approach described here to isolate ions of membrane protein complexes will be useful for other MS methods, such as surface induced dissociation or collision induced dissociation to determine the stoichiometry of hetero-oligomeric membrane protein complexes.

  17. Atomistic simulations of anionic Au-144(SR)(60) nanoparticles interacting with asymmetric model lipid membranes

    Heikkila, E.; Martinez-Seara, H.; Gurtovenko, A. A.


    Experimental observations indicate that the interaction between nanoparticles and lipid membranes varies according to the nanoparticle charge and the chemical nature of their protecting side groups. We report atomistic simulations of an anionic Au nanoparticle (AuNP-) interacting with membranes...... clearly show that AuNP- attaches to the extracellular membrane surface within a few tens of nanoseconds, while it avoids contact with the membrane on the cytosolic side. This behavior stems from several factors. In essence, when the nanoparticle interacts with lipids in the extracellular compartment......, it forms relatively weak contacts with the zwitterionic head groups (in particular choline) of the phosphatidylcholine lipids. Consequently, AuNP- does not immerse deeply in the leaflet, enabling, e.g., lateral diffusion of the nanoparticle along the surface. On the cytosolic side, AuNP- remains...

  18. Plasma lipid analysis by hydrophilic interaction liquid chromatography coupled with electrospray ionization tandem mass spectrometry.

    Sonomura, Kazuhiro; Kudoh, Shinobu; Sato, Taka-Aki; Matsuda, Fumihiko


    A novel method for the analysis of endogenous lipids and related compounds was developed employing hydrophilic interaction liquid chromatography with electrospray ionization tandem mass spectrometry. A hydrophilic interaction liquid chromatography with carbamoyl stationary phase achieved clear separation of phosphatidylcholine, lysophosphatidylcholine, sphingomyelin, ceramide, and mono-hexsosyl ceramide groups with good peak area repeatability (RSD% 0.99). The established method was applied to human plasma assays and a total of 117 endogenous lipids were successfully detected and reproducibly identified. In addition, we investigated the simultaneous detection of small polar metabolites such as amino and organic acids co-existing in the same biological samples processed in a single analytical run with lipids. Our results show that hydrophilic interaction liquid chromatography is a useful tool for human plasma lipidome analysis and offers more comprehensive metabolome coverage.

  19. Industrial requirements for interactive product configurators

    Queva, Matthieu Stéphane Benoit; Probst, Christian W.; Vikkelsøe, Per


    The demand for highly customized products at low cost is driving the industry towards Mass Customization. Interactive product configurators play an essential role in this new trend, and must be able to support more and more complex features. The purpose of this paper is, firstly, to identify requ...

  20. Protein-protein and protein-lipid interactions in domain-assembly : Lessons from giant unilamellar vesicles

    Kahya, Nicoletta


    Giant Unilamellar Vesicles (GUVs) provide a key model membrane system to study lipid-lipid and lipid-protein interactions, which are relevant to vital cellular processes, by (single-molecule) optical microscopy. Here, we review the work on reconstitution techniques for membrane proteins and other pr

  1. Electrostatic interactions at the microscale modulate dynamics and distribution of lipids in bilayers.

    Mangiarotti, Agustín; Wilke, Natalia


    For decades, it has been assumed that electrostatic long-range (micron distances) repulsions in lipid bilayers are negligible due to screening from the aqueous milieu. This concept, mostly derived from theoretical calculations, is broadly accepted in the biophysical community. Here we present experimental evidence showing that domain-domain electrostatic repulsions in charged and also in neutral lipid bilayers regulate the diffusion, in-plane structuring and merging of lipid domains in the micron range. All the experiments were performed on both, lipid monolayers and bilayers, and the remarkable similarity in the results found in bilayers compared to monolayers led us to propose that inter-domain repulsions occur mainly within the plane of the membrane. Finally, our results indicate that electrostatic interactions between the species inserted in a cell membrane are not negligible, not only at nanometric but also at larger distances, suggesting another manner for regulating the membrane properties.

  2. Detergent interaction with tethered bilayer lipid membranes for protein reconstitution

    Broccio, Matteo; Zan Goh, Haw; Loesche, Mathias


    Tethered bilayer lipid membranes (tBLMs) are self-assembled biomimetic structures in which the membrane is separated from a solid substrate by a nm-thick hydrated submembrane space. These model systems are being used in binding studies of peripheral proteins and exotoxins. Here we aim at their application for the reconstitution of water-insoluble integral membrane proteins. As an alternative to fusion of preformed proteoliposomes we study the direct reconstitution of such proteins for applications in biosensing and pharmaceutical screening. For reconstitution, highly insulating tBLMs (R˜10^5-10^6 φ) were temporarily incubated with a detergent to screen for conditions that keep the detergent-saturated membranestable and ready to incorporate detergent-solubilized proteins. We assess the electrical characteristics, i.e. specific resistance and capacitance, by means of electrochemical impedance spectroscopy (EIS) under timed incubation with decylmaltoside and dodecylmaltoside detergents in a regime around their critical micelle concentration, 1.8 mM and 0.17 mM respectively and demonstrate the restoration of the tBLM upon detergent removal. Thereby a range of concentration and incubation times was identified, that represents optimal conditions for the subsequent membrane protein reconstitution.

  3. Investigation of natural lipid-phenolic interactions on biological properties of virgin olive oil.

    Alu'datt, Muhammad H; Rababah, Taha; Ereifej, Khalil; Gammoh, Sana; Alhamad, Mohammad N; Mhaidat, Nizar; Kubow, Stan; Johargy, Ayman; Alnaiemi, Ola J


    There is limited knowledge regarding the impact of naturally occurring lipid-phenolic interactions on the biological properties of phenolics in virgin olive oil. Free and bound phenolics were isolated via sequential methanolic extraction at 30 and 60 °C, and were identified and quantified using reversed phase high performance liquid chromatography, liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), and gas chromatography. Decreased oleic acid concentrations and increased concentrations of palmitoleic acid, stearic, linoleic, and linolenic acids were observed in virgin olive oil after removal of free and bound lipid phenolic compounds. The presence of p-hydroxybenzoic acid and tyrosol bound to glycerides was determined via LC-MS/MS, which indicates natural lipid-phenolic interactions in virgin olive oil. Both free and lipid bound phenolic extracts exerted antiproliferative activities against the CRC1 and CRC5 colorectal cancer cell lines. The present work indicates that naturally occurring lipid-phenolic interactions can affect the biological properties of phenolics in virgin olive oil.

  4. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...

  5. Key molecular requirements for raft formation in lipid/cholesterol membranes.

    Davit Hakobyan

    Full Text Available The lipid mixture of DPPC (saturated lipid/DUPC (unsaturated lipid/CHOL (cholesterol is studied with respect to its ability to form liquid-ordered and liquid-disordered phases. We employ coarse-grained simulations with MARTINI force field. All three components are systematically modified in order to explore the relevant molecular properties, leading to phase separation. Specifically, we show that the DPPC/DUPC/CHOL system unmixes due to enthalpic DPPC-DPPC and DPPC-CHOL interactions. The phase separation remains unchanged, except for the formation of a gel phase at long times after decreasing the conformational degrees of freedom of the unsaturated DUPC. In contrast, the phase separation can be suppressed by softening the DPPC chains. In an attempt to mimic the ordering and unmixing effect of CHOL the latter is replaced by a stiff and shortened DPPC-like lipid. One still observes phase separation, suggesting that it is mainly the rigid and planar structure of CHOL which is important for raft formation. Addition of an extra bead to the head of CHOL has no notable impact on the phase separation of the system, supporting the irrelevance of the Umbrella model for the phase separation. Reduction of the conformational entropy of CHOL by stiffening its last bead results in a significant increase of the order of the DPPC/CHOL domain. This suggests that the conformational entropy of CHOL is important to prohibit the gelation process. The interleaflet interactions as mediated by the terminal molecular groups seem to have a strong impact on the possibility of a subsequent gelation process after phase separation.

  6. Hierarchy of Specific Lipid-Peptide Interactions Produces the Activity of Cell-penetrating and Cell-permeating Peptides

    Davis, Matthew; Parente, Daniel; Gordon, Vernita; Mishra, Abhijit; Schmidt, Nathan; Yang, Lihua; Coridan, Robert; Som, Abhigyan; Tew, Gregory; Wong, Gerard


    Protein transduction domains can cross cell membranes with high efficiency, even when carrying a variety of cargos, and thus has strong biotechnological potential. The molecular mechanism of entry, however, is not well understood. We use small-angle x-ray scattering (SAXS) and confocal microscopy to systematically study the interaction of the TAT and ANTP PTD with model membranes of variable composition. Their membrane transduction activity requires the presence of both PE and PS lipids in the membrane. Antimicrobial peptides (AMP's) are cationic amphiphiles that comprise a key component of innate immunity. Synthetic analogs of AMP's, such as the family of phenylene ethynylene antimicrobial oligomers (AMO's), recently demonstrated broad-spectrum antimicrobial activity, but the underlying molecular mechanism is unknown. PE lipid greatly enhances permeating activity of AMO in these membranes, showing the importance of specific lipid composition for the activity of cell-permeating peptides. Since bacterial cell membranes are richer in PE lipids than are eukaryotic cell membranes, this may indicate a mechanism for antimicrobial specificity.

  7. Mechanism of interaction of monovalent ions with phosphatidylcholine lipid membranes.

    Vácha, Robert; Jurkiewicz, Piotr; Petrov, Michal; Berkowitz, Max L; Böckmann, Rainer A; Barucha-Kraszewska, Justyna; Hof, Martin; Jungwirth, Pavel


    Interactions of different anions with phospholipid membranes in aqueous salt solutions were investigated by molecular dynamics simulations and fluorescence solvent relaxation measurements. Both approaches indicate that the anion-membrane interaction increases with the size and softness of the anion. Calculations show that iodide exhibits a genuine affinity for the membrane, which is due to its pairing with the choline group and its propensity for the nonpolar region of the acyl chains, the latter being enhanced in polarizable calculations showing that the iodide number density profile is expanded toward the glycerol level. Solvent relaxation measurements using Laurdan confirm the influence of large soft ions on the membrane organization at the glycerol level. In contrast, chloride exhibits a peak at the membrane surface only in the presence of a surface-attracted cation, such as sodium but not potassium, suggesting that this behavior is merely a counterion effect.

  8. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  9. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence.

    Quinn, Robert A; Vermeij, Mark J A; Hartmann, Aaron C; Galtier d'Auriac, Ines; Benler, Sean; Haas, Andreas; Quistad, Steven D; Lim, Yan Wei; Little, Mark; Sandin, Stuart; Smith, Jennifer E; Dorrestein, Pieter C; Rohwer, Forest


    Holobionts are assemblages of microbial symbionts and their macrobial host. As extant representatives of some of the oldest macro-organisms, corals and algae are important for understanding how holobionts develop and interact with one another. Using untargeted metabolomics, we show that non-self interactions altered the coral metabolome more than self-interactions (i.e. different or same genus, respectively). Platelet activating factor (PAF) and Lyso-PAF, central inflammatory modulators in mammals, were major lipid components of the coral holobionts. When corals were damaged during competitive interactions with algae, PAF increased along with expression of the gene encoding Lyso-PAF acetyltransferase; the protein responsible for converting Lyso-PAF to PAF. This shows that self and non-self recognition among some of the oldest extant holobionts involve bioactive lipids identical to those in highly derived taxa like humans. This further strengthens the hypothesis that major players of the immune response evolved during the pre-Cambrian.

  10. Protein-lipid interactions in assembly and function of Leader Peptidase

    Klompenburg, W. van


    Cells are the entities of life and they at least consist of one aqueous compartment separated from the environment by a membrane. Lipids and proteins are important constituents of membranes and the interactions between these components are the subject of this thesis. The studies were performed usi

  11. Antimicrobial properties of a lipid interactive -helical peptide VP1 against Staphylococcus aureus bacteria

    Dennison, Sarah R.; Morton, Leslie H.G.; Harris, Frederick; Phoenix, David A.


    Antimicrobial properties of a lipid interactive -helical peptide VP1 against Staphylococcus aureus bacteria correspondance: Corresponding author. Tel: +44 1772 893481; fax: +44 1772 894981. (Phoenix, David A.) (Phoenix, David A.) Faculty of Science and Technology--> , University of Central Lancashire--> , Preston PR1 2HE--> - UNITED KINGDOM (Dennison, Sarah R) Department of Forensic and Inve...

  12. Importance of phospholipid bilayer integrity in the analysis of protein–lipid interactions

    Drücker, Patrick [Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster (Germany); Gerke, Volker [Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, D-48149 Münster (Germany); Galla, Hans-Joachim, E-mail: [Institute of Biochemistry, University of Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster (Germany)


    Highlights: • We show long-term mechanical stabilization of solid supported bilayers. • Bilayer integrity is essential for the investigation of protein–lipid interactions. • Protein adsorption to a bilayer containing defects causes membrane destruction. - Abstract: The integrity of supported phospholipid bilayer membranes is of crucial importance for the investigation of lipid–protein interactions. Therefore we recorded the formation of supported membranes on SiO{sub 2} and mica by quartz crystal microbalance and controlled the integrity by atomic force microscopy. This study aims to analyze how membrane defects affect protein–lipid interactions. The experiments focused on a lipid mixture of POPC/DOPC/Chol/POPS/PI(4,5)P{sub 2} (37:20:20:20:3) and the binding of the peripheral membrane associated protein annexin A2. We found that formation of a continuous undisturbed bilayer is an indispensable precondition for a reliable determination and quantification of lipid–protein-interactions. If membrane defects were present, protein adsorption causes membrane disruption and lipid detachment on a support thus leading to false determination of binding constants. Our results obtained for PI(4,5)P{sub 2} and cholesterol containing supported membranes yield new knowledge to construct functional surfaces that may cover nanoporous substrates, form free standing membranes or may be used for lab-on-a-chip applications.

  13. Investigation of the interaction between modified ISCOMs and stratum corneum lipid model systems

    Madsen, Henriette Baun; Arboe-Andersen, Helle M.; Rozlosnik, Noemi;


    Transfer (FRET), Atomic Force Microscopy (AFM), Electrochemical Impedance Spectroscopy (EIS) and cryo-Transmission Electron Microscopy (cryo-TEM) it was shown that application of nanoparticles to the SCL bilayers results in lipid disturbance. Investigation of this interaction by means of Isothermal...

  14. Rapid mobilization of membrane lipids in wheat leaf-sheathes during incompatible interactions with hessian fly

    Hessian fly (Mayetiola destructor) is a biotrophic parasitic insect that interacts with wheat on a typical gene-for-gene basis. In this study, we systematically profiled changes in membrane lipids in two isogenic wheat lines: a susceptible line and its backcrossed offspring containing resistance ge...

  15. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism.

    Caesar, Robert; Nygren, Heli; Orešič, Matej; Bäckhed, Fredrik


    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene expression in the liver. Germ-free and conventionally raised mice were fed a lard or fish oil diet for 11 weeks. We performed lipidomics analysis of the liver and serum and microarray analysis of the liver. As expected, most of the variation in the lipidomics dataset was induced by the diet, and abundance of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota-induced regulation of hepatic cholesterol metabolism is dependent on dietary lipid composition.

  16. Isothermal titration calorimetric analysis of the interaction between cationic lipids and plasmid DNA.

    Lobo, B A; Davis, A; Koe, G; Smith, J G; Middaugh, C R


    The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.

  17. Requirements for user interaction support in future CACE environments

    Ravn, Ole; Szymkat, M.


    Based on a review of user interaction modes and the specific needs of the CACE domain the paper describes requirements for user interaction in future CACE environments. Taking another look at the design process in CACE key areas in need of more user interaction support are pointed out. Three...

  18. Reduction of hepatic lipid deposition in laying hens by dietary selenium-yeast interaction.

    Maurice, D V; Jensen, L S


    Experiments were conducted to study the effect of chromiun and selenium on liver lipid deposition and incidence of liver hemorrhage in caged layers. Commercial strains of layers were fed ad libitum equicaloric and isonitrogenous diets. Corn-torula dried yeast diets containing added selenium (.1 microgram/g) with or without supplementary chromium (10 microgram/g) significantly reduced total liver lipid and liver hemorrhage. The effects of protein source (soybean meal vs. yeast) and selenium were separated in a factorial experiment which showed that the hepatic lipid response to selenium results from an interaction of selenium with an unidentified factor in torula yeast. The addition of selenium to diets with each protein source significantly elevated glutathione peroxidase (GSHPx) activity. Inclusion of 5% brewers yeast in the corn-soy diet or vitamin E (50 IU/kg) to the corn-torula dried yeast reduced liver lipid similar to that seen in birds fed the torula-yeast diet containing .1 microgram Se/g. Comparison of oral glucose tolerance of birds fed corn-soy and corn-soy brewers yeast diets showed no significant difference. None of the dietary treatments significantly altered body weight, egg production, egg weight, or feed consumption. The results indicate that the metabolic role of selenium in relation to its role in hepatic lipid metabolism is mediated through an interaction with a dietary factor(s) present in yeast.

  19. Lipids Regulate Lck Protein Activity through Their Interactions with the Lck Src Homology 2 Domain.

    Sheng, Ren; Jung, Da-Jung; Silkov, Antonina; Kim, Hyunjin; Singaram, Indira; Wang, Zhi-Gang; Xin, Yao; Kim, Eui; Park, Mi-Jeong; Thiagarajan-Rosenkranz, Pallavi; Smrt, Sean; Honig, Barry; Baek, Kwanghee; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa


    Lymphocyte-specific protein-tyrosine kinase (Lck) plays an essential role in T cell receptor (TCR) signaling and T cell development, but its activation mechanism is not fully understood. To explore the possibility that plasma membrane (PM) lipids control TCR signaling activities of Lck, we measured the membrane binding properties of its regulatory Src homology 2 (SH2) and Src homology 3 domains. The Lck SH2 domain binds anionic PM lipids with high affinity but with low specificity. Electrostatic potential calculation, NMR analysis, and mutational studies identified the lipid-binding site of the Lck SH2 domain that includes surface-exposed basic, aromatic, and hydrophobic residues but not the phospho-Tyr binding pocket. Mutation of lipid binding residues greatly reduced the interaction of Lck with the ζ chain in the activated TCR signaling complex and its overall TCR signaling activities. These results suggest that PM lipids, including phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate, modulate interaction of Lck with its binding partners in the TCR signaling complex and its TCR signaling activities in a spatiotemporally specific manner via its SH2 domain. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The interaction of new piroxicam analogues with lipid bilayers--a calorimetric and fluorescence spectroscopic study.

    Maniewska, Jadwiga; Szczęśniak-Sięga, Berenika; Poła, Andrzej; Sroda-Pomianek, Kamila; Malinka, Wiesław; Michalak, Krystyna


    The purpose of the present paper was to assess the ability of new piroxicam analogues to interact with the lipid bilayers. The results of calorimetric and fluorescence spectroscopic experiments of two new synthesized analogues of piroxicam, named PR17 and PR18 on the phase behavior of phospholipid bilayers and fluorescence quenching of fluorescent probes (Laurdan and Prodan), which molecular location within membranes is known with certainty, are shown in present work. The presented results revealed that, depending on the details of chemical structure, the studied compounds penetrated the lipid bilayers.

  1. Lipid raft association restricts CD44-ezrin interaction and promotion of breast cancer cell migration.

    Donatello, Simona


    Cancer cell migration is an early event in metastasis, the main cause of breast cancer-related deaths. Cholesterol-enriched membrane domains called lipid rafts influence the function of many molecules, including the raft-associated protein CD44. We describe a novel mechanism whereby rafts regulate interactions between CD44 and its binding partner ezrin in migrating breast cancer cells. Specifically, in nonmigrating cells, CD44 and ezrin localized to different membranous compartments: CD44 predominantly in rafts, and ezrin in nonraft compartments. After the induction of migration (either nonspecific or CD44-driven), CD44 affiliation with lipid rafts was decreased. This was accompanied by increased coprecipitation of CD44 and active (threonine-phosphorylated) ezrin-radixin-moesin (ERM) proteins in nonraft compartments and increased colocalization of CD44 with the nonraft protein, transferrin receptor. Pharmacological raft disruption using methyl-β-cyclodextrin also increased CD44-ezrin coprecipitation and colocalization, further suggesting that CD44 interacts with ezrin outside rafts during migration. Conversely, promoting CD44 retention inside lipid rafts by pharmacological inhibition of depalmitoylation virtually abolished CD44-ezrin interactions. However, transient single or double knockdown of flotillin-1 or caveolin-1 was not sufficient to increase cell migration over a short time course, suggesting complex crosstalk mechanisms. We propose a new model for CD44-dependent breast cancer cell migration, where CD44 must relocalize outside lipid rafts to drive cell migration. This could have implications for rafts as pharmacological targets to down-regulate cancer cell migration.

  2. Energy requirements for wet solvent extraction of lipids from microalgal biomass.

    Martin, Gregory J O


    Biofuel production from microalgae requires energy efficient processes for extracting and converting triacylglyceride lipids to fuel, compatible with coproduction of protein feeds and nutraceuticals. Wet solvent extraction involves mechanical cell rupture, lipid extraction via solvent contacting, physical phase separation, thermal solvent recovery, and transesterification. A detailed analysis of the effect of key process parameters on the parasitic energy demand of this process was performed. On a well-to-pump basis, between 16% and 320% of the resultant biodiesel energy was consumed depending solely on the process parameters. Highly positive energy balances can be achieved, but only if a correctly designed process is used. This requires processing concentrated biomass (ca 25%w/w) with a high triacylglyceride content (ca 30%w/w), and an efficient extraction process employing a non-polar solvent, low solvent-to-paste ratio, and efficient energy recovery. These requirements preclude many laboratory scale processes and polar co-solvents as viable options for large-scale biofuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Electrochemical and Spectroscopic Study on the Interaction of Cytochrome c with Anionic Lipid Vesicles

    JING,Wei-Guo; LIU,Chang-Wei; TANG,Ji-Lin; WU,Zheng-Yan; DONG,Shao-Jun; WANG,Er-kang


    The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles wrer analyzed by electrochemical and various spectroscopic methods.It was found that upon binding to anionic lipid membrane,the formal potential of cytochrome c shifted 30 mV negtively indicating an easier redox interaction than that in its native state.This is due to the local alteration of the coordination and the heme crevice.The structural perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important.This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.

  4. Low density lipoprotein: structure, dynamics, and interactions of apoB-100 with lipids

    Murtola, T.; Vuorela, T. A.; Hyvonen, M. T.;


    Low-density lipoprotein (LDL) transports cholesterol in the bloodstream and plays an important role in the development of cardiovascular diseases, in particular atherosclerosis. Despite its importance to health, the structure of LDL is not known in detail. This is worrying since the lack of LDL......'s structural information makes it more difficult to understand its function. In this work, we have combined experimental and theoretical data to construct LDL models comprised of the apoB-100 protein wrapped around a lipid droplet of about 20 nm in size. The models are considered by near-atomistic multi......-microsecond simulations to unravel structural as well as dynamical properties of LDL, with particular attention paid to lipids and their interactions with the protein. We find that the distribution and the ordering of the lipids in the LDL particle are rather complex. The previously proposed 2- and 3- layer models turn...

  5. Interactions of amiodarone with model membranes and amiodarone-photoinduced peroxidation of lipids.

    Sautereau, A M; Tournaire, C; Suares, M; Tocanne, J F; Paillous, N


    The potent antiarrhythmic drug, amiodarone (AMIO) exhibits phototoxicity, which is thought to be related to its interaction with biological membranes. We report here a spectroscopic study of the interactions of this drug with phosphatidylglycerol (PG) and phosphatidylcholine (PC) liposomes used as membrane model systems. A linear increase in absorbance at 300 nm was observed with increasing addition of AMIO to dimyristoyl-DL-PC (DMPC) liposomes over all the drugs-lipid molar ratio (Ri)s tested. In contrast, in the dimyristoyl-DL-PG (DMPG) liposomes, there was a dramatic increase in absorbance at values of Ri above unity. Light scattering by DMPG liposomes at 350 nm increased with increasing AMIO concentration up to a Ri = 1, and then decreased with increasing drug concentration. Such changes were not observed with the DMPC liposomes. Moreover, addition of AMIO changed the fluorescence polarization rate of 1,6-diphenyl 1,3,5-hexatriene embedded in these liposomes. It reduced the rate below the phase transition temperature (Tt) of the lipid, but increased it above this temperature. These effects on the lipidic phases observed at low Ri were more pronounced on the DMPG than on the DMPC liposomes. The strong interactions of AMIO with phospholipids, especially the acidic ones, were confirmed by liposome size determinations. All these data strongly suggest that the drug was incorporated in the core of the lipid bilayers. Such a penetration would favor a drug-photoinduced peroxidation of lipids. Indeed, UV irradiation of AMIO-DOPG mixtures led to the disappearance of the unsaturated fatty acids of phospholipids, checked by gas chromatography measurements, which was correlated with the amount of oxygen consumed. This showed that AMIO did photosensitize phospholipid peroxidation.

  6. Analysis of detergent-free lipid rafts isolated from CD4+ T cell line: interaction with antigen presenting cells promotes coalescing of lipid rafts

    Kennedy Colleen


    Full Text Available Abstract Background Lipid rafts present on the plasma membrane play an important role in spatiotemporal regulation of cell signaling. Physical and chemical characterization of lipid raft size and assessment of their composition before, and after cell stimulation will aid in developing a clear understanding of their regulatory role in cell signaling. We have used visual and biochemical methods and approaches for examining individual and lipid raft sub-populations isolated from a mouse CD4+ T cell line in the absence of detergents. Results Detergent-free rafts were analyzed before and after their interaction with antigen presenting cells. We provide evidence that the average diameter of lipid rafts isolated from un-stimulated T cells, in the absence of detergents, is less than 100 nm. Lipid rafts on CD4+ T cell membranes coalesce to form larger structures, after interacting with antigen presenting cells even in the absence of a foreign antigen. Conclusions Findings presented here indicate that lipid raft coalescence occurs during cellular interactions prior to sensing a foreign antigen.

  7. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Corella, D.


    Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolism-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 14C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C) metabolism; the interaction between polyunsaturated fatty acids (PUFA) and the 5G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the -1131T>C in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken. (Author) 31 refs.

  8. Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS.

    Macháň, Radek; Hof, Martin; Chernovets, Tatsiana; Zhmak, Maxim N; Ovchinnikova, Tatiana V; Sýkora, Jan


    Z-scan fluorescence correlation spectroscopy (FCS) is employed to characterize the interaction between arenicin-1 and supported lipid bilayers (SLBs) of different compositions. Lipid analogue C8-BODIPY 500/510C5-HPC and ATTO 465 labelled arenicin-1 are used to detect changes in lipid and peptide diffusion upon addition of unlabelled arenicin-1 to SLBs. Arenicin-1 decreases lipid mobility in negatively charged SLBs. According to diffusion law analysis, microdomains of significantly lower lipid mobility are formed. The analysis of peptide FCS data confirms the presence of microdomains for anionic SLBs. No indications of microdomain formation are detected in SLBs composed purely of zwitterionic lipids. Additionally, our FCS results imply that arenicin-1 exists in the form of oligomers and/or aggregates when interacting with membranes of both compositions.

  9. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes

    Kopec, Wojciech; Telenius, Jelena; Khandelia, Himanshu


    Several small drugs and medicinal plant extracts, such as the Indian spice extract curcumin, have a wide range of useful pharmacological properties that cannot be ascribed to binding to a single protein target alone. The lipid bilayer membrane is thought to mediate the effects of many...... studies of the interactions of drugs and plant extracts are therefore of interest. Molecular dynamics simulations, which can access time and length scales that are not simultaneously accessible by other experimental methods, are often used to obtain quantitative molecular and thermodynamic descriptions...... such molecules directly via perturbation of the plasma membrane structure and dynamics, or indirectly by modulating transmembrane protein conformational equilibria. Furthermore, for bioavailability, drugs must interact with and eventually permeate the lipid bilayer barrier on the surface of cells. Biophysical...

  10. Interactions between Starch, Lipids, and Proteins in Foods: Microstructure Control for Glycemic Response Modulation.

    Parada, Javier; Santos, Jose L


    In real food, starch is usually forming part of a matrix with lipids and proteins. However, research on this ternary system and interactions between such food components has been scarce so far. The control of food microstructure is crucial to determine the product properties, including sensorial and nutritionals ones. This paper reviews the microstructural principles of interactions between starch, lipids, and proteins in foods as well as their effect on postprandial glycemic response, considering human intrinsic differences on postprandial glycemic responses. Several lines of research support the hypothesis that foods without rapidly digestible starch will not mandatorily generate the lowest postprandial glycemic response, highlighting that the full understanding of food microstructure, which modulates starch digestion, plays a key role on food design from a nutritional viewpoint.

  11. Thermodynamic clarification of interaction between antiseptic compounds and lipids consisting of stratum corneum

    Aki, Hatsumi; Kawasaki, Yuhsuke


    The interactions of antiseptic compounds with quaternary ammonium, such as benzalkonium chloride (BC), benzethonium chloride (BZC), dodecyldiaminoethyl-glycine hydrochloride (AEG), and chlorhexidine gluconate (CHG), with components of the stratum corneum were investigated by isothermal titration calorimetry at pH 7.5 and 25 deg. C. The different mechanisms for their permeation to stratum corneum were clarified. Cationic surfactants of BC and BZC bound to cholesterol and cholesterol sulfate with high affinity (10{sup 5}-10{sup 6} M{sup -1}) to extract endogenous cholesterol and its derivatives from the stratum corneum and penetrated via an intercellular route. CHG also bound to cholesterol and accumulated in the stratum corneum without removing endogenous cholesterol. On the other hand, an amphoteric surfactant of AEG seemed to be incorporated into the lipid bilayer and bound to ceramide with its polar end close to the lipid polar heads by hydrophobic interaction.

  12. Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1.

    Jardin, Isaac; Salido, Ginés M; Rosado, Juan A


    Store-operated Ca2+ entry (SOCE) is a mechanism regulated by the filling state of the intracellular Ca2+ stores that requires the participation of the Ca2+ sensor STIM1, which communicates the Ca2+ content of the stores to the plasma membrane Ca2+-permeable channels. We have recently reported that Orai1 mediates the communication between STIM1 and the Ca2+ channel hTRPC1. This event is important to confer hTRPC1 store depletion sensitivity, thus supporting the functional role of the STIM1-Orai1-hTRPC1 complex in the activation of SOCE. Here we have explored the relevance of lipid rafts in the formation of the STIM1-Orai1-hTRPC1 complex and the activation of SOCE. Disturbance of lipid raft domains, using methyl-beta-cyclodextrin, reduces the interaction between endogenously expressed Orai1 and both STIM1 and hTRPC1 upon depletion of the intracellular Ca2+ stores and attenuates thapsigargin-evoked Ca2+ entry. These findings suggest that TRPC1, Orai1 and STIM1 form a heteromultimer associated with lipid raft domains and regulated by the intracellular Ca2+ stores.

  13. Cyclotides insert into lipid bilayers to form membrane pores and destabilize the membrane through hydrophobic and phosphoethanolamine-specific interactions.

    Wang, Conan K; Wacklin, Hanna P; Craik, David J


    Cyclotides are a family of plant-derived circular proteins with potential therapeutic applications arising from their remarkable stability, broad sequence diversity, and range of bioactivities. Their membrane-binding activity is believed to be a critical component of their mechanism of action. Using isothermal titration calorimetry, we studied the binding of the prototypical cyclotides kalata B1 and kalata B2 (and various mutants) to dodecylphosphocholine micelles and phosphoethanolamine-containing lipid bilayers. Although binding is predominantly an entropy-driven process, suggesting that hydrophobic forces contribute significantly to cyclotide-lipid complex formation, specific binding to the phosphoethanolamine-lipid headgroup is also required, which is evident from the enthalpic changes in the free energy of binding. In addition, using a combination of dissipative quartz crystal microbalance measurements and neutron reflectometry, we elucidated the process by which cyclotides interact with bilayer membranes. Initially, a small number of cyclotides bind to the membrane surface and then insert first into the outer membrane leaflet followed by penetration through the membrane and pore formation. At higher concentrations of cyclotides, destabilization of membranes occurs. Our results provide significant mechanistic insight into how cyclotides exert their bioactivities.

  14. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.

    Fritzsching, Keith J; Kim, Jihyun; Holland, Gregory P


    The interaction between cholesterol (Chol) and phospholipids in bilayers was investigated for the ternary model lipid rafts, DOPC/eSM/Chol and DOPC/DPPC/Chol, with differential scanning calorimetry (DSC) and (13)C cross polarization magic angle spinning (CP-MAS) solid-state NMR. The enthalpy and transition temperature (Tm) of the Lα liquid crystalline phase transition from DSC was used to probe the thermodynamics of the different lipids in the two systems as a function of Chol content. The main chain (13)C (CH2)n resonance is resolved in the (13)C CP-MAS NMR spectra for the unsaturated (DOPC) and saturated (eSM or DPPC) chain lipid in the ternary lipid raft mixtures. The (13)C chemical shift of this resonance can be used to detect differences in chain ordering and overall interactions with Chol for the different lipid constituents in the ternary systems. The combination of DSC and (13)C CP-MAS NMR results indicate that there is a preferential interaction between SM and Chol below Tm for the DOPC/eSM/Chol system when the Chol content is ≤20mol%. In contrast, no preferential interaction between Chol and DPPC is observed in the DOPC/DPPC/Chol system above or below Tm. Finally, (13)C CP-MAS NMR resolves two Chol environments in the DOPC/eSM/Chol system below Tm at Chol contents >20mol% while, a single Chol environment is observed for DOPC/DPPC/Chol at all compositions.

  15. FadD is required for utilization of endogenous fatty acids released from membrane lipids.

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M


    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth.

  16. Interactions of a bacterial trehalose lipid with phosphatidylglycerol membranes at low ionic strength.

    Teruel, José A; Ortiz, Antonio; Aranda, Francisco J


    Trehalose lipids are bacterial biosurfactants which present interesting physicochemical and biological properties. These glycolipids have a number of different commercial applications and there is an increasing interest in their use as therapeutic agents. The amphiphilic nature of trehalose lipids points to the membrane as their hypothetical site of action and therefore the study of the interaction between these biosurfactants and biological membranes is critical. In this study, we examine the interactions between a trehalose lipid (TL) from Rhodococcus sp. and dimyristoylphosphatidylglycerol (DMPG) membranes at low ionic strength, by means of differential scanning calorimetry, light scattering, fluorescence polarization and infrared spectroscopy. We describe that there are extensive interactions between TL and DMPG involving the perturbation of the thermotropic intermediate phase of the phospholipid, the destabilization and shifting of the DMPG gel to liquid crystalline phase transition to lower temperatures, the perturbation of the sample transparency, and the modification of the order of the phospholipid palisade in the gel phase. We also report an increase of fluidity of the phosphatidylglycerol acyl chains and dehydration of the interfacial region of the bilayer. These changes would increase the monolayer negative spontaneous curvature of the phospholipid explaining the destabilizing effect on the intermediate state exerted by this biosurfactant. The observations contribute to get insight into the biological mechanism of action of the biosurfactant and help to understand the properties of the intermediate phase display by DMPG at low ionic strength.

  17. Electrodynamics of lipid membrane interactions in the presence of zwitterionic buffers.

    Koerner, Megan M; Palacio, Luis A; Wright, Johnnie W; Schweitzer, Kelly S; Ray, Bruce D; Petrache, Horia I


    Due to thermal motion and molecular polarizability, electrical interactions in biological systems have a dynamic character. Zwitterions are dipolar molecules that typically are highly polarizable and exhibit both a positive and a negative charge depending on the pH of the solution. We use multilamellar structures of common lipids to identify and quantify the effects of zwitterionic buffers that go beyond the control of pH. We use the fact that the repeat spacing of multilamellar lipid bilayers is a sensitive and accurate indicator of the force balance between membranes. We show that common buffers can in fact charge up neutral membranes. However, this electrostatic effect is not immediately recognized because of the concomitant modification of dispersion (van der Waals) forces. We show that although surface charging can be weak, electrostatic forces are significant even at large distances because of reduced ionic screening and reduced van der Waals attraction. The zwitterionic interactions that we identify are expected to be relevant for interfacial biological processes involving lipid bilayers, and for a wide range of biomaterials, including amino acids, detergents, and pharmaceutical drugs. An appreciation of zwitterionic electrodynamic character can lead to a better understanding of molecular interactions in biological systems and in soft materials in general.

  18. Lipid composition and molecular interactions change with depth in the avian stratum corneum to regulate cutaneous water loss.

    Champagne, Alex M; Allen, Heather C; Williams, Joseph B


    The outermost 10-20 µm of the epidermis, the stratum corneum (SC), consists of flat, dead cells embedded in a matrix of intercellular lipids. These lipids regulate cutaneous water loss (CWL), which accounts for over half of total water loss in birds. However, the mechanisms by which lipids are able to regulate CWL and how these mechanisms change with depth in the SC are poorly understood. We used attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) to measure lipid-lipid and lipid-water interactions as a function of depth in the SC of house sparrows (Passer domesticus Linnaeus) in the winter and summer. We then compared these molecular interactions at each depth with lipid composition at the same depth. We found that in both groups, water content increased with depth in the SC, and likely contributed to greater numbers of gauche defects in lipids in deeper levels of the SC. In winter-caught birds, which had lower rates of CWL than summer-caught birds, water exhibited stronger hydrogen bonding in deeper layers of the SC, and these strong hydrogen bonds were associated with greater amounts of polar lipids such as ceramides and cerebrosides. Based on these data, we propose a model by which polar lipids in deep levels of the SC form strong hydrogen bonds with water molecules to increase the viscosity of water and slow the permeation of water through the SC. © 2015. Published by The Company of Biologists Ltd.

  19. Intramembrane aromatic interactions influence the lipid sensitivities of pentameric ligand-gated ion channels.

    Carswell, Casey L; Sun, Jiayin; Baenziger, John E


    Although the Torpedo nicotinic acetylcholine receptor (nAChR) reconstituted into phosphatidylcholine (PC) membranes lacking cholesterol and anionic lipids adopts a conformation where agonist binding is uncoupled from channel gating, the underlying mechanism remains to be defined. Here, we examine the mechanism behind lipid-dependent uncoupling by comparing the propensities of two prokaryotic homologs, Gloebacter and Erwinia ligand-gated ion channel (GLIC and ELIC, respectively), to adopt a similar uncoupled conformation. Membrane-reconstituted GLIC and ELIC both exhibit folded structures in the minimal PC membranes that stabilize an uncoupled nAChR. GLIC, with a large number of aromatic interactions at the interface between the outermost transmembrane α-helix, M4, and the adjacent transmembrane α-helices, M1 and M3, retains the ability to flux cations in this uncoupling PC membrane environment. In contrast, ELIC, with a level of aromatic interactions intermediate between that of the nAChR and GLIC, does not undergo agonist-induced channel gating, although it does not exhibit the expected biophysical characteristics of the uncoupled state. Engineering new aromatic interactions at the M4-M1/M3 interface to promote effective M4 interactions with M1/M3, however, increases the stability of the transmembrane domain to restore channel function. Our data provide direct evidence that M4 interactions with M1/M3 are modulated during lipid sensing. Aromatic residues strengthen M4 interactions with M1/M3 to reduce the sensitivities of pentameric ligand-gated ion channels to their surrounding membrane environment.

  20. Design Requirements for Communication-Intensive Interactive Applications

    Bolchini, Davide; Garzotto, Franca; Paolini, Paolo

    Online interactive applications call for new requirements paradigms to capture the growing complexity of computer-mediated communication. Crafting successful interactive applications (such as websites and multimedia) involves modeling the requirements for the user experience, including those leading to content design, usable information architecture and interaction, in profound coordination with the communication goals of all stakeholders involved, ranging from persuasion to social engagement, to call for action. To face this grand challenge, we propose a methodology for modeling communication requirements and provide a set of operational conceptual tools to be used in complex projects with multiple stakeholders. Through examples from real-life projects and lessons-learned from direct experience, we draw on the concepts of brand, value, communication goals, information and persuasion requirements to systematically guide analysts to master the multifaceted connections of these elements as drivers to inform successful communication designs.

  1. Nisin Z, mutant nisin Z and lacticin 481 interactions with anionic lipids correlate with antimicrobial activity. A monolayer study

    Demel, Rudolf A.; Peelen, Tamara; Siezen, Roland J.; Kruijff, Ben de; Kuipers, Oscar P.


    Monomolecular layers of lipids at the air/water interface have been used as a model membrane to study membrane interactions of the lantibiotic nisin. The natural lantibiotics nisin A and nisin Z proved to have a high affinity for the anionic lipids phosphatidylglycerol and bis(phosphatidyl)glycerol

  2. Direct Probes of 4 nm Diameter Gold Nanoparticles Interacting with Supported Lipid Bylayers

    Troiano, Julianne; Olenick, Laura L.; Kuech, Thomas R.; Melby, Eric S.; Hu, Dehong; Lohse, Samuel E.; Mensch, Arielle C.; Dogangun, Merve; Vartanian, Arlane M.; Torelli, Marco; Ehimiaghe, Eseohi; Walter, Stephanie R.; Fu, Li; Anderton, Christopher R.; Zhu, Zihua; Wang, Hongfei; Orr, Galya; Murphy, Catherine; Hamers, Robert J.; Pedersen, Joel A.; Geiger, Franz M.


    Interfacial charge densities and potentials are determined for silica-supported phospholipid bilayers formed from lipids having zwitterionic, negatively charged, and positively charged headgroups. Quartz crystal microbalance with dissipation (QCM-D), fluorescence recovery after photobleaching (FRAP), and atomic force microscopy demonstrate the presence of well-formed supported lipid bilayers, which, as probed by vibrational sum frequency generation (SFG), undergo negligible structural changes along their alkyl chains when NaCl concentration is raised from 0.001 to 0.1 M. From second harmonic generation (SHG) measurements we estimate that each zwitterionic headgroup of the bilayer formed from pure DOPC is associated with an apparent charge of -0.028(+0.008/-0.007)×10-¹⁹C, corresponding to 1.8 ± 0.5 % of an elementary negative charge. Moreover, we show that a supported lipid bilayer carrying an apparent negative interfacial potential may interact with not just positively charged 4-nm diameter gold nanoparticles but also negatively charged gold nanoparticles. In this latter case, charge-charge repulsion does not appear to inhibit particle-bilayer interactions and is likely overcome by multivalent interactions that are estimated to involve 3-5 hydrogen-bond equivalents. FRAP, QCM-D, and SFG measurements indicate that the bilayers remain intact under the conditions of the experiments. SHG charge screening experiments are consistent with an apparent zero net charge density associated with the positively charged gold nanoparticles when they are attached to a supported lipid bilayer carrying an apparent negative potential. The results presented here serve to benchmark experimental and computational studies of the nano-bio interface.

  3. Interaction of HIV-1 fusion peptide and its mutant with lipid membrane


    HIVWT and HIVV2E represent the 23 amino acids fusion peptide of HIV-1 gp41 N terminus and its position 2 mutant (Val→Glu). We have studied the structure-function relationship of HIVWT and HIVV2E when they interact with acidic and neutral lipid membranes. The results show that HIVWT and HIVV2E have the same conformational characteristics and tendencies of conformational transition but definitely different functions: HIVWT destabilizes membrane and induces fusion by adopting predominant a-helix conformation when interacting with acidic POPG membrane, its phenylalanine residues can penetrate into the hydrophobic core of POPG bilayer; HIVV2E also adopts predominant a-helix when interacting with POPG membrane, but it cannot destabilize POPG membrane and induce fusion, the phenylalanine residues of it are located near the surface of POPG bilayer. HIVWT and HIVV2E both adopt predominant a-sheet conformation to interact with neutral POPC membrane, and cannot destabilize POPC membrane and induce fusion, the position of phenylalanine residues of both HIVWT and HIVV2E are close to the surface of POPC bilayer. These results demonstrate that the N terminal hydrophobicity of fusion peptide and the secondary structure when interacting with lipid membrane play important roles for fusion peptide exerting its function.

  4. Spin-label studies on the anchoring and lipid-protein interactions of avidin with N-biotinylphosphatidylethanolamines in lipid bilayer membranes.

    Swamy, M J; Marsh, D


    The specific binding of hen egg white avidin to phosphatidylcholine lipid membranes containing spin-labeled N-biotinylphosphatidylethanolamines (biotin-PESLs) was investigated by using ESR spectroscopy. Spin-labeled biotin-PEs were prepared with the nitroxide group at position C-5, C-8, C-10, C-12, or C-14 of the sn-2 chain and were incorporated at 1 mol % in lipid bilayer membranes of dimyristoylphosphatidylcholine. Binding of avidin produced a strong and selective restriction of the biotin-PE lipid mobility at all positions of chain labeling, as shown by the ESR spectra recorded in the fluid lipid phase. The spectral components of the fraction of the biotin-PESLs that were not complexed by avidin indicated that the mobility of the bulk membrane lipids was unperturbed by binding avidin, as demonstrated by difference spectroscopy. Comparison of the positional profiles and temperature dependences of the outer hyperfine splittings from the biotin-PESLs suggests that the C-12 and C-14 positions of the avidin-bound biotin-PEs are in register with the C-5 and C-7/C-6 positions, respectively, of the chains of the bulk membrane lipids. This indicates that the biotin-PEs are partially withdrawn from the membrane, with a vertical displacement of ca. 7-8 A, on complexation with avidin. In addition, the specific lipid-protein interaction with avidin results in a selective reduction in the rates of lipid chain motion, as shown by the increased ESR line widths. These data define the way in which avidin is anchored to lipid membranes containing biotin-PEs.

  5. Crystal structure of soluble MD-1 and its interaction with lipid IVa

    Yoon, Sung-il; Hong, Minsun; Han, Gye Won; Wilson, Ian A.


    Lipopolysaccharide (LPS) of Gram-negative bacteria is a common pathogen-associated molecular pattern (PAMP) that induces potent innate immune responses. The host immune response against LPS is triggered by myeloid differentiation factor 2 (MD-2) in association with Toll-like receptor 4 (TLR4) on the cell surface. The MD-2/TLR4-mediated LPS response is regulated by the evolutionarily related complex of MD-1 and Toll-like receptor homolog RP105. Here, we report crystallographic and biophysical data that demonstrate a previously unidentified direct interaction of MD-1 with LPS. The crystal structure of chicken MD-1 (cMD-1) at 2.0 Å resolution exhibits a β-cup-like fold, similar to MD-2, that encloses a hydrophobic cavity between the two β-sheets. A lipid-like moiety was observed inside the cavity, suggesting the possibility of a direct MD-1/LPS interaction. LPS was subsequently identified as an MD-1 ligand by native gel electrophoresis and gel filtration analyses. The crystal structure of cMD-1 with lipid IVa, an LPS precursor, at 2.4 Å resolution revealed that the lipid inserts into the deep hydrophobic cavity of the β-cup-like structure, but with some important differences compared with MD-2. These findings suggest that soluble MD-1 alone, in addition to its complex with RP105, can regulate host LPS sensitivity. PMID:20534476

  6. Elucidating how bamboo salt interacts with supported lipid membranes: influence of alkalinity on membrane fluidity.

    Jeong, Jong Hee; Choi, Jae-Hyeok; Kim, Min Chul; Park, Jae Hyeon; Herrin, Jason Scott; Kim, Seung Hyun; Lee, Haiwon; Cho, Nam-Joon


    Bamboo salt is a traditional medicine produced from sea salt. It is widely used in Oriental medicine and is an alkalizing agent with reported antiinflammatory, antimicrobial and chemotherapeutic properties. Notwithstanding, linking specific molecular mechanisms with these properties has been challenging to establish in biological systems. In part, this issue may be related to bamboo salt eliciting nonspecific effects on components found within these systems. Herein, we investigated the effects of bamboo salt solution on supported lipid bilayers as a model system to characterize the interaction between lipid membranes and bamboo salt. The atomic composition of unprocessed and processed bamboo salts was first analyzed by mass spectrometry, and we identified several elements that have not been previously reported in other bamboo salt preparations. The alkalinity of hydrated samples was also measured and determined to be between pH 10 and 11 for bamboo salts. The effect of processed bamboo salt solutions on the fluidic properties of a supported lipid bilayer on glass was next investigated by fluorescence recovery after photobleaching (FRAP) analysis. It was demonstrated that, with increasing ionic strength of the bamboo salt solution, the fluidity of a lipid bilayer increased. On the contrary, increasing the ionic strength of near-neutral buffer solutions with sodium chloride salt diminished fluidity. To reconcile these two observations, we identified that solution alkalinity is critical for the effects of bamboo salt on membrane fluidity, as confirmed using three additional commercial bamboo salt preparations. Extended-DLVO model calculations support that the effects of bamboo salt on lipid membranes are due to the alkalinity imparting a stronger hydration force. Collectively, the results of this work demonstrate that processing of bamboo salt strongly affects its atomic composition and that the alkalinity of bamboo salt solutions contributes to its effect on membrane

  7. Fluorescence study of domain structure and lipid interaction of human apolipoproteins E3 and E4.

    Mizuguchi, Chiharu; Hata, Mami; Dhanasekaran, Padmaja; Nickel, Margaret; Okuhira, Keiichiro; Phillips, Michael C; Lund-Katz, Sissel; Saito, Hiroyuki


    Human apolipoprotein E (apoE) isoforms exhibit different conformational stabilities and lipid-binding properties that give rise to altered cholesterol metabolism among the isoforms. Using Trp-substituted mutations and site- directed fluorescence labeling, we made a comprehensive comparison of the conformational organization of the N- and C-terminal domains and lipid interactions between the apoE3 and apoE4 isoforms. Trp fluorescence measurements for selectively Trp-substituted variants of apoE isoforms demonstrated that apoE4 adopts less stable conformations in both the N- and C-terminal domains compared to apoE3. Consistent with this, the conformational reorganization of the N-terminal helix bundle occurs at lower guanidine hydrochloride concentration in apoE4 than in apoE3 as monitored by fluorescence resonance energy transfer (FRET) from Trp residues to acrylodan attached at the N-terminal helix. Upon binding of apoE3 and apoE4 variants to egg phosphatidylcholine small unilamellar vesicles, similar changes in Trp fluorescence or FRET efficiency were observed for the isoforms, indi- cating that the opening of the N-terminal helix bundle occurs similarly in apoE3 and apoE4. Introduction of mutations into the C-terminal domain of the apoE isoforms to prevent self-association and maintain the monomeric state resulted in great increase in the rate of binding of the C-terminal helices to a lipid surface. Overall, our results demonstrate that the different conformational organizations of the N- and C-terminal domains have a minor effect on the steady-state lipid-binding behavior of apoE3 and apoE4: rather, self-association property is a critical determinant in the kinetics of lipid binding through the C-terminal helices of apoE isoforms.

  8. Equivalent Isopropanol Concentrations of Aromatic Amino Acids Interactions with Lipid Vesicles.

    Johnson, Merrell A; Ray, Bruce D; Wassall, Stephen R; Petrache, Horia I


    We show that the interaction of aromatic amino acids with lipid bilayers can be characterized by conventional 1D [Formula: see text]H NMR spectroscopy using reference spectra obtained in isopropanol-d8/D[Formula: see text]O solutions. We demonstrate the utility of this method with three different peptides containing tyrosine, tryptophan, or phenylalanine amino acids in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid membranes. In each case, we determine an equivalent isopropanol concentration (EIC) for each hydrogen site of aromatic groups, in essence constructing a map of the chemical environment. These EIC maps provide information on relative affinities of aromatic side chains for either PC or PS bilayers and also inform on amino acid orientation preference when bound to membranes.

  9. Spectroscopic study of 3-Hydroxyflavone - protein interaction in lipidic bi-layers immobilized on silver nanoparticles

    Voicescu, Mariana; Ionescu, Sorana; Nistor, Cristina L.


    The interaction of 3-Hydroxyflavone with serum proteins (BSA and HSA) in lecithin lipidic bi-layers (PC) immobilized on silver nanoparticles (SNPs), was studied by fluorescence and Raman spectroscopy. BSA secondary structure was quantified with a deconvolution algorithm, showing a decrease in α-helix structure when lipids were added to the solution. The effect of temperature on the rate of the excited-state intra-molecular proton transfer and on the dual fluorescence emission of 3-HF in the HSA/PC/SNPs systems was discussed. Evaluation of the antioxidant activity of 3-HF in HSA/PC/SNPs systems was also studied. The antioxidant activity of 3-HF decreased in the presence of SNPs. The results are discussed with relevance to the secondary structure of proteins and of the 3-HF based nano-systems to a topical formulation useful in the oxidative stress process.

  10. Interaction between Polyketide Synthase and Transporter Suggests Coupled Synthesis and Export of Virulence Lipid in M. tuberculosis.


    Full Text Available Virulent mycobacteria utilize surface-exposed polyketides to interact with host cells, but the mechanism by which these hydrophobic molecules are transported across the cell envelope to the surface of the bacteria is poorly understood. Phthiocerol dimycocerosate (PDIM, a surface-exposed polyketide lipid necessary for Mycobacterium tuberculosis virulence, is the product of several polyketide synthases including PpsE. Transport of PDIM requires MmpL7, a member of the MmpL family of RND permeases. Here we show that a domain of MmpL7 biochemically interacts with PpsE, the first report of an interaction between a biosynthetic enzyme and its cognate transporter. Overexpression of the interaction domain of MmpL7 acts as a dominant negative to PDIM synthesis by poisoning the interaction between synthase and transporter. This suggests that MmpL7 acts in complex with the synthesis machinery to efficiently transport PDIM across the cell membrane. Coordination of synthesis and transport may not only be a feature of MmpL-mediated transport in M. tuberculosis, but may also represent a general mechanism of polyketide export in many different microorganisms.

  11. Vibrational, calorimetric, and molecular conformational study on calcein interaction with model lipid membrane

    Maherani, Behnoush; Arab-Tehrany, Elmira; Rogalska, Ewa; Korchowiec, Beata; Kheirolomoom, Azadeh; Linder, Michel


    Nanoliposomes are commonly used as a carrier in controlled release drug delivery systems. Controlled release formulations can be used to reduce the amount of drug necessary to cause the same therapeutic effect in patients. One of the most noticeable factors in release profiles is the strength of the drug-carrier interaction. To adjust the pharmacokinetic and pharmacodynamic properties of therapeutic agents, it is necessary to optimize the drug-carrier interaction. To get a better understanding of this interaction, large unilamellar liposomes containing calcein were prepared using 1,2-dioleoyl- sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine, and 1,2-palmitoyl- sn-glycero-3-phosphocholine, and a mixture of them; calcein was chosen as a model polar molecule of biological interest. The thermodynamic changes induced by calcein and its location in lipid bilayers were determined by differential scanning calorimetry and Raman spectroscopy, respectively. The results reveal that calcein has no significant influence on thermotropic properties of the lipid membrane, but causing the abolition of pre-transition. The decreasing of the pre-transition can be ascribed to the presence of calcein near the hydrophilic cooperative zone of the bilayer. The change in intensity of the Raman peaks represents the interaction of calcein with choline head groups. Moreover, the impact of calcein on phosphoglyceride Langmuir layers spread at the air-water interface was studied using surface pressure-area and surface potential-area isotherms, as well as polarization-modulation infrared reflection-absorption spectroscopy and Brewster angle microscopy. The results obtained indicate that calcein introduce no major modification on the systems prepared with pure lipids.

  12. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide.

    Ciumac, Daniela; Campbell, Richard A; Xu, Hai; Clifton, Luke A; Hughes, Arwel V; Webster, John R P; Lu, Jian R


    Many antimicrobial peptides (AMPs) target bacterial membranes and they kill bacteria by causing structural disruptions. One of the fundamental issues however lies in the selective responses of AMPs to different cell membranes as a lack of selectivity can elicit toxic side effects to mammalian host cells. A key difference between the outer surfaces of bacterial and mammalian cells is the charge characteristics. We report a careful study of the binding of one of the representative AMPs, with the general sequence G(IIKK)4I-NH2 (G4), to the spread lipid monolayers of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt)) mimicking the charge difference between them, using the combined measurements from Langmuir trough, Brewster angle microscopy (BAM) and neutron reflection (NR). The difference in pressure rise upon peptide addition into the subphase clearly demonstrated the different interactions arising from different lipid charge features. Morphological changes from the BAM imaging confirmed the association of the peptide into the lipid monolayers, but there was little difference between them. However, NR studies revealed that the peptide bound 4 times more onto the DPPG monolayer than onto the DPPC monolayer. Importantly, whilst the peptide could only be associated with the head groups of DPPC it was well penetrated into the entire DPPG monolayer, showing that the electrostatic interaction strengthened the hydrophobic interaction and that the combined molecular interactive processes increased the power of G4 in disrupting the charged membranes. The results are discussed in the context of general antibacterial actions as observed from other AMPs and membrane lytic actions.

  13. Quantitation of interaction of lipids with polymer surfaces in cell culture.

    Altaras, Gina M; Eklund, Carrie; Ranucci, Colette; Maheshwari, Gargi


    As cell culture medium development efforts have progressed towards leaner, serum-free, and chemically defined formulations, it has become increasingly important to ensure that the appropriate concentrations of all nutrients are maintained and delivered at point of use. In light of concurrent efforts to progress to disposable polymeric storage and culture platforms, the characterization and control of medium component interactions with container surfaces can be a key issue in ensuring consistent delivery of these medium formulations. These studies characterize the interactions of lipids with culture surfaces typically encountered in the bioprocess industry using model systems. The extent and kinetics of lipid association with polymeric surfaces were determined using radio-labeled linoleic acid and cholesterol. The effect of methyl-beta-cyclodextrin, a component commonly used to solubilize lipids in culture media, on association kinetics was also examined. In addition, loss of lipids across a sterilizing membrane filter was quantified. We find that there is potential for significant loss of hydrophobic components due to non-specific binding to surfaces at timescales relevant to a typical cell culture process. The extent of loss is dependent on the nature of the hydrophobic component as well as the type of surface. These studies highlight the potential of the extracellular environment to modify medium composition and also emphasize the importance of medium formulation strategies, including those used in the delivery of hydrophobic components. It is noted, however, that the level of loss is very dependent on the specific system including the composition of the culture medium used. (c) 2006 Wiley Periodicals, Inc.

  14. The lipid composition of Legionella dumoffii membrane modulates the interaction with Galleria mellonella apolipophorin III.

    Palusińska-Szysz, Marta; Zdybicka-Barabas, Agnieszka; Reszczyńska, Emilia; Luchowski, Rafał; Kania, Magdalena; Gisch, Nicolas; Waldow, Franziska; Mak, Paweł; Danikiewicz, Witold; Gruszecki, Wiesław I; Cytryńska, Małgorzata


    Apolipophorin III (apoLp-III), an insect homologue of human apolipoprotein E (apoE), is a widely used model protein in studies on protein-lipid interactions, and anti-Legionella activity of Galleria mellonella apoLp-III has been documented. Interestingly, exogenous choline-cultured Legionella dumoffii cells are considerably more susceptible to apoLp-III than non-supplemented bacteria. In order to explain these differences, we performed, for the first time, a detailed analysis of L. dumoffii lipids and a comparative lipidomic analysis of membranes of bacteria grown without and in the presence of exogenous choline. (31)P NMR analysis of L. dumoffii phospholipids (PLs) revealed a considerable increase in the phosphatidylcholine (PC) content in bacteria cultured on choline medium and a decrease in the phosphatidylethanolamine (PE) content in approximately the same range. The interactions of G. mellonella apoLp-III with lipid bilayer membranes prepared from PLs extracted from non- and choline-supplemented L. dumoffii cells were examined in detail by means of attenuated total reflection- and linear dichroism-Fourier transform infrared spectroscopy. Furthermore, the kinetics of apoLp-III binding to liposomes formed from L. dumoffii PLs was analysed by fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy using fluorescently labelled G. mellonella apoLp-III. Our results indicated enhanced binding of apoLp-III to and deeper penetration into lipid membranes formed from PLs extracted from the choline-supplemented bacteria, i.e. characterized by an increased PC/PE ratio. This could explain, at least in part, the higher susceptibility of choline-cultured L. dumoffii to G. mellonella apoLp-III.

  15. Curcumin is a lipid dependent inhibitor of the Na,K-ATPase that likely interacts at the protein-lipid interface.

    Mahmmoud, Yasser A


    Curcumin is an important nutraceutical widely used in disease treatment and prevention. We have previously suggested that curcumin interferes with K(+) binding to pig kidney Na,K-ATPase by interaction with its extracellular domains. The aim of this study was to further characterize the site of curcumin interaction with the ATPase. We have performed pair inhibitor studies and investigated the sided action of curcumin on pig kidney Na,K-ATPase reconstituted into lipid vesicles of defined composition. An addition of curcumin to either the intracellular or extracellular domains of the Na,K-ATPase produced similar inhibition. The lipid environment and temperature strongly influenced the potency of the drug. Curcumin inhibition decreased following insertion of the ATPase in sphingomyelin-cholesterol 'raft' domains and fully abolished following treatment with non-ionic detergents. The drug induced cross-linking of membrane embedded domains of the Na,K-ATPase. We conclude that curcumin interacts with Na,K-ATPase at the protein-lipid interface. Non-annulus lipids likely participate in this interaction. These results provide new information on the molecular mechanism of curcumin action and explain (at least partly) the ambiguous effectiveness of this polyphenol in the different systems.

  16. Thioredoxin-interacting protein regulates lipid metabolism via Akt/mTOR pathway in diabetic kidney disease.

    Du, Chunyang; Wu, Ming; Liu, Huan; Ren, Yunzhuo; Du, Yunxia; Wu, Haijiang; Wei, Jinying; Liu, Chuxin; Yao, Fang; Wang, Hui; Zhu, Yan; Duan, Huijun; Shi, Yonghong


    Abnormal lipid metabolism contributes to the renal lipid accumulation, which is associated with diabetic kidney disease, but its precise mechanism remains unclear. The growing evidence demonstrates that thioredoxin-interacting protein is involved in regulating cellular glucose and lipid metabolism. Here, we investigated the effects of thioredoxin-interacting protein on lipid accumulation in diabetic kidney disease. In contrast to the diabetic wild-type mice, the physical and biochemical parameters were improved in the diabetic thioredoxin-interacting protein knockout mice. The increased renal lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, and phosphorylated Akt and mTOR associated with diabetes in wild-type mice was attenuated in diabetic thioredoxin-interacting protein knockout mice. Furthermore, thioredoxin-interacting protein knockout significantly increased the expression of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 in diabetic kidneys. In vitro experiments, using HK-2 cells, revealed that knockdown of thioredoxin-interacting protein inhibited high glucose-mediated lipid accumulation, expression of acetyl-CoA carboxylase, fatty acid synthase and sterol regulatory element binding protein-1, as well as activation of Akt and mTOR. Moreover, knockdown of thioredoxin-interacting protein reversed high glucose-induced reduction of peroxisome proliferator-activated receptor-α, acyl-coenzyme A oxidase 1 and carnitine palmitoyltransferaser 1 expression in HK-2 cells. Importantly, blockade of Akt/mTOR signaling pathway with LY294002, a specific PI3K inhibitor, replicated these effects of thioredoxin-interacting protein silencing. Taken together, these data suggest that thioredoxin-interacting protein deficiency alleviates diabetic renal lipid accumulation through regulation of Akt/mTOR pathway, thioredoxin-interacting

  17. The Arabidopsis P4-ATPase ALA3 localizes to the golgi and requires a beta-subunit to function in lipid translocation and secretory vesicle formation.

    Poulsen, Lisbeth Rosager; López-Marqués, Rosa Laura; McDowell, Stephen C; Okkeri, Juha; Licht, Dirk; Schulz, Alexander; Pomorski, Thomas; Harper, Jeffrey F; Palmgren, Michael Gjedde


    Vesicle budding in eukaryotes depends on the activity of lipid translocases (P(4)-ATPases) that have been implicated in generating lipid asymmetry between the two leaflets of the membrane and in inducing membrane curvature. We show that Aminophospholipid ATPase3 (ALA3), a member of the P(4)-ATPase subfamily in Arabidopsis thaliana, localizes to the Golgi apparatus and that mutations of ALA3 result in impaired growth of roots and shoots. The growth defect is accompanied by failure of the root cap to release border cells involved in the secretion of molecules required for efficient root interaction with the environment, and ala3 mutants are devoid of the characteristic trans-Golgi proliferation of slime vesicles containing polysaccharides and enzymes for secretion. In yeast complementation experiments, ALA3 function requires interaction with members of a novel family of plant membrane-bound proteins, ALIS1 to ALIS5 (for ALA-Interacting Subunit), and in this host ALA3 and ALIS1 show strong affinity for each other. In planta, ALIS1, like ALA3, localizes to Golgi-like structures and is expressed in root peripheral columella cells. We propose that the ALIS1 protein is a beta-subunit of ALA3 and that this protein complex forms an important part of the Golgi machinery required for secretory processes during plant development.

  18. Prevalence, Specificity and Determinants of Lipid-Interacting PDZ Domains from an In-Cell Screen and In Vitro Binding Experiments

    Kashyap, Rudra; Polanowska, Jolanta; Betzi, Stéphane; Lembo, Frédérique; Vermeiren, Elke; Chiheb, Driss; Lenfant, Nicolas; Morelli, Xavier; Borg, Jean-Paul; Reboul, Jérôme; Zimmermann, Pascale


    Background PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs), important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. Methodology/Principal Findings We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR) experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. Conclusions/Significance Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands. PMID:23390500

  19. Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments.

    Ylva Ivarsson

    Full Text Available BACKGROUND: PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs, important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. METHODOLOGY/PRINCIPAL FINDINGS: We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. CONCLUSIONS/SIGNIFICANCE: Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.

  20. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops.

    Goncalves, Aurélie; Gontero, Brigitte; Nowicki, Marion; Margier, Marielle; Masset, Gabriel; Amiot, Marie-Josèphe; Reboul, Emmanuelle


    Scavenger receptors (SRs) like cluster determinant 36 (CD36) and SR class B type I (SR-BI) play a debated role in lipid transport across the intestinal brush border membrane. We used surface plasmon resonance to analyze real-time interactions between the extracellular protein loops and various ligands ranging from single lipid molecules to mixed micelles. Micelles mimicking physiological structures were necessary for optimal binding to both the extracellular loop of CD36 (lCD36) and the extracellular loop of SR-BI (lSR-BI). Cholesterol, phospholipid, and fatty acid micellar content significantly modulated micelle binding to and dissociation from the transporters. In particular, high phospholipid micellar concentrations inhibited micelle binding to both receptors (-53.8 and -74.4% binding at 0.32 mM compared with 0.04 mM for lCD36 and lSR-BI, respectively, P < 0.05). The presence of fatty acids was crucial for micelle interactions with both proteins (94.4 and 81.3% binding with oleic acid for lCD36 and lSR-BI, respectively, P < 0.05) and fatty acid type substitution within the micelles was the component that most impacted micelle binding to the transporters. These effects were partly due to subsequent modifications in micellar size and surface electric charge, and could be correlated to micellar vitamin D uptake by Caco-2 cells. Our findings show for the first time that micellar lipid composition and micellar properties are key factors governing micelle interactions with SRs.

  1. Multiscale molecular dynamics simulations of lipid interactions with P-glycoprotein in a complex membrane.

    Domicevica, Laura; Koldsø, Heidi; Biggin, Philip C


    P-glycoprotein (P-gp) can transport a wide range of very different hydrophobic organic molecules across the membrane. Its ability to extrude molecules from the cell creates delivery problems for drugs that target proteins in the central nervous system (CNS) and also causes drug-resistance in many forms of cancer. Whether a drug will be susceptible to export by P-gp is difficult to predict and currently this is usually assessed with empirical and/or animal models. Thus, there is a need to better understand how P-gp works at the molecular level in order to fulfil the 3Rs: Refinement, reduction and replacement of animals in research. As structural information increasingly becomes available, our understanding at the molecular level improves. Proteins like P-gp are however very dynamic entities and thus one of the most appropriate ways to study them is with molecular dynamics simulations, especially as this can capture the influence of the surrounding environment. Recent parameterization developments have meant that it is now possible to simulate lipid bilayers that more closely resemble in vivo membranes in terms of their composition. In this report we construct a complex lipid bilayer that mimics the composition of brain epithelial cells and examine the interactions of it with P-gp. We find that the negatively charged phosphatidylserine lipids in the inner leaflet of the membrane tend to form an annulus around P-gp. We also observed the interaction of cholesterol with three distinct areas of the P-gp. Potential of mean force (PMF) calculations suggest that a crevice between transmembrane helices 10 and 12 has particularly favourable interaction energy for cholesterol. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Lattice simulations of phase morphology on lipid bilayers: Renormalization, membrane shape, and electrostatic dipole interactions

    Amazon, Jonathan J.; Feigenson, Gerald W.


    When liquid phases coexist at equilibrium but are not driven to minimize domain interfacial contact energy, the resulting patterns of phase domains can have important implications for living cells. In this study we explore some of the interactions and conditions that produce the stable patterned phases that are observed in model lipid mixtures. By use of Monte Carlo simulations we find that background curvature is important for the formation of patterned (modulated) phases. The interactions that stabilize nanoscopic phase separation are still not well understood. We show that inclusion of an electrostatic dipole repulsion with decay lengths as short as two to four lipid diameters can break up domains at the nanometer scale and that the location of the miscibility critical point is sensitive to this interaction. The use of a coarse-grained simulation raises questions about comparing parameters in simulations performed at different length scales. Using renormalization group techniques we show how to reconcile this problem, treating line tension as a running coupling constant. PMID:25353504

  3. Lipid Requirements for the Enzymatic Activity of MraY Translocases and in Vitro Reconstitution of the Lipid II Synthesis Pathway.

    Henrich, Erik; Ma, Yi; Engels, Ina; Münch, Daniela; Otten, Christian; Schneider, Tanja; Henrichfreise, Beate; Sahl, Hans-Georg; Dötsch, Volker; Bernhard, Frank


    Screening of new compounds directed against key protein targets must continually keep pace with emerging antibiotic resistances. Although periplasmic enzymes of bacterial cell wall biosynthesis have been among the first drug targets, compounds directed against the membrane-integrated catalysts are hardly available. A promising future target is the integral membrane protein MraY catalyzing the first membrane associated step within the cytoplasmic pathway of bacterial peptidoglycan biosynthesis. However, the expression of most MraY homologues in cellular expression systems is challenging and limits biochemical analysis. We report the efficient production of MraY homologues from various human pathogens by synthetic cell-free expression approaches and their subsequent characterization. MraY homologues originating from Bordetella pertussis, Helicobacter pylori, Chlamydia pneumoniae, Borrelia burgdorferi, and Escherichia coli as well as Bacillus subtilis were co-translationally solubilized using either detergent micelles or preformed nanodiscs assembled with defined membranes. All MraY enzymes originating from Gram-negative bacteria were sensitive to detergents and required nanodiscs containing negatively charged lipids for obtaining a stable and functionally folded conformation. In contrast, the Gram-positive B. subtilis MraY not only tolerates detergent but is also less specific for its lipid environment. The MraY·nanodisc complexes were able to reconstitute a complete in vitro lipid I and lipid II forming pipeline in combination with the cell-free expressed soluble enzymes MurA-F and with the membrane-associated protein MurG. As a proof of principle for future screening platforms, we demonstrate the inhibition of the in vitro lipid II biosynthesis with the specific inhibitors fosfomycin, feglymycin, and tunicamycin.

  4. Interactions of End-Functionalized Nanotubes with Lipid Vesicles: Spontaneous Insertion and Nanotube Self-organization

    Dutt, Meenakshi; Kuksenok, Olga; Nayhouse, Michael; Little, Steven R.; Balazs, Anna C.


    Via Dissipative Particle Dynamics (DPD) approach, we study the self-assembly of amphiphilic nanotubes into a lipid vesicle, which is immersed in a hydrophilic solvent. Individual lipids are composed of a hydrophilic head group and two hydrophobic tails. Each nanotube encompasses an ABA architecture, with a hydrophobic shaft (B) and two hydrophilic ends (A). To allow controlled transport through the nanotube, we also introduce hydrophilic tethers at one end of the tube. We show that nanotubes initially located in the outer solvent spontaneously penetrate the vesicle's membrane and assume a trans-membrane position, with the hydrophilic tethers extending from the surface of the vesicle. We add nanotubes one at a time after the previous nanotube has been inserted. We characterize the interactions among the nanotubes that have self-assembled into the vesicles' membrane and focus on their clustering within the membrane. We also show that the nanotube insertion and clustering within the vesicle strongly affects the vesicle shape in cases of a sufficiently large number of tubes. Ultimately, these nanotube-lipid systems can be used for making hybrid controlled release vesicles.

  5. Estrogen receptor 1 gene polymorphisms in premenopausal women: interaction between genotype and smoking on lipid levels

    S. Almeida


    Full Text Available Estrogen has multiple effects on lipid and lipoprotein metabolism. We investigated the association between the four common single nucleotide polymorphisms in the estrogen receptor 1 (ESR1 gene locus, -1989T>G, +261G>C, IVS1-397T>C and IVS1-351A>G, and lipid and lipoprotein levels in southern Brazilians. The sample consisted in 150 men and 187 premenopausal women. The women were considered premenopausal if they had regular menstrual bleeding within the previous 3 months and were 18-50 years of age. Exclusion criteria were pregnancy, secondary hyperlipidemia due to renal, hepatic or thyroid disease, and diabetes. Smoking status was self-reported; subjects were classified as never smoked and current smokers. DNA was amplified by PCR and was subsequently digested with the appropriate restriction enzymes. Statistical analysis was carried out for men and women separately. In the study population, major allele frequencies were _1989*T (0.83, +261*G (0.96, IVS1-397*T (0.58, and IVS1-351*A (0.65. Multiple linear regression analyses indicated that an interaction between +261G>C polymorphism and smoking was a significant factor affecting high-density lipoprotein cholesterol (HDL-C levels (P = 0.028 in women. Nonsmoking women with genotype G/C of +261G>C polymorphism had mean HDL-C levels higher than those with G/G genotype (1.40 ± 0.33 vs 1.22 ± 0.26 mmol/L; P = 0.033. No significant associations with lipid and lipoprotein levels in women and men were detected for other polymorphisms. In conclusion, the +261G>C polymorphism might influence lipoprotein and lipid levels in premenopausal women, but these effects seem to be modulated by smoking, whereas in men ESR1 polymorphisms were not associated with high lipoprotein levels.

  6. Snake cytotoxins bind to membranes via interactions with phosphatidylserine head groups of lipids.

    Anastasia G Konshina

    Full Text Available The major representatives of Elapidae snake venom, cytotoxins (CTs, share similar three-fingered fold and exert diverse range of biological activities against various cell types. CT-induced cell death starts from the membrane recognition process, whose molecular details remain unclear. It is known, however, that the presence of anionic lipids in cell membranes is one of the important factors determining CT-membrane binding. In this work, we therefore investigated specific interactions between one of the most abundant of such lipids, phosphatidylserine (PS, and CT 4 of Naja kaouthia using a combined, experimental and modeling, approach. It was shown that incorporation of PS into zwitterionic liposomes greatly increased the membrane-damaging activity of CT 4 measured by the release of the liposome-entrapped calcein fluorescent dye. The CT-induced leakage rate depends on the PS concentration with a maximum at approximately 20% PS. Interestingly, the effects observed for PS were much more pronounced than those measured for another anionic lipid, sulfatide. To delineate the potential PS binding sites on CT 4 and estimate their relative affinities, a series of computer simulations was performed for the systems containing the head group of PS and different spatial models of CT 4 in aqueous solution and in an implicit membrane. This was done using an original hybrid computational protocol implementing docking, Monte Carlo and molecular dynamics simulations. As a result, at least three putative PS-binding sites with different affinities to PS molecule were delineated. Being located in different parts of the CT molecule, these anion-binding sites can potentially facilitate and modulate the multi-step process of the toxin insertion into lipid bilayers. This feature together with the diverse binding affinities of the sites to a wide variety of anionic targets on the membrane surface appears to be functionally meaningful and may adjust CT action against

  7. Analysis of User Requirements in Interactive 3D Video Systems

    Haiyue Yuan


    Full Text Available The recent development of three dimensional (3D display technologies has resulted in a proliferation of 3D video production and broadcasting, attracting a lot of research into capture, compression and delivery of stereoscopic content. However, the predominant design practice of interactions with 3D video content has failed to address its differences and possibilities in comparison to the existing 2D video interactions. This paper presents a study of user requirements related to interaction with the stereoscopic 3D video. The study suggests that the change of view, zoom in/out, dynamic video browsing, and textual information are the most relevant interactions with stereoscopic 3D video. In addition, we identified a strong demand for object selection that resulted in a follow-up study of user preferences in 3D selection using virtual-hand and ray-casting metaphors. These results indicate that interaction modality affects users’ decision of object selection in terms of chosen location in 3D, while user attitudes do not have significant impact. Furthermore, the ray-casting-based interaction modality using Wiimote can outperform the volume-based interaction modality using mouse and keyboard for object positioning accuracy.

  8. Cyclosporine-loaded solid lipid nanoparticles (SLN): drug-lipid physicochemical interactions and characterization of drug incorporation.

    Müller, R H; Runge, S A; Ravelli, V; Thünemann, A F; Mehnert, W; Souto, E B


    Solid lipid nanoparticles (SLN) were produced loaded with cyclosporine A in order to develop an improved oral formulation. In this study, the particles were characterized with regard to the structure of the lipid particle matrix, being a determining factor for mode of drug incorporation and drug release. Differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) measurements were employed for the analysis of the polymorphic modifications and mode of drug incorporation. Particles were produced using Imwitor 900 as lipid matrix (the suspension consisted of 10% particles, 8% Imwitor 900, 2% cyclosporine A), 2.5% Tagat S, 0.5% sodium cholate and 87% water. DSC and WAXS were used to analyse bulk lipid, bulk drug, drug incorporated in the bulk and unloaded and drug-loaded SLN dispersions. The processing of the bulk lipid into nanoparticles was accompanied by a polymorphic transformation from the beta to the alpha-modification. After production, the drug-free SLN dispersions converted back to beta-modification, while the drug-loaded SLN stayed primarily in alpha-modification. After incorporation of cyclosporine A into SLN, the peptide lost its crystalline character. Based on WAXS data, it could be concluded that cyclosporine is molecularly dispersed in between the fatty acid chains of the liquid-crystalline alpha-modification fraction of the loaded SLN.

  9. Interaction between Antibacterial Peptide Apep10 and Escherichia coli Membrane Lipids Evaluated Using Liposome as Pseudo-Stationary Phase

    Li, Man


    Liposomes constructed from Escherichia coli membrane lipids were used as a pseudo-stationary phase in capillary electrophoresis and immobilised liposome chromatography to evaluate the interaction between antibacterial peptide (ABP) Apep10 and bacterial membrane lipids. The peptide mobility decreased as the concentration of liposomes increased, providing evidence for the existence of this interaction. The binding constant between Apep10 and the Escherichia coli membranes lipid liposome was higher than that of Apep10 with a mixed phospholipids liposome at the same temperature. The capillary electrophoresis results indicate that the binding ability of Apep10 with a liposome was dependent on the liposome’s lipid compositions. Thermodynamic analysis by immobilised liposome chromatography indicated that hydrophobic and electrostatic effects contributed to the partitioning of Apep10 in the membrane lipids. The liposomes constructed from bacterial membrane lipid were more suitable as the model membranes used to study dynamic ABP/membrane interactions than those constructed from specific ratios of particular phospholipids, with its more biomimetic phospholipid composition and contents. This study provides an appropriate model for the evaluation of ABP-membrane interactions. PMID:28052090

  10. Interaction of polymer-coated silicon nanocrystals with lipid bilayers and surfactant interfaces

    Elbaradei, Ahmed; Brown, Samuel L.; Miller, Joseph B.; May, Sylvio; Hobbie, Erik K.


    We use photoluminescence (PL) microscopy to measure the interaction between polyethylene-glycol-coated (PEGylated) silicon nanocrystals (SiNCs) and two model surfaces: lipid bilayers and surfactant interfaces. By characterizing the photostability, transport, and size-dependent emission of the PEGylated nanocrystal clusters, we demonstrate the retention of red PL suitable for detection and tracking with minimal blueshift after a year in an aqueous environment. The predominant interaction measured for both interfaces is short-range repulsion, consistent with the ideal behavior anticipated for PEGylated phospholipid coatings. However, we also observe unanticipated attractive behavior in a small number of scenarios for both interfaces. We attribute this anomaly to defective PEG coverage on a subset of the clusters, suggesting a possible strategy for enhancing cellular uptake by controlling the homogeneity of the PEG corona. In both scenarios, the shape of the apparent potential is modeled through the free or bound diffusion of the clusters near the confining interface.

  11. Bax and Bif-1 proteins interact on Bilayer Lipid Membrane and form pore.

    Gupta, Rajeev; Ghosh, Subhendu


    Bax and Bax interacting factor-1(Bif-1) are cytosolic proteins, which translocate towards mitochondria during mitochondria-mediated apoptosis. Bif-1 has been identified to co-immunoprecipitate with Bax in apoptotic cells. We have studied the interaction of Bax and Bif-1 on Bilayer Lipid Membrane (BLM) through electrophysiological experiments. It has been observed that Bax-Bif-1 equimolar mixture can form a pore. The pore conductance is in the range of 4.96-5.41 nS. It also displays a sub-state with a conductance of 2.6 nS. No pore activity is observed on BLM when monomeric Bax and Bif-1 proteins are tested independently. The above-mentioned pore forming activity could be relevant in mitochondria-mediated apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. How cholesterol interacts with proteins and lipids during its intracellular transport

    Wüstner, Daniel; Solanko, Katarzyna


    as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics...... in membranes and explain how such models are related to sterol flux between organelles. An overview of various sterol-transfer proteins is given, and the physico-chemical principles of their function in non-vesicular sterol transport are explained. We also discuss selected experimental approaches...... for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how...

  13. Dietary fat interacts with PCBs to induce changes in lipid metabolism in LDL receptor deficient mice

    Hennig, B.; Reiterer, G.; Toborek, M.; Matveev, S.V.; Daugherty, A.; Smart, E. [Univ. of Kentucky, Lexington (United States); Robertson, L.W. [Univ. of Iowa, Iowa City (United States)


    From epidemiological studies, there is substantial evidence that cardiovascular diseases are linked to environmental pollution and that exposure to polycyclic and/or polyhalogenated aromatic hydrocarbons can lead to human cardiovascular toxicity. A major route of exposure to PCBs in humans is via oral ingestion of contaminated food products. Therefore, circulating environmental contaminants derived from diets, such as PCBs, are in intimate contact with the vascular endothelium. Endothelial activation and dysfunction is an important factor in the overall regulation of vascular lesion pathology. In addition to endothelial barrier dysfunction, another functional change in atherosclerosis is the activation of the endothelium that is manifested as an increase in the expression of specific cytokines and adhesion molecules. These cytokines and adhesion molecules are proposed to mediate the inflammatory aspects of the disease by regulating the vascular entry of leukocytes. Alterations in lipid profile and lipid metabolism as a result of exposure to PCBs may be important components of endothelial cell dysfunction. Little is known about the interaction of dietary fats and PCBs in the pathology of atherosclerosis. We have reported a significant disruption in endothelial barrier function when cells were exposed to linoleic acid. In the current study we aimed to demonstrate the PCB-fatty acid interaction in vivo and hypothesized that PCB toxicity can be modulated by the type of fat consumed.

  14. Interaction of myelin basic protein isoforms with lipid bilayers studied by FTIR spectroscopy

    Jackson, Michael; Choo, Lin-P'ing; Boulias, Christopher; Moscarello, Mario A.; Mantsch, Henry H.


    The secondary structure of the naturally occurring isoforms of myelin basic protein (MBP1-8) from human myelin was studied by Fourier transform infrared spectroscopy under a variety of experimental conditions. In aqueous solution each isoform was found to be unstructured. In the presence of negatively charged liquid bilayers MBP1-4 were shown to exhibit an amide I band maximum indicative of the adoption of (alpha) -helical secondary structures. A detailed analysis revealed that significant proportions of (beta) -sheet secondary structure were also present. MBP5 and MBP8, which have significantly less cationic charge than MBP1-4, exhibited an amide I maximum identical to that seen in solution, suggesting that no interaction with the bilayer occurred. Analysis of the lipid CH2 and C equals O stretching vibrations also pointed towards significant interaction of MBP1-4 with the bilayer. The changes in intensity and frequency of these bands which typically accompany the phase transition in the pure bilayer were abolished by addition of the proteins. No such effect was seen for MBP5 and 8, the normal lipid phase transition being apparent. The implications of these results in the aetiology of multiple sclerosis is discussed.

  15. Serogroup-specific interactions of lipopolysaccharides with supported lipid bilayer assemblies

    Mendez, Heather M.; Stromberg, Loreen R.; Swingle, Kirstie; Graves, Steven W.; Montano, Gabriel; Mukundan, Harshini


    Lipopolysaccharide (LPS) is an amphiphilic lipoglycan that is the primary component of the outer membrane of Gramnegative bacteria. Classified as a pathogen associated molecular pattern (PAMPs), LPS is an essential biomarker for identifying pathogen serogroups. Structurally, LPS is comprised of a hydrophobic lipophilic domain that partitions into the outer membrane of Gram-negative bacteria. Previous work by our team explored biophysical interactions of LPS in supported lipid bilayer assemblies (sLBAs), and demonstrated LPS-induced hole formation in DOPC lipid bilayers. Here, we have incorporated cholesterol and sphingomyelin into sLBAs to evaluate the interaction of LPS in a more physiologically relevant system. The goal of this work was to determine whether increasing membrane complexity of sLBAs, and changing physiological parameters such as temperature, affects LPS-induced hole formation. Integrating cholesterol and sphingomyelin into sLBAs decreased LPS-induced hole formation at lower concentrations of LPS, and bacterial serotype contributed to differences in hole formation as a response to changes in temperature. We also investigated the possibility of LPS-induced hole formation in cellular systems using the cytokine response in both TLR4 (+)/(-) murine macrophages. LPS was presented to each cell line in murine serum, delipidated serum, and buffer (i.e. no serum), and the resulting cytokine levels were measured. Results indicate that the method of LPS presentation directly affects cellular cytokine expression. The two model systems presented in this study provide preliminary insight into the interactions of LPS in the host, and suggest the significance of amphiphile-carrier interactions in regulating host-pathogen biology during infection.

  16. Localization of sites for ionic interaction with lipid in the C-terminal third of the bovine myelin basic protein.

    Jones, A J; Rumsby, M G


    The myelin basic protein from bovine brain tissue was purified and the two peptides obtained by cleavage of the polypeptide chain at the single tryptophan residue were isolated. The interaction of these peptides and the intact basic protein with complex lipids was investigated by following the solubilization of lipid-protein complexes into chloroform in a biphasic solvent system. The C-terminal peptide fragment (residues 117-170) and the intact basic protein both formed chloroform-soluble complexes with acidic lipids, but not with neutral complex lipids. The N-terminal fragment (residues 1-115) did not form chloroform-soluble complexes with either acidic or neutral complex lipids. The molar ratio of lipid to protein that caused a 50% loss of protein from the upper phase to the lower chloroform phase was the same for the intact basic protein as for the smaller C-terminal peptide fragment. Phosphatidylserine and phosphatidylinositol were approximately twice as efficient as sulphatide at causing protein redistribution to the chloroform phase. The results are interpreted as indicating that the sites for ionic interactions between lipid and charged groups on the basic protein of myelin are located in the C-terminal region of the protein molecule.

  17. Role of Electrostatic Interactions in Two Dimensional Self Assembly of Tobacco Mosaic Viruses on Cationic Lipid Mololayers

    Wang, S.; Yang, L.; Fukuto, M.; Checco, A.; Niu, Z.; Wang, Q.


    We explore two-dimensional self-assembly of tobacco mosaic viruses (TMVs) on a substrate-supported, fluid lipid monolayer by manipulating the electrostatic interactions, with specific focus on the effects of the cationic lipid concentration in the monolayer and the presence of Ca{sup 2+} ions in the surrounding bulk solution. The TMV assemblies were characterized by grazing-incidence X-ray scattering and atomic force microscopy, and the inter-particle interaction quantified through X-ray scattering data analysis. In the absence of Ca{sup 2+} ions, we found that higher charge densities on the lipid monolayer led to poorer in-plane order, which may be attributed to faster adsorption kinetics, due to the surface potential that increases with charge density. At the same time, higher lipid-charge densities also resulted in weaker repulsion between TMVs, due to partial screening of Coulomb repulsion by mobile cationic lipids in the monolayer. The lipid-charge dependence was diminished with increasing concentration of Ca{sup 2+} ions, which also led to tighter packing of TMVs. The results indicate that Ca{sup 2+} ions strengthen the screening of Coulomb repulsion between TMVs and consequently enhance the role of attractive forces. Control experiments involving Na{sup +} ions suggest that the attractive inter-TMV interaction has contributions from both the van der Waals force and the counter-ion-induced attraction that depends on ion valence.

  18. Sucrose Production Mediated by Lipid Metabolism Suppresses the Physical Interaction of Peroxisomes and Oil Bodies during Germination of Arabidopsis thaliana.

    Cui, Songkui; Hayashi, Yasuko; Otomo, Masayoshi; Mano, Shoji; Oikawa, Kazusato; Hayashi, Makoto; Nishimura, Mikio


    Physical interaction between organelles is a flexible event and essential for cells to adapt rapidly to environmental stimuli. Germinating plants utilize oil bodies and peroxisomes to mobilize storage lipids for the generation of sucrose as the main energy source. Although membrane interaction between oil bodies and peroxisomes has been widely observed, its underlying molecular mechanism is largely unknown. Here we present genetic evidence for control of the physical interaction between oil bodies and peroxisomes. We identified alleles of the sdp1 mutant altered in oil body morphology. This mutant accumulates bigger and more oil body aggregates compared with the wild type and showed defects in lipid mobilization during germination. SUGAR DEPENDENT 1 (SDP1) encodes major triacylglycerol lipase in Arabidopsis Interestingly, sdp1 seedlings show enhanced physical interaction between oil bodies and peroxisomes compared with the wild type, whereas exogenous sucrose supplementation greatly suppresses the interaction. The same phenomenon occurs in the peroxisomal defective 1 (ped1) mutant, defective in lipid mobilization because of impaired peroxisomal β-oxidation, indicating that sucrose production is a key factor for oil body-peroxisomal dissociation. Peroxisomal dissociation and subsequent release from oil bodies is dependent on actin filaments. We also show that a peroxisomal ATP binding cassette transporter, PED3, is the potential anchor protein to the membranes of these organelles. Our results provide novel components linking lipid metabolism and oil body-peroxisome interaction whereby sucrose may act as a negative signal for the interaction of oil bodies and peroxisomes to fine-tune lipolysis.

  19. The synthetic cationic lipid diC14 activates a sector of the Arabidopsis defence network requiring endogenous signalling components.

    Cambiagno, Damián Alejandro; Lonez, Caroline; Ruysschaert, Jean-Marie; Alvarez, María Elena


    Natural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified. In animal cells, nanoliposomes of the synthetic cationic lipid 3-tetradecylamino-tert-butyl-N-tetradecylpropionamidine (diC14) activate the TLR4-dependent immune cascade. Here, we have investigated whether this lipid induces Arabidopsis defence responses. At the local level, diC14 activated early and late defence gene markers (FRK1, WRKY29, ICS1 and PR1), acting in a dose-dependent manner. This lipid induced the salicylic acid (SA)-dependent, but not jasmonic acid (JA)-dependent, pathway and protected plants against Pseudomonas syringae pv. tomato (Pst), but not Botrytis cinerea. diC14 was not toxic to plant or pathogen, and potentiated pathogen-induced callose deposition. At the systemic level, diC14 induced PR1 expression and conferred resistance against Pst. diC14-induced defence responses required the signalling protein EDS1, but not NDR1. Curiously, the lipid-induced defence gene expression was lower in the fls2/efr/cerk1 triple mutant, but still unchanged in the single mutants. The amidine headgroup and chain length were important for its activity. Given the robustness of the responses triggered by diC14, its specific action on a defence pathway and the requirement for well-known defence components, this synthetic lipid is emerging as a useful tool to investigate the initial events involved in plant innate immunity.

  20. The role of membrane thickness in charged protein-lipid interactions.

    Li, Libo B; Vorobyov, Igor; Allen, Toby W


    Charged amino acids are known to be important in controlling the actions of integral and peripheral membrane proteins and cell disrupting peptides. Atomistic molecular dynamics studies have shed much light on the mechanisms of membrane binding and translocation of charged protein groups, yet the impact of the full diversity of membrane physico-chemical properties and topologies has yet to be explored. Here we have performed a systematic study of an arginine (Arg) side chain analog moving across saturated phosphatidylcholine (PC) bilayers of variable hydrocarbon tail length from 10 to 18 carbons. For all bilayers we observe similar ion-induced defects, where Arg draws water molecules and lipid head groups into the bilayers to avoid large dehydration energy costs. The free energy profiles all exhibit sharp climbs with increasing penetration into the hydrocarbon core, with predictable shifts between bilayers of different thickness, leading to barrier reduction from 26 kcal/mol for 18 carbons to 6 kcal/mol for 10 carbons. For lipids of 10 and 12 carbons we observe narrow transmembrane pores and corresponding plateaus in the free energy profiles. Allowing for movements of the protein and side chain snorkeling, we argue that the energetic cost for burying Arg inside a thin bilayer will be small, consistent with recent experiments, also leading to a dramatic reduction in pK(a) shifts for Arg. We provide evidence that Arg translocation occurs via an ion-induced defect mechanism, except in thick bilayers (of at least 18 carbons) where solubility-diffusion becomes energetically favored. Our findings shed light on the mechanisms of ion movement through membranes of varying composition, with implications for a range of charged protein-lipid interactions and the actions of cell-perturbing peptides. This article is part of a Special Issue entitled: Membrane protein structure and function.

  1. The interaction of eugenol with cell membrane models at the air-water interface is modulated by the lipid monolayer composition.

    Gonçalves, Giulia E G; de Souza, Fernanda S; Lago, João Henrique G; Caseli, Luciano


    Eugenol, a natural phenylpropanoid derivative with possible action in biological surfaces as microbicide, anesthetic and antioxidant, was incorporated in lipid monolayers of selected lipids at the air-water interface, representing cell membrane models. Interaction of eugenol with the lipids dipalmitoylphosphatidylcholine (DPPC), dioctadecyldimethylammonium bromide (DODAB), and dipalmitoylphosphatidylserine (DPPS) could be inferred by means of surface pressure-area isotherms and Polarization-Modulation Reflection-Absorption Spectroscopy. The interaction showed different effects on the different lipids. A higher monolayer expansion was observed for DPPS and DODAB, while more significant effects on the polar groups of the lipids were observed for DPPS and DPPC. These results pointed to the fact that the interaction of eugenol with lipid monolayers at the air-water interface is modulated by the lipid composition, which may be important to comprehend at the molecular level the interaction of this drug with biological surfaces.

  2. Тhe mass-spectrometry studies of the interaction of polyhexamethyleneguanidine with lipids

    A. V. Lysytsya


    Full Text Available In this work the integral components of the cytoplasmic membrane, lecithin and cholesterol were used for mass spectrometry analysis carried out on polyhexamethyleneguanidine (PHMG mixtures with lipids. The study was performed by mass-spectrometry methods of the MALDI-TOF MS. Our results showed that despite the common use of PHGM polymer derivatives as disinfectants the persistent intermolecular complexes of PHMG oligomers with lipids were not formed. The binding of polycation PHMG with the membrane has been explained by the model proposed. According to this model PHGM can adhere to negatively charged plasma membrane of bacterial cell due to electrostatic interaction and the formation of loop-like structures. Similar stereochemistry mechanism makes the adsorption of the investigated polycation to membrane robust. The mechanism described together with additional destructive factors provides a reasonable explanation for the PHMG induced damage of bacterial cell plasma membrane and the biocide action of disinfectants prepared on the basis of the PНMG salts.

  3. Lipid Lateral Segregation Driven by Diacyl Cyclodextrin Interactions at the Membrane Surface

    Roux, Michel; Moutard, Stéphane; Perly, Bruno; Djedaini-Pilard, Florence


    Cyclodextrins are hydrophilic molecular cages with a hydrophobic interior allowing the inclusion of water-insoluble drugs. Amphiphilic cyclodextrins obtained by appending a hydrophobic anchor were designed to improve the cell targeting of the drug-containing cavities through their liposome transportation in the organism. After insertion in model membranes, they were found to induce a lateral phase separation into a pure lipid phase and a fluid cyclodextrin-rich phase (LCD) with reduced acyl chain order parameters, as observed with a derivative containing a cholesterol anchor (M. Roux, R. Auzely-Velty, F. Djedaïni-Pilard, and B. Perly. 2002. Biophysical Journal, 8:813–822). We present another class of amphiphilic cyclodextrins obtained by grafting aspartic acid esterified by two lauryl chains on the oligosaccharide core via a succinyl spacer. The obtained dilauryl-β-cyclodextrin (βDLC) was inserted in chain perdeuterated dimyristoylphosphatidylcholine (DMPC-d54) membranes and studied by deuterium NMR (2H-NMR). A laterally segregated mixed phase was found to sequester three times more lipids than the cholesteryl derivative (∼4–5 lipids per monomer of βDLC), and a quasipure LCD phase could be obtained with a 20% molar concentration of βDLC. When cooled below the main fluid-to-gel transition of DMPC-d54 the βDLC-rich phase stays fluid, coexisting with pure lipid in the gel state, and exhibits a sharp transition to a gel phase with frozen DMPC acyl chains at 12.5°C. No lateral phase separation was observed with partially or fully methylated βDLC, confirming that the stability of the segregated LCD phase was governed through hydrogen-bond-mediated intermolecular interactions between cyclodextrin headgroups at the membrane surface. As opposed to native βDLC, the methylated derivatives were found to strongly increase the orientational order of DMPC acyl chains as the temperature reaches the membrane fluid-to-gel transition. The results are discussed in

  4. Elderly’s Barriers and Requirements for Interactive TV

    Baunstrup, Mai; Larsen, Lars Bo


    This paper presents a study to identify the problems and experiences that the elderly have using interactive TV (iTV) services. The study comprised an in-depth qualitative interview series backed up with a questionnaire survey; a list with the elderly’s interaction problems and the reasons...... for wanting or not wanting to use iTV services was developed. These findings in turn lead to the formulation of a set of user requirements. The paper presents the studies carried out and the resulting design recommendations for iTV services for the elderly. The recommendations also take cognitive...... and as physiological impairments into consideration. The recommendations propose on increased ease-of-use, transparency, colour schemes, familiarity and a reduced set of iTV services for the elderly. Ultimately, designers should aim at customizable interface profiles for future iTV devices and services to better...

  5. LptO (PG0027) Is Required for Lipid A 1-Phosphatase Activity in Porphyromonas gingivalis W50.

    Rangarajan, Minnie; Aduse-Opoku, Joseph; Hashim, Ahmed; McPhail, Graham; Luklinska, Zofia; Haurat, M Florencia; Feldman, Mario F; Curtis, Michael A


    Porphyromonas gingivalis produces outer membrane vesicles (OMVs) rich in virulence factors, including cysteine proteases and A-LPS, one of the two lipopolysaccharides (LPSs) produced by this organism. Previous studies had suggested that A-LPS and PG0027, an outer membrane (OM) protein, may be involved in OMV formation. Their roles in this process were examined by using W50 parent and the ΔPG0027 mutant strains. Inactivation of PG0027 caused a reduction in the yield of OMVs. Lipid A from cells and OMVs of P. gingivalis W50 and the ΔPG0027 mutant strains were analyzed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Lipid A from W50 cells contained bis-P-pentaacyl, mono-P-pentaacyl, mono-P-tetraacyl, non-P-pentaacyl, and non-P-tetraacyl species, whereas lipid A from ΔPG0027 mutant cells contained only phosphorylated species; nonphosphorylated species were absent. MALDI-TOF/TOF tandem MS of mono-P-pentaacyl (m/z 1,688) and mono-P-tetraacyl (m/z 1,448) lipid A from ΔPG0027 showed that both contained lipid A 1-phosphate, suggesting that the ΔPG0027 mutant strain lacked lipid A 1-phosphatase activity. The total phosphatase activities in the W50 and the ΔPG0027 mutant strains were similar, whereas the phosphatase activity in the periplasm of the ΔPG0027 mutant was lower than that in W50, supporting a role for PG0027 in lipid A dephosphorylation. W50 OMVs were enriched in A-LPS, and its lipid A did not contain nonphosphorylated species, whereas lipid A from the ΔPG0027 mutant (OMVs and cells) contained similar species. Thus, OMVs in P. gingivalis are apparently formed in regions of the OM enriched in A-LPS devoid of nonphosphorylated lipid A. Conversely, dephosphorylation of lipid A through a PG0027-dependent process is required for optimal formation of OMVs. Hence, the relative proportions of nonphosphorylated and phosphorylated lipid A appear to be crucial for OMV formation in this organism.IMPORTANCE Gram

  6. Fasting is not routinely required for determination of a lipid profile

    Nordestgaard, Børge G.; Langsted, Anne; Mora, Samia


    AIMS: To critically evaluate the clinical implications of the use of non-fasting rather than fasting lipid profiles and to provide guidance for the laboratory reporting of abnormal non-fasting or fasting lipid profiles. METHODS AND RESULTS: Extensive observational data, in which random non......-fasting lipid profiles have been compared with those determined under fasting conditions, indicate that the maximal mean changes at 1-6 h after habitual meals are not clinically significant [+0.3 mmol/L (26 mg/dL) for triglycerides; -0.2 mmol/L (8 mg/dL) for total cholesterol; -0.2 mmol/L (8 mg/dL) for LDL...... concentrations vary similarly over time and are comparable in the prediction of cardiovascular disease. To improve patient compliance with lipid testing, we therefore recommend the routine use of non-fasting lipid profiles, while fasting sampling may be considered when non-fasting triglycerides >5 mmol/L (440 mg...

  7. Fasting Is Not Routinely Required for Determination of a Lipid Profile

    Nordestgaard, Børge Grønne; Langsted, Anne; Mora, Samia


    AIMS: To critically evaluate the clinical implications of the use of non-fasting rather than fasting lipid profiles and to provide guidance for the laboratory reporting of abnormal non-fasting or fasting lipid profiles. METHODS AND RESULTS: Extensive observational data, in which random non......-fasting lipid profiles have been compared with those determined under fasting conditions, indicate that the maximal mean changes at 1-6 h after habitual meals are not clinically significant [+0.3 mmol/L (26 mg/dL) for triglycerides; -0.2 mmol/L (8 mg/dL) for total cholesterol; -0.2 mmol/L (8 mg/dL) for LDL...... concentrations vary similarly over time and are comparable in the prediction of cardiovascular disease. To improve patient compliance with lipid testing, we therefore recommend the routine use of non-fasting lipid profiles, whereas fasting sampling may be considered when non-fasting triglycerides are >5 mmol...

  8. Interaction of antimicrobial peptide Plantaricin149a and four analogs with lipid bilayers and bacterial membranes

    José Luiz de Souza Lopes


    Full Text Available The amidated analog of Plantaricin149, an antimicrobial peptide from Lactobacillus plantarum NRIC 149, directly interacts with negatively charged liposomes and bacterial membranes, leading to their lysis. In this study, four Pln149-analogs were synthesized with different hydrophobic groups at their N-terminus with the goal of evaluating the effect of the modifications at this region in the peptide's antimicrobial properties. The interaction of these peptides with membrane models, surface activity, their hemolytic effect on red blood cells, and antibacterial activity against microorganisms were evaluated. The analogs presented similar action of Plantaricin149a; three of them with no hemolytic effect (< 5% until 0.5 mM, in addition to the induction of a helical element when binding to negative liposomes. The N-terminus difference between the analogs and Plantaricin149a retained the antibacterial effect on S. aureus and P. aeruginosa for all peptides (MIC50 of 19 µM and 155 µM to Plantaricin149a, respectively but resulted in a different mechanism of action against the microorganisms, that was bactericidal for Plantaricin149a and bacteriostatic for the analogs. This difference was confirmed by a reduction in leakage action for the analogs. The lytic activity of Plantaricin149a is suggested to be a result of the peptide-lipid interactions from the amphipathic helix and the hydrophobic residues at the N-terminus of the antimicrobial peptide.

  9. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes

    Foglia, Fabrizia; Lawrence, M. Jayne; Demeė, Bruno; Fragneto, Giovanna; Barlow, David


    Over the last 50 years or so, amphotericin has been widely employed in treating life-threatening systemic fungal infections. Its usefulness in the clinic, however, has always been circumscribed by its dose-limiting side-effects, and it is also now compromised by an increasing incidence of pathogen resistance. Combating these problems through development of new anti-fungal agents requires detailed knowledge of the drug's molecular mechanism, but unfortunately this is far from clear. Neutron diffraction studies of the drug's incorporation within lipid-sterol membranes have here been performed to shed light on this problem. The drug is shown to disturb the structures of both fungal and mammalian membranes, and co-localises with the membrane sterols in a manner consistent with trans-membrane pore formation. The differences seen in the membrane lipid ordering and in the distributions of the drug-ergosterol and drug-cholesterol complexes within the membranes are consistent with the drug's selectivity for fungal vs. human cells.

  10. Free energy of the edge of an open lipid bilayer based on the interactions of its constituent molecules.

    Asgari, Meisam; Biria, Aisa


    Lipid-bilayers are the fundamental constituents of the walls of most living cells and lipid vesicles, giving them shape and compartment. The formation and growing of pores in a lipid bilayer have attracted considerable attention from an energetic point of view in recent years. Such pores permit targeted delivery of drugs and genes to the cell, and regulate the concentration of various molecules within the cell. The formation of such pores is caused by various reasons such as changes in cell environment, mechanical stress or thermal fluctuations. Understanding the energy and elastic behaviour of a lipid-bilayer edge is crucial for controlling the formation and growth of such pores. In the present work, the interactions in the molecular level are used to obtain the free energy of the edge of an open lipid bilayer. The resulted free-energy density includes terms associated with flexural and torsional energies of the edge, in addition to a line-tension contribution. The line tension, elastic moduli, and spontaneous normal and geodesic curvatures of the edge are obtained as functions of molecular distribution, molecular dimensions, cutoff distance, and the interaction strength. These parameters are further analyzed by implementing a soft-core interaction potential in the microphysical model. The dependence of the elastic free-energy of the edge to the size of the pore is reinvestigated through an illustrative example, and the results are found to be in agreement with the previous observations.

  11. Scanning STED-FCS reveals spatiotemporal heterogeneity of lipid interaction in the plasma membrane of living cells

    Honigmann, Alf; Mueller, Veronika; Ta, Haisen; Schoenle, Andreas; Sezgin, Erdinc; Hell, Stefan W.; Eggeling, Christian


    The interaction of lipids and proteins plays an important role in plasma membrane bioactivity, and much can be learned from their diffusion characteristics. Here we present the combination of super-resolution STED microscopy with scanning fluorescence correlation spectroscopy (scanning STED-FCS, sSTED-FCS) to characterize the spatial and temporal heterogeneity of lipid interactions. sSTED-FCS reveals transient molecular interaction hotspots for a fluorescent sphingolipid analogue. The interaction sites are smaller than 80 nm in diameter and lipids are transiently trapped for several milliseconds in these areas. In comparison, newly developed fluorescent phospholipid and cholesterol analogues with improved phase-partitioning properties show more homogenous diffusion, independent of the preference for liquid-ordered or disordered membrane environments. Our results do not support the presence of nanodomains based on lipid-phase separation in the basal membrane of our cultured nonstimulated cells, and show that alternative interactions are responsible for the strong local trapping of our sphingolipid analogue.

  12. Amphiphilic Nature of New Antitubercular Drug Candidates and Their Interaction With Lipid Monolayer

    Hill, K.; Pénzes, C. B.; Vértessy, B. G.; Szabadka, Z.; Grolmusz, V.; Kiss, É.

    Tuberculosis remains a major problem throughout the world causing large number of deaths, more than that from any other single infectious disease [1]. The treatment of the chronic inflammatory caused by Mycobacterium tuberculosis (Mtb) requires prolonged chemotherapy often associated with unwanted side effects and developing resistant bacterium strains [2]. Introduction of new in silico identified drug candidates which are expected to be specific inhibitor of dUTPase [3] a vital enzyme of Mtb presents a novel approach in the combat with the disease. Three of those drug candidates - ligand 3, 4 and 69 - were compared in the present study considering their interfacial properties, polarity, amphipatic character and lipid affinity which are relevant in pharmaceutical function.

  13. Interaction of the C-terminal peptide of pulmonary surfactant protein B (SP-B with a bicellar lipid mixture containing anionic lipid.

    Alexander Sylvester

    Full Text Available The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63-78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. (2H NMR has been used to examine the effect of SP-B63-78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d 54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63-78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs.

  14. Interaction of the C-terminal peptide of pulmonary surfactant protein B (SP-B) with a bicellar lipid mixture containing anionic lipid.

    Sylvester, Alexander; MacEachern, Lauren; Booth, Valerie; Morrow, Michael R


    The hydrophobic lung surfactant SP-B is essential for respiration. SP-B promotes spreading and adsorption of surfactant at the alveolar air-water interface and may facilitate connections between the surface layer and underlying lamellar reservoirs of surfactant material. SP-B63-78 is a cationic and amphipathic helical peptide containing the C-terminal helix of SP-B. (2)H NMR has been used to examine the effect of SP-B63-78 on the phase behavior and dynamics of bicellar lipid dispersions containing the longer chain phospholipids DMPC-d 54 and DMPG and the shorter chain lipid DHPC mixed with a 3∶1∶1 molar ratio. Below the gel-to-liquid crystal phase transition temperature of the longer chain components, bicellar mixtures form small, rapidly reorienting disk-like particles with shorter chain lipid components predominantly found around the highly curved particle edges. With increasing temperature, the particles coalesce into larger magnetically-oriented structures and then into more extended lamellar phases. The susceptibility of bicellar particles to coalescence and large scale reorganization makes them an interesting platform in which to study peptide-induced interactions between lipid assemblies. SP-B63-78 is found to lower the temperature at which the orientable phase transforms to the more extended lamellar phase. The peptide also changes the spectrum of motions contributing to quadrupole echo decay in the lamellar phase. The way in which the peptide alters interactions between bilayered micelle structures may provide some insight into some aspects of the role of full-length SP-B in maintaining a functional surfactant layer in lungs.

  15. Lipid Raft is required for PSGL-1 ligation induced HL-60 cell adhesion on ICAM-1.

    Tingshuang Xu

    Full Text Available P-selectin glycoprotein ligand-1 (PSGL-1 and integrins are adhesion molecules that play critical roles in host defense and innate immunity. PSGL-1 mediates leukocyte rolling and primes leukocytes for integrin-mediated adhesion. However, the mechanism that PSGL-1 as a rolling receptor in regulating integrin activation has not been well characterized. Here, we investigate the function of lipid raft in regulating PSGL-1 induced β2 integrin-mediated HL-60 cells adhesion. PSGL-1 ligation with antibody enhances the β2 integrin activation and β2 integrin-dependent adhesion to ICAM-1. Importantly, with the treatment of methyl-β-cyclodextrin (MβCD, we confirm the role of lipid raft in regulating the activation of β2 integrin. Furthermore, we find that the protein level of PSGL-1 decreased in raft fractions in MβCD treated cells. PSGL-1 ligation induces the recruitment of spleen tyrosine kinase (Syk, a tyrosine kinase and Vav1 (the pivotal downstream effector of Syk signaling pathway involved in cytoskeleton regulation to lipid raft. Inhibition of Syk activity with pharmacologic inhibitor strongly reduces HL-60 cells adhesion, implicating Syk is crucial for PSGL-1 mediated β2 integrin activation. Taken together, we report that ligation of PSGL-1 on HL-60 cells activates β2 integrin, for which lipid raft integrity and Syk activation are responsible. These findings have shed new light on the mechanisms that connect leukocyte initial rolling with subsequent adhesion.

  16. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K


    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed.

  17. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model

    Kuntsche, Judith; Bunjes, Heike; Fahr, Alfred


    Various lipid nanoparticle formulations were investigated with respect to (trans)dermal drug delivery with special regard to the mechanism of their effects on human and an organotypic cell culture epidermis. Potential alterations of stratum corneum lipid domains were studied using fluorescence...... was visualized by fluorescence microscopy of cross sections of human epidermis after incubation with cubic and solid lipid nanoparticles. Corticosterone permeation was limited when applied in matrix-type lipid nanoparticles (fat emulsion, smectic and solid lipid nanoparticles). An adhesion of solid lipid...... studies and thermal analysis of human and cell culture epidermis indicate that surface lipids, which are not present to the same extent in the cell culture model than in human epidermis, seem to play an important role....

  18. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Corella, Dolores


    Full Text Available Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolim-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 514C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C metabolism; the interaction between polyunsaturated fatty acids (PUFA and the 75G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the 1131TC in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken.Las recomendaciones dietéticas actuales referentes al consumo de grasas en la dieta han sido realizadas sin tener en cuenta las posibles diferencias genéticas de las personas que podrían ser las responsables de las diferentes respuestas interindividuales que frecuentemente se observan ante la misma dieta. La presencia de variabilidad genética ha sido puesta de manifiesto para todos los genes relacionados con el metabolismo lipídico, por lo que existe un ingente número de genes y de variantes genéticas para ser incluidas en los estudios sobre interacciones dieta-genotipo en el ámbito específico del consumo de grasas y aceites. Se revisarán algunos ejemplos sobre interacciones grasa




    The interaction of clathrin with large unilamellar vesicles of various lipid compositions has been examined at neutral pH. Clathrin induces leakage of contents of vesicles that contain the acidic phospholipid phosphatidylserine. Leakage is greatly enhanced by the presence of a relatively minor

  20. Exploring Beta-Amyloid Protein Transmembrane Insertion Behavior and Residue-Specific Lipid Interactions in Lipid Bilayers Using Multiscale MD Simulations

    Qiu, Liming; Vaughn, Mark; Cheng, Kelvin


    Beta-amyloid (Abeta) interactions with neurons are linked to Alzheimer's. Using a multiscale MD simulation strategy that combines the high efficiency of phase space sampling of coarse-grained MD (CGD) and the high spatial resolution of Atomistic MD (AMD) simulations, we studied the Abeta insertion dynamics in cholesterol-enriched and -depleted lipid bilayers that mimic the neuronal membranes domains. Forward (AMD-CGD) and reverse (CGD-AMD) mappings were used. At the atomistic level, cholesterol promoted insertion of Abeta with high (folded) or low (unfolded) helical contents of the lipid insertion domain (Lys28-Ala42), and the insertions were stabilized by the Lys28 snorkeling and Ala42-anchoring to the polar lipid groups of the bilayer up to 200ns. After the forward mapping, the folded inserted state switched to a new extended inserted state with the Lys28 descended to the middle of the bilayer while the unfolded inserted state migrated to the membrane surface up to 4000ns. The two new states remained stable for 200ns at the atomistic scale after the reverse mapping. Our results suggested that different Abeta membrane-orientation states separated by free energy barriers can be explored by the multiscale MD more effectively than by Atomistic MD simulations alone. NIH RC1-GM090897-02

  1. Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction.

    Haviv, Haim; Habeck, Michael; Kanai, Ryuta; Toyoshima, Chikashi; Karlish, Steven J D


    Membrane proteins interact with phospholipids either via an annular layer surrounding the transmembrane segments or by specific lipid-protein interactions. Although specifically bound phospholipids are observed in many crystal structures of membrane proteins, their roles are not well understood. Na,K-ATPase is highly dependent on acid phospholipids, especially phosphatidylserine, and previous work on purified detergent-soluble recombinant Na,K-ATPase showed that phosphatidylserine stabilizes and specifically interacts with the protein. Most recently the phosphatidylserine binding site has been located between transmembrane segments of αTM8-10 and the FXYD protein. This paper describes stimulation of Na,K-ATPase activity of the purified human α1β1 or α1β1FXYD1 complexes by neutral phospholipids, phosphatidylcholine, or phosphatidylethanolamine. In the presence of phosphatidylserine, soy phosphatidylcholine increases the Na,K-ATPase turnover rate from 5483 ± 144 to 7552 ± 105 (p phospholipids shows that the stimulatory effect is structurally selective for neutral phospholipids with polyunsaturated fatty acyl chains, especially dilinoleoyl phosphatidylcholine or phosphatidylethanolamine. By contrast to phosphatidylserine, phosphatidylcholine or phosphatidylethanolamine destabilizes the Na,K-ATPase. Structural selectivity for stimulation of Na,K-ATPase activity and destabilization by neutral phospholipids distinguish these effects from the stabilizing effects of phosphatidylserine and imply that the phospholipids bind at distinct sites. A re-examination of electron densities of shark Na,K-ATPase is consistent with two bound phospholipids located between transmembrane segments αTM8-10 and TMFXYD (site A) and between TM2, -4, -6, -and 9 (site B). Comparison of the phospholipid binding pockets in E2 and E1 conformations suggests a possible mechanism of stimulation of Na,K-ATPase activity by the neutral phospholipid.

  2. Influence of SNPs in nutrient-sensitive candidate genes and gene-diet interactions on blood lipids

    Brahe, Lena Kirchner; Angquist, Lars; Larsen, Lesli Hingstrup


    -cholesterol, HDL-cholesterol and TAG after an 8-week low-energy diet (only main effect), and a 6-month ad libitum weight maintenance diet, with different contents of dietary protein or glycaemic index. After adjusting for multiple testing, a SNP-dietary protein interaction effect on TAG was identified for lipin 1...... (LPIN1) rs4315495, with a decrease in TAG of - 0·26 mmol/l per A-allele/protein unit (95 % CI - 0·38, - 0·14, P= 0·000043). In conclusion, we investigated SNP-diet interactions for blood lipid profiles for 240 SNPs in twenty-four candidate genes, selected for their involvement in lipid metabolism...... pathways, and identified one significant interaction between LPIN1 rs4315495 and dietary protein for TAG concentration....

  3. Interactions of the baicalin and baicalein with bilayer lipid membranes investigated by cyclic voltammetry and UV-Vis spectroscopy.

    Zhang, Ying; Wang, Xuejing; Wang, Lei; Yu, Miao; Han, Xiaojun


    The baicalin and baicalein are the major flavonoids found in Radix Scutellariae, an essential herb in traditional Chinese medicine for thousands of years. The interactions of the baicalin and baicalein with lipid bilayer membranes were studied using cyclic voltammetry and UV-Vis spectroscopy. The thickness d of supported bilayer lipid membranes was calculated as d=4.59(±0.36) nm using AC impedance spectroscopy. The baicalein interacted with egg PC bilayer membranes in a dose-dependent manner. The responses of K3Fe(CN)6 on lipid bilayer membrane modified Pt electrode linearly increased in a concentration range of baicalein from 6.25μM to 25μM with a detection limit of 0.1μM and current-concentration sensitivity of 0.11(±0.01) μA/μM, and then reached a plateau from 25μM to 50μM. However the baicalin showed much weaker interactions with egg PC bilayer membranes. UV-Vis spectroscopy also confirmed that the baicalein could interact with egg PC membranes noticeably, but the interaction of baicalin with membranes was hard to be detected. The results provide useful information on understanding the mechanism of action of Radix Scutellariae in vivo. © 2013.

  4. Lung surfactant protein A (SP-A) interactions with model lung surfactant lipids and an SP-B fragment.

    Sarker, Muzaddid; Jackman, Donna; Booth, Valerie


    Surfactant protein A (SP-A) is the most abundant protein component of lung surfactant, a complex mixture of proteins and lipids. SP-A performs host defense activities and modulates the biophysical properties of surfactant in concerted action with surfactant protein B (SP-B). Current models of lung surfactant mechanism generally assume SP-A functions in its octadecameric form. However, one of the findings of this study is that when SP-A is bound to detergent and lipid micelles that mimic lung surfactant phospholipids, it exists predominantly as smaller oligomers, in sharp contrast to the much larger forms observed when alone in water. These investigations were carried out in sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), lysomyristoylphosphatidylcholine (LMPC), lysomyristoylphosphatidylglycerol (LMPG), and mixed LMPC + LMPG micelles, using solution and diffusion nuclear magnetic resonance (NMR) spectroscopy. We have also probed SP-A's interaction with Mini-B, a biologically active synthetic fragment of SP-B, in the presence of micelles. Despite variations in Mini-B's own interactions with micelles of different compositions, SP-A is found to interact with Mini-B in all micelle systems and perhaps to undergo a further structural rearrangement upon interacting with Mini-B. The degree of SP-A-Mini-B interaction appears to be dependent on the type of lipid headgroup and is likely mediated through the micelles, rather than direct binding.

  5. Lipid raft/caveolae signaling is required for Cryptococcus neoformans invasion into human brain microvascular endothelial cells

    Long Min


    Full Text Available Abstract Background Cryptococcus neoformans has a predilection for central nervous system infection. C. neoformans traversal of the blood brain barrier, composed of human brain microvascular endothelial cells (HBMEC, is the crucial step in brain infection. However, the molecular mechanism of the interaction between Cryptococcus neoformans and HBMEC, relevant to its brain invasion, is still largely unknown. Methods In this report, we explored several cellular and molecular events involving the membrane lipid rafts and caveolin-1 (Cav1 of HBMEC during C. neoformans infection. Immunofluorescence microscopy was used to examine the roles of Cav1. The knockdown of Cav1 by the siRNA treatment was performed. Phosphorylation of Cav1 relevant to its invasion functions was investigated. Results We found that the host receptor CD44 colocalized with Cav1 on the plasma membrane, and knockdown of Cav1 significantly reduced the fungal ability to invade HBMEC. Although the CD44 molecules were still present, HBMEC membrane organization was distorted by Cav1 knockdown. Concomitantly, knockdown of Cav1 significantly reduced the fungal crossing of the HBMEC monolayer in vitro. Upon C. neoformans engagement, host Cav1 was phosphorylated in a CD44-dependent manner. This phosphorylation was diminished by filipin, a disrupter of lipid raft structure. Furthermore, the phosphorylated Cav1 at the lipid raft migrated inward to the perinuclear localization. Interestingly, the phospho-Cav1 formed a thread-like structure and colocalized with actin filaments but not with the microtubule network. Conclusion These data support that C. neoformans internalization into HBMEC is a lipid raft/caveolae-dependent endocytic process where the actin cytoskeleton is involved, and the Cav1 plays an essential role in C. neoformans traversal of the blood-brain barrier.

  6. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Mônica S Freitas

    Full Text Available The Ebola fusion peptide (EBO₁₆ is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM, a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs, but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  7. Calcium adsorption and displacement: characterization of lipid monolayers and their interaction with membrane-active peptides/proteins

    Gutsmann Thomas


    Full Text Available Abstract Background The first target of antimicrobial peptides (AMPs is the bacterial membrane. In the case of Gram-negative bacteria this is the outer membrane (OM, the lipid composition of which is extremely asymmetric: Whereas the inner leaflet is composed of a phospholipid mixture, the outer leaflet is made up solely from lipopolysaccharides (LPSs. LPS, therefore, represents the first target of AMPs. The binding and intercalation of polycationic AMPs is driven by the number and position of negatively charged groups of the LPS. Also, proteins other than cationic AMPs can interact with LPS, e.g. leading eventually to a neutralization of the endotoxic effects of LPS. We compared different biophysical techniques to gain insight into the properties of the electrical surface potentials of lipid monolayers and aggregates composed of LPSs and various phospholipids and their interaction with peptides and proteins. Results The net negative charge calculated from the chemical structure of the phospholipid and LPS molecules is linearly correlated with the adsorption of calcium to two-dimensional lipid monolayers composed of the respective lipids. However, the ζ-potentials determined by the electrophoretic mobility of LPS aggregates can only be interpreted by assuming a dependence of the plane of shear on the number of saccharides and charged groups. Various peptides and proteins were able to displace calcium adsorbed to monolayers. Conclusion To characterize the electrical properties of negatively charged phospholipids and LPSs and their electrostatic interaction with various polycationic peptides/proteins, the adsorption of calcium to and displacement from lipid monolayers is a suitable parameter. Using the calcium displacement method, the binding of peptides to monolayers can be determined even if they do not intercalate. The interpretation of ζ-potential data is difficulty for LPS aggregates, because of the complex three-dimensional structure of

  8. Thioredoxin interacting protein mediates lipid-induced impairment of glucose uptake in skeletal muscle.

    Mandala, Ashok; Das, Nabanita; Bhattacharjee, Sudarshan; Mukherjee, Bidisha; Mukhopadhyay, Satinath; Roy, Sib Sankar


    Insulin resistance (IR) is an important determinant of type-2 diabetes mellitus (T2DM). Free fatty acids (FFAs) induce IR by various mechanisms. A surfeit of circulating FFA leads to intra-myocellular lipid accumulation that induces mitochondrial ROS generation and worsens IR. However, the molecular mechanisms behind are unclear. We identified thioredoxin interacting protein (TxNIP), which is overexpressed in T2DM, to be a promoter of ROS-induced IR. We observed upregulation of TxNIP upon palmitate treatment in skeletal muscle cells that led to ROS generation and Glut-4 downregulation resulting in impaired glucose-uptake. FFA-induced overexpression of TxNIP gene was mediated through the activation of its bona-fide trans activator, ChREBP. Further, Palmitate-induced impairment in AMPK-SIRT-1 pathway resulted in overexpression of ChREBP. While Fenofibrate, abrogated PA-induced TxNIP expression and ROS generation in skeletal muscle cells, Saroglitazar, a dual PPARα/γ-agonist, not only inhibited PA-induced TXNIP expression but also led to greater improvement in glucose uptake. Taken together, TxNIP appears to be an important factor in FFA-induced ROS generation and IR in skeletal muscle cells, which can be modulated for the management of this complex disorder. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Fluorescence formation from the interaction of DNA with lipid oxidation degradation products.

    Frankel, E N; Neff, W E; Brooks, D D; Fujimoto, K


    To clarify the mechanism of fluorescence formation between DNA and lipid degradation products in the presence of ferric chloride and ascorbic acid, a number of carbonyl compounds and decomposition products of pure methyl linolenate hydroperoxides were examined. Keto derivatives of methyl ricinoleate, linoleate, and oleate, alkanals and 2-alkenals produced little or no fluorescence with DNA in the presence of ferric chloride-ascorbic acid. 2,4-Alkadienals were more active and 2,4,7-decatrienal was the most active. Mixtures of volatile aldehydes prepared from linolenate hydroperoxide decomposed either thermally or with iron and ascorbate had the same activity as 2,4,7-decatrienal. Higher molecular-weight products from the decomposition of methyl linolenate hydroperoxides showed relatively low activity. beta-Carotene, alpha-tocopherol and other antioxidants effectively reduced the amount of fluorescence formed by linolenate hydroperoxides. The results suggest that, in addition to hydroperoxide decomposition products, singlet oxygen and/or free radical species contribute significantly to the fluorescence formed from the interaction of methyl linolenate hydroperoxides with DNA in the presence of ferric chloride and ascorbic acid.

  10. Modulating effect of lipid bilayer-carotenoid interactions on the property of liposome encapsulation.

    Xia, Shuqin; Tan, Chen; Zhang, Yating; Abbas, Shabbar; Feng, Biao; Zhang, Xiaoming; Qin, Fang


    Liposomes have become an attractive alternative to encapsulate carotenoids to improve their solubility, stability and bioavailability. The interaction mechanism of carotenoid with lipid bilayer is one of the major concerns in improving the delivery efficiency of liposomes. In this study, the microstructure and carotenoid encapsulation efficiency of liposomes composed of native phospholipid (egg yolk phosphatidylcholine, EYPC) and nonionic surfactant Tween 80 were investigated by atomic force microscopy, dynamic light scattering, and Raman spectroscopy, respectively. Subsequently, the effects of carotenoid incorporation on the physical properties of liposomal membrane were performed by Raman spectroscopy, fluorescence polarization, and electron paramagnetic resonance. Results showed that the incorporation of carotenoids affected the liposomes morphology, size and size distribution to various extents. Analysis on the Raman characteristic peaks of carotenoids revealed that lutein exhibited the strongest incorporating ability into liposomes, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, it was demonstrated that carotenoids modulated the dynamics, structure and hydrophobicity of liposomal membrane, highly depending on their molecular structures and incorporated concentration. These modulations were closely correlated with the stabilization of liposomes, including mediating particle aggregation and fusion. These findings should guide the rationale designing for liposomal encapsulation technology to efficiently deliver carotenoids in pharmaceutics, nutraceuticals and functional foods.

  11. Molecular dynamics simulations on the interaction of the transmembrane NavAb channel with cholesterol and lipids in the membrane.

    Suwattanasophon, Chonticha; Wolschann, Peter; Faller, Roland


    Increased cholesterol levels are associated with multiple pathological conditions. In this work, molecular dynamics simulations were applied to observe the influence of membrane cholesterol levels on a voltage-gated sodium channel. Different lipid compositions are modeled around the channel to obtain information about the possible effects by which cholesterol influences NavAb channels. Cholesterol was normally not directly interacting with either the closed or inactivated conformation. Cholesterol increased lipid packing implying that it plays a crucial role in restricting lipid movement in the region around 1 nm of the channel in a 1-palmitoyl-2-oeleoyl phosphatidylcholine matrix. Our results provide the first computational indication of an indirect modulation of NavAb channels by membrane cholesterol.

  12. Tetra- and Penta-Cyclic Triterpenes Interaction with Lipid Bilayer Membrane: A Structural Comparative Study.

    Abboud, Rola; Charcosset, Catherine; Greige-Gerges, Hélène


    The effect of tetracyclic (cortisol, prednisolone, and 9-fluorocortisol acetate) and pentacyclic (uvaol and erythrodiol) triterpenes (TTPs) on the fluidity of dipalmitoyl phosphatidyl choline (DPPC) liposome membrane was investigated by differential scanning calorimetry, Raman spectroscopy, and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Liposomes were prepared in the absence and presence of TTPs at molar ratios DPPC:TTP 100:1, 100:2.5, and 100:10. All the studied TTPs abolished the pre-transition and modified the intensity of the Raman peak at 715 cm(-1) proving the interaction of TTP molecules with the choline head group of phospholipids. An increase in the Raman height intensity ratios of the peaks I 2935/2880, I 2844/2880, and I 1090/1130, giving information about the ratio disorder/order of the alkyl chains, and a decrease of the main transition temperature demonstrated the interaction of TTPs with the alkyl chains. The tetracyclic TTPs produced broadening of the phase transition profile. Besides, a scarcely splitting of the main transition peak was obtained with prednisolone and 9-fluorocortisol acetate. The results of fluorescence depolarization of DPH showed that the studied molecules fluidized the liposomal membrane at 25, 41, and 50 °C. Pentacyclic TTPs, being more hydrophobic than tetracyclic ones, demonstrated higher fluidizing effect than tetracyclic TTPs in the liquid crystalline phase suggesting a deeper incorporation in the lipid bilayer. The presence of a free polar head group at the ring D seems to control the TTP incorporation in the bilayer and consequently its effect on the membrane fluidity.

  13. Pik3r1 Is Required for Glucocorticoid-Induced Perilipin 1 Phosphorylation in Lipid Droplet for Adipocyte Lipolysis.

    Kuo, Taiyi; Chen, Tzu-Chieh; Lee, Rebecca A; Nguyen, Nguyen Huynh Thao; Broughton, Augusta E; Zhang, Danyun; Wang, Jen-Chywan


    Glucocorticoids promote lipolysis in white adipose tissue (WAT) to adapt to energy demands under stress, whereas superfluous lipolysis causes metabolic disorders, including dyslipidemia and hepatic steatosis. Glucocorticoid-induced lipolysis requires the phosphorylation of cytosolic hormone-sensitive lipase (HSL) and perilipin 1 (Plin1) in the lipid droplet by protein kinase A (PKA). We previously identified Pik3r1 (also called p85α) as a glucocorticoid receptor target gene. Here, we found that glucocorticoids increased HSL phosphorylation, but not Plin1 phosphorylation, in adipose tissue-specific Pik3r1-null (AKO) mice. Furthermore, in lipid droplets, the phosphorylation of HSL and Plin1 and the levels of catalytic and regulatory subunits of PKA were increased by glucocorticoids in wild-type mice. However, these effects were attenuated in AKO mice. In agreement with reduced WAT lipolysis, glucocorticoid- initiated hepatic steatosis and hypertriglyceridemia were improved in AKO mice. Our data demonstrated a novel role of Pik3r1 that was independent of the regulatory function of phosphoinositide 3-kinase in mediating the metabolic action of glucocorticoids. Thus, the inhibition of Pik3r1 in adipocytes could alleviate lipid disorders caused by excess glucocorticoid exposure. © 2017 by the American Diabetes Association.

  14. Perillyl alcohol: Dynamic interactions with the lipid bilayer and implications for long-term inhalational chemotherapy for gliomas

    Clovis Orlando da Fonseca


    Full Text Available Background: Gliomas display a high degree of intratumor heterogeneity, including changes in physiological parameters and lipid composition of the plasma membrane, which may contribute to the development of drug resistance. Biophysical interactions between therapeutic agents and the lipid components at the outer plasma membrane interface are critical for effective drug uptake. Amphipathic molecules such as perillyl alcohol (POH have a high partition coefficient and generally lead to altered lipid acyl tail dynamics near the lipid-water interface, impacting the lipid bilayer structure and transport dynamics. We therefore hypothesized that glioma cells may display enhanced sensitivity to POH-induced apoptosis due to plasma membrane alterations, while in non-transformed cells, POH may be expelled through thermal agitation. Methods: Interactions between POH and the plasma membrane was studied using molecular dynamics simulations. In this phase I/II trial, we set up to evaluate the clinical effectiveness of long-term (up to 5 years daily intranasal administration of POH in a cohort of 19 patients with low-grade glioma (LGG. Importantly, in a series of clinical studies previously published by our group, we have successfully established that intranasal delivery of POH to patients with malignant gliomas is a viable and effective therapeutic strategy. Results: POH altered the plasma membrane potential of the lipid bilayer of gliomas and prolonged intranasal administration of POH in a cohort of patients with LGG halted disease progression with virtually no toxicity. Conclusion: Altogether, the results suggest that POH-induced alterations of the plasma membrane might be contributing to its therapeutic efficacy in preventing LGG progression.

  15. Molecular interactions of plant oil components with stratum corneum lipids correlate with clinical measures of skin barrier function.

    Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M


    Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34 ). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. © 2013. Johnson & Johnson Consumer Companies Inc.. Experimental Dermatology published by John Wiley & Sons Ltd.

  16. Determining robot actions for tasks requiring sensor interaction

    Budenske, John; Gini, Maria


    The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system.

  17. Biomechanics and thermodynamics of nanoparticle interactions with plasma and endosomal membrane lipids in cellular uptake and endosomal escape.

    Peetla, Chiranjeevi; Jin, Shihua; Weimer, Jonathan; Elegbede, Adekunle; Labhasetwar, Vinod


    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(D,L-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  18. Requirement of cellular DDX3 for hepatitis C virus replication is unrelated to its interaction with the viral core protein.

    Angus, Allan G N; Dalrymple, David; Boulant, Steeve; McGivern, David R; Clayton, Reginald F; Scott, Martin J; Adair, Richard; Graham, Susan; Owsianka, Ania M; Targett-Adams, Paul; Li, Kui; Wakita, Takaji; McLauchlan, John; Lemon, Stanley M; Patel, Arvind H


    The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core-DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.

  19. E-cadherin interactions are required for Langerhans cell differentiation

    Mayumi, Nobuko; Watanabe, Eri; Norose, Yoshihiko; Watari, Eiji; Kawana, Seiji; Geijtenbeek, Teunis B H; Takahashi, Hidemi


    Human skin contains the following two distinct DC subsets: (i) Langerhans cells (LCs), expressing Langerin but not DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN), are predominantly localized in the epidermis; and (ii) dermal DCs, expressing DC-SIGN but not Langerin, are observed mainly in the dermis. It is not known whether localization in the epidermis provides cues for LC differentiation. Here, we show that E-cadherin expressed by epidermal keratinocytes (KCs) is crucial for differentiation of LCs. Monocytes differentiated into LC-like cells in presence of IL-4, GM-CSF, and TGF-β1. However, these LC-like cells expressed not only Langerin but also DC-SIGN. Notably, co-culturing of these LC-like cells with KCs expressing E-cadherin or recombinant E-cadherin strongly decreased expression of DC-SIGN and further induced a phenotype similar to purified epidermal LCs. Moreover, pretreatment of LC-like cells with anti-E-cadherin-specific antibody completely abolished their Langerin expression, indicating the requirement of E-cadherin–E-cadherin interactions for the differentiation into Langerin+ cells. These findings suggest that E-cadherin expressed by KCs provide environmental cues that induce differentiation of LCs in the epidermis. PMID:23135957

  20. Evidence from NMR interaction studies challenges the hypothesis of direct lipid transfer from L-FABP to malaria sporozoite protein UIS3.

    Favretto, Filippo; Assfalg, Michael; Molinari, Henriette; D'Onofrio, Mariapina


    UIS3 is a malaria parasite protein essential for liver stage development of Plasmodium species, presumably localized to the membrane of the parasitophorous vacuole formed in infected cells. It has been recently proposed that the soluble domain of UIS3 interacts with the host liver fatty acid binding protein (L-FABP), providing the parasite with a pathway for importing exogenous lipids required for its rapid growth. This finding may suggest novel strategies for arresting parasite development. In this study, we have investigated the interaction between human L-FABP and the soluble domain of Plasmodium falciparum UIS3 by NMR spectroscopy. The amino acid residue-specific analysis of (1)H,(15) N-2D NMR spectra excluded the occurrence of a direct interaction between L-FABP (in its unbound and oleate-loaded forms) and Pf-UIS3. Furthermore, the spectrum of Pf-UIS3 was unchanged when oleate or phospholipids were added. The present investigation entails a reformulation of the current model of host-pathogen lipid transfer, possibly redirecting research for early intervention against malaria.

  1. Coarse-grained modeling of interactions of lipid bilayers with supports

    Hoopes, Matthew I.; Deserno, Markus; Longo, Margie L.; Faller, Roland


    We characterize the differences between supported and unsupported lipid bilayer membranes using a mesoscopic simulation model and a simple particle-based realization for a flat support on to which the lipids are adsorbed. We show that the nanometer roughness of the support affects membrane binding strength very little. We then compare the lipid distributions and pressure profiles of free and supported membranes. The surface localization of the proximal leaflet breaks the symmetry seen in a free bilayer, and we quantify the entropic penalty for binding and the increased lateral compression modulus.

  2. Lipid droplet remodeling and interaction with mitochondria in mouse brown adipose tissue during cold treatment.

    Yu, Jinhai; Zhang, Shuyan; Cui, Liujuan; Wang, Weiyi; Na, Huimin; Zhu, Xiaotong; Li, Linghai; Xu, Guoheng; Yang, Fuquan; Christian, Mark; Liu, Pingsheng


    Brown adipose tissue (BAT) maintains animal body temperature by non-shivering thermogenesis, which is through uncoupling protein 1 (UCP1) that uncouples oxidative phosphorylation and utilizes β-oxidation of fatty acids released from triacylglycerol (TAG) in lipid droplets (LDs). Increasing BAT activity and "browning" other tissues such as white adipose tissue (WAT) can enhance the expenditure of excess stored energy, and in turn reduce prevalence of metabolic diseases. Although many studies have characterized the biology of BAT and brown adipocytes, BAT LDs especially their activation induced by cold exposure remain to be explored. We have isolated LDs from mouse interscapular BAT and characterized the full proteome using mass spectrometry. Both morphological and biochemical experiments showed that the LDs could tightly associate with mitochondria. Under cold treatment mouse BAT started expressing LD structure protein PLIN-2/ADRP and increased expression of PLIN1. Both hormone sensitive lipase (HSL) and adipose TAG lipase (ATGL) were increased in LDs. In addition, isolated BAT LDs showed increased levels of the mitochondrial protein UCP1, and prolonged cold exposure could stimulate BAT mitochondrial cristae biogenesis. These changes were in agreement with the data from transcriptional analysis. Our results provide the BAT LD proteome for the first time and show that BAT LDs facilitate heat production by coupling increasing TAG hydrolysis through recruitment of ATGL and HSL to the organelle and expression of another LD resident protein PLIN2/ADRP, as well as by tightly associating with activated mitochondria. These findings will benefit the study of BAT activation and the interaction between LDs and mitochondria.

  3. Novel methods for studying lipids and lipases and their mutual interaction at interfaces. Part 1. Atomic force microscopy

    Balashev, K.; Jensen, T.R.; Kjær, K.;


    Mono-layers of lipids and their interaction with surface active enzymes (lipases) have been studied for more than a century. During the past decade new insight into this area has been obtained due to the development of scanning probe microscopy. This novel method provides direct microscopic...... on lipase hydrolysis and kinetics investigated in situ using AFM. (C) 2001 Societe francaise de biochimie et biologie moleculaire/Editions scientifiques et medicales Elsevier SAS. All rights reserved....

  4. Differing modes of interaction between monomeric Aβ(1-40) peptides and model lipid membranes: an AFM study.

    Sheikh, Khizar; Giordani, Cristiano; McManus, Jennifer J; Hovgaard, Mads Bruun; Jarvis, Suzanne P


    Membrane interactions with β-amyloid peptides are implicated in the pathology of Alzheimer's disease and cholesterol has been shown to be key modulator of this interaction, yet little is known about the mechanism of this interaction. Using atomic force microscopy, we investigated the interaction of monomeric Aβ(1-40) peptides with planar mica-supported bilayers composed of DOPC and DPPC containing varying concentrations of cholesterol. We show that below the bilayer melting temperature, Aβ monomers adsorb to, and assemble on, the surface of DPPC bilayers to form layers that grow laterally and normal to the bilayer plane. Above the bilayer melting temperature, we observe protofibril formation. In contrast, in DOPC bilayers, Aβ monomers exhibit a detergent-like action, forming defects in the bilayer structure. The kinetics of both modes of interaction significantly increases with increasing membrane cholesterol content. We conclude that the mode and rate of the interaction of Aβ monomers with lipid bilayers are strongly dependent on lipid composition, phase state and cholesterol content.

  5. Interactions of Lipid Genetic Risk Scores with Estimates of Metabolic Health in a Danish Population

    Justesen, Johanne M; Allin, Kristine H; Sandholt, Camilla H


    Background—There are several well-established lifestyle factors influencing dyslipidemia and currently; 157 genetic susceptibility loci have been reported to be associated with serum lipid levels at genome-wide statistical significance. However, the interplay between lifestyle risk factors...... and these susceptibility loci has not been fully elucidated. We tested whether genetic risk scores (GRS) of lipid-associated single nucleotide polymorphisms associate with fasting serum lipid traits and whether the effects are modulated by lifestyle factors or estimates of metabolic health. Methods and Results—The single......-cholesterol, high-density lipoprotein-cholesterol, or triglyceride, 4 weighted GRS were constructed. In a cross-sectional design, we investigated whether the effect of these weighted GRSs on lipid levels were modulated by diet, alcohol consumption, physical activity, and smoking or the individual metabolic health...

  6. Altered lipid composition in cortical lipid rafts occurs at early stages of sporadic Alzheimer's disease and facilitates APP/BACE1 interactions.

    Fabelo, Noemí; Martín, Virginia; Marín, Raquel; Moreno, Dolores; Ferrer, Isidre; Díaz, Mario


    The presence of lipid alterations in lipid rafts from the frontal cortex in late stages of Alzheimer's disease (AD) has been recently demonstrated. Here, we have isolated and analyzed the lipid composition of lipid rafts from different brain areas from control and AD subjects at initial neuropathologic stages. We have observed that frontal cortex lipid rafts are profoundly altered in AD brains from the earliest stages of AD, namely AD I/II. These changes in the lipid matrix of lipid rafts affected both lipid classes and fatty acids and were also detected in the entorhinal cortex, but not in the cerebellum from the same subjects. Paralleling these changes, lipid rafts from AD frontal and entorhinal cortices displayed higher anisotropy for environment-sensitive probes, indicating that lipid changes in AD lipid rafts increased membrane order and viscosity in these domains. The pathophysiological consequences of these alterations in the development and progression of AD were strengthened by the significant, and specific, accumulation of β-secretase within the lipid rafts of AD subjects even at the earliest stages. Our results provide a mechanistic connection between lipid alterations in these microdomains and amyloidogenic processing of amyloid precursor protein.

  7. Elderly’s Barriers and Requirements for Interactive TV

    Baunstrup, Mai; Larsen, Lars Bo


    This paper presents a study to identify the problems and experiences that the elderly have using interactive TV (iTV) services. The study comprised an in-depth qualitative interview series backed up with a questionnaire survey; a list with the elderly’s interaction problems and the reasons...

  8. Interactions of a lytic peptide with supported lipid bilayers investigated by time-resolved evanescent wave-induced fluorescence spectroscopy

    Rapson, Andrew C.; Gee, Michelle L.; Clayton, Andrew H. A.; Smith, Trevor A.


    We report investigations, using time-resolved and polarised evanescent wave-induced fluorescence methods, into the location, orientation and mobility of a fluorescently labelled form of the antimicrobial peptide, melittin, when it interacts with vesicles and supported lipid bilayers (SLBs). This melittin analogue, termed MK14-A430, was found to penetrate the lipid headgroup structure in pure, ordered-phase DPPC membranes but was located near the headgroup-water region when cholesterol was included. MK14-A430 formed lytic pores in SLBs, and an increase in pore formation with incubation time was observed through an increase in polarity and mobility of the probe. When associated with the Cholesterol-containing SLB, the probe displayed polarity and mobility that indicated a population distributed near the lipid headgroup-water interface with MK14-A430 arranged predominantly in a surface-aligned state. This study indicates that the lytic activity of MK14-A430 occurred through a pore-forming mechanism. The lipid headgroup environment experienced by the fluorescent label, where MK14-A430 displayed pore information, indicated that pore formation was best described by the toroidal pore model.

  9. FadD Is Required for Utilization of Endogenous Fatty Acids Released from Membrane Lipids ▿ †

    Pech-Canul, Ángel; Nogales, Joaquina; Miranda-Molina, Alfonso; Álvarez, Laura; Geiger, Otto; Soto, María José; López-Lara, Isabel M.


    FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S. meliloti fadD mutants accumulated a mixture of free fatty acids during the stationary phase of growth. The composition of the free fatty acid pool and the results obtained after specific labeling of esterified fatty acids with a Δ5-desaturase (Δ5-Des) were in agreement with membrane phospholipids being the origin of the released fatty acids. Escherichia coli fadD mutants also accumulated free fatty acids released from membrane lipids in the stationary phase. This phenomenon did not occur in a mutant of E. coli with a deficient FadL fatty acid transporter, suggesting that the accumulation of fatty acids in fadD mutants occurs inside the cell. Our results indicate that, besides the activation of exogenous LCFA, in bacteria FadD plays a major role in the activation of endogenous fatty acids released from membrane lipids. Furthermore, expression analysis performed with S. meliloti revealed that a functional FadD is required for the upregulation of genes involved in fatty acid degradation and suggested that in the wild-type strain, the fatty acids released from membrane lipids are degraded by β-oxidation in the stationary phase of growth. PMID:21926226

  10. Studies on the interactions between parabens and lipid membrane components in monolayers at the air/aqueous solution interface.

    Flasiński, Michał; Gawryś, Maciej; Broniatowski, Marcin; Wydro, Paweł


    The interactions between parabens (PBs) and lipid components of mammalian and bacterial cell membranes were investigated in model systems of Langmuir monolayers. Me-, Et-, Pr- and Bu-paraben studied in this paper are frequently applied as cosmetics and food preservatives, since they possess broad antimicrobial activity. The mode of PB action is connected with their incorporation into the membrane of bacterial organisms, however; it is not known what is the role of the respective lipid species in this mechanism. This problem is crucial to understand the differences in paraben activity toward individual microorganisms and to shed the light onto the problem of PB cytotoxicity reported in studies on mammalian cells. In this paper, the mentioned aspects were investigated with application of the Langmuir monolayer technique complemented with BAM and GIXD. Our experiments revealed that the influence of PBs depends on their chemical structure, solution concentration and on the class of lipid. The strongest modification of the monolayer characteristics, leading to its collapse at low surface pressure, occurred in the presence of BuPB, having the largest chain. PBs interact preferentially with the monolayers possessing low degree of condensation, whereas for LC state, the effect was weaker and observed only as modification of the 2D unit cells. In the model systems, PBs interact with phospholipids characteristic for mammalian membranes (phosphatidylcholine) stronger than with bacterial (phosphatidylglycerol and cardiolipin). This strong influence of parabens on the model systems composed of animal lipids may explain cytotoxic activity of these preservatives. Copyright © 2016 Elsevier B.V. All rights reserved

  11. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D., E-mail:


    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.

  12. The interaction of mefloquine hydrochloride with cell membrane models at the air-water interface is modulated by the monolayer lipid composition.

    Goto, Thiago Eichi; Caseli, Luciano


    The antiparasitic properties of antiparasitic drugs are believed to be associated with their interactions with the protozoan membrane, encouraging research on the identification of membrane sites capable of drug binding. In this study, we investigated the interaction of mefloquine hydrochloride, known to be effective against malaria, with cell membrane models represented by Langmuir monolayers of selected lipids. It is shown that even small amounts of the drug affect the surface pressure-area isotherms as well as surface vibrational spectra of some lipid monolayers, which points to a significant interaction. The effects on the latter depend on the electrical charge of the monolayer-forming molecules, with the drug activity being particularly distinctive for negatively charged lipids. Therefore, the lipid composition of the monolayer modulates the interaction with the lipophilic drug, which may have important implications in understanding how the drug acts on specific sites of the protozoan membrane.

  13. Protein-membrane interaction: effect of myelin basic protein on the dynamics of oriented lipids

    Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P


    We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L-{alpha}-phosphatidic acid (DMPA) oriented membranes. The investigation has been carried out using several complementary experimental methods to provide a detailed characterization of the proteo-lipid complexes. In particular, taking advantage of the power of the quasi-elastic neutron scattering (QENS) technique as optimal probe in biology, a significant effect is suggested to be induced by MBP on the anisotropy of lipid dynamics across the liquid-gel phase transition. Thus, the enhancement of the spatially restricted, vertical translation motion of DMPA is suggested to be the main responsible for the increased contribution of the out of plane lipid dynamics observed at 340 K.

  14. Protein membrane interaction: effect of myelin basic protein on the dynamics of oriented lipids

    Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.


    We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L-α-phosphatidic acid (DMPA) oriented membranes. The investigation has been carried out using several complementary experimental methods to provide a detailed characterization of the proteo-lipid complexes. In particular, taking advantage of the power of the quasi-elastic neutron scattering (QENS) technique as optimal probe in biology, a significant effect is suggested to be induced by MBP on the anisotropy of lipid dynamics across the liquid-gel phase transition. Thus, the enhancement of the spatially restricted, vertical translation motion of DMPA is suggested to be the main responsible for the increased contribution of the out of plane lipid dynamics observed at 340 K.

  15. Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis.

    Silvan Türkcan

    Full Text Available The statistical properties of membrane protein random walks reveal information on the interactions between the proteins and their environments. These interactions can be included in an overdamped Langevin equation framework where they are injected in either or both the friction field and the potential field. Using a Bayesian inference scheme, both the friction and potential fields acting on the ε-toxin receptor in its lipid raft have been measured. Two types of events were used to probe these interactions. First, active events, the removal of cholesterol and sphingolipid molecules, were used to measure the time evolution of confining potentials and diffusion fields. Second, passive rare events, de-confinement of the receptors from one raft and transition to an adjacent one, were used to measure hopping energies. Lipid interactions with the ε-toxin receptor are found to be an essential source of confinement. ε-toxin receptor confinement is due to both the friction and potential field induced by cholesterol and sphingolipids. Finally, the statistics of hopping energies reveal sub-structures of potentials in the rafts, characterized by small hopping energies, and the difference of solubilization energy between the inner and outer raft area, characterized by higher hopping energies.

  16. Continuous flow atomic force microscopy imaging reveals fluidity and time-dependent interactions of antimicrobial dendrimer with model lipid membranes.

    Lind, Tania Kjellerup; Zielińska, Paulina; Wacklin, Hanna Pauliina; Urbańczyk-Lipkowska, Zofia; Cárdenas, Marité


    In this paper, an amphiphilic peptide dendrimer with potential applications against multi-resistant bacteria such as Staphylococcus aureus was synthesized and studied on model cell membranes. The combination of quartz crystal microbalance and atomic force microscopy imaging during continuous flow allowed for in situ monitoring of the very initial interaction processes and membrane transformations on longer time scales. We used three different membrane compositions of low and high melting temperature phospholipids to vary the membrane properties from a single fluid phase to a pure gel phase, while crossing the phase coexistence boundaries at room temperature. The interaction mechanism of the dendrimer was found to be time-dependent and to vary remarkably with the fluidity and coexistence of liquid-solid phases in the membrane. Spherical micelle-like dendrimer-lipid aggregates were formed in the fluid-phase bilayer and led to partial solubilization of the membrane, while in gel-phase membranes, the dendrimers caused areas of local depressions followed by redeposition of flexible lipid patches. Domain coexistence led to a sequence of events initiated by the formation of a ribbon-like network and followed by membrane solubilization via spherical aggregates from the edges of bilayer patches. Our results show that the dendrimer molecules were able to destroy the membrane integrity through different mechanisms depending on the lipid phase and morphology and shed light on their antimicrobial activity. These findings could have an impact on the efficacy of the dendrimers since lipid membranes in certain bacteria have transition temperatures very close to the host body temperature.

  17. The role of oxidoreductases in determining the function of the neisserial lipid A phosphoethanolamine transferase required for resistance to polymyxin.

    Susannah Piek

    Full Text Available The decoration of the lipid A headgroups of the lipooligosaccharide (LOS by the LOS phosphoethanolamine (PEA transferase (LptA in Neisseria spp. is central for resistance to polymyxin. The structure of the globular domain of LptA shows that the protein has five disulphide bonds, indicating that it is a potential substrate of the protein oxidation pathway in the bacterial periplasm. When neisserial LptA was expressed in Escherichia coli in the presence of the oxidoreductase, EcDsbA, polymyxin resistance increased 30-fold. LptA decorated one position of the E. coli lipid A headgroups with PEA. In the absence of the EcDsbA, LptA was degraded in E. coli. Neisseria spp. express three oxidoreductases, DsbA1, DsbA2 and DsbA3, each of which appear to donate disulphide bonds to different targets. Inactivation of each oxidoreductase in N. meningitidis enhanced sensitivity to polymyxin with combinatorial mutants displaying an additive increase in sensitivity to polymyxin, indicating that the oxidoreductases were required for multiple pathways leading to polymyxin resistance. Correlates were sought between polymyxin sensitivity, LptA stability or activity and the presence of each of the neisserial oxidoreductases. Only meningococcal mutants lacking DsbA3 had a measurable decrease in the amount of PEA decoration on lipid A headgroups implying that LptA stability was supported by the presence of DsbA3 but did not require DsbA1/2 even though these oxidoreductases could oxidise the protein. This is the first indication that DsbA3 acts as an oxidoreductase in vivo and that multiple oxidoreductases may be involved in oxidising the one target in N. meningitidis. In conclusion, LptA is stabilised by disulphide bonds within the protein. This effect was more pronounced when neisserial LptA was expressed in E. coli than in N. meningitidis and may reflect that other factors in the neisserial periplasm have a role in LptA stability.

  18. Hydrophobic membrane thickness and lipid-protein interactions of the leucine transport system of Lactococcus lactis

    in t Veld, Gerda; Driessen, Arnold J.M.; Kamp, Jos A.F. op den; Konings, Wil N.


    The effect of the phospholipid acyl chain carbon number on the activity of the branched-chain amino acid transport system of Lactococcus lactis has been investigated. Major fatty acids identified in a total lipid extract of L. lactis membranes are palmitic acid (16:0), oleic acid (18:1) and the cycl

  19. In vitro study of interaction of synaptic vesicles with lipid membranes

    Ghosh, S K; Castorph, S; Salditt, T [Institute for X-ray Physics, University of Goettingen, 37077 Goettingen (Germany); Konovalov, O [European Synchrotron Radiation Facility, 38043 Grenoble Cedex (France); Jahn, R; Holt, M, E-mail: sghosh1@gwdg.d, E-mail: mholt@gwdg.d, E-mail: tsaldit@gwdg.d [Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen (Germany)


    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP{sub 2}). Although PIP{sub 2} is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP{sub 2} incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP{sub 2} incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca{sup 2+} ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  20. In vitro study of interaction of synaptic vesicles with lipid membranes

    Ghosh, S. K.; Castorph, S.; Konovalov, O.; Jahn, R.; Holt, M.; Salditt, T.


    The fusion of synaptic vesicles (SVs) with the plasma membrane in neurons is a crucial step in the release of neurotransmitters, which are responsible for carrying signals between nerve cells. While many of the molecular players involved in this fusion process have been identified, a precise molecular description of their roles in the process is still lacking. A case in point is the plasma membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Although PIP2 is known to be essential for vesicle fusion, its precise role in the process remains unclear. We have re-investigated the role of this lipid in membrane structure and function using the complementary experimental techniques of x-ray reflectivity, both on lipid monolayers at an air-water interface and bilayers on a solid support, and grazing incidence x-ray diffraction on lipid monolayers. These techniques provide unprecedented access to structural information at the molecular level, and detail the profound structural changes that occur in a membrane following PIP2 incorporation. Further, we also confirm and extend previous findings that the association of SVs with membranes is enhanced by PIP2 incorporation, and reveal the structural changes that underpin this phenomenon. Further, the association is further intensified by a physiologically relevant amount of Ca2+ ions in the subphase of the monolayer, as revealed by the increase in interfacial pressure seen with the lipid monolayer system. Finally, a theoretical calculation concerning the products arising from the fusion of these SVs with proteoliposomes is presented, with which we aim to illustrate the potential future uses of this system.

  1. Antibacterial/antifungal activity and synergistic interactions between polyprenols and other lipids isolated from Ginkgo biloba L. leaves.

    Tao, Ran; Wang, Cheng-Zhang; Kong, Zhen-Wu


    Polyprenols separated from lipids are promising new components from Ginkgo biloba L. leaves (GBL). In this paper, ginkgo lipids were isolated by extraction with petroleum ether, saponification, and molecular distillation. Eight known compounds: isophytol (1), nerolidol (2), linalool (3), β-sitosterol acetate (4), β-sitosterol (5), stigmasterol (6), ergosterol (7), β-sitosterol-3-O-β-D-glucopyranoside (8) and Ginkgo biloba polyprenols (GBP) were separated from GBL by chromatography and identified mainly by NMR. The separated and identified compounds 1, 2 and 3 are reported here for the first time in GBL. The 3D-DAD-HPLC-chromatogram (190-232 nm) of GBP was recorded. This study provides new evidence as there are no previous reports on antibacterial/antifungal activities and synergistic interactions between GBP and the compounds separated from GBL lipids against Salmonella enterica, Staphylocococus aureus and Aspergillus niger. Nerolidol (2) showed the highest activity among all the tested samples and of all mixture groups tested the GBP with isophytol (1) mixture had the strongest synergistic effect against Salmonella enterica among the three tested strains. A proportion of isophytol and GBP of 38.19%:61.81% (wt/wt) was determined by mixture design as the optimal proportion for the synergistic effect of GBP with isophytol against Salmonella enterica.

  2. Interaction of menthol with mixed-lipid bilayer of stratum corneum: A coarse-grained simulation study.

    Wan, Guang; Dai, Xingxing; Yin, Qianqian; Shi, Xinyuan; Qiao, Yanjiang


    Menthol is a widely used penetration enhancer in clinical medicine due to its high efficiency and relative safety. Although there are many studies focused on the penetration-enhancing activity of menthol, the details of molecular mechanism are rarely involved in the discussion. In this study, we present a series of coarse-grained molecular dynamics simulations to investigate the interaction of menthol with a mixed-lipid bilayer model consisting of ceramides, cholesterol and free fatty acids in a 2:2:1 molar ratio. Taking both the concentration of menthol and temperature into consideration, it was found that a rise in temperature and concentration within a specific range (1-20%) could improve the penetration-enhancing property of menthol and the floppiness of the bilayer. However, at high concentrations (30% and more), menthol completely mixed with the lipids and the membrane can no longer maintain a bilayer structure. Our results elucidates some of the molecular basis for menthol's penetration enhancing effects and may provide some assistance for the development and applications of menthol as a penetration enhancer. Furthermore, we establish a method to investigate the penetration enhancement mechanism of traditional Chinese medicine using the mixed-lipid bilayer model of stratum corneum by molecular dynamics simulations.

  3. Antibacterial/Antifungal Activity and Synergistic Interactions between Polyprenols and Other Lipids Isolated from Ginkgo Biloba L. Leaves

    Ran Tao


    Full Text Available Polyprenols separated from lipids are promising new components from Ginkgo biloba L. leaves (GBL. In this paper, ginkgo lipids were isolated by extraction with petroleum ether, saponification, and molecular distillation. Eight known compounds: isophytol (1, nerolidol (2, linalool (3, β-sitosterol acetate (4, β-sitosterol (5, stigmasterol (6, ergosterol (7, β-sitosterol-3-O-β-D-glucopyranoside (8 and Ginkgo biloba polyprenols (GBP were separated from GBL by chromatography and identified mainly by NMR. The separated and identified compounds 1, 2 and 3 are reported here for the first time in GBL. The 3D-DAD-HPLC-chromatogram (190–232 nm of GBP was recorded. This study provides new evidence as there are no previous reports on antibacterial/antifungal activities and synergistic interactions between GBP and the compounds separated from GBL lipids against Salmonella enterica, Staphylocococus aureus and Aspergillus niger. Nerolidol (2 showed the highest activity among all the tested samples and of all mixture groups tested the GBP with isophytol (1 mixture had the strongest synergistic effect against Salmonella enterica among the three tested strains. A proportion of isophytol and GBP of 38.19%:61.81% (wt/wt was determined by mixture design as the optimal proportion for the synergistic effect of GBP with isophytol against Salmonella enterica.

  4. The interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques.

    Kramsch, D M; Hollander, W


    Arterial elastin appears to be a proteinlipid complex with the lipid component being bound to elastin peptide groups. In atherosclerotic lesions the lipid content of elastin increases progressively with increasing severity of atherosclerosis. The increases in the lipid content of plaque elastin are mainly due to large increases in cholesterol with about 80% of the cholesterol being cholesterol ester. This deposition of cholesterol in elastin accounts for a substantial part of the total cholesterol accumulation in atherosclerotic lesions of all stages. The present in vitro study suggests that the mechanism involved in the deposition of lipids in arterial elastin may be an interaction of the elastin protein with serum or arterial low density or very low density lipoproteins (LDL and VLDL) resulting in a transfer of lipids, but not of lipoprotein protein to the elastin. No significant lipid transfer occurred from the high density lipoproteins or chylomicrons. The amount of lipid taken up by plaque elastin was strikingly higher than by normal elastin and consisted mainly of cholesterol with over 80% of the cholesterol being cholesterol ester. The precondition for the lipid accumulation in plaque elastin appeared to be an altered amino acid composition of the elastin protein consisting of an increase in polar amino acids and a reduction in cross-linking amino acids. Subsequent treatment of lipoprotein-incubated arterial elastin with hot alkali and apolipoproteins did not reverse the binding of lipoprotein lipid to diseased elastin.

  5. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions.

    Gillette, William K; Esposito, Dominic; Abreu Blanco, Maria; Alexander, Patrick; Bindu, Lakshman; Bittner, Cammi; Chertov, Oleg; Frank, Peter H; Grose, Carissa; Jones, Jane E; Meng, Zhaojing; Perkins, Shelley; Van, Que; Ghirlando, Rodolfo; Fivash, Matthew; Nissley, Dwight V; McCormick, Frank; Holderfield, Matthew; Stephen, Andrew G


    Prenylated proteins play key roles in several human diseases including cancer, atherosclerosis and Alzheimer's disease. KRAS4b, which is frequently mutated in pancreatic, colon and lung cancers, is processed by farnesylation, proteolytic cleavage and carboxymethylation at the C-terminus. Plasma membrane localization of KRAS4b requires this processing as does KRAS4b-dependent RAF kinase activation. Previous attempts to produce modified KRAS have relied on protein engineering approaches or in vitro farnesylation of bacterially expressed KRAS protein. The proteins produced by these methods do not accurately replicate the mature KRAS protein found in mammalian cells and the protein yield is typically low. We describe a protocol that yields 5-10 mg/L highly purified, farnesylated, and methylated KRAS4b from insect cells. Farnesylated and methylated KRAS4b is fully active in hydrolyzing GTP, binds RAF-RBD on lipid Nanodiscs and interacts with the known farnesyl-binding protein PDEδ.

  6. Disruption of Lipid Rafts Interferes with the Interaction of Toxoplasma gondii with Macrophages and Epithelial Cells

    Cruz, Karla Dias; Cruz, Thayana Araújo; Veras de Moraes, Gabriela; Paredes-Santos, Tatiana Christina; Attias, Marcia; de Souza, Wanderley


    The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated proteins such as members of the Src family of tyrosine kinases. Disturbing lipid rafts of mouse peritoneal macrophages and epithelial cells of the lineage LLC-MK2 with methyl-beta cyclodextrin (MβCD) and filipin, which interfere with cholesterol or lidocaine, significantly inhibited internalization of T. gondii in both cell types, although adhesion remained unaffected in macrophages and decreased only in LLC-MK2 cells. Scanning and transmission electron microscopy confirmed these observations. Results are discussed in terms of the original role of macrophages as professional phagocytes versus the LLC-MK2 cell lineage originated from kidney epithelial cells. PMID:24734239

  7. The interaction between physical activity and fasting on the serum lipid profile during Ramadan.

    Haghdoost, A A; Poorranjbar, M


    The serum lipid profiles in Muslims change during the fasting month of Ramadan, but it is not clear whether this change is due to changes in their physical activities. In this study, we compared the patterns of the lipid profile changes in those who engaged in regular physical activity with those who did not. In a randomised trial, we assigned 93 students who took a physical education course into two groups--those who had regular physical activity after Ramadan and those who had physical activity during Ramadan. Venous blood (5 ml) was taken just before, at the end, and 40 days after Ramadan, and the fasting glucose sugar and lipid profile were measured. Fasting with physical activity decreased body weight by 1.2 kg (p-value is 0.03). Fasting blood sugar also decreased by 7 mg/dL during Ramadan, but this drop was observed in both groups. Triglyceride decreased in both groups during Ramadan, but cholesterol levels dropped considerably during and after Ramadan for those who concurrently engaged in physical activity and fasted (-12.24 and -8.4 mg/dL, respectively). The patterns of changes in the high-density lipoprotein (HDL), low-density lipoprotein (LDL) and HDL/LDL values were more or less comparable in both groups (p is greater than 0.5). Usually, people are less physically active during Ramadan, but our findings show that physical activity alone cannot explain the variations in the lipid profile. Other factors, such as changes in the diet and sleeping hours, may have more important roles.

  8. Nuclear Lipid Microdomain as Place of Interaction between Sphingomyelin and DNA during Liver Regeneration

    Samuela Cataldi


    Full Text Available Nuclear sphingomyelin is a key molecule for cell proliferation. This molecule is organized with cholesterol and proteins to form specific lipid microdomains bound to the inner nuclear membrane where RNA is synthesized. Here, we have reported the ability of the sphingomyelin present in the nuclear microdomain to bind DNA and regulate its synthesis, and to highlight its role in cell proliferation induced by partial hepatectomy. During G1/S transition of the cell cycle, sphingomyelin and DNA content is very high and it is strongly reduced after exogenous sphingomyelinase treatment. During the S-phase of the cell cycle, the stimulation of sphingomyelinase and inhibition of sphingomyelin–synthase are accompanied by the DNA synthesis start. To assess the specificity of the results, experiments were repeated with trifluoperazine, a drug known to affect the synthesis of lipids and DNA and to stimulate sphingomyelinase activity. The activity of sphingomyelinase is stimulated in the first hour after hepatectomy and sphingomyelin–DNA synthesis is strongly attenuated. It may be hypothesized that the nuclear microdomain represents a specific area of the inner nuclear membrane that acts as an active site of chromatin anchorage thanks to the stabilizing action of sphingomyelin. Thus, sphingomyelin metabolism in nuclear lipid microdomains is suggested to regulate cell proliferation.

  9. Identifying the Interaction of Vancomycin With Novel pH-Responsive Lipids as Antibacterial Biomaterials Via Accelerated Molecular Dynamics and Binding Free Energy Calculations.

    Ahmed, Shaimaa; Vepuri, Suresh B; Jadhav, Mahantesh; Kalhapure, Rahul S; Govender, Thirumala


    Nano-drug delivery systems have proven to be an efficient formulation tool to overcome the challenges with current antibiotics therapy and resistance. A series of pH-responsive lipid molecules were designed and synthesized for future liposomal formulation as a nano-drug delivery system for vancomycin at the infection site. The structures of these lipids differ from each other in respect of hydrocarbon tails: Lipid1, 2, 3 and 4 have stearic, oleic, linoleic, and linolenic acid hydrocarbon chains, respectively. The impact of variation in the hydrocarbon chain in the lipid structure on drug encapsulation and release profile, as well as mode of drug interaction, was investigated using molecular modeling analyses. A wide range of computational tools, including accelerated molecular dynamics, normal molecular dynamics, binding free energy calculations and principle component analysis, were applied to provide comprehensive insight into the interaction landscape between vancomycin and the designed lipid molecules. Interestingly, both MM-GBSA and MM-PBSA binding affinity calculations using normal molecular dynamics and accelerated molecular dynamics trajectories showed a very consistent trend, where the order of binding affinity towards vancomycin was lipid4 > lipid1 > lipid2 > lipid3. From both normal molecular dynamics and accelerated molecular dynamics, the interaction of lipid3 with vancomycin is demonstrated to be the weakest (∆Gbinding = -2.17 and -11.57, for normal molecular dynamics and accelerated molecular dynamics, respectively) when compared to other complexes. We believe that the degree of unsaturation of the hydrocarbon chain in the lipid molecules may impact on the overall conformational behavior, interaction mode and encapsulation (wrapping) of the lipid molecules around the vancomycin molecule. This thorough computational analysis prior to the experimental investigation is a valuable approach to guide for predicting the encapsulation

  10. Does interactivity require multimedia? The case of SAKI

    Michael Horwood


    Full Text Available SAKI is a self-adaptive touch-typing tutor with a pedigree dating back to the mid-1950s. Even in its most recent form it eschews the temptation to present itself with the trimmings now commonly associated with microcomputer products. This paper argues that while the absence of such features may be a limiting factor in the commercial success of the program, SAKI is nevertheless a prime example of the way in which a computer can successfully react to and interact with a user, and indeed one which would actually lose educational value if it were to undergo an interface-lift. It should be noted that Eurotech is the official distributor of SAKI

  11. Palmitoylation as a key factor to modulate SP-C-lipid interactions in lung surfactant membrane multilayers.

    Roldan, Nuria; Goormaghtigh, Erik; Pérez-Gil, Jesús; Garcia-Alvarez, Begoña


    Surfactant protein C (SP-C) has been regarded as the most specific protein linked to development of mammalian lungs, and great efforts have been done to understand its structure-function relationships. Previous evidence has outlined the importance of SP-C palmitoylation to sustain the proper dynamics of lung surfactant, but the mechanism by which this posttranslational modification aids SP-C to stabilize the interfacial surfactant film along the compression-expansion breathing cycles, is still unrevealed. In this work we have compared the structure, orientation and lipid-protein interactions of a native palmitoylated SP-C with those of a non-palmitoylated recombinant SP-C (rSP-C) form in air-exposed multilayer membrane environments, by means of ATR-FTIR spectroscopy. Palmitoylation does not affect the secondary structure of the protein, which exhibits a full α-helical conformation in partly dehydrated phospholipid multilayer films. However, differences between the Amide I band of the IR spectrum of palmitoylated and non-palmitoylated proteins suggest subtle differences affecting the environment of their helical component. These differences are accompanied by differential effects on the IR bands from phospholipid phosphates, indicating that palmitoylation modulates lipid-protein interactions at the headgroup region of phospholipid layers. On the other hand, the relative dichroic absorption of polarized IR has allowed calculating that the palmitoylated protein adopts a more tilted transmembrane orientation than the non-palmitoylated SP-C, likely contributing to more compact, dehydrated and possibly stable multilayer lipid-protein films. As a whole, the behavior of multilayer films containing palmitoylated SP-C may reflect favorable structural properties for surfactant reservoirs at the air-liquid respiratory interface.

  12. Interaction of alpha-latroinsectotoxin from Latrodectus mactans venom with bilayer lipid membranes.

    Shatursky OYa; Pashkov, V N; Bulgacov, O V; Grishin, E V


    alpha-Latroinsectotoxin (LIT) from Latrodectus mactans venom increased the conductance of bilayer lipid membranes (BLM) by inducing channel like activity. The channels formed had a maximal single channel conductance of 5 pS in 10 mM CaCl2 solution. This process occurred more rapidly in symmetrical 10 mM CaCl2 solution than in equimolar KCl or NaCl. The LIT induced conductance showed pronounced rectification, that was dependent upon the face of the BLM to which the LIT was applied. This suggests that the LIT molecules incorporate into the bilayer lipid membrane in an oriented manner. The ion channels formed in bilayer phospholipid membrane by LIT are cation selective. The permeability of divalent cations decreased in the order Ba2+ > Ca2+ > Mg2+ > Cd2+ > Zn2+ (Zn2+ and Cd2+ blocked effectively LIT channels with the ratio of Ca2+trans and Cd2+cis or Zn2+cis of 1:1). Selectivity of LIT to monovalent cations was not high and was Ca2+ sensitive. Our data suggest that LIT has at least two Ca(2+)-binding sites, a high affinity site and low one (pK of binding is 2.4). As a result, the binding kinetics of Ca2+ with the toxin shows a high positive cooperativity (Hill coefficient, (h) = 5.95) and that dimerization might be a prerequisite to channel formation. Temperature dependence of conductance of LIT treated lipid bilayers in 100 mM KCl and 10 mM CaCl2 solutions was also determined: 18.9 +/- 2.11 kJ/mol and 28.537 +/- 1.678 kJ/mol, respectively.

  13. Dietary histidine requirement to reduce the risk and severity of cataracts is higher than the requirement for growth in Atlantic salmon smolts, independently of the dietary lipid source.

    Remø, S C; Hevrøy, E M; Olsvik, P A; Fontanillas, R; Breck, O; Waagbø, R


    The present study was carried out to investigate whether the dietary histidine requirement to reduce cataract development is higher than that for growth in Atlantic salmon smolts (Salmo salar L.) after seawater transfer and whether dietary vegetable oils contribute to cataractogenesis. Duplicate groups of salmon smolts were fed ten experimental diets with either fish oil (FO) or a vegetable oil (VO) mix replacing 70 % FO and histidine at five target levels (10, 12, 14, 16 and 18 g His/kg diet) for 13 weeks after seawater transfer. The VO diet-fed fish exhibited somewhat inferior growth and feed intakes compared with the FO diet-fed fish, irrespective of the dietary histidine concentration. Both cataract prevalence and severity were negatively correlated with the dietary histidine concentration, while lens N-acetyl-histidine (NAH) concentrations were positively correlated with it. The fatty acid profiles of muscle, heart and lens reflected that of the dietary oils to a descending degree and did not affect the observed cataract development. Muscle, heart and brain histidine concentrations reflected dietary histidine concentrations, while the corresponding tissue imidazole (anserine, carnosine and NAH) concentrations appeared to saturate differently with time. The expression level of liver histidase was not affected by the dietary histidine concentration, while the liver antioxidant response was affected in the VO diet-fed fish on a transcriptional level. The lowest severity of cataracts could be achieved by feeding 13·4 g His/kg feed, independently of the dietary lipid source. However, the present study also suggests that the dietary histidine requirement to minimise the risk of cataract development is 14·4 g His/kg feed.

  14. Interactions between mycoplasma lipid-associated membrane proteins and the host cells

    YOU Xiao-xing; ZENG Yan-hua; WU Yi-mou


    Mycoplamas are a group of wall-less prokaryotes widely distributed in nature, some of which are pathogenic for humans and animals. There are many lipoproteins anchored on the outer face of the plasma membrane, called lipid-associated membrane proteins (LAMPs). LAMPs are highly antigenic and could undergo phase and size variation, and are recognized by the innate immune system through Toll-like receptors (TLR) 2 and 6. LAMPs can modulate the immune system, and could induce immune cells apoptosis or death. In addition, they may associate with malignant transformation of host cells and are also considered to be cofactors in the progression of AIDS.

  15. The influence of the lipid-protein interaction on the membrane dynamics

    Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P


    We have performed an incoherent neutron scattering investigation of the modification of dynamical properties of model membrane induced by the addition of the myelin basic proteins. Elastic (ENS) and quasi-elastic (QENS) neutron scattering experiments revealed that the addition of physiological amounts of MBP induces a change in the average proton membrane dynamics across the lipid gel to liquid-crystalline phase transition. In particular, the appearance of anisotropic motion has been observed at two different time scales (accessible with IN13 and IN16 high-energy resolution backscattering spectrometers at ILL, Grenoble)

  16. The influence of the lipid-protein interaction on the membrane dynamics

    Natali, F.; Relini, A.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.


    We have performed an incoherent neutron scattering investigation of the modification of dynamical properties of model membrane induced by the addition of the myelin basic proteins. Elastic (ENS) and quasi-elastic (QENS) neutron scattering experiments revealed that the addition of physiological amounts of MBP induces a change in the average proton membrane dynamics across the lipid gel to liquid-crystalline phase transition. In particular, the appearance of anisotropic motion has been observed at two different time scales (accessible with IN13 and IN16 high-energy resolution backscattering spectrometers at ILL, Grenoble).

  17. Interaction between leucine and phosphodiesterase 5 inhibition in modulating insulin sensitivity and lipid metabolism

    Fu L


    Full Text Available Lizhi Fu,1 Fenfen Li,1 Antje Bruckbauer,2 Qiang Cao,1 Xin Cui,1 Rui Wu,1 Hang Shi,1 Bingzhong Xue,1 Michael B Zemel21Department of Biology, Center for Obesity Reversal, Georgia State University, Atlanta, GA, 2NuSirt Biopharma Inc., Nashville, TN, USA Purpose: Leucine activates SIRT1/AMP-activated protein kinase (AMPK signaling and markedly potentiates the effects of other sirtuin and AMPK activators on insulin signaling and lipid metabolism. Phosphodiesterase 5 inhibition increases nitric oxide–cGMP signaling, which in turn exhibits a positive feedback loop with both SIRT1 and AMPK, thus amplifying peroxisome proliferator-activated receptor γ co-activator α (PGC1α-mediated effects. Methods: We evaluated potential synergy between leucine and PDE5i on insulin sensitivity and lipid metabolism in vitro and in diet-induced obese (DIO mice. Results: Leucine (0.5 mM exhibited significant synergy with subtherapeutic doses (0.1–10 nM of PDE5-inhibitors (sildenafil and icariin on fat oxidation, nitric oxide production, and mitochondrial biogenesis in hepatocytes, adipocytes, and myotubes. Effects on insulin sensitivity, glycemic control, and lipid metabolism were then assessed in DIO-mice. DIO-mice exhibited fasting and postprandial hyperglycemia, insulin resistance, and hepatic steatosis, which were not affected by the addition of leucine (24 g/kg diet. However, the combination of leucine and a subtherapeutic dose of icariin (25 mg/kg diet for 6 weeks reduced fasting glucose (38%, P<0.002, insulin (37%, P<0.05, area under the glucose tolerance curve (20%, P<0.01, and fully restored glucose response to exogenous insulin challenge. The combination also inhibited hepatic lipogenesis, stimulated hepatic and muscle fatty acid oxidation, suppressed hepatic inflammation, and reversed high-fat diet-induced steatosis. Conclusion: These robust improvements in insulin sensitivity, glycemic control, and lipid metabolism indicate therapeutic potential for

  18. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein.

    Dorothee A Vogt

    Full Text Available The nonstructural protein NS5A has emerged as a new drug target in antiviral therapies for Hepatitis C Virus (HCV infection. NS5A is critically involved in viral RNA replication that takes place at newly formed membranes within the endoplasmic reticulum (membranous web and assists viral assembly in the close vicinity of lipid droplets (LDs. To identify host proteins that interact with NS5A, we performed a yeast two-hybrid screen with the N-terminus of NS5A (amino acids 1-31, a well-studied α-helical domain important for the membrane tethering of NS5A. Our studies identified the LD-associated host protein, Tail-Interacting Protein 47 (TIP47 as a novel NS5A interaction partner. Coimmunoprecipitation experiments in Huh7 hepatoma cells confirmed the interaction of TIP47 with full-length NS5A. shRNA-mediated knockdown of TIP47 caused a more than 10-fold decrease in the propagation of full-length infectious HCV in Huh7.5 hepatoma cells. A similar reduction was observed when TIP47 was knocked down in cells harboring an autonomously replicating HCV RNA (subgenomic replicon, indicating that TIP47 is required for efficient HCV RNA replication. A single point mutation (W9A in NS5A that disrupts the interaction with TIP47 but preserves proper subcellular localization severely decreased HCV RNA replication. In biochemical membrane flotation assays, TIP47 cofractionated with HCV NS3, NS5A, NS5B proteins, and viral RNA, and together with nonstructural viral proteins was uniquely distributed to lower-density LD-rich membrane fractions in cells actively replicating HCV RNA. Collectively, our data support a model where TIP47--via its interaction with NS5A--serves as a novel cofactor for HCV infection possibly by integrating LD membranes into the membranous web.

  19. Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets.

    Dansako, Hiromichi; Hiramoto, Hiroki; Ikeda, Masanori; Wakita, Takaji; Kato, Nobuyuki


    During persistent infection of HCV, the HCV core protein (HCV-JFH-1 strain of genotype 2a) is recruited to lipid droplets (LDs) for viral assembly, but the mechanism of recruitment of the HCV core protein is uncertain. Here, we demonstrated that one of the Ras-related small GTPases, Rab18, was required for trafficking of the core protein around LDs. The knockdown of Rab18 reduced intracellular and extracellular viral infectivity, but not intracellular viral replication in HCV-JFH-1-infected RSc cells (an HuH-7-derived cell line). Exogenous expression of Rab18 increased extracellular viral infectivity almost two-fold. Furthermore, Rab18 was co-localized with the core protein in HCV-JFH-1-infected RSc cells, and the knockdown of Rab18 blocked recruitment of the HCV-JFH-1 core protein to LDs. These results suggest that Rab18 has an important role in viral assembly through the trafficking of the core protein to LDs.

  20. The interaction of alcohol consumption and oral contraceptive use on lipids and lipoproteins.

    Kruszon-Moran, D; Burkman, R T; Kimball, A W; Bachorik, P S; Gold, E B


    Oral contraceptive (OC) use and alcohol consumption have been shown to alter the levels of lipids and lipoproteins in the blood. The effect of alcohol consumption on levels of total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, LDL-B, Apo-A1, the ratio of HDL cholesterol/total cholesterol, HDL cholesterol/LDL cholesterol, and the ratio of LDL cholesterol/LDL-B among normal healthy young women before initiation of oral contraceptives and after six months of oral contraceptive use are both described. Of primary interest is the mediating effect of alcohol consumption on the association between steroid usage and blood lipid values. At baseline, ethanol consumption was found to be positively associated with triglycerides, HDL-C, and Apo-A1 and negatively associated with LDL-C/LDL-B. After adjustment for several covariables, alcohol consumption was found to be positively associated with the increases in triglycerides and in Apo-A1 observed at 3 and 6 months after initiation of OCs. Since these two parameters are believed to have opposite relationships to cardiovascular disease, the effect of alcohol consumption remains uncertain.

  1. Viewing dynamic interactions of proteins and a model lipid membrane with atomic force microscopy.

    Quinn, Anthony S; Rand, Jacob H; Wu, Xiao-Xuan; Taatjes, Douglas J


    The information covered in this chapter will present a model homogenous membrane preparation technique and dynamic imaging procedure that can be successfully applied to more than one type of lipid study and atomic force microscope (AFM) instrument setup. The basic procedural steps have been used with an Asylum Research MFP-3D BIO and the Bruker (formerly, Veeco) BioScope. The AFM imaging protocol has been supplemented by procedures (not to be presented in this chapter) of ellipsometry, standardized western blotting, and dot-blots to verify appropriate purity and activity of all experimental molecular components; excellent purity and activity level of the lipids, proteins, and drug(s) greatly influence the success of imaging experiments in the scanning probe microscopy field. The major goal of the chapter is to provide detailed procedures for sample preparation and operation of the Asylum Research MFP-3D BIO AFM. In addition, one should be cognizant that our comprehensive description in the use of the MFP-3D BIO's functions for successful image acquisitions and analyses is greatly enhanced by Asylum Research's (AR's) accompanying extensive manual(s), technical notes, and AR's users forum. Ultimately, the stepwise protocol and information will allow novice personnel to begin acquiring quality images for processing and analysis with minimal supervision.

  2. Interaction of PPARG Pro12Ala with dietary fat influences plasma lipids in subjects at cardiometabolic risk[S

    AlSaleh, Aseel; O'Dell, Sandra D.; Frost, Gary S.; Griffin, Bruce A.; Lovegrove, Julie A.; Jebb, Susan A.; Sanders, Thomas A. B.


    The PPARγ2 gene single nucleotide polymorphism (SNP) Pro12Ala has shown variable association with metabolic syndrome traits in healthy subjects. The RISCK Study investigated the effect of interaction between genotype and the ratio of polyunsaturated:saturated (P:S) fatty acid intake on plasma lipids in 367 white subjects (ages 30-70 years) at increased cardiometabolic risk. Interaction was determined after habitual diet at recruitment, at baseline after a 4-week high-SFA (HS) diet, and after a 24-week reference (HS), high-MUFA (HM), or low-fat (LF) diet. At recruitment, there were no significant associations between genotype and plasma lipids; however, P:S × genotype interaction influenced plasma total cholesterol (TC) (P = 0.02), LDL-cholesterol (LDL-C) (P = 0.002), and triglyceride (TG) (P = 0.02) concentrations. At P:S ratio ≤ 0.33, mean TC and LDL-C concentrations in Ala12 allele carriers were significantly higher than in noncarriers (respectively, P = 0.003; P = 0.0001). Significant trends in reduction of plasma TC (P = 0.02) and TG (P = 0.002) concentrations occurred with increasing P:S (respectively, ≤0.33 to >0.65; 0.34 to >0.65) in Ala12 allele carriers. There were no significant differences between carriers and noncarriers after the 4-week HS diet or 24-week interventions. Plasma TC and TG concentrations in PPARG Ala12 allele carriers decrease as P:S increases, but they are not dependent on a reduction in SFA intake. PMID:21949049

  3. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin.

    Xu, Tingshuang; Liu, Wenai; Yang, Chen; Ba, Xueqing; Wang, Xiaoguang; Jiang, Yong; Zeng, Xianlu


    Lipid rafts, a liquid-ordered plasma membrane microdomain, are related to cell-surface receptor function. PSGL-1, a major surface receptor protein for leukocyte, also acts as a signaling receptor in leukocyte rolling. To investigate the role of lipid raft in PSGL-1 signaling in human neutrophils, we quantitatively analyzed lipid raft proteome of human promyelocytic leukemia cell line HL-60 cells and identified a lipid raft-associated protein β-adducin. PSGL-1 ligation induced dissociation of the raft-associated protein β-adducin from lipid rafts and actin, as well as phosphorylation of β-adducin, indicating a transient uncoupling of lipid rafts from the actin cytoskeleton. Knockdown of β-adducin greatly attenuated HL-60 cells rolling on P-selectin. We also showed that Src kinase is crucial for PSGL-1 ligation-induced β-adducin phosphorylation and relocation. Taken together, these results show that β-adducin is a pivotal lipid raft-associated protein in PSGL-1-mediated neutrophil rolling on P-selectin.

  4. Activation of integrin α5 mediated by flow requires its translocation to membrane lipid rafts in vascular endothelial cells.

    Sun, Xiaoli; Fu, Yi; Gu, Mingxia; Zhang, Lu; Li, Dan; Li, Hongliang; Chien, Shu; Shyy, John Y-J; Zhu, Yi


    Local flow patterns determine the uneven distribution of atherosclerotic lesions. Membrane lipid rafts and integrins are crucial for shear stress-regulated endothelial function. In this study, we investigate the role of lipid rafts and integrin α5 in regulating the inflammatory response in endothelial cells (ECs) under atheroprone versus atheroprotective flow. Lipid raft proteins were isolated from ECs exposed to oscillatory shear stress (OS) or pulsatile shear stress, and then analyzed by quantitative proteomics. Among 396 proteins redistributed in lipid rafts, integrin α5 was the most significantly elevated in lipid rafts under OS. In addition, OS increased the level of activated integrin α5 in lipid rafts through the regulation of membrane cholesterol and fluidity. Disruption of F-actin-based cytoskeleton and knockdown of caveolin-1 prevented the OS-induced integrin α5 translocation and activation. In vivo, integrin α5 activation and EC dysfunction were observed in the atheroprone areas of low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, and knockdown of integrin α5 markedly attenuated EC dysfunction in partially ligated carotid arteries. Consistent with these findings, mice with haploinsufficency of integrin α5 exhibited a reduction of atherosclerotic lesions in the regions under atheroprone flow. The present study has revealed an integrin- and membrane lipid raft-dependent mechanotransduction mechanism by which atheroprone flow causes endothelial dysfunction.

  5. Interaction of a P. aeruginosa Quorum Sensing Signal with Lipid Membranes

    Morrison, Rebecca; Hall, Amelia; Hutchison, Ellen; Nguyen, Thuc; Cooley, Benjamin; Gordon, Vernita


    Bacteria use a signaling and regulatory system called ``quorum sensing'' to alter their gene expressions in response to the concentration of neighboring bacteria and to environmental conditions that make collective activity favorable for bacteria. P. aeruginosa is an opportunistic human pathogen that uses quorum sensing to govern processes such as virulence and biofilm formation. This organism's two main quorum sensing circuits use two different signaling molecules that are amphiphilic and differ primarily in the length of their hydrocarbon side chain and thus in their hydrophobic physical chemistry. How these physical chemistries govern the propagation and spatial localization of signals and thus of quorum sensing is not known. We present preliminary results showing that signals preferentially sequester to amphiphilic lipid membranes, which can act as reservoirs for signal. This is promising for future characterization of how the quorum sensing signals of many bacteria and yeast partition to spatially-differentiated amphiphilic environments, in a host or biofilm.

  6. Lipid solvation effects contribute to the affinity of Gly-xxx-Gly motif-mediated helix-helix interactions.

    Johnson, Rachel M; Rath, Arianna; Melnyk, Roman A; Deber, Charles M


    Interactions between transmembrane helices are mediated by the concave Gly-xxx-Gly motif surface. Whether Gly residues per se are sufficient for selection of this motif has not been established. Here, we used the in vivo TOXCAT assay to measure the relative affinities of all 18 combinations of Gly, Ala, and Ser "small-xxx-small" mutations in glycophorin A (GpA) and bacteriophage M13 major coat protein (MCP) homodimers. Affinity values were compared with the accessibility to a methylene-sized probe of the total surface area of each helix monomer as a measure of solvation by membrane components. A strong inverse correlation was found between nonpolar-group lipid accessibility and dimer affinity (R = 0.75 for GpA, p = 0.013, and R = 0.81 for MCP, p = 0.004), suggesting that lipid as a poor membrane protein solvent, conceptually analogous to water in soluble protein folding, can contribute to dimer stability and help to define helix-helix interfaces.

  7. Unraveling the impact of hydroxylation on interactions of bile acid cationic lipids with model membranes by in-depth calorimetry studies.

    Singh, Manish; Bajaj, Avinash


    We used eight bile acid cationic lipids differing in the number of hydroxyl groups and performed in-depth differential scanning calorimetry studies on model membranes doped with different percentages of these cationic bile acids. These studies revealed that the number and positioning of free hydroxyl groups on bile acids modulate the phase transition and co-operativity of membranes. Lithocholic acid based cationic lipids having no free hydroxyl groups gel well with dipalmitoylphosphatidylcholine (DPPC) membranes. Chenodeoxycholic acid lipids having one free hydroxyl group at the 7'-carbon position disrupt the membranes and lower their co-operativity. Deoxycholic acid and cholic acid based cationic lipids have free hydroxyl groups at the 12'-carbon position, and at 7'- and 12'-carbon positions respectively. Doping of these lipids at high concentrations increases the co-operativity of membranes suggesting that these lipids might induce self-assembly in DPPC membranes. These different modes of interactions between cationic lipids and model membranes would help in future for exploring their use in DNA/drug delivery.

  8. Lipid interactions and angle of approach to the HIV-1 viral membrane of broadly neutralizing antibody 10E8: Insights for vaccine and therapeutic design

    Irimia, Adriana; Sarkar, Anita; Schiffner, Torben; Tingle, Ryan; Adachi, Yumiko; Deller, Marc C.; Burton, Dennis R.


    Among broadly neutralizing antibodies to HIV, 10E8 exhibits greater neutralizing breadth than most. Consequently, this antibody is the focus of prophylactic/therapeutic development. The 10E8 epitope has been identified as the conserved membrane proximal external region (MPER) of gp41 subunit of the envelope (Env) viral glycoprotein and is a major vaccine target. However, the MPER is proximal to the viral membrane and may be laterally inserted into the membrane in the Env prefusion form. Nevertheless, 10E8 has not been reported to have significant lipid-binding reactivity. Here we report x-ray structures of lipid complexes with 10E8 and a scaffolded MPER construct and mutagenesis studies that provide evidence that the 10E8 epitope is composed of both MPER and lipid. 10E8 engages lipids through a specific lipid head group interaction site and a basic and polar surface on the light chain. In the model that we constructed, the MPER would then be essentially perpendicular to the virion membrane during 10E8 neutralization of HIV-1. As the viral membrane likely also plays a role in selecting for the germline antibody as well as size and residue composition of MPER antibody complementarity determining regions, the identification of lipid interaction sites and the MPER orientation with regard to the viral membrane surface during 10E8 engagement can be of great utility for immunogen and therapeutic design. PMID:28225819

  9. Massively parallel and highly quantitative single-particle analysis on interactions between nanoparticles on supported lipid bilayer.

    Lee, Young Kwang; Kim, Sungi; Oh, Jeong-Wook; Nam, Jwa-Min


    Observation of individual single-nanoparticle reactions provides direct information and insight for many complex chemical, physical, and biological processes, but this is utterly challenging with conventional high-resolution imaging techniques on conventional platforms. Here, we developed a photostable plasmonic nanoparticle-modified supported lipid bilayer (PNP-SLB) platform that allows for massively parallel in situ analysis of the interactions between nanoparticles with single-particle resolution on a two-dimensional (2D) fluidic surface. Each particle-by-particle PNP clustering process was monitored in real time and quantified via analysis of individual particle diffusion trajectories and single-particle-level plasmonic coupling. Importantly, the PNP-SLB-based nanoparticle cluster growth kinetics result was fitted well. As an application example, we performed a DNA detection assay, and the result suggests that our approach has very promising sensitivity and dynamic range (high attomolar to high femtomolar) without optimization, as well as remarkable single-base mismatch discrimination capability. The method shown herein can be readily applied for many different types of intermolecular and interparticle interactions and provide convenient tools and new insights for studying dynamic interactions on a highly controllable and analytical platform.

  10. Deuterium-labelled N-acyl-l-homoserine lactones (AHLs) - inter-kingdom signalling molecules - synthesis, structural studies, and interactions with model lipid membranes

    Jakubczyk, Dorota [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany); Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Barth, Christoph; Anastassacos, Frances; Koelsch, Patrick; Schepers, Ute [Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Kubas, Adam; Fink, Karin [Institute of Nanotechnology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Brenner-Weiss, Gerald [Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Braese, Stefan [Institute of Organic Chemistry, Karlsruhe Institute of Technology, Karlsruhe (Germany)


    N-Acyl-l-homoserine lactones (AHLs) are synthesized by Gram-negative bacteria. These quorum-sensing molecules play an important role in the context of bacterial infection and biofilm formation. They also allow communication between microorganisms and eukaryotic cells (inter-kingdom signalling). However, very little is known about the entire mechanism of those interactions. Precise structural studies are required to analyse the different AHL isomers as only one form is biologically most active. Theoretical studies combined with experimental infrared and Raman spectroscopic data are therefore undertaken to characterise the obtained compounds. To mimic interactions between AHL and cell membranes, we studied the insertion of AHL in supported lipid bilayers, using vibrational sum-frequency-generation spectroscopy. Deuterium-labelled AHLs were thus synthesized. Starting from readily available deuterated fatty acids, a two-step procedure towards deuterated N-acyl-l-homoserine lactones with varying chain lengths is described. This included the acylation of Meldrum's acid followed by amidation. Additionally, the detailed analytical evaluation of the products is presented herein. (orig.)

  11. CD1d-mediated Presentation of Endogenous Lipid Antigens by Adipocytes Requires Microsomal Triglyceride Transfer Protein*

    Rakhshandehroo, Maryam; Gijzel, Sanne M. W.; Siersbæk, Rasmus; Broekema, Marjoleine F.; de Haar, Colin; Schipper, Henk S.; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric


    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and –δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis. PMID:24966328

  12. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein.

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus; Broekema, Marjoleine F; de Haar, Colin; Schipper, Henk S; Boes, Marianne; Mandrup, Susanne; Kalkhoven, Eric


    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently, CD1d-restricted invariant (i) natural killer T (NKT) cells, a unique subset of lymphocytes that are reactive to so called lipid antigens, were implicated in AT homeostasis. Interestingly, recent data also suggest that human and mouse adipocytes can present such lipid antigens to iNKT cells in a CD1d-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are up-regulated in early adipogenesis, and are transcriptionally controlled by CCAAT/enhancer-binding protein (C/EBP)-β and -δ. Moreover, adipocyte-induced Th1 and Th2 cytokine release by iNKT cells also occurred in the absence of exogenous ligands, suggesting the display of endogenous lipid antigen-D1d complexes by 3T3-L1 adipocytes. Furthermore, we identified microsomal triglyceride transfer protein, which we show is also under the transcriptional regulation of C/EBPβ and -δ, as a novel player in the presentation of endogenous lipid antigens by adipocytes. Overall, our findings indicate that adipocytes can function as non-professional lipid antigen presenting cells, which may present an important aspect of adipocyte-immune cell communication in the regulation of whole body energy metabolism and immune homeostasis.

  13. Lipid bilayers and interfaces

    Kik, R.A.


    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  14. Heritability of insulin sensitivity and lipid profile depend on BMI : evidence for gene-obesity interaction

    Wang, X.; Ding, X.; Su, S.; Spector, T. D.; Mangino, M.; Iliadou, A.; Snieder, H.


    Evidence from candidate gene studies suggests that obesity may modify genetic susceptibility to type 2 diabetes and dyslipidaemia. On an aggregate level, gene-obesity interactions are expected to result in different heritability estimates at different obesity levels. However, this hypothesis has nev

  15. Heritability of insulin sensitivity and lipid profile depend on BMI : evidence for gene-obesity interaction

    Wang, X.; Ding, X.; Su, S.; Spector, T. D.; Mangino, M.; Iliadou, A.; Snieder, H.


    Evidence from candidate gene studies suggests that obesity may modify genetic susceptibility to type 2 diabetes and dyslipidaemia. On an aggregate level, gene-obesity interactions are expected to result in different heritability estimates at different obesity levels. However, this hypothesis has

  16. Interaction between nitric oxide and lipid-like DDPA LB film investigated with SHG and AFM

    YU, An- Chi; LIU, Ting-Ting; LUO, Guo-Bin; YING, Li-Ming; ZHAO, Xin-Sheng; HUANG, Yan-Yi; HUANG, Chun-Hui


    Interactions between Nitric oxide (NO) and DDPA LangmuirBlodgett (LB) film are investigated with second harmonic generation (SHG) and atomic force microscopy (AFM). It has been found that the adsorption of NO molecules on DDPA LB film only changes the value of the second-order susceptibility of the DDPA molecule on film but not its orientation.

  17. Detailed requirements document for the Interactive Financial Management System (IFMS), volume 1

    Dodson, D. B.


    The detailed requirements for phase 1 (online fund control, subauthorization accounting, and accounts receivable functional capabilities) of the Interactive Financial Management System (IFMS) are described. This includes information on the following: systems requirements, performance requirements, test requirements, and production implementation. Most of the work is centered on systems requirements, and includes discussions on the following processes: resources authority, allotment, primary work authorization, reimbursable order acceptance, purchase request, obligation, cost accrual, cost distribution, disbursement, subauthorization performance, travel, accounts receivable, payroll, property, edit table maintenance, end-of-year, backup input. Other subjects covered include: external systems interfaces, general inquiries, general report requirements, communication requirements, and miscellaneous. Subjects covered under performance requirements include: response time, processing volumes, system reliability, and accuracy. Under test requirements come test data sources, general test approach, and acceptance criteria. Under production implementation come data base establishment, operational stages, and operational requirements.

  18. CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein (MTP)

    Rakhshandehroo, Maryam; Gijzel, Sanne M W; Siersbæk, Rasmus


    Obesity-induced adipose tissue (AT) dysfunction results in a chronic low-grade inflammation that predisposes to the development of insulin resistance and type 2 diabetes. During the development of obesity, the AT-resident immune cell profile alters to create a pro-inflammatory state. Very recently......-dependent fashion, but little is known about the lipid antigen presentation machinery in adipocytes. Here we show that CD1d, as well as the lipid antigen loading machinery genes pro-saposin (Psap), Niemann Pick type C2 (Npc2), α-galactosidase (Gla), are upregulated in early adipogenesis, and are transcriptionally...

  19. Trypanosoma cruzi Infection and Host Lipid Metabolism


    Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected worldwide. Several players in host lipid metabolism have been implicated in T. cruzi-host interactions in recent research, including macrophages, adipocytes, low density lipoprotein (LDL), low density lipoprotein receptor (LDLR), and high density lipoprotein (HDL). All of these factors are required to maintain host lipid homeostasis and are intricately connected via several me...

  20. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    Li, Long; Xu, Guang-Kui; Song, Fan


    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  1. REAS: An Interactive Semi-Automated System for Software Requirements Elicitation Assistance

    Hanan Hamed Elazhary


    Full Text Available Faulty requirements specifications lead to developing a faulty software system. This may require repeating the whole software engineering cycle wasting time and money. This paper presents an interactive semi-automated system that is a compromise between two approaches. The first tries to avoid the introduction of imprecision while the software requirements are being written. The other attempts to detect and possibly correct many types of imprecision after the software requirements are written. This is achieved by imposing the use of a good writing style and by interactively emulating a conversation between the requirements engineer and the user. This helps free the requirements engineer from such a systematic task, helps in processing many ill-structured statements, and helps maintain consistency in the used terminology. Explanations produced by the system helps in detecting and correcting any missed imprecision. The proposed techniques are easy enough to be used by non-technical stakeholders in different domains

  2. Slam is an outer membrane protein that is required for the surface display of lipidated virulence factors in Neisseria.

    Hooda, Yogesh; Lai, Christine Chieh-Lin; Judd, Andrew; Buckwalter, Carolyn M; Shin, Hyejin Esther; Gray-Owen, Scott D; Moraes, Trevor F


    Lipoproteins decorate the surface of many Gram-negative bacterial pathogens, playing essential roles in immune evasion and nutrient acquisition. In Neisseria spp., the causative agents of gonorrhoea and meningococcal meningitis, surface lipoproteins (SLPs) are required for virulence and have been extensively studied as prime candidates for vaccine development. However, the machinery and mechanism that allow for the surface display of SLPs are not known. Here, we describe a transposon (Tn5)-based search for the proteins required to deliver SLPs to the surface of Neisseria meningitidis, revealing a family of proteins that we have named the surface lipoprotein assembly modulator (Slam). N. meningitidis contains two Slam proteins, each exhibiting distinct substrate preferences. The Slam proteins are sufficient to reconstitute SLP transport in laboratory strains of Escherichia coli, which are otherwise unable to efficiently display these lipoproteins on their cell surface. Immunoprecipitation and domain probing experiments suggest that the SLP, TbpB, interacts with Slam during the transit process; furthermore, the membrane domain of Slam is sufficient for selectivity and proper surface display of SLPs. Rather than being a Neisseria-specific factor, our bioinformatic analysis shows that Slam can be found throughout proteobacterial genomes, indicating a conserved but until now unrecognized virulence mechanism.

  3. Interactions between non-steroidal anti-inflammatory drugs and lipid membranes

    Boggara, Mohan; Krishnamoorti, Ramanan


    Chronic usage of Non-steroidal anti-inflammatory drugs(NSAIDs) leads to gastrointestinal toxicity and clinical evidences point the cause to direct interactions between NSAIDs and phospholipid membranes. Also, NSAIDs pre-associated with phospholipid vesicles are shown to be safer and therapeutically more effective than unmodified ones. Our initial experiments and simulations on the partitioning of Aspirin and Ibuprofen clearly indicate role played by the drug structure in drug-membrane interactions. Those results motivated systematic molecular dynamics simulations of membranes with NSAIDs of different size, structure and pKa values. Our results suggest high partition coefficients for these NSAIDs in the membrane compared to water and thinning effect on the bilayer. Our small angle neutron scattering and reflectivity studies on DMPC-Ibuprofen systems indicate that the drug affects both ˜5 nm thick bilayer and overall ˜100 nm diameter vesicle, indicating that NSAIDs affect vesicles on various length scales. We will discuss the structural perturbations to membranes due to NSAIDs at clinically relevant molar ratios and their implications on the use of vesicles as delivery vehicles for NSAIDs.

  4. Influence of electrostatic interactions on the release of charged molecules from lipid cubic phases.

    Negrini, Renata; Sánchez-Ferrer, Antoni; Mezzenga, Raffaele


    The release of positive, negative, and neutral hydrophilic drugs from pH responsive bicontinuous cubic phases was investigated under varying conditions of electrostatic interactions. A weak acid, linoleic acid (LA), or a weak base, pyridinylmethyl linoleate (PML), were added to the neutral monolinolein (ML) in order to form lyotropic liquid-crystalline (LLC) phases, which are negatively charged at neutral pH and positively charged at acidic pH. Release studies at low ionic strength (I = 20 mM) and at different pH values (3 and 7) revealed that electrostatic attraction between a positive drug, proflavine (PF), and the negatively charged LLC at pH = 7 or between a negative drug, antraquinone 2-sulfonic acid sodium salt (AQ2S), and the positively charged LLC at pH = 3 did delay the release behavior, while electrostatic repulsion affects the transport properties only to some extent. Release profiles of a neutral drug, caffeine, were not affected by the surface charge type and density in the cubic LLCs. Moreover, the influence of ionic strength was also considered up to 150 mM, corresponding to a Debye length smaller than the LLC water channels radius, which showed that efficient screening of electrostatic attractions occurring within the LLC water domains results in an increased release rate. Four transport models were applied to fit the release data, providing an exhaustive, quantitative insight on the role of electrostatic interactions in transport properties from pH responsive bicontinuous cubic phases.

  5. Targeting of pseudorabies virus structural proteins to axons requires association of the viral Us9 protein with lipid rafts.

    Mathew G Lyman


    Full Text Available The pseudorabies virus (PRV Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF. In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs. Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.

  6. Ceramide lipids in alive and thermally stressed mussels: an investigation by hydrophilic interaction liquid chromatography-electrospray ionization Fourier transform mass spectrometry.

    Facchini, Laura; Losito, Ilario; Cataldi, Tommaso R I; Palmisano, Francesco


    Hydrophilic interaction liquid chromatography coupled to electrospray ionization-Fourier transform mass spectrometry was employed to study ceramide lipids occurring in mussels of sp. Mytilus galloprovincialis. Lipid extracts from alive mussels and mussels deliberately subjected to specific thermal treatments were analyzed. In particular, single and tandem MS measurements were performed on a hybrid quadrupole-Orbitrap mass spectrometer and then complemented by MS(n) analyses (n = 2, 3) achieved by a linear ion trap mass spectrometer. This approach enabled the characterization of 66 ceramide lipids, encompassing ceramide phosphoethanolamines (CPE), ceramide aminoethylphosphonates (CAEP) and N-monomethylated CAEP. The sphingoid and acyl chains of each ceramide lipid could be distinctly recognized in terms of numbers of carbon atoms and C=C bonds, and indications on the possible location of the latter on the sphingoid chain could be often inferred from fragmentation patterns. The occurrence of several species hydroxylated on the α carbon of the acyl chain was also discovered. On the other hand, the sphingoid chain of ceramide lipids was never found to be involved in oxidation processes, unless forced exposure of the mussel lipid extracts to atmospheric oxygen was performed. CPE(d19:3/16:0) and its hydroxylated form, CPE(d19:3/2-OH-16:0), were found to be the prevailing species among CPE, whereas CAEP(d18:2/16:0), CAEP(d19:3/16:0) and CAEP(d19:3/2-OH-16:0) were the most abundant CAEP. Finally, ceramide lipids showed a remarkably higher stability, compared with glycerophospholipids, in mussels subjected to different thermal treatments. This finding opens interesting perspectives on the role of ceramide-based lipids in the adaptation of aquatic organisms to thermal stresses. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Study of pH (low) insertion peptides (pHLIPs) interaction with lipid bilayer of membrane

    Weerakkody, Dhammika

    The pH-dependent interactions of pHLIPsRTM (pH (Low) Insertion Peptides) with lipid bilayer of membrane provides an opportunity to study and address fundamental questions of protein folding/insertion into membrane and unfolding/exit, as well as develop novel approach to target acidic diseased tissue such as cancer, ischemic myocardium, infection and others. The main goal of the work presented here is to answer the following questions: - What is the molecular mechanism of spontaneous insertion and folding of a peptide in a lipid bilayer of membrane; - What is the molecular mechanism of unfolding and exit of a peptide from a lipid bilayer of membrane; - How polar cargo attached to a peptide's inserting end might affect the process of insertion into a lipid bilayer of membrane; How sequence variation will affect a peptide's interactions with a lipid bilayer of membrane (partitioning into bilayer at neutral and low pH; apparent pK of insertion) with the main goal to identify the best pHLIP variants for imaging and therapy of pathological states such as cancer and others. It has been demonstrated that pHLIP insertion into a membrane is associated with the protonation of Asp/Glu residues, which leads to an increase of hydrophobicity that triggers the folding and insertion of the peptide across a lipid bilayer. The insertion of the pHLIP is unidirectional and it is accompanied by the release of energy. Therefore, the energy of membrane associated-folding can be used to favor the movement of cell-impermeable polar cargo molecules across the hydrophobic membrane bilayer when they are attached to the inserting end of pHLIP. Both pH-targeting behavior and molecular translocation have been demonstrated in cultured cells and in vivo. Thus, there is an opportunity to develop a novel concept in drug delivery, which is based on the use of a monomeric, pH-sensitive peptide molecular transporter, to deliver agents that are significantly more polar than conventional drugs

  8. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A


    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.

  9. Model parameters for simulation of physiological lipids

    McGlinchey, Nicholas


    Coarse grain simulation of proteins in their physiological membrane environment can offer insight across timescales, but requires a comprehensive force field. Parameters are explored for multicomponent bilayers composed of unsaturated lipids DOPC and DOPE, mixed‐chain saturation POPC and POPE, and anionic lipids found in bacteria: POPG and cardiolipin. A nonbond representation obtained from multiscale force matching is adapted for these lipids and combined with an improved bonding description of cholesterol. Equilibrating the area per lipid yields robust bilayer simulations and properties for common lipid mixtures with the exception of pure DOPE, which has a known tendency to form nonlamellar phase. The models maintain consistency with an existing lipid–protein interaction model, making the force field of general utility for studying membrane proteins in physiologically representative bilayers. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:26864972

  10. Use of isothermal titration calorimetry to study the interaction of short-chain alcohols with lipid membranes

    Trandum, Christa; Westh-Andersen, Peter; Jørgensen, Kent


    of short-chain alcohols on Lipid bilayers. isothermal titration calorimetry (ITC) has been used to determine the energy involved in the association of the alcohols with lipid bilayers. Pure unilamellar DMPC liposomes and DMPC liposomes incorporated with different amounts of cholesterol, sphingomyelin...... dependent on the lipid bilayer composition. In the presence of high concentrations of cholesterol, the binding enthalpy of ethanol is decreased, whereas the presence of ceramides enhances the enthalpic response of the lipid bilayer to ethanol. Isothermal titration calorimetry offers a new methodology...

  11. A Langmuir film approach to elucidating interactions in lipid membranes: 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine/cholesterol/metal cation systems.

    Korchowiec, Beata; Paluch, Maria; Corvis, Yohann; Rogalska, Ewa


    The interactions between two membrane lipids, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE) and cholesterol (CHOL), were studied in Langmuir films using surface pressure isotherms and Brewster angle microscopy. The DPPE/CHOL interactions were probed for chosen monolayer and subphase (Na(+), Ca(2+)) composition at 20, 25, and 30 degrees C. The results obtained show that DPPE and CHOL are miscible for the cholesterol mol fractions x(CHOL)=0.3-0.5. Cholesterol induces condensation of the DPPE monolayers. The most significant condensation of the DPPE/CHOL monolayers was observed in the presence of Ca(2+) ions in the subphase at x(CHOL)=0.4. The negative deviation of the molecular surface area (MMA) additivity from the ideal behavior together with negative values of excess free enthalpy of mixing in the monolayers were interpreted in terms of attractive interactions between lipid molecules.

  12. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Adebiyi, Adebowale, E-mail:; Soni, Hitesh; John, Theresa A.; Yang, Fen


    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  13. The non-specific lipid transfer protein N5 of Medicago truncatula is implicated in epidermal stages of rhizobium-host interaction

    Pii Youry


    Full Text Available Abstract Background The symbiotic interaction between leguminous plants and rhizobia involves two processes: bacterial infection, resulting in the penetration of bacteria in epidermal and cortical cells, and root nodule organogenesis. Root nodule symbiosis is activated by rhizobial signalling molecules, called Nodulation factors (NFs. NF perception induces the expression of several genes called early nodulins. The early nodulin N5 of Medicago truncatula is a lipid transfer protein that has been shown to positively regulate nodulation although it displays in vitro inhibitory activity against Sinorhizobium meliloti. The purpose of this work was to investigate the role of MtN5 by studying its spatial and temporal pattern of expression during the symbiotic interaction, also in relation to known components of the symbiotic signalling pathway, and by analysing the phenotypic alterations displayed by rhizobia-inoculated MtN5-silenced roots. Results We show here that MtN5 is a NF-responsive gene expressed at a very early phase of symbiosis in epidermal cells and root hairs. MtN5 expression is induced in vitro by rhizobial effector molecules and by auxin and cytokinin, phytohormones involved in nodule organogenesis. Furthermore, lipid signaling is implicated in the response of MtN5 to rhizobia, since the activity of phospholipase D is required for MtN5 induction in S. meliloti-inoculated roots. MtN5-silenced roots inoculated with rhizobia display an increased root hair curling and a reduced number of invaded primordia compared to that in wild type roots, but with no impairment to nodule primordia formation. This phenotype is associated with the stimulation of ENOD11 expression, an early marker of infection, and with the down-regulation of Flotillin 4 (FLOT4, a protein involved in rhizobial entry. Conclusions These data indicate that MtN5 acts downstream of NF perception and upstream of FLOT4 in regulating pre-infection events. The positive effect of MtN5

  14. Lipid-protein interactions in DHPC micelles containing the integral membrane protein OmpX investigated by NMR spectroscopy.

    Fernández, César; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt


    Intermolecular nuclear Overhauser effects (NOEs) between the integral outer membrane protein OmpX from Escherichia coli and dihexanoylphosphatidylcholine (DHPC) provided a detailed description of protein-detergent interactions. The NOEs were measured in 3D (15)N- and (13)C-resolved [(1)H,(1)H]-NOESY spectra recorded with selectively methyl-protonated and otherwise uniformly (2)H,(13)C,(15)N-labeled OmpX in micelles of DHPC at natural isotope abundance. In these mixed micelles the NMR structure of OmpX consists of an eight-stranded antiparallel beta-barrel. The OmpX surface area covered with intermolecular NOEs to the DHPC hydrophobic tails forms a continuous cylinder jacket of approximately 28 A in height, which is centered about the middle of the long axis through the beta-barrel. In addition, some intermolecular NOEs with methyl groups of the DHPC polar head were identified along both boundaries of this cylinder jacket. The experimental data suggest that the hydrophobic surface areas of OmpX are covered with a monolayer of DHPC molecules, which appears to mimic quite faithfully the embedding of the beta-barrel in a double-layer lipid membrane.

  15. Kinetics of interaction of HIV fusion protein (gp41) with lipid membranes studied by real-time AFM imaging

    Bitler, Arkady, E-mail: [Department of Chemical Research Support (Israel); Lev, Naama; Fridmann-Sirkis, Yael; Blank, Lior [Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 (Israel); Cohen, Sidney R. [Department of Chemical Research Support (Israel); Shai, Yechiel [Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100 (Israel)


    One of the most important steps in the process of viral infection is a fusion between cell membrane and virus, which is mediated by the viral envelope glycoprotein. The study of activity of the glycoprotein in the post-fusion state is important for understanding the progression of infection. Here we present a first real-time kinetic study of the activity of gp41 (the viral envelope glycoprotein of human immunodeficiency virus-HIV) and its two mutants in the post-fusion state with nanometer resolution by atomic force microscopy (AFM). Tracking the changes in the phosphatidylcholine (PC) and phosphatidylcholine-phosphatidylserine (PC:PS) membrane integrity over one hour by a set of AFM images revealed differences in the interaction of the three types of protein with zwitterionic and negatively charged membranes. A quantitative analysis of the slow kinetics of hole formation in the negatively charged lipid bilayer is presented. Specifically, analysis of the rate of roughness change for the three types of proteins suggests that they exhibit different types of kinetic behavior.

  16. Cellular interactions and photoprotective effects of idebenone-loaded nanostructured lipid carriers stabilized using PEG-free surfactant.

    Kyadarkunte, Abhay Y; Patole, Milind S; Pokharkar, Varsha B


    In past years, nanostructured lipid carriers (NLCs) have emerged as novel topical antioxidant delivery systems because of combined positive features of liposomes and polymeric nanoparticles. Here, we seek to unlock the possibility of idebenone (IDB; an antioxidant)-loaded NLCs (IDB-NLCs) cellular interactions such as, viability and uptake, and its photoprotective effects against Ultraviolet-B (UVB)-mediated oxidative stress in immortal human keratinocyte cell line (HaCaT). The two-step preformulation strategy followed by three-level, three-variable, L9 (3(3)) Taguchi robust orthogonal design employed was important in improving IDB-NLCs key physicochemical aspects such as, entrapment efficiency, drug release (sustained), occlusion, skin deposition and physical stability. UV crosslinker, confocal microscopy and flow cytometry techniques were used to (1) mediate oxidative stress in HaCaT cells, (2) study a qualitative cellular uptake, (3) measure intracellular reactive oxygen species (ROS), and mitochondrial membrane potential, respectively. NLCs markedly improved biocompatibility of IDB under normal as well as stress conditions. Quantitative and qualitative cell uptake studies demonstrated a significant uptake of IDB-NLCs (3-fold increase) and nile red-labeled IDB-NLCs (NR-IDB-NLCs) at 2 h, respectively, hence exerted improved photoprotective effects.

  17. COPI complex is a regulator of lipid homeostasis.

    Mathias Beller


    Full Text Available Lipid droplets are ubiquitous triglyceride and sterol ester storage organelles required for energy storage homeostasis and biosynthesis. Although little is known about lipid droplet formation and regulation, it is clear that members of the PAT (perilipin, adipocyte differentiation related protein, tail interacting protein of 47 kDa protein family coat the droplet surface and mediate interactions with lipases that remobilize the stored lipids. We identified key Drosophila candidate genes for lipid droplet regulation by RNA interference (RNAi screening with an image segmentation-based optical read-out system, and show that these regulatory functions are conserved in the mouse. Those include the vesicle-mediated Coat Protein Complex I (COPI transport complex, which is required for limiting lipid storage. We found that COPI components regulate the PAT protein composition at the lipid droplet surface, and promote the association of adipocyte triglyceride lipase (ATGL with the lipid droplet surface to mediate lipolysis. Two compounds known to inhibit COPI function, Exo1 and Brefeldin A, phenocopy COPI knockdowns. Furthermore, RNAi inhibition of ATGL and simultaneous drug treatment indicate that COPI and ATGL function in the same pathway. These data indicate that the COPI complex is an evolutionarily conserved regulator of lipid homeostasis, and highlight an interaction between vesicle transport systems and lipid droplets.

  18. Biophysical alterations in lipid rafts from human cerebral cortex associate with increased BACE1/AβPP interaction in early stages of Alzheimer's disease.

    Díaz, Mario; Fabelo, Noemí; Martín, Virginia; Ferrer, Isidre; Gómez, Tomás; Marín, Raquel


    In the present study, we have assessed the biophysical properties of lipid rafts from different brain areas in subjects exhibiting early neuropathological stages of Alzheimer's disease (AD). By means of steady-state fluorescence polarization analyses using two environment-sensitive fluorescent probes, we demonstrate that lipid rafts from cerebellum, and frontal and entorhinal cortices, exhibit different biophysical behaviors depending on the stage of the disease. Thus, while membrane anisotropies were similar in the cerebellum along stages, lipid rafts from frontal and entorhinal cortices at AD stages I/II and AD III were significantly more liquid-ordered than in control subjects, both at the aqueous interface and hydrophobic core of the raft membrane. Thermotropic analyses demonstrated the presence of Arrhenius breakpoints between 28.3-32.0 °C, which were not influenced by the disease stage. However, analyses of membrane microviscosity (ηapp) demonstrate that frontal and entorhinal lipid rafts are notably more viscous and liquid-ordered all across the membrane from early stages of the disease. These physicochemical alterations in lipid rafts do not correlate with changes in cholesterol or sphingomyelin levels, but to reduced unsaturation index and increased saturate/polyunsaturated ratios in phospholipid acyl chains. Moreover, we demonstrate that β-secretase/AβPP (amyloid-β protein precursor) interaction and lipid raft microviscosity are strongly, and positively, correlated in AD frontal and entorhinal cortices. These observations strengthens the hypothesis that physical properties of these microdomains modulate the convergence of amyloidogenic machinery toward lipid rafts, and also points to a critical role of polyunsaturated fatty acids in amyloidogenic processing of AβPP.

  19. Uptake of long chain fatty acids is regulated by dynamic interaction of FAT/CD36 with cholesterol/sphingolipid enriched microdomains (lipid rafts

    Herrmann Thomas


    direct interaction of FATP4 with lipid rafts or raft associated FAT/CD36. Thus, lipid rafts have to be considered as targets for the treatment of lipid disorders.




    Since the introduction of paraquat (PQ) as a herbicide in 1963, there have been many speculations concerning the critical lesion in PQ toxicity. Damage to membrane lipids might be an initial event leading to PQ-induced cell killing. The ability of PQ to induce lipid peroxidation was tested in liver

  1. CGI-58 regulates triacylglycerol homeostasis and lipid signaling pathways in plants through interaction with the peroxisomal transport protein PXA1.

    Mutation of the Comparative Gene Identification-58 (CGI-58) gene in humans causes Chanarin-Dorfman syndrome, a rare genetic disorder characterized by an increase in triacylglycerol (TAG) and lipid droplet (LD) contents in non-lipid-storing cell types. Interestingly, disruption of the CGI-58 homologu...

  2. ASK1 physically interacts with COI1 and is required for male fertility in Arabidopsis

    戴良英; 徐领会; 黄大昉; 李栒; 罗宽; 官春云


    Jasmonates are a new class of plant hormones that play important roles in plant development and plant defense. The COI1 gene was previously shown to be required for jasmonate- regulated plant fertility and defense. We demonstrated for the first time that COI1 interacts with the Arabidopsis SKP1-LIKE1 (ASK1) to form a complex that is required for jasmonate action in planta. Functional analysis by antisense strategy showed that ASK1 is involved in male fertility.

  3. Drosophila Lipin interacts with insulin and TOR signaling pathways in the control of growth and lipid metabolism.

    Schmitt, Sandra; Ugrankar, Rupali; Greene, Stephanie E; Prajapati, Meenakshi; Lehmann, Michael


    Lipin proteins have key functions in lipid metabolism, acting as both phosphatidate phosphatases (PAPs) and nuclear regulators of gene expression. We show that the insulin and TORC1 pathways independently control functions of Drosophila Lipin (dLipin). Reduced signaling through the insulin receptor strongly enhanced defects caused by dLipin deficiency in fat body development, whereas reduced signaling through TORC1 led to translocation of dLipin into the nucleus. Reduced expression of dLipin resulted in decreased signaling through the insulin-receptor-controlled PI3K-Akt pathway and increased hemolymph sugar levels. Consistent with this, downregulation of dLipin in fat body cell clones caused a strong growth defect. The PAP but not the nuclear activity of dLipin was required for normal insulin pathway activity. Reduction of other enzymes of the glycerol-3 phosphate pathway affected insulin pathway activity in a similar manner, suggesting an effect that is mediated by one or more metabolites associated with the pathway. Taken together, our data show that dLipin is subject to intricate control by the insulin and TORC1 pathways, and that the cellular status of dLipin impacts how fat body cells respond to signals relayed through the PI3K-Akt pathway.

  4. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.

    Zhao, Jian


    Phospholipase Ds (PLDs) and PLD-derived phosphatidic acids (PAs) play vital roles in plant hormonal and environmental responses and various cellular dynamics. Recent studies have further expanded the functions of PLDs and PAs into plant-microbe interaction. The molecular diversities and redundant functions make PLD-PA an important signalling complex regulating lipid metabolism, cytoskeleton dynamics, vesicle trafficking, and hormonal signalling in plant defence through protein-protein and protein-lipid interactions or hormone signalling. Different PLD-PA signalling complexes and their targets have emerged as fast-growing research topics for understanding their numerous but not yet established roles in modifying pathogen perception, signal transduction, and downstream defence responses. Meanwhile, advanced lipidomics tools have allowed researchers to reveal further the mechanisms of PLD-PA signalling complexes in regulating lipid metabolism and signalling, and their impacts on jasmonic acid/oxylipins, salicylic acid, and other hormone signalling pathways that essentially mediate plant defence responses. This review attempts to summarize the progress made in spatial and temporal PLD/PA signalling as well as PLD/PA-mediated modification of plant defence. It presents an in-depth discussion on the functions and potential mechanisms of PLD-PA complexes in regulating actin filament/microtubule cytoskeleton, vesicle trafficking, and hormonal signalling, and in influencing lipid metabolism-derived metabolites as critical signalling components in plant defence responses. The discussion puts PLD-PA in a broader context in order to guide future research.

  5. Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea.

    Zhou, Xiyou; Gao, Xi; Broglie, Peter M; Kebaier, Chahnaz; Anderson, James E; Thom, Natalie; Apicella, Michael A; Sempowski, Gregory D; Duncan, Joseph A


    Neisseria gonorrhoeae causes gonorrhea, a sexually transmitted infection characterized by inflammation of the cervix or urethra. However, a significant subset of patients with N. gonorrhoeae remain asymptomatic, without evidence of localized inflammation. Inflammatory responses to N. gonorrhoeae are generated by host innate immune recognition of N. gonorrhoeae by several innate immune signaling pathways, including lipooligosaccharide (LOS) and other pathogen-derived molecules through activation of innate immune signaling systems, including toll-like receptor 4 (TLR4) and the interleukin-1β (IL-1β) processing complex known as the inflammasome. The lipooligosaccharide of N. gonorrhoeae has a hexa-acylated lipid A. N. gonorrhoeae strains that carry an inactivated msbB (also known as lpxL1) gene produce a penta-acylated lipid A and exhibit reduced biofilm formation, survival in epithelial cells, and induction of epithelial cell inflammatory signaling. We now show that msbB-deficient N. gonorrhoeae induces less inflammatory signaling in human monocytic cell lines and murine macrophages than the parent organism. The penta-acylated LOS exhibits reduced toll-like receptor 4 signaling but does not affect N. gonorrhoeae-mediated activation of the inflammasome. We demonstrate that N. gonorrhoeae msbB is dispensable for initiating and maintaining infection in a murine model of gonorrhea. Interestingly, infection with msbB-deficient N. gonorrhoeae is associated with less localized inflammation. Combined, these data suggest that TLR4-mediated recognition of N. gonorrhoeae LOS plays an important role in the pathogenesis of symptomatic gonorrhea infection and that alterations in lipid A biosynthesis may play a role in determining symptomatic and asymptomatic infections.

  6. N-Terminal Lipid Modification Is Required for the Stable Accumulation of CyanoQ in Synechocystis sp. PCC 6803.

    Juneau, Andrea D; Frankel, Laurie K; Bricker, Terry M; Roose, Johnna L

    The CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 to eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.

  7. Fatty Acid-binding Proteins Interact with Comparative Gene Identification-58 Linking Lipolysis with Lipid Ligand Shuttling.

    Hofer, Peter; Boeszoermenyi, Andras; Jaeger, Doris; Feiler, Ursula; Arthanari, Haribabu; Mayer, Nicole; Zehender, Fabian; Rechberger, Gerald; Oberer, Monika; Zimmermann, Robert; Lass, Achim; Haemmerle, Guenter; Breinbauer, Rolf; Zechner, Rudolf; Preiss-Landl, Karina


    The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome.

  8. Direct interaction between two actin nucleators is required in Drosophila oogenesis.

    Quinlan, Margot E


    Controlled actin assembly is crucial to a wide variety of cellular processes, including polarity establishment during early development. The recently discovered actin mesh, a structure that traverses the Drosophila oocyte during mid-oogenesis, is essential for proper establishment of the major body axes. Genetic experiments indicate that at least two proteins, Spire (Spir) and Cappuccino (Capu), are required to build this mesh. The spire and cappuccino genetic loci were first identified as maternal effect genes in Drosophila. Mutation in either locus results in the same phenotypes, including absence of the mesh, linking them functionally. Both proteins nucleate actin filaments. Spir and Capu also interact directly with each other in vitro, suggesting a novel synergistic mode of regulating actin. In order to understand how and why proteins with similar biochemical activity would be required in the same biological pathway, genetic experiments were designed to test whether a direct interaction between Spir and Capu is required during oogenesis. Indeed, data in this study indicate that Spir and Capu must interact directly with one another and then separate to function properly. Furthermore, these actin regulators are controlled by a combination of mechanisms, including interaction with one another, functional inhibition and regulation of their protein levels. Finally, this work demonstrates for the first time in a multicellular organism that the ability of a formin to assemble actin filaments is required for a specific structure.

  9. Interaction of the human N-Ras protein with lipid raft model membranes of varying degrees of complexity.

    Vogel, Alexander; Nikolaus, Jörg; Weise, Katrin; Triola, Gemma; Waldmann, Herbert; Winter, Roland; Herrmann, Andreas; Huster, Daniel


    Ternary lipid mixtures composed of cholesterol, saturated (frequently with sphingosine backbone), and unsaturated phospholipids show stable phase separation and are often used as model systems of lipid rafts. Yet, their ability to reproduce raft properties and function is still debated. We investigated the properties and functional aspects of three lipid raft model systems of varying degrees of biological relevance--PSM/POPC/Chol, DPPC/POPC/Chol, and DPPC/DOPC/Chol--using 2H solid-state nuclear magnetic resonance (NMR) spectroscopy, fluorescence microscopy, and atomic force microscopy. While some minor differences were observed, the general behavior and properties of all three model mixtures were similar to previously investigated influenza envelope lipid membranes, which closely mimic the lipid composition of biological membranes. For the investigation of the functional aspects, we employed the human N-Ras protein, which is posttranslationally modified by two lipid modifications that anchor the protein to the membrane. It was previously shown that N-Ras preferentially resides in liquid-disordered domains and exhibits a time-dependent accumulation in the domain boundaries of influenza envelope lipid membranes. For all three model mixtures, we observed the same membrane partitioning behavior for N-Ras. Therefore, we conclude that even relatively simple models of raft membranes are able to reproduce many of their specific properties and functions.

  10. A time-resolved study on the interaction of oppositely charged bicelles--implications on the charged lipid exchange kinetics.

    Yang, Po-Wei; Lin, Tsang-Lang; Hu, Yuan; Jeng, U-Ser


    Time-resolved small-angle X-ray scattering was applied to study charged lipid exchange between oppositely charged disc-shaped bicelles. The exchange of charged lipids gradually reduces the surface charge density and weakens the electrostatic attraction between the oppositely charged bicelles which form alternately stacked aggregates upon mixing. Initially, at a high surface charge density with almost no free water layer between the stacked bicelles, fast exchange kinetics dominate the exchange process. At a later stage with a lower surface charge density and a larger water gap between the stacked bicelles, slow exchange kinetics take over. The fast exchange kinetics are correlated with the close contact of the bicelles when there is almost no free water layer between the tightly bound bicelles with a charged lipid exchange time constant as short as 20-40 min. When the water gap becomes large enough to have a free water layer between the stacked bicelles, the fast lipid exchange kinetics are taken over by slow lipid exchange kinetics with time constants around 200-300 min, which are comparable to the typical time constant of lipid exchange between vesicles in aqueous solution. These two kinds of exchange mode fit well with the lipid exchange models of transient hemifusion for the fast mode and monomer exchange for the slow mode.

  11. Dark-field-based observation of single-nanoparticle dynamics on a supported lipid bilayer for in situ analysis of interacting molecules and nanoparticles.

    Lee, Young Kwang; Kim, Sungi; Nam, Jwa-Min


    Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Direct interaction of the molecular scaffolds POSH and JIP is required for apoptotic activation of JNKs.

    Kukekov, Nickolay V; Xu, Zhiheng; Greene, Lloyd A


    A sequential pathway (the JNK pathway) that includes activation of Rac1/Cdc42, mixed lineage kinases, MAP kinase kinases 4 and 7, and JNKs plays a required role in many paradigms of apoptotic cell death. However, the means by which this pathway is assembled and directed toward apoptotic death has been unclear. Here, we report that propagation of the apoptotic JNK pathway requires the cooperative interaction of two molecular scaffolds, POSH and JIPs. POSH (plenty of SH3s) is a multidomain GTP-Rac1-interacting protein that binds and promotes activation of mixed lineage kinases. JIPs are reported to bind MAP kinase kinases 4/7 and JNKs. We find that POSH and JIPs directly associate with one another to form a multiprotein complex, PJAC (POSH-JIP apoptotic complex), that includes all of the known kinase components of the pathway. Our observations indicate that this complex is required for JNK activation and cell death in response to apoptotic stimuli.

  13. Lipids and lipid binding proteins: a perfect match.

    Glatz, Jan F C


    Lipids serve a great variety of functions, ranging from structural components of biological membranes to signaling molecules affecting various cellular functions. Several of these functions are related to the unique physico-chemical properties shared by all lipid species, i.e., their hydrophobicity. The latter, however, is accompanied by a poor solubility in an aqueous environment and thus a severe limitation in the transport of lipids in aqueous compartments such as blood plasma and the cellular soluble cytoplasm. Specific proteins which can reversibly and non-covalently associate with lipids, designated as lipid binding proteins or lipid chaperones, greatly enhance the aqueous solubility of lipids and facilitate their transport between tissues and within tissue cells. Importantly, transport of lipids across biological membranes also is facilitated by specific (membrane-associated) lipid binding proteins. Together, these lipid binding proteins determine the bio-availability of their ligands, and thereby markedly influence the subsequent processing, utilization, or signaling effect of lipids. The bio-availability of specific lipid species thus is governed by the presence of specific lipid binding proteins, the affinity of these proteins for distinct lipid species, and the presence of competing ligands (including pharmaceutical compounds). Recent studies suggest that post-translational modifications of lipid binding proteins may have great impact on lipid-protein interactions. As a result, several levels of regulation exist that together determine the bio-availability of lipid species. This short review discusses the significance of lipid binding proteins and their potential application as targets for therapeutic intervention.

  14. Identification of HIV-1 Vif regions required for CBF-β interaction and APOBEC3 suppression.

    Wang, Hong; Liu, Bin; Liu, Xin; Li, Zhaolong; Yu, Xiao-Fang; Zhang, Wenyan


    Human immunodeficiency virus type 1 (HIV-1) Vif requires core binding factor β (CBF-β) to degrade the host APOBEC3 restriction factors. Although a minimum domain and certain amino acids of HIV-1 Vif, including hydrophobic residues at the N-terminal, have been identified as critical sites for binding with CBF-β, other regions that potentially mediate this interaction need to be further investigated. Here, we mapped two new regions of HIV-1 Vif that are required for interaction with CBF-β by generating a series of single-site or multiple-site Vif mutants and testing their effect on the suppression of APOBEC3G (A3G) and APOBEC3F (A3F). A number of the mutants, including G84A/SIEW86-89AAAA (84/86-89), E88A/W89A (88/89), G84A, W89A, L106S and I107S in the 84GxSIEW89 and L102ADQLI107 regions, affected Vif function by disrupting CBF-β binding. These Vif mutants also had altered interactions with CUL5, since CBF-β is known to facilitate the binding of Vif to CUL5. We further showed that this effect was not due to misfolding or conformational changes in Vif, as the mutants still maintained their interactions with other factors such as ElonginB, A3G and A3F. Notably, G84D and D104A had stronger effects on the Vif-CUL5 interaction than on the Vif-CBF-β interaction, indicating that they mainly influenced the CUL5 interaction and implying that the interaction of Vif with CUL5 contributes to the binding of Vif to CBF-β. These new binding interfaces with CBF-β in HIV-1 Vif provide novel targets for the development of HIV-1 inhibitors.

  15. Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane.

    Feng, Xiuyan; Huang, Haidong; Yang, Yuan; Fröhlich, Otto; Klein, Janet D; Sands, Jeff M; Chen, Guangping


    The cell plasma membrane contains specialized microdomains called lipid rafts which contain high amounts of sphingolipids and cholesterol. Lipid rafts are involved in a number of membrane protein functions. The urea transporter UT-A1, located in the kidney inner medullary collecting duct (IMCD), is important for urine concentrating ability. In this study, we investigated the possible role of lipid rafts in UT-A1 membrane regulation. Using sucrose gradient cell fractionation, we demonstrated that UT-A1 is concentrated in the caveolae-rich fraction both in stably expressing UT-A1 HEK293 cells and in freshly isolated kidney IMCD suspensions. In these gradients, UT-A1 at the cell plasma membrane is codistributed with caveolin-1, a major component of caveolae. The colocalization of UT-A1 in lipid rafts/caveolae was further confirmed in isolated caveolae from UT-A1-HEK293 cells. The direct association of UT-A1 and caveolin-1 was identified by immunoprecipitation and GST pull-down assay. Examination of internalized UT-A1 in pEGFP-UT-A1 transfected HEK293 cells fluorescent overlap with labeled cholera toxin subunit B, a marker of the caveolae-mediated endocytosis pathway. Disruption of lipid rafts by methyl-beta-cyclodextrin or knocking down caveolin-1 by small-interference RNA resulted in UT-A1 cell membrane accumulation. Functionally, overexpression of caveolin-1 in oocytes decreased UT-A1 urea transport activity and UT-A1 cell surface expression. Our results indicate that lipid rafts/caveolae participate in UT-A1 membrane regulation and this effect is mediated via a direct interaction of caveolin-1 with UT-A1.

  16. Principles of electrostatic interactions and self-assembly in lipid/peptide/DNA systems: applications to gene delivery.

    Berezhnoy, Nikolay V; Korolev, Nikolay; Nordenskiöld, Lars


    Recently, great progress has been achieved in development of a wide variety of formulations for gene delivery in vitro and in vivo, which include lipids, peptides and DNA (LPD). Additionally, application of natural histone-DNA complexes (chromatin) in combination with transfection lipids has been suggested as a potential route for gene delivery (chromofection). However, the thermodynamic mechanisms responsible for formation of the ternary lipid-peptide-DNA supramolecular structures have rarely been analyzed. Using recent experimental studies on LPD complexes (including mixtures of chromatin with cationic lipids) and general polyelectrolyte theory, we review and analyze the major determinants defining the internal structure, particle composition and size, surface charge and ultimately, transfection properties of the LPD formulations.

  17. Interactions between inflammation and lipid metabolism: Relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis

    Diepen, J.A. van; Berbee, J.F.; Havekes, L.M.; Rensen, P.C.


    Dyslipidemia and inflammation are well known causal risk factors the development of atherosclerosis. The interplay between lipid metabolism and inflammation at multiple levels in metabolic active tissues may exacerbate the development of atherosclerosis, and will be discussed in this review.

  18. Lipid-modified oligonucleotide conjugates: Insights into gene silencing, interaction with model membranes and cellular uptake mechanisms.

    Ugarte-Uribe, Begoña; Grijalvo, Santiago; Pertíñez, Samuel Núñez; Busto, Jon V; Martín, César; Alagia, Adele; Goñi, Félix M; Eritja, Ramón; Alkorta, Itziar


    The ability of oligonucleotides to silence specific genes or inhibit the biological activity of specific proteins has generated great interest in their use as research tools and therapeutic agents. Unfortunately, their biological applications meet the limitation of their poor cellular accessibility. Developing an appropriate delivery system for oligonucleotides is essential to achieve their efficient cellular uptake. In the present work a series of phosphorothioate lipid-oligonucleotide hybrids were synthesized introducing covalently single or double lipid tails at both 3'- and 5'-termini of an antisense oligonucleotide. Gene transfections in cultured cells showed antisense luciferase inhibition without the use of a transfecting agent for conjugates modified with the double-lipid tail at 5'-termini. The effect of the double lipid-tailed modification was further studied in detail in several model membrane systems as well as in cellular uptake experiments. During these studies the spontaneous formation of self-assembled microstructures is clearly observed. Lipidation allowed the efficient incorporation of the oligonucleotide in HeLa cells by a macropinocytosis mechanism without causing cytotoxicity in cells or altering the binding properties of the oligonucleotide conjugates. In addition, both single- and double-tailed compounds showed a similar behavior in lipid model membranes, making them useful in nucleotide-based technologies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Interactions between inflammation and lipid metabolism: relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis.

    van Diepen, Janna A; Berbée, Jimmy F P; Havekes, Louis M; Rensen, Patrick C N


    Dyslipidemia and inflammation are well known causal risk factors the development of atherosclerosis. The interplay between lipid metabolism and inflammation at multiple levels in metabolic active tissues may exacerbate the development of atherosclerosis, and will be discussed in this review. Cholesterol, fatty acids and modified lipids can directly activate inflammatory pathways. In addition, circulating (modified) lipoproteins modulate the activity of leukocytes. Vice versa, proinflammatory signaling (i.e. cytokines) in pre-clinical models directly affects lipid metabolism. Whereas the main lipid-lowering drugs all have potent anti-inflammatory actions, the lipid-modulating actions of anti-inflammatory agents appear to be less straightforward. The latter have mainly been evaluated in pre-clinical models and in patients with chronic inflammatory diseases, which will be discussed. The clinical trials that are currently conducted to evaluate the efficacy of anti-inflammatory agents in the treatment of cardiovascular diseases may additionally reveal potential (beneficial) effects of these therapeutics on lipid metabolism in the general population at risk for CVD.

  20. The hepatitis C virus core protein inhibits adipose triglyceride lipase (ATGL)-mediated lipid mobilization and enhances the ATGL interaction with comparative gene identification 58 (CGI-58) and lipid droplets.

    Camus, Gregory; Schweiger, Martina; Herker, Eva; Harris, Charles; Kondratowicz, Andrew S; Tsou, Chia-Lin; Farese, Robert V; Herath, Kithsiri; Previs, Stephen F; Roddy, Thomas P; Pinto, Shirly; Zechner, Rudolf; Ott, Melanie


    Liver steatosis is a common health problem associated with hepatitis C virus (HCV) and an important risk factor for the development of liver fibrosis and cancer. Steatosis is caused by triglycerides (TG) accumulating in lipid droplets (LDs), cellular organelles composed of neutral lipids surrounded by a monolayer of phospholipids. The HCV nucleocapsid core localizes to the surface of LDs and induces steatosis in cultured cells and mouse livers by decreasing intracellular TG degradation (lipolysis). Here we report that core at the surface of LDs interferes with the activity of adipose triglyceride lipase (ATGL), the key lipolytic enzyme in the first step of TG breakdown. Expressing core in livers or mouse embryonic fibroblasts of ATGL(-/-) mice no longer decreases TG degradation as observed in LDs from wild-type mice, supporting the model that core reduces lipolysis by engaging ATGL. Core must localize at LDs to inhibit lipolysis, as ex vivo TG hydrolysis is impaired in purified LDs coated with core but not when free core is added to LDs. Coimmunoprecipitation experiments revealed that core does not directly interact with the ATGL complex but, unexpectedly, increased the interaction between ATGL and its activator CGI-58 as well as the recruitment of both proteins to LDs. These data link the anti-lipolytic activity of the HCV core protein with altered ATGL binding to CGI-58 and the enhanced association of both proteins with LDs.

  1. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells.

    Adebiyi, Adebowale; Soni, Hitesh; John, Theresa A; Yang, Fen


    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca(2+) ([Ca(2+)]i) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca(2+)]i elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca(2+)]i chelator; KN-93, a Ca(2+)/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca(2+)]i-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Secondary structure and lipid interactions of the N-terminal segment of pulmonary surfactant SP-C in Langmuir films: IR reflection-absorption spectroscopy and surface pressure studies

    Bi, Xiaohong; Flach, Carol R; Pérez-Gil, Jesus


    syndrome, a pathological condition resulting from deficiency in surfactant. To facilitate rational design of therapeutic agents, a molecular level understanding of lipid interaction with surfactant proteins or their analogues in aqueous monolayer films is necessary. The current work uses infrared...

  3. Coordinated and interactive expression of genes of lipid metabolism and inflammation in adipose tissue and liver during metabolic overload.

    Wen Liang

    Full Text Available BACKGROUND: Chronic metabolic overload results in lipid accumulation and subsequent inflammation in white adipose tissue (WAT, often accompanied by non-alcoholic fatty liver disease (NAFLD. In response to metabolic overload, the expression of genes involved in lipid metabolism and inflammatory processes is adapted. However, it still remains unknown how these adaptations in gene expression in expanding WAT and liver are orchestrated and whether they are interrelated. METHODOLOGY/PRINCIPAL FINDINGS: ApoE*3Leiden mice were fed HFD or chow for different periods up to 12 weeks. Gene expression in WAT and liver over time was evaluated by micro-array analysis. WAT hypertrophy and inflammation were analyzed histologically. Bayesian hierarchical cluster analysis of dynamic WAT gene expression identified groups of genes ('clusters' with comparable expression patterns over time. HFD evoked an immediate response of five clusters of 'lipid metabolism' genes in WAT, which did not further change thereafter. At a later time point (>6 weeks, inflammatory clusters were induced. Promoter analysis of clustered genes resulted in specific key regulators which may orchestrate the metabolic and inflammatory responses in WAT. Some master regulators played a dual role in control of metabolism and inflammation. When WAT inflammation developed (>6 weeks, genes of lipid metabolism and inflammation were also affected in corresponding livers. These hepatic gene expression changes and the underlying transcriptional responses in particular, were remarkably similar to those detected in WAT. CONCLUSION: In WAT, metabolic overload induced an immediate, stable response on clusters of lipid metabolism genes and induced inflammatory genes later in time. Both processes may be controlled and interlinked by specific transcriptional regulators. When WAT inflammation began, the hepatic response to HFD resembled that in WAT. In all, WAT and liver respond to metabolic overload by

  4. Intracellular disassembly and activity of pertussis toxin require interaction with ATP.

    Plaut, Roger D; Scanlon, Karen M; Taylor, Michael; Teter, Ken; Carbonetti, Nicholas H


    The active subunit (S1) of pertussis toxin (PT), a major virulence factor of Bordetella pertussis, ADP-ribosylates Gi proteins in the mammalian cell cytosol to inhibit GPCR signaling. The intracellular pathway of PT includes endocytosis and retrograde transport to the trans-Golgi network (TGN) and endoplasmic reticulum (ER). Subsequent translocation of S1 to the cytosol is presumably preceded by dissociation from the holotoxin. In vitro, such dissociation is stimulated by interaction of PT with ATP. To investigate the role of this interaction in cellular events, we engineered a form of PT (PTDM) with changes to two amino acids involved in the interaction with ATP. PTDM was reduced in (1) binding to ATP, (2) dissociability by interaction with ATP, (3) in vitro enzymatic activity and (4) cellular ADP-ribosylation activity. In cells treated with PTDM carrying target sequences for organelle-specific modifications, normal transport to the TGN and ER occurred, but N-glycosylation patterns of the S1 and S4 subunits were consistent with an inability of PTDM to dissociate in the ER. These results indicate a requirement for interaction with ATP for PT dissociation in the ER and cellular activity. They also indicate that the retrograde transport route is the cellular intoxication pathway for PT.

  5. The XMAP215-family protein DdCP224 is required for cortical interactions of microtubules

    Hestermann Andrea


    Full Text Available Abstract Background Interactions of peripheral microtubule tips with the cell cortex are of crucial importance for nuclear migration, spindle orientation, centrosome positioning and directional cell movement. Microtubule plus end binding proteins are thought to mediate interactions of microtubule tips with cortical actin and membrane proteins in a dynein-dependent manner. XMAP215-family proteins are main regulators of microtubule plus end dynamics but so far they have not been implicated in the interactions of microtubule tips with the cell cortex. Results Here we show that overexpression of an N-terminal fragment of DdCP224, the Dictyostelium XMAP215 homologue, caused a collapse of the radial microtubule cytoskeleton, whereby microtubules lost contact with the cell cortex and were dragged behind like a comet tail of an unusually motile centrosome. This phenotype was indistinguishable from mutants overexpressing fragments of the dynein heavy chain or intermediate chain. Moreover, it was accompanied by dispersal of the Golgi apparatus and reduced cortical localization of the dynein heavy chain indicating a disrupted dynein/dynactin interaction. The interference of DdCP224 with cortical dynein function is strongly supported by the observations that DdCP224 and its N-terminal fragment colocalize with dynein and coimmunoprecipitate with dynein and dynactin. Conclusions Our data show that XMAP215-like proteins are required for the interaction of microtubule plus ends with the cell cortex in interphase cells and strongly suggest that this function is mediated by dynein.

  6. Antimicrobial peptides at work: interaction of myxinidin and its mutant WMR with lipid bilayers mimicking the P. aeruginosa and E. coli membranes

    Lombardi, Lucia; Stellato, Marco Ignazio; Oliva, Rosario; Falanga, Annarita; Galdiero, Massimiliano; Petraccone, Luigi; D'Errico, Geradino; de Santis, Augusta; Galdiero, Stefania; Del Vecchio, Pompea


    Antimicrobial peptides are promising candidates as future therapeutics in order to face the problem of antibiotic resistance caused by pathogenic bacteria. Myxinidin is a peptide derived from the hagfish mucus displaying activity against a broad range of bacteria. We have focused our studies on the physico-chemical characterization of the interaction of myxinidin and its mutant WMR, which contains a tryptophan residue at the N-terminus and four additional positive charges, with two model biological membranes (DOPE/DOPG 80/20 and DOPE/DOPG/CL 65/23/12), mimicking respectively Escherichia coli and Pseudomonas aeruginosa membrane bilayers. All our results have coherently shown that, although both myxinidin and WMR interact with the two membranes, their effect on membrane microstructure and stability are different. We further have shown that the presence of cardiolipin plays a key role in the WMR-membrane interaction. Particularly, WMR drastically perturbs the DOPE/DOPG/CL membrane stability inducing a segregation of anionic lipids. On the contrary, myxinidin is not able to significantly perturb the DOPE/DOPG/CL bilayer whereas interacts better with the DOPE/DOPG bilayer causing a significant perturbing effect of the lipid acyl chains. These findings are fully consistent with the reported greater antimicrobial activity of WMR against P. aeruginosa compared with myxinidin.

  7. Apolipoprotein E isoforms 3/3 and 3/4 differentially interact with circulating stearic, palmitic, and oleic fatty acids and lipid levels in Alaskan Natives.

    Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth


    Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives.

  8. Lipid Profile

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Lipid Profile Share this page: Was this page helpful? Also ... as: Lipid Panel; Coronary Risk Panel Formal name: Lipid Profile Related tests: Cholesterol ; HDL Cholesterol ; LDL Cholesterol ; Triglycerides ; ...

  9. Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes.

    Sun, Zhiqi; Gong, Jingyi; Wu, Han; Xu, Wenyi; Wu, Lizhen; Xu, Dijin; Gao, Jinlan; Wu, Jia-Wei; Yang, Hongyuan; Yang, Maojun; Li, Peng


    Mature white adipocytes contain a characteristic unilocular lipid droplet. However, the molecular mechanisms underlying unilocular lipid droplet formation are poorly understood. We previously showed that Fsp27, an adipocyte-specific lipid droplet-associated protein, promotes lipid droplet growth by initiating lipid exchange and transfer. Here, we identify Perilipin1 (Plin1), another adipocyte-specific lipid droplet-associated protein, as an Fsp27 activator. Plin1 interacts with the CIDE-N domain of Fsp27 and markedly increases Fsp27-mediated lipid exchange, lipid transfer and lipid droplet growth. Functional cooperation between Plin1 and Fsp27 is required for efficient lipid droplet growth in adipocytes, as depletion of either protein impairs lipid droplet growth. The CIDE-N domain of Fsp27 forms homodimers and disruption of CIDE-N homodimerization abolishes Fsp27-mediated lipid exchange and transfer. Interestingly, Plin1 can restore the activity of CIDE-N homodimerization-defective mutants of Fsp27. We thus uncover a novel mechanism underlying lipid droplet growth and unilocular lipid droplet formation that involves the cooperative action of Fsp27 and Plin1 in adipocytes.

  10. Interactions of /sup 14/N:/sup 15/N stearic acid spin-label pairs: effects of host lipid alkyl chain length and unsaturation

    Feix, J.B.; Yin, J.J.; Hyde, J.S.


    Electron-electron double resonance (ELDOR) and saturation recovery electron paramagnetic resonance (EPR) spectroscopy have been employed to examine the interactions of /sup 14/N:/sup 15/N stearic acid spin-label pairs in fluid-phase model membrane bilayers composed of a variety of phospholipids. The (/sup 14/N)-16-doxylstearate:(/sup 15/N)-16-doxylstearate (16:16) pair was utilized to measure lateral diffusion of the spin-labels, while the (/sup 14/N)-16-doxylstearate:(/sup 15/N)-5-doxylstearate (16:5) pair provided information on vertical fluctuations of the 16-doxylstearate nitroxide moiety toward the membrane surface. Three saturated host lipids of varying alkyl chain length (dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC), and distearoylphosphatidylcholine (DSPC)), an ..cap alpha..-saturated, ..beta..-unsaturated lipid (1-palmitoyl-2-oleoylphosphatidylcholine (POPC)), and phosphatidylcholine from a natural source (egg yolk phosphatidylcholine (egg PC)) were utilized as host lipids. Lateral diffusion of the stearic acid spin-labels was only slightly affected by alkyl chain length at a given reduced temperature (T/sub r/) in the saturated host lipids but was significantly decreased in POPC at the same T/sub r/. Lateral diffusion in DMPC, POPC, and egg PC was quite similar at 37/sup 0/C. A strong correlation was noted between lateral diffusion constants and rotational mobility of (/sup 14/N)-16-doxylstearate. Vertical fluctuations were likewise only slightly influenced by alklyl chain length but were strongly diminished in POPC and egg PC relative to the saturated systems. This diminution of the 16:5 interaction was observed even under conditions where no differences were discernible by conventional EPR.

  11. Interactions between inflammation and lipid metabolism: Relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis

    Diepen, J.A. van; Berbée, J.F.P.; Havekes, L.M.; Rensen, P.C.N.


    Dyslipidemia and inflammation are well known causal risk factors the development of atherosclerosis. The interplay between lipid metabolism and inflammation at multiple levels in metabolic active tissues may exacerbate the development of atherosclerosis, and will be discussed in this review. Cholest

  12. Interactions between Lipids and Human Anti-HIV Antibody 4E10 Can Be Reduced without Ablating Neutralizing Activity

    Xu, Hengyu; Song, Likai; Kim, Mikyung; Holmes, Margaret A.; Kraft, Zane; Sellhorn, George; Reinherz, Ellis L.; Stamatatos, Leonidas; Strong, Roland K.


    Human 4E10 is one of the broadest-specificity, HIV-1-neutralizing monoclonal antibodies known, recognizing a membrane-proximal linear epitope on gp41. The lipid cross-reactivity of 4E10 has been alternately suggested either to contribute to the apparent rarity of 4E10-like antibody responses in HIV

  13. Genetic disposition and response of blood lipids to diet - studies on gene-diet interaction in humans

    Weggemans, R.M.


    Even though a cholesterol-lowering diet is effective for most people, it is not for all. Identification of genetic determinants of the serum lipid response to diet may be of help in the identification of subjects who will not benefit from a cholesterol-lowering diet. It may also clarify the role of

  14. FLS2-BAK1 extracellular domain interaction sites required for defense signaling activation.

    Teresa Koller

    Full Text Available Signaling initiation by receptor-like kinases (RLKs at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP receptor FLS2 builds signaling complexes with BAK1 (SERK3. We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs of the significantly different receptors FLS2, EFR (MAMP receptors, PEPR1 (damage-associated molecular pattern (DAMP receptor, and BRI1 (hormone receptor. Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants

  15. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin


    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.

  16. EphB–ephrin-B2 interactions are required for thymus migration during organogenesis

    Foster, Katie E.; Gordon, Julie; Cardenas, Kim; Veiga-Fernandes, Henrique; Makinen, Taija; Grigorieva, Elena; Wilkinson, David G.; Blackburn, C. Clare; Richie, Ellen; Manley, Nancy R.; Adams, Ralf H.; Kioussis, Dimitris; Coles, Mark C.


    Thymus organogenesis requires coordinated interactions of multiple cell types, including neural crest (NC) cells, to orchestrate the formation, separation, and subsequent migration of the developing thymus from the third pharyngeal pouch to the thoracic cavity. The molecular mechanisms driving these processes are unclear; however, NC-derived mesenchyme has been shown to play an important role. Here, we show that, in the absence of ephrin-B2 expression on thymic NC-derived mesenchyme, the thymus remains in the cervical area instead of migrating into the thoracic cavity. Analysis of individual NC-derived thymic mesenchymal cells shows that, in the absence of ephrin-B2, their motility is impaired as a result of defective EphB receptor signaling. This implies a NC-derived cell-specific role of EphB–ephrin-B2 interactions in the collective migration of the thymic rudiment during organogenesis. PMID:20616004

  17. Sample size requirements for indirect association studies of gene-environment interactions (G x E).

    Hein, Rebecca; Beckmann, Lars; Chang-Claude, Jenny


    Association studies accounting for gene-environment interactions (G x E) may be useful for detecting genetic effects. Although current technology enables very dense marker spacing in genetic association studies, the true disease variants may not be genotyped. Thus, causal genes are searched for by indirect association using genetic markers in linkage disequilibrium (LD) with the true disease variants. Sample sizes needed to detect G x E effects in indirect case-control association studies depend on the true genetic main effects, disease allele frequencies, whether marker and disease allele frequencies match, LD between loci, main effects and prevalence of environmental exposures, and the magnitude of interactions. We explored variables influencing sample sizes needed to detect G x E, compared these sample sizes with those required to detect genetic marginal effects, and provide an algorithm for power and sample size estimations. Required sample sizes may be heavily inflated if LD between marker and disease loci decreases. More than 10,000 case-control pairs may be required to detect G x E. However, given weak true genetic main effects, moderate prevalence of environmental exposures, as well as strong interactions, G x E effects may be detected with smaller sample sizes than those needed for the detection of genetic marginal effects. Moreover, in this scenario, rare disease variants may only be detectable when G x E is included in the analyses. Thus, the analysis of G x E appears to be an attractive option for the detection of weak genetic main effects of rare variants that may not be detectable in the analysis of genetic marginal effects only.

  18. Identification of Lipid Binding Modulators Using the Protein-Lipid Overlay Assay.

    Tang, Tuo-Xian; Xiong, Wen; Finkielstein, Carla V; Capelluto, Daniel G S


    The protein-lipid overlay assay is an inexpensive, easy-to-implement, and high-throughput methodology that employs nitrocellulose membranes to immobilize lipids in order to rapid screen and identify protein-lipid interactions. In this chapter, we show how this methodology can identify potential modulators of protein-lipid interactions by screening water-soluble lipid competitors or even the introduction of pH changes during the binding assay to identify pH-dependent lipid binding events.

  19. Synchrotron X-ray Scattering Analysis of the Interaction Between Corn Starch and an Exogenous Lipid During Hydrothermal Treatment

    E Hernandez-Hernandez; C Avila-Orta; B Hsiao; j Castro-Rosas; J Gallegos-Infante; J Morales-Castro; L Ochoa-Martinez; C Gomez-Aldapa


    Lipids have an important effect on starch physicochemical properties. There exist few reports about the effect of exogenous lipids on native corn starch structural properties. In this work, a study of the morphological, structural and thermal properties of native corn starch with L-alpha-lysophosphatidylcholine (LPC, the main phospholipid in corn) was performed under an excess of water. Synchrotron radiation, in the form of real-time small and wide-angle X-ray scattering (SAXS/WAXS), was used in order to track structural changes in corn starch, in the presence of LPC during a heating process from 30 to 85 C. When adding LCP, water absorption decreased within starch granule amorphous regions during gelatinization. This is explained by crystallization of the amylose-LPC inclusion complex during gelatinization, which promotes starch granule thermal stability at up to 95 C. Finally, a conceptual model is proposed for explaining the formation mechanism of the starch-LPC complex.

  20. Menthol-induced action potentials in Conocephalum conicum as a result of unspecific interactions between menthol and the lipid phase of the plasma membrane.

    Kupisz, Kamila; Trebacz, Kazimierz; Gruszecki, Wiesław I


    Our previous study has shown that the liverwort Conocephalum conicum generates action potentials (APs) in response to both temperature drop and menthol, which are also activators of the TRPM8 (transient receptor potential melastatin 8) receptor in animals. Not only similarities but also differences between electrical reactions to menthol and cooling observed in the liverwort aroused our interest in the action of menthol at the molecular level. Patch-clamp investigations have shown that menthol causes a reduction of current flowing through slow vacuolar (SV) channels to 29 ± 10% of the initial value (n = 9); simultaneously, it does not influence magnitudes of currents passing through a single SV channel. This may point to an unspecific interaction between menthol and the lipid phase of the membrane. An influence of menthol on lipid organization in membranes was investigated in two-component monomolecular layers formed with menthol and dipalmitoylphosphatidylcholine (DPPC) at the argon-water interface. Analyses of the mean molecular area parameters vs the molar fraction of the menthol component have shown over-additivity (approximately 20 Å(2) ) in the region of high molar fractions of menthol. Infrared absorption spectroscopy studies have shown that menthol, most probably, induces breaking of a hydrogen bond network formed by ester carbonyl groups and water bridges in the lipid membrane and binds to the polar head group region of DPPC. We conclude that the disruption in the lipid phase of the membrane influences ion channels and/or pumps and subsequently causes generation of APs in excitable plants such as C. conicum.

  1. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation

    Rybałtowska-Kawałko, Paula


    Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx). Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular) and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance. PMID:28168010

  2. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation

    Agnieszka Gęgotek


    Full Text Available Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx. Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance.

  3. Calicivirus translation initiation requires an interaction between VPg and eIF4E

    Goodfellow, Ian; Chaudhry, Yasmin; Gioldasi, Ioanna; Gerondopoulos, Andreas; Natoni, Alessandro; Labrie, Louisette; Laliberté, Jean-François; Roberts, Lisa


    Unlike other positive-stranded RNA viruses that use either a 5′-cap structure or an internal ribosome entry site to direct translation of their messenger RNA, calicivirus translation is dependent on the presence of a protein covalently linked to the 5′ end of the viral genome (VPg). We have shown a direct interaction of the calicivirus VPg with the cap-binding protein eIF4E. This interaction is required for calicivirus mRNA translation, as sequestration of eIF4E by 4E-BP1 inhibits translation. Functional analysis has shown that VPg does not interfere with the interaction between eIF4E and the cap structure or 4E-BP1, suggesting that VPg binds to eIF4E at a different site from both cap and 4E-BP1. This work lends support to the idea that calicivirus VPg acts as a novel ‘cap substitute' during initiation of translation on virus mRNA. PMID:16142217

  4. AKTIP/Ft1, a New Shelterin-Interacting Factor Required for Telomere Maintenance.

    Burla, Romina


    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (human AKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factor identified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere dysfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively

  5. G protein-membrane interactions II: Effect of G protein-linked lipids on membrane structure and G protein-membrane interactions.

    Casas, Jesús; Ibarguren, Maitane; Álvarez, Rafael; Terés, Silvia; Lladó, Victoria; Piotto, Stefano P; Concilio, Simona; Busquets, Xavier; López, David J; Escribá, Pablo V


    G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gβγ and Gαβγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Proprotein Convertase Subtilisin/Kexin Type 9 Gene E670G Polymorphism Interacts with Alcohol Consumption to Modulate Serum Lipid Levels

    Lynn Htet Htet Aung, Rui-Xing Yin, Dong-Feng Wu, Xiao-Li Cao, Xi-Jiang Hu, Lin Miao


    Full Text Available Backgroud: Both alcohol consumption and the proprotein convertase subtilisin/kexin type 9 (PCSK9 gene polymorphism modulate serum lipid levels, but their interactions on serum lipid profiles are still unknown. The present study was undertaken to detect the interactions of PCSK9 E670G polymorphism and alcohol consumption on serum lipid levels.Methods: Genotypes of the PCSK9 E670G in 1352 unrelated subjects (785 non-drinkers and 567 drinkers were determined by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. The interactions between PCSK9 E670G genotypes and alcohol consumption on serum lipid parameters were detected by using a factorial design covariance analysis after controlling for potential confounders.Results: The levels of serum triglyceride, high-density lipoprotein cholesterol, apolipoprotein (Apo A1, and the ratio of ApoA1 to ApoB were higher in drinkers than in non-drinkers (P < 0.01 for all, whereas the levels of total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C and ApoB were lower in drinkers than in non-drinkers (P < 0.001 for all. The genotypic and allelic frequencies of PCSK9 E670G were not different between non-drinkers and drinkers (P > 0.05 for each. The subjects with AA genotype in non-drinkers had higher serum LDL-C levels than the subjects with AG genotype, whereas the subjects with AG genotype in drinkers had higher serum TC levels than the subjects with AA genotypes (P < 0.05 for each. The effects of alcohol consumption on TC and LDL-C levels depended upon genotypes, the subjects with AA genotype had lower serum TC and LDL-C levels in drinkers than in non-drinkers.Conclusions: Alcohol consumption can modify the effects of the PCSK9 E670G polymorphism on serum TC and LDL-C levels. The subjects with AA genotype of the PCSK9 E670G benefit more from alcohol consumption than the subjects with AG genotype in

  7. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei


    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no (13)C-(13)C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  8. Determination of molecular groups involved in the interaction of annexin A5 with lipid membrane models at the air-water interface.

    Fezoua-Boubegtiten, Zahia; Desbat, Bernard; Brisson, Alain; Lecomte, Sophie


    Annexin A5 (AnxA5) is a member of a family of homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca(2+)-dependent manner. In this paper, we used polarization-modulated infrared reflection absorption spectroscopy (PMIRRAS), Brewster angle microscopy (BAM), and ellipsometry to investigate changes both in the structure of AnxA5 and phospholipid head groups associated with membrane binding. We found that the secondary structure of AnxA5 in the AnxA5/Ca(2+)/lipid ternary complex is conserved, mainly in alpha-helices and the average orientation of the alpha-helices of the protein is slightly tilted with respect to the normal to the phospholipid monolayer. Upon interaction between AnxA5 and phospholipids, a shift of the nu(as) PO(2)(-) band is observed by PMIRRAS. This reveals that the phosphate group is the main group involved in the binding of AnxA5 to phospholipids via Ca(2+) ions, even when some carboxylate groups are accessible (PS). PMIRRAS spectra also indicate a change of carboxylate orientation in the aspartate and glutamate residues implicated in the association of the AnxA5, which could be linked to the 2D crystallization of protein under the phospholipid monolayer. Finally, we demonstrated that the interaction of AnxA5 with pure carboxylate groups of an oleic acid monolayer is possible, but the orientation of the protein under the lipid is completely different.

  9. Transient Supersaturation Supports Drug Absorption from Lipid-Based Formulations for Short Periods of Time, but Ongoing Solubilization Is Required for Longer Absorption Periods.

    Crum, Matthew F; Trevaskis, Natalie L; Pouton, Colin W; Porter, Christopher J H


    The current studies sought to explore the impact of drug supersaturation and precipitation during the dispersion and digestion of lipid-based formulations (LBFs), on in vivo absorption using a coupled in vitro digestion-in vivo perfusion absorption model. Fenofibrate absorption was evaluated from a number of LBFs with different solubilization and supersaturation capacities, and conditions at the absorptive membrane manipulated by changing perfusion conditions, intestine segment lengths, and by the conduct of experiments in the presence or absence of suspended/precipitated drug. LBF dispersion and digestion resulted in varying periods of supersaturation across the different formulations. Even fleeting (5-10 min) periods of supersaturation were able to drive flux across a perfused 10 cm intestinal segment for up to 60 min, although over longer infusion periods (60-80 min) flux dropped in the absence of ongoing drug solubilization and supersaturation. In contrast, the presence or absence of precipitated/suspended drug, had little impact on drug flux. When perfused intestinal segment lengths were extended, the role of initial supersaturation was attenuated and ongoing solubilization conditions became the primary driver of absorptive flux. The data suggest that for highly permeable drugs such as fenofibrate, a short period of supersaturation at the absorptive membrane may be sufficient to drive absorptive drug flux in spite of significant drug precipitation on formulation dispersion or digestion in vitro. In contrast, where longer periods of absorption are required, for example, at higher doses, the requirement for ongoing solubilization and supersaturation becomes more apparent.

  10. Lipid-modifying therapy


    Mar 20, 2009 ... risk reduction for most patients, while patients with severe ... He runs the Diabetic, Endocrine and Lipid clinics at R K Khan Hospital. Treatment .... retinopathy requiring laser therapy). ... Despite knowledge of the risk factors for.

  11. Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

    Dorota Matyszewska


    Full Text Available In this work the interactions of an anticancer drug daunorubicin (DNR with model thiolipid layers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE were investigated using Langmuir technique. The results obtained for a free drug were compared with the results recorded for DNR attached to SWCNTs as potential drug carrier. Langmuir studies of mixed DPPTE–SWCNTs-DNR monolayers showed that even at the highest investigated content of the nanotubes in the monolayer, the changes in the properties of DPPTE model membranes were not as significant as in case of the incorporation of a free drug, which resulted in a significant increase in the area per molecule and fluidization of the thiolipid layer. The presence of SWCNTs-DNR in the DPPTE monolayer at the air–water interface did not change the organization of the lipid molecules to such extent as the free drug, which may be explained by different types of interactions playing crucial role in these two types of systems. In the case of the interactions of free DNR the electrostatic attraction between positively charged drug and negatively charged DPPTE monolayer play the most important role, while in the case of SWCNTs-DNR adducts the hydrophobic interactions between nanotubes and acyl chains of the lipid seem to be prevailing. Electrochemical studies performed for supported model membranes containing the drug delivered in the two investigated forms revealed that the surface concentration of the drug-nanotube adduct in supported monolayers is comparable to the reported surface concentration of the free DNR incorporated into DPPTE monolayers on gold electrodes. Therefore, it may be concluded that the application of carbon nanotubes as potential DNR carrier allows for the incorporation of comparable amount of the drug into model membranes with simultaneous decrease in the negative changes in the membrane structure and organization, which is an important aspect in terms of side effects of

  12. Lipid Transport between the Endoplasmic Reticulum and Mitochondria

    Flis, Vid V.


    Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis. PMID:23732475

  13. Designer lipids for drug delivery: from heads to tails

    Kohli, Aditya G.; Kierstead, Paul H.; Venditto, Vincent J.; Walsh, Colin L.; Szoka, Francis C.


    For four decades, liposomes composed of both naturally occurring and synthetic lipids have been investigated as delivery vehicles for low molecular weight and macromolecular drugs. These studies paved the way for the clinical and commercial success of a number of liposomal drugs, each of which required a tailored formulation; one liposome size does not fit all drugs! Instead, the physicochemical properties of the liposome must be matched to the pharmacology of the drug. An extensive biophysical literature demonstrates that varying lipid composition can influence the size, membrane stability, in vivo interactions, and drug release properties of a liposome. In this review we focus on recently described synthetic lipid headgroups, linkers and hydrophobic domains that can provide control over the intermolecular forces, phase preference, and macroscopic behavior of liposomes. These synthetic lipids further our understanding of lipid biophysics, promote targeted drug delivery, and improve liposome stability. We further highlight the immune reactivity of novel synthetic headgroups as a key design consideration. For instance it was originally thought that synthetic PEGylated lipids were immunologically inert; however, it’s been observed that under certain conditions PEGylated lipids induce humoral immunity. Such immune activation may be a limitation to the use of other engineered lipid headgroups for drug delivery. In addition to the potential immunogenicity of engineered lipids, future investigations on liposome drugs in vivo should pay particular attention to the location and dynamics of payload release. PMID:24816069

  14. Influence of the interaction between the adiponectin G276T polymorphism and body mass index on lipid levels in healthy children.

    Riestra, Pía; García-Anguita, Alicia; Lasunción, Miguel A; Mangas, Alipio; de Oya, Manuel; Garcés, Carmen


    Adiponectin is an adipose tissue-specific hormone which is inversely associated with metabolic alterations related to atherosclerosis. Polymorphisms in the adiponectin gene (AdipoQ) have been related to low adiponectin levels as well as several cardiovascular risk factors, but this association remains controversial. In our study we investigated the relationship between the AdipoQ T45G (rs: 2241766) and G276T (rs: 1501299) polymorphisms and adiponectin concentrations, blood pressure, and lipid and insulin levels, in a population-based sample of 12- to 16-year-old children. The study included 815 healthy Spanish children (388 boys and 427 girls). Plasma glucose and lipid levels were determined by standard methods. Insulin concentrations were measured by RIA, and serum adiponectin levels were determined by ELISA. The AdipoQ T45G and AdipoQ G276T polymorphisms were determined by TaqMan(®) allelic discrimination assays. ANOVA or t test allowed for comparison of the studied parameters across genotypes or genotype groups, respectively. A linear regression analysis was performed to examine the independent relationships of the lipid variables with BMI (body mass index), AdipoQ G276T polymorphism and the interaction between the two. When independently comparing the effect of these polymorphisms in normal-weight and overweight children, we observed that overweight boys carriers of the minor allele T had significantly lower TC, LDL-C and apo A-I levels than non-carriers, but these differences were not apparent in normal-weight boys. Furthermore, linear regression analysis demonstrated that interaction between the BMI and the AdipoQ G276T polymorphism is a significant factor explaining the variations of TC and LDL-C levels. To our knowledge, this is the first study to report an association between the AdipoQ G276T polymorphism and lipid levels in overweight boys alone, thereby suggesting that the influence of the AdipoQ polymorphisms on cardiovascular risk factors may be

  15. Tissue interaction is required for glenoid fossa development during temporomandibular joint formation.

    Wang, Ying; Liu, Chao; Rohr, Joseph; Liu, Hongbing; He, Fenglei; Yu, Jian; Sun, Cheng; Li, Lu; Gu, Shuping; Chen, YiPing


    The mammalian temporomandibular joint (TMJ) develops from two distinct mesenchymal condensations that grow toward each other and ossify through different mechanisms, with the glenoid fossa undergoing intramembranous ossification while the condyle being endochondral in origin. In this study, we used various genetically modified mouse models to investigate tissue interaction between the condyle and glenoid fossa during TMJ formation in mice. We report that either absence or dislocation of the condyle results in an arrested glenoid fossa development. In both cases, glenoid fossa development was initiated, but failed to sustain, and became regressed subsequently. However, condyle development appears to be independent upon the presence of the forming glenoid fossa. In addition, we show that substitution of condyle by Meckel's cartilage is able to sustain glenoid fossa development. These observations suggest that proper signals from the developing condyle or Meckel's cartilage are required to sustain the glenoid fossa development.

  16. Lineage Specification of Ovarian Theca Cells Requires Multi-Cellular Interactions via Oocyte and Granulosa Cells

    Liu, Chang; Peng, Jia; Matzuk, Martin M.; Yao, Humphrey H-C


    Organogenesis of the ovary is a highly orchestrated process involving multiple lineage determinations of ovarian surface epithelium, granulosa cells, and theca cells. While the sources of ovarian surface epithelium and granulosa cells are known, the origin(s) of theca progenitor cells have not been definitively identified. Here we show that theca cells derive from two sources: Wt1+ cells indigenous to the ovary and Gli1+ mesenchymal cells migrated from the mesonephros. These progenitors acquire theca lineage marker Gli1 in response to paracrine signals Desert hedgehog (Dhh) and Indian hedgehog (Ihh) from granulosa cells. Ovaries lacking Dhh/Ihh exhibit theca layer loss, blunted steroid production, arrested folliculogenesis, and failure to form corpora lutea. Production of Dhh/Ihh in granulosa cells requires Growth differentiation factor 9 (GDF9) from the oocyte. Our studies provide the first genetic evidence for the origins of theca cells and reveal a multicellular interaction critical for the formation of a functional theca. PMID:25917826

  17. Self-organized criticality in glassy spin systems requires long-range interactions

    Andresen, Juan Carlos; Andrist, Ruben S.; Katzgraber, Helmut G.; Dobrosavljevic, Vladimir; Zimanyi, Gergerly T.


    We investigate the conditions required for general spin systems with frustration and disorder to display self-organized criticality, a property which so far has been established in spin models only for the infinite-range Sherringtion-Kirkpatrick Ising spin-glass model [PRL 83, 1034 (1999)]. We study the avalanche and the magnetization jump distribution triggered by an external magnetic field in the short-range Edward-Anderson Ising spin glass for various space dimensions, between 2 and 8. Our numerical results, obtained on systems of unprecedented size, demonstrate that self-organized criticality is recovered only in the strict limit of infinite space dimensions (or equivalently of long-ranged interaction), and is not a generic property of spin-glass models in finite space dimensions.

  18. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.

    Savarala, Sushma; Monson, Frederick; Ilies, Marc A; Wunder, Stephanie L


    Control of the stabilization/destabilization of supported lipid bilayers (SLBs) on nanoparticles is important for promotion of their organized assembly and for their use as delivery vehicles. At the same time, understanding the mechanism of these processes can yield insight into nanoparticle-cell interactions and nanoparticle toxicity. In this study, the suspension/precipitation process of zwitterionic lipid/SiO(2) nanosystems was analyzed as a function of ionic strength and as a function of the ratio of lipid/SiO(2) surface areas, at pH = 7.6. Salt is necessary to induce supported lipid bilayer (SLB) formation for zwitterionic lipids on silica (SiO(2)) (Seantier, B.; Kasemo, B., Influence of Mono- and Divalent Ions on the Formation of Supported Phospholipid Bilayers via Vesicle Adsorption. Langmuir 2009, 25 (10), 5767-5772). However, for zwitterionic SLBs on SiO(2) nanoparticles, addition of salt can cause precipitation of the SLBs, due to electrostatic shielding by both the lipid and the salt and to the suppression of thermal undulation/protrusion repulsive forces for lipids on solid surfaces. At ionic strengths that cause precipitation of SLBs, it was found that addition of excess SUVs, at ratios where there were equal populations of SUVs and SLBs, restored the undulation/protrusion repulsive forces and restabilized the suspensions. We suggest that SUVs separate SLBs in the suspension, as observed by TEM, and that SLB-SLB interactions are replaced by SLB-SUV interactions. Decreasing the relative amount of lipid, to the extent that there was less lipid available than the amount required for complete bilayer coverage of the SiO(2), resulted in precipitation of the nanosystem by a process of nanoparticle lipid bridging. For this case, we postulate a process in which lipid bilayer patches on one nanoparticle collide with bare silica patches on another SiO(2) nanoparticle, forming a single bilayer bridge between them. TEM data confirmed these findings, thus

  19. The interaction between the yeast telomerase RNA and the Est1 protein requires three structural elements.

    Lubin, Johnathan W; Tucey, Timothy M; Lundblad, Victoria


    In the budding yeast Saccharomyces cerevisiae, the telomerase enzyme is composed of a 1.3-kb TLC1 RNA that forms a complex with Est2 (the catalytic subunit) and two regulatory proteins, Est1 and Est3. Previous work has identified a conserved 5-nt bulge, present in a long helical arm of TLC1, which mediates binding of Est1 to TLC1. However, increased expression of Est1 can bypass the consequences of removal of this RNA bulge, indicating that there are additional binding site(s) for Est1 on TLC1. We report here that a conserved single-stranded internal loop immediately adjacent to the bulge is also required for the Est1-RNA interaction; furthermore, a TLC1 variant that lacks this internal loop but retains the bulge cannot be suppressed by Est1 overexpression, arguing that the internal loop may be a more critical element for Est1 binding. An additional structural feature consisting of a single-stranded region at the base of the helix containing the bulge and internal loop also contributes to recognition of TLC1 by Est1, potentially by providing flexibility to this helical arm. Association of Est1 with each of these TLC1 motifs was assessed using a highly sensitive biochemical assay that simultaneously monitors the relative levels of the Est1 and Est2 proteins in the telomerase complex. The identification of three elements of TLC1 that are required for Est1 association provides a detailed view of this particular protein-RNA interaction.

  20. Fractal patterns of neural activity exist within the suprachiasmatic nucleus and require extrinsic network interactions.

    Hu, Kun; Meijer, Johanna H; Shea, Steven A; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A J L


    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ~24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales--from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation.

  1. Characterization of the TRBP domain required for Dicer interaction and function in RNA interference

    El Far Mohamed


    Full Text Available Abstract Background Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC. While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain. Results We show that the TRBP binding site in Dicer is a 165 amino acid (aa region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsΔC4, co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsΔC4 do not. tarbp2-/- cells, which do not express TRBP, do not support RNA interference (RNAi mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsΔC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsΔC4, rescued RNAi function. Conclusion The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsΔC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsΔC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.

  2. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan; Palmer, Liam C.; Jackman, Joshua A.; Olvera de la Cruz, Monica; Cho, Nam-Joon; Stupp, Samuel I.


    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactions between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.

  3. On the interaction of ionic detergents with lipid membranes. Thermodynamic comparison of n-alkyl-+N(CH₃)₃ and n-alkyl-SO₄⁻.

    Beck, Andreas; Li-Blatter, Xiaochun; Seelig, Anna; Seelig, Joachim


    makes almost no contribution to membrane binding. The chemical nature of the headgroup influences the packing density of the hydrocarbon chains in the lipid bilayer with (+)N(CH₃)₃ eliciting the weakest chain-chain interaction. The minimum repulsive interaction of the SO₄⁻ polar group makes the sodium n-alkyl-sulfates much stronger detergents than the nonionic or cationic counterparts, the binding constants, K(D)(0), being 10-50 times larger than those of the corresponding n-alkyl-trimethylammonium chlorides. The membrane insertion was further compared with micelle formation of the same detergent. A cooperative aggregation model which includes all possible aggregation states is proposed to analyze micelle formation. The partition function can be defined in closed form, and it is straightforward to predict the thermodynamic properties of the micellar system. When aggregated in micelles, the detergent polar groups are in direct interaction and are not separated by lipid molecules. Under these conditions the SO₄⁻ group exhibits a strong electrostatic repulsive effect of 3.2 kcal/mol, while the contributions of the maltose and (+)N(CH₃)₃ headgroups are very similar to those in the lipid bilayer.

  4. Gender-specific interactions of MTHFR C677T and MTRR A66G polymorphisms with overweight/obesity on serum lipid levels in a Chinese Han population.

    Zhi, Xueyuan; Yang, Boyi; Fan, Shujun; Wang, Yanxun; Wei, Jian; Zheng, Quanmei; Sun, Guifan


    Little is known regarding the interactions of methylenetetrahydrofolate reductase (MTHFR) C677T and methionine synthase reductase (MTRR) A66G polymorphisms with overweight/obesity on serum lipid profiles. The aim of the current study was to explore interactions between the two polymorphisms and overweight/obesity on four common lipid levels in a Chinese Han population and further to evaluate whether these interactions exhibit gender-specificity. A total of 2239 participants (750 females and 1489 males) were enrolled into this study. The genotypes of the MTHFR C677T and MTRR A66G were determined by a TaqMan assay. Overweight and obesity were defined as a body mass index between 24 and 27.99 and ≥ 28 kg/m(2), respectively. The interactions were examined by factorial design covariance analysis, and further multiple comparisons were conducted by Bonferroni correction. There was no significant difference in the genotypic and allelic frequencies between females and males (MTHFR 677 T allele: 54.47 % for females and 54.40 % for males; MTRR 66G allele: 24.73 % for females and 24.71 % for males). Interaction between the MTHFR C677T polymorphism and overweight/obesity on serum triglyceride levels, and interaction between the MTRR A66G polymorphism and overweight/obesity on serum high-density lipoprotein cholesterol levels were detected in women (P = 0.015 and P = 0.056, respectively). For female subjects with overweight/obesity, the serum triglyceride levels in MTHFR 677TT genotype [1.09 (0.78-1.50) mmol/L] were significantly higher as compared with MTHFR 677CC genotype [0.90 (0.60-1.15) mmol/L, P = 0.007], and the MTRR 66GG genotype carriers had higher serum high-density lipoprotein cholesterol levels than those with MTRR 66AG genotype (1.46 ± 0.50 vs. 1.19 ± 0.31 mmol/L, P = 0.058). Furthermore, in male subjects with overweight/obesity, the MTHFR 677CT genotype carriers had higher low-density lipoprotein cholesterol levels than those

  5. Interactive Effects of Dietary Lipid and Phenotypic Feed Efficiency on the Expression of Nuclear and Mitochondrial Genes Involved in the Mitochondrial Electron Transport Chain in Rainbow Trout

    Jonathan C. Eya


    Full Text Available A 2 × 3 factorial study was conducted to evaluate the effects of dietary lipid level on the expression of mitochondrial and nuclear genes involved in electron transport chain in all-female rainbow trout Oncorhynchus mykiss. Three practical diets with a fixed crude protein content of 40%, formulated to contain 10% (40/10, 20% (40/20 and 30% (40/30 dietary lipid, were fed to apparent satiety to triplicate groups of either low-feed efficient (F120; 217.66 ± 2.24 g initial average mass or high-feed efficient (F136; 205.47 ± 1.27 g full-sib families of fish, twice per day, for 90 days. At the end of the experiment, the results showed that there is an interactive effect of the dietary lipid levels and the phenotypic feed efficiency (growth rate and feed efficiency on the expression of the mitochondrial genes nd1 (NADH dehydrogenase subunit 1, cytb (Cytochrome b, cox1 (Cytochrome c oxidase subunits 1, cox2 (Cytochrome c oxidase subunits 2 and atp6 (ATP synthase subunit 6 and nuclear genes ucp2α (uncoupling proteins 2 alpha, ucp2β (uncoupling proteins 2 beta, pparα (peroxisome proliferator-activated receptor alpha, pparβ (peroxisome proliferatoractivated receptor beta and ppargc1α (proliferator-activated receptor gamma coactivator 1 alpha in fish liver, intestine and muscle, except on ppargc1α in the muscle which was affected by the diet and the family separately. Also, the results revealed that the expression of mitochondrial genes is associated with that of nuclear genes involved in electron transport chain in fish liver, intestine and muscle. Furthermore, this work showed that the expression of mitochondrial genes parallels with the expression of genes encoding uncoupling proteins (UCP in the liver and the intestine of rainbow trout. This study for the first time presents the molecular basis of the effects of dietary lipid level on mitochondrial and nuclear genes involved in mitochondrial electron transport chain in fish.

  6. On the lipid-bacterial protein interaction studied by quartz crystal microbalance with dissipation, transmission electron microscopy and atomic force microscopy

    Delcea, Mihaela; Pum, Dietmar; Sleytr, Uwe Bernd; Toca-Herrera, Jose Luis


    The interaction between the bacterial S-protein SbpA on different types of lipid membranes has been studied using atomic force microscopy, transmission electron microscopy, and quartz crystal microbalance with dissipation. On one hand, It has been found that the bacterial forms two dimensional nanocrystals on zwitterionic DOPC bilayers and negatively charged DMPG vesicles adsorbed on mica, on zwitterionic DPPC and charged DPPC/DMPG (1:1) monolayers adsorbed on carbon grids. On the other hand, SbpA protein adsorption took place on zwitterionic DOPC bilayers and DOPC/DOPS (4:1) bilayers, previously adsorbed on silicon supports. SbpA adsorption also took place on DPPC/DOPS (1:1) monolayers adsorbed on carbon grids. Finally, neither SbpA adsorption, nor recrystallization was observed on zwitterionic DMPC vesicles (previously adsorbed on polyelectrolyte multilayers), and on DPPC vesicles supported on silicon.

  7. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: As Affected by Hydration in Powders.

    Yucel, Umut; Peterson, Devin G


    There is a broad need to reformulate lower sodium food products without affecting their original taste. The present study focuses on characterizing the role of protein-salt interactions on the salt release in low-moisture systems and saltiness perception during hydration. Sodium release from freeze-dried protein powders and emulsion powders formulated at different protein/lipid ratios (5:0 to 1:4) were characterized using a chromatography column modified with a porcine tongue. Emulsion systems with protein structured at the interface were found to have faster initial sodium release rates and faster hydration and were perceived to have a higher initial salt intensity with a lower salty aftertaste. In summary, exposure of the hydrophilic segments of the interface-structured proteins in emulsions was suggested to facilitate hydration and release of sodium during dissolution of low-moisture powder samples.

  8. Inflammation-modulating cytokine profile and lipid interaction in HIV-related risk factors for cardiovascular diseases

    Gori E


    Full Text Available Elizabeth Gori,1,2 Takafira Mduluza,3,4 Mudavanhu Nyagura,2 Babill Stray-Pedersen,5 Zvenyika Alfred Gomo1 1Chemical Pathology Department, College of Health Sciences, 2Preclinical Veterinary Studies Department, Faculty of Veterinary Sciences, 3Biochemistry Department, University of Zimbabwe, Harare, Zimbabwe; 4School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; 5Institute of Clinical Medicine, University in Oslo, Oslo University Hospital, Oslo, Norway Abstract: HIV infection and antiretroviral therapy (ART are associated with changes in plasma levels of lipoproteins, thus posing the risk of cardiovascular complications in infected individuals. The alteration in plasma lipoprotein levels results from dysregulation of inflammation-modulating cytokines that control lipid metabolism. Little is understood regarding the relationship between the cytokines and serum lipid levels, which have been reported to be altered in adults receiving ART. The objective of this study was to describe the profiles of inflammation-modulating cytokines and their relationship to lipids as cardiovascular disease (CVD risk factors in HIV infection. This observational cross-sectional study measured plasma levels of interleukin (IL-10, tumor necrosis factor-alpha (TNF-α, IL-4, total cholesterol (TC, and high-density lipoprotein cholesterol (HDL-c in HIV-infected and uninfected adults. A total of 219 HIV-infected participants were enrolled from an HIV treatment center; of them, 187 were receiving ART and 32 were ART naïve, while 65 were HIV-uninfected blood donors. HIV-infected individuals had higher levels of IL-10 (HIV-infected ART-naïve [P=0.0024] and ART-receiving [P=0.033] than their uninfected counterparts. ART-naïve subjects had significantly higher plasma levels of IL-10 than ART-receiving subjects (P=0.0014. No significant difference was observed in plasma levels of IL-4 and TNF

  9. Metabolic regulation in meagre, Argyrosomus regius (Asso, 1801: Study of gene-diet interactions on lipid metabolism

    Francisca Silva-Brito


    Full Text Available Fish oil is the most important source of n-3 highly unsaturated fatty acids (HUFAs for humans. With the stagnation of world marine fisheries, the role of aquaculture stocks increased rapidly as source of n-3 HUFA (FAO, 2012, but not sufficiently. To reduce the dependence as well as find ways to use of marine sources more economically and efficiently, the use of vegetable oils (VO have been widely investigated (Estévez et al., 2011. Vegetable oils are rich in C18 PUFA, but devoided of the docosahexaenoic acid (DHA and eicosapentaenoic acid (EPA, essential fatty acids involved in maintaining cell membrane structure, among other essential functions. The capacity of fish to thrive on diets containing only the C18 PUFA, 18 : 2n − 6 and 18 : 3n – 3 varies among species (Tocher, 2003; Leaver et al., 2008; Castro et al., 2012. It is well documented that teleosts have different enzyme capacity to desaturate-elongate 18C fatty acids into 20-22C LC-PUFAs (Cook & McMaster, 2004; Leaver et al., 2008. Generally, freshwater fish species can convert 18:2 n−6 and 18:3 n−3 to HUFA more efficiently than marine species, especially carnivorous which prey on organisms rich in HUFA (Tocher, 2003. Thus, the modulation of expression and translation of elongases and desaturases is of great importance to achieve independence of (carnivorous marine fish aquaculture from fishmeal and fish oil. There is currently considerable interest in the HUFA biosynthetic pathway in fish aiming to determine the effectiveness of vegetable oils as a total replacement of fish oil in the aquaculture of carnivore fish species (Vagner & Santigosa, 2011. Selenium is a structural component for several enzymes, including glutathione peroxidase and thioredoxine (Perottoni et al., 2004. These enzymes have physiological antioxidant properties and thus, protect the tissues of lipid peroxidation products (Orun et al., 2008. The current study aimed to evaluate the effects of dietary lipid

  10. Coarse grained study of pluronic F127: Comparison with shorter co-polymers in its interaction with lipid bilayers and self-aggregation in water

    Wood, I.; Martini, M. F.; Albano, J. M. R.; Cuestas, M. L.; Mathet, V. L.; Pickholz, M.


    The aim of this work is to understand the interactions of the poloxamer Pluronic F127, with lipid bilayers and its ability to self-associate in an aqueous environment. Molecular dynamics simulations at the coarse-grain scale were performed to address the behavior of single Pluronic F127 and shorter poloxamers unimers in palmitoyl-oleoyl-phosphatidyl-choline model membranes. According to the initial conditions and the poly-ethylene oxide/poly-propylene oxide composition, in water phase the unimer chain collapses into a coil conformation or adopts an interphacial U-shaped - or membrane spanning - distribution. A combination of poly-propylene oxide length, and the poly-ethylene oxide ability to cover poly-propylene oxide, is determinant for the conformation adopted by the unimer in each phase. Results of the simulations showed molecular evidence of strong interaction between Pluronic F127 and model membranes both in stable U-shaped and span conformations. The knowledge of this interaction could contribute to improve drug permeation. Additionally, we investigated the aggregation of one hundred Pluronic F127 unimers in water forming a micelle-like structure, suitable to be used as drug delivery system models.

  11. Molecular Interaction between Intercellular Lipids in the Stratum Corneum and l-Menthol, as Analyzed by Synchrotron X-Ray Diffraction.

    Yoshida, Shinya; Obata, Yasuko; Onuki, Yoshinori; Utsumi, Shunichi; Ohta, Noboru; Takahashi, Hiroshi; Takayama, Kozo


    l-Menthol increases drug partitioning on the surface of skin, diffusion of drugs in the skin, and lipid fluidity in the stratum corneum and alters the rigidly arranged lipid structure of intercellular lipids. However, l-menthol is a solid at room temperature, and it is difficult to determine the effects of l-menthol alone. In this study, we vaporized l-menthol in order to avoid the effects of solvents. The vaporized l-menthol was applied to the stratum corneum or lipid models comprising composed of ceramides (CER) [EOS], the longest lipid acyl chain of the ceramides in the stratum corneum lipids that is associated with the barrier function of the skin; CER [NS], the shorter lipid acyl chain of the ceramides, and the most components in the stratum corneum of the intercellular lipids that is associated with water retention in the intercellular lipid structure of the stratum corneum; cholesterol; and palmitic acid. Synchrotron X-ray diffraction, differential scanning calorimetry, and attenuated total reflection Fourier transform infrared spectroscopy analyses revealed that the lipid models were composed of hexagonal packing and orthorhombic packing structures of different lamellar periods. Taken together, our results revealed that l-menthol strongly affected the lipid model composed of CER [EOS]. Therefore, l-menthol facilitated the permeation of drugs through the skin by liquid crystallization of the longer lamellar structure. Importantly, these simple lipid models are useful for investigating microstructure of the intercellular lipids in the stratum corneum.

  12. Drosophila Lipophorin Receptors Recruit the Lipoprotein LTP to the Plasma Membrane to Mediate Lipid Uptake.

    Míriam Rodríguez-Vázquez


    Full Text Available Lipophorin, the main Drosophila lipoprotein, circulates in the hemolymph transporting lipids between organs following routes that must adapt to changing physiological requirements. Lipophorin receptors expressed in developmentally dynamic patterns in tissues such as imaginal discs, oenocytes and ovaries control the timing and tissular distribution of lipid uptake. Using an affinity purification strategy, we identified a novel ligand for the lipophorin receptors, the circulating lipoprotein Lipid Transfer Particle (LTP. We show that specific isoforms of the lipophorin receptors mediate the extracellular accumulation of LTP in imaginal discs and ovaries. The interaction requires the LA-1 module in the lipophorin receptors and is strengthened by a contiguous region of 16 conserved amino acids. Lipophorin receptor variants that do not interact with LTP cannot mediate lipid uptake, revealing an essential role of LTP in the process. In addition, we show that lipophorin associates with the lipophorin receptors and with the extracellular matrix through weak interactions. However, during lipophorin receptor-mediated lipid uptake, LTP is required for a transient stabilization of lipophorin in the basolateral plasma membrane of imaginal disc cells. Together, our data suggests a molecular mechanism by which the lipophorin receptors tether LTP to the plasma membrane in lipid acceptor tissues. LTP would interact with lipophorin particles adsorbed to the extracellular matrix and with the plasma membrane, catalyzing the exchange of lipids between them.

  13. Localization and interaction of hydroxyflavones with lipid bilayer model membranes: a study using DSC and multinuclear NMR.

    Sinha, Ragini; Joshi, Akshada; Joshi, Urmila J; Srivastava, Sudha; Govil, Girjesh


    The localization and interaction of six naturally occurring flavones (FLV, 5HF, 6HF, 7HF, CHY and BLN) in DPPC bilayers were studied using DSC and multi-nuclear NMR. DSC results indicate that FLV and 6HF interact with alkyl chains. The (1)H NMR shows interaction of flavones with the sn-glycero region. Ring current induced chemical shifts indicate that 6HF and BLN acquire parallel orientation in bilayers. 2D NOESY spectra indicate partitioning of the B-ring into the alkyl chain region. The DSC, NMR and binding studies indicate that 5HF and 7HF are located near head group region, while 6HF, CHY and BLN are located in the vicinity of sn-glycero region, and FLV is inserted deepest in the membrane.

  14. Towards an Understanding of the Low Bioavailability of Quercetin: A Study of Its Interaction with Intestinal Lipids.

    Rich, Gillian T; Buchweitz, Maria; Winterbone, Mark S; Kroon, Paul A; Wilde, Peter J


    We have studied the uptake of quercetin aglycone into CaCo-2/TC7 cells in the presence and absence of mixed micelles that are present in the human small intestine. The micelles inhibited the transport of quercetin into the cells. To gain an understanding of why this is the case we examined the solubilisation of quercetin in micelles of differing composition and into pure lipid phases. We did this by using the environmental sensitivity of quercetin's UV-visible absorption spectra and measurement of free quercetin by filtration of the micellar solutions. The nature of the micelles was also studied by pyrene fluorescence. We found that the partitioning of quercetin into simple bile salt micelles was low and for mixed micelles was inhibited by increasing the bile salt concentration. The affinity of quercetin decreased in the order egg phosphatidylcholine (PC) = lysoPC > mixed micelles > bile salts. These results, together with the innate properties of quercetin, contribute to an understanding of the low bioavailability of quercetin.

  15. Synergy of Membrane Curvature-Stabilization and Electrostatic Interaction leads to Formation of Block Liposomes by Colossal Charged Lipids

    Zidovska, Alexandra; Ewert, Kai K.; Safinya, Cyrus R.; Quispe, Joel; Carragher, Bridget; Potter, Clinton S.


    Recently, we have reported block liposomes (BLs), a new vesicle phase formed in mixtures of MVLBG2, DOPC and water (A. Zidovska et al., Submitted, 2007), where MVLBG2 is a newly synthesized highly charged (16+) lipid (K. Ewert et al., JACS, 2006) with giant dendrimer-like headgroup. BLs are liposomes consisting of distinctly shaped nanoscale spheres, pears, tubes, or rods connected into blocks. In this work we investigate the contribution of spontaneous curvature and membrane charge density to the formation of BLs. By comparing with a system of matching membrane charge density but zero spontaneous curvature and by screening the charge of MVLBG2 but keeping the curvature constant, we were able to identify both, spontaneous curvature and membrane charge, as critical parameters for BLs-formation. The effect of salt and pH on the shape evolution of the BLs was also carefully studied. Funding provided by DOE DE-FG-02-06ER46314, NIH GM-59288, NSF DMR-0503347.

  16. Towards an Understanding of the Low Bioavailability of Quercetin: A Study of Its Interaction with Intestinal Lipids

    Rich, Gillian T.; Buchweitz, Maria; Winterbone, Mark S.; Kroon, Paul A.; Wilde, Peter J.


    We have studied the uptake of quercetin aglycone into CaCo-2/TC7 cells in the presence and absence of mixed micelles that are present in the human small intestine. The micelles inhibited the transport of quercetin into the cells. To gain an understanding of why this is the case we examined the solubilisation of quercetin in micelles of differing composition and into pure lipid phases. We did this by using the environmental sensitivity of quercetin’s UV-visible absorption spectra and measurement of free quercetin by filtration of the micellar solutions. The nature of the micelles was also studied by pyrene fluorescence. We found that the partitioning of quercetin into simple bile salt micelles was low and for mixed micelles was inhibited by increasing the bile salt concentration. The affinity of quercetin decreased in the order egg phosphatidylcholine (PC) = lysoPC > mixed micelles > bile salts. These results, together with the innate properties of quercetin, contribute to an understanding of the low bioavailability of quercetin. PMID:28165426

  17. Glia ECM interactions are required to shape the Drosophila nervous system.

    Meyer, Silke; Schmidt, Imke; Klämbt, Christian


    Organs are characterized by a specific shape that is often remodeled during development. The dynamics of organ shape is in particular evident during the formation of the Drosophila nervous system. During embryonic stages the central nervous system compacts, whereas selective growth occurs during larval stages. The nervous system is covered by a layer of surface glial cells that form the blood brain barrier and a thick extracellular matrix called neural lamella. The size of the neural lamella is dynamically adjusted to the growing nervous system and we show here that perineurial glial cells secrete proteases to remodel this matrix. Moreover, an imbalance in proteolytic activity results in an abnormal shape of the nervous system. To identify further components controlling nervous system shape we performed an RNAi based screen and identified the gene nolo, which encodes an ADAMTS-like protein. We generated loss of function alleles and demonstrate a requirement in glial cells. Mutant nolo larvae, however, do not show an abnormal nervous system shape. The only predicted off-target of the nolo(dsRNA) is Oatp30B, which encodes an organic anion transporting protein characterized by an extracellular protease inhibitor domain. Loss of function mutants were generated and double mutant analyses demonstrate a genetic interaction between nolo and Oatp30B which prevented the generation of maternal zygotic mutant larvae.

  18. Caenorhabditis elegans-based screen identifies Salmonella virulence factors required for conserved host-pathogen interactions.

    Tenor, Jennifer L; McCormick, Beth A; Ausubel, Frederick M; Aballay, Alejandro


    A Caenorhabditis elegans-Salmonella enterica host-pathogen model was used to identify both novel and previously known S. enterica virulence factors (HilA, HilD, InvH, SptP, RhuM, Spi4-F, PipA, VsdA, RepC, Sb25, RfaL, GmhA, LeuO, CstA, and RecC), including several related to the type III secretion system (TTSS) encoded in Salmonella pathogenicity island 1 (SPI-1). Mutants corresponding to presumptive novel virulence-related genes exhibited diminished ability to invade epithelial cells and/or to induce polymorphonuclear leukocyte migration in a tissue culture model of mammalian enteropathogenesis. When expressed in C. elegans intestinal cells, the S. enterica TTSS-exported effector protein SptP inhibited a conserved p38 MAPK signaling pathway and suppressed the diminished pathogenicity phenotype of an S. enterica sptP mutant. These results show that C. elegans is an attractive model to study the interaction between Salmonella effector proteins and components of the innate immune response, in part because there is a remarkable overlap between Salmonella virulence factors required for human and nematode pathogenesis.

  19. Co-Administration of Lipid Nanoparticles and Sub-Unit Vaccine Antigens Is Required for Increase in Antigen-Specific Immune Responses in Mice

    Elizabeth A. Thoryk


    Full Text Available A vast body of evidence suggests that nanoparticles function as potent immune-modulatory agents. We have previously shown that Merck proprietary Lipid NanoParticles (LNPs markedly boost B-cell and T-cell responses to sub-unit vaccine antigens in mice. To further evaluate the specifics of vaccine delivery and dosing regimens in vivo, we performed immunogenicity studies in BALB/c and C57BL/6 mice using two model antigens, Hepatitis B Surface Antigen (HBsAg and Ovalbumin (OVA, respectively. To assess the requirement for co-administration of antigen and LNP for the elicitation of immune responses, we evaluated immune responses after administering antigen and LNP to separate limbs, or administering antigen and LNP to the same limb but separated by 24 h. We also evaluated formulations combining antigen, LNP, and aluminum-based adjuvant amorphous aluminum hydroxylphosphate sulfate (MAA to look for synergistic adjuvant effects. Analyses of antigen-specific B-cell and T-cell responses from immunized mice revealed that the LNPs and antigens must be co-administered—both at the same time and in the same location—in order to boost antigen-specific immune responses. Mixing of antigen with MAA prior to formulation with LNP did not impact the generation of antigen-specific B-cell responses, but drastically reduced the ability of LNPs to boost antigen-specific T-cell responses. Overall, our data demonstrate that the administration of LNPs and vaccine antigen together enables their immune-stimulatory properties.

  20. Interaction of cholesterol-like molecules in polyunsaturated phosphatidylcholine lipid bilayers as revealed by a self-consistent field theory

    Leermakers, F. A. M.; Rabinovich, A. L.


    Cholesterol is one of the most abundant components in biological membranes. In this paper we apply a detailed state-of-the-art self-consistent field (SCF) theory to predict the influence of cholesterol-look-alikes in the bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphatidylcholine ( 18:0/22:6ω3cis PC) lipids with a polyunsaturated 22:6 and a fully saturated 18:0 tail. The cholesterol-like molecule is composed of a hydroxyl group, a rigid chain fragment with length n segments and a branched semiflexible moiety with methylene side groups. We vary both the length of the rigid fragment in the cholesterol-look-alikes and their mole fraction in the tensionless bilayers. We find that these additives significantly increase the order of the saturated tails, but influence the conformational properties of the unsaturated tail much less. With increasing loading the bilayer thickness and the area available per PC head group increase. The hydroxyl group anchors close to the membrane-water interface, but with increasing loading the distribution of this polar group widens. The orientational order of the rigid part is high and we conclude that the cholesterol has significant mobility in the normal direction in the hydrophobic region of the bilayer indicating that one singly hydroxyl group is giving only a weak anchoring to the water-interface. Cholesterol-look-alikes increase the fluctuation of the tail ends and decrease the interdigitation of the tails. Several of our predictions correspond to molecular dynamics (MD) simulation results, but there are also important differences. Most notably the cholesterol-look-alikes can visit the membrane symmetry-plane more easily in SCF than in MD. Possible reasons for this are discussed.

  1. The leucine-rich repeats of LINGO-1 are not required for self-interaction or interaction with the amyloid precursor protein.

    Stein, Thomas; Walmsley, Adrian Robert


    LINGO-1 (leucine rich repeat and Ig domain containing Nogo receptor interacting protein-1) is a central nervous system transmembrane protein which simultaneously interacts with the Nogo-66 receptor and p75(NTR) or TROY on neurons to form a receptor complex responsible for myelin-mediated neurite outgrowth inhibition. On oligodendroglial cells, LINGO-1 interacts with p75(NTR) to constitutively inhibit multiple aspects of oligodendrocyte differentiation. Recently, LINGO-1 was identified as an in vivo interacting partner of the amyloid precursor protein (APP) and, correspondingly, cellular LINGO-1 expression was found to augment the release of the Abeta peptide, the potential causative agent of Alzheimer's disease. In addition, the recombinant LINGO-1 ectodomain has been shown to self-interact in solution and after crystallisation. Here, we have used deletional mutagenesis to identify the regions on LINGO-1 that are involved in homo- and heterotypic interactions. We have found that the N-terminal region containing the leucine-rich repeats along with the transmembrane and cytoplasmic domains of LINGO-1 are not required for self-interaction or interaction with APP.

  2. Recombinant expression of porcine spermadhesin AWN and its phospholipid interaction: Indication for a novel lipid binding property.

    Schröter, F; Müller, K; Müller, P; Krause, E; Braun, B C


    AWN is a porcine (Sus scrofa domestica) seminal plasma protein and has been linked to a variety of processes related to fertilization. To acquire the protein in sufficient amount and purity for functional studies, we established its recombinant expression in E. coli and a three-step purification protocol based on different chromatographies. The test for AWN-phospholipid interaction revealed phosphatidic acid and cardiolipin as potential binding partners. As phosphatidic acid is surmised to play a role in cation-induced membrane destabilization and fusion events, we propose a membrane protective function of the presented binding affinity. Further studies with recombinant AWN will allow new insights into the mechanism of sperm-spermadhesin interaction and might provide new approaches for artificial reproduction techniques.

  3. Polyelectrolyte Building Blocks for Nanotechnology: Atomic Force Microscopy Investigations of Polyelectrolyte-Lipid Interactions, Polyelectrolyte Brushes and Viral Cages


    The work presented here has a multidisciplinary character, having as a common factor the characterization of self-assembled nanostructures through force spectroscopy. Exploring AFM as a tool for characterizing self-assembly and interaction forces in soft matter nanostructures, three different Bio and nonbiological systems where investigated, all of them share the common characteristic of being soft matter molecular structures at the nanoscale. The studied systems in question are: a) Polyelect...

  4. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: In Solutions.

    Yucel, Umut; Peterson, Devin G


    The influence of protein-sodium interactions on the availability of sodium in the aqueous phase of liquid samples and consequently on the perception of saltiness was investigated. The aqueous effluents of casein and casein emulsion-salt solutions were monitored for sodium availability from a tongue column system. In the aqueous protein-salt solutions, increasing the protein/salt ratio from 1:1 to 5:1 or 10:1 significantly decreased the initial salt concentration in the effluent and resulted in a higher salt concentration in the effluent over time. Sensory analysis was in agreement. Samples with increased protein were rated as having significantly lower initial saltiness and a higher salty aftertaste. However, when casein was formulated as an emulsion, the initial release of sodium in the effluent was enhanced (compared to nonemulsified protein). Increasing the emulsion interfacial area (more hydrophilic segments of the protein were structured into the aqueous phase) resulted in a higher salt concentration in the aqueous phase and greater perceived saltiness intensity. In summary, protein interactions, specifically ionic, were reported as food interactions that influence salt perception and provide a basis to develop higher flavor quality low-sodium food products.

  5. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation.

    Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C


    PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompanying study on dynamic nuclear polarization (DNP)-derived hydration dynamics (Cheng, C.-Y.; Wang, J.-Y.; Kausik, R.; Lee, K. Y. C.; Han S. Biomacromolecules, 2012, DOI: 10.1021/bm300848c).

  6. Diacylglycerol Acyltransferase-1 Localizes Hepatitis C Virus NS5A Protein to Lipid Droplets and Enhances NS5A Interaction with the Viral Capsid Core*

    Camus, Gregory; Herker, Eva; Modi, Ankit A.; Haas, Joel T.; Ramage, Holly R.; Farese, Robert V.; Ott, Melanie


    The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy. PMID:23420847

  7. Interaction between nystatin and natural membrane lipids in Langmuir monolayers--the role of a phospholipid in the mechanism of polyenes mode of action.

    Hac-Wydro, Katarzyna; Dynarowicz-Latka, Patrycja


    Nystatin (NYS), a polyene antifungal antibiotic, has been investigated in Langmuir monolayers alone and in mixtures with mammalian and fungi membrane sterols (cholesterol and ergosterol, respectively) as well as with a model phospholipid (DPPC). The interactions between film molecules have been examined both in a qualitative and quantitative way with the excess area per molecule (AExc), excess free energy of mixing (DeltaGExc) and the interaction parameter (alpha). The obtained results have been compared with those previously reported for another polyene antimycotic: amphotericin B (AmB) mixed with lipids. Higher affinity of NYS has been observed for ergosterol vs. cholesterol, however, the strongest attractions were found for its mixtures with DPPC. The obtained results have been verified with biological studies reported previously for both antibiotics (NYS and AmB). A thorough analysis of the Langmuir experiment results performed for both polyenes enabled us to conclude that the presence of DPPC can be considered as a key factor affecting their antifungal activity as well as their toxicity towards host cells.

  8. Delivery of siRNA Complexed with Palmitoylated α-Peptide/β-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System

    Jing, Xiaona; Foged, Camilla; Martin-Bertelsen, Birte;


    on the interaction with model membranes and the cellular uptake. Palmitoylation enhanced the peptidomimetic adsorption to supported lipid bilayers as studied by ellipsometry. However, both palmitoylation and increased peptidomimetic chain length were found to be beneficial in the cellular uptake studies using...

  9. Interaction of methylation-related genetic variants with circulating fatty acids on plasma lipids: a meta-analysis of 7 studies & methylation analysis of 3 studies in the Cohorts for Heart & Aging Research

    Background: DNA methylation is influenced by diet and single nucleotide polymorphisms (SNPs), and methylation modulates gene expression. Objective: We aimed to explore whether the gene-by-diet interactions on blood lipids act through DNA methylation. Design: We selected 7 SNPs on the basis of predic...

  10. Biochemical characterization of the interactions between doxorubicin and lipidic GM1 micelles with or without paclitaxel loading

    Leonhard, Victoria; Alasino, Roxana V; Bianco, Ismael D; Garro, Ariel G; Heredia, Valeria; Beltramo, Dante M


    Doxorubicin (Dox) is an anthracycline anticancer drug with high water solubility, whose use is limited primarily due to significant side effects. In this study it is shown that Dox interacts with monosialoglycosphingolipid (GM1) ganglioside micelles primarily through hydrophobic interactions independent of pH and ionic strength. In addition, Dox can be incorporated even into GM1 micelles already containing highly hydrophobic paclitaxel (Ptx). However, it was not possible to incorporate Ptx into Dox-containing GM1 micelles, suggesting that Dox could be occupying a more external position in the micelles. This result is in agreement with a higher hydrolysis of Dox than of Ptx when micelles were incubated at alkaline pH. The loading of Dox into GM1 micelles was observed over a broad range of temperature (4°C–55°C). Furthermore, Dox-loaded micelles were stable in aqueous solutions exhibiting no aggregation or precipitation for up to 2 months when kept at 4°C–25°C and even after freeze–thawing cycles. Upon exposure to blood components, Dox-containing micelles were observed to interact with human serum albumin. However, the amount of human serum albumin that ended up being associated to the micelles was inversely related to the amount of Dox, suggesting that both could share their binding sites. In vitro studies on Hep2 cells showed that the cellular uptake and cytotoxic activity of Dox and Ptx from the micellar complexes were similar to those of the free form of these drugs, even when the micelle was covered with albumin. These results support the idea of the existence of different nano-domains in a single micelle and the fact that this micellar model could be used as a platform for loading and delivering hydrophobic and hydrophilic active pharmaceutical ingredients. PMID:26005348

  11. Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells

    Sette, A; Buus, S; Colon, S;


    A detailed analysis of the residues within an immunogenic peptide that endow it with the capacity to interact with Ia and to be recognized by T cells is presented. Ia interacts with only a few of the peptide residues and overall exhibits a very broad specificity. Some residues appear to interact...... both with Ia and with T cells, leading to a model in which a peptide antigen is 'sandwiched' between Ia and the T-cell receptor....

  12. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine.

    Improta-Brears, T; Ghosh, S; Bell, R M


    Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.

  13. Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions

    Shungin, Dmitry; Deng, Wei Q; Varga, Tibor V


    variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv...... (Pbinomial = 8.63×10-9 and 8.52×10-7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them....

  14. Membrane-membrane interactions in a lipid-containing bacteriophage system. Progress report, October 1, 1980-September 30, 1981

    Snipes, W


    Virus-cell interactions and the mechanism of viral entry have been the major focal points of this research. A method of analysis was perfected to investigate the entry process for herpes simplex virus. This technique makes use of a photosensitizing dye, FITC, that covalently binds to viral envelope proteins. Treated virions remain photosensitive until the envelope is shed during the process of infection. Our data strongly support an entry mechanism in which the viral envelope fuses with the cell plasma membrane. Other related projects have involved studies of the virucidal properties of retinoids, plaque development characteristics for viruses surviving treatment with membrane perturbers, and a large plaque effect that occurs when virus are plated on cells pretreated with uv light. In addition, we have characterized a new bacteriophage, investigated the interactions of divalent cations and proteins with phospholipid vesicles, extended our studies of the effects of hydrophobic photosensitizers on cell membranes, and used the spin-trapping technique to elucidate the reaction mechanism for an enzyme-like activity in soil extracts.

  15. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft.

    Takizawa, Naoki; Momose, Fumitaka; Morikawa, Yuko; Nomoto, Akio


    The influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP) is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1) in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  16. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Takizawa, Naoki; Momose, Fumitaka; Morikawa, Yuko; Nomoto, Akio


    The influenza glycoproteins, hemagglutinin (HA) and neuraminidase (NA), which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP) is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1) in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft. PMID:27626438

  17. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft

    Naoki Takizawa


    Full Text Available The influenza glycoproteins, hemagglutinin (HA and neuraminidase (NA, which are associated with the lipid raft, have the potential to initiate virion budding. However, the role of these viral proteins in infectious virion assembly is still unclear. In addition, it is not known how the viral ribonucleoprotein complex (vRNP is tethered to the budding site. Here, we show that HA is necessary for the efficient progeny virion production and vRNP packaging in the virion. We also found that the level of HA does not affect the bundling of the eight vRNP segments, despite reduced virion production. Detergent solubilization and a subsequent membrane flotation analysis indicated that the accumulation of nucleoprotein, viral polymerases, NA, and matrix protein 1 (M1 in the lipid raft fraction was delayed without HA. Based on our results, we inferred that HA plays a role in the accumulation of viral components, including bundled vRNPs, at the lipid raft.

  18. Lipid somersaults

    Günther-Pomorski, Thomas; Menon, Anant K.


    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support divers...

  19. The Impact of Lipid-metabolizing Genetic Polymorphisms on Body Mass Index and Their Interactions with Soybean Food Intake:A Study in a Chinese Population

    WANG Jin Wei; CHEN Da Fang; TANG Xun; LI Na; WU Yi Qun; LI Shuai; LI Jin; QIN Xue Ying; ZHANG Zong Xin; HU Yong Hua


    Objective To evaluate the association of known polymorphisms in the lipid metabolic pathway with body mass index (BMI), and estimate their interactions with soybean food intake. Methods A community-based cross-sectional survey was conducted in a Chinese Han population. BMI, soybean food intake, and single nucleotide polymorphisms of rs599839, rs3846662, rs3846663, rs12916, rs174547, rs174570, rs4938303, and rs1558861 were measured in 944 subjects. A multivariate logistic regression was used to analyze the association of the studied polymorphisms with BMIs. The expectation-maximization algorithm was employed to evaluate the extent of linkage disequilibrium between pairwise polymorphisms. The gene-environment interaction was assessed in the general multifactor dimensionality reduction model. Results The polymorphisms of rs3846662 and rs3846663 were associated with 10% highest BMIs when comparing to the 10% lowest values both in individuals and haplotype-based association tests. Although no statistically significant gene-environment interactions were found, people with the haplotype composed of C allele in rs3846662 and T allele in rs3846663 and low frequency of soybean intake had significantly higher risk to overweight and obesity as compared with those with the haplotype consisting of T allele in rs3846662 and C allele in rs3846663 and highly frequent soybean food intake, with an odds ratio of 1.64 (95%confidence interval: 1.15-2.34, P Conclusion Our study has suggested that rs3846662 and rs3846663 may be the potential candidate polymorphisms for obesity, and their effect on the pathogenesis could be mediated by the frequency of soybean food intake.

  20. Crystallographic Identification of Lipid as an Integral Component of the Epitope of HIV Broadly Neutralizing Antibody 4E10.

    Irimia, Adriana; Sarkar, Anita; Stanfield, Robyn L; Wilson, Ian A


    Numerous studies of the anti-HIV-1 envelope glycoprotein 41 (gp41) broadly neutralizing antibody 4E10 suggest that 4E10 also interacts with membrane lipids, but the antibody regions contacting lipids and its orientation with respect to the viral membrane are unknown. Vaccine immunogens capable of re-eliciting these membrane proximal external region (MPER)-like antibodies may require a lipid component to be successful. We performed a systematic crystallographic study of lipid binding to 4E10 to identify lipids bound by the antibody and the lipid-interacting regions. We identified phosphatidic acid, phosphatidylglycerol, and glycerol phosphate as specific ligands for 4E10 in the crystal structures. 4E10 used its CDRH1 loop to bind the lipid head groups, while its CDRH3 interacted with the hydrophobic lipid tails. Identification of the lipid binding sites on 4E10 may aid design of immunogens for vaccines that include a lipid component in addition to the MPER on gp41 for generation of broadly neutralizing antibodies.

  1. Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

    Zeng N


    Full Text Available Ni Zeng,1,3,* Xiaoling Gao,2,* Quanyin Hu,1 Qingxiang Song,2 Huimin Xia,1 Zhongyang Liu,1 Guangzhi Gu,1 Mengyin Jiang,1,4 Zhiqing Pang,1 Hongzhuan Chen,2 Jun Chen,1 Liang Fang3 1Key Laboratory of Smart Drug Delivery, Ministry of Education and PLA, School of Pharmacy, Fudan University, Shanghai, 2Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, Shanghai, 3Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 4School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong People's Republic of China, *These authors contributed equally to this workBackground: Lipid-based liquid crystalline nanoparticles (LCNPs have attracted growing interest as novel drug-delivery systems for improving the bioavailability of both hydrophilic and hydrophobic drugs. However, their cellular interaction and in vivo behavior have not been fully developed and characterized.Methods: In this study, self-assembled LCNPs prepared from soy phosphatidylcholine and glycerol dioleate were developed as a platform for oral delivery of paclitaxel. The particle size of empty LCNPs and paclitaxel-loaded LCNPs was around 80 nm. The phase behavior of the liquid crystalline matrix was characterized using crossed polarized light microscopy and small-angle X-ray scattering, and showed both reversed cubic and hexagonal phase in the liquid crystalline matrix. Transmission electron microscopy and cryofield emission scanning electron microscopy analysis revealed an inner winding water channel in LCNPs and a "ball-like"/"hexagonal" morphology.Results: Cellular uptake of LCNPs in Caco-2 cells was found to be concentration-dependent and time-dependent, with involvement of both clathrin and caveolae/lipid raft-mediated endocytosis. Under confocal laser scanning microscopy, soy phosphatidylcholine was observed to segregate from the internalized LCNPs and

  2. Sample Sizes Required to Detect Interactions between Two Binary Fixed-Effects in a Mixed-Effects Linear Regression Model.

    Leon, Andrew C; Heo, Moonseong


    Mixed-effects linear regression models have become more widely used for analysis of repeatedly measured outcomes in clinical trials over the past decade. There are formulae and tables for estimating sample sizes required to detect the main effects of treatment and the treatment by time interactions for those models. A formula is proposed to estimate the sample size required to detect an interaction between two binary variables in a factorial design with repeated measures of a continuous outcome. The formula is based, in part, on the fact that the variance of an interaction is fourfold that of the main effect. A simulation study examines the statistical power associated with the resulting sample sizes in a mixed-effects linear regression model with a random intercept. The simulation varies the magnitude (Δ) of the standardized main effects and interactions, the intraclass correlation coefficient (ρ ), and the number (k) of repeated measures within-subject. The results of the simulation study verify that the sample size required to detect a 2 × 2 interaction in a mixed-effects linear regression model is fourfold that to detect a main effect of the same magnitude.

  3. Analysis of the spacial requirements for RNA-protein interactions within the N antitermination complex of bacteriophage lambda.

    Horiya, Satoru; Inaba, Mitsuru; Koh, Chang-Song; Uehara, Hiroaki; Masui, Naomi; Ishibashi, Masaya; Matsufuji, Senya; Harada, Kazuo


    In bacteriophage lambda, formation of a transcriptional antitermination complex consisting of the lambda N protein, nut RNA transcript (boxA-boxB), host factors, and RNA polymerase is mediated by the interaction of the boxB RNA with the RNA-binding domain of N. In order to understand the spacial requirements of this boxB/N interaction within the complex, the effects of changes in the length of the nut site linker, the boxB stem, and the peptide spacer connecting the RNA-binding domain and activation domain of N were examined using a bacterial reporter system. As a result, we found that the requirements for the boxB stem length and N peptide linker length were optimized and strict. In contrast, when the boxB/N interaction was replaced by heterologous RNA/peptide interactions, the strict requirement for the length of the peptide linker and the RNA stem was relaxed, presumably due to the absence of the interaction between boxB/N and the host factor NusA in the wild-type complex. It was also shown that the decrease in activity upon stem lengthening could be partially suppressed by simultaneous lengthening of the RNA spacer, suggesting that a further understanding of the organization of the antitermination complex may provide insights into the engineering of functional ribonucleoprotein complexes.

  4. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling

    Airik, Rannar; Schueler, Markus; Airik, Merlin


    Hedgehog (Hh) signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1), of the endosomal sorting complex (RABEP2, ERC...

  5. Interaction of quinine with negatively charged lipid vesicles studied by fluorescence spectroscopy Influence of the pH

    Pedrós, Jesús; Porcar, Iolanda; Gómez, Clara M.; Campos, Agustín; Abad, Concepción


    The interaction of quinine with dimyristoylphosphatidic acid (DMPA) and dimyristoylphosphatidyl glycerol (DMPG) small unilamellar vesicles in the gel phase was studied by steady-state fluorescence spectroscopy at pHs 7, 6, 5 and 4 and 20°C. In aqueous solution, with excitation at 335 nm, the emission fluorescence spectrum of quinine varied with pH reflecting the occurrence of different charged species of the drug. In all cases, the emission maximum centered at 383 or 443 nm shifted to lower wavelength in the presence of vesicles. This indicates that the membrane-bound state quinine is in an environment of low polarity. Drug monocationic species were deeply buried in DMPG relative to DMPA bilayers whereas no significant differences were observed for dicationic species, the fluorophore being located in this case in a more aqueous-like environment. Experimental association isotherms generated from fluorescence intensity changes were quantitatively analyzed in terms of the binding equilibrium model. Although the binding affinity of quinine to anionic membranes was always higher for DMPG over DMPA, dicationic species showed a reduced ability to bind the negatively charged membrane. In addition, the binding model has been related with the partition model leading to a good agreement between the theoretical (calculated from the binding model) and the experimental (from the initial slope of the experimental isotherms) partition coefficient derived in each case.

  6. Membrane protein-lipid interactions in mixed micelles studied by NMR spectroscopy with the use of paramagnetic reagents.

    Hilty, Christian; Wider, Gerhard; Fernández, César; Wüthrich, Kurt


    For solution NMR studies of the structure and function of membrane proteins, these macromolecules have to be reconstituted and solubilized in detergent micelles. Detailed characterization of the mixed detergent/protein micelles is then of key importance to validate the results from such studies, and to evaluate how faithfully the natural environment of the protein in the biological membrane is mimicked by the micelle. In this paper, a selection of paramagnetic probes with different physicochemical properties are used to characterize the 60 kDa mixed micelles consisting of about 90 molecules of the detergent dihexanoylphosphatidylcholine (DHPC) and one molecule of the Escherichia coli outer-membrane protein X (OmpX), which had previously been extensively studied by solution NMR techniques. The observation of highly selective relaxation effects on the NMR spectra of OmpX and DHPC from a water-soluble relaxation agent and from nitroxide spin labels attached to lipophilic molecules, confirmed data obtained previously with more complex NMR studies of the diamagnetic OmpX/DHPC system, and yielded additional novel insights into the protein-detergent interactions in the mixed micelles. The application of paramagnetic probes to the well-characterized OmpX/DHPC system indicates that such probes should be widely applicable as an efficient support of NMR studies of the topology of mixed membrane protein-detergent micelles.

  7. Associations between specific ApoE genetic variants and their interactions with environmental factors in relation to the lipid profile of black South Africans / Lize Meades

    Meades, Lize


    Introduction: Cardiovascular disease (CVD) is the leading cause of global mortality and its prevalence is increasing among black South Africans in spite of their favourable lipid profile. Apolipoprotein E (ApoE) is a well-described risk factor for CVD and certain polymorphisms within this gene alter the lipid profile. The author hypothesised that there are population-specific effects within the ApoE gene that are responsible for the favourable lipid profile observed in black South Africans wh...

  8. Lipids of mitochondria.

    Horvath, Susanne E; Daum, Günther


    A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The Videographic Requirements Gathering Method for Adolescent-Focused Interaction Design

    Tamara Peyton


    Full Text Available We present a novel method for conducting requirements gathering with adolescent populations. Called videographic requirements gathering, this technique makes use of mobile phone data capture and participant creation of media images. The videographic requirements gathering method can help researchers and designers gain intimate insight into adolescent lives while simultaneously reducing power imbalances. We provide rationale for this approach, pragmatics of using the method, and advice on overcoming common challenges facing researchers and designers relying on this technique.

  10. The required interactions among institutions involved with Research and Development in the power sector

    Vieira Filho, X.; Medeiros, J.C.; Szechtman, M. [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)


    This paper presents the form which CEPEL (Brazilian Federal Research Center in Electric Energy) works for the Brazilian electric system, the interaction with associates, especially with ELETROBRAS (the Federal holding company in Brazil), the modern way of CEPEL operation and interactions with clients, the partnership in Research and Development, the CEPEL philosophy of transferring technology to its clients, and the cost-benefit analysis of Research and Development activities. (author) 2 refs., 4 figs., 1 tab.

  11. Pollen lipidomics: lipid profiling exposes a notable diversity in 22 allergenic pollen and potential biomarkers of the allergic immune response.

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND/AIM: Pollen grains are the male gametophytes that deliver sperm cells to female gametophytes during sexual reproduction of higher plants. Pollen is a major source of aeroallergens and environmental antigens. The pollen coat harbors a plethora of lipids that are required for pollen hydration, germination, and penetration of the stigma by pollen tubes. In addition to proteins, pollen displays a wide array of lipids that interact with the human immune system. Prior searches for pollen allergens have focused on the identification of intracellular allergenic proteins, but have largely overlooked much of the extracellular pollen matrix, a region where the majority of lipid molecules reside. Lipid antigens have attracted attention for their potent immunoregulatory effects. By being in close proximity to allergenic proteins on the pollen surface when they interact with host cells, lipids could modify the antigenic properties of proteins. METHODOLOGY/PRINCIPAL FINDINGS: We performed a comparative pollen lipid profiling of 22 commonly allergenic plant species by the use of gas chromatography-mass spectroscopy, followed by detailed data mining and statistical analysis. Three experiments compared pollen lipid profiles. We built a database library of the pollen lipids by matching acquired pollen-lipid mass spectra and retention times with the NIST/EPA/NIH mass-spectral library. We detected, identified, and relatively quantified more than 106 lipid molecular species including fatty acids, n-alkanes, fatty alcohols, and sterols. Pollen-derived lipids stimulation up-regulate cytokines expression of dendritic and natural killer T cells co-culture. CONCLUSIONS/SIGNIFICANCE: Here we report on a lipidomic analysis of pollen lipids that can serve as a database for identifying potential lipid antigens and/or novel candidate molecules involved in allergy. The database provides a resource that facilitates studies on the role of lipids in the

  12. New Insights from Sum Frequency Generation Vibrational Spectroscopy into the Interactions of Islet Amyloid Polypeptides with Lipid Membranes

    Li Fu


    Full Text Available Studies of amyloid polypeptides on membrane surfaces have gained increasing attention in recent years. Several studies have revealed that membranes can catalyze protein aggregation and that the early products of amyloid aggregation can disrupt membrane integrity, increasing water permeability and inducing ion cytotoxicity. Nonetheless, probing aggregation of amyloid proteins on membrane surfaces is challenging. Surface-specific methods are required to discriminate contributions of aggregates at the membrane interface from those in the bulk phase and to characterize protein secondary structures in situ and in real time without the use of perturbing spectroscopic labels. Here, we review the most recent applications of sum frequency generation (SFG vibrational spectroscopy applied in conjunction with computational modeling techniques, a joint experimental and computational methodology that has provided valuable insights into the aggregation of islet amyloid polypeptide (IAPP on membrane surfaces. These applications show that SFG can provide detailed information about structures, kinetics, and orientation of IAPP during interfacial aggregation, relevant to the molecular mechanisms of type II diabetes. These recent advances demonstrate the promise of SFG as a new approach for studying amyloid diseases at the molecular level and for the rational drug design targeting early aggregation products on membrane surfaces.

  13. Genetic, epigenetic, and gene-by-diet interaction effects underlie variation in serum lipids in a LG/JxSM/J murine model.

    Lawson, Heather A; Zelle, Kathleen M; Fawcett, Gloria L; Wang, Bing; Pletscher, L Susan; Maxwell, Taylor J; Ehrich, Thomas H; Kenney-Hunt, Jane P; Wolf, Jason B; Semenkovich, Clay F; Cheverud, James M


    Variation in serum cholesterol, free-fatty acids, and triglycerides is associated with cardiovascular disease (CVD) risk factors. There is great interest in characterizing the underlying genetic architecture of these risk factors, because they vary greatly within and among human populations and between the sexes. We present results of a genome-wide scan for quantitative trait loci (QTL) affecting serum cholesterol, free-fatty acids, and triglycerides in an F(16) advanced intercross line of LG/J and SM/J (Wustl:LG,SM-G16). Half of the population was fed a high-fat diet and half was fed a relatively low-fat diet. Context-dependent genetic (additive and dominance) and epigenetic (imprinting) effects were characterized by partitioning animals into sex, diet, and sex-by-diet cohorts. Here we examine genetic, environmental, and genetic-by-environmental interactions of QTL overlapping previously identified loci associated with CVD risk factors, and we add to the serum lipid QTL landscape by identifying new loci.

  14. Cutting edge: the nucleotide receptor P2X7 contains multiple protein- and lipid-interaction motifs including a potential binding site for bacterial lipopolysaccharide.

    Denlinger, L C; Fisette, P L; Sommer, J A; Watters, J J; Prabhu, U; Dubyak, G R; Proctor, R A; Bertics, P J


    The nucleotide receptor P2X7 has been shown to modulate LPS-induced macrophage production of numerous inflammatory mediators. Although the C-terminal portion of P2X7 is thought to be essential for multiple receptor functions, little is known regarding the structural motifs that lie within this region. We show here that the P2X7 C-terminal domain contains several apparent protein-protein and protein-lipid interaction motifs with potential importance to macrophage signaling and LPS action. Surprisingly, P2X7 also contains a conserved LPS-binding domain. In this report, we demonstrate that peptides derived from this P2X7 sequence bind LPS in vitro. Moreover, these peptides neutralize the ability of LPS to activate the extracellular signal-regulated kinases (ERK1, ERK2) and to promote the degradation of the inhibitor of kappaB-alpha isoform (IkappaB-alpha) in RAW 264.7 macrophages. Collectively, these data suggest that the C-terminal domain of P2X7 may directly coordinate several signal transduction events related to macrophage function and LPS action.

  15. The PPLA motif of glycogen synthase kinase 3beta is required for interaction with Fe65.

    Lee, Eun Jeoung; Hyun, Sunghee; Chun, Jaesun; Shin, Sung Hwa; Lee, Kyung Eun; Yeon, Kwang Hum; Park, Tae Yoon; Kang, Sang Sun


    Glycogen synthase kinase 3beta (GSK 3 beta) is a serine/ threonine kinase that phosphorylates substrates such as beta-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK 3beta is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK 3beta catalytic domain also contains a putative WW domain binding motif ((371)PPLA(374)), and we observed, using a pull down approach and co-immuno-precipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK 3beta and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK 3beta.Finally, in transient transfection assays interaction of GSK 3 beta (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK 3beta AALA mutant ((371)AALA(374)) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK 3beta AALA mutant was significantly reduced compared to that of GSK 3beta wild type. Thus, our observations indicate that GSK 3beta binds to Fe65 through its (371)PPLA(374) motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK 3beta.

  16. How Do Lipids Localize in Lewy Bodies?

    Chaudhary, Himanshu; Subramaniam, Vinod; Claessens, Mireille


    Lewy bodies are the pathological hallmark of Parkinson's disease (PD). While fibrillar α-synuclein (αS) is the main protein component of Lewy bodies, these structures also contain lipids. To elucidate the presence of lipids in Lewy bodies, we investigated the interaction of lipids with monomeric and

  17. Lipid-binding analysis using a fat blot assay.

    Munnik, T.; Wierzchowiecka, M.


    Protein-lipid interactions play an important role in lipid metabolism, membrane trafficking and cell -signaling by regulating protein localization, activation, and function. The Fat Blot assay is a relatively simple and inexpensive method to examine these interactions using nitrocellulose

  18. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    Peterson, Aidan J; Mallin, Daniel R; Francis, Nicole J; Ketel, Carrie S; Stamm, Joyce; Voeller, Rochus K; Kingston, Robert E; Simon, Jeffrey A


    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH interactions in vitro are mediated by their respective SPM domains. Yeast two-hybrid and in vitro binding assays were used to isolate and characterize >30 missense mutations in the SPM domain of SCM. Genetic rescue assays showed that SCM repressor function in vivo is disrupted by mutations that impair SPM domain interactions in vitro. Furthermore, overexpression of an isolated, wild-type SPM domain produced PcG loss-of-function phenotypes in flies. Coassembly of SCM with a reconstituted PRC1 core complex shows that SCM can partner with PRC1. However, gel filtration chromatography showed that the bulk of SCM is biochemically separable from PH in embryo nuclear extracts. These results suggest that SCM, although not a core component of PRC1, interacts and functions with PRC1 in gene silencing.

  19. Video Mediated Social Interaction Between Groups: System Requirements and Technology Challenges

    Williams, D.; Usrsu, M.F.; Meenowa, J.; Cesar Garcia, P.S.; Kegel, I.; Bergström, K.; Bergström, K.


    This paper discusses results from research related to the use of television as a device that supports social interaction between close-knit groups in settings that include more than two locations, each location being potentially equipped with more than one camera. The paper introduces the notion of

  20. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors

    Schuster, D J; Metcalf, M D; Kitto, K F; Messing, R O; Fairbanks, C A; Wilcox, G L


    BACKGROUND AND PURPOSE We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. EXPERIMENTAL APPROACH Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. KEY RESULTS All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. CONCLUSIONS AND IMPLICATIONS We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit PMID:24827408

  1. The C-Terminal Domain of Yeast PCNA Is Required for Physical And Functional Interactions With Cdc9 DNA Ligase

    Vijayakumar, S.; Chapados, B.R.; Schmidt, K.H.; Kolodner, R.D.; Tainer, J.A.; Tomkinson, A.E.


    There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the {beta}-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the coordinated, sequential action of these enzymes.

  2. 尼罗罗非鱼幼鱼饲料的适宜脂肪需要量%Optimal dietary lipid requirement of advanced juvenile Nile tilapia Oreochromis niloticus

    涂玮; 田娟; 文华; 蒋明; 吴凡; 刘伟; 张明明; 孙立威


    , and reduces environmental pollution from the feed and its metabolites. However, little is known about the dietary lipid requirements of juvenile Oreochromis niloticus. Our objective was to determine the optimal dietary lipid requirement of advanced juvenile O. Niloticus. We randomly assigned fish (n= 360) with average initial body weight of (46.14±4.67) g into 6 groups consisting of 4 replicates (n=15 fish/replicate). Each group was fed a diet containing either 0 (control group), 3%, 6, 9%, 12%, or 15% fish oil for 8 weeks (actual lipid level was 0.20%, 2.70%, 6.11%, 8.04%, 11.13%, and 14.85%, respectively). We measured growth, lipid deposition, serum biochemical indexes, and lipid metabolism enzyme activities at the end of the trial. Weight gain rate (WGR), specific growth rate (SGR), and protein efficiency ratio (PER) initially increased with increasing lipid concentrations but then decreased. Conversely, the feed conversation ratio (FCR) first decreased then increased. Using second order regression analysis, we estimated that the optimal level of dietary lipid to promote WGR, FCR, and PER was 8.86%, 9.75% and 9.40%, respectively. An increase in dietary lipid levels was associated with a significant increase in the hepatosomatic index (HIS) and crude fat content in both the whole body and muscle (P<0.05). Serum total cholesterol (TCHO) and triglyceride (TG) levels first increased then decreased as the level of dietary lipid increased. High density lipoprotein cholesterol (HDL-C) content first increased then plateaued as levels of dietary lipid increased. Broken-line regression analysis of the HDL-C content against dietary lipid level indicated that the dietary lipid requirement for optimal HDL-C content was 8.30%. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity were highest in the group fed 11.13% dietary lipid and lowest in the group fed 6.11% dietary lipid. Intestine lipase, lipoprotein lipase (LPL), hepatic lipase (HL) and total

  3. RF Microalgal lipid content characterization

    Ahmad, Mahmoud Al; Al-Zuhair, Sulaiman; Taher, Hanifa; Hilal-Alnaqbi, Ali


    Most conventional techniques for the determination of microalgae lipid content are time consuming and in most cases are indirect and require excessive sample preparations. This work presents a new technique that utilizes radio frequency (RF) for rapid lipid quantification, without the need for sample preparation. Tests showed that a shift in the resonance frequency of a RF open-ended coaxial resonator and a gradual increase in its resonance magnitude may occur as the lipids content of microalgae cells increases. These response parameters can be then calibrated against actual cellular lipid contents and used for rapid determination of the cellular lipids. The average duration of lipid quantification using the proposed technique was of about 1 minute, which is significantly less than all other conventional techniques, and was achieved without the need for any time consuming treatment steps.

  4. A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization.

    Xu, X-Z Shawn; Sternberg, Paul W


    Fertilization, a critical step in animal reproduction, is triggered by a series of specialized sperm-egg interactions. However, the molecular mechanisms underlying fertilization are not well understood. Here, we identify a sperm-enriched C. elegans TRPC homolog, TRP-3. Mutations in trp-3 lead to sterility in both hermaphrodites and males due to a defect in their sperm. trp-3 mutant sperm are motile, but fail to fertilize oocytes after gamete contact. TRP-3 is initially localized in intracellular vesicles, and then translocates to the plasma membrane during sperm activation. This translocation coincides with a marked increase in store-operated calcium entry, providing an in vivo mechanism for the regulation of TRP-3 activity. As C. elegans oocytes lack egg coats, our data suggest that some TRPC family channels might function to mediate calcium influx during sperm-egg plasma membrane interactions leading to fertilization.

  5. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee


    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  6. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction


    dynein–early endosome interaction in the filamen- tous fungus Aspergillus nidulans. In filamentous fungi , dynein and its regulators are important for...backbone of the dynactin complex, and its loss leads to a disruption of the whole complex. In Drosoph- ila and in filamentous fungi such as N. the motor is targeted to these cargoes is still a topic under investigation. In filamentous fungi and higher eukaryotic cells such as neurons

  7. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations

    La Rosa, Carmelo; Scalisi, Silvia; Lolicato, Fabio; Pannuzzo, Martina; Raudino, Antonio


    The protein transport inside a cell is a complex phenomenon that goes through several difficult steps. The facilitated transport requires sophisticated machineries involving protein assemblies. In this work, we developed a diffusion-reaction model to simulate co-transport kinetics of proteins and lipids. We assume the following: (a) there is always a small lipid concentration of order of the Critical Micellar Concentration (CMC) in equilibrium with the membrane; (b) the binding of lipids to proteins modulates the hydrophobicity of the complexes and, therefore, their ability to interact and merge with the bilayer; and (c) some lipids leave the bilayer to replenish those bound to proteins. The model leads to a pair of integral equations for the time-evolution of the adsorbed proteins in the lipid bilayer. Relationships between transport kinetics, CMC, and lipid-protein binding constants were found. Under particular conditions, a perturbation analysis suggests the onset of kinks in the protein adsorption kinetics. To validate our model, we performed leakage measurements of vesicles composed by either high or low CMC lipids interacting with Islet Amyloid PolyPeptide (IAPP) and Aβ (1-40) used as sample proteins. Since the lipid-protein complex stoichiometry is not easily accessible, molecular dynamics simulations were performed using monomeric IAPP interacting with an increasing number of phospholipids. Main results are the following: (a) 1:1 lipid-protein complexes generally show a faster insertion rate proportional to the complex hydrophobicity and inversely related to lipid CMC; (b) on increasing the number of bound lipids, the protein insertion rate decreases; and (c) at slow lipids desorption rate, the lipid-assisted proteins transport might exhibit a discontinuous behavior and does non-linearly depend on protein concentration.

  8. Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation.

    Marcon, Edyta; Ni, Zuyao; Pu, Shuye; Turinsky, Andrei L; Trimble, Sandra Smiley; Olsen, Jonathan B; Silverman-Gavrila, Rosalind; Silverman-Gavrila, Lorelei; Phanse, Sadhna; Guo, Hongbo; Zhong, Guoqing; Guo, Xinghua; Young, Peter; Bailey, Swneke; Roudeva, Denitza; Zhao, Dorothy; Hewel, Johannes; Li, Joyce; Gräslund, Susanne; Paduch, Marcin; Kossiakoff, Anthony A; Lupien, Mathieu; Emili, Andrew; Wodak, Shoshana J; Greenblatt, Jack


    Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision) network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  9. Human-Chromatin-Related Protein Interactions Identify a Demethylase Complex Required for Chromosome Segregation

    Edyta Marcon


    Full Text Available Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate a protein-protein interaction map encompassing known and predicted chromatin-related proteins. On the basis of 1,394 successful purifications of 293 proteins, we report a high-confidence (85% precision network involving 11,464 protein-protein interactions among 1,738 different human proteins, grouped into 164 often overlapping protein complexes with a particular focus on the family of JmjC-containing lysine demethylases, their partners, and their roles in chromatin remodeling. We show that RCCD1 is a partner of histone H3K36 demethylase KDM8 and demonstrate that both are important for cell-cycle-regulated transcriptional repression in centromeric regions and accurate mitotic division.

  10. Nuclear localization and interaction with COP1 are required for STO/BBX24 function during photomorphogenesis.

    Yan, Huili; Marquardt, Katrin; Indorf, Martin; Jutt, Dominic; Kircher, Stefan; Neuhaus, Gunther; Rodríguez-Franco, Marta


    Arabidopsis (Arabidopsis thaliana) SALT TOLERANCE/B-BOX ZINC FINGER PROTEIN24 (STO/BBX24) is a negative regulator of the light signal transduction that localizes to the nucleus of plant cells and interacts with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) in the yeast (Saccharomyces cerevisiae) two-hybrid system. The protein contains two B-box zinc-finger motives at the N terminus and a conserved motif at the C-terminal part required for the interaction with COP1. BBX24 accumulates during deetiolation of young seedlings in the first hours of exposure to light. However, this accumulation is transient and decreases after prolonged light irradiation. Here, we identified the amino acidic residues necessary for the nuclear import of the protein. In addition, we created mutated forms of the protein, and analyzed them by overexpression in the bbx24-1 mutant background. Our results indicate that the degradation of BBX24 occurs, or at least is initiated in the nucleus, and this nuclear localization is a prerequisite to fulfill its function in light signaling. Moreover, mutations in the region responsible for the interaction with COP1 revealed that a physical interaction of the proteins is also required for degradation of BBX24 in the light and for normal photomorphogenesis.

  11. Dengue virus NS1 protein interacts with the ribosomal protein RPL18: this interaction is required for viral translation and replication in Huh-7 cells.

    Cervantes-Salazar, Margot; Angel-Ambrocio, Antonio H; Soto-Acosta, Ruben; Bautista-Carbajal, Patricia; Hurtado-Monzon, Arianna M; Alcaraz-Estrada, Sofia L; Ludert, Juan E; Del Angel, Rosa M


    Given dengue virus (DENV) genome austerity, it uses cellular molecules and structures for virion entry, translation and replication of the genome. NS1 is a multifunctional protein key to viral replication and pathogenesis. Identification of cellular proteins that interact with NS1 may help in further understanding the functions of NS1. In this paper we isolated a total of 64 proteins from DENV infected human hepatic cells (Huh-7) that interact with NS1 by affinity chromatography and immunoprecipitation assays. The subcellular location and expression levels during infection of the ribosomal proteins RPS3a, RPL7, RPL18, RPL18a plus GAPDH were determined. None of these proteins changed their expression levels during infection; however, RPL-18 was redistributed to the perinuclear region after 48hpi. Silencing of the RPL-18 does not affect cell translation efficiency or viability, but it reduces significantly viral translation, replication and viral yield, suggesting that the RPL-18 is required during DENV replicative cycle.

  12. Intra- And Inter-Monomer Interactions are Required to Synergistically Facilitate ATP Hydrolysis in HSP90

    Cunningham, C.N.; Krukenberg, K.A.; Agard, D.A.


    Nucleotide-dependent conformational changes of the constitutively dimeric molecular chaperone Hsp90 are integral to its molecular mechanism. Recent full-length crystal structures (Protein Data Bank codes 2IOQ, 2CG9, AND 2IOP) of Hsp90 homologs reveal large scale quaternary domain rearrangements upon the addition of nucleotides. Although previous work has shown the importance of C-terminal domain dimerization for efficient ATP hydrolysis, which should imply cooperativity, other studies suggest that the two ATPases function independently. Using the crystal structures as a guide, we examined the role of intra- and intermonomer interactions in stabilizing the ATPase activity of a single active site within an intact dimer. This was accomplished by creating heterodimers that allow us to differentially mutate each monomer, probing the context in which particular residues are important for ATP hydrolysis. Although the ATPase activity of each monomer can function independently, we found that the activity of one monomer could be inhibited by the mutation of hydrophobic residues on the trans N-terminal domain (opposite monomer). Furthermore, these trans interactions are synergistically mediated by a loop on the cis middle domain. This loop contains hydrophobic residues as well as a critical arginine that provides a direct linkage to the {gamma}-phosphate of bound ATP. Small angle x-ray scattering demonstrates that deleterious mutations block domain closure in the presence of AMPPNP (5{prime}-adenylyl-{beta},{gamma}-imidodiphosphate), providing a direct linkage between structural changes and functional consequences. Together, these data indicate that both the cis monomer and the trans monomer and the intradomain and interdomain interactions cooperatively stabilize the active conformation of each active site and help explain the importance of dimer formation.

  13. Diet Quality and Change in Blood Lipids during 16 Years of Follow-up and Their Interaction with Genetic Risk for Dyslipidemia

    Emily Sonestedt


    Full Text Available A high diet quality according to the Swedish nutrition recommendations is associated with a reduced risk of cardiovascular disease in the population-based Malmö Diet and Cancer cohort. To further clarify this protective association, we examined the association between high diet quality and change in triglycerides, high density lipoprotein-cholesterol (HDL-C, and low density lipoprotein-cholesterol (LDL-C after 16 years of follow-up in 3152 individuals (61% women; 46–68 years at baseline. In addition, we examined if genetic risk scores composed of 80 lipid-associated genetic variants modify these associations. A diet quality index based on intakes of saturated fat, polyunsaturated fat, sucrose, fiber, fruit and vegetables, and fish was constructed. A high diet quality was associated with lower risk of developing high triglycerides (p = 0.02 and high LDL-C (p = 0.03 during follow-up compared with a low diet quality. We found an association between diet quality and long-term change in HDL-C only among those with lower genetic risk for low HDL-C as opposed to those with higher genetic risk (p-interaction = 0.04. Among those with lower genetic risk for low HDL-C, low diet quality was associated with decreased HDL-C during follow-up (p = 0.05. In conclusion, individuals with high adherence to the Swedish nutrition recommendation had lower risk of developing high triglycerides and LDL-C during 16 years of follow-up.

  14. Peptaibol antiamoebin I: spatial structure, backbone dynamics, interaction with bicelles and lipid-protein nanodiscs, and pore formation in context of barrel-stave model.

    Shenkarev, Zakhar O; Paramonov, Alexander S; Lyukmanova, Ekaterina N; Gizatullina, Albina K; Zhuravleva, Anastasia V; Tagaev, Andrey A; Yakimenko, Zoya A; Telezhinskaya, Irina N; Kirpichnikov, Mikhail P; Ovchinnikova, Tatiana V; Arseniev, Alexander S


    Antiamoebin I (Aam-I) is a membrane-active peptaibol antibiotic isolated from fungal species belonging to the genera Cephalosporium, Emericellopsis, Gliocladium, and Stilbella. In comparison with other 16-amino acid-residue peptaibols, e.g., zervamicin IIB (Zrv-IIB), Aam-I possesses relatively weak biological and channel-forming activities. In MeOH solution, Aam-I demonstrates fast cooperative transitions between right-handed and left-handed helical conformation of the N-terminal (1-8) region. We studied Aam-I spatial structure and backbone dynamics in the membrane-mimicking environment (DMPC/DHPC bicelles)(1) ) by heteronuclear (1) H,(13) C,(15) N-NMR spectroscopy. Interaction with the bicelles stabilizes the Aam-I right-handed helical conformation retaining significant intramolecular mobility on the ms-μs time scale. Extensive ms-μs dynamics were also detected in the DPC and DHPC micelles and DOPG nanodiscs. In contrast, Zrv-IIB in the DPC micelles demonstrates appreciably lesser mobility on the μs-ms time scale. Titration with Mn(2+) and 16-doxylstearate paramagnetic probes revealed Aam-I binding to the bicelle surface with the N-terminus slightly immersed into hydrocarbon region. Fluctuations of the Aam-I helix between surface-bound and transmembrane (TM) state were observed in the nanodisc membranes formed from the short-chain (diC12 : 0) DLPC/DLPG lipids. All the obtained experimental data are in agreement with the barrel-stave model of TM pore formation, similarly to the mechanism proposed for Zrv-IIB and other peptaibols. The observed extensive intramolecular dynamics explains the relatively low activity of Aam-I.

  15. Requirement for sex comb on midleg protein interactions in Drosophila polycomb group repression.

    Aidan J Peterson; Mallin, Daniel R.; Francis, Nicole J.; Ketel, Carrie S.; Stamm, Joyce; Voeller, Rochus K.; Kingston, Robert E.; Jeffrey A Simon


    The Drosophila Sex Comb on Midleg (SCM) protein is a transcriptional repressor of the Polycomb group (PcG). Although genetic studies establish SCM as a crucial PcG member, its molecular role is not known. To investigate how SCM might link to PcG complexes, we analyzed the in vivo role of a conserved protein interaction module, the SPM domain. This domain is found in SCM and in another PcG protein, Polyhomeotic (PH), which is a core component of Polycomb repressive complex 1 (PRC1). SCM-PH int...

  16. Direct interaction between two actin nucleators is required in Drosophila oogenesis

    Quinlan, Margot E.


    Controlled actin assembly is crucial to a wide variety of cellular processes, including polarity establishment during early development. The recently discovered actin mesh, a structure that traverses the Drosophila oocyte during mid-oogenesis, is essential for proper establishment of the major body axes. Genetic experiments indicate that at least two proteins, Spire (Spir) and Cappuccino (Capu), are required to build this mesh. The spire and cappuccino genetic loci were first identified as ma...

  17. Analysis of Lipid Experiments (ALEX)

    Husen, Peter; Tarasov, Kirill; Katafiasz, Maciej


    Global lipidomics analysis across large sample sizes produces high-content datasets that require dedicated software tools supporting lipid identification and quantification, efficient data management and lipidome visualization. Here we present a novel software-based platform for streamlined data ...

  18. A dynamin-actin interaction is required for vesicle scission during endocytosis in yeast.

    Palmer, Sarah E; Smaczynska-de Rooij, Iwona I; Marklew, Christopher J; Allwood, Ellen G; Mishra, Ritu; Johnson, Simeon; Goldberg, Martin W; Ayscough, Kathryn R


    Actin is critical for endocytosis in yeast cells, and also in mammalian cells under tension. However, questions remain as to how force generated through actin polymerization is transmitted to the plasma membrane to drive invagination and scission. Here, we reveal that the yeast dynamin Vps1 binds and bundles filamentous actin. Mutational analysis of Vps1 in a helix of the stalk domain identifies a mutant RR457-458EE that binds actin more weakly. In vivo analysis of Vps1 function demonstrates that the mutation disrupts endocytosis but not other functions of Vps1 such as vacuolar trafficking or peroxisome fission. The mutant Vps1 is stably expressed in cells and co-localizes with the endocytic reporters Abp1 and the amphiphysin Rvs167. Detailed analysis of individual endocytic patch behavior indicates that the mutation causes aberrant movements in later stages of endocytosis, consistent with a scission defect. Ultrastructural analysis of yeast cells using electron microscopy reveals a significant increase in invagination depth, further supporting a role for the Vps1-actin interaction during scission. In vitro analysis of the mutant protein demonstrates that--like wild-type Vps1--it is able to form oligomeric rings, but, critically, it has lost its ability to bundle actin filaments into higher-order structures. A model is proposed in which actin filaments bind Vps1 during invagination, and this interaction is important to transduce the force of actin polymerization to the membrane to drive successful scission.

  19. Requirement for a conserved, tertiary interaction in the core of 23S ribosomal RNA

    Aagaard, C; Douthwaite, S


    A putative base-pairing interaction that determines the folding of the central region of 23S rRNA has been investigated by mutagenesis. Each of the possible base substitutions has been made at the phylogenetically covariant positions adenine-1262 (A1262) and U2017 in Escherichia coli 23S rRNA....... Every substitution that disrupts the potential for Watson-Crick base pairing between these positions reduces or abolishes the participation of 23S rRNA in protein synthesis. All mutant 23S rRNAs are assembled into 50S subunits, but the mutant subunits are less able to stably interact with 30S subunits...... to form translationally active ribosomes. The function of 23S rRNA is largely reestablished by introduction of an alternative G1262.C2017 or U1262.A2017 pair, although neither of these supports polysome formation quite as effectively as the wild-type pair. A 23S rRNA with a C1262.G2017 pair...

  20. Accurate phosphoregulation of kinetochore–microtubule affinity requires unconstrained molecular interactions

    Zaytsev, Anatoly V.; Sundin, Lynsie J.R.; DeLuca, Keith F.


    Accurate chromosome segregation relies on dynamic interactions between microtubules (MTs) and the NDC80 complex, a major kinetochore MT-binding component. Phosphorylation at multiple residues of its Hec1 subunit may tune kinetochore–MT binding affinity for diverse mitotic functions, but molecular details of such phosphoregulation remain elusive. Using quantitative analyses of mitotic progression in mammalian cells, we show that Hec1 phosphorylation provides graded control of kinetochore–MT affinity. In contrast, modeling the kinetochore interface with repetitive MT binding sites predicts a switchlike response. To reconcile these findings, we hypothesize that interactions between NDC80 complexes and MTs are not constrained, i.e., the NDC80 complexes can alternate their binding between adjacent kinetochore MTs. Experiments using cells with phosphomimetic Hec1 mutants corroborate predictions of such a model but not of the repetitive sites model. We propose that accurate regulation of kinetochore–MT affinity is driven by incremental phosphorylation of an NDC80 molecular “lawn,” in which the NDC80–MT bonds reorganize dynamically in response to the number and stability of MT attachments. PMID:24982430

  1. Analysis of Phosphorylation-dependent Protein Interactions of Adhesion and Degranulation Promoting Adaptor Protein (ADAP) Reveals Novel Interaction Partners Required for Chemokine-directed T cell Migration.

    Kuropka, Benno; Witte, Amelie; Sticht, Jana; Waldt, Natalie; Majkut, Paul; Hackenberger, Christian P R; Schraven, Burkhart; Krause, Eberhard; Kliche, Stefanie; Freund, Christian


    Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 μm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.

  2. Solid-state NMR spectra of lipid-anchored proteins under magic angle spinning.

    Nomura, Kaoru; Harada, Erisa; Sugase, Kenji; Shimamoto, Keiko


    Solid-state NMR is a promising tool for elucidating membrane-related biological phenomena. We achieved the measurement of high-resolution solid-state NMR spectra for a lipid-anchored protein embedded in lipid bilayers under magic angle spinning (MAS). To date, solid-state NMR measurements of lipid-anchored proteins have not been accomplished due to the difficulty in supplying sufficient amount of stable isotope labeled samples in the overexpression of lipid-anchored proteins requiring complex posttranslational modification. We designed a pseudo lipid-anchored protein in which the protein component was expressed in E. coli and attached to a chemically synthesized lipid-anchor mimic. Using two types of membranes, liposomes and bicelles, we demonstrated different types of insertion procedures for lipid-anchored protein into membranes. In the liposome sample, we were able to observe the cross-polarization and the (13)C-(13)C chemical shift correlation spectra under MAS, indicating that the liposome sample can be used to analyze molecular interactions using dipolar-based NMR experiments. In contrast, the bicelle sample showed sufficient quality of spectra through scalar-based experiments. The relaxation times and protein-membrane interaction were capable of being analyzed in the bicelle sample. These results demonstrated the applicability of two types of sample system to elucidate the roles of lipid-anchors in regulating diverse biological phenomena.

  3. Control of mRNA Export and Translation Termination by Inositol Hexakisphosphate Requires Specific Interaction with Gle1*

    Alcázar-Román, Abel R.; Bolger, Timothy A.; Wente, Susan R.


    The unidirectional translocation of messenger RNA (mRNA) through the aqueous channel of the nuclear pore complex (NPC) is mediated by interactions between soluble mRNA export factors and distinct binding sites on the NPC. At the cytoplasmic side of the NPC, the conserved mRNA export factors Gle1 and inositol hexakisphosphate (IP6) play an essential role in mRNA export by activating the ATPase activity of the DEAD-box protein Dbp5, promoting localized messenger ribonucleoprotein complex remodeling, and ensuring the directionality of the export process. In addition, Dbp5, Gle1, and IP6 are also required for proper translation termination. However, the specificity of the IP6-Gle1 interaction in vivo is unknown. Here, we characterize the biochemical interaction between Gle1 and IP6 and the relationship to Dbp5 binding and stimulation. We identify Gle1 residues required for IP6 binding and show that these residues are needed for IP6-dependent Dbp5 stimulation in vitro. Furthermore, we demonstrate that Gle1 is the primary target of IP6 for both mRNA export and translation termination in vivo. In Saccharomyces cerevisiae cells, the IP6-binding mutants recapitulate all of the mRNA export and translation termination defects found in mutants depleted of IP6. We conclude that Gle1 specifically binds IP6 and that this interaction is required for the full potentiation of Dbp5 ATPase activity during both mRNA export and translation termination. PMID:20371601


    Eum, Sung Yong; Andras, Ibolya; Hennig, Bernhard; Toborek, Michal


    Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells. These effects were impeded by inhibitors of EGFR, JAKs, or Src activity. In addition, pharmacological inhibition of NADPH oxidase or disruption of lipid rafts by cholesterol depleting agents blocked PCB153-induced phosphorylation of JAK and Src kinases and upregulation of CAMs. In contrast, silencing of caveolin-1 by siRNA interference did not affect upregulation of ICAM-1 and VCAM-1 in brain endothelial cells stimulated by PCB153. Results of the present study indicate that lipid raft-dependent NADPH oxidase/JAK/EGFR signaling mechanisms regulate the expression of CAMs in brain endothelial cells and adhesion of leukocytes to endothelial monolayers. Due to its role in leukocyte infiltration, induction of CAMs may contribute to PCB-induced cerebrovascular disorders and neurotoxic effects in the CNS. PMID:19632255

  5. Implementation of a home-based interactive training system for fall prevention: requirements and challenges.

    Kiselev, Jörn; Haesner, Marten; Gövercin, Mehmet; Steinhagen-Thiessen, Elisabeth


    A critical need exists for rehabilitation for improving older adults' physical abilities, especially in the field of fall prevention. Although virtual reality and ambient-assistive technology-based approaches are promising, they are cost intensive and frequently face significant obstacles during the developmental process. The authors of the current article developed a motivational interactive training system for fall prevention and stroke rehabilitation and planned a pilot study to measure its usability, user acceptance, and effect on physical abilities and quality of life. Usability results from a field trial are presented. The purpose of the current article is to describe the technological and organizational problems during the development process and field trial. Recommendations for overcoming these barriers are described. These experiences should be taken into account when planning further field trials with assistive technology and older adults.

  6. Sarm1-mediated axon degeneration requires both SAM and TIR interactions.

    Gerdts, Josiah; Summers, Daniel W; Sasaki, Yo; DiAntonio, Aaron; Milbrandt, Jeffrey


    Axon degeneration is an evolutionarily conserved pathway that eliminates damaged or unneeded axons. Manipulation of this poorly understood pathway may allow treatment of a wide range of neurological disorders. In an RNAi-based screen performed in cultured mouse DRG neurons, we observed strong suppression of injury-induced axon degeneration upon knockdown of Sarm1 [SARM (sterile α-motif-containing and armadillo-motif containing protein)]. We find that a SARM-dependent degeneration program is engaged by disparate neuronal insults: SARM ablation blocks axon degeneration induced by axotomy or vincristine treatment, while SARM acts in parallel with a soma-derived caspase-dependent pathway following trophic withdrawal. SARM is a multidomain protein that associates with neuronal mitochondria. Deletion of the N-terminal mitochondrial localization sequence disrupts SARM mitochondrial localization in neurons but does not alter its ability to promote axon degeneration. In contrast, mutation of either the SAM (sterile α motif) or TIR (Toll-interleukin-1 receptor) domains abolishes the ability of SARM to promote axonal degeneration, while a SARM mutant containing only these domains elicits axon degeneration and nonapoptotic neuronal death even in the absence of injury. Protein-protein interaction studies demonstrate that the SAM domains are necessary and sufficient to mediate SARM-SARM binding. SARM mutants lacking a TIR domain bind full-length SARM and exhibit strong dominant-negative activity. These results indicate that SARM plays an integral role in the dismantling of injured axons and support a model in which SAM-mediated multimerization is necessary for TIR-dependent engagement of a downstream destruction pathway. These findings suggest that inhibitors of SAM and TIR interactions represent therapeutic candidates for blocking pathological axon loss and neuronal cell death.

  7. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity.

    Atsushi Otsuka

    Full Text Available The role of mast cells (MCs in contact hypersensitivity (CHS remains controversial. This is due in part to the use of the MC-deficient Kit (W/Wv mouse model, since Kit (W/Wv mice congenitally lack other types of cells as a result of a point mutation in c-kit. A recent study indicated that the intronic enhancer (IE for Il4 gene transcription is essential for MCs but not in other cell types. The aim of this study is to re-evaluate the roles of MCs in CHS using mice in which MCs can be conditionally and specifically depleted. Transgenic Mas-TRECK mice in which MCs are depleted conditionally were newly generated using cell-type specific gene regulation by IE. Using this mouse, CHS and FITC-induced cutaneous DC migration were analyzed. Chemotaxis assay and cytoplasmic Ca²⁺ imaging were performed by co-culture of bone marrow-derived MCs (BMMCs and bone marrow-derived dendritic cells (BMDCs. In Mas-TRECK mice, CHS was attenuated when MCs were depleted during the sensitization phase. In addition, both maturation and migration of skin DCs were abrogated by MC depletion. Consistently, BMMCs enhanced maturation and chemotaxis of BMDC in ICAM-1 and TNF-α dependent manners Furthermore, stimulated BMDCs increased intracellular Ca²⁺ of MC upon direct interaction and up-regulated membrane-bound TNF-α on BMMCs. These results suggest that MCs enhance DC functions by interacting with DCs in the skin to establish the sensitization phase of CHS.

  8. SHANK-associated RH domain interacting protein (SHARPIN) is required for optimal NLRP3 inflammasome activation

    Gurung, Prajwal; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi


    The NLRP3 inflammasome is a multimeric protein complex assembled in response to a wide array of pathogens and danger-associated molecular patterns. Despite the ability of NLRP3 to respond to diverse cues, the mechanisms controlling assembly of this complex are contested. Recently published studies show that HOIL-1, a member of the linear ubiquitin chain assembly complex (LUBAC), contributes to activation of the NLRP3 inflammasome. SHARPIN, along with HOIP and HOIL-1 assembles the LUBAC complex. Herein, we examined whether SHARPIN is required for the activation of NLRP3 inflammasome. Utilizing Sharpincpdm macrophages (deficient in SHARPIN expression), we demonstrate that SHARPIN is required for optimal activation of the NLRP3 inflammasome by both canonical and non-canonical stimuli. Furthermore, Sharpincpdm macrophages had dramatic defects in both NFκB and MAP kinase pathways, suggesting a role in transcriptional priming of the NLRP3 inflammasome. In conclusion, our study identified SHARPIN as a novel regulator of the NLRP3 inflammasome. PMID:25637014

  9. Bacillus subtilis GlnR contains an autoinhibitory C-terminal domain required for the interaction with glutamine synthetase.

    Wray, Lewis V; Fisher, Susan H


    The Bacillus subtilis GlnR transcription factor regulates gene expression in response to changes in nitrogen availability. Glutamine synthetase transmits the nitrogen regulatory signal to GlnR. The DNA-binding activity of GlnR is activated by a transient protein-protein interaction with feedback-inhibited glutamine synthetase that stabilizes GlnR-DNA complexes. This signal transduction mechanism was analysed by creating mutant GlnR proteins with partial or complete truncations of their C-terminal domains. The truncated GlnR proteins were found to constitutively repress gene expression in vivo. This constitutive repression did not require glutamine synthetase. Purified mutant GlnR proteins bound DNA in vitro more tightly than wild-type GlnR protein and this binding was not activated by feedback-inhibited glutamine synthetase. While full-length GlnR is monomeric, the truncated GlnR proteins contained significant levels of dimers. These results indicate that the C-terminal region of GlnR acts as an autoinhibitory domain that prevents GlnR dimerization and thus impedes DNA binding. The GlnR C-terminal domain is also required for the interaction between GlnR and feedback-inhibited glutamine synthetase. Compared with the full-length GlnR protein, the truncated GlnR proteins were defective in their interaction with feedback-inhibited glutamine synthetase in cross-linking experiments.

  10. Hepatitis C virus and host cell lipids: an intimate connection.

    Alvisi, Gualtiero; Madan, Vanesa; Bartenschlager, Ralf


    Hepatitis C virus (HCV) is a major human pathogen, persistently infecting more than 170 million individuals worldwide. The recent establishment of fully permissive culture systems allowed unraveling the close link between host cell lipids and HCV, at each step of the viral replication cycle. HCV entry is triggered by the timely coordinated interaction of virus particles with cell surface receptors, including the low-density lipoprotein receptor. Viral RNA replication strictly depends on fatty acids and cholesterol biosynthesis. This process occurs on modified intracellular membranes, forming a membranous web. Their biogenesis is induced by the viral nonstructural proteins (NS) 4B and NS5A and requires the activity of cellular lipid kinases belonging to the phosphatidylinositol-4-kinase III family. A hallmark of HCV-induced membranes is thus the presence of phosphatidylinositol-4-phosphate (PI4P), which is synthesized by these kinases. Intriguingly, certain recently identified HCV dependency factors selectively bind to PI derivatives, suggesting a crucial role for PIPs in viral RNA replication and assembly. The latter occurs on the surface of lipid droplets and is tightly connected to the very low density lipoprotein pathway leading to the formation of unique lipoviro particles. Thus, HCV exploits lipid metabolism in many ways and may therefore serve as a model system to gain insights into membrane biogenesis, lipid droplet formation and lipid trafficking.

  11. An extracellular siderophore is required to maintain the mutualistic interaction of Epichloe festucae with Lolium perenne.

    Linda J Johnson

    Full Text Available We have identified from the mutualistic grass endophyte Epichloë festucae a non-ribosomal peptide synthetase gene (sidN encoding a siderophore synthetase. The enzymatic product of SidN is shown to be a novel extracellular siderophore designated as epichloënin A, related to ferrirubin from the ferrichrome family. Targeted gene disruption of sidN eliminated biosynthesis of epichloënin A in vitro and in planta. During iron-depleted axenic growth, ΔsidN mutants accumulated the pathway intermediate N(5-trans-anhydromevalonyl-N(5-hydroxyornithine (trans-AMHO, displayed sensitivity to oxidative stress and showed deficiencies in both polarized hyphal growth and sporulation. Infection of Lolium perenne (perennial ryegrass with ΔsidN mutants resulted in perturbations of the endophyte-grass symbioses. Deviations from the characteristic tightly regulated synchronous growth of the fungus with its plant partner were observed and infected plants were stunted. Analysis of these plants by light and transmission electron microscopy revealed abnormalities in the distribution and localization of ΔsidN mutant hyphae as well as deformities in hyphal ultrastructure. We hypothesize that lack of epichloënin A alters iron homeostasis of the symbiotum, changing it from mutually beneficial to antagonistic. Iron itself or epichloënin A may serve as an important molecular/cellular signal for controlling fungal growth and hence the symbiotic interaction.

  12. Drug/Nutrients Interaction in Neoplastic Patients Requiring Nutritional Support. Practical Advice with Special Focusing on Pancreatic Cancer

    Ilaria Uomo


    Full Text Available Malnutrition and cachexia are frequent complaints in neoplastic disease [1, 2]. Nutritional support and pain treatment still remain the main treatment option for the majority of patients with cancer, particularly for those affected by pancreatic cancer who very often present an advanced stage of the disease at moment of first diagnosis [3, 4, 5]. Therefore, in their clinical practice, physicians are faced with the need for parenteral or enteral nutrition and with the contemporary requirement of several drugs capable of interfering with the components of the nutritional admixture. Different drawbacks may arise from these drug/nutrient interactions, nullifying the pharmacological effect and/or the nutritional value [6]. The aim of this review is to summarize possible drug/nutrient interaction in neoplastic patients, particularly in those with pancreatic cancer, during external food supplementation.

  13. Pro-recombination role of Srs2 protein requires SUMO (small ubiquitin-like modifier) but is independent of PCNA (proliferating cell nuclear antigen) interaction

    Kolesar, Peter; Altmannova, Veronika; Pinela da Silva, Sonia Cristina;


    -interacting motif (SIM) of Srs2 is important for the interaction with several recombination factors. Lack of SIM, but not proliferating cell nuclear antigen (PCNA)-interacting motif (PIM), leads to increased cell death under circumstances requiring homologous recombination for DNA repair. Simultaneous mutation...

  14. Yeast lipid metabolism at a glance.

    Klug, Lisa; Daum, Günther


    During the last decades, lipids have gained much attention due to their involvement in health and disease. Lipids are required for the formation of membranes and contribute to many different processes such as cell signaling, energy supply, and cell death. Various organelles such as the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets are involved in lipid metabolism. The yeast Saccharomyces cerevisiae has become a reliable model organism to study biochemistry, molecular biology, and cell biology of lipids. The availability of mutants bearing defects in lipid metabolic pathways and the ease of manipulation by culture conditions facilitated these investigations. Here, we summarize the current knowledge about lipid metabolism in yeast. We grouped this large topic into three sections dealing with (1) fatty acids; (2) membrane lipids; and (3) storage lipids. Fatty acids serve as building blocks for the synthesis of membrane lipids (phospholipids, sphingolipids) and storage lipids (triacylglycerols, steryl esters). Phospholipids, sterols, and sphingolipids are essential components of cellular membranes. Recent investigations addressing lipid synthesis, degradation, and storage as well as regulatory aspects are presented. The role of enzymes governing important steps of the different lipid metabolic pathways is described. Finally, the link between lipid metabolic and dynamic processes is discussed.

  15. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Christopher Benning


    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  16. Huntingtin interacting proteins 14 and 14-like are required for chorioallantoic fusion during early placental development.

    Sanders, Shaun S; Hou, Juan; Sutton, Liza M; Garside, Victoria C; Mui, Katherine K N; Singaraja, Roshni R; Hayden, Michael R; Hoodless, Pamela A


    Huntington disease (HD) is an adult-onset neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms that is caused by a CAG expansion in the HTT gene. Palmitoylation is the addition of saturated fatty acids to proteins by DHHC palmitoylacyl transferases. HTT is palmitoylated by huntingtin interacting proteins 14 and 14-like (HIP14 and HIP14L or ZDHHC17 and 13 respectively). Mutant HTT is less palmitoylated and this reduction of palmitoylation accelerates its aggregation and increases cellular toxicity. Mouse models deficient in either Hip14 (Hip14(-/-)) or Hip14l (Hip14l(-/-)) develop HD-like phenotypes. The biological function of HTT palmitoylation and the role that loss of HTT palmitoylation plays in the pathogenesis of HD are unknown. To address these questions mice deficient for both genes were created. Loss of Hip14 and Hip14l leads to early embryonic lethality at day embryonic day 10-11 due to failed chorioallantoic fusion. The chorion is thickened and disorganized and the allantois does not fuse correctly with the chorion and forms a balloon-like shape compared to Hip14l(-/-); Hip14(+/+) littermate control embryos. Interestingly, the Hip14(-/-) ; Hip14(-/-) embryos share many features with the Htt(-/-) embryos, including folding of the yolk sac, a bulb shaped allantois, and a thickened and disorganized chorion. This may be due to a decrease in HTT palmitoylation. In Hip14(-/-); Hip14l(-/-) mouse embryonic fibroblasts show a 25% decrease in HTT palmitoylation compared to wild type cells. This is the first description of a double PAT deficient mouse model where loss of a PAT or multiple PATs results in embryonic lethality in mammals. These results reinforce the physiological importance of palmitoylation during embryogenesis.

  17. Nuclear importation of Mariner transposases among eukaryotes: motif requirements and homo-protein interactions.

    Marie-Véronique Demattei

    Full Text Available Mariner-like elements (MLEs are widespread transposable elements in animal genomes. They have been divided into at least five sub-families with differing host ranges. We investigated whether the ability of transposases encoded by Mos1, Himar1 and Mcmar1 to be actively imported into nuclei varies between host belonging to different eukaryotic taxa. Our findings demonstrate that nuclear importation could restrict the host range of some MLEs in certain eukaryotic lineages, depending on their expression level. We then focused on the nuclear localization signal (NLS in these proteins, and showed that the first 175 N-terminal residues in the three transposases were required for nuclear importation. We found that two components are involved in the nuclear importation of the Mos1 transposase: an SV40 NLS-like motif (position: aa 168 to 174, and a dimerization sub-domain located within the first 80 residues. Sequence analyses revealed that the dimerization moiety is conserved among MLE transposases, but the Himar1 and Mcmar1 transposases do not contain any conserved NLS motif. This suggests that other NLS-like motifs must intervene in these proteins. Finally, we showed that the over-expression of the Mos1 transposase prevents its nuclear importation in HeLa cells, due to the assembly of transposase aggregates in the cytoplasm.

  18. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids ▿

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; James F Conway; Homa, Fred L.


    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated reco...

  19. Multiple deletions in the polyketide synthase gene repertoire of Mycobacterium tuberculosis reveal functional overlap of cell envelope lipids in host-pathogen interactions.

    Passemar, Charlotte; Arbués, Ainhoa; Malaga, Wladimir; Mercier, Ingrid; Moreau, Flavie; Lepourry, Laurence; Neyrolles, Olivier; Guilhot, Christophe; Astarie-Dequeker, Catherine


    Several specific lipids of the cell envelope are implicated in the pathogenesis of M. tuberculosis (Mtb), including phthiocerol dimycocerosates (DIM) that have clearly been identified as virulence factors. Others, such as trehalose-derived lipids, sulfolipids (SL), diacyltrehaloses (DAT) and polyacyltrehaloses (PAT), are believed to be essential for Mtb virulence, but the details of their role remain unclear. We therefore investigated the respective contribution of DIM, DAT/PAT and SL to tuberculosis by studying a collection of mutants, each with impaired production of one or several lipids. We confirmed that among those with a single lipid deficiency, only strains lacking DIM were affected in their replication in lungs and spleen of mice in comparison to the WT Mtb strain. We found also that the additional loss of DAT/PAT, and to a lesser extent of SL, increased the attenuated phenotype of the DIM-less mutant. Importantly, the loss of DAT/PAT and SL in a DIM-less background also affected Mtb growth in human monocyte-derived macrophages (hMDMs). Fluorescence microscopy revealed that mutants lacking DIM or DAT/PAT were localized in an acid compartment and that bafilomycin A1, an inhibitor of phagosome acidification, rescued the growth defect of these mutants. These findings provide evidence for DIM being dominant virulence factors that mask the functions of lipids of other families, notably DAT/PAT and to a lesser extent of SL, which we showed for the first time to contribute to Mtb virulence.

  20. Structural requirements for the interaction of 91 hydroxylated polychlorinated biphenyls with estrogen and thyroid hormone receptors.

    Arulmozhiraja, Sundaram; Shiraishi, Fujio; Okumura, Tameo; Iida, Mitsuru; Takigami, Hidetaka; Edmonds, John S; Morita, Masatoshi


    Estrogenic and thyroid activities of 91 monohydroxylated PCBs were measured with two-hybrid assays using yeast cells containing the human estrogen receptor ERalpha or human thyroid receptor TRalpha. Estrogenic activity of 30 of the 91 compounds, including all compounds active in the yeast two-hybrid assay, were also measured by a reporter gene assay employing Chinese hamster ovary cells. The mammalian cell assay was more sensitive than the yeast assay but the rank order of estrogenicities of the compounds were in broad agreement for the two assays. Results for estrogenicity and thyroid activity were analyzed by inspection and those for estrogenicity by a theoretical treatment. Inspection indicated para-hydroxyl was more likely to be estrogenically active than meta-, which was more likely to be active than ortho-; one ortho-chlorine was important for activity but additional ortho-chlorines did not increase activity; and 2 lateral chlorines or 2,4,6-chloro- substitution of the non-phenol ring were favorable. In contrast, thyroid activity appeared not to depend strongly on the position of the hydroxyl group although ortho-hydroxyls occurred in the most active compounds. Activity was usually associated with at least one ortho-chlorine, with 2 chlorines in the phenolic ring and, importantly, two chlorines in the non-phenolic ring, and with 1 or 2 chlorines ortho to the hydroxyl group. Examination of the torsion angle between the rings, in the theoretical examination of estrogenicity, suggested that perpendicular orientation (i.e., rigidity) was not essential for activity. Intramolecular hydrogen bonding of the phenolic groups to adjacent chlorines or to the pi-electron cloud of the non-phenol ring possibly decreased activity--the hydroxyl should be free of intramolecular interactions for maximum activity. It was difficult to predict the estrogenic activity of a congener from its obtained potential energy curve (PEC). In general, estrogenically active congeners had large

  1. Lipid modulation of early G protein-coupled receptor signalling events.

    Dijkman, Patricia M; Watts, Anthony


    Upon binding of extracellular ligands, G protein coupled-receptors (GPCRs) initiate signalling cascades by activating heterotrimeric G proteins through direct interactions with the α subunit. While the lipid dependence of ligand binding has previously been studied for one class A GPCR, the neurotensin receptor 1 (NTS1), the role the lipid environment plays in the interaction of activated GPCRs with G proteins is less well understood. It is therefore of interest to understand the balance of lipid interactions required to support both ligand binding and G protein activation, not least since some receptors have multiple locations, and may experience different membrane environments when signalling in the plasma membrane or during endocytosis. Here, using the sensitive biophysical technique of microscale thermophoresis in conjunction with nanodisc lipid bilayer reconstitution, we show that in more native lipid environments rich in phosphatidyl ethanolamine (PE), the Gαi1 subunit has a ~4-fold higher affinity for NTS1 than in the absence of native lipids. The G protein-receptor affinity was further shown to be dependent on the ligand-binding state of the receptor, with potential indication of biased signalling for the known antagonist SR142948A. Gαi1 also showed preferential interaction with empty nanodiscs of native lipid mixtures rich in PE by around 2- to 4-fold over phosphatidyl choline (PC)/phosphatidyl glycerol (PG) lipid mixtures. The lipid environment may therefore play a role in creating favourable micro-environments for efficient GPCR signalling. Our approach combining nanodiscs with microscale thermophoresis will be useful in future studies to elucidate further the complexity of the GPCR interactome.

  2. A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions.

    Kikuchi, J; Asakura, T; Loach, P A; Parkes-Loach, P S; Shimada, K; Hunter, C N; Conroy, M J; Williamson, M P


    The first study by nmr of the integral membrane protein, the bacterial light-harvesting (LH) antenna protein LH1 beta, is reported. The photosynthetic apparatus of purple bacteria contains two different kinds of antenna complexes (LH1 and LH2), which consist of two small integral membrane proteins alpha and beta, each of approximately 6 kDa, and bacteriochlorophyll and carotenoid pigments. We have purified the antenna polypeptide LH1 beta from Rhodobacter sphaeroides, and have recorded CD spectra and a series of two-dimensional nmr spectra. A comparison of CD spectra of LH1 beta observed in organic solvents and detergent micelles shows that the helical character of the peptide does not change appreciably between the two milieus. A significantly high-field shifted methyl signal was observed both in organic solvents and in detergent micelles, implying that a similar three-dimensional structure is present in each case. However, the 1H-nmr signals observed in organic solvents had a narrower line width and better resolution, and it is shown that in this case organic solvents provide a better medium for nmr studies than detergent micelles. A sequential assignment has been carried out on the C-terminal transmembrane region, which is the region in which the pigment is bound. The region is shown to have a helical structure by the chemical shift values of the alpha-CH protons and the presence of nuclear Overhauser effects characteristic of helices. An analysis of the amide proton chemical shifts of the residues surrounding the histidine chlorophyll ligand suggests that the local structure is well ordered even in the absence of protein-lipid and protein-pigment interactions. Its structure was determined from 348 nmr-derived constraints by using distance geometry calculations. The polypeptide contains an alpha-helix extending from Leu19 (position of cytoplasmic surface) to Trp44 (position of periplasmic surface). The helix is bent, as expected from the amide proton chemical

  3. Morphological and Stress Vulnerability Indices for Human Coronary Plaques and Their Correlations with Cap Thickness and Lipid Percent: An IVUS-Based Fluid-Structure Interaction Multi-patient Study.

    Liang Wang


    Full Text Available Plaque vulnerability, defined as the likelihood that a plaque would rupture, is difficult to quantify due to lack of in vivo plaque rupture data. Morphological and stress-based plaque vulnerability indices were introduced as alternatives to obtain quantitative vulnerability assessment. Correlations between these indices and key plaque features were investigated. In vivo intravascular ultrasound (IVUS data were acquired from 14 patients and IVUS-based 3D fluid-structure interaction (FSI coronary plaque models with cyclic bending were constructed to obtain plaque wall stress/strain and flow shear stress for analysis. For the 617 slices from the 14 patients, lipid percentage, min cap thickness, critical plaque wall stress (CPWS, strain (CPWSn and flow shear stress (CFSS were recorded, and cap index, lipid index and morphological index were assigned to each slice using methods consistent with American Heart Association (AHA plaque classification schemes. A stress index was introduced based on CPWS. Linear Mixed-Effects (LME models were used to analyze the correlations between the mechanical and morphological indices and key morphological factors associated with plaque rupture. Our results indicated that for all 617 slices, CPWS correlated with min cap thickness, cap index, morphological index with r = -0.6414, 0.7852, and 0.7411 respectively (p<0.0001. The correlation between CPWS and lipid percentage, lipid index were weaker (r = 0.2445, r = 0.2338, p<0.0001. Stress index correlated with cap index, lipid index, morphological index positively with r = 0.8185, 0.3067, and 0.7715, respectively, all with p<0.0001. For all 617 slices, the stress index has 66.77% agreement with morphological index. Morphological and stress indices may serve as quantitative plaque vulnerability assessment supported by their strong correlations with morphological features associated with plaque rupture. Differences between the two indices may lead to better plaque

  4. How To Tackle the Issues in Free Energy Simulations of Long Amphiphiles Interacting with Lipid Membranes: Convergence and Local Membrane Deformations

    Filipe, H. A. L.; Moreno, M. J.; Rog, T.


    One of the great challenges in membrane biophysics is to find a means to foster the transport of drugs across complex membrane structures. In this spirit, we elucidate methodological challenges associated with free energy computations of complex chainlike molecules across lipid membranes. As an a......One of the great challenges in membrane biophysics is to find a means to foster the transport of drugs across complex membrane structures. In this spirit, we elucidate methodological challenges associated with free energy computations of complex chainlike molecules across lipid membranes...... profiles. The membrane-water interface is the region where the greatest care is warranted....

  5. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu


    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins.

  6. The iA{beta}5p {beta}-breaker peptide regulates the A{beta}(25-35) interaction with lipid bilayers through a cholesterol-mediated mechanism

    Vitiello, Giuseppe [Department of Chemistry, University of Naples ' Federico II' , Naples (Italy); CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence (Italy); Grimaldi, Manuela; D' Ursi, Anna Maria [Department of Pharmaceutical Science, University of Salerno, Fisciano (Italy); D' Errico, Gerardino, E-mail: [Department of Chemistry, University of Naples ' Federico II' , Naples (Italy); CSGI (Consorzio per lo Sviluppo dei Sistemi a Grande Interfase), Florence (Italy)


    Highlights: Black-Right-Pointing-Pointer iA{beta}5p shows a significant tendency to deeply penetrates the hydrophobic core of lipid membrane. Black-Right-Pointing-Pointer A{beta}(25-35) locates in the external region of the membrane causing a re-positioning of CHOL. Black-Right-Pointing-Pointer iA{beta}5p withholds cholesterol in the inner hydrophobic core of the lipid membrane. Black-Right-Pointing-Pointer iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane. -- Abstract: Alzheimer's disease is characterized by the deposition of aggregates of the {beta}-amyloid peptide (A{beta}) in the brain. A potential therapeutic strategy for Alzheimer's disease is the use of synthetic {beta}-sheet breaker peptides, which are capable of binding A{beta} but unable to become part of a {beta}-sheet structure, thus inhibiting the peptide aggregation. Many studies suggest that membranes play a key role in the A{beta} aggregation; consequently, it is strategic to investigate the interplay between {beta}-sheet breaker peptides and A{beta} in the presence of lipid bilayers. In this work, we focused on the effect of the {beta}-sheet breaker peptide acetyl-LPFFD-amide, iA{beta}5p, on the interaction of the A{beta}(25-35) fragment with lipid membranes, studied by Electron Spin Resonance spectroscopy, using spin-labeled membrane components (either phospholipids or cholesterol). The ESR results show that iA{beta}5p influences the A{beta}(25-35) interaction with the bilayer through a cholesterol-mediated mechanism: iA{beta}5p withholds cholesterol in the inner hydrophobic core of the bilayer, making the interfacial region more fluid and capable to accommodate A{beta}(25-35). As a consequence, iA{beta}5p prevents the A{beta}(25-35) release from the lipid membrane, which is the first step of the {beta}-amyloid aggregation process.

  7. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine.

    Praslickova, Dana; Torchia, Enrique C; Sugiyama, Michael G; Magrane, Elijah J; Zwicker, Brittnee L; Kolodzieyski, Lev; Agellon, Luis B


    The ileal lipid binding protein (ilbp) is a cytoplasmic protein that binds bile acids with high affinity. However evidence demonstrating the role of this protein in bile acid transport and homeostasis is missing. We created a mouse strain lacking ilbp (Fabp6(-/-) mice) and assessed the impact of ilbp deficiency on bile acid homeostasis and transport in vivo. Elimination of ilbp increased fecal bile acid excretion (54.2%, Pexcreted by 24 h after oral administration was 102% (Psmall and large intestines was increased by 22% (P<0.02) and decreased by 62.7% (P<0.01), respectively, in male Fabp6(-/-) mice relative wild-type mice, whereas no changes were seen in female Fabp6(-/-) mice. Mucosal to serosal bile acid transport using everted distal gut sacs was decreased by 74% (P<0.03) in both sexes of Fabp6(-/-) mice as compared to wild-type mice. The results demonstrate that ilbp is involved in the apical to basolateral transport of bile acids in ileal enterocytes, and is vital for the maintenance of bile acid homeostasis in the enterohepatic circulation (EHC) in mice.

  8. An Amphiphysin-Like Domain in Fus2p Is Required for Rvs161p Interaction and Cortical Localization

    Richard A. Stein


    Full Text Available Cell–cell fusion fulfils essential roles in fertilization, development and tissue repair. In the budding yeast, Saccharomyces cerevisiae, fusion between two haploid cells of opposite mating type generates the diploid zygote. Fus2p is a pheromone-induced protein that regulates cell wall removal during mating. Fus2p shuttles from the nucleus to localize at the shmoo tip, bound to Rvs161p, an amphiphysin. However, Rvs161p independently binds a second amphiphysin, Rvs167p, playing an essential role in endocytosis. To understand the basis of the Fus2p–Rvs161p interaction, we analyzed Fus2p structural domains. A previously described N-terminal domain (NTD is necessary and sufficient to regulate nuclear/cytoplasmic trafficking of Fus2p. The Dbl homology domain (DBH binds GTP-bound Cdc42p; binding is required for cell fusion, but not localization. We identified an approximately 200 amino acid region of Fus2p that is both necessary and sufficient for Rvs161p binding. The Rvs161p binding domain (RBD contains three predicted alpha-helices; structural modeling suggests that the RBD adopts an amphiphysin-like structure. The RBD contains a 13-amino-acid region, conserved with Rvs161p and other amphiphysins, which is essential for binding. Mutations in the RBD, predicted to affect membrane binding, abolish cell fusion without affecting Rvs161p binding. We propose that Fus2p/Rvs161p form a novel heterodimeric amphiphysin required for cell fusion. Rvs161p binding is required but not sufficient for Fus2p localization. Mutations in the C-terminal domain (CTD of Fus2p block localization, but not Rvs161p binding, causing a significant defect in cell fusion. We conclude that the Fus2p CTD mediates an additional, Rvs161p-independent interaction at the shmoo tip.

  9. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1.

    Genheden, Maja; Kenney, Justin W; Johnston, Harvey E; Manousopoulou, Antigoni; Garbis, Spiros D; Proud, Christopher G


    Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m(7)GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons.

  10. The ileal lipid binding protein is required for efficient absorption and transport of bile acids in the distal portion of the murine small intestine.

    Dana Praslickova

    Full Text Available The ileal lipid binding protein (ilbp is a cytoplasmic protein that binds bile acids with high affinity. However evidence demonstrating the role of this protein in bile acid transport and homeostasis is missing. We created a mouse strain lacking ilbp (Fabp6(-/- mice and assessed the impact of ilbp deficiency on bile acid homeostasis and transport in vivo. Elimination of ilbp increased fecal bile acid excretion (54.2%, P<0.05 in female but not male Fabp6(-/- mice. The activity of cholesterol 7α-hydroxylase (cyp7a1, the rate-controlling enzyme of the classical bile acid biosynthetic pathway, was significantly increased in female (63.5%, P<0.05 but not in male Fabp6(-/- mice. The amount of [(3H]taurocholic acid (TCA excreted by 24 h after oral administration was 102% (P<0.025 higher for female Fabp6(-/- mice whereas it was 57.3% (P<0.01 lower for male Fabp6(-/- mice, compared to wild-type mice. The retained fraction of the [(3H]TCA localized in the small and large intestines was increased by 22% (P<0.02 and decreased by 62.7% (P<0.01, respectively, in male Fabp6(-/- mice relative wild-type mice, whereas no changes were seen in female Fabp6(-/- mice. Mucosal to serosal bile acid transport using everted distal gut sacs was decreased by 74% (P<0.03 in both sexes of Fabp6(-/- mice as compared to wild-type mice. The results demonstrate that ilbp is involved in the apical to basolateral transport of bile acids in ileal enterocytes, and is vital for the maintenance of bile acid homeostasis in the enterohepatic circulation (EHC in mice.

  11. Sapovirus translation requires an interaction between VPg and the cap binding protein eIF4E.

    Hosmillo, Myra; Chaudhry, Yasmin; Kim, Deok-Song; Goodfellow, Ian; Cho, Kyoung-Oh


    Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and

  12. Nuclear localization of the transcriptional regulator MIER1α requires interaction with HDAC1/2 in breast cancer cells.

    Shengnan Li

    Full Text Available MIER1α is a transcriptional regulator that functions in gene repression through its ability to interact with various chromatin modifiers and transcription factors. We have also shown that MIER1α interacts with ERα and inhibits estrogen-stimulated growth. While MIER1α is localized in the nucleus of MCF7 cells, previous studies have shown that it does not contain a nuclear localization signal. In this report, we investigate the mechanism involved in transporting MIER1α into the nucleus. We explored the possibility that MIER1α is transported into the nucleus through a 'piggyback' mechanism. One obvious choice is via interaction with ERα, however we demonstrate that nuclear targeting of MIER1α does not require ERα. Knockdown of ERα reduced protein expression to 22% of control, but did not alter the percentage of cells with nuclear MIER1α (98% nuclear with scrambled shRNA vs. 95% with ERα shRNA. Further evidence was obtained using two stable transfectants derived from the ER-negative MDA231 cell line: MC2 (ERα+ and VC5 (ERα-. Confocal analysis showed no difference in MIER1α localization (86% nuclear in MC2 vs. 89% in VC5. These data demonstrate that ERα is not involved in nuclear localization of MIER1α. To identify the critical MIER1α sequence, we performed a deletion analysis and determined that the ELM2 domain was necessary and sufficient for nuclear localization. This domain binds HDAC1 & 2, therefore we investigated their role. Confocal analysis of an MIER1α containing an ELM2 point mutation previously shown to abolish HDAC binding revealed that this mutation results in almost complete loss of nuclear targeting: 10% nuclear vs. 97% with WT-MIER1α. Moreover, double knockdown of HDAC1 and 2 caused a reduction in percent nuclear from 86% to 44%. The results of this study demonstrate that nuclear targeting of MIER1α requires an intact ELM2 domain and is dependent on interaction with HDAC1/2.

  13. Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA.

    Liu, Kun; Zhou, Shengli; Kim, Ji-Young; Tillison, Kristin; Majors, David; Rearick, David; Lee, Jun Ho; Fernandez-Boyanapalli, Ruby F; Barricklow, Katherine; Houston, M Sue; Smas, Cynthia M


    The adipocyte-specific protein FSP27, also known as CIDEC, is one of three cell death-inducing DFF45-like effector (CIDE) proteins. The first known function for CIDEs was promotion of apoptosis upon ectopic expression in mammalian cells. Recent studies in endogenous settings demonstrated key roles for CIDEs in energy metabolism. FSP27 is a lipid droplet-associated protein whose heterologous expression enhances formation of enlarged lipid droplets and is required for unilocular lipid droplets typical of white adipocytes in vivo. Here, we delineate relationships between apoptotic function and lipid droplet localization of FSP27. We demonstrate that ectopic expression of FSP27 induces enlarged lipid droplets in multiple human cell lines, which is indicative that its mechanism involves ubiquitously present, rather than adipocyte-specific, cellular machinery. Furthermore, promotion of lipid droplet formation in HeLa cells via culture in exogenous oleic acid offsets FSP27-mediated apoptosis. Using transient cotransfections and analysis of lipid droplets in HeLa cells stably expressing FSP27, we show that FSP27 does not protect lipid droplets from action of ATGL lipase. Domain mapping with eGFP-FSP27 deletion constructs indicates that lipid droplet localization of FSP27 requires amino acids 174-192 of its CIDE C domain. The apoptotic mechanism of FSP27, which we show involves caspase-9 and mitochondrial cytochrome c, also requires this 19-amino acid region. Interaction assays determine the FSP27 CIDE C domain complexes with CIDEA, and Western blot reveals that FSP27 protein levels are reduced by coexpression of CIDEA. Overall, our findings demonstrate the function of the FSP27 CIDE C domain and/or regions thereof for apoptosis, lipid droplet localization, and CIDEA interaction.

  14. Dynamic regulatory interactions of Polycomb group genes: MEDEA autoregulation is required for imprinted gene expression in Arabidopsis.

    Baroux, Célia; Gagliardini, Valeria; Page, Damian R; Grossniklaus, Ueli


    The imprinted Arabidopsis Polycomb group (PcG) gene MEDEA (MEA), which is homologous to Enhancer of Zeste [E(Z)], is maternally required for normal seed development. Here we show that, unlike known mammalian imprinted genes, MEA regulates its own imprinted expression: It down-regulates the maternal allele around fertilization and maintains the paternal allele silent later during seed development. Autorepression of the maternal MEA allele is direct and independent of the MEA-FIE (FERTILIZATION-INDEPENDENT ENDOSPERM) PcG complex, which is similar to the E(Z)-ESC (Extra sex combs) complex of animals, suggesting a novel mechanism. A complex network of cross-regulatory interactions among the other known members of the MEA-FIE PcG complex implies distinct functions that are dynamically regulated during reproduction.

  15. WNK3-SPAK interaction is required for the modulation of NCC and other members of the SLC12 family.

    Pacheco-Alvarez, Diana; Vázquez, Norma; Castañeda-Bueno, María; de-Los-Heros, Paola; Cortes-González, César; Moreno, Erika; Meade, Patricia; Bobadilla, Norma A; Gamba, Gerardo


    The serine/threonine with no lysine kinase 3 (WNK3) modulates the activity of the electroneutral cation-coupled chloride cotransporters (CCC) to promote Cl(-) influx and prevent Cl(-) efflux, thus fitting the profile for a putative "Cl(-)-sensing kinase". The Ste20-type kinases, SPAK/OSR1, become phosphorylated in response to reduction in intracellular chloride concentration and regulate the activity of NKCC1. Several studies have now shown that WNKs function upstream of SPAK/OSR1. This study was designed to analyze the role of WNK3-SPAK interaction in the regulation of CCCs with particular emphasis on NCC. In this study we used the functional expression system of Xenopus laevis oocytes to show that different SPAK binding sites in WNK3 ((241, 872, 1336)RFxV) are required for the kinase to have effects on CCCs. WNK3-F1337A no longer activated NKCC2, but the effects on NCC, NKCC1, and KCC4 were preserved. In contrast, the effects of WNK3 on these cotransporters were prevented in WNK3-F242A. The elimination of F873 had no consequence on WNK3 effects. WNK3 promoted NCC phosphorylation at threonine 58, even in the absence of the unique SPAK binding site of NCC, but this effect was abolished in the mutant WNK3-F242A. Thus, our data support the hypothesis that the effects of WNK3 upon NCC and other CCCs require the interaction and activation of the SPAK kinase. The effect is dependent on one of the three binding sites for SPAK that are present in WNK3, but not on the SPAK binding sites on the CCCs, which suggests that WNK3 is capable of binding both SPAK and CCCs to promote their phosphorylation. Copyright © 2012 S. Karger AG, Basel.

  16. Lipid dynamics at dendritic spines.

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores


    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  17. SDCCAG8 Interacts with RAB Effector Proteins RABEP2 and ERC1 and Is Required for Hedgehog Signaling.

    Rannar Airik

    Full Text Available Recessive mutations in the SDCCAG8 gene cause a nephronophthisis-related ciliopathy with Bardet-Biedl syndrome-like features in humans. Our previous characterization of the orthologous Sdccag8gt/gt mouse model recapitulated the retinal-renal disease phenotypes and identified impaired DNA damage response signaling as an underlying disease mechanism in the kidney. However, several other phenotypic and mechanistic features of Sdccag8gt/gt mice remained unexplored. Here we show that Sdccag8gt/gt mice exhibit developmental and structural abnormalities of the skeleton and limbs, suggesting impaired Hedgehog (Hh signaling. Indeed, cell culture studies demonstrate the requirement of SDCCAG8 for ciliogenesis and Hh signaling. Using an affinity proteomics approach, we demonstrate that SDCCAG8 interacts with proteins of the centriolar satellites (OFD1, AZI1, of the endosomal sorting complex (RABEP2, ERC1, and with non-muscle myosin motor proteins (MYH9, MYH10, MYH14 at the centrosome. Furthermore, we show that RABEP2 localization at the centrosome is regulated by SDCCAG8. siRNA mediated RABEP2 knockdown in hTERT-RPE1 cells leads to defective ciliogenesis, indicating a critical role for RABEP2 in this process. Together, this study identifies several centrosome-associated proteins as novel SDCCAG8 interaction partners, and provides new insights into the function of SDCCAG8 at this structure.

  18. The ribosomal biogenesis protein Utp21 interacts with Hsp90 and has differing requirements for Hsp90-associated proteins.

    Victoria R Tenge

    Full Text Available The molecular chaperone Hsp90 buffers the effects of genetic variation by assisting the stabilization and folding of multiple clients critical for cell signaling and growth. We identified an interaction of Hsp90 and associated proteins with the essential nucleolar protein, Utp21, part of a large complex required for biogenesis of the small ribosomal subunit. The utp21-S602F mutation, which causes minor defects in otherwise wild-type yeast, exhibited severe or lethal growth defects when combined with mutations in Hsp90 or co-chaperones. WT Utp21 and Utp21-S602F exhibited similar interactions with Hsp90, and steady-state levels of WT Utp21 were reduced upon Hsp90 mutation or inhibition. Mutations in the human homolog of UTP21, WDR36, have been associated with adult-onset primary open-angle glaucoma, a leading cause of blindness worldwide. Three different mutant forms of Utp21 analogous to glaucoma-associated WDR36 mutations exhibit reduced levels in yeast cells expressing mutations in Hsp90 or associated chaperones, suggesting that Hsp90 and co-chaperones buffer the effects of those mutations.

  19. The N-Terminal of Aquareovirus NS80 Is Required for Interacting with Viral Proteins and Viral Replication.

    Jie Zhang

    Full Text Available Reovirus replication and assembly occurs within viral inclusion bodies that formed in specific intracellular compartments of cytoplasm in infected cells. Previous study indicated that aquareovirus NS80 is able to form inclusion bodies, and also can retain viral proteins within its inclusions. To better understand how NS80 performed in viral replication and assembly, the functional regions of NS80 associated with other viral proteins in aquareovirus replication were investigated in this study. Deletion mutational analysis and rotavirus NSP5-based protein association platform were used to detect association regions. Immunofluorescence images indicated that different N-terminal regions of NS80 could associate with viral proteins VP1, VP4, VP6 and NS38. Further co-immunoprecipitation analysis confirmed the interaction between VP1, VP4, VP6 or NS38 with different regions covering the N-terminal amino acid (aa, 1-471 of NS80, respectively. Moreover, removal of NS80 N-terminal sequences required for interaction with proteins VP1, VP4, VP6 or NS38 not only prevented the capacity of NS80 to support viral replication in NS80 shRNA-based replication complementation assays, but also inhibited the expression of aquareovirus proteins, suggesting that N-terminal regions of NS80 are necessary for viral replication. These results provided a foundational basis for further understanding the role of NS80 in viral replication and assembly during aquareovirus infection.

  20. Hybrid lipid-based nanostructures

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  1. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction

    Nicolas ePedrini


    Full Text Available Broad host range entomopathogenic fungi such as Beauveria bassiana attack insect hosts via attachment to cuticular substrata and the production of enzymes for the degradation and penetration of insect cuticle. The outermost epicuticular layer consists of a complex mixture of non-polar lipids including hydrocarbons, fatty acids, and wax esters. Long chain hydrocarbons are major components of the outer waxy layer of diverse insect species, where they serve to protect against desiccation and microbial parasites, and as recognition molecules or as a platform for semiochemicals. Insect pathogenic fungi have evolved mechanisms for overcoming this barrier, likely with sets of lipid degrading enzymes with overlapping substrate specificities.. Alkanes and fatty acids are substrates for a specific subset of fungal cytochrome P450 monooxygenases involved in insect hydrocarbon degradation. These enzymes activate alkanes by terminal oxidation to alcohols, which are further oxidized by alcohol and aldehyde dehydrogenases, whose products can enter β-oxidation pathways. B. bassiana contains at least 83 genes coding for cytochrome P450s (CYP, a subset of which are involved in hydrocarbon oxidation, and several of which repr