WorldWideScience

Sample records for requires cholesterol-rich membrane

  1. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    International Nuclear Information System (INIS)

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi; Ohno-Iwashita, Yoshiko

    2006-01-01

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with β-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than to intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

  2. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    Directory of Open Access Journals (Sweden)

    Jing Li

    2018-05-01

    Full Text Available GPI-Anchored proteins (GPI-APs can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  3. Spontaneous insertion of GPI anchors into cholesterol-rich membrane domains

    Science.gov (United States)

    Li, Jing; Liu, Xiuhua; Tian, Falin; Yue, Tongtao; Zhang, Xianren; Cao, Dapeng

    2018-05-01

    GPI-Anchored proteins (GPI-APs) can be exogenously transferred onto bilayer membranes both in vivo and in vitro, while the mechanism by which this transfer process occurs is unknown. In this work, we used atomistic molecular dynamics simulations and free energy calculations to characterize the essential influence of cholesterol on insertion of the GPI anchors into plasma membranes. We demonstrate, both dynamically and energetically, that in the presence of cholesterol, the tails of GPI anchors are able to penetrate inside the core of the lipid membrane spontaneously with a three-step mechanism, while in the absence of cholesterol no spontaneous insertion was observed. We ascribe the failure of insertion to the strong thermal fluctuation of lipid molecules in cholesterol-free bilayer, which generates a repulsive force in entropic origin. In the presence of cholesterol, however, the fluctuation of lipids is strongly reduced, thus decreasing the barrier for the anchor insertion. Based on this observation, we propose a hypothesis that addition of cholesterol creates vertical creases in membranes for the insertion of acyl chains. Moreover, we find that the GPI anchor could also spontaneously inserted into the boundary between cholesterol-rich and cholesterol-depleted domains. Our results shed light on the mechanism of cholesterol-mediated interaction between membrane proteins with acyl chain and plasma membranes in living cells.

  4. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Möbius, Wiebke; Wehr, Michael C; Krämer-Albers, Eva-Maria; Brügger, Britta; Nave, Klaus-Armin

    2009-05-13

    Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.

  5. Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking

    Science.gov (United States)

    Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R.; Oker-Blom, Christian; Vattulainen, Ilpo; Vuento, Matti

    2009-12-01

    In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter SCD as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane.

  6. Desipramine induces disorder in cholesterol-rich membranes: implications for viral trafficking

    International Nuclear Information System (INIS)

    Pakkanen, Kirsi; Mäkelä, Anna R; Oker-Blom, Christian; Vuento, Matti; Salonen, Emppu; Vattulainen, Ilpo

    2009-01-01

    In this study, the effect of desipramine (DMI) on phospholipid bilayers and parvoviral entry was elucidated. In atomistic molecular dynamics simulations, DMI was found to introduce disorder in cholesterol-rich phospholipid bilayers. This was manifested by a decrease in the deuterium order parameter S CD as well as an increase in the membrane area. Disordering of the membrane suggested DMI to destabilize cholesterol-rich membrane domains (rafts) in cellular conditions. To relate the raft disrupting ability of DMI with novel biological relevance, we studied the intracellular effect of DMI using canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect on the viral traffic. As recycling endosomes and the internal vesicles of multivesicular bodies are known to contain raft components, the effect of desipramine beyond the plasma membrane step could be caused by raft disruption leading to impaired endosomal function and possibly have direct influence on the penetration of the virus through an endosomal membrane

  7. Effect of Galactosylceramide on the Dynamics of Cholesterol-Rich Lipid Membranes

    DEFF Research Database (Denmark)

    Hall, A.; Rog, T.; Vattulainen, I.

    2011-01-01

    We use atom-scale molecular dynamics simulations to clarify the role of glycosphingolipids in the dynamics of cholesterol-rich lipid rafts. To this end, we consider lipid membranes that contain varying. amounts of galactosylceramide (GalCer), sphingomyelin, cholesterol, and phosphatidylcholine....... The results indicate that increasing the portion of GalCer molecules greatly slows down the lateral diffusion, Only 5-10 mol % of GalCer causes a decrease of almost an order of magnitude compared to corresponding membranes without GalCer. The slowing down is not related to interdigitation, which becomes...... weaker with increasing GalCer concentration. Instead, the decrease in diffusion is found to correlate with the increasing number of hydrogen bonds formed between GalCer and the phospholipid molecules, which is also observed to have other effects, such as to increase the friction between the membrane...

  8. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  9. Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein.

    Directory of Open Access Journals (Sweden)

    Matej Skočaj

    Full Text Available Ostreolysin A (OlyA is an ∼15-kDa protein that has been shown to bind selectively to membranes rich in cholesterol and sphingomyelin. In this study, we investigated whether OlyA fluorescently tagged at the C-terminal with mCherry (OlyA-mCherry labels cholesterol/sphingomyelin domains in artificial membrane systems and in membranes of Madin-Darby canine kidney (MDCK epithelial cells. OlyA-mCherry showed similar lipid binding characteristics to non-tagged OlyA. OlyA-mCherry also stained cholesterol/sphingomyelin domains in the plasma membranes of both fixed and living MDCK cells, and in the living cells, this staining was abolished by pretreatment with either methyl-β-cyclodextrin or sphingomyelinase. Double labelling of MDCK cells with OlyA-mCherry and the sphingomyelin-specific markers equinatoxin II-Alexa488 and GST-lysenin, the cholera toxin B subunit as a probe that binds to the ganglioside GM1, or the cholesterol-specific D4 domain of perfringolysin O fused with EGFP, showed different patterns of binding and distribution of OlyA-mCherry in comparison with these other proteins. Furthermore, we show that OlyA-mCherry is internalised in living MDCK cells, and within 90 min it reaches the juxtanuclear region via caveolin-1-positive structures. No binding to membranes could be seen when OlyA-mCherry was expressed in MDCK cells. Altogether, these data clearly indicate that OlyA-mCherry is a promising tool for labelling a distinct pool of cholesterol/sphingomyelin membrane domains in living and fixed cells, and for following these domains when they are apparently internalised by the cell.

  10. Nanoscale Membrane Domain Formation Driven by Cholesterol

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Vattulainen, Ilpo

    2017-01-01

    Biological membranes generate specific functions through compartmentalized regions such as cholesterol-enriched membrane nanodomains that host selected proteins. Despite the biological significance of nanodomains, details on their structure remain elusive. They cannot be observed via microscopic...... dipalmitoylphosphatidylcholine and cholesterol - the "minimal standard" for nanodomain formation. The simulations reveal how cholesterol drives the formation of fluid cholesterol-rich nanodomains hosting hexagonally packed cholesterol-poor lipid nanoclusters, both of which show registration between the membrane leaflets....... The complex nanodomain substructure forms when cholesterol positions itself in the domain boundary region. Here cholesterol can also readily flip-flop across the membrane. Most importantly, replacing cholesterol with a sterol characterized by a less asymmetric ring region impairs the emergence of nanodomains...

  11. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  12. Use of dansyl-cholestanol as a probe of cholesterol behavior in membranes of living cells[S

    Science.gov (United States)

    Huang, Huan; McIntosh, Avery L.; Atshaves, Barbara P.; Ohno-Iwashita, Yoshiko; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    While plasma membrane cholesterol-rich microdomains play a role in cholesterol trafficking, little is known about the appearance and dynamics of cholesterol through these domains in living cells. The fluorescent cholesterol analog 6-dansyl-cholestanol (DChol), its biochemical fractionation, and confocal imaging of L-cell fibroblasts contributed the following new insights: i) fluorescence properties of DChol were sensitive to microenvironment polarity and mobility; (ii) DChol taken up by L-cell fibroblasts was distributed similarly as cholesterol and preferentially into cholesterol-rich vs. -poor microdomains resolved by affinity chromatography of purified plasma membranes; iii) DChol reported similar polarity (dielectric constant near 18) but higher mobility near phospholipid polar head group region for cholesterol in purified cholesterol-rich versus -poor microdomains; and iv) real-time confocal imaging, quantitative colocalization analysis, and fluorescence resonance energy transfer with cholesterol-rich and -poor microdomain markers confirmed that DChol preferentially localized in plasma membrane cholesterol-rich microdomains of living cells. Thus, DChol sensed a unique, relatively more mobile microenvironment for cholesterol in plasma membrane cholesterol-rich microdomains, consistent with the known, more rapid exchange dynamics of cholesterol from cholesterol-rich than -poor microdomains. PMID:20008119

  13. Caveolae/lipid rafts in fibroblast-like synoviocytes: ectopeptidase-rich membrane microdomains

    DEFF Research Database (Denmark)

    Riemann, D; Hansen, Gert Helge; Niels-Christiansen, L

    2001-01-01

    in the regulation of intra-articular levels of neuropeptides and chemotactic mediators as well as in adhesion and cell-cell interactions. Here, we report these peptidases in synoviocytes to be localized predominantly in glycolipid- and cholesterol-rich membrane microdomains known as 'rafts'. At the ultrastructural...... from about 60 to 160 nm. Cholesterol depletion of synoviocytes by methyl-beta-cyclodextrin disrupted >90% of the caveolae and reduced the raft localization of aminopeptidase N/CD13 without affecting Ala-p-nitroanilide-cleaving activity of confluent cell cultures. In co-culture experiments with T......-lymphocytes, cholesterol depletion of synoviocytes greatly reduced their capability to induce an early lymphocytic expression of aminopeptidase N/CD13. We propose caveolae/rafts to be peptidase-rich 'hot-spot' regions of the synoviocyte plasma membrane required for functional cell-cell interactions with lymphocytes...

  14. The membrane-associated form of α(s1-casein interacts with cholesterol-rich detergent-resistant microdomains.

    Directory of Open Access Journals (Sweden)

    Annabelle Le Parc

    Full Text Available Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that α(s1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of α(s1-casein in rat mammary epithelial cells. Using metabolic labelling we show that α(s1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of α(s1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of α(s1-casein. These experiments reveal that the insolubility of α(s1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of α(s1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.

  15. The Membrane-Associated Form of αs1-Casein Interacts with Cholesterol-Rich Detergent-Resistant Microdomains

    Science.gov (United States)

    Le Parc, Annabelle; Honvo Houéto, Edith; Pigat, Natascha; Chat, Sophie; Leonil, Joëlle; Chanat, Eric

    2014-01-01

    Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that αs1-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of αs1-casein in rat mammary epithelial cells. Using metabolic labelling we show that αs1-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of αs1-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of αs1-casein. These experiments reveal that the insolubility of αs1-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of αs1-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells. PMID:25549363

  16. The membrane-associated form of α(s1)-casein interacts with cholesterol-rich detergent-resistant microdomains.

    Science.gov (United States)

    Le Parc, Annabelle; Honvo Houéto, Edith; Pigat, Natascha; Chat, Sophie; Leonil, Joëlle; Chanat, Eric

    2014-01-01

    Caseins, the main milk proteins, interact with colloidal calcium phosphate to form the casein micelle. The mesostructure of this supramolecular assembly markedly influences its nutritional and technological functionalities. However, its detailed molecular organization and the cellular mechanisms involved in its biogenesis have been only partially established. There is a growing body of evidence to support the concept that α(s1)-casein takes center stage in casein micelle building and transport in the secretory pathway of mammary epithelial cells. Here we have investigated the membrane-associated form of α(s1)-casein in rat mammary epithelial cells. Using metabolic labelling we show that α(s1)-casein becomes associated with membranes at the level of the endoplasmic reticulum, with no subsequent increase at the level of the Golgi apparatus. From morphological and biochemical data, it appears that caseins are in a tight relationship with membranes throughout the secretory pathway. On the other hand, we have observed that the membrane-associated form of α(s1)-casein co-purified with detergent-resistant membranes. It was poorly solubilised by Tween 20, partially insoluble in Lubrol WX, and substantially insoluble in Triton X-100. Finally, we found that cholesterol depletion results in the release of the membrane-associated form of α(s1)-casein. These experiments reveal that the insolubility of α(s1)-casein reflects its partial association with a cholesterol-rich detergent-resistant microdomain. We propose that the membrane-associated form of α(s1)-casein interacts with the lipid microdomain, or lipid raft, that forms within the membranes of the endoplasmic reticulum, for efficient forward transport and sorting in the secretory pathway of mammary epithelial cells.

  17. Increased membrane cholesterol in lymphocytes diverts T-cells toward an inflammatory response.

    Directory of Open Access Journals (Sweden)

    Jacqueline Surls

    Full Text Available Cell signaling for T-cell growth, differentiation, and apoptosis is initiated in the cholesterol-rich microdomains of the plasma membrane known as lipid rafts. Herein, we investigated whether enrichment of membrane cholesterol in lipid rafts affects antigen-specific CD4 T-helper cell functions. Enrichment of membrane cholesterol by 40-50% following squalene administration in mice was paralleled by an increased number of resting CD4 T helper cells in periphery. We also observed sensitization of the Th1 differentiation machinery through co-localization of IL-2Rα, IL-4Rα, and IL-12Rβ2 subunits with GM1 positive lipid rafts, and increased STAT-4 and STAT-5 phosphorylation following membrane cholesterol enrichment. Antigen stimulation or CD3/CD28 polyclonal stimulation of membrane cholesterol-enriched, resting CD4 T-cells followed a path of Th1 differentiation, which was more vigorous in the presence of increased IL-12 secretion by APCs enriched in membrane cholesterol. Enrichment of membrane cholesterol in antigen-specific, autoimmune Th1 cells fostered their organ-specific reactivity, as confirmed in an autoimmune mouse model for diabetes. However, membrane cholesterol enrichment in CD4(+Foxp3(+ T-reg cells did not alter their suppressogenic function. These findings revealed a differential regulatory effect of membrane cholesterol on the function of CD4 T-cell subsets. This first suggests that membrane cholesterol could be a new therapeutic target to modulate the immune functions, and second that increased membrane cholesterol in various physiopathological conditions may bias the immune system toward an inflammatory Th1 type response.

  18. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    Science.gov (United States)

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    Science.gov (United States)

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  20. The influence of saponins on cell membrane cholesterol.

    Science.gov (United States)

    Böttger, Stefan; Melzig, Matthias F

    2013-11-15

    We studied the influence of structurally different saponins on the cholesterol content of cellular membranes. Therefore a cell culture model using ECV-304 urinary bladder carcinoma cells was developed. To measure the cholesterol content we used radiolabeled (3)H-cholesterol which is chemically and physiologically identical to natural cholesterol. The cells were pre-incubated with (3)H-cholesterol and after a medium change, they were treated with saponins to assess a saponin-induced cholesterol liberation from the cell membrane. In another experiment the cells were pre-incubated with saponins and after a medium change, they were treated with (3)H-cholesterol to assess a saponin-induced inhibition of cholesterol uptake into the cell membrane. Furthermore, the membrane toxicity of all applied saponins was analyzed using extracellular LDH quantification and the general cytotoxicity was analyzed using a colorimetric MTT-assay and DNA quantification. Our results revealed a correlation between membrane toxicity and general cytotoxicity. We also compared the results from the experiments on the saponin-induced cholesterol liberation as well as the saponin-induced inhibition of cholesterol uptake with the membrane toxicity. A significant reduction in the cell membrane cholesterol content was noted for those saponins who showed membrane toxicity (IC50 saponins either liberated (3)H-cholesterol from intact cell membranes or blocked the integration of supplemented (3)H-cholesterol into the cell membrane. Saponins with little influence on the cell membrane (IC50 >100 μM) insignificantly altered the cell membrane cholesterol content. The results suggested that the general cytotoxicity of saponins is mainly dependent on their membrane toxicity and that the membrane toxicity might be caused by the loss of cholesterol from the cell membrane. We also analyzed the influence of a significantly membrane toxic saponin on the cholesterol content of intracellular membranes such as those

  1. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux.

    Directory of Open Access Journals (Sweden)

    Soazig Le Lay

    Full Text Available Caveolin-1 (Cav1, a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs derived from wild type (WT or Cav1-deficient (Cav1(-/- animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/- cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/- MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/- cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.

  2. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  3. Tritium labelling of a cholesterol amphiphile designed for cell membrane anchoring of proteins.

    Science.gov (United States)

    Schäfer, Balázs; Orbán, Erika; Kele, Zoltán; Tömböly, Csaba

    2015-01-01

    Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3β-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  5. Cholesterol depletion of enterocytes. Effect on the Golgi complex and apical membrane trafficking

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Niels-Christiansen, L L; Thorsen, Evy

    2000-01-01

    Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical......, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft......-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking....

  6. Exploring in vivo cholesterol-mediated interactions between activated EGF receptors in plasma membrane with single-molecule optical tracking

    International Nuclear Information System (INIS)

    Lin, Chien Y.; Huang, Jung Y.; Lo, Leu-Wei

    2016-01-01

    The first step in many cellular signaling processes occurs at various types of receptors in the plasma membrane. Membrane cholesterol can alter these signaling pathways of living cells. However, the process in which the interaction of activated receptors is modulated by cholesterol remains unclear. In this study, we measured single-molecule optical trajectories of epidermal growth factor receptors moving in the plasma membranes of two cancerous cell lines and one normal endothelial cell line. A stochastic model was developed and applied to identify critical information from single-molecule trajectories. We discovered that unliganded epidermal growth factor receptors may reside nearby cholesterol-riched regions of the plasma membrane and can move into these lipid domains when subjected to ligand binding. The amount of membrane cholesterol considerably affects the stability of correlated motion of activated epidermal growth factor receptors. Our results provide single-molecule evidence of membrane cholesterol in regulating signaling receptors. Because the three cell lines used for this study are quite diverse, our results may be useful to shed light on the mechanism of cholesterol-mediated interaction between activated receptors in live cells

  7. Influence of the membrane environment on cholesterol transfer.

    Science.gov (United States)

    Breidigan, Jeffrey Michael; Krzyzanowski, Natalie; Liu, Yangmingyue; Porcar, Lionel; Perez-Salas, Ursula

    2017-12-01

    Cholesterol, an essential component in biological membranes, is highly unevenly distributed within the cell, with most localized in the plasma membrane while only a small fraction is found in the endoplasmic reticulum, where it is synthesized. Cellular membranes differ in lipid composition and protein content, and these differences can exist across their leaflets too. This thermodynamic landscape that cellular membranes impose on cholesterol is expected to modulate its transport. To uncover the role the membrane environment has on cholesterol inter- and intra-membrane movement, we used time-resolved small angle neutron scattering to study the passive movement of cholesterol between and within membranes with varying degrees of saturation content. We found that cholesterol moves systematically slower as the degree of saturation in the membranes increases, from a palmitoyl oleyl phosphotidylcholine membrane, which is unsaturated, to a dipalmitoylphosphatidylcholine (DPPC) membrane, which is fully saturated. Additionally, we found that the energetic barrier to move cholesterol in these phosphatidylcholine membranes is independent of their relative lipid composition and remains constant for both flip-flop and exchange at ∼100 kJ/mol. Further, by replacing DPPC with the saturated lipid palmitoylsphingomyelin, an abundant saturated lipid of the outer leaflet of the plasma membrane, we found the rates decreased by a factor of two. This finding is in stark contrast with recent molecular dynamic simulations that predict a dramatic slow-down of seven orders of magnitude for cholesterol flipping in membranes with a similar phosphocholine and SM lipid composition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  8. Membrane cholesterol mediates the cellular effects of monolayer graphene substrates.

    Science.gov (United States)

    Kitko, Kristina E; Hong, Tu; Lazarenko, Roman M; Ying, Da; Xu, Ya-Qiong; Zhang, Qi

    2018-02-23

    Graphene possesses extraordinary properties that promise great potential in biomedicine. However, fully leveraging these properties requires close contact with the cell surface, raising the concern of unexpected biological consequences. Computational models have demonstrated that graphene preferentially interacts with cholesterol, a multifunctional lipid unique to eukaryotic membranes. Here we demonstrate an interaction between graphene and cholesterol. We find that graphene increases cell membrane cholesterol and potentiates neurotransmission, which is mediated by increases in the number, release probability, and recycling rate of synaptic vesicles. In fibroblasts grown on graphene, we also find an increase in cholesterol, which promotes the activation of P2Y receptors, a family of receptor regulated by cholesterol. In both cases, direct manipulation of cholesterol levels elucidates that a graphene-induced cholesterol increase underlies the observed potentiation of each cell signaling pathway. These findings identify cholesterol as a mediator of graphene's cellular effects, providing insight into the biological impact of graphene.

  9. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    Full Text Available Part of the damage caused by cryopreservation of mammalian oocytes occurs at the plasma membrane. The addition of cholesterol to cell membranes as a strategy to make it more tolerant to cryopreservation has been little addressed in oocytes. In order to increase the survival of bovine oocytes after cryopreservation, we proposed not only to increase cholesterol level of oocyte membranes before vitrification but also to remove the added cholesterol after warming, thus recovering its original level. Results from our study showed that modulation of membrane cholesterol by methyl-β-cyclodextrin (MβCD did not affect the apoptotic status of oocytes and improved viability after vitrification yielding levels of apoptosis closer to those of fresh oocytes. Fluorometric measurements based on an enzyme-coupled reaction that detects both free cholesterol (membrane and cholesteryl esters (stored in lipid droplets, revealed that oocytes and cumulus cells present different levels of cholesterol depending on the seasonal period. Variations at membrane cholesterol level of oocytes were enough to account for the differences found in total cholesterol. Differences found in total cholesterol of cumulus cells were explained by the differences found in both the content of membrane cholesterol and of cholesterol esters. Cholesterol was incorporated into the oocyte plasma membrane as evidenced by comparative labeling of a fluorescent cholesterol. Oocytes and cumulus cells increased membrane cholesterol after incubation with MβCD/cholesterol and recovered their original level after cholesterol removal, regardless of the season. Finally, we evaluated the effect of vitrification on the putative raft molecule GM1. Cholesterol modulation also preserved membrane organization by maintaining ganglioside level at the plasma membrane. Results suggest a distinctive cholesterol metabolic status of cumulus-oocyte complexes (COCs among seasons and a dynamic organizational structure

  10. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    Science.gov (United States)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  11. Perspective on plasma membrane cholesterol efflux and spermatozoal function

    Directory of Open Access Journals (Sweden)

    Dhastagir Sultan Sheriff

    2010-01-01

    techniques for enhancing fertility, identifying and treating certain forms of male infertility, and preventing conception. One remarkable insight is the importance of membrane cholesterol efflux in initiating transmembrane signaling events that confer fertilization competence. The identity of the physiologically relevant cholesterol acceptors and modulators of cholesterol efflux is therefore of great interest. Still, it is clear that cholesterol efflux represents only a part of this story. The involvement of phospholipid translocation in mediating dynamic changes in the membrane, rendering it conducive to transmembrane signaling, and the modulation of membrane components of signal transduction cascades by cholesterol or phospholipids will yield important insights into the links between environmental sensing and transmembrane signaling in the sperm. Understanding the membrane molecular events will ultimately provide new and exciting areas of investigation for the future.

  12. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses.

    Science.gov (United States)

    Bajimaya, Shringkhala; Frankl, Tünde; Hayashi, Tsuyoshi; Takimoto, Toru

    2017-10-01

    Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    International Nuclear Information System (INIS)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D.

    2004-01-01

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 μM. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 μM for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented

  14. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  15. Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes

    DEFF Research Database (Denmark)

    Hansen, Gert Helge; Immerdal, Lissi; Thorsen, Evy

    2001-01-01

    Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from...... rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations...... of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p

  16. Differential Membrane Dipolar Orientation Induced by Acute and Chronic Cholesterol Depletion.

    Science.gov (United States)

    Sarkar, Parijat; Chakraborty, Hirak; Chattopadhyay, Amitabha

    2017-06-30

    Cholesterol plays a crucial role in cell membrane organization, dynamics and function. Depletion of cholesterol represents a popular approach to explore cholesterol-sensitivity of membrane proteins. An emerging body of literature shows that the consequence of membrane cholesterol depletion often depends on the actual process (acute or chronic), although the molecular mechanism underlying the difference is not clear. Acute depletion, using cyclodextrin-type carriers, is faster relative to chronic depletion, in which inhibitors of cholesterol biosynthesis are used. With the overall goal of addressing molecular differences underlying these processes, we monitored membrane dipole potential under conditions of acute and chronic cholesterol depletion in CHO-K1 cells, using a voltage-sensitive fluorescent dye in dual wavelength ratiometric mode. Our results show that the observed membrane dipole potential exhibits difference under acute and chronic cholesterol depletion conditions, even when cholesterol content was identical. To the best of our knowledge, these results provide, for the first time, molecular insight highlighting differences in dipolar reorganization in these processes. A comprehensive understanding of processes in which membrane cholesterol gets modulated would provide novel insight in its interaction with membrane proteins and receptors, thereby allowing us to understand the role of cholesterol in cellular physiology associated with health and disease.

  17. Use of quantitative optical imaging to examine the role of cholesterol-rich lipid raft microdomains in the migration of breast cancer cells

    Science.gov (United States)

    You, Minghai; Chen, Jianling; Wang, Shaobing; Dong, Shiqing; Wang, Yuhua; Xie, Shusen; Wang, Zhengchao; Yang, Hongqin

    2018-04-01

    Lipid rafts have been extensively studied and shown to be involved in many cancers, including breast cancer. However, the exact role of lipid rafts in the migration of breast cancer cells remains unclear. This study was designed to examine lipid rafts (cholesterol) in the plasma membrane of breast cancer cells (MDA-MB-231 and MCF-7) and normal breast epithelial cells (MCF-10A) through generalized polarization values, and further investigate the role of cholesterol-rich lipid rafts in the migration of breast cancer cells. The results showed that the plasma membrane in breast cancer cells was more orderly than that in normal epithelial cells; this was correlated with expression changes of matrix metallopeptidase 9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR), the markers of cancer cell migration. Moreover, the breast cancer cells were more sensitive to the reagent that induced cholesterol depletion than the normal breast epithelial cells, while the capacity of cancer cells to migrate decreased significantly according to changes in MMP-9 and uPAR expression. To our best knowledge, this is the first demonstration of the relationship between cholesterol-rich lipid rafts and the migration of breast cancer cells; it could be useful for the prevention of breast cancer and early treatment through reduction of the level of cholesterol in the plasma membrane of the cells.

  18. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    Energy Technology Data Exchange (ETDEWEB)

    Gaibelet, Gérald [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France); Tercé, François [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Bertrand-Michel, Justine [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Lipidomic Platform Metatoul, Toulouse (France); Allart, Sophie [Plateau Technique d’Imagerie Cellulaire, INSERM U1043, Toulouse (France); Azalbert, Vincent [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Lecompte, Marie-France [INSERM U563, Faculté de Médecine de Rangueil, Toulouse (France); Collet, Xavier [Université Toulouse III, UMR 1048, Toulouse (France); INSERM U1048, Toulouse (France); Orlowski, Stéphane, E-mail: stephane.orlowski@cea.fr [INSERM U563, CHU Purpan, Toulouse (France); CEA, SB2SM and UMR8221 CNRS, IBiTec-Saclay, Gif-sur-Yvette (France)

    2013-11-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  19. 21-Methylpyrenyl-cholesterol stably and specifically associates with lipoprotein peripheral hemi-membrane: A new labelling tool

    International Nuclear Information System (INIS)

    Gaibelet, Gérald; Tercé, François; Bertrand-Michel, Justine; Allart, Sophie; Azalbert, Vincent; Lecompte, Marie-France; Collet, Xavier; Orlowski, Stéphane

    2013-01-01

    Highlights: •21-Methylpyrenyl-cholesterol specifically and stably associates to lipoproteins. •It is not esterified by LCAT, and thus reliably labels their peripheral hemi-membrane. •HDL vs. LDL are well distinguishable by various fluorescent labelling characteristics. •LDL peripheral hemi-membrane harbors cholesterol-rich ordered lipid (micro)domains. •Cultured cells can be stained by such labelled lipoproteins-mediated delivery. -- Abstract: Lipoproteins are important biological components. However, they have few convenient fluorescent labelling probes currently reported, and their physiological reliability can be questioned. We compared the association of two fluorescent cholesterol derivatives, 22-nitrobenzoxadiazole-cholesterol (NBD-Chol) and 21-methylpyrenyl-cholesterol (Pyr-met-Chol), to serum lipoproteins and to purified HDL and LDL. Both lipoproteins could be stably labelled by Pyr-met-Chol, but virtually not by NBD-Chol. At variance with NBD-Chol, LCAT did not esterify Pyr-met-Chol. The labelling characteristics of lipoproteins by Pyr-met-Chol were well distinguishable between HDL and LDL, regarding dializability, associated probe amount and labelling kinetics. We took benefit of the pyrene labelling to approach the structural organization of LDL peripheral hemi-membrane, since Pyr-met-Chol-labelled LDL, but not HDL, presented a fluorescence emission of pyrene excimers, indicating that the probe was present in an ordered lipid micro-environment. Since the peripheral membrane of LDL contains more sphingomyelin (SM) than HDL, this excimer formation was consistent with the existence of cholesterol- and SM-enriched lipid microdomains in LDL, as already suggested in model membranes of similar composition and reminiscent to the well-described “lipid rafts” in bilayer membranes. Finally, we showed that Pyr-met-Chol could stain cultured PC-3 cells via lipoprotein-mediated delivery, with a staining pattern well different to that observed with NBD

  20. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

    International Nuclear Information System (INIS)

    Mitschelen, J.J.; St Clair, R.W.; Hester, S.H.

    1981-01-01

    The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer

  1. The membrane as the gatekeeper of infection: Cholesterol in host-pathogen interaction.

    Science.gov (United States)

    Kumar, G Aditya; Jafurulla, Md; Chattopadhyay, Amitabha

    2016-09-01

    The cellular plasma membrane serves as a portal for the entry of intracellular pathogens. An essential step for an intracellular pathogen to gain entry into a host cell therefore is to be able to cross the cell membrane. In this review, we highlight the role of host membrane cholesterol in regulating the entry of intracellular pathogens using insights obtained from work on the interaction of Leishmania and Mycobacterium with host cells. The entry of these pathogens is known to be dependent on host membrane cholesterol. Importantly, pathogen entry is inhibited either upon depletion (or complexation), or enrichment of membrane cholesterol. In other words, an optimum level of host membrane cholesterol is necessary for efficient infection by pathogens. In this overall context, we propose a general mechanism, based on cholesterol-induced conformational changes, involving cholesterol binding sites in host cell surface receptors that are implicated in this process. A therapeutic strategy targeting modulation of membrane cholesterol would have the advantage of avoiding the commonly encountered problem of drug resistance in tackling infection by intracellular pathogens. Insights into the role of host membrane cholesterol in pathogen entry would be instrumental in the development of novel therapeutic strategies to effectively tackle intracellular pathogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  3. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    Science.gov (United States)

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  4. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    DEFF Research Database (Denmark)

    Falkovich, Stanislav G.; Martinez-Seara, Hector; Nesterenko, Alexey M.

    2016-01-01

    Cholesterol is abundant in the plasma membranes of animal cells and is known to regulate a variety of membrane properties. Despite decades of research, the transmembrane distribution of cholesterol is still a matter of debate. Here we consider this outstanding issue through atomistic simulations ...

  5. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.

    Science.gov (United States)

    Adams, Mark; Wang, Eric; Zhuang, Xiaohong; Klauda, Jeffery B

    2017-11-21

    The lipid composition of bovine and human ocular lens membranes has been probed, and a variety of lipids have been found including phosphatidylcholine (PC), phosphatidylethanolamine (PE), sphingomyelin (SM), and cholesterol (CHOL) with cholesterol being present in particularly high concentrations. In this study, we use the all-atom CHARMM36 force field to simulate binary, ternary, and quaternary mixtures as models of the ocular lens. High concentration of cholesterol, in combination with different and varying diversity of phospholipids (PL) and sphingolipids (SL), affect the structure of the ocular lens lipid bilayer. The following analyses were done for each simulation: surface area per lipid, component surface area per lipid, deuterium order parameters (S CD ), electron density profiles (EDP), membrane thickness, hydrogen bonding, radial distribution functions, clustering, and sterol tilt angle distribution. The S CD show significant bilayer alignment and packing in cholesterol-rich bilayers. The EDP show the transition from liquid crystalline to liquid ordered with the addition of cholesterol. Hydrogen bonds in our systems show the tendency for intramolecular interactions between cholesterol and fully saturated lipid tails for less complex bilayers. But with an increased number of components in the bilayer, the acyl chain of the lipids becomes a less important characteristic, and the headgroup of the lipid becomes more significant. Overall, cholesterol is the driving force of membrane structure of the ocular lens membrane where interactions between cholesterol, PL, and SL determine structure and function of the biomembrane. The goal of this work is to develop a baseline for further study of more physiologically realistic ocular lens lipid membranes. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Influence of Cholesterol on the Oxygen Permeability of Membranes: Insight from Atomistic Simulations.

    Science.gov (United States)

    Dotson, Rachel J; Smith, Casey R; Bueche, Kristina; Angles, Gary; Pias, Sally C

    2017-06-06

    Cholesterol is widely known to alter the physical properties and permeability of membranes. Several prior works have implicated cell membrane cholesterol as a barrier to tissue oxygenation, yet a good deal remains to be explained with regard to the mechanism and magnitude of the effect. We use molecular dynamics simulations to provide atomic-resolution insight into the influence of cholesterol on oxygen diffusion across and within the membrane. Our simulations show strong overall agreement with published experimental data, reproducing the shapes of experimental oximetry curves with high accuracy. We calculate the upper-limit transmembrane oxygen permeability of a 1-palmitoyl,2-oleoylphosphatidylcholine phospholipid bilayer to be 52 ± 2 cm/s, close to the permeability of a water layer of the same thickness. With addition of cholesterol, the permeability decreases somewhat, reaching 40 ± 2 cm/s at the near-saturating level of 62.5 mol % cholesterol and 10 ± 2 cm/s in a 100% cholesterol mimic of the experimentally observed noncrystalline cholesterol bilayer domain. These reductions in permeability can only be biologically consequential in contexts where the diffusional path of oxygen is not water dominated. In our simulations, cholesterol reduces the overall solubility of oxygen within the membrane but enhances the oxygen transport parameter (solubility-diffusion product) near the membrane center. Given relatively low barriers to passing from membrane to membrane, our findings support hydrophobic channeling within membranes as a means of cellular and tissue-level oxygen transport. In such a membrane-dominated diffusional scheme, the influence of cholesterol on oxygen permeability is large enough to warrant further attention. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  9. Manipulation of Host Cholesterol by Obligate Intracellular Bacteria

    Directory of Open Access Journals (Sweden)

    Dhritiman Samanta

    2017-05-01

    Full Text Available Cholesterol is a multifunctional lipid that plays important metabolic and structural roles in the eukaryotic cell. Despite having diverse lifestyles, the obligate intracellular bacterial pathogens Chlamydia, Coxiella, Anaplasma, Ehrlichia, and Rickettsia all target cholesterol during host cell colonization as a potential source of membrane, as well as a means to manipulate host cell signaling and trafficking. To promote host cell entry, these pathogens utilize cholesterol-rich microdomains known as lipid rafts, which serve as organizational and functional platforms for host signaling pathways involved in phagocytosis. Once a pathogen gains entrance to the intracellular space, it can manipulate host cholesterol trafficking pathways to access nutrient-rich vesicles or acquire membrane components for the bacteria or bacteria-containing vacuole. To acquire cholesterol, these pathogens specifically target host cholesterol metabolism, uptake, efflux, and storage. In this review, we examine the strategies obligate intracellular bacterial pathogens employ to manipulate cholesterol during host cell colonization. Understanding how obligate intracellular pathogens target and use host cholesterol provides critical insight into the host-pathogen relationship.

  10. The Effects of Altered Membrane Cholesterol Levels on Sodium Pump Activity in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Suparna Roy

    2017-02-01

    Full Text Available BackgroundMetabolic dysfunctions characteristic of overt hypothyroidism (OH start at the early stage of subclinical hypothyroidism (SCH. Na+/K+-ATPase (the sodium pump is a transmembrane enzyme that plays a vital role in cellular activities in combination with membrane lipids. We evaluated the effects of early changes in thyroid hormone and membrane cholesterol on sodium pump activity in SCH and OH patients.MethodsIn 32 SCH patients, 35 OH patients, and 34 euthyroid patients, sodium pump activity and cholesterol levels in red blood cell membranes were measured. Serum thyroxine (T4 and thyroid stimulating hormone (TSH levels were measured using enzyme-linked immunosorbent assays. Differences in their mean values were analysed using post hoc analysis of variance. We assessed the dependence of the sodium pump on other metabolites by multiple regression analysis.ResultsSodium pump activity and membrane cholesterol were lower in both hypothyroid groups than in control group, OH group exhibiting lower values than SCH group. In SCH group, sodium pump activity showed a significant direct dependence on membrane cholesterol with an inverse relationship with serum TSH levels. In OH group, sodium pump activity depended directly on membrane cholesterol and serum T4 levels. No dependence on serum cholesterol was observed in either case.ConclusionDespite the presence of elevated serum cholesterol in hypothyroidism, membrane cholesterol contributed significantly to maintain sodium pump activity in the cells. A critical reduction in membrane cholesterol levels heralds compromised enzyme activity, even in the early stage of hypothyroidism, and this can be predicted by elevated TSH levels alone, without any evident clinical manifestations.

  11. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  12. Influence of cholesterol and ceramide VI on the structure of multilamellar lipid membranes at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N. Yu.; Kiselev, M. A.; Balagurov, A. M.

    2010-01-01

    The structural changes in the multilamellar lipid membranes of dipalmitoylphosphatidylcholine (DPPC)/cholesterol and DPPC/ceramide VI binary systems during hydration and dehydration have been studied by neutron diffraction. The effect of cholesterol and ceramide on the kinetics of water exchange in DPPC membranes is characterized. Compared to pure DPPC, membranes of binary systems swell faster during hydration (with a characteristic time of ∼30 min). Both compounds, ceramide VI and cholesterol, similarly affect the hydration of DPPC membranes, increasing the repeat distance due to the bilayer growth. However, in contrast to cholesterol, ceramide significantly reduces the thickness of the membrane water layer. The introduction of cholesterol into a DPPC membrane slows down the change in the parameters of the bilayer internal structure during dehydration. In the DPPC/ceramide VI/cholesterol ternary system (with a molar cholesterol concentration of 40%), cholesterol is partially released from the lamellar membrane structure into the crystalline phase.

  13. The effects of membrane cholesterol and simvastatin on red blood cell deformability and ATP release.

    Science.gov (United States)

    Forsyth, Alison M; Braunmüller, Susanne; Wan, Jiandi; Franke, Thomas; Stone, Howard A

    2012-05-01

    It is known that deformation of red blood cells (RBCs) is linked to ATP release from the cells. Further, membrane cholesterol has been shown to alter properties of the cell membrane such as fluidity and bending stiffness. Membrane cholesterol content is increased in some cardiovascular diseases, for example, in individuals with acute coronary syndromes and chronic stable angina, and therefore, because of the potential clinical relevance, we investigated the influence of altered RBC membrane cholesterol levels on ATP release. Because of the correlation between statins and reduced membrane cholesterol in vivo, we also investigated the effects of simvastatin on RBC deformation and ATP release. We found that reducing membrane cholesterol increases cell deformability and ATP release. We also found that simvastatin increases deformability by acting directly on the membrane in the absence of the liver, and that ATP release was increased for cells with enriched cholesterol after treatment with simvastatin. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. High cholesterol level is essential for myelin membrane growth.

    Science.gov (United States)

    Saher, Gesine; Brügger, Britta; Lappe-Siefke, Corinna; Möbius, Wiebke; Tozawa, Ryu-ichi; Wehr, Michael C; Wieland, Felix; Ishibashi, Shun; Nave, Klaus-Armin

    2005-04-01

    Cholesterol in the mammalian brain is a risk factor for certain neurodegenerative diseases, raising the question of its normal function. In the mature brain, the highest cholesterol content is found in myelin. We therefore created mice that lack the ability to synthesize cholesterol in myelin-forming oligodendrocytes. Mutant oligodendrocytes survived, but CNS myelination was severely perturbed, and mutant mice showed ataxia and tremor. CNS myelination continued at a reduced rate for many months, and during this period, the cholesterol-deficient oligodendrocytes actively enriched cholesterol and assembled myelin with >70% of the cholesterol content of wild-type myelin. This shows that cholesterol is an indispensable component of myelin membranes and that cholesterol availability in oligodendrocytes is a rate-limiting factor for brain maturation.

  15. Sensibilization of escherichia coli cells by cholesterol incorporated into their membrane

    International Nuclear Information System (INIS)

    Breslev, S.E.; Rozenberg, O.A.; Noskin, L.A.; Stepanova, I.M.; Beketova, A.G.; Loshakova, L.V.; Kovaleva, I.G.

    1984-01-01

    It has been established earlier that a level of cell radiosensitivity is defined by membrane viscosity changing in a wide temperature range. Therefore in epsilon coli cells of a natural type lethal doses of gamma rays are increased approximately a 3.5 times at 45 deg C, as compared to 4 deg C. Cholesterol changing a phase state of membrane lipids was used as a modifying factor. Liposomes were used with the goal of effective bacteria transfer to a membrane. It is established that liposomes without cholesterol do not affect their radioresistance and an increase of its content leads to resistance decrease. The effect is attained only at a sufficient long time of incubation of cells with liposomes (10-16 h). At 4 deg C lipids of E. coli membrane are in a solid-crystalline state independently on pholesterol presence, because of this, radiosensitivity does not change. Temperature increase up to 45 deg C transfer a part of lipids to a liquid-crystalline state, thus decreasing membrane viscosity. In this case cholesterol manifests itself. The authors explain viscosity increase with a violation in functioning of those enzyme systems, which activity is connected with membrane structural state, including enzymes of DNA repair. The authors assume that the radiosensibilization effect of cholesterol introduction into a bacterial membrane in high-temperature cell irradiation is explained by this phenomenon

  16. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  17. Fluorescent probes for detecting cholesterol-rich ordered membrane microdomains: entangled relationships between structural analogies in the membrane and functional homologies in the cell

    Directory of Open Access Journals (Sweden)

    Gérald Gaibelet

    2017-02-01

    Full Text Available This review addresses the question of fluorescent detection of ordered membrane (micro domains in living (cultured cells, with a “practical” point of view since the situation is much more complicated than for studying model membranes. We first briefly recall the bases of model membrane structural organization involving liquid-ordered and -disordered phases, and the main features of their counterparts in cell membranes that are the various microdomains. We then emphasize the utility of the fluorescent probes derived from cholesterol, and delineate the respective advantages, limitations and drawbacks of the existing ones. In particular, besides their intra-membrane behavior, their relevant characteristics should integrate their different cellular fates for membrane turn-over, trafficking and metabolism, in order to evaluate and improve their efficiency for in-situ probing membrane microdomains in the cell physiology context. Finally, at the present stage, it appears that Bdp-Chol and Pyr-met-Chol display well complementary properties, allowing to use them in combination to improve the reliability of the current experimental approaches. But the field is still open, and there remains much work to perform in this research area.

  18. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    Czech Academy of Sciences Publication Activity Database

    Falkovich, S. G.; Martinez-Seara, Hector; Nesterenko, A. M.; Vattulainen, I.; Gurtovenko, A. A.

    2016-01-01

    Roč. 7, č. 22 (2016), s. 4585-4590 ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : membrane * cholesterol * membrane asymmetry * membrane dipole potential * transmembrane distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.353, year: 2016

  19. Structural requirements of cholesterol for binding to Vibrio cholerae hemolysin.

    Science.gov (United States)

    Ikigai, Hajime; Otsuru, Hiroshi; Yamamoto, Koichiro; Shimamura, Tadakatsu

    2006-01-01

    Cholesterol is necessary for the conversion of Vibrio cholerae hemolysin (VCH) monomers into oligomers in liposome membranes. Using different sterols, we determined the stereochemical structures of the VCH-binding active groups present in cholesterol. The VCH monomers are bound to cholesterol, diosgenin, campesterol, and ergosterol, which have a hydroxyl group at position C-3 (3betaOH) in the A ring and a C-C double bond between positions C-5 and C-6 (C-C Delta(5)) in the B ring. They are not bound to epicholesterol and dihydrocholesterol, which form a covalent link with a 3alphaOH group and a C-C single bond between positions C-5 and C-6, respectively. This result suggests that the 3betaOH group and the C-CDelta(5) bond in cholesterol are required for VCH monomer binding. We further examined VCH oligomer binding to cholesterol. However, this oligomer did not bind to cholesterol, suggesting that the disappearance of the cholesterol-binding potential of the VCH oligomer might be a result of the conformational change caused by the conversion of the monomer into the oligomer. VCH oligomer formation was observed in liposomes containing sterols with the 3betaOH group and the C-C Delta(5) bond, and it correlated with the binding affinity of the monomer to each sterol. Therefore, it seems likely that monomer binding to membrane sterol leads to the assembly of the monomer. However, since oligomer formation was induced by liposomes containing either epicholesterol or dihydrocholesterol, the 3betaOH group and the C-C Delta(5) bond were not essential for conversion into the oligomer.

  20. Effect of Melatonin and Cholesterol on the Structure of DOPC and DPPC Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Drolle, E [University of Waterloo, Canada; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Hoopes, M I [University of Waterloo, Canada; Choi, Y [University of Waterloo, Canada; Katsaras, John [ORNL; Karttunen, M [University of Waterloo, Canada; Leonenko, Z [University of Waterloo, Canada

    2013-01-01

    The cell membrane plays an important role in the molecular mechanism of amyloid toxicity associated with Alzheimer's disease. The membrane's chemical composition and the incorporation of small molecules, such as melatonin and cholesterol, can alter its structure and physical properties, thereby affecting its interaction with amyloid peptides. Both melatonin and cholesterol have been recently linked to amyloid toxicity. Melatonin has been shown to have a protective role against amyloid toxicity. However, the underlying molecular mechanism of this protection is still not well understood, and cholesterol's role remains controversial. We used small-angle neutron diffraction (SAND) from oriented lipid multi-layers, small-angle neutron scattering (SANS) from unilamellar vesicles experiments andMolecular Dynamics (MD) simulations to elucidate non-specific interactions of melatonin and cholesterol with 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoyl-snglycero-3-phosphocholine (DPPC) model membranes. We conclude that melatonin decreases the thickness of both model membranes by disordering the lipid hydrocarbon chains, thus increasing membrane fluidity. This result is in stark contrast to the much accepted ordering effect induced by cholesterol, which causes membranes to thicken.

  1. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells.

    Directory of Open Access Journals (Sweden)

    Bárbara Hissa

    Full Text Available BACKGROUND: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages and non-professional (epithelial phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING: In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE: Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of

  2. Enzymatic Oxidation of Cholesterol: Properties and Functional Effects of Cholestenone in Cell Membranes

    DEFF Research Database (Denmark)

    Neuvonen, M.; Manna, M.; Mokkila, S.

    2014-01-01

    of cholestenone using simulations and cell biological experiments and assessed the functional effects of cholestenone in human cells. Atomistic simulations predicted that cholestenone reduces membrane order, undergoes faster flip-flop and desorbs more readily from membranes than cholesterol. In primary human...... fibroblasts, cholestenone was released from membranes to physiological extracellular acceptors more avidly than cholesterol, but without acceptors it remained in cells over a day. To address the functional effects of cholestenone, we studied fibroblast migration during wound healing. When cells were either...... similarly to control cells. Thus, cholesterol oxidation produces long-term functional effects in cells and these are in part due to the generated membrane active cholestenone....

  3. Desipramine induces disorder in cholesterol-rich membranes

    DEFF Research Database (Denmark)

    Pakkanen, Kirsi; Salonen, Emppu; Mäkelä, Anna R

    2009-01-01

    canine parvovirus (CPV), a virus known to interact with endosomal membranes and sphingomyelin, as an intracellular probe. DMI was found to cause retention of the virus in intracellular vesicular structures leading to the inhibition of viral proliferation. This implies that DMI has a deleterious effect...

  4. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    Science.gov (United States)

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  5. 2H NMR evidence for antibiotic-induced cholesterol immobilization in biological model membranes

    International Nuclear Information System (INIS)

    Dufourc, E.J.; Smith, I.C.

    1985-01-01

    The interaction of the polyene antibiotic filipin with membrane sterols has been studied by deuterium nuclear magnetic resonance of the molecular probes [2,2,3,4,4,6- 2 H6]cholesterol and 1-myristoyl-2-[4',4',14',14',14'- 2 H5]myristoyl-sn-glycero-3-phospho- choline. At physiological temperatures, there is evidence of filipin-induced cholesterol immobilization in the membrane. The 2 H NMR spectra of cholesterol show two domains in which ordering and dynamics are very different. In one of these, cholesterol is static on the 2 H NMR time scale, whereas in the other it undergoes rapid axially symmetric motions similar to those it exhibits in the drug-free membrane; this indicates that the jumping frequency of cholesterol between the labile and immobilized domains is less than 10(5) s -1 . The distribution of cholesterol between these two sites is temperature dependent. In contrast to cholesterol, the phospholipids sense only one type of environment, at both the top and center of the bilayer, indicating that cholesterol acts as a screen, preventing the lipids from direct interaction with the antibiotic. At low temperature, the ordering of the lipid in the presence of cholesterol does not change upon filipin addition, whereas at elevated temperatures the local ordering of both the lipid and the labile cholesterol is significantly lower than that in the absence of the drug

  6. Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment

    Directory of Open Access Journals (Sweden)

    Takao Morinaga

    2018-06-01

    Full Text Available Cholesterol, a major component of the plasma membrane, determines the physicalproperties of biological membranes and plays a critical role in the assembly of membranemicrodomains. Enrichment or deprivation of membrane cholesterol affects the activities of manysignaling molecules at the plasma membrane. Cell detachment changes the structure of the plasmamembrane and influences the localizations of lipids, including cholesterol. Recent studies showedthat cell detachment changes the activities of a variety of signaling molecules. We previously reportedthat the localization and the function of the Src-family kinase Lyn are critically regulated by itsmembrane anchorage through lipid modifications. More recently, we found that the localization andthe activity of Lyn were changed upon cell detachment, although the manners of which vary betweencell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterolin the regulation of Lyn’s activation following cell detachment.

  7. Cholesterol autoxidation in phospholipid membrane bilayers

    International Nuclear Information System (INIS)

    Sevanian, A.; McLeod, L.L.

    1987-01-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation

  8. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    Science.gov (United States)

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  9. Cholesterol Promotes Protein Binding by Affecting Membrane Electrostatics and Solvation Properties.

    Science.gov (United States)

    Doktorova, Milka; Heberle, Frederick A; Kingston, Richard L; Khelashvili, George; Cuendet, Michel A; Wen, Yi; Katsaras, John; Feigenson, Gerald W; Vogt, Volker M; Dick, Robert A

    2017-11-07

    Binding of the retroviral structural protein Gag to the cellular plasma membrane is mediated by the protein's matrix (MA) domain. Prominent among MA-PM interactions is electrostatic attraction between the positively charged MA domain and the negatively charged plasma membrane inner leaflet. Previously, we reported that membrane association of HIV-1 Gag, as well as purified Rous sarcoma virus (RSV) MA and Gag, depends strongly on the presence of acidic lipids and is enhanced by cholesterol (Chol). The mechanism underlying this enhancement was unclear. Here, using a broad set of in vitro and in silico techniques we addressed molecular mechanisms of association between RSV MA and model membranes, and investigated how Chol enhances this association. In neutron scattering experiments with liposomes in the presence or absence of Chol, MA preferentially interacted with preexisting POPS-rich clusters formed by nonideal lipid mixing, binding peripherally to the lipid headgroups with minimal perturbation to the bilayer structure. Molecular dynamics simulations showed a stronger MA-bilayer interaction in the presence of Chol, and a large Chol-driven increase in lipid packing and membrane surface charge density. Although in vitro MA-liposome association is influenced by disparate variables, including ionic strength and concentrations of Chol and charged lipids, continuum electrostatic theory revealed an underlying dependence on membrane surface potential. Together, these results conclusively show that Chol affects RSV MA-membrane association by making the electrostatic potential at the membrane surface more negative, while decreasing the penalty for lipid headgroup desolvation. The presented approach can be applied to other viral and nonviral proteins. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system.

    Science.gov (United States)

    Werner, Hauke B; Krämer-Albers, Eva-Maria; Strenzke, Nicola; Saher, Gesine; Tenzer, Stefan; Ohno-Iwashita, Yoshiko; De Monasterio-Schrader, Patricia; Möbius, Wiebke; Moser, Tobias; Griffiths, Ian R; Nave, Klaus-Armin

    2013-04-01

    The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport. Copyright © 2013 Wiley Periodicals, Inc.

  11. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  13. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Michiko [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Hayashi, Teruo, E-mail: thayashi@mail.nih.gov [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Su, Tsung-Ping, E-mail: tsu@intra.nida.nih.gov [Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The endoplasmic reticulum subdomain termed MAM associates with mitochondria. Black-Right-Pointing-Pointer The biophysical role of lipids in the MAM-mitochondria association is unknown. Black-Right-Pointing-Pointer The in vitro membrane association assay was used to examine the role of lipids. Black-Right-Pointing-Pointer Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP{sub 3} receptor-mediated Ca{sup 2+} influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-{beta}-cyclodextrin (M{beta}C) significantly increases the association between MAMs and mitochondria, whereas M{beta}C saturated with cholesterol does not change the association. {sup 14}C-Serine pulse-labeling demonstrated that the treatment of living cells with M{beta}C decreases the level of de novo synthesized {sup 14}C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of

  14. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    International Nuclear Information System (INIS)

    Fujimoto, Michiko; Hayashi, Teruo; Su, Tsung-Ping

    2012-01-01

    Highlights: ► The endoplasmic reticulum subdomain termed MAM associates with mitochondria. ► The biophysical role of lipids in the MAM–mitochondria association is unknown. ► The in vitro membrane association assay was used to examine the role of lipids. ► Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP 3 receptor-mediated Ca 2+ influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-β-cyclodextrin (MβC) significantly increases the association between MAMs and mitochondria, whereas MβC saturated with cholesterol does not change the association. 14 C-Serine pulse-labeling demonstrated that the treatment of living cells with MβC decreases the level of de novo synthesized 14 C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of 14 C-phosphatidylethanolamine (PtEt). Apparently, cholesterol depletion increased the PtSer transport from MAMs to mitochondria. Our

  15. The Human ABCG1 Transporter Mobilizes Plasma Membrane and Late Endosomal Non-Sphingomyelin-Associated-Cholesterol for Efflux and Esterification

    Directory of Open Access Journals (Sweden)

    Edward B. Neufeld

    2014-12-01

    Full Text Available We have previously shown that GFP-tagged human ABCG1 on the plasma membrane (PM and in late endosomes (LE mobilizes sterol on both sides of the membrane lipid bilayer, thereby increasing cellular cholesterol efflux to lipid surfaces. In the present study, we examined ABCG1-induced changes in membrane cholesterol distribution, organization, and mobility. ABCG1-GFP expression increased the amount of mobile, non-sphingomyelin(SM-associated cholesterol at the PM and LE, but not the amount of SM-associated-cholesterol or SM. ABCG1-mobilized non-SM-associated-cholesterol rapidly cycled between the PM and LE and effluxed from the PM to extracellular acceptors, or, relocated to intracellular sites of esterification. ABCG1 increased detergent-soluble pools of PM and LE cholesterol, generated detergent-resistant, non-SM-associated PM cholesterol, and increased resistance to both amphotericin B-induced (cholesterol-mediated and lysenin-induced (SM-mediated cytolysis, consistent with altered organization of both PM cholesterol and SM. ABCG1 itself resided in detergent-soluble membrane domains. We propose that PM and LE ABCG1 residing at the phase boundary between ordered (Lo and disordered (Ld membrane lipid domains alters SM and cholesterol organization thereby increasing cholesterol flux between Lo and Ld, and hence, the amount of cholesterol available for removal by acceptors on either side of the membrane bilayer for either efflux or esterification.

  16. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease.

    Science.gov (United States)

    Domon, Magdalena; Nasir, Mehmet Nail; Matar, Gladys; Pikula, Slawomir; Besson, Françoise; Bandorowicz-Pikula, Joanna

    2012-06-01

    Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.

  17. N-acyl phosphatidylethanolamines affect the lateral distribution of cholesterol in membranes

    DEFF Research Database (Denmark)

    Térová, B.; Slotte, J.P.; Petersen, G.

    2005-01-01

    -acyl-POPE) or N-acyl-dipalmitoyl-sn-glycero-3-phosphatidylethanolamine (N-acyl-DPPE), and how the molecules interacted with cholesterol. The gel ¿ liquid crystalline transition temperature of sonicated N-acyl phosphatidylethanolamine vesicles in water correlated positively with the number of palmitic acyl chains...... in the molecules. Based on diphenylhexatriene steady state anisotropy measurements, the presence of 33 mol% cholesterol in the membranes removed the phase transition from N-oleoyl-POPE bilayers, but failed to completely remove it from N-palmitoyl-DPPE and N-palmitoyl-POPE bilayers, suggesting rather weak...... interaction of cholesterol with the N-saturated NAPEs. The rate of cholesterol desorption from mixed monolayers containing N-palmitoyl-DPPE and cholesterol (1:1 molar ratio) was much higher compared to cholesterol/DPPE binary monolayers, suggesting a weak cholesterol interaction with N-palmitoyl-DPPE also...

  18. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts.

    Science.gov (United States)

    Krause, Martin R; Regen, Steven L

    2014-12-16

    CONSPECTUS: Defining the two-dimensional structure of cell membranes represents one of the most daunting challenges currently facing chemists, biochemists, and biophysicists. In particular, the time-averaged lateral organization of the lipids and proteins that make up these natural enclosures has yet to be established. As the classic Singer-Nicolson model of cell membranes has evolved over the past 40 years, special attention has focused on the structural role played by cholesterol, a key component that represents ca. 30% of the total lipids that are present. Despite extensive studies with model membranes, two fundamental issues have remained a mystery: (i) the mechanism by which cholesterol condenses low-melting lipids by uncoiling their acyl chains and (ii) the thermodynamics of the interaction between cholesterol and high- and low-melting lipids. The latter bears directly on one of the most popular notions in modern cell biology, that is, the lipid raft hypothesis, whereby cholesterol is thought to combine with high-melting lipids to form "lipid rafts" that float in a "sea" of low-melting lipids. In this Account, we first describe a chemical approach that we have developed in our laboratories that has allowed us to quantify the interactions between exchangeable mimics of cholesterol and low- and high-melting lipids in model membranes. In essence, this "nearest-neighbor recognition" (NNR) method involves the synthesis of dimeric forms of these lipids that contain a disulfide moiety as a linker. By means of thiolate-disulfide interchange reactions, equilibrium mixtures of dimers are then formed. These exchange reactions are initiated either by adding dithiothreitol to a liposomal dispersion to generate a small amount of thiol monomer or by including a small amount of thiol monomer in the liposomes at pH 5.0 and then raising the pH to 7.4. We then show how such NNR measurements have allowed us to distinguish between two very different mechanisms that have been

  19. Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing.

    Science.gov (United States)

    Russo, Giacomo; Witos, Joanna; Rantamäki, Antti H; Wiedmer, Susanne K

    2017-12-01

    The present work aims at studying the interactions between cholesterol-rich phosphatidylcholine-based lipid vesicles and trioctylmethylphosphonium acetate ([P 8881 ][OAc]), a biomass dissolving ionic liquid (IL). The effect of cholesterol was assayed by using differential scanning calorimetry (DSC) and nanoplasmonic sensing (NPS) measurement techniques. Cholesterol-enriched dipalmitoyl-phosphatidylcholine vesicles were exposed to different concentrations of the IL, and the derived membrane perturbation was monitored by DSC. The calorimetric data could suggest that the binding and infiltration of the IL are delayed in the vesicles containing cholesterol. To clarify our findings, NPS was applied to quantitatively follow the resistance of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine incorporating 0, 10, and 50mol% of cholesterol toward the IL exposure over time. The membrane perturbation induced by different concentrations of IL was found to be a concentration dependent process on cholesterol-free lipid vesicles. Moreover, our results showed that lipid depletion in cholesterol-enriched lipid vesicles is inversely proportional to the increasing amount of cholesterol in the vesicles. These findings support that cholesterol-rich lipid bilayers are less susceptible toward membrane disrupting agents as compared to membranes that do not incorporate any sterols. This probably occurs because cholesterol tightens the phospholipid acyl chain packing of the plasma membranes, increasing their resistance and reducing their permeability. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stepwise visualization of membrane pore formation by suilysin, a bacterial cholesterol-dependent cytolysin.

    Science.gov (United States)

    Leung, Carl; Dudkina, Natalya V; Lukoyanova, Natalya; Hodel, Adrian W; Farabella, Irene; Pandurangan, Arun P; Jahan, Nasrin; Pires Damaso, Mafalda; Osmanović, Dino; Reboul, Cyril F; Dunstone, Michelle A; Andrew, Peter W; Lonnen, Rana; Topf, Maya; Saibil, Helen R; Hoogenboom, Bart W

    2014-12-02

    Membrane attack complex/perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins constitute a major superfamily of pore-forming proteins that act as bacterial virulence factors and effectors in immune defence. Upon binding to the membrane, they convert from the soluble monomeric form to oligomeric, membrane-inserted pores. Using real-time atomic force microscopy (AFM), electron microscopy (EM), and atomic structure fitting, we have mapped the structure and assembly pathways of a bacterial CDC in unprecedented detail and accuracy, focussing on suilysin from Streptococcus suis. We show that suilysin assembly is a noncooperative process that is terminated before the protein inserts into the membrane. The resulting ring-shaped pores and kinetically trapped arc-shaped assemblies are all seen to perforate the membrane, as also visible by the ejection of its lipids. Membrane insertion requires a concerted conformational change of the monomeric subunits, with a marked expansion in pore diameter due to large changes in subunit structure and packing.

  1. Sterol transfer between cyclodextrin and membranes: similar but not identical mechanism to NPC2-mediated cholesterol transfer.

    Science.gov (United States)

    McCauliff, Leslie A; Xu, Zhi; Storch, Judith

    2011-08-30

    Niemann--Pick C disease is an inherited disorder in which cholesterol and other lipids accumulate in the late endosomal/lysosomal compartment. Recently, cyclodextrins (CD) have been shown to reduce symptoms and extend lifespan in animal models of the disease. In the present studies we examined the mechanism of sterol transport by CD using in vitro model systems and fluorescence spectroscopy and NPC2-deficient fibroblasts. We demonstrate that cholesterol transport from the lysosomal cholesterol-binding protein NPC2 to CD occurs via aqueous diffusional transfer and is very slow; the rate-limiting step appears to be dissociation of cholesterol from NPC2, suggesting that specific interactions between NPC2 and CD do not occur. In contrast, the transfer rate of the fluorescent cholesterol analogue dehydroergosterol (DHE) from CD to phospholipid membranes is very rapid and is directly proportional to the acceptor membrane concentration, as is DHE transfer from membranes to CD. Moreover, CD dramatically increases the rate of sterol transfer between membranes, with rates that can approach those mediated by NPC2. The results suggest that sterol transfer from CD to membranes occurs by a collisional transfer mechanism involving direct interaction of CD with membranes, similar to that shown previously for NPC2. For CD, however, absolute rates are slower compared to NPC2 for a given concentration, and the lysosomal phospholipid lysobisphosphatidic acid (LBPA) does not stimulate rates of sterol transfer between membranes and CD. As expected from the apparent absence of interaction between CD and NPC2, the addition of CD to NPC2-deficient fibroblasts rapidly rescued the cholesterol accumulation phenotype. Thus, the recent observations of CD efficacy in mouse models of NPC disease are likely the result of CD enhancement of cholesterol transport between membranes, with rapid sterol transfer occurring during CD--membrane interactions.

  2. Inward cholesterol gradient of the membrane system in P. falciparum-infected erythrocytes involves a dilution effect from parasite-produced lipids

    Directory of Open Access Journals (Sweden)

    Fuyuki Tokumasu

    2014-05-01

    Full Text Available Plasmodium falciparum (Pf infection remodels the human erythrocyte with new membrane systems, including a modified host erythrocyte membrane (EM, a parasitophorous vacuole membrane (PVM, a tubulovesicular network (TVN, and Maurer's clefts (MC. Here we report on the relative cholesterol contents of these membranes in parasitized normal (HbAA and hemoglobin S-containing (HbAS, HbAS erythrocytes. Results from fluorescence lifetime imaging microscopy (FLIM experiments with a cholesterol-sensitive fluorophore show that membrane cholesterol levels in parasitized erythrocytes (pRBC decrease inwardly from the EM, to the MC/TVN, to the PVM, and finally to the parasite membrane (PM. Cholesterol depletion of pRBC by methyl-β-cyclodextrin treatment caused a collapse of this gradient. Lipid and cholesterol exchange data suggest that the cholesterol gradient involves a dilution effect from non-sterol lipids produced by the parasite. FLIM signals from the PVM or PM showed little or no difference between parasitized HbAA vs HbS-containing erythrocytes that differed in lipid content, suggesting that malaria parasites may regulate the cholesterol contents of the PVM and PM independently of levels in the host cell membrane. Cholesterol levels may affect raft structures and the membrane trafficking and sorting functions that support Pf survival in HbAA, HbAS and HbSS erythrocytes.

  3. Cholesterol, sphingolipids, and glycolipids: What do we know about their role in raft-like membranes?

    DEFF Research Database (Denmark)

    Rog, T.; Vattulainen, I.

    2014-01-01

    Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with pote......Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units...... with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has...... emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible...

  4. Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes.

    Science.gov (United States)

    Hissa, Barbara; Pontes, Bruno; Roma, Paula Magda S; Alves, Ana Paula; Rocha, Carolina D; Valverde, Thalita M; Aguiar, Pedro Henrique N; Almeida, Fernando P; Guimarães, Allan J; Guatimosim, Cristina; Silva, Aristóbolo M; Fernandes, Maria C; Andrews, Norma W; Viana, Nathan B; Mesquita, Oscar N; Agero, Ubirajara; Andrade, Luciana O

    2013-01-01

    In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.

  5. Molecular View of Cholesterol Flip-Flop and Chemical Potential in Different Membrane Environments

    NARCIS (Netherlands)

    Bennett, W. F. Drew; MacCallum, Justin L.; Hinner, Marlon J.; Marrink, Siewert J.; Tieleman, D. Peter

    2009-01-01

    The relative stability of cholesterol in cellular membranes and the thermodynamics of fluctuations from equilibrium have important consequences for sterol trafficking and lateral domain formation. We used molecular dynamics computer simulations to investigate the partitioning of cholesterol in a

  6. Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation

    International Nuclear Information System (INIS)

    Pan Jianjun; Tristram-Nagle, Stephanie; Nagle, John F.

    2009-01-01

    The effects of cholesterol on membrane bending modulus K C , membrane thickness D HH , the partial and apparent areas of cholesterol and lipid, and the order parameter S xray are shown to depend upon the number of saturated hydrocarbon chains in the lipid molecules. Particularly striking is the result that up to 40% cholesterol does not increase the bending modulus K C of membranes composed of phosphatidylcholine lipids with two cis monounsaturated chains, although it does have the expected stiffening effect on membranes composed of lipids with two saturated chains. The B fluctuational modulus in the smectic liquid crystal theory is obtained and used to discuss the interactions between bilayers. Our K C results motivate a theory of elastic moduli in the high cholesterol limit and they challenge the relevance of universality concepts. Although most of our results were obtained at 30 deg. C, additional data at other temperatures to allow consideration of a reduced temperature variable do not support universality for the effect of cholesterol on all lipid bilayers. If the concept of universality is to be valid, different numbers of saturated chains must be considered to create different universality classes. The above experimental results were obtained from analysis of x-ray scattering in the low angle and wide angle regions.

  7. Influence of cholesterol and ceramide-VI on structure of the multilamellar lipid membrane at water exchange

    International Nuclear Information System (INIS)

    Ryabova, N.Yu.; Kiselev, M.A.; Balagurov, A.M.

    2009-01-01

    The results of neutron diffraction investigation of structure changes in multilamellar lipid membranes DPPC/cholesterol and DPPC/ceramide-VI (DPPC - dipalmitoylphosphatidylcholine) during the processes of hydration and dehydration are presented. The influence of cholesterol and ceramide-VI on kinetics of water exchange in DPPC membrane is characterized

  8. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting?

    Science.gov (United States)

    Furlan, Aurélien L; Saad, Ahmad; Dufourc, Erick J; Géan, Julie

    2016-11-01

    Wine tasting results in interactions of tannin-ethanol solutions with proteins and lipids of the oral cavity. Among the various feelings perceived during tasting, astringency and bitterness most probably result in binding events with saliva proteins, lipids and receptors. In this work, we monitored the conjugated effect of the grape polyphenol catechin and ethanol on lipid membranes mimicking the different degrees of keratinization of oral cavity surfaces by varying the amount of cholesterol present in membranes. Both catechin and ethanol fluidify the membranes as evidenced by solid-state 2 H NMR of perdeuterated lipids. The effect is however depending on the cholesterol proportion and may be very important and cumulative in the absence of cholesterol or presence of 18 mol % cholesterol. For 40 mol % cholesterol, mimicking highly keratinized membranes, both ethanol and catechin can no longer affect membrane dynamics. These observations can be accounted for by phase diagrams of lipid-cholesterol mixtures and the role played by membrane defects for insertion of tannins and ethanol when several phases coexist. These findings suggest that the behavior of oral membranes in contact with wine should be different depending of their cholesterol content. Astringency and bitterness could be then affected; the former because of a potential competition between the tannin-lipid and the tannin-saliva protein interaction, and the latter because of a possible fluidity modification of membranes containing taste receptors. The lipids that have been up to now weakly considered in oenology may be become a new actor in the issue of wine tasting. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  9. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    Directory of Open Access Journals (Sweden)

    Takanari Nakano

    Full Text Available Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1, an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to

  10. Activation of the human complement system by cholesterol-rich and pegylated liposomes - Modulation of cholesterol-rich liposome-mediated complement activation by elevated serum LDL and HDL levels

    DEFF Research Database (Denmark)

    Moghimi, S.M.; Hamad, I.; Bunger, R.

    2006-01-01

    level of S-protein-bound form of the terminal complex (SC5b-9). However, liposome-induced rise of SC5b-9 was significantly suppressed when serum HDL cholesterol levels increased by 30%. Increase of serum LDL to levels similar to that observed in heterozygous familial hypercholesterolemia also suppressed......Intravenously infused liposomes may induce cardiopulmonary distress in some human subjects, which is a manifestation of "complement activation-related pseudoallergy." We have now examined liposome-mediated complement activation in human sera with elevated lipoprotein (LDL and HDL) levels, since...... abnormal or racial differences in serum lipid profiles seem to modulate the extent of complement activation and associated adverse responses. In accordance with our earlier observations, cholesterol-rich (45 mol% cholesterol) liposomes activated human complement, as reflected by a significant rise in serum...

  11. Phospho-Caveolin-1 Mediates Integrin-Regulated Membrane Domain Internalisation

    Science.gov (United States)

    del Pozo, Miguel A.; Alderson, Nazilla B.; Grande-García, Araceli; Balasubramanian, Nagaraj; Schwartz, Martin A.; Kiosses, William B.; Anderson, Richard G.W.

    2005-01-01

    Growth of normal cells is anchorage-dependent because signalling through multiple pathways including Erk, PI 3-kinase and Rac requires integrin-mediated cell adhesion 1. Components of these pathways localize to low density, cholesterol-rich domains in the plasma membrane named “lipid rafts” 2,3 or “cholesterol enriched membrane microdomains” (CEMM) 4. We previously reported that integrin-mediated adhesion regulates CEMM trafficking such that cell detachment from the extracellular matrix (ECM) triggers CEMM internalisation and clearance from the plasma membrane 5. We now report that this internalisation is mediated by dynamin-2 and caveolin-1. Internalisation requires phosphorylation of caveolin-1 on tyrosine 14. A shift in localisation of phospho-caveolin-1 from focal adhesions to caveolae induces CEMM internalisation upon cell detachment, which mediates inhibition of Erk, PI 3-kinase and Rac. These data define a novel molecular mechanism for growth and tumour suppression by caveolin-1. PMID:16113676

  12. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains.

    Science.gov (United States)

    Fantini, Jacques; Di Scala, Coralie; Baier, Carlos J; Barrantes, Francisco J

    2016-09-01

    The molecular mechanisms that control the multiple possible modes of protein association with membrane cholesterol are remarkably convergent. These mechanisms, which include hydrogen bonding, CH-π stacking and dispersion forces, are used by a wide variety of extracellular proteins (e.g. microbial or amyloid) and membrane receptors. Virus fusion peptides penetrate the membrane of host cells with a tilted orientation that is compatible with a transient interaction with cholesterol; this tilted orientation is also characteristic of the process of insertion of amyloid proteins that subsequently form oligomeric pores in the plasma membrane of brain cells. Membrane receptors that are associated with cholesterol generally display linear consensus binding motifs (CARC and CRAC) characterized by a triad of basic (Lys/Arg), aromatic (Tyr/phe) and aliphatic (Leu/Val) amino acid residues. In some cases, the presence of both CARC and CRAC within the same membrane-spanning domain allows the simultaneous binding of two cholesterol molecules, one in each membrane leaflet. In this review the molecular basis and the functional significance of the different modes of protein-cholesterol interactions in plasma membranes are discussed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail: John.Katsaras@nrc.gc.ca, E-mail: Norbert.Kucerka@nrc.gc.ca

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  14. Cholesterol in unusual places

    International Nuclear Information System (INIS)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J

    2010-01-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  15. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.

    Directory of Open Access Journals (Sweden)

    Luis F Aguilar

    Full Text Available Changes in the cholesterol (Chol content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs for cuvette and giant unilamellar vesicles (GUVs for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC and dioctadecyl phosphatidylcholine (DOPC in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo.

  16. Biophysical studies of cholesterol in unsaturated phospholipid model membranes

    Science.gov (United States)

    Williams, Justin Adam

    Cellular membranes contain a staggering diversity of lipids. The lipids are heterogeneously distributed to create regions, or domains, whose physical properties differ from the bulk membrane and play an essential role in modulating the function of resident proteins. Many basic questions pertaining to the formation of these lateral assemblies remain. This research employs model membranes of well-defined composition to focus on the potential role of polyunsaturated fatty acids (PUFAs) and their interaction with cholesterol (chol) in restructuring the membrane environment. Omega-3 (n-3) PUFAs are the main bioactive components of fish oil, whose consumption alleviates a variety of health problems by a molecular mechanism that is unclear. We hypothesize that the incorporation of PUFAs into membrane lipids and the effect they have on molecular organization may be, in part, responsible. Chol is a major constituent in the plasma membrane of mammals. It determines the arrangement and collective properties of neighboring lipids, driving the formation of domains via differential affinity for different lipids. The molecular organization of 1-[2H31]palmitoyl-2-eicosapentaenoylphosphatidylcholine (PEPC-d31) and 1-[2H31]palmitoyl-2-docosahexaenoylphosphatidylcholine (PDPC-d31) in membranes with sphingomyelin (SM) and chol (1:1:1 mol) was compared by solid-state 2H NMR spectroscopy. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids are the two major n-3 PUFAs found in fish oil, while PEPC-d31 and PDPC-d31 are phospholipids containing the respective PUFAs at the sn-2 position and a perdeuterated palmitic acid at the sn-1 position. Analysis of spectra recorded as a function of temperature indicates that in both cases, formation of PUFA-rich (less ordered) and SM-rich (more ordered) domains occurred. A surprisingly substantial proportion of PUFA was found to infiltrate the more ordered domain. There was almost twice as much DHA (65%) as EPA (30%). The implication is that n-3

  17. Cholesterol depletion induces dynamic confinement of the G-protein coupled serotonin(1A) receptor in the plasma membrane of living cells.

    Science.gov (United States)

    Pucadyil, Thomas J; Chattopadhyay, Amitabha

    2007-03-01

    Cholesterol is an essential constituent of eukaryotic membranes and plays a crucial role in membrane organization, dynamics, function, and sorting. It is often found distributed non-randomly in domains or pools in biological and model membranes and is thought to contribute to a segregated distribution of membrane constituents. Signal transduction events mediated by seven transmembrane domain G-protein coupled receptors (GPCRs) are the primary means by which cells communicate with and respond to their external environment. We analyzed the role of cholesterol in the plasma membrane organization of the G-protein coupled serotonin(1A) receptor by fluorescence recovery after photobleaching (FRAP) measurements with varying bleach spot sizes. Our results show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells in a manner that is consistent with dynamic confinement of serotonin(1A) receptors in the plasma membrane. Importantly, analysis of ligand binding and downstream signaling of the serotonin(1A) receptor suggests that receptor function is affected in a significantly different manner when intact cells or isolated membranes are depleted of cholesterol. These results assume significance in the context of interpreting effects of cholesterol depletion on diffusion characteristics of membrane proteins in particular, and cholesterol-dependent cellular processes in general.

  18. Cholesterol Induced Changes in the Characteristics of the Time Series From Planar Lipid Bilayer Membrane during Electroporation

    International Nuclear Information System (INIS)

    Kotulska, M.; Koronkiewicz, S.; Kalinowski, S.

    2002-01-01

    The electroporation can be used as a non-toxic method for introducing exogenous macromolecules, especially DNA and drugs, into various types of cells. Research in to new therapeutic methods based on Long Duration Electroporation (LDE) is of special interest. A new current-clamp method makes possible the electroporation of very long duration with no damage to bio-membranes. In this paper we compare responses of lipid planar bilayer membranes at physiological concentration of KCl, with lipid membranes formed at higher ionic strength, and membranes containing cholesterol. A longer lifespan of the membranes with cholesterol and membranes with increased ionic strength could be observed. Sensitivity of the power spectrum response to the presence of cholesterol, ionic strength, current intensity, and membrane ageing was examined. The membrane memory was analyzed by means of autocorrelation function and rescaled range analysis. We showed that the memory of the system decreases for higher current intensities and this relation is pronounced better at higher ionic strength. At low current intensities all membranes showed slightly persistent type of noise behavior with crossover to Brownian type of noise for higher current value. The transition w as much faster for higher ionic strength, where the next transition to anti-persistent response was observed for relatively low currents. Very interesting results were obtained from power spectrum analysis. At low current intensity, all membranes exhibited 1/f noise, which disappeared for higher currents, maintaining f β type with rising value of β. Membranes formed at lower ionic strength and with cholesterol showed a pronounced tendency to lose flicker noise while ageing, also with rising β value. (author)

  19. Effects of cations and cholesterol with sphingomyelin membranes investigated by high-resolution broadband sum frequency vibrational spectroscopy

    Science.gov (United States)

    Zhang, Zhen; Feng, Rong-juan; Li, Yi-yi; Liu, Ming-hua; Guo, Yuan

    2017-08-01

    Sphingomyelin(SM) is specifically enriched in the plasma membrane of mammalian cells. Its molecular structure is compose by N-acyl-Derythro-sphingosylphosphorylcholine. The function of the SM related to membrane signaling and protein trafficking are relied on the interactions of the SM, cations, cholesterol and proteins. In this report, the interaction of three different nature SMs, cations and cholesterol at air/aqueous interfaces studied by high-resolution broadband sum frequency vibrational spectroscopy, respectively. Our results shed lights on understanding the relationship between SMs monolayer, cholesterol and Cations.

  20. Can macular xanthophylls replace cholesterol in formation of the liquid-ordered phase in lipid-bilayer membranes?

    Science.gov (United States)

    Subczynski, Witold K; Wisniewska-Becker, Anna; Widomska, Justyna

    2012-01-01

    Lateral organization of membranes made from binary mixtures of dimyristoylphosphatidylcholine (DMPC) or dipalmitoylphosphatidylcholine (DPPC) and macular xanthophylls (lutein or zeaxanthin) was investigated using the saturation-recovery (SR) EPR spin-labeling discrimination by oxygen transport (DOT) method in which the bimolecular collision rate of molecular oxygen with the nitroxide spin label is measured. This work was undertaken to examine whether or not lutein and zeaxanthin, macular xanthophylls that parallel cholesterol in its function as a regulator of both membrane fluidity and hydrophobicity, can parallel other structural functions of cholesterol, including formation of the liquid-ordered phase in membranes. The DOT method permits discrimination of different membrane phases when the collision rates (oxygen transport parameter) differ in these phases. Additionally, membrane phases can be characterized by the oxygen transport parameter in situ without the need for separation, which provides information about the dynamics of each phase. In gel-phase membranes, two coexisting phases were discriminated in the presence of macular xanthophylls - namely, the liquid-ordered-like and solid-ordered-like phases. However, in fluid-phase membranes, xanthophylls only induce the solitary liquid-ordered-like phase, while at similar concentrations, cholesterol induces coexisting liquid-ordered and liquid-disordered phases. No significant differences between the effects of lutein and zeaxanthin were found.

  1. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells

    Science.gov (United States)

    Regmi, Raju; Winkler, Pamina M.; Flauraud, Valentin; Borgman, Kyra J. E.; Manzo, Carlo; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F.

    2017-10-01

    Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 {\\mu}s. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.

  2. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC.

    Science.gov (United States)

    Garbarino, Jeanne; Pan, Meihui; Chin, Harvey F; Lund, Frederik W; Maxfield, Frederick R; Breslow, Jan L

    2012-12-01

    STARD4, a member of the evolutionarily conserved START gene family, has been implicated in the nonvesicular intracellular transport of cholesterol. However, the direction of transport and the membranes with which this protein interacts are not clear. We present studies of STARD4 function using small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein receptor (LDLR) levels were increased and decreased, respectively. We also observed a decrease in NPC1 protein expression, suggesting the induction of compensatory pathways to maintain cholesterol balance. These data indicate a role for STARD4 in nonvesicular transport of cholesterol from the plasma membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well.

  3. The Position of Aβ22-40 and Aβ1-42 in Anionic Lipid Membranes Containing Cholesterol.

    Science.gov (United States)

    Barrett, Matthew A; Alsop, Richard J; Hauß, Thomas; Rheinstädter, Maikel C

    2015-11-30

    Amyloid-β peptides interact with cell membranes in the human brain and are associated with neurodegenerative diseases, such as Alzheimer's disease. An emerging explanation of the molecular mechanism, which results in neurodegeneration, places the cause of neurotoxicity of the amyloid- peptides on their potentially negative interaction with neuronal membranes. It is known that amyloid-β peptides interact with the membrane, modifying the membrane's structural and dynamic properties. We present a series of X-ray diffraction experiments on anionic model lipid membranes containing various amounts of cholesterol. These experiments provide experimental evidence for an interaction of both the full length amyloid-β1-42 peptide, and the peptide fragment amyloid-β22-40 with anionic bilayer containing cholesterol. The location of the amyloid-β peptides was determined from these experiments, with the full length peptide embedding into the membrane, and the peptide fragment occupying 2 positions-on the membrane surface and embedded into the membrane core.

  4. Lipid chain saturation and the cholesterol in the phospholipid membrane affect the spectroscopic properties of lipophilic dye nile red

    Science.gov (United States)

    Halder, Animesh; Saha, Baishakhi; Maity, Pabitra; Kumar, Gopinatha Suresh; Sinha, Deepak Kumar; Karmakar, Sanat

    2018-02-01

    We have studied the effect of composition and the phase state of phospholipid membranes on the emission spectrum, anisotropy and lifetime of a lipophilic fluorescence probe nile red. Fluorescence spectrum of nile red in membranes containing cholesterol has also been investigated in order to get insights into the influence of cholesterol on the phospholipid membranes. Maximum emission wavelength (λem) of nile red in the fluid phase of saturated and unsaturated phospholipids was found to differ by 10 nm. The λem was also found to be independent of chain length and charge of the membrane. However, the λem is strongly dependent on the temperature in the gel phase. The λem and rotational diffusion rate decrease, whereas the anisotropy and lifetime increase markedly with increasing cholesterol concentration for saturated phosoholipids, such as, dimyristoyl phosphatidylcholine (DMPC) in the liquid ordered phase. However, these spectroscopic properties do not alter significantly in case of unsaturated phospholipids, such as, dioleoyl phosphatidylcholine (DOPC) in liquid disordered phase. Interestingly, red edge excitation shift (REES) in the presence of lipid-cholesterol membranes is the direct consequences of change in rotational diffusion due to motional restriction of lipids in the presence of cholesterol. This study provides correlations between the membrane compositions and fluorescence spectral features which can be utilized in a wide range of biophysical fields as well the cell biology.

  5. Membrane rafts: a potential gateway for bacterial entry into host cells.

    Science.gov (United States)

    Hartlova, Anetta; Cerveny, Lukas; Hubalek, Martin; Krocova, Zuzana; Stulik, Jiri

    2010-04-01

    Pathogenic bacteria have developed various mechanisms to evade host immune defense systems. Invasion of pathogenic bacteria requires interaction of the pathogen with host receptors, followed by activation of signal transduction pathways and rearrangement of the cytoskeleton to facilitate bacterial entry. Numerous bacteria exploit specialized plasma membrane microdomains, commonly called membrane rafts, which are rich in cholesterol, sphingolipids and a special set of signaling molecules which allow entry to host cells and establishment of a protected niche within the host. This review focuses on the current understanding of the raft hypothesis and the means by which pathogenic bacteria subvert membrane microdomains to promote infection.

  6. Analysis of the 22-NBD-cholesterol transfer between liposome membranes and its relation to the intermembrane exchange of 25-hydroxycholesterol.

    Science.gov (United States)

    Ishii, Haruyuki; Shimanouchi, Toshinori; Umakoshi, Hiroshi; Walde, Peter; Kuboi, Ryoichi

    2010-05-01

    The transfer of 22-NBD-cholesterol (22-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3-ol) between two liposome membranes was quantitatively analyzed by using the fluorescence resonance energy transfer (FRET) method. Liposomes labeled with both 22-NBD-cholesterol and a rhodamine-labeled phosphatidylethanolamine (Rh-DHPE) were used as donor liposomes, and the 22-NBD-cholesterol transfer from these donor liposomes to acceptor liposomes prepared from same type of phosphatidylcholine was monitored. The transfer kinetics was found to be composed of a fast and a slow phase, and all kinetic measurements could be fitted with a bi-exponential model. The results obtained indicate that the 22-NBD-cholesterol transfer kinetics between liposome membranes depends on the fluidity of the liposome used and that the curvature may affect the kinetics. Furthermore, the behavior of 22-NBD-cholesterol in lipid membrane is similar to that of the oxysterol 25-hydroxycholesterol rather than cholesterol. It is proposed that 22-NBD-cholesterol can be a useful fluorescent probe to mimic the intermembrane transfer of oxidized cholesterols like 25-hydroxycholesterol, rather than that of cholesterol itself. 2010 Elsevier B.V. All rights reserved.

  7. Lipids rich in phosphatidylethanolamine from natural gas-utilizing bacteria reduce plasma cholesterol and classes of phospholipids

    DEFF Research Database (Denmark)

    Müller, H.; Hellgren, Lars; Olsen, E.

    2004-01-01

    -utilizing bacteria (LNGB), which were rich in PE. The group with 0% LNGB was fed a diet for which the lipid content was 100% soybean oil. The total cholesterol, LDL cholesterol, and HDL cholesterol of animals consuming a diet with 67% LNGB (67LNGB-diet), were significantly lowered by 35, 49, and 29%, respectively......, and unesterified cholesterol increased by 17% compared with the animals fed a diet of 100% lipids from soybean oil (SB-diet). In addition, the ratio of LDL cholesterol to HDL cholesterol was 27% lower in mink fed the 67LNGB-diet than those fed the S13-cliet. When the mink were fed the 67LNGB-diet, plasma PC, total...... phospholipids, lysoPC, and PI were lowered significantly compared with the mink fed a SB-diet. Plasma total cholesterol was correlated with total phospholipids as well as with PC (R = 0.8, P

  8. Critical time window of neuronal cholesterol synthesis during neurite outgrowth.

    Science.gov (United States)

    Fünfschilling, Ursula; Jockusch, Wolf J; Sivakumar, Nandhini; Möbius, Wiebke; Corthals, Kristina; Li, Sai; Quintes, Susanne; Kim, Younghoon; Schaap, Iwan A T; Rhee, Jeong-Seop; Nave, Klaus-Armin; Saher, Gesine

    2012-05-30

    Cholesterol is an essential membrane component enriched in plasma membranes, growth cones, and synapses. The brain normally synthesizes all cholesterol locally, but the contribution of individual cell types to brain cholesterol metabolism is unknown. To investigate whether cortical projection neurons in vivo essentially require cholesterol biosynthesis and which cell types support neurons, we have conditionally ablated the cholesterol biosynthesis in these neurons in mice either embryonically or postnatally. We found that cortical projection neurons synthesize cholesterol during their entire lifetime. At all stages, they can also benefit from glial support. Adult neurons that lack cholesterol biosynthesis are mainly supported by astrocytes such that their functional integrity is preserved. In contrast, microglial cells support young neurons. However, compensatory efforts of microglia are only transient leading to layer-specific neuronal death and the reduction of cortical projections. Hence, during the phase of maximal membrane growth and maximal cholesterol demand, neuronal cholesterol biosynthesis is indispensable. Analysis of primary neurons revealed that neurons tolerate only slight alteration in the cholesterol content and plasma membrane tension. This quality control allows neurons to differentiate normally and adjusts the extent of neurite outgrowth, the number of functional growth cones and synapses to the available cholesterol. This study highlights both the flexibility and the limits of horizontal cholesterol transfer in vivo and may have implications for the understanding of neurodegenerative diseases.

  9. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane.

    Science.gov (United States)

    Rabani, Vahideh; Montange, Damien; Meneveau, Nicolas; Davani, Siamak

    2017-10-11

    Ticagrelor is an antiplatelet agent that inhibits platelet activation via P2Y12 antagonism. There are several studies showing that P2Y12 needs lipid rafts to be activated, but there are few data about how ticagrelor impacts lipid raft organization. Therefore, we aimed to investigate how ticagrelor could impact the distribution of cholesterol and consequently alter the organization of lipid rafts on platelet plasma membranes. We identified cholesterol-enriched raft fractions in platelet membranes by quantification of their cholesterol levels. Modifications in cholesterol and protein profiles (Flotillin 1, Flotillin 2, CD36, P2Y1, and P2Y12) were studied in platelets stimulated by ADP, treated by ticagrelor, or both. In ADP-stimulated and ticagrelor-treated groups, we found a decreased level of cholesterol in raft fractions of platelet plasma membrane compared to the control group. In addition, the peak of cholesterol in different experimental groups changed its localization on membrane fractions. In the control group, it was situated on fraction 2, while in ADP-stimulated platelets, it was located in fractions 3 to 5, and in fraction 4 in ticagrelor-treated group. The proteins studied also showed changes in their level of expression and localization in fractions of plasma membrane. Cholesterol levels of plasma membranes have a direct role in the organization of platelet membranes and could be modified by stimulation or drug treatment. Since ticagrelor and ADP both changed lipid composition and protein profile, investigating the lipid and protein composition of platelet membranes is of considerable importance as a focus for further research in anti-platelet management.

  11. Intracellular transport of cholesterol in mammalian cells

    International Nuclear Information System (INIS)

    Brasaemle, D.L.

    1989-01-01

    The erythrocyte was selected as a simple cell for the study of transbilayer movement of cholesterol. Cholesterol oxidase was used to measure the distribution of [ 3 H]cholesterol across the erythrocyte membrane. Cholesterol oxidase was also used to estimate the rate of transport of low density lipoprotein (LDL) cholesterol to the plasma membrane of cultured Chinese hamster ovary (CHO) fibroblasts; the half-time of this process was 42 minutes. The rate of transport of LDL cholesterol to the plasma membrane was confirmed by a second procedure using amphotericin B. Amphotericin B was also used to estimate the rate of transport of endogenously synthesized cholesterol to the plasma membrane of CHO cells. New methodology was developed including improvements of the previously published cholesterol oxidase assay for plasma membrane cholesterol. A new method for detecting transport of cholesterol to the plasma membrane in cultured cells was developed using amphotericin B. Preliminary studies investigated the use of fluorescent polyenes, pimaricin and etruscomycin, as probes for plasma membrane cholesterol in transport studies. Finally, a modification of a previously published cell staining protocol yielded a simple, quantitative assay for cell growth

  12. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma membrane, ER, and ERC

    DEFF Research Database (Denmark)

    Garbarino, J.; Pan, M. H.; Chin, H. F.

    2012-01-01

    small hairpin RNA knockdown technology to reduce STARD4 expression in HepG2 cells. In a cholesterol-poor environment, we found that a reduction in STARD4 expression leads to retention of cholesterol at the plasma membrane, reduction of endoplasmic reticulum-associated cholesterol, and decreased ACAT...... synthesized cholesteryl esters. Furthermore, D4 KD cells exhibited a reduced rate of sterol transport to the endocytic recycling compartment after cholesterol repletion. Although these cells displayed normal endocytic trafficking in cholesterol-poor and replete conditions, cell surface low density lipoprotein...... membrane and the endocytic recycling compartment to the endoplasmic reticulum and perhaps other intracellular compartments as well. -Garbarino, J., M. Pan, H.F. Chin, F.W. Lund, F.R. Maxfield, and J.L. Breslow. STARD4 knockdown in HepG2 cells disrupts cholesterol trafficking associated with the plasma...

  13. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  14. Characterization of the functional requirements of West Nile virus membrane fusion.

    Science.gov (United States)

    Moesker, Bastiaan; Rodenhuis-Zybert, Izabela A; Meijerhof, Tjarko; Wilschut, Jan; Smit, Jolanda M

    2010-02-01

    Flaviviruses infect their host cells by a membrane fusion reaction. In this study, we performed a functional analysis of the membrane fusion properties of West Nile virus (WNV) with liposomal target membranes. Membrane fusion was monitored continuously using a lipid mixing assay involving the fluorophore, pyrene. Fusion of WNV with liposomes occurred on the timescale of seconds and was strictly dependent on mildly acidic pH. Optimal fusion kinetics were observed at pH 6.3, the threshold for fusion being pH 6.9. Preincubation of the virus alone at pH 6.3 resulted in a rapid loss of fusion capacity. WNV fusion activity is strongly promoted by the presence of cholesterol in the target membrane. Furthermore, we provide direct evidence that cleavage of prM to M is a requirement for fusion activity of WNV.

  15. A palmitoylation switch mechanism regulates Rac1 function and membrane organization

    Science.gov (United States)

    Navarro-Lérida, Inmaculada; Sánchez-Perales, Sara; Calvo, María; Rentero, Carles; Zheng, Yi; Enrich, Carlos; Del Pozo, Miguel A

    2012-01-01

    The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization. PMID:22157745

  16. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family.

    Science.gov (United States)

    Brejchova, Jana; Vosahlikova, Miroslava; Roubalova, Lenka; Parenti, Marco; Mauri, Mario; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-08-01

    Decrease of cholesterol level in plasma membrane of living HEK293 cells transiently expressing FLAG-δ-OR by β-cyclodextrin (β-CDX) resulted in a slight internalization of δ-OR. Massive internalization of δ-OR induced by specific agonist DADLE was diminished in cholesterol-depleted cells. These results suggest that agonist-induced internalization of δ-OR, which has been traditionally attributed exclusively to clathrin-mediated pathway, proceeds at least partially via membrane domains. Identification of internalized pools of FLAG-δ-OR by colocalization studies with proteins of Rab family indicated the decreased presence of receptors in early endosomes (Rab5), late endosomes and lysosomes (Rab7) and fast recycling vesicles (Rab4). Slow type of recycling (Rab11) was unchanged by cholesterol depletion. As expected, agonist-induced internalization of oxytocin receptors was totally suppressed in β-CDX-treated cells. Determination of average fluorescence lifetime of TMA-DPH, the polar derivative of hydrophobic membrane probe diphenylhexatriene, in live cells by FLIM indicated a significant alteration of the overall PM structure which may be interpreted as an increased "water-accessible space" within PM area. Data obtained by studies of HEK293 cells transiently expressing FLAG-δ-OR by "antibody feeding" method were extended by analysis of the effect of cholesterol depletion on distribution of FLAG-δ-OR in sucrose density gradients prepared from HEK293 cells stably expressing FLAG-δ-OR. Major part of FLAG-δ-OR was co-localized with plasma membrane marker Na,K-ATPase and β-CDX treatment resulted in shift of PM fragments containing both FLAG-δ-OR and Na,K-ATPase to higher density. Thus, the decrease in content of the major lipid constituent of PM resulted in increased density of resulting PM fragments.

  17. Membrane remodeling, an early event in benzo[α]pyrene-induced apoptosis

    International Nuclear Information System (INIS)

    Tekpli, Xavier; Rissel, Mary; Huc, Laurence; Catheline, Daniel; Sergent, Odile; Rioux, Vincent; Legrand, Philippe; Holme, Jorn A.; Dimanche-Boitrel, Marie-Therese; Lagadic-Gossmann, Dominique

    2010-01-01

    Benzo[α]pyrene (B[α]P) often serves as a model for mutagenic and carcinogenic polycyclic aromatic hydrocarbons (PAHs). Our previous work suggested a role of membrane fluidity in B[α]P-induced apoptotic process. In this study, we report that B[α]P modifies the composition of cholesterol-rich microdomains (lipid rafts) in rat liver F258 epithelial cells. The cellular distribution of the ganglioside-GM1 was markedly changed following B[α]P exposure. B[α]P also modified fatty acid composition and decreased the cholesterol content of cholesterol-rich microdomains. B[α]P-induced depletion of cholesterol in lipid rafts was linked to a reduced expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase). Aryl hydrocarbon receptor (AhR) and B[α]P-related H 2 O 2 formation were involved in the reduced expression of HMG-CoA reductase and in the remodeling of membrane microdomains. The B[α]P-induced membrane remodeling resulted in an intracellular alkalinization observed during the early phase of apoptosis. In conclusion, B[α]P altered the composition of plasma membrane microstructures through AhR and H 2 O 2 dependent-regulation of lipid biosynthesis. In F258 cells, the B[α]P-induced membrane remodeling was identified as an early apoptotic event leading to an intracellular alkalinization.

  18. An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking

    Directory of Open Access Journals (Sweden)

    Ximing Du

    2012-01-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.

  19. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  20. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    Science.gov (United States)

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. In Situ and Real-Time SFG Measurements Revealing Organization and Transport of Cholesterol Analogue 6-Ketocholestanol in a Cell Membrane.

    Science.gov (United States)

    Ma, Sulan; Li, Hongchun; Tian, Kangzhen; Ye, Shuji; Luo, Yi

    2014-02-06

    Cholesterol organization and transport within a cell membrane are essential for human health and many cellular functions yet remain elusive so far. Using cholesterol analogue 6-ketocholestanol (6-KC) as a model, we have successfully exploited sum frequency generation vibrational spectroscopy (SFG-VS) to track the organization and transport of cholesterol in a membrane by combining achiral-sensitive ssp (ppp) and chiral-sensitive psp polarization measurements. It is found that 6-KC molecules are aligned at the outer leaflet of the DMPC lipid bilayer with a tilt angle of about 10°. 6-KC organizes itself by forming an α-β structure at low 6-KC concentration and most likely a β-β structure at high 6-KC concentration. Among all proposed models, our results favor the so-called umbrella model with formation of a 6-KC cluster. Moreover, we have found that the long anticipated flip-flop motion of 6-KC in the membrane takes time to occur, at least much longer than previously thought. All of these interesting findings indicate that it is critical to explore in situ, real-time, and label-free methodologies to obtain a precise molecular description of cholesterol's behavior in membranes. This study represents the first application of SFG to reveal the cholesterol-lipid interaction mechanism at the molecular level.

  2. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    Science.gov (United States)

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  3. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    International Nuclear Information System (INIS)

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-01-01

    It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1 -/- cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  4. Upregulating reverse cholesterol transport with cholesteryl ester transfer protein inhibition requires combination with the LDL-lowering drug berberine in dyslipidemic hamsters.

    Science.gov (United States)

    Briand, François; Thieblemont, Quentin; Muzotte, Elodie; Sulpice, Thierry

    2013-01-01

    This study aimed to investigate whether cholesteryl ester transfer protein inhibition promotes in vivo reverse cholesterol transport in dyslipidemic hamsters. In vivo reverse cholesterol transport was measured after an intravenous injection of (3)H-cholesteryl-oleate-labeled/oxidized low density lipoprotein particles ((3)H-oxLDL), which are rapidly cleared from plasma by liver-resident macrophages for further (3)H-tracer egress in plasma, high density lipoprotein (HDL), liver, and feces. A first set of hamsters made dyslipidemic with a high-fat and high-fructose diet was treated with vehicle or torcetrapib 30 mg/kg (TOR) over 2 weeks. Compared with vehicle, TOR increased apolipoprotein E-rich HDL levels and significantly increased (3)H-tracer appearance in HDL by 30% over 72 hours after (3)H-oxLDL injection. However, TOR did not change (3)H-tracer recovery in liver and feces, suggesting that uptake and excretion of cholesterol deriving from apolipoprotein E-rich HDL is not stimulated. As apoE is a potent ligand for the LDL receptor, we next evaluated the effects of TOR in combination with the LDL-lowering drug berberine, which upregulates LDL receptor expression in dyslipidemic hamsters. Compared with TOR alone, treatment with TOR+berberine 150 mg/kg resulted in lower apolipoprotein E-rich HDL levels. After (3)H-oxLDL injection, TOR+berberine significantly increased (3)H-tracer appearance in fecal cholesterol by 109%. Our data suggest that cholesteryl ester transfer protein inhibition alone does not stimulate reverse cholesterol transport in dyslipidemic hamsters and that additional effects mediated by the LDL-lowering drug berberine are required to upregulate this process.

  5. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  6. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  7. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  8. Differential Effects of Cholesterol, Ergosterol and Lanosterol on a Dipalmitoyl Phosphatidylcholine (DPPC) membrane: A Molecular Dynamics Simulations Study

    Energy Technology Data Exchange (ETDEWEB)

    Cournia, Zoe [Yale University; Ullmann, G. Matthias [University of Bayreuth; Smith, Jeremy C [ORNL

    2007-02-01

    Lipid raft/domain formation may arise as a result of the effects of specific sterols on the physical properties of membranes. Here, using molecular dynamics simulation, we examine the effects of three closely-related sterols, ergosterol, cholesterol, and lanosterol, at a biologically relevant concentration (40 mol %) on the structural properties of a model dipalmitoyl phosphatidylcholine (DPPC) membrane at 309 and 323 K. All three sterols are found to order the DPPC acyl tails and condense the membrane relative to the DPPC liquid-phase membrane, but each one does this to a significantly different degree. The smooth {alpha}-face of ergosterol, together with the presence of tail unsaturation in this sterol, leads to closer interaction of ergosterol with the lipids and closer packing of the lipids with each other, so ergosterol has a higher condensing effect on the membrane, as reflected by the area per lipid. Moreover, ergosterol induces a higher proportion of trans lipid conformers, a thicker membrane, and higher lipid order parameters and is aligned more closely with the membrane normal. Ergosterol also positions itself closer to the bilayer/water interface. In contrast, the rough {alpha}-face of lanosterol leads to a less close interaction of the steroid ring system with the phospholipid acyl chains, and so lanosterol orders, straightens, and packs the lipid acyl chains less well and is less closely aligned with the membrane normal. Furthermore, lanosterol lies closer to the relatively disordered membrane center than do the other sterols. The behavior of cholesterol in all the above respects is intermediate between that of lanosterol and ergosterol. The findings here may explain why ergosterol is the most efficient of the three sterols at promoting the liquid-ordered phase and lipid domain formation and may also furnish part of the explanation as to why cholesterol is evolutionarily preferred over lanosterol in higher-vertebrate plasma membranes.

  9. Membrane cholesterol effect on the 5-HT2A receptor: Insights into the lipid-induced modulation of an antipsychotic drug target.

    Science.gov (United States)

    Ramírez-Anguita, Juan Manuel; Rodríguez-Espigares, Ismael; Guixà-González, Ramon; Bruno, Agostino; Torrens-Fontanals, Mariona; Varela-Rial, Alejandro; Selent, Jana

    2018-01-01

    The serotonin 5-hydroxytryptamine 2A (5-HT 2A ) receptor is a G-protein-coupled receptor (GPCR) relevant for the treatment of CNS disorders. In this regard, neuronal membrane composition in the brain plays a crucial role in the modulation of the receptor functioning. Since cholesterol is an essential component of neuronal membranes, we have studied its effect on the 5-HT 2A receptor dynamics through all-atom MD simulations. We find that the presence of cholesterol in the membrane increases receptor conformational variability in most receptor segments. Importantly, detailed structural analysis indicates that conformational variability goes along with the destabilization of hydrogen bonding networks not only within the receptor but also between receptor and lipids. In addition to increased conformational variability, we also find receptor segments with reduced variability. Our analysis suggests that this increased stabilization is the result of stabilizing effects of tightly bound cholesterol molecules to the receptor surface. Our finding contributes to a better understanding of membrane-induced alterations of receptor dynamics and points to cholesterol-induced stabilizing and destabilizing effects on the conformational variability of GPCRs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  10. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes

    Science.gov (United States)

    Habchi, Johnny; Chia, Sean; Galvagnion, Céline; Michaels, Thomas C. T.; Bellaiche, Mathias M. J.; Ruggeri, Francesco Simone; Sanguanini, Michele; Idini, Ilaria; Kumita, Janet R.; Sparr, Emma; Linse, Sara; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2018-06-01

    Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.

  11. Cholesterol in the retina: the best is yet to come

    Science.gov (United States)

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  12. Free-cholesterol loading does not trigger phase separation of the fluorescent sterol dehydroergosterol in the plasma membrane of macrophages

    DEFF Research Database (Denmark)

    Wüstner, Daniel

    2008-01-01

    membrane distribution of the fluorescent cholesterol-mimicking sterol dehydroergosterol (DHE) was investigated in FC-loaded J774 macrophages. Wide field fluorescence and deconvolution microscopy were combined with quantitative assessment of sterol distribution in straightened plasma membrane image segments...

  13. Cholesterol-dependent energy transfer between fluorescent proteins-insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick type C disease cells.

    Science.gov (United States)

    von Einem, Bjoern; Weber, Petra; Wagner, Michael; Malnar, Martina; Kosicek, Marko; Hecimovic, Silva; Arnim, Christine A F von; Schneckenburger, Herbert

    2012-11-26

    Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer's disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1-/-), exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC), were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT) and CHO-NPC1-/- cells (EPI-illumination microscopy), as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM), were performed. Additionally, generalized polarization (GP) measurements of CHO-WT and CHO-NPC1-/- cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1-/- cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1-/-. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.

  14. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion.

    Science.gov (United States)

    Breen, Michael R; Camps, Marta; Carvalho-Simoes, Francisco; Zorzano, Antonio; Pilch, Paul F

    2012-01-01

    Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity.

  15. Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion.

    Directory of Open Access Journals (Sweden)

    Michael R Breen

    Full Text Available Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity.

  16. Cholesterol Depletion in Adipocytes Causes Caveolae Collapse Concomitant with Proteosomal Degradation of Cavin-2 in a Switch-Like Fashion

    Science.gov (United States)

    Breen, Michael R.; Camps, Marta; Carvalho-Simoes, Francisco; Zorzano, Antonio; Pilch, Paul F.

    2012-01-01

    Caveolae, little caves of cell surfaces, are enriched in cholesterol, a certain level of which is required for their structural integrity. Here we show in adipocytes that cavin-2, a peripheral membrane protein and one of 3 cavin isoforms present in caveolae from non-muscle tissue, is degraded upon cholesterol depletion in a rapid fashion resulting in collapse of caveolae. We exposed 3T3-L1 adipocytes to the cholesterol depleting agent methyl-β-cyclodextrin, which results in a sudden and extensive degradation of cavin-2 by the proteasome and a concomitant movement of cavin-1 from the plasma membrane to the cytosol along with loss of caveolae. The recovery of cavin-2 at the plasma membrane is cholesterol-dependent and is required for the return of cavin-1 from the cytosol to the cell surface and caveolae restoration. Expression of shRNA directed against cavin-2 also results in a cytosolic distribution of cavin-1 and loss of caveolae. Taken together, these data demonstrate that cavin-2 functions as a cholesterol responsive component of caveolae that is required for cavin-1 localization to the plasma membrane, and caveolae structural integrity. PMID:22493697

  17. Interactions of the local anesthetic tetracaine with membranes containing phosphatidylcholine and cholesterol: a 2H NMR study

    International Nuclear Information System (INIS)

    Auger, M.; Jarrell, H.C.; Smith, I.C.P.

    1988-01-01

    The interactions of local anesthetic tetracaine with multilamellar dispersions of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol have been investigated by deuterium nuclear magnetic resonance of specifically deuteriated tetracaines, DMPC and cholesterol. Experiments were performed at pH 5.5, when the anesthetic is primarily charged, and at pH 9.5, when it is primarily uncharged. The partition coefficients of the anesthetic in the membrane have been measured at both pH values for phosphatidylcholine bilayers with and without cholesterol. The higher partition coefficients obtained at pH 9.5 reflect the hydrophobic interactions between the uncharged form of the anesthetic and the hydrocarbon region of the bilayer. The lower partition coefficients for the DMPC/cholesterol system at both pH values suggest that cholesterol, which increases the order of the lipid chains, decreases the solubility of tetracaine into the bilayer. For phosphatidylcholine bilayers, it has been proposed that the charged tetracaine at low pH is located mostly at the phospholipid headgroup level while the uncharged tetracaine intercalates more deeply into the bilayer. The present study suggests that the location of tetracaine in the cholesterol-containing system is different from that in pure phosphatidylcholine bilayers: the anesthetic sits higher in the membrane. An increase in temperature results in a deeper penetration of the anesthetic into the bilayer. Moreover, the incorporation of the anesthetic into DMPC bilayers with or without cholesterol results in a reduction of the lipid order parameters both in the plateau and in the tail regions of the acyl chains, this effect being greater with the charged form of the anesthetic

  18. Formation of 3D cholesterol crystals from 2D nucleation sites in lipid bilayer membranes: implications for atherosclerosis.

    Science.gov (United States)

    Varsano, Neta; Fargion, Iael; Wolf, Sharon G; Leiserowitz, Leslie; Addadi, Lia

    2015-02-04

    Atherosclerosis is the major precursor of cardiovascular disease. The formation of cholesterol crystals in atherosclerotic plaques is associated with the onset of acute pathology. The cholesterol crystals induce physical injury in the plaque core, promoting cell apoptosis and triggering an increased inflammatory response. Herein we address the question of how cholesterol crystal formation occurs in atherosclerosis. We demonstrate that three-dimensional (3D) cholesterol crystals can undergo directed nucleation from bilayer membranes containing two-dimensional (2D) cholesterol crystalline domains. We studied crystal formation on supported lipid bilayers loaded with exogenous cholesterol and labeled using a monoclonal antibody that specifically recognizes ordered cholesterol arrays. Our findings show that 3D crystals are formed exclusively on the bilayer regions where there are segregated 2D cholesterol crystalline domains and that they form on the domains. This study has potentially significant implications for our understanding of the crucial step in the mechanism by which atherosclerotic lesions form.

  19. Studies on the mechanism of cholesterol uptake and on the effects of bile salts on this uptake by brush-border membranes isolated from rabbit small intestine.

    Science.gov (United States)

    Proulx, P; Aubry, H; Brglez, I; Williamson, D G

    1984-12-19

    The effect of bile salts and other surfactants on the rate of incorporation of cholesterol into isolated brush-border membranes was tested. At constant cholesterol concentration, a stimulatory effect of taurocholate was noticed which increased as the bile salt concentration was raised to 20 mM. Taurodeoxycholate was as effective as taurocholate at concentrations of up to 5 mM and inhibited at higher concentrations. Glycocholate was only moderately stimulatory whereas cholate was nearly as effective as taurocholate at concentrations above 5 mM. Other surfactants such as sodium lauryl sulfate and Triton X-100 were very inhibitory at all concentrations tried whereas cetyltrimethyl ammonium chloride was stimulatory only at a very low range of concentrations. These micellizing agents all caused some disruption of the membranes and the greater effectiveness of taurocholate in stimulating sterol uptake was partly relatable to the weaker membrane solubilizing action of this bile salt. Preincubation of membranes with 20 mM taurocholate followed by washing and exposure to cholesterol-containing lipid suspensions lacking bile salt, did not enhance the incorporation of the sterol. In the absence of bile salt the incorporation of cholesterol was unaffected by stirring of the incubation mixtures. Increasing the cholesterol concentration in the mixed micelle while keeping the concentration of bile salt constant caused an increase in rate of sterol incorporation. This increased rate was seen whether the cholesterol suspension was turbid, i.e., contained non-micellized cholesterol, or whether it was optically-clear and contained only monomers and micelles. When the concentration of taurocholate and cholesterol were increased simultaneously such that the concentration ratio of these two components was kept constant, there resulted a corresponding increase in rate of cholesterol uptake. The initial rates of cholesterol incorporation from suspensions containing micellar and monomer

  20. The assembly of GM1 glycolipid- and cholesterol-enriched raft-like membrane microdomains is important for giardial encystation.

    Science.gov (United States)

    De Chatterjee, Atasi; Mendez, Tavis L; Roychowdhury, Sukla; Das, Siddhartha

    2015-05-01

    Although encystation (or cyst formation) is an important step of the life cycle of Giardia, the cellular events that trigger encystation are poorly understood. Because membrane microdomains are involved in inducing growth and differentiation in many eukaryotes, we wondered if these raft-like domains are assembled by this parasite and participate in the encystation process. Since the GM1 ganglioside is a major constituent of mammalian lipid rafts (LRs) and known to react with cholera toxin B (CTXB), we used Alexa Fluor-conjugated CTXB and GM1 antibodies to detect giardial LRs. Raft-like structures in trophozoites are located in the plasma membranes and on the periphery of ventral discs. In cysts, however, they are localized in the membranes beneath the cyst wall. Nystatin and filipin III, two cholesterol-binding agents, and oseltamivir (Tamiflu), a viral neuraminidase inhibitor, disassembled the microdomains, as evidenced by reduced staining of trophozoites with CTXB and GM1 antibodies. GM1- and cholesterol-enriched LRs were isolated from Giardia by density gradient centrifugation and found to be sensitive to nystatin and oseltamivir. The involvement of LRs in encystation could be supported by the observation that raft inhibitors interrupted the biogenesis of encystation-specific vesicles and cyst production. Furthermore, culturing of trophozoites in dialyzed medium containing fetal bovine serum (which is low in cholesterol) reduced raft assembly and encystation, which could be rescued by adding cholesterol from the outside. Our results suggest that Giardia is able to form GM1- and cholesterol-enriched lipid rafts and these raft domains are important for encystation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Membrane orientation and lateral diffusion of BODIPY-cholesterol as a function of probe structure

    DEFF Research Database (Denmark)

    Solanko, Lukasz Michal; Wüstner, Daniel; Lund, Frederik Wendelboe

    2013-01-01

    -24 of cholesterol (B-P-Chol). Using two-photon fluorescence polarimetry in giant unilamellar vesicles and in the plasma membrane (PM) of living intact and actin-disrupted cells, we show that the BODIPY-groups in B-Chol and B-P-Chol are oriented perpendicular and almost parallel to the bilayer normal...

  2. Plasma membrane cholesterol level and agonist-induced internalization of delta-opioid receptors; colocalization study with intracellular membrane markers of Rab family\

    Czech Academy of Sciences Publication Activity Database

    Brejchová, Jana; Vošahlíková, Miroslava; Roubalová, Lenka; Parenti, M.; Mauri, M.; Chernyavskiy, Oleksandr; Svoboda, Petr

    2016-01-01

    Roč. 48, č. 4 (2016), s. 375-396 ISSN 0145-479X R&D Projects: GA ČR(CZ) GAP207/12/0919 Institutional support: RVO:67985823 Keywords : cholesterol * plasma membrane * delta-opioid receptor * internalization * Rab proteins Subject RIV: CE - Biochemistry Impact factor: 2.576, year: 2016

  3. CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity.

    Science.gov (United States)

    Cardaba, Clara Moyano; Kerr, Jason S; Mueller, Anja

    2008-09-01

    The chemokine receptor, CCR5, acts as a co-receptor for human immunodeficiency virus entry into cells. CCR5 has been shown to be targeted to cholesterol- and sphingolipid-rich membrane microdomains termed lipid rafts or caveolae. Cholesterol is essential for CCL4 binding to CCR5 and for keeping the conformational integrity of the receptor. Filipin treatment leads to loss of caveolin-1 from the membrane and therefore to a collapse of the caveolae. We have found here that sequestration of membrane cholesterol with filipin did not affect receptor signalling, however a loss of ligand-induced internalisation of CCR5 was observed. Cholesterol extraction with methyl-beta-cyclodextrin (MCD) reduced signalling through CCR5 as measured by release of intracellular Ca(2+) and completely abolished the inhibition of forskolin-stimulated cAMP accumulation with no effect on internalisation. Pertussis toxin (PTX) treatment inhibited the intracellular release of calcium that is transduced via Galphai G-proteins. Depletion of cholesterol destroyed microdomains in the membrane and switched CCR5/G-protein coupling to a PTX-independent G-protein. We conclude that cholesterol in the membrane is essential for CCR5 signalling via the Galphai G-protein subunit, and that integrity of lipid rafts is not essential for effective CCR5 internalisation however it is crucial for proper CCR5 signal transduction via Galphai G-proteins.

  4. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    Science.gov (United States)

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  5. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  6. Sarcolemmal cholesterol and caveolin-3 dependence of cardiac function, ischemic tolerance, and opioidergic cardioprotection

    Science.gov (United States)

    See Hoe, Louise E.; Schilling, Jan M.; Tarbit, Emiri; Kiessling, Can J.; Busija, Anna R.; Niesman, Ingrid R.; Du Toit, Eugene; Ashton, Kevin J.; Roth, David M.; Headrick, John P.; Patel, Hemal H.

    2014-01-01

    Cholesterol-rich caveolar microdomains and associated caveolins influence sarcolemmal ion channel and receptor function and protective stress signaling. However, the importance of membrane cholesterol content to cardiovascular function and myocardial responses to ischemia-reperfusion (I/R) and cardioprotective stimuli are unclear. We assessed the effects of graded cholesterol depletion with methyl-β-cyclodextrin (MβCD) and lifelong knockout (KO) or overexpression (OE) of caveolin-3 (Cav-3) on cardiac function, I/R tolerance, and opioid receptor (OR)-mediated protection. Langendorff-perfused hearts from young male C57Bl/6 mice were untreated or treated with 0.02–1.0 mM MβCD for 25 min to deplete membrane cholesterol and disrupt caveolae. Hearts were subjected to 25-min ischemia/45-min reperfusion, and the cardioprotective effects of morphine applied either acutely or chronically [sustained ligand-activated preconditioning (SLP)] were assessed. MβCD concentration dependently reduced normoxic contractile function and postischemic outcomes in association with graded (10–30%) reductions in sarcolemmal cholesterol. Cardioprotection with acute morphine was abolished with ≥20 μM MβCD, whereas SLP was more robust and only inhibited with ≥200 μM MβCD. Deletion of Cav-3 also reduced, whereas Cav-3 OE improved, myocardial I/R tolerance. Protection via SLP remained equally effective in Cav-3 KO mice and was additive with innate protection arising with Cav-3 OE. These data reveal the membrane cholesterol dependence of normoxic myocardial and coronary function, I/R tolerance, and OR-mediated cardioprotection in murine hearts (all declining with cholesterol depletion). In contrast, baseline function appears insensitive to Cav-3, whereas cardiac I/R tolerance parallels Cav-3 expression. Novel SLP appears unique, being less sensitive to cholesterol depletion than acute OR protection and arising independently of Cav-3 expression. PMID:25063791

  7. Cholesterol and myelin biogenesis.

    Science.gov (United States)

    Saher, Gesine; Simons, Mikael

    2010-01-01

    Myelin consists of several layers of tightly compacted membranes wrapped around axons in the nervous system. The main function of myelin is to provide electrical insulation around the axon to ensure the rapid propagation of nerve conduction. As the myelinating glia terminally differentiates, they begin to produce myelin membranes on a remarkable scale. This membrane is unique in its composition being highly enriched in lipids, in particular galactosylceramide and cholesterol. In this review we will summarize the role of cholesterol in myelin biogenesis in the central and peripheral nervous system.

  8. Synthesis and characterization of a novel rhodamine labeled cholesterol reporter.

    Science.gov (United States)

    Maiwald, Alexander; Bauer, Olivia; Gimpl, Gerald

    2017-06-01

    We introduce the novel fluorescent cholesterol probe RChol in which a sulforhodamine group is linked to the sixth carbon atom of the steroid backbone of cholesterol. The same position has recently been selected to generate the fluorescent reporter 6-dansyl-cholestanol (DChol) and the photoreactive 6-azi-cholestanol. In comparison with DChol, RChol is brighter, much more photostable, and requires less energy for excitation, i.e. favorable conditions for microscopical imaging. RChol easily incorporates into methyl-β-cyclodextrin forming a water-soluble inclusion complex that acts as an efficient sterol donor for cells and membranes. Like cholesterol, RChol possesses a free 3'OH group, a prerequisite to undergo intracellular esterification. RChol was also able to support the growth of cholesterol auxotrophic cells and can therefore substitute for cholesterol as a major component of the plasma membrane. According to subcellular fractionation, slight amounts of RChol (~12%) were determined in low-density Triton-insoluble fractions whereas the majority of RChol was localized in non-rafts fractions. In phase-separated giant unilamellar vesicles, RChol preferentially partitions in liquid-disordered membrane domains. Intracellular RChol was transferred to extracellular sterol acceptors such as high density lipoproteins in a dose-dependent manner. Unlike DChol, RChol was not delivered to the cholesterol storage pathway. Instead, it translocated to endosomes/lysosomes with some transient contacts to peroxisomes. Thus, RChol is considered as a useful probe to study the endosomal/lysosomal pathway of cholesterol. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of the Combined Effect of Ibuprofen and Cholesterol on the Microviscosity and Ordering of Model Lipid Membranes by Timeresolved Measurement of Fluorescence Anisotropy Decay

    Science.gov (United States)

    Yefimova, S. L.; Tkacheva, T. N.; Kasian, N. A.

    2017-05-01

    The timeresolved fluorescence anisotropy decay of perylene incorporated into the lipid Ladipalmitoylphosphatidylch oline (DPPC) membrane has been studied to evaluate the membranotropic action of the nonsteroidal antiinflammatory drug, ibuprofen, and the combined effect of ibuprofen and cholesterol. The rotation correlation times (φ) and limiting anisotropy (r∞ ) permit an independent estimation of the effects of these additives on the microviscosity and ordering of model lipid membranes in different phase states. Ibuprofen was shown to cause a significant decrease in the DPPC membrane microviscosity in the gel phase with hardly any effect on the liquidcrystal phase. However, in both phases, ibuprofen diminishes the ordering of the lipid hydrophobic chains. A marked additive effect is noted when ibuprofen is embedded in the liquid membrane enriched with cholesterol, which manifests itself in substantial fluidization and disordering or the liquid membrane by the action of the components on the lipid membrane. Ibuprofen in the liquidcrystal phase causes leveling of the fluidizing and ordering effects of cholesterol.

  10. Kinetic stability and membrane structure of liposomes during in vitro infant intestinal digestion: Effect of cholesterol and lactoferrin.

    Science.gov (United States)

    Liu, Weilin; Wei, Fuqiang; Ye, Aiqian; Tian, Mengmeng; Han, Jianzhong

    2017-09-01

    The effects of cholesterol and lactoferrin on the kinetic stability and membrane structural integrity of negatively charged liposomes under in vitro infant intestinal digestion conditions were elucidated using dynamic light scattering, pH-stat titration, Fourier transform infrared spectroscopy, and pyrene steady state fluorescence probes. The liposomes had a smaller particle diameter, a wider size distribution, and a greater negative charge after digestion. The incorporation of cholesterol into the phospholipid bilayers resulted in a more ordered conformation in the aliphatic tail region and reduced micropolarity, indicating that cholesterol can improve the structural stability of liposomal membranes against intestinal environmental stress. Lactoferrin coverage facilitated the release of free fatty acids and increased the microfluidity of the bilayers, reducing the structural integrity of the liposomes. This study provides useful information on the design of liposomes and other microcapsules with improved and controlled release properties during digestion for particular groups of people. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis.

    Science.gov (United States)

    Widenmaier, Scott B; Snyder, Nicole A; Nguyen, Truc B; Arduini, Alessandro; Lee, Grace Y; Arruda, Ana Paula; Saksi, Jani; Bartelt, Alexander; Hotamisligil, Gökhan S

    2017-11-16

    Cholesterol is a critical nutrient requiring tight constraint in the endoplasmic reticulum (ER) due to its uniquely challenging biophysical properties. While the mechanisms by which the ER defends against cholesterol insufficiency are well described, it remains unclear how the ER senses and effectively defends against cholesterol excess. Here, we identify the ER-bound transcription factor nuclear factor erythroid 2 related factor-1, Nrf1/Nfe2L1, as a critical mediator of this process. We show that Nrf1 directly binds to and specifically senses cholesterol in the ER through a defined domain and that cholesterol regulates Nrf1 turnover, processing, localization, and activity. In Nrf1 deficiency, in vivo cholesterol challenges induce massive hepatic cholesterol accumulation and damage, which is rescued by replacing Nrf1 exogenously. This Nrf1-mediated mechanism involves the suppression of CD36-driven inflammatory signaling and derepression of liver X receptor activity. These findings reveal Nrf1 as a guardian of cholesterol homeostasis and a core component of adaptive responses to excess cellular cholesterol. Copyright © 2017. Published by Elsevier Inc.

  12. Competition between ergosterol and cholesterol in sterol uptake and intracellular trafficking in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Valachovic, M.; Hronska, L.; Hapala, I.

    1998-01-01

    The fate of internal cholesterol was evaluated in cells grown under various conditions with respect to the amount and the nature of sterols supplemented to the cells. Steryl esters accumulate in stationary phase-yeast cells and they are rapidly hydrolyzed in cells during exponential growth or ergosterol depletion. Cholesterol and other 'unnatural' sterols are esterified more efficiently that native ergosterol and it was speculated that esterification could protect cellular membranes from accumulation of these less optimal sterols. We tested this idea by monitoring the mobility of 14 C-cholesterol between free and esterified fractions in cell supplemented with cholesterol or ergosterol. It was found that cells grown on cholesterol to the stationary phase accumulated up to 80 % of label in the steryl ester fraction. Subsequent growth in sterol-free media caused sterol-depletion of plasma membrane and induced hydrolysis of 14 C- cholesteryl esters and accumulation of the label in free membranous sterol pool.Supplementation of cells with external sterols resulted in a shift in sterol trafficking and in a new accumulation of 14 C-cholesteryl esters. This indicates that the absence of an efficient proof-reading mechanism in plasma membrane that would be able to remove preferentially cholesterol from the free sterol pool in plasma membrane to steryl esters in lipidic particles. The mobility of cholesterol molecules in non-growing cells wa negligible suggesting that active growth or membrane proliferation are required for shifts of sterol molecules between these pools. (authors)

  13. Structure of N-Terminal Domain of NPC1 Reveals Distinct Subdomains for Binding and Transfer of Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyock Joo; Abi-Mosleh, Lina; Wang, Michael L.; Deisenhofer, Johann; Goldstein, Joseph L.; Brown, Michael S.; Infante, Rodney E.; (UTSMC)

    2010-09-21

    LDL delivers cholesterol to lysosomes by receptor-mediated endocytosis. Exit of cholesterol from lysosomes requires two proteins, membrane-bound Niemann-Pick C1 (NPC1) and soluble NPC2. NPC2 binds cholesterol with its isooctyl side chain buried and its 3{beta}-hydroxyl exposed. Here, we describe high-resolution structures of the N-terminal domain (NTD) of NPC1 and complexes with cholesterol and 25-hydroxycholesterol. NPC1(NTD) binds cholesterol in an orientation opposite to NPC2: 3{beta}-hydroxyl buried and isooctyl side chain exposed. Cholesterol transfer from NPC2 to NPC1(NTD) requires reorientation of a helical subdomain in NPC1(NTD), enlarging the opening for cholesterol entry. NPC1 with point mutations in this subdomain (distinct from the binding subdomain) cannot accept cholesterol from NPC2 and cannot restore cholesterol exit from lysosomes in NPC1-deficient cells. We propose a working model wherein after lysosomal hydrolysis of LDL-cholesteryl esters, cholesterol binds NPC2, which transfers it to NPC1(NTD), reversing its orientation and allowing insertion of its isooctyl side chain into the outer lysosomal membranes.

  14. Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Lange, Y.; Schmit, V.M.; Schreiber, J.R.

    1988-01-01

    The distribution and movement of cholesterol were studied in granulosa cells from the ovaries of estrogen-stimulated hypophysectomized immature rats cultured in serum-free medium. Plasma membrane cholesterol was distinguished from intracellular cholesterol with cholesterol oxidase, an enzyme that converts cell surface cholesterol to cholestenone, leaving intracellular cholesterol untouched. Using this approach we showed that 82% of unesterified cholesterol was associated with the plasma membrane in granulosa cells cultured for 48 h in serum-free medium in both the presence and absence of added androstenedione and FSH. FSH and androstenedione stimulated a marked increase in steroid hormone (progestin) production. The movement of newly synthesized cholesterol to the plasma membrane also was followed using cholesterol oxidase. Newly synthesized cholesterol reached the plasma membrane too rapidly to be measured in unstimulated cells (t1/2 less than 20 min); however, in cells stimulated by FSH and androstenedione, this rate was considerably slower (t1/2 approximately 2h). Therefore, cholesterol movement to the plasma membrane appears to be regulated by gonadotropins in these cells. We tested whether steroid biosynthesis used all cell cholesterol pools equally. To this end we administered [3H]acetate and [14C]acetate at different times and determined their relative specific contents in various steroids after defined intervals. The relative ages of the steroids (youngest to oldest) were: lanosterol, progestins, intracellular cholesterol, and plasma membrane cholesterol. This finding suggests that progestins use newly synthesized intracellular cholesterol in preference to preexisting intracellular or cell surface cholesterol

  15. Cholesterol oxidation products and their biological importance

    DEFF Research Database (Denmark)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr

    2016-01-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low...... and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have...

  16. Domain 4 (D4 of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update

    Directory of Open Access Journals (Sweden)

    Masashi Maekawa

    2017-03-01

    Full Text Available The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine. Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4 of Perfringolysin O (PFO, theta toxin, a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  17. DSC and EPR investigations on effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within lipid bilayer membrane.

    Science.gov (United States)

    Zhao, Lingyun; Feng, Si-Shen; Kocherginsky, Nikolai; Kostetski, Iouri

    2007-06-29

    Differential scanning calorimetry (DSC) and electron paramagnetic resonance spectroscopy (EPR) were applied to investigate effects of cholesterol component on molecular interactions between paclitaxel, which is one of the best antineoplastic agents found from nature, and dipalmitoylphosphatidylcholine (DPPC) within lipid bilayer vesicles (liposomes), which could also be used as a model cell membrane. DSC analysis showed that incorporation of paclitaxel into the DPPC bilayer causes a reduction in the cooperativity of bilayer phase transition, leading to a looser and more flexible bilayer structure. Including cholesterol component in the DPPC/paclitaxel mixed bilayer can facilitate the molecular interaction between paclitaxel and lipid and make the tertiary system more stable. EPR analysis demonstrated that both of paclitaxel and cholesterol have fluidization effect on the DPPC bilayer membranes although cholesterol has more significant effect than paclitaxel does. The reduction kinetics of nitroxides by ascorbic acid showed that paclitaxel can inhibit the reaction by blocking the diffusion of either the ascorbic acid or nitroxide molecules since the reaction is tested to be a first order one. Cholesterol can remarkably increase the reduction reaction speed. This research may provide useful information for optimizing liposomal formulation of the drug as well as for understanding the pharmacology of paclitaxel.

  18. Membrane order in the plasma membrane and endocytic recycling compartment.

    Science.gov (United States)

    Iaea, David B; Maxfield, Frederick R

    2017-01-01

    The cholesterol content of membranes plays an important role in organizing membranes for signal transduction and protein trafficking as well as in modulating the biophysical properties of membranes. While the properties of model or isolated membranes have been extensively studied, there has been little evaluation of internal membranes in living cells. Here, we use a Nile Red based probe, NR12S, and ratiometric live cell imaging, to analyze the membrane order of the plasma membrane and endocytic recycling compartment. We find that after a brief incubation to allow endocytosis, NR12S is distributed between the plasma membrane and the endocytic recycling compartment. The NR12S reports that the endocytic recycling compartment is more highly ordered than the plasma membrane. We also find that the plasma membrane and the endocytic recycling compartment are differentially affected by altering cellular cholesterol levels. The membrane order of the plasma membrane, but not the endocytic recycling compartment, is altered significantly when cellular cholesterol content is increased or decreased by 20%. These results demonstrate that changes in cellular cholesterol differentially alter membrane order within different organelles.

  19. CUP-1 Is a Novel Protein Involved in Dietary Cholesterol Uptake in Caenorhabditis elegans

    Science.gov (United States)

    Valdes, Victor J.; Athie, Alejandro; Salinas, Laura S.; Navarro, Rosa E.; Vaca, Luis

    2012-01-01

    Sterols transport and distribution are essential processes in all multicellular organisms. Survival of the nematode Caenorhabditis elegans depends on dietary absorption of sterols present in the environment. However the general mechanisms associated to sterol uptake in nematodes are poorly understood. In the present work we provide evidence showing that a previously uncharacterized transmembrane protein, designated Cholesterol Uptake Protein-1 (CUP-1), is involved in dietary cholesterol uptake in C. elegans. Animals lacking CUP-1 showed hypersensitivity to cholesterol limitation and were unable to uptake cholesterol. A CUP-1-GFP fusion protein colocalized with cholesterol-rich vesicles, endosomes and lysosomes as well as the plasma membrane. Additionally, by FRET imaging, a direct interaction was found between the cholesterol analog DHE and the transmembrane “cholesterol recognition/interaction amino acid consensus” (CRAC) motif present in C. elegans CUP-1. In-silico analysis identified two mammalian homologues of CUP-1. Most interestingly, CRAC motifs are conserved in mammalian CUP-1 homologous. Our results suggest a role of CUP-1 in cholesterol uptake in C. elegans and open up the possibility for the existence of a new class of proteins involved in sterol absorption in mammals. PMID:22479487

  20. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    Science.gov (United States)

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Effects of Dimethyl Sulfoxide in Cholesterol-Containing Lipid Membranes: A Comparative Study of Experiments In Silico and with Cells

    Science.gov (United States)

    de Ménorval, Marie-Amélie; Mir, Lluis M.; Fernández, M. Laura; Reigada, Ramon

    2012-01-01

    Dimethyl sulfoxide (DMSO) has been known to enhance cell membrane permeability of drugs or DNA. Molecular dynamics (MD) simulations with single-component lipid bilayers predicted the existence of three regimes of action of DMSO: membrane loosening, pore formation and bilayer collapse. We show here that these modes of action are also reproduced in the presence of cholesterol in the bilayer, and we provide a description at the atomic detail of the DMSO-mediated process of pore formation in cholesterol-containing lipid membranes. We also successfully explore the applicability of DMSO to promote plasma membrane permeability to water, calcium ions (Ca2+) and Yo-Pro-1 iodide (Yo-Pro-1) in living cell membranes. The experimental results on cells in culture can be easily explained according to the three expected regimes: in the presence of low doses of DMSO, the membrane of the cells exhibits undulations but no permeability increase can be detected, while at intermediate DMSO concentrations cells are permeabilized to water and calcium but not to larger molecules as Yo-Pro-1. These two behaviors can be associated to the MD-predicted consequences of the effects of the DMSO at low and intermediate DMSO concentrations. At larger DMSO concentrations, permeabilization is larger, as even Yo-Pro-1 can enter the cells as predicted by the DMSO-induced membrane-destructuring effects described in the MD simulations. PMID:22848583

  2. Use of a platelet-rich fibrin membrane to repair traumatic tympanic membrane perforations: a comparative study.

    Science.gov (United States)

    Gür, Özer Erdem; Ensari, Nuray; Öztürk, Mehmet Türker; Boztepe, Osman Fatih; Gün, Taylan; Selçuk, Ömer Tarık; Renda, Levent

    2016-10-01

    (1) To evaluate the effects of a platelet-rich fibrin (PRF) membrane in the repair of traumatic tympanic membrane (TM) perforations; and (2) to compare the use of a PRF membrane with the paper patch technique with regard to recovery rates, healing time, and correction of the mean air-bone gap. A randomized, prospective analysis was performed for 60 patients who were treated for traumatic TM perforations using one of the two methods. Closure rate, speed of healing, and hearing gain were compared between the PRF (Group 1) and paper patch (Group 2) groups. Closure was obtained in 28 (93%) perforations in Group 1 and 25 (83%) perforations in Group 2 (p > 0.05). On day 10, full closure of the TM was observed in 24 (80%) patients in Group 1 and 16 (53%) patients in Group 2 (p < 0.05). The improvement in the mean air-bone gap was 14.1 dB in Group 1 and 12.4 dB in Group 2 on post-operative day 45 (p < 0.05). In comparison with the paper patch method, PRF, a new method, provided more rapid healing with more successful audiological results, and with no requirement for a second procedure.

  3. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia

    2015-03-01

    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  4. Cholesterol suppresses antimicrobial effect of statins

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Haeri

    2015-12-01

    Full Text Available Objective(s:Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol.

  5. Cholesterol modulates the cellular localization of Orai1 channels and its disposition among membrane domains.

    Science.gov (United States)

    Bohórquez-Hernández, A; Gratton, Enrico; Pacheco, Jonathan; Asanov, Alexander; Vaca, Luis

    2017-12-01

    Store Operated Calcium Entry (SOCE) is one of the most important mechanisms for calcium mobilization in to the cell. Two main proteins sustain SOCE: STIM1 that acts as the calcium sensor in the endoplasmic reticulum (ER) and Orai1 responsible for calcium influx upon depletion of ER. There are many studies indicating that SOCE is modulated by the cholesterol content of the plasma membrane (PM). However, a myriad of questions remain unanswered concerning the precise molecular mechanism by which cholesterol modulates SOCE. In the present study we found that reducing PM cholesterol results in the internalization of Orai1 channels, which can be prevented by overexpressing caveolin 1 (Cav1). Furthermore, Cav1 and Orai1 associate upon SOCE activation as revealed by FRET and coimmunoprecipitation assays. The effects of reducing cholesterol were not limited to an increased rate of Orai1 internalization, but also, affects the lateral movement of Orai1, inducing movement in a linear pattern (unobstructed diffusion) opposite to basal cholesterol conditions were most of Orai1 channels moves in a confined space, as assessed by Fluorescence Correlation Spectroscopy, Cav1 overexpression inhibited these alterations maintaining Orai1 into a confined and partially confined movement. These results not only highlight the complex effect of cholesterol regulation on SOCE, but also indicate a direct regulatory effect on Orai1 localization and compartmentalization by this lipid. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    Science.gov (United States)

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC

  7. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection.

    Science.gov (United States)

    Semini, Geo; Paape, Daniel; Paterou, Athina; Schroeder, Juliane; Barrios-Llerena, Martin; Aebischer, Toni

    2017-08-01

    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?

    DEFF Research Database (Denmark)

    Kulig, W.; Tynkkynen, J.; Javanainen, M.

    2014-01-01

    Cholesteryl hemisuccinate is a detergent that is often used to replace cholesterol in crystallization of membrane proteins. Here we employ atomistic molecular dynamics simulations to characterize how well the properties of cholesteryl hemisuccinate actually match those of cholesterol in saturated...... protein-free lipid membranes. We show that the protonated form of cholesteryl hemisuccinate mimics many of the membrane properties of cholesterol quite well, while the deprotonated form of cholesteryl hemisuccinate is less convincing in this respect. Based on the results, we suggest that cholesteryl...... hemisuccinate in its protonated form is a quite faithful mimic of cholesterol for membrane protein crystallization, if specific cholesterol-protein interactions (not investigated here) are not playing a crucial role....

  9. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline

    Czech Academy of Sciences Publication Activity Database

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, E. E.; Jakubík, Jan

    2018-01-01

    Roč. 133, May 1 (2018), s. 129-144 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA14-05696S; GA ČR(CZ) GA17-16182S Institutional support: RVO:67985823 Keywords : muscarinic acetylcholine receptors * membrane cholesterol * xanomeline * receptor activation * molecular dynamics Subject RIV: ED - Physiology OBOR OECD: Physiology (including cytology) Impact factor: 5.012, year: 2016

  10. Complexation-Induced Phase Separation: Preparation of Metal-Rich Polymeric Membranes

    KAUST Repository

    Villalobos Vazquez de la Parra, Luis Francisco

    2017-08-01

    The majority of state-of-the-art polymeric membranes for industrial or medical applications are fabricated by phase inversion. Complexation induced phase separation (CIPS)—a surprising variation of this well-known process—allows direct fabrication of hybrid membranes in existing facilities. In the CIPS process, a first step forms the thin metal-rich selective layer of the membrane, and a succeeding step the porous support. Precipitation of the selective layer takes place in the same solvent used to dissolve the polymer and is induced by a small concentration of metal ions. These ions form metal-coordination-based crosslinks leading to the formation of a solid skin floating on top of the liquid polymer film. A subsequent precipitation in a nonsolvent bath leads to the formation of the porous support structure. Forming the dense layer and porous support by different mechanisms while maintaining the simplicity of a phase inversion process, results in unprecedented control over the final structure of the membrane. The thickness and morphology of the dense layer as well as the porosity of the support can be controlled over a wide range by manipulating simple process parameters. CIPS facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude—from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. The nature of the CIPS process facilitates a precise loading of a high concentration of metal ions that are located in only the top layer of the membrane. Moreover, these metal ions can be converted—during the membrane fabrication process—to nanoparticles or crystals. This simple method opens up fascinating possibilities for the fabrication of metal-rich polymeric membranes with a new set of properties. This dissertation describes the process in depth and explores promising

  11. Probing the temperature-dependent changes of the interfacial hydration and viscosity of Tween20 : cholesterol (1 : 1) niosome membrane using fisetin as a fluorescent molecular probe.

    Science.gov (United States)

    Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar

    2018-05-16

    A detailed photophysical study of fisetin in a Tween20 : cholesterol (1 : 1) niosome membrane has been carried out. Fisetin is found to partition well into the Tween20 : cholesterol (1 : 1) niosome membrane at low temperature (Kp = 2.7 × 104 M-1 at 10 °C). Cetylpyridinium chloride quenching study confirms the location of fisetin molecules in the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. The emission from the prototropic forms of fisetin (neutral form, excited state anion, ground state anion and phototautomer form) is found to sensitively reflect the local heterogeneities in Tween20 : cholesterol (1 : 1) niosome membrane. The shift in anionic emission maximum with variation in temperature shows the sensitivity of fisetin towards water accessibility at the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. Zeta potential value confirms that there is no role of surface charge in the multiple prototropism of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane. The microviscosity changes with temperature, as reflected in fluorescence anisotropy values of fisetin phototautomeric species FT*, give information about the temperature-induced changes in the motional resistance offered by the interfacial domain of the niosomal membrane to small molecules. A temperature-dependent fluorescence lifetime study confirms the distribution of FT* in the two different sites of niosomal interfacial domain, i.e. water-deficient inner site and water-accessible outer site. This heterogeneity in distribution of FT* is further confirmed through time-resolved fluorescence anisotropy decay resulting in two different rotational time constants (faster component of ∼1.04 ns originates from water-accessible outer site and slower component of ∼16.50 ns originates from water-deficient inner site). The interfacial location of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane has

  12. Effect of cyclodextrin-loaded cholesterol conjugates on plasma membrane viability of Piau swine breed frozen/thawed spermatozoa.

    Science.gov (United States)

    Pinho, R O; Lima, D M A; Shiomi, H H; Siqueira, J B; Silveira, C O; Faria, V R; Lopes, P S; Guimarães, S E F; Guimarães, J D

    2016-08-01

    The objective of this study was to investigate the effect of cyclodextrin-loaded cholesterol conjugates addition to freezing extenders on plasma membrane viability of frozen-thawed spermatozoa of the Piau swine breed. Twenty semen samples were used from five males. The freezing extender was based on lactose-egg yolk extender, added to 2% glycerol, 3% dimethylacetamide. The addition of cyclodextrin-loaded cholesterol conjugates was performed after centrifugation, when semen was diluted with the cooling extender. Four groups were subjected to the following treatment: without addition (group 1); 1.5 mg of cyclodextrin-loaded cholesterol/120 × 10(6) sperm (group 2); 1.5 mg of cyclodextrin-loaded cholestanol/120 × 10(6) sperm (group 3); 1.5 mg of cyclodextrin-loaded desmosterol/120 × 10(6) sperm (group 4). To check post-thawing sperm quality sperm motility and sperm morphology evaluation were used. Additionally, to check sperm viability the hypoosmotic swelling test, supravital staining, and fluorescent assay were used. The mean values recorded for total sperm motility of semen immediately after thawing were 54.5 ± 5.8, 55.5 ± 5.3, 53.7 ± 6.7, and 52.5 ± 6.6% respectively for groups one to four, without difference between themselves (p > 0.05). Regarding fluorescent assay the results were 28.3 ± 13.2, 26.9 ± 12.2, 22.2 ± 11.4, and 32.0 ± 15.3% respectively for groups one to four, also without difference between groups (p > 0,05). Similarly, complementary tests for evaluating the integrity and functionality of the plasma membrane showed no difference between treatments (p > 0.05). In conclusion, use of cyclodextrin-loaded cholesterol conjugates added to the plasma membrane of sperm did not demonstrate any additive effect on increasing and/or maintaining sperm motility. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    DEFF Research Database (Denmark)

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high......-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic...

  14. Regulation of alpha1 Na/K-ATPase expression by cholesterol.

    Science.gov (United States)

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-04-29

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.

  15. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    NARCIS (Netherlands)

    Chapman, M. John; Ginsberg, Henry N.; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L.; Descamps, Olivier S.; Fisher, Edward; Kovanen, Petri T.; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G.; Ray, Kausik K.; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F.

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density

  16. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    DEFF Research Database (Denmark)

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipop...

  17. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters

    DEFF Research Database (Denmark)

    Sezgin, Erdinc; Betul Can, Fatma; Schneider, Falk

    2016-01-01

    Cholesterol is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of cholesterol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently...... for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase separated giant unilamellar vesicles (GUVs) and giant plasma membrane vesicles (GPMVs); 2) cellular trafficking, specifically subcellular localization in Niemann-Pick C...... in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent cholesterol analogs in visualizing cellular cholesterol dynamics....

  18. Anthocyanin-Rich Juice Lowers Serum Cholesterol, Leptin, and Resistin and Improves Plasma Fatty Acid Composition in Fischer Rats.

    Directory of Open Access Journals (Sweden)

    Daniela Graf

    Full Text Available Obesity and obesity-associated diseases e.g. cardiovascular diseases and type 2 diabetes are spread worldwide. Anthocyanins are supposed to have health-promoting properties, although convincing evidence is lacking. The aim of the present study was to investigate the effect of anthocyanins on several risk factors for obesity-associated diseases. Therefore, Fischer rats were fed anthocyanin-rich grape-bilberry juice or an anthocyanin-depleted control juice for 10 weeks. Intervention with anthocyanin-rich grape-bilberry juice reduced serum cholesterol and tended to decrease serum triglycerides. No effects were seen for serum non-esterified fatty acids, glucose, and insulin. Anthocyanin-rich grape-bilberry juice intervention reduced serum leptin and resistin, but showed no influence on serum adiponectin and secretion of adipokines from mesenteric adipose tissue. Furthermore, anthocyanin-rich grape-bilberry juice increased the proportion of polyunsaturated fatty acids and decreased the amount of saturated fatty acids in plasma. These results indicate that anthocyanins possess a preventive potential for obesity-associated diseases.

  19. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid

    Science.gov (United States)

    Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.

    2013-01-01

    In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330

  20. A Helicobacter pylori Homolog of Eukaryotic Flotillin Is Involved in Cholesterol Accumulation, Epithelial Cell Responses and Host Colonization

    Directory of Open Access Journals (Sweden)

    Melanie L. Hutton

    2017-06-01

    Full Text Available The human pathogen Helicobacter pylori acquires cholesterol from membrane raft domains in eukaryotic cells, commonly known as “lipid rafts.” Incorporation of this cholesterol into the H. pylori cell membrane allows the bacterium to avoid clearance by the host immune system and to resist the effects of antibiotics and antimicrobial peptides. The presence of cholesterol in H. pylori bacteria suggested that this pathogen may have cholesterol-enriched domains within its membrane. Consistent with this suggestion, we identified a hypothetical H. pylori protein (HP0248 with homology to the flotillin proteins normally found in the cholesterol-enriched domains of eukaryotic cells. As shown for eukaryotic flotillin proteins, HP0248 was detected in detergent-resistant membrane fractions of H. pylori. Importantly, H. pylori HP0248 mutants contained lower levels of cholesterol than wild-type bacteria (P < 0.01. HP0248 mutant bacteria also exhibited defects in type IV secretion functions, as indicated by reduced IL-8 responses and CagA translocation in epithelial cells (P < 0.05, and were less able to establish a chronic infection in mice than wild-type bacteria (P < 0.05. Thus, we have identified an H. pylori flotillin protein and shown its importance for bacterial virulence. Taken together, the data demonstrate important roles for H. pylori flotillin in host-pathogen interactions. We propose that H. pylori flotillin may be required for the organization of virulence proteins into membrane raft-like structures in this pathogen.

  1. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Science.gov (United States)

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  2. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Samia Hannaoui

    2014-11-01

    Full Text Available Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD: whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.

  3. Organization of fluorescent cholesterol analogs in lipid bilayers - lessons from cyclodextrin extraction.

    Science.gov (United States)

    Milles, Sigrid; Meyer, Thomas; Scheidt, Holger A; Schwarzer, Roland; Thomas, Lars; Marek, Magdalena; Szente, Lajos; Bittman, Robert; Herrmann, Andreas; Günther Pomorski, Thomas; Huster, Daniel; Müller, Peter

    2013-08-01

    To characterize the structure and dynamics of cholesterol in membranes, fluorescent analogs of the native molecule have widely been employed. The cholesterol content in membranes is in general manipulated by using water-soluble cyclodextrins. Since the interactions between cyclodextrins and fluorescent-labeled cholesterol have not been investigated in detail so far, we have compared the cyclodextrin-mediated membrane extraction of three different fluorescent cholesterol analogs (one bearing a NBD and two bearing BODIPY moieties). Extraction of these analogs was followed by measuring the Förster resonance energy transfer between a rhodamine moiety linked to phosphatidylethanolamine and the labeled cholesterol. The extraction kinetics revealed that the analogs are differently extracted from membranes. We examined the orientation of the analogs within the membrane and their influence on lipid condensation using NMR and EPR spectroscopies. Our data indicate that the extraction of fluorescent sterols from membranes is determined by several parameters, including their impact on lipid order, their hydrophobicity, their intermolecular interactions with surrounding lipids, their orientation within the bilayer, and their affinity with the exogenous acceptor. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  5. Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, Maciej; Lund, Frederik W.; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol...... as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal...... fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first...

  6. Cholesterol Bilayer Domains in the Eye Lens Health: A Review.

    Science.gov (United States)

    Widomska, Justyna; Subczynski, Witold K; Mainali, Laxman; Raguz, Marija

    2017-12-01

    The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.

  7. Dynamic partitioning of a glycosyl-phosphatidylinositol-anchored protein in glycosphingolipid-rich microdomains imaged by single-quantum dot tracking.

    Science.gov (United States)

    Pinaud, Fabien; Michalet, Xavier; Iyer, Gopal; Margeat, Emmanuel; Moore, Hsiao-Ping; Weiss, Shimon

    2009-06-01

    Recent experimental developments have led to a revision of the classical fluid mosaic model proposed by Singer and Nicholson more than 35 years ago. In particular, it is now well established that lipids and proteins diffuse heterogeneously in cell plasma membranes. Their complex motion patterns reflect the dynamic structure and composition of the membrane itself, as well as the presence of the underlying cytoskeleton scaffold and that of the extracellular matrix. How the structural organization of plasma membranes influences the diffusion of individual proteins remains a challenging, yet central, question for cell signaling and its regulation. Here we have developed a raft-associated glycosyl-phosphatidyl-inositol-anchored avidin test probe (Av-GPI), whose diffusion patterns indirectly report on the structure and dynamics of putative raft microdomains in the membrane of HeLa cells. Labeling with quantum dots (qdots) allowed high-resolution and long-term tracking of individual Av-GPI and the classification of their various diffusive behaviors. Using dual-color total internal reflection fluorescence (TIRF) microscopy, we studied the correlation between the diffusion of individual Av-GPI and the location of glycosphingolipid GM1-rich microdomains and caveolae. We show that Av-GPI exhibit a fast and a slow diffusion regime in different membrane regions, and that slowing down of their diffusion is correlated with entry in GM1-rich microdomains located in close proximity to, but distinct, from caveolae. We further show that Av-GPI dynamically partition in and out of these microdomains in a cholesterol-dependent manner. Our results provide direct evidence that cholesterol-/sphingolipid-rich microdomains can compartmentalize the diffusion of GPI-anchored proteins in living cells and that the dynamic partitioning raft model appropriately describes the diffusive behavior of some raft-associated proteins across the plasma membrane.

  8. Remnant cholesterol and ischemic heart disease

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2014-01-01

    PURPOSE OF REVIEW: To review recent advances in the field of remnant cholesterol as a contributor to the development of ischemic heart disease (IHD). RECENT FINDINGS: Epidemiologic, mechanistic, and genetic studies all support a role for elevated remnant cholesterol (=cholesterol in triglyceride......-rich lipoproteins) as a contributor to the development of atherosclerosis and IHD. Observational studies show association between elevated remnant cholesterol and IHD, and mechanistic studies show remnant cholesterol accumulation in the arterial wall like LDL-cholesterol (LDL-C) accumulation. Furthermore, large...... genetic studies show evidence of remnant cholesterol as a causal risk factor for IHD independent of HDL-cholesterol levels. Genetic studies also show that elevated remnant cholesterol is associated with low-grade inflammation, whereas elevated LDL-C is not. There are several pharmacologic ways of lowering...

  9. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Asakawa, Hitoshi; Fukuma, Takeshi [Frontier Science Organization, Kanazawa University, Kakuma-machi, 920-1192 Kanazawa (Japan)], E-mail: hi_asa@staff.kanazawa-u.ac.jp, E-mail: fukuma@staff.kanazawa-u.ac.jp

    2009-07-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  10. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    International Nuclear Information System (INIS)

    Asakawa, Hitoshi; Fukuma, Takeshi

    2009-01-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  11. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    OpenAIRE

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  12. Enzymes involved in cholesterol homeostasis in outer vs inner cortices of the guinea pig adrenal

    International Nuclear Information System (INIS)

    Brody, R.I.

    1988-01-01

    Adrenocortical cells require cholesterol for steroid hormone synthesis. Intracellular free cholesterol levels are maintained by the actions of three key enzymes: HMG CoA reductase, a rate limiting enzyme of cholesterol biosynthesis, acyl CoA:cholesterol acyltransferase (ACAT), which esterifies cholesterol to fatty acids, and cholesterol ester hydrolase (CEH), which releases stored cholesterol by clearing the ester bond. The guinea pig adrenal cortex, which can be separated into a lipid-rich outer zone and a lipid-poor inner zone, provides a good model in which to determine whether the morphological differences in these regions correlate with functional distinctions in enzymes of cholesterol homeostasis. These studies have shown that there are great differences in these enzymes in the outer and inner zones of the guinea pig adrenal cortex. The cholesterol-rich outer zone possesses greater activities of ACAT and CEH than the inner zone, and, in untreated animals, these enzymes are nearly maximally stimulated. Both zones had substantial levels of HMG CoA reductase, as measured by enzyme assay and ELISA, and these levels increased following ACTH stimulation. However, only the outer zone incorporated 14 C-acetate into steroids and cholesterol to any great degree in vitro, and only in this zone was incorporation increased following incubation of cultures with ACTH. The discrepancies between HMG CoA reductase levels and 14 C-acetate incorporation in the inner zone indicate that cholesterol synthesis must be regulated differently in this zone

  13. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  14. Interaction of pathogens with host cholesterol metabolism.

    Science.gov (United States)

    Sviridov, Dmitri; Bukrinsky, Michael

    2014-10-01

    Pathogens of different taxa, from prions to protozoa, target cellular cholesterol metabolism to advance their own development and to impair host immune responses, but also causing metabolic complications, for example, atherosclerosis. This review describes recent findings of how pathogens do it. A common theme in interaction between pathogens and host cholesterol metabolism is pathogens targeting lipid rafts of the host plasma membrane. Many intracellular pathogens use rafts as an entry gate, taking advantage of the endocytic machinery and high abundance of outward-looking molecules that can be used as receptors. At the same time, disruption of the rafts' functional capacity, achieved by the pathogens through a number of various means, impairs the ability of the host to generate immune response, thus helping pathogen to thrive. Pathogens cannot synthesize cholesterol, and salvaging host cholesterol helps pathogens build advanced cholesterol-containing membranes and assembly platforms. Impact on cholesterol metabolism is not limited to the infected cells; proteins and microRNAs secreted by infected cells affect lipid metabolism systemically. Given an essential role that host cholesterol metabolism plays in pathogen development, targeting this interaction may be a viable strategy to fight infections, as well as metabolic complications of the infections.

  15. Molecular requirement for sterols in herpes simplex virus entry and infectivity

    Science.gov (United States)

    Herpes simplex virus 1 (HSV-1) required cholesterol for virion-induced membrane fusion. HSV successfully entered DHCR24-/-cells, which lack a desmosterol-to-cholesterol conversion enzyme, indicating entry can occur independently of cholesterol. Depletion of desmosterol from these cells resulted in d...

  16. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  17. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    DEFF Research Database (Denmark)

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona

    2016-01-01

    ) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates b2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located...... near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however...... cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions....

  18. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.

    Science.gov (United States)

    Saito, Hiroaki; Shinoda, Wataru

    2011-12-29

    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol. © 2011 American Chemical Society

  19. G-rich, a Drosophila selenoprotein, is a Golgi-resident type III membrane protein

    International Nuclear Information System (INIS)

    Chen, Chang Lan; Shim, Myoung Sup; Chung, Jiyeol; Yoo, Hyun-Seung; Ha, Ji Min; Kim, Jin Young; Choi, Jinmi; Zang, Shu Liang; Hou, Xiao; Carlson, Bradley A.; Hatfield, Dolph L.; Lee, Byeong Jae

    2006-01-01

    G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus of G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is First selenoprotein identified in the Golgi apparatus

  20. Localization of the placental BCRP/ABCG2 transporter to lipid rafts: Role for cholesterol in mediating efflux activity.

    Science.gov (United States)

    Szilagyi, John T; Vetrano, Anna M; Laskin, Jeffrey D; Aleksunes, Lauren M

    2017-07-01

    The breast cancer resistance protein (BCRP/ABCG2) is an efflux transporter in the placental barrier. By transporting chemicals from the fetal to the maternal circulation, BCRP limits fetal exposure to a range of drugs, toxicants, and endobiotics such as bile acids and hormones. The purpose of the present studies was to 1) determine whether BCRP localizes to highly-ordered, cholesterol-rich lipid raft microdomains in placenta microvillous membranes, and 2) determine the impact of cholesterol on BCRP-mediated placental transport in vitro. BCRP expression was analyzed in lipid rafts isolated from placentas from healthy, term pregnancies and BeWo trophoblasts by density gradient ultracentrifugation. BeWo cells were also tested for their ability to efflux BCRP substrates after treatment with the cholesterol sequestrant methyl-β-cyclodextrin (MβCD, 5 mM, 1 h) or the cholesterol synthesis inhibitor pravastatin (200 μM, 48 h). BCRP was found to co-localize with lipid raft proteins in detergent-resistant, lipid raft-containing fractions from placental microvillous membranes and BeWo cells. Treatment of BeWo cells with MβCD redistributed BCRP protein into higher density non-lipid raft fractions. Repletion of the cells with cholesterol restored BCRP localization to lipid raft-containing fractions. Treatment of BeWo cells with MβCD or pravastatin increased cellular retention of two BCRP substrates, the fluorescent dye Hoechst 33342 and the mycotoxin zearalenone. Repletion with cholesterol restored BCRP transporter activity. Taken together, these data demonstrate that cholesterol may play a critical role in the post-translational regulation of BCRP in placental lipid rafts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Perilla Oil Supplementation Ameliorates High-Fat/High-Cholesterol Diet Induced Nonalcoholic Fatty Liver Disease in Rats via Enhanced Fecal Cholesterol and Bile Acid Excretion

    Directory of Open Access Journals (Sweden)

    Ting Chen

    2016-01-01

    Full Text Available Recent experimental studies and clinical trials have shown that hepatic cholesterol metabolic disorders are closely related to the development of nonalcoholic fatty liver disease (NAFLD. The main goal of this study was to investigate the efficacy of the perilla oil rich in alpha-linolenic acid (ALA against NASH and gain a deep insight into its potential mechanisms. Rats were fed a high-fat/high-cholesterol diet (HFD supplement with perilla oil (POH for 16 weeks. Routine blood biochemical tests and histological staining illustrated that the perilla oil administration improved HFD-induced hyperlipidemia, reduced hepatic steatosis, and inhibited hepatic inflammatory infiltration and fibrosis. Perilla oil also increased fecal bile acid and cholesterol excretion. Hepatic RNA-Seq analysis found that the long time perilla oil supplement notably modified the gene expression involved in cholesterol metabolism. Our results implicate that, after long-term high level dietary cholesterol feeding, rat liver endogenous synthesis of cholesterol and cholesterol-rich low density lipoprotein uptake was significantly inhibited, and perilla oil did not modulate expression of genes responsible for cholesterol synthesis but did increase cholesterol removed from hepatocytes by conversion to bile acids and increased fecal cholesterol excretion.

  2. Key molecular requirements for raft formation in lipid/cholesterol membranes.

    Directory of Open Access Journals (Sweden)

    Davit Hakobyan

    Full Text Available The lipid mixture of DPPC (saturated lipid/DUPC (unsaturated lipid/CHOL (cholesterol is studied with respect to its ability to form liquid-ordered and liquid-disordered phases. We employ coarse-grained simulations with MARTINI force field. All three components are systematically modified in order to explore the relevant molecular properties, leading to phase separation. Specifically, we show that the DPPC/DUPC/CHOL system unmixes due to enthalpic DPPC-DPPC and DPPC-CHOL interactions. The phase separation remains unchanged, except for the formation of a gel phase at long times after decreasing the conformational degrees of freedom of the unsaturated DUPC. In contrast, the phase separation can be suppressed by softening the DPPC chains. In an attempt to mimic the ordering and unmixing effect of CHOL the latter is replaced by a stiff and shortened DPPC-like lipid. One still observes phase separation, suggesting that it is mainly the rigid and planar structure of CHOL which is important for raft formation. Addition of an extra bead to the head of CHOL has no notable impact on the phase separation of the system, supporting the irrelevance of the Umbrella model for the phase separation. Reduction of the conformational entropy of CHOL by stiffening its last bead results in a significant increase of the order of the DPPC/CHOL domain. This suggests that the conformational entropy of CHOL is important to prohibit the gelation process. The interleaflet interactions as mediated by the terminal molecular groups seem to have a strong impact on the possibility of a subsequent gelation process after phase separation.

  3. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin

    DEFF Research Database (Denmark)

    Enkavi, Giray; Mikkolainen, Heikki; Güngör, Burçin

    2017-01-01

    remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic......Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has......). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required...

  4. Imaging appearances of cholesterol pneumonia

    International Nuclear Information System (INIS)

    Miao Yanwei; Zhang Jingwen; Wu Jianlin; Zhou Yong; Li Mingwu; Lei Zhen; Shi Lifu

    2006-01-01

    Objection: To analyze the imaging appearances of cholesterol pneumonia. Methods We retrospectively analyzed the X-ray and CT findings of 3 patients with cholesterol pneumonia confirmed pathologically and reviewed correlative literature. Results: Lesions similar to mass were found in X-ray and CT imaging of three cases. Two of them appeared cavity with fluid-level and one showed multiple ring enhancement after CT contrast. The course of disease was very. long and it had no respond to antibiotic therapy. Amounts of foam cells rich in cholesterol crystal were detected in pathological examination. Conclusions: Cholesterol pneumonia is a rare chronic pulmonary idiopathic disease, and the radiological findings can do some help to its diagnosis. (authors)

  5. Analysis of Cholesterol Trafficking with Fluorescent Probes

    DEFF Research Database (Denmark)

    Maxfield, Frederick R.; Wustner, Daniel

    2012-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport...... that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy...... and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly....

  6. Cholesterol Hydroperoxide Generation, Translocation, and Reductive Turnover in Biological Systems.

    Science.gov (United States)

    Girotti, Albert W; Korytowski, Witold

    2017-12-01

    Cholesterol is like other unsaturated lipids in being susceptible to peroxidative degradation upon exposure to strong oxidants like hydroxyl radical or peroxynitrite generated under conditions of oxidative stress. In the eukaryotic cell plasma membrane, where most of the cellular cholesterol resides, peroxidation leads to membrane structural and functional damage from which pathological states may arise. In low density lipoprotein, cholesterol and phospholipid peroxidation have long been associated with atherogenesis. Among the many intermediates/products of cholesterol oxidation, hydroperoxide species (ChOOHs) have a number of different fates and deserve special attention. These fates include (a) damage-enhancement via iron-catalyzed one-electron reduction, (b) damage containment via two-electron reduction, and (c) inter-membrane, inter-lipoprotein, and membrane-lipoprotein translocation, which allows dissemination of one-electron damage or off-site suppression thereof depending on antioxidant location and capacity. In addition, ChOOHs can serve as reliable and conveniently detected mechanistic reporters of free radical-mediated reactions vs. non-radical (e.g., singlet oxygen)-mediated reactions. Iron-stimulated peroxidation of cholesterol and other lipids underlies a newly discovered form of regulated cell death called ferroptosis. These and other deleterious consequences of radical-mediated lipid peroxidation will be discussed in this review.

  7. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  8. Cholesterol and related sterols autoxidation.

    Science.gov (United States)

    Zerbinati, Chiara; Iuliano, Luigi

    2017-10-01

    Cholesterol is a unique lipid molecule providing the building block for membranes, hormones, vitamin D and bile acid synthesis. Metabolism of cholesterol involves several enzymes acting on the sterol nucleus or the isooctyl tail. In the recent years, research interest has been focused on oxysterols, cholesterol derivatives generated by the addition of oxygen to the cholesterol backbone. Oxysterols can be produced enzymatically or by autoxidation. Autoxidation of cholesterol proceeds through type I or type II mechanisms. Type I autoxidation is initiated by free radical species, such as those arising from the superoxide/hydrogen peroxide/hydroxyl radical system. Type II autoxidation occurs stoichiometrically by non-radical highly reactive oxygen species such as singlet oxygen, HOCl, and ozone. The vulnerability of cholesterol towards high reactive species has raised considerable interest for mechanistic studies and for the potential biological activity of oxysterols, as well as for the use of oxysterols as biomarkers for the non-invasive study of oxidative stress in vivo. Copyright © 2017. Published by Elsevier Inc.

  9. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  10. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking.

    Directory of Open Access Journals (Sweden)

    Komla Sobo

    Full Text Available BACKGROUND: Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2-3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. CONCLUSIONS/SIGNIFICANCE: These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.

  11. Induction of lipid peroxidation in erythrocytes during cholesterol oxidation catalyzed by cholesterol oxidase

    International Nuclear Information System (INIS)

    Kagan, V.E.; Monovich, O.; Ribarov, S.R.

    1986-01-01

    The authors study the ability of cholesterol oxidase (ChO), which catalyzes oxidation of cholesterol (Ch) to cholest-4-en-3-one and, at the same time, reduction of O 2 to H 2 O 2 , to induce the lipid peroxidation (LPO) in plasma membranes. Erythrocyte ghosts were obtained from guinea pig blood; the reaction of oxidation of Ch in the erythrocyte ghosts or in micelles with Triton X-100 was carried out in the following medium: Tris-HCl 0.2 M, pH 7.0 (at 37 C), Triton X-100 0.25%, and ChO 0.05 U/ml. At the present time ChO is often used to study the asymmetry of distribution of Ch in biomembranes and the velocity of its transbilayer migration. It is suggested that changes in membrane permeability do not take place during the reaction catalyzed by the enzyme, and no products capable of affecting flip-flop in biological are formed. Accumulation of LPO products in erythrocyte membranes discovered in this investigation under the influence of ChO compels critical re-examination of the resutls

  12. Histidine-rich glycoprotein protects from systemic Candida infection.

    Directory of Open Access Journals (Sweden)

    Victoria Rydengård

    2008-08-01

    Full Text Available Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG, an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg(-/- mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity.

  13. Surface charges promote nonspecific nanoparticle adhesion to stiffer membranes

    Science.gov (United States)

    Sinha, Shayandev; Jing, Haoyuan; Sachar, Harnoor Singh; Das, Siddhartha

    2018-04-01

    This letter establishes the manner in which the electric double layer induced by the surface charges of the plasma membrane (PM) enhances the nonspecific adhesion (NSA) of a metal nanoparticle (NP) to stiffer PMs (i.e., PMs with larger bending moduli). The NSA is characterized by the physical attachment of the NP to the membrane and occurs when the decrease in the surface energy (or any other mechanism) associated with the attachment process provides the energy for bending the membrane. Such an attachment does not involve receptor-ligand interactions that characterize the specific membrane-NP adhesion. Here, we demonstrate that a significant decrease in the electrostatic energy caused by the NP-attachment-induced destruction of the charged-membrane-electrolyte interface is responsible for providing the additional energy needed for bending the membrane during the NP adhesion to stiffer membranes. A smaller salt concentration and a larger membrane charge density augment this effect, which can help to design drug delivery to cells with stiffer membranes due to pathological conditions, fabricate NPs with biomimetic cholesterol-rich lipid bilayer encapsulation, etc.

  14. EFFECT OF DIETARY OLIVE OIL/CHOLESTEROL ON SERUM LIPOPROTEINS, LIPID PEROXIDATION, AND ATHEROSCLEROSIS IN RABBITS

    Directory of Open Access Journals (Sweden)

    R MAHDAVI

    2003-03-01

    Full Text Available Introduction: High plasma cholesterol levels, mainly LDL are a widely recognized major risk factor for Coronary Heart Disease (CHD. According to the epidemiologic studies findings, people from the Mediterranean countries, have lower CHD rats than other countries, in these countries usual diet is high in olive oil. The present study compares the effects of cholesterol enriched diet with or without adding olive oil on serum Lipoproteins, lipid per oxidation, and atherosclerosis development. Method: Twenty Dutch male rabbits were Categorized to four groups (one group as Control, and others as Experimental. They received one of standard, cholesterol - rich, olive oil rich and combined (cholesterol + olive oil diet for Twelve weeks. Fasting blood samples from heart were collected at the beginning, and the end of Experimental period. Means of total cholesterol, HDL-Ctriglycerides, MDA and antioxidant caperimental period, significant differences were showed in total cholesterol, HDL-C, triglyceride and MDA between groups. Results: The comparison of cholesterol rich diet with cholesterol + olive oil showed a higher mean of MDA in cholesterol rich group (P < 0.001. Biochemical factors and aortic lesion degree showed no significant difference between standard and olive oil group. Aortic lesions in cholesterol + olive oil showed nonsignificant lower degree than cholesterol group. Discussion: This findings showed preventive effect of olive oil against atherosclerosis which is independent of plasma lipoprotein effect, and suggested that probably olive oil acts on arteries directly.

  15. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    OpenAIRE

    Matthias Orth; Stefano Bellosta

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein...

  17. [Cholesterol reducing food certainly is useful].

    Science.gov (United States)

    Stalenhoef, A F

    1997-12-27

    The effect of a low-cholesterol diet in open intervention studies depends in the long run on motivation, knowledge and dedication. The mean decrease of the serum cholesterol level is 10% (range: 0-20). Epidemiological and cohort studies clearly prove a connection between the intake of saturated fat, the serum cholesterol level and the risk of coronary heart disease and death. High-fat food slows down the clearance of the degradation products rich in cholesterol which appear in the blood after a meal and which are highly atherogenic (these products are not found at a fasting cholesterol assay). Cholesterol-reducing nutrition has additional useful effects, for instance on the blood pressure and the coagulation. The recommendations for healthy, low-cholesterol nutrition for the population as a whole apply particularly to patients with a high risk of coronary heart disease. Although advice given to individuals often has a disappointing effect, influencing the life pattern should be included in the strategy to reduce the risk of coronary heart disease.

  18. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  19. Finsler Geometry Modeling of Phase Separation in Multi-Component Membranes

    Directory of Open Access Journals (Sweden)

    Satoshi Usui

    2016-08-01

    Full Text Available A Finsler geometric surface model is studied as a coarse-grained model for membranes of three components, such as zwitterionic phospholipid (DOPC, lipid (DPPC and an organic molecule (cholesterol. To understand the phase separation of liquid-ordered (DPPC rich L o and liquid-disordered (DOPC rich L d , we introduce a binary variable σ ( = ± 1 into the triangulated surface model. We numerically determine that two circular and stripe domains appear on the surface. The dependence of the morphological change on the area fraction of L o is consistent with existing experimental results. This provides us with a clear understanding of the origin of the line tension energy, which has been used to understand these morphological changes in three-component membranes. In addition to these two circular and stripe domains, a raft-like domain and budding domain are also observed, and the several corresponding phase diagrams are obtained.

  20. Plasma cholesterol and sodium in some Nigerians | Ighoroje ...

    African Journals Online (AJOL)

    Cholesterol moderates the fluidity of cell membrane and this in turn controls the transmembrane movement of Na+. We have thus attempted to investigate the relationship of serum cholesterol and Na+ concentrations in some Nigerians. Blood samples were obtained from 122 healthy adult Nigerians and the plasma ...

  1. Phosphatidylinositol 4,5-bisphosphate, cholesterol, and fatty acids modulate the calcium-activated chloride channel TMEM16A (ANO1).

    Science.gov (United States)

    De Jesús-Pérez, José J; Cruz-Rangel, Silvia; Espino-Saldaña, Ángeles E; Martínez-Torres, Ataúlfo; Qu, Zhiqiang; Hartzell, H Criss; Corral-Fernandez, Nancy E; Pérez-Cornejo, Patricia; Arreola, Jorge

    2018-03-01

    The TMEM16A-mediated Ca 2+ -activated Cl - current drives several important physiological functions. Membrane lipids regulate ion channels and transporters but their influence on members of the TMEM16 family is poorly understood. Here we have studied the regulation of TMEM16A by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), cholesterol, and fatty acids using patch clamp, biochemistry and fluorescence microscopy. We found that depletion of membrane PI(4,5)P2 causes a decline in TMEM16A current that is independent of cytoskeleton, but is partially prevented by removing intracellular Ca 2+ . On the other hand, supplying PI(4,5)P2 to inside-out patches attenuated channel rundown and/or partially rescued activity after channel rundown. Also, depletion (with methyl-β-cyclodextrin M-βCD) or restoration (with M-βCD+cholesterol) of membrane cholesterol slows down the current decay observed after reduction of PI(4,5)P2. Neither depletion nor restoration of cholesterol change PI(4,5)P2 content. However, M-βCD alone transiently increases TMEM16A activity and dampens rundown whereas M-βCD+cholesterol increases channel rundown. Thus, PI(4,5)P2 is required for TMEM16A function while cholesterol directly and indirectly via a PI(4,5)P2-independent mechanism regulate channel function. Stearic, arachidonic, oleic, docosahexaenoic, and eicosapentaenoic fatty acids as well as methyl stearate inhibit TMEM16A in a dose- and voltage-dependent manner. Phosphatidylserine, a phospholipid whose hydrocarbon tails contain stearic and oleic acids also inhibits TMEM16A. Finally, we show that TMEM16A remains in the plasma membrane after treatment with M-βCD, M-βCD+cholesterol, oleic, or docosahexaenoic acids. Thus, we propose that lipids and fatty acids regulate TMEM16A channels through a membrane-delimited protein-lipid interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1.

    Directory of Open Access Journals (Sweden)

    Fumin Dong

    Full Text Available ATP-binding cassette transporter A1 (ABCA1 plays an essential role in mediating cholesterol efflux to apolipoprotein A-I (apoA-I, a major housekeeping mechanism for cellular cholesterol homeostasis. After initial engagement with ABCA1, apoA-I directly interacts with the plasma membrane to acquire cholesterol. This apoA-I lipidation process is also known to require cellular signaling processes, presumably to support cholesterol trafficking to the plasma membrane. We report here that one of major signaling pathways in mammalian cells, Akt, is also involved. In several cell models that express ABCA1 including macrophages, pancreatic beta cells and hepatocytes, inhibition of Akt increases cholesterol efflux to apoA-I. Importantly, Akt inhibition has little effect on cells expressing non-functional mutant of ABCA1, implicating a specific role of Akt in ABCA1 function. Furthermore, we provide evidence that mTORC1, a major downstream target of Akt, is also a negative regulator of cholesterol efflux. In cells where mTORC1 is constitutively activated due to tuberous sclerosis complex 2 deletion, cholesterol efflux to apoA-I is no longer sensitive to Akt activity. This suggests that Akt suppresses cholesterol efflux through mTORC1 activation. Indeed, inhibition of mTORC1 by rapamycin or Torin-1 promotes cholesterol efflux. On the other hand, autophagy, one of the major pathways of cholesterol trafficking, is increased upon Akt inhibition. Furthermore, Akt inhibition disrupts lipid rafts, which is known to promote cholesterol efflux to apoA-I. We therefore conclude that Akt, through its downstream targets, mTORC1 and hence autophagy, negatively regulates cholesterol efflux to apoA-I.

  3. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  4. A Cholesterol-Sensitive Regulator of the Androgen Receptor

    Science.gov (United States)

    2010-07-01

    Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves as a metabolic precursor to other...bioactive sterols , such as nuclear receptor ligands, and also has a major role in plasma membrane structure. Cholesterol and long- chain...cholesterol synthesis (these drugs are generically termed ‘statins’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although

  5. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  6. Cholesterol: a novel regulatory role in myelin formation.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin

    2011-02-01

    Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.

  7. Regulation of α1 Na/K-ATPase Expression by Cholesterol*

    OpenAIRE

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-01-01

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol tr...

  8. Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes

    Science.gov (United States)

    2014-01-01

    The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced by numerous Gram-positive bacterial pathogens. These toxins are released in the extracellular environment as water-soluble monomers or dimers that bind to cholesterol-rich membranes and assemble into large pore complexes. Depending upon their concentration, the nature of the host cell and membrane (cytoplasmic or intracellular) they target, the CDCs can elicit many different cellular responses. Among the CDCs, listeriolysin O (LLO), which is a major virulence factor of the facultative intracellular pathogen Listeria monocytogenes, is involved in several stages of the intracellular lifecycle of the bacterium and displays unique characteristics. It has long been known that following L. monocytogenes internalization into host cells, LLO disrupts the internalization vacuole, enabling the bacterium to replicate into the host cell cytosol. LLO is then used by cytosolic bacteria to spread from cell to cell, avoiding bacterial exposure to the extracellular environment. Although LLO is continuously produced during the intracellular lifecycle of L. monocytogenes, several processes limit its toxicity to ensure the survival of infected cells. It was previously thought that LLO activity was limited to mediating vacuolar escape during bacterial entry and cell to cell spreading. This concept has been challenged by compelling evidence suggesting that LLO secreted by extracellular L. monocytogenes perforates the host cell plasma membrane, triggering important host cell responses. This chapter provides an overview of the well-established intracellular activity of LLO and the multiple roles attributed to LLO secreted by extracellular L. monocytogenes. PMID:24798012

  9. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  11. Niemann-Pick C2 protein regulates sterol transport between plasma membrane and late endosomes in human fibroblasts

    DEFF Research Database (Denmark)

    Berzina, Zane; Solanko, Lukasz M; Mehadi, Ahmed S

    2018-01-01

    /LYSs is currently unknown. We show that the close cholesterol analog dehydroergosterol (DHE), when delivered to the plasma membrane (PM) accumulates in LE/LYSs of human fibroblasts lacking functional NPC2. We measured two different time scales of sterol diffusion; while DHE rich LE/LYSs moved by slow anomalous...... but not of DHE is reduced 10-fold in disease fibroblasts compared to control cells. Internalized NPC2 rescued the sterol storage phenotype and strongly expanded the dynamic sterol pool seen in FRAP experiments. Together, our study shows that cholesterol esterification and trafficking of sterols between the PM...

  12. Cholesterol as a co-solvent and a ligand for membrane proteins

    Science.gov (United States)

    Song, Yuanli; Kenworthy, Anne K; Sanders, Charles R

    2014-01-01

    As of mid 2013 a Medline search on “cholesterol” yielded over 200,000 hits, reflecting the prominence of this lipid in numerous aspects of animal cell biology and physiology under conditions of health and disease. Aberrations in cholesterol homeostasis underlie both a number of rare genetic disorders and contribute to common sporadic and complex disorders including heart disease, stroke, type II diabetes, and Alzheimer's disease. The corresponding author of this review and his lab stumbled only recently into the sprawling area of cholesterol research when they discovered that the amyloid precursor protein (APP) binds cholesterol, a topic covered by the Hans Neurath Award lecture at the 2013 Protein Society Meeting. Here, we first provide a brief overview of cholesterol-protein interactions and then offer our perspective on how and why binding of cholesterol to APP and its C99 domain (β-CTF) promotes the amyloidogenic pathway, which is closely related to the etiology of Alzheimer's disease. PMID:24155031

  13. Mediterranean-style diet effect on the structural properties of the erythrocyte cell membrane of hypertensive patients: the Prevencion con Dieta Mediterranea Study.

    Science.gov (United States)

    Barceló, Francisca; Perona, Javier S; Prades, Jesús; Funari, Sérgio S; Gomez-Gracia, Enrique; Conde, Manuel; Estruch, Ramon; Ruiz-Gutiérrez, Valentina

    2009-11-01

    A currently ongoing randomized trial has revealed that the Mediterranean diet, rich in virgin olive oil or nuts, reduces systolic blood pressure in high-risk cardiovascular patients. Here, we present a structural substudy to assess the effect of a Mediterranean-style diet supplemented with nuts or virgin olive oil on erythrocyte membrane properties in 36 hypertensive participants after 1 year of intervention. Erythrocyte membrane lipid composition, structural properties of reconstituted erythrocyte membranes, and serum concentrations of inflammatory markers are reported. After the intervention, the membrane cholesterol content decreased, whereas that of phospholipids increased in all of the dietary groups; the diminishing cholesterol:phospholipid ratio could be associated with an increase in the membrane fluidity. Moreover, reconstituted membranes from the nuts and virgin olive oil groups showed a higher propensity to form a nonlamellar inverted hexagonal phase structure that was related to an increase in phosphatidylethanolamine lipid class. These data suggest that the Mediterranean-style diet affects the lipid metabolism that is altered in hypertensive patients, influencing the structural membrane properties. The erythrocyte membrane modulation described provides insight in the structural bases underlying the beneficial effect of a Mediterranean-style diet in hypertensive subjects.

  14. Cholesterol inhibits entotic cell-in-cell formation and actomyosin contraction.

    Science.gov (United States)

    Ruan, Banzhan; Zhang, Bo; Chen, Ang; Yuan, Long; Liang, Jianqing; Wang, Manna; Zhang, Zhengrong; Fan, Jie; Yu, Xiaochen; Zhang, Xin; Niu, Zubiao; Zheng, You; Gu, Songzhi; Liu, Xiaoqing; Du, Hongli; Wang, Jufang; Hu, Xianwen; Gao, Lihua; Chen, Zhaolie; Huang, Hongyan; Wang, Xiaoning; Sun, Qiang

    2018-01-01

    Cell-in-cell structure is prevalent in human cancer, and associated with several specific pathophysiological phenomena. Although cell membrane adhesion molecules were found critical for cell-in-cell formation, the roles of other membrane components, such as lipids, remain to be explored. In this study, we attempted to investigate the effects of cholesterol and phospholipids on the formation of cell-in-cell structures by utilizing liposome as a vector. We found that Lipofectamine-2000, the reagent commonly used for routine transfection, could significantly reduce entotic cell-in-cell formation in a cell-specific manner, which is correlated with suppressed actomyosin contraction as indicated by reduced β-actin expression and myosin light chain phosphorylation. The influence on cell-in-cell formation was likely dictated by specific liposome components as some liposomes affected cell-in-cell formation while some others didn't. Screening on a limited number of lipids, the major components of liposome, identified phosphatidylethanolamine (PE), stearamide (SA), lysophosphatidic acid (LPA) and cholesterol (CHOL) as the inhibitors of cell-in-cell formation. Importantly, cholesterol treatment significantly inhibited myosin light chain phosphorylation, which resembles the effect of Lipofectamine-2000, suggesting cholesterol might be partially responsible for liposomes' effects on cell-in-cell formation. Together, our findings supporting a role of membrane lipids and cholesterol in cell-in-cell formation probably via regulating actomyosin contraction. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts

    International Nuclear Information System (INIS)

    Liscum, L.; Ruggiero, R.M.; Faust, J.R.

    1989-01-01

    Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol

  16. Inhibition of cholesterol oxidation products (COPs) formation in emulsified porcine patties by phenolic-rich avocado (Persea americana Mill.) extracts.

    Science.gov (United States)

    Rodríguez-Carpena, Javier-Germán; Morcuende, David; Petrón, María Jesus; Estévez, Mario

    2012-03-07

    The effect of phenolic-rich extracts from avocado peel on the formation of cholesterol oxidation products (COPs) in porcine patties subjected to cooking and chill storage was studied. Eight COPs (7α-hydroxycholesterol, 7β-hydroxycholesterol, 7-ketocholesterol, 20α-hydroxycholesterol, 25-hydroxycholesterol, cholestanetriol, 5,6β-epoxycholesterol, and 5,6α-epoxycholesterol) were identified and quantified by GC-MS. The addition of avocado extracts (∼600 GAE/kg patty) to patties significantly inhibited the formation of COPs during cooking. Cooked control (C) patties contained a larger variety and greater amounts of COPs than the avocado-treated (T) counterparts. COPs sharply increased in cooked patties during the subsequent chilled storage. This increase was significantly higher in C patties than in the T patties. Interestingly, the amount of COPs in cooked and chilled T patties was similar to those found in cooked C patties. The mechanisms implicated in cholesterol oxidation in a processed meat product, the protective effect of avocado phenolics, and the potential implication of lipid and protein oxidation are thoroughly described in the present paper.

  17. Lysosomal degradation of membrane lipids.

    Science.gov (United States)

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    Science.gov (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null

  19. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Cholesterol Corrects Altered Conformation of MHC-II Protein in Leishmania donovani Infected Macrophages: Implication in Therapy

    Science.gov (United States)

    Chakrabarti, Saikat; Roy, Syamal

    2016-01-01

    Background Previously we reported that Kala-azar patients show progressive decrease in serum cholesterol as a function of splenic parasite burden. Splenic macrophages (MΦ) of Leishmania donovani (LD) infected mice show decrease in membrane cholesterol, while LD infected macrophages (I-MΦ) show defective T cell stimulating ability that could be corrected by liposomal delivery of cholesterol. T helper cells recognize peptide antigen in the context of class II MHC molecule. It is known that the conformation of a large number of membrane proteins is dependent on membrane cholesterol. In this investigation we tried to understand the influence of decreased membrane cholesterol in I-MΦ on the conformation of MHC-II protein and peptide-MHC-II stability, and its bearing on the antigen specific T-cell activation. Methodology/Principal Findings MΦ of CBA/j mice were infected with Leishmania donovani (I-MΦ). Two different anti-Aκ mAbs were used to monitor the status of MHC-II protein under parasitized condition. One of them (11.5–2) was conformation specific, whereas the other one (10.2.16) was not. Under parasitized condition, the binding of 11.5–2 decreased significantly with respect to the normal counterpart, whereas that of 10.2.16 remained unaltered. The binding of 11.5–2 was restored to normal upon liposomal delivery of cholesterol in I-MΦ. By molecular dynamics (MD) simulation studies we found that there was considerable conformational fluctuation in the transmembrane domain of the MHC-II protein in the presence of membrane cholesterol than in its absence, which possibly influenced the distal peptide binding groove. This was evident from the faster dissociation of the cognate peptide from peptide-MHC complex under parasitized condition, which could be corrected by liposomal delivery of cholesterol in I-MΦ. Conclusion The decrease in membrane cholesterol in I-MΦ may lead to altered conformation of MHC II, and this may contribute to a faster dissociation of

  1. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened.Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol.Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.

  2. Cholesterol crystallization within hepatocyte lipid droplets and its role in murine NASH.

    Science.gov (United States)

    Ioannou, George N; Subramanian, Savitha; Chait, Alan; Haigh, W Geoffrey; Yeh, Matthew M; Farrell, Geoffrey C; Lee, Sum P; Savard, Christopher

    2017-06-01

    We recently reported that cholesterol crystals form in hepatocyte lipid droplets (LDs) in human and experimental nonalcoholic steatohepatitis. Herein, we assigned WT C57BL/6J mice to a high-fat (15%) diet for 6 months, supplemented with 0%, 0.25%, 0.5%, 0.75%, or 1% dietary cholesterol. Increasing dietary cholesterol led to cholesterol loading of the liver, but not of adipose tissue, resulting in fibrosing steatohepatitis at a dietary cholesterol concentration of ≥0.5%, whereas mice on lower-cholesterol diets developed only simple steatosis. Hepatic cholesterol crystals and crown-like structures also developed at a dietary cholesterol concentration ≥0.5%. Crown-like structures consisted of activated Kupffer cells (KCs) staining positive for NLRP3 and activated caspase 1, which surrounded and processed cholesterol crystal-containing remnant LDs of dead hepatocytes. The KCs processed LDs at the center of crown-like structures in the extracellular space by lysosomal enzymes, ultimately transforming into lipid-laden foam cells. When HepG2 cells were exposed to LDL cholesterol, they developed cholesterol crystals in LD membranes, which caused activation of THP1 cells (macrophages) grown in coculture; upregulation of TNF-alpha , NLRP3, and interleukin 1beta ( IL1β ) mRNA; and secretion of IL-1beta. In conclusion, cholesterol crystals form on the LD membrane of hepatocytes and cause activation and cholesterol loading of KCs that surround and process these LDs by lysosomal enzymes.

  3. Synergistic activation of G protein-gated inwardly rectifying potassium channels by cholesterol and PI(4,5)P2.

    Science.gov (United States)

    Bukiya, Anna N; Rosenhouse-Dantsker, Avia

    2017-07-01

    G-protein gated inwardly rectifying potassium (GIRK or Kir3) channels play a major role in the control of the heart rate, and require the membrane phospholipid phosphatidylinositol-bis-phosphate (PI(4,5)P 2 ) for activation. Recently, we have shown that the activity of the heterotetrameric Kir3.1/Kir3.4 channel that underlies atrial K ACh currents was enhanced by cholesterol. Similarly, the activities of both the Kir3.4 homomer and its active pore mutant Kir3.4* (Kir3.4_S143T) were also enhanced by cholesterol. Here we employ planar lipid bilayers to investigate the crosstalk between PI(4,5)P 2 and cholesterol, and demonstrate that these two lipids act synergistically to activate Kir3.4* currents. Further studies using the Xenopus oocytes heterologous expression system suggest that PI(4,5)P 2 and cholesterol act via distinct binding sites. Whereas PI(4,5)P 2 binds to the cytosolic domain of the channel, the putative binding region of cholesterol is located at the center of the transmembrane domain overlapping the central glycine hinge region of the channel. Together, our data suggest that changes in the levels of two key membrane lipids - cholesterol and PI(4,5)P 2 - could act in concert to provide fine-tuning of Kir3 channel function. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The ABC of cholesterol transport

    NARCIS (Netherlands)

    Plösch, Torsten

    2004-01-01

    Cholesterol fulfills an indispensable role in mammalian physiology. It is an important constituent of all cell membranes. Furthermore, it is the precursor of steroid hormones, which regulate a variety of physiological functions, and of bile salts, which are necessary for the generation of bile flow

  5. Effect of cholesterol solubilised in membranes on the interfacial water structure

    International Nuclear Information System (INIS)

    Maitra, A.; Patanjali, P.

    1987-01-01

    Cholesterol solubilised in the reverse micellar system of Aerosol OT in isooctane has been found to decrease the hydrophilicity of the surfactant molecule. This has been studied in detail by water proton NMR relaxation measurements in water-Aerosol OT-isooctane with and without cholesterol. It is concluded that the intermolecular hydrogen bonding between the 3β-OH group of cholesterol and the carbonyl ester of Aerosol OT is responsible for the decrease in hydrogen bonding capacity of the latter. (author). 23 refs.; 2 figs

  6. Dispatched and Scube Mediate the Efficient Secretion of the Cholesterol-Modified Hedgehog Ligand

    Directory of Open Access Journals (Sweden)

    Hanna Tukachinsky

    2012-08-01

    Full Text Available The Hedgehog (Hh signaling pathway plays critical roles in metazoan development and in cancer. How the Hh ligand is secreted and spreads to distant cells is unclear, given its covalent modification with a hydrophobic cholesterol molecule, which makes it stick to membranes. We demonstrate that Hh ligand secretion from vertebrate cells is accomplished via two distinct and synergistic cholesterol-dependent binding events, mediated by two proteins that are essential for vertebrate Hh signaling: the membrane protein Dispatched (Disp and a member of the Scube family of secreted proteins. Cholesterol modification is sufficient for a heterologous protein to interact with Scube and to be secreted in a Scube-dependent manner. Disp and Scube recognize different structural aspects of cholesterol similarly to how Niemann-Pick disease proteins 1 and 2 interact with cholesterol, suggesting a hand-off mechanism for transferring Hh from Disp to Scube. Thus, Disp and Scube cooperate to dramatically enhance the secretion and solubility of the cholesterol-modified Hh ligand.

  7. High-cocoa polyphenol-rich chocolate improves HDL cholesterol in Type 2 diabetes patients.

    Science.gov (United States)

    Mellor, D D; Sathyapalan, T; Kilpatrick, E S; Beckett, S; Atkin, S L

    2010-11-01

    To examine the effects of chocolate on lipid profiles, weight and glycaemic control in individuals with Type 2 diabetes. Twelve individuals with Type 2 diabetes on stable medication were enrolled in a randomized, placebo-controlled double-blind crossover study. Subjects were randomized to 45 g chocolate with or without a high polyphenol content for 8 weeks and then crossed over after a 4-week washout period. Changes in weight, glycaemic control, lipid profile and high-sensitivity C-reactive protein were measured at the beginning and at the end of each intervention. HDL cholesterol increased significantly with high polyphenol chocolate (1.16 ± 0.08 vs. 1.26 ± 0.08 mmol/l, P = 0.05) with a decrease in the total cholesterol: HDL ratio (4.4 ± 0.4 vs. 4.1 ± 0.4 mmol/l, P = 0.04). No changes were seen with the low polyphenol chocolate in any parameters. Over the course of 16 weeks of daily chocolate consumption neither weight nor glycaemic control altered from baseline. High polyphenol chocolate is effective in improving the atherosclerotic cholesterol profile in patients with diabetes by increasing HDL cholesterol and improving the cholesterol:HDL ratio without affecting weight, inflammatory markers, insulin resistance or glycaemic control.

  8. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Three-dimensional architecture and cell composition of a Choukroun's platelet-rich fibrin clot and membrane.

    Science.gov (United States)

    Dohan Ehrenfest, David M; Del Corso, Marco; Diss, Antoine; Mouhyi, Jaafar; Charrier, Jean-Baptiste

    2010-04-01

    Platelet-rich fibrin (PRF; Choukroun's technique) is a second-generation platelet concentrate for surgical use. This easy protocol allows the production of leukocyte and platelet-rich fibrin clots and membranes starting from 10-ml blood samples. The purposes of this study were to determine the cell composition and three-dimensional organization of this autologous biomaterial and to evaluate the influence of different collection tubes (dry glass or glass-coated plastic tubes) and compression procedures (forcible or soft) on the final PRF-membrane architecture. After centrifugation, blood analyses were performed on the residual waste plasmatic layers after collecting PRF clots. The PRF clots and membranes were processed for examination by light microscopy and scanning electron microscopy. Approximately 97% of the platelets and >50% of the leukocytes were concentrated in the PRF clot and showed a specific three-dimensional distribution, depending on the centrifugation forces. Platelets and fibrin formed large clusters of coagulation in the first millimeters of the membrane beyond the red blood cell base. The fibrin network was very mature and dense. Moreover, there was no significant difference in the PRF architecture between groups using the different tested collection tubes and compression techniques, even if these two parameters could have influenced the growth factor content and biologic matrix properties. The PRF protocol concentrated most platelets and leukocytes from a blood harvest into a single autologous fibrin biomaterial. This protocol offers reproducible results as long as the main production principles are respected.

  10. FLIM studies of 22- and 25-NBD-cholesterol in living HEK293 cells: Plasma membrane change induced by cholesterol depletion

    Czech Academy of Sciences Publication Activity Database

    Ostašov, Pavel; Sýkora, Jan; Brejchová, Jana; Olžyńska, Agnieszka; Hof, Martin; Svoboda, Petr

    167-168, FEB-MAR (2013), s. 62-69 ISSN 0009-3084 R&D Projects: GA ČR(CZ) GAP207/12/0919 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : cholesterol depletion * beta-Cyclodextrin * 22-NBD-cholesterol * 25-NBD-cholesterol * FLIM studies * intact HEK293 cells Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.593, year: 2013

  11. The role of cholesterol metabolism and cholesterol transport in carcinogenesis; A review of scientific findings, relevant to future cancer therapeutics.

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Cruz

    2013-09-01

    Full Text Available While the unique metabolic activities of malignant tissues as potential targets for cancer therapeutics has been the subject of several recent reviews, the role of cholesterol metabolism in this context is yet to be fully explored. Cholesterol is an essential component of mammalian cell membranes as well as a precursor of bile acids and steroid hormones. The hypothesis that cancer cells need excess cholesterol and intermediates of the cholesterol biosynthesis pathway to maintain a high level of proliferation is well accepted, however the mechanisms by which malignant cells and tissues reprogram cholesterol synthesis, uptake and efflux are yet to be fully elucidated as potential therapeutic targets. High and low density plasma lipoproteins, area the likely major suppliers of cholesterol to cancer cells and tumors, potentially via receptor mediated mechanisms. This review is primarily focused on the role(s of lipoproteins in carcinogenesis, and their future roles as drug delivery vehicles for targeted cancer chemotherapy.

  12. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2018-06-01

    Full Text Available Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015–2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.

  13. Serum starvation of ARPE-19 changes the cellular distribution of cholesterol and Fibulin3 in patterns reminiscent of age-related macular degeneration.

    Science.gov (United States)

    Rajapakse, Dinusha; Peterson, Katherine; Mishra, Sanghamitra; Wistow, Graeme

    2017-12-15

    Retinal pigment epithelium (RPE) has been implicated as key source of cholesterol-rich deposits at Bruch's membrane (BrM) and in drusen in aging human eye. We have shown that serum-deprivation of confluent RPE cells is associated with upregulation of cholesterol synthesis and accumulation of unesterified cholesterol (UC). Here we investigate the cellular processes involved in this response. We compared the distribution and localization of UC and esterified cholesterol (EC); the age-related macular degeneration (AMD) associated EFEMP1/Fibulin3 (Fib3); and levels of acyl-coenzyme A (CoA): cholesterol acyltransferases (ACAT) ACAT1, ACAT2 and Apolipoprotein B (ApoB) in ARPE-19 cells cultured in serum-supplemented and serum-free media. The results were compared with distributions of these lipids and proteins in human donor eyes with AMD. Serum deprivation of ARPE-19 was associated with increased formation of FM dye-positive membrane vesicles, many of which co-labeled for UC. Additionally, UC colocalized with Fib3 in distinct granules. By day 5, serum-deprived cells grown on transwells secreted Fib3 basally into the matrix. While mRNA and protein levels of ACTA1 were constant over several days of serum-deprivation, ACAT2 levels increased significantly after serum-deprivation, suggesting increased formation of EC. The lower levels of intracellular EC observed under serum-deprivation were associated with increased formation and secretion of ApoB. The responses to serum-deprivation in RPE-derived cells: accumulation and secretion of lipids, lipoproteins, and Fib3 are very similar to patterns seen in human donor eyes with AMD and suggest that this model mimics processes relevant to disease progression. Published by Elsevier Inc.

  14. Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials.

    Science.gov (United States)

    Armah, Charlotte N; Derdemezis, Christos; Traka, Maria H; Dainty, Jack R; Doleman, Joanne F; Saha, Shikha; Leung, Wing; Potter, John F; Lovegrove, Julie A; Mithen, Richard F

    2015-05-01

    Cruciferous-rich diets have been associated with reduction in plasma LDL-cholesterol (LDL-C), which may be due to the action of isothiocyanates derived from glucosinolates that accumulate in these vegetables. This study tests the hypothesis that a diet rich in high glucoraphanin (HG) broccoli will reduce plasma LDL-C. One hundred and thirty volunteers were recruited to two independent double-blind, randomly allocated parallel dietary intervention studies, and were assigned to consume either 400 g standard broccoli or 400 g HG broccoli per week for 12 weeks. Plasma lipids were quantified before and after the intervention. In study 1 (37 volunteers), the HG broccoli diet reduced plasma LDL-C by 7.1% (95% CI: -1.8%, -12.3%, p = 0.011), whereas standard broccoli reduced LDL-C by 1.8% (95% CI +3.9%, -7.5%, ns). In study 2 (93 volunteers), the HG broccoli diet resulted in a reduction of 5.1% (95% CI: -2.1%, -8.1%, p = 0.001), whereas standard broccoli reduced LDL-C by 2.5% (95% CI: +0.8%, -5.7%, ns). When data from the two studies were combined the reduction in LDL-C by the HG broccoli was significantly greater than standard broccoli (p = 0.031). Evidence from two independent human studies indicates that consumption of high glucoraphanin broccoli significantly reduces plasma LDL-C. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Stimulation of cholesteryl ester synthesis in mouse peritoneal macrophages by cholesterol-rich very low density lipoproteins from the Watanabe heritable hyperlipidemic rabbit, an animal model of familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Kita, T.; Yokode, M.; Watanabe, Y.; Narumiya, S.; Kawai, C.

    1986-01-01

    Cholesterol-rich very low density lipoproteins (VLDL) from the homozygous Watanabe heritable hyperlipidemic (WHHL) rabbit induced marked cholesteryl ester accumulation in mouse peritoneal macrophages. This WHHL rabbit, an animal model of human familial hypercholesterolemia, has severe hypercholesterolemia, cutaneous xanthomas, and fulminant atherosclerosis due to the deficiency of the low density lipoprotein (LDL) receptor. When incubated with mouse peritoneal macrophages, the VLDL from WHHL rabbit (WHHL-VLDL) stimulated cholesteryl [ 14 C]oleate synthesis 124-fold more than did VLDL from the normal Japanese White rabbit (control-VLDL). The enhancement in cholesteryl ester synthesis and accumulation of WHHL-VLDL was due to the presence of a high affinity binding receptor site on the macrophage cell surface that mediated the uptake and lysosomal degradation of WHHL-VLDL. Competition studies showed that the uptake and degradation of 125 I-WHHL-VLDL was inhibited by unlabeled excess WHHL-VLDL and beta-migrating VLDL (beta-VLDL), but not LDL. Furthermore, the degradation of WHHL-VLDL was not blocked by either fucoidin, polyinosinic acid, or polyguanylic acid, potent inhibitors of the acetylated (acetyl)-LDL binding site, or by acetyl-LDL. These results suggest that macrophages possess a high affinity receptor that recognizes the cholesterol-rich VLDL present in the plasma of the WHHL rabbit and that the receptor which mediates ingestion of WHHL-VLDL seems to be the same as that for beta-VLDL and leads to cholesteryl ester deposition within macrophages. Thus, the uptake of the cholesterol-rich VLDL from the WHHL rabbit by macrophages in vivo may play a significant role in the pathogenesis of atherosclerosis in the WHHL rabbit

  16. Inefficient HIV-1 trans infection of CD4+ T cells by macrophages from HIV-1 nonprogressors is associated with altered membrane cholesterol and DC-SIGN.

    Science.gov (United States)

    DeLucia, Diana C; Rinaldo, Charles R; Rappocciolo, Giovanna

    2018-04-11

    Professional antigen presenting cells (APC: myeloid dendritic cells (DC) and macrophages (MΦ); B lymphocytes) mediate highly efficient HIV-1 infection of CD4 + T cells, termed trans infection, that could contribute to HIV-1 pathogenesis. We have previously shown that lower cholesterol content in DC and B lymphocytes is associated with a lack of HIV-1 trans infection in HIV-1 infected nonprogressors (NP). Here we assessed whether HIV-1 trans infection mediated by another major APC, MΦ, is deficient in NP due to altered cholesterol metabolism. When comparing healthy HIV-1 seronegatives (SN), rapid progressors (PR), and NP, we found that monocyte-derived MΦ from NP did not mediate HIV-1 trans infection of autologous CD4 + T cells, in contrast to efficient trans infection mediated by SN and PR MΦ. MΦ trans infection efficiency was directly associated with the number of DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN)-expressing MΦ. Significantly fewer NP MΦ expressed DC-SIGN. Unesterified (free) cholesterol in MΦ cell membranes and lipid rafting was significantly lower in NP than PR, as well as virus internalization in early endosomes. Furthermore, simvastatin (SIMV), decreased the subpopulation of DC-SIGN + MΦ, as well as MΦ cis and trans infection. Notably, SIMV decreased cell membrane cholesterol and led to lipid raft dissociation, effectively mimicking the incompetent APC trans infection environment characteristic of NP. Our data support that DC-SIGN and membrane cholesterol are central to MΦ trans infection, and a lack of these limits HIV-1 disease progression. Targeting the ability of MΦ to drive HIV-1 dissemination in trans could enhance HIV-1 therapeutic strategies. IMPORTANCE Despite the success of combination anti-retroviral therapy, neither a vaccine nor a cure for HIV infection has been developed, demonstrating a need for novel prophylactic and therapeutic strategies. Here we show that efficiency of macrophage (M

  17. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  18. Dispatched and scube mediate the efficient secretion of the cholesterol-modified hedgehog ligand.

    Science.gov (United States)

    Tukachinsky, Hanna; Kuzmickas, Ryan P; Jao, Cindy Y; Liu, Jing; Salic, Adrian

    2012-08-30

    The Hedgehog (Hh) signaling pathway plays critical roles in metazoan development and in cancer. How the Hh ligand is secreted and spreads to distant cells is unclear, given its covalent modification with a hydrophobic cholesterol molecule, which makes it stick to membranes. We demonstrate that Hh ligand secretion from vertebrate cells is accomplished via two distinct and synergistic cholesterol-dependent binding events, mediated by two proteins that are essential for vertebrate Hh signaling: the membrane protein Dispatched (Disp) and a member of the Scube family of secreted proteins. Cholesterol modification is sufficient for a heterologous protein to interact with Scube and to be secreted in a Scube-dependent manner. Disp and Scube recognize different structural aspects of cholesterol similarly to how Niemann-Pick disease proteins 1 and 2 interact with cholesterol, suggesting a hand-off mechanism for transferring Hh from Disp to Scube. Thus, Disp and Scube cooperate to dramatically enhance the secretion and solubility of the cholesterol-modified Hh ligand. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Dispatched and Scube Mediate the Efficient Secretion of the Cholesterol-Modified Hedgehog Ligand

    OpenAIRE

    Hanna Tukachinsky; Ryan P. Kuzmickas; Cindy Y. Jao; Jing Liu; Adrian Salic

    2012-01-01

    The Hedgehog signaling pathway plays critical roles in metazoan development and in cancer. How the Hedgehog ligand is secreted and spreads to distant cells is unclear, given its covalent modification with a hydrophobic cholesterol molecule, which makes it stick to membranes. We demonstrate that Hedgehog ligand secretion from vertebrate cells is accomplished via two distinct and synergistic cholesterol-dependent binding events, one mediated by the membrane protein Dispatched and the other by a...

  20. Triazoles inhibit cholesterol export from lysosomes by binding to NPC1.

    Science.gov (United States)

    Trinh, Michael N; Lu, Feiran; Li, Xiaochun; Das, Akash; Liang, Qiren; De Brabander, Jef K; Brown, Michael S; Goldstein, Joseph L

    2017-01-03

    Niemann-Pick C1 (NPC1), a membrane protein of lysosomes, is required for the export of cholesterol derived from receptor-mediated endocytosis of LDL. Lysosomal cholesterol export is reportedly inhibited by itraconazole, a triazole that is used as an antifungal drug [Xu et al. (2010) Proc Natl Acad Sci USA 107:4764-4769]. Here we show that posaconazole, another triazole, also blocks cholesterol export from lysosomes. We prepared P-X, a photoactivatable cross-linking derivative of posaconazole. P-X cross-linked to NPC1 when added to intact cells. Cross-linking was inhibited by itraconazole but not by ketoconazole, an imidazole that does not block cholesterol export. Cross-linking of P-X was also blocked by U18666A, a compound that has been shown to bind to NPC1 and inhibit cholesterol export. P-X also cross-linked to purified NPC1 that was incorporated into lipid bilayer nanodiscs. In this in vitro system, cross-linking of P-X was inhibited by itraconazole, but not by U18666A. P-X cross-linking was not prevented by deletion of the N-terminal domain of NPC1, which contains the initial binding site for cholesterol. In contrast, P-X cross-linking was reduced when NPC1 contained a point mutation (P691S) in its putative sterol-sensing domain. We hypothesize that the sterol-sensing domain has a binding site that can accommodate structurally different ligands.

  1. Dietary copper in excess of nutritional requirement reduces plasma and breast muscle cholesterol of chickens.

    Science.gov (United States)

    Bakalli, R I; Pesti, G M; Ragland, W L; Konjufca, V

    1995-02-01

    Male commercial broiler strain chickens were fed from hatching to 42 d of age either a control diet (based on corn and soybean meal) or the control diet supplemented with 250 mg copper/kg diet from cupric sulfate pentahydrate (for 35 or 42 d). Hypocholesterolemia (11.8% reduction) and decreased breast muscle cholesterol (20.4% reduction) were observed in copper-supplemented birds. There was a slight increase (P > .05) in breast muscle copper (14.5%), and all levels were very low (copper for 42 vs 35 d resulted in lower levels of cholesterol in the plasma (12.9 vs 10.8% reduction) and breast muscle (24.6 vs 16.2% reduction). Very similar results were found in two additional experiments in which hypocholesterolemia and reduced breast muscle cholesterol were associated with reduced plasma triglycerides and blood reduced glutathione. It is well known that hypercholesterolemia is a symptom of dietary copper deficiency. The data presented here indicate that blood and breast muscle cholesterol are inversely related to dietary copper in excess of the dietary requirement for maximal growth. The cholesterol content of the edible muscle tissue of broiler chickens can be reduced by approximately 25% after feeding a supranormal level of copper for 42 d without altering the growth of the chickens or substantially increasing the copper content of the edible meat.

  2. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  3. Influence of Erythrocyte Membrane Stability in Atherosclerosis.

    Science.gov (United States)

    da Silva Garrote-Filho, Mario; Bernardino-Neto, Morun; Penha-Silva, Nilson

    2017-04-01

    The purpose of this study is to show how an excess of cholesterol in the erythrocyte membrane contributes stochastically to the progression of atherosclerosis, leading to damage in blood rheology and O 2 transport, deposition of cholesterol (from trapped erythrocytes) in an area of intraplaque hemorrhage, and local exacerbation of oxidative stress. Cholesterol contained in the membrane of erythrocytes trapped in an intraplaque hemorrhage contributes to the growth of the necrotic nucleus. There is even a relationship between the amount of cholesterol in the erythrocyte membrane and the severity of atherosclerosis. In addition, the volume variability among erythrocytes, measured by RDW, is predictive of a worsening of this disease. Erythrocytes contribute to the development of atherosclerosis in several ways, especially when trapped in intraplate hemorrhage. These erythrocytes are oxidized and phagocytosed by macrophages. The cholesterol present in the membrane of these erythrocytes subsequently contributes to the growth of the atheroma plaque. In addition, when they rupture, erythrocytes release hemoglobin, which leads to the generation of free radicals. Finally, increased RDW may predict the worsening of atherosclerosis, due to the effects of inflammation and oxidative stress on erythropoiesis and erythrocyte volume. A better understanding of erythrocyte participation in atherosclerosis may contribute to the improvement of the prevention and treatment strategies of this disease.

  4. A fluorescent glycolipid-binding peptide probe traces cholesterol dependent microdomain-derived trafficking pathways.

    Directory of Open Access Journals (Sweden)

    Steffen Steinert

    Full Text Available BACKGROUND: The uptake and intracellular trafficking of sphingolipids, which self-associate into plasma membrane microdomains, is associated with many pathological conditions, including viral and toxin infection, lipid storage disease, and neurodegenerative disease. However, the means available to label the trafficking pathways of sphingolipids in live cells are extremely limited. In order to address this problem, we have developed an exogenous, non-toxic probe consisting of a 25-amino acid sphingolipid binding domain, the SBD, derived from the amyloid peptide Abeta, and conjugated by a neutral linker with an organic fluorophore. The current work presents the characterization of the sphingolipid binding and live cell trafficking of this novel probe, the SBD peptide. SBD was the name given to a motif originally recognized by Fantini et al in a number of glycolipid-associated proteins, and was proposed to interact with sphingolipids in membrane microdomains. METHODOLOGY/PRINCIPAL FINDINGS: In accordance with Fantini's model, optimal SBD binding to membranes depends on the presence of sphingolipids and cholesterol. In synthetic membrane binding assays, SBD interacts preferentially with raft-like lipid mixtures containing sphingomyelin, cholesterol, and complex gangliosides in a pH-dependent manner, but is less glycolipid-specific than Cholera toxin B (CtxB. Using quantitative time-course colocalization in live cells, we show that the uptake and intracellular trafficking route of SBD is unlike that of either the non-raft marker Transferrin or the raft markers CtxB and Flotillin2-GFP. However, SBD traverses an endolysosomal route that partially intersects with raft-associated pathways, with a major portion being diverted at a late time point to rab11-positive recycling endosomes. Trafficking of SBD to acidified compartments is strongly disrupted by cholesterol perturbations, consistent with the regulation of sphingolipid trafficking by cholesterol

  5. Enzymatic-fluorometric quantification of cholesterol in bovine milk

    DEFF Research Database (Denmark)

    Larsen, Torben

    2012-01-01

    The present paper describes an enzymatic–fluorometric method for the determination of cholesterol in milk and other opaque matrices. The initial step of the method is to liberate chemically and physically bound cholesterol from the milk fat globule membrane by enzymatic action. The method is able...... to discriminate between esterified and free cholesterol in milk. The analysis is cost effective and is developed to work directly on whole, fresh milk thereby eliminating time consuming and tedious pre-treatment procedures of the sample. More than 1000 milk samples were analysed on the day of sampling. The total...... concentration of milk cholesterol ranged from 80 to 756 μM (n = 1068; mean 351 μM). Milk cholesterol was significantly correlated to milk fat concentration as analysed by mid-infra red spectrometry (r = 0.630; n = 853) and by an enzymatic–fluorometric method (triacylglycerol) (r = 0.611; n = 842)....

  6. Effect of incorporating cholesterol into DDA:TDB liposomal adjuvants on bilayer properties, biodistribution, and immune responses.

    Science.gov (United States)

    Kaur, Randip; Henriksen-Lacey, Malou; Wilkhu, Jitinder; Devitt, Andrew; Christensen, Dennis; Perrie, Yvonne

    2014-01-06

    Cholesterol is an abundant component of mammalian cell membranes and has been extensively studied as an artificial membrane stabilizer in a wide range of phospholipid liposome systems. In this study, the aim was to investigate the role of cholesterol in cationic liposomal adjuvant system based on dimethyldioctadecylammonium (DDA) and trehalose 6,6'-dibehenate (TDB) which has been shown as a strong adjuvant system for vaccines against a wide range of diseases. Packaging of cholesterol within DDA:TDB liposomes was investigated using differential scanning calorimetery and surface pressure-area isotherms of lipid monolayers; incorporation of cholesterol into liposomal membranes promoted the formation of a liquid-condensed monolayer and removed the main phase transition temperature of the system, resulting in an increased bilayer fluidity and reduced antigen retention in vitro. In vivo biodistribution studies found that this increase in membrane fluidity did not alter deposition of liposomes and antigen at the site of injection. In terms of immune responses, early (12 days after immunization) IgG responses were reduced by inclusion of cholesterol; thereafter there were no differences in antibody (IgG, IgG1, IgG2b) responses promoted by DDA:TDB liposomes with and without cholesterol. However, significantly higher levels of IFN-gamma were induced by DDA:TDB liposomes, and liposome uptake by macrophages in vitro was also shown to be higher for DDA:TDB liposomes compared to their cholesterol-containing counterparts, suggesting that small changes in bilayer mechanics can impact both cellular interactions and immune responses.

  7. Amphotericin B channels in phospholipid membrane-coated nanoporous silicon surfaces: implications for photovoltaic driving of ions across membranes.

    Science.gov (United States)

    Yilma, Solomon; Liu, Nangou; Samoylov, Alexander; Lo, Ting; Brinker, C Jeffrey; Vodyanoy, Vitaly

    2007-03-15

    The antimycotic agent amphotericin B (AmB) functions by forming complexes with sterols to form ion channels that cause membrane leakage. When AmB and cholesterol mixed at 2:1 ratio were incorporated into phospholipid bilayer membranes formed on the tip of patch pipettes, ion channel current fluctuations with characteristic open and closed states were observed. These channels were also functional in phospholipid membranes formed on nanoporous silicon surfaces. Electrophysiological studies of AmB-cholesterol mixtures that were incorporated into phospholipid membranes formed on the surface of nanoporous (6.5 nm pore diameter) silicon plates revealed large conductance ion channels ( approximately 300 pS) with distinct open and closed states. Currents through the AmB-cholesterol channels on nanoporous silicon surfaces can be driven by voltage applied via conventional electrical circuits or by photovoltaic electrical potential entirely generated when the nanoporous silicon surface is illuminated with a narrow laser beam. Electrical recordings made during laser illumination of AmB-cholesterol containing membrane-coated nanoporous silicon surfaces revealed very large conductance ion channels with distinct open and closed states. Our findings indicate that nanoporous silicon surfaces can serve as mediums for ion-channel-based biosensors. The photovoltaic properties of nanoporous silicon surfaces show great promise for making such biosensors addressable via optical technologies.

  8. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet.

    Science.gov (United States)

    Saher, Gesine; Rudolphi, Fabian; Corthals, Kristina; Ruhwedel, Torben; Schmidt, Karl-Friedrich; Löwel, Siegrid; Dibaj, Payam; Barrette, Benoit; Möbius, Wiebke; Nave, Klaus-Armin

    2012-07-01

    Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy without therapeutic options. PLP binds cholesterol and is contained within membrane lipid raft microdomains. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis. Transgenic mice with extra copies of the Plp1 gene are accurate models of PMD. Dysmyelination followed by demyelination, secondary inflammation and axon damage contribute to the severe motor impairment in these mice. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes), prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.

  9. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  10. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  11. Anandamide Revisited: How Cholesterol and Ceramides Control Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of a Lipid Neurotransmitter.

    Science.gov (United States)

    Di Scala, Coralie; Fantini, Jacques; Yahi, Nouara; Barrantes, Francisco J; Chahinian, Henri

    2018-05-22

    Anandamide is a lipid neurotransmitter derived from arachidonic acid, a polyunsaturated fatty acid. The chemical differences between anandamide and arachidonic acid result in a slightly enhanced solubility in water and absence of an ionisable group for the neurotransmitter compared with the fatty acid. In this review, we first analyze the conformational flexibility of anandamide in aqueous and membrane phases. We next study the interaction of the neurotransmitter with membrane lipids and discuss the molecular basis of the unexpected selectivity of anandamide for cholesterol and ceramide from among other membrane lipids. We show that cholesterol behaves as a binding partner for anandamide, and that following an initial interaction mediated by the establishment of a hydrogen bond, anandamide is attracted towards the membrane interior, where it forms a molecular complex with cholesterol after a functional conformation adaptation to the apolar membrane milieu. The complex is then directed to the anandamide cannabinoid receptor (CB1) which displays a high affinity binding pocket for anandamide. We propose that cholesterol may regulate the entry and exit of anandamide in and out of CB1 by interacting with low affinity cholesterol recognition sites (CARC and CRAC) located in transmembrane helices. The mirror topology of cholesterol binding sites in the seventh transmembrane domain is consistent with the delivery, extraction and flip-flop of anandamide through a coordinated cholesterol-dependent mechanism. The binding of anandamide to ceramide illustrates another key function of membrane lipids which may occur independently of protein receptors. Interestingly, ceramide forms a tight complex with anandamide which blocks the degradation pathway of both lipids and could be exploited for anti-cancer therapies.

  12. Anti-Atherosclerotic Effects of a Phytoestrogen-Rich Herbal Preparation in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Veronika A. Myasoedova

    2016-08-01

    Full Text Available The risk of cardiovascular disease and atherosclerosis progression is significantly increased after menopause, probably due to the decrease of estrogen levels. The use of hormone replacement therapy (HRT for prevention of cardiovascular disease in older postmenopausal failed to meet expectations. Phytoestrogens may induce some improvements in climacteric symptoms, but their effect on the progression of atherosclerosis remains unclear. The reduction of cholesterol accumulation at the cellular level should lead to inhibition of the atherosclerotic process in the arterial wall. The inhibition of intracellular lipid deposition with isoflavonoids was suggested as the effective way for the prevention of plaque formation in the arterial wall. The aim of this double-blind, placebo-controlled clinical study was to investigate the effect of an isoflavonoid-rich herbal preparation on atherosclerosis progression in postmenopausal women free of overt cardiovascular disease. One hundred fifty-seven healthy postmenopausal women (age 65 ± 6 were randomized to a 500 mg isoflavonoid-rich herbal preparation containing tannins from grape seeds, green tea leaves, hop cone powder, and garlic powder, or placebo. Conventional cardiovascular risk factors and intima-media thickness of common carotid arteries (cIMT were evaluated at the baseline and after 12 months of treatment. After 12-months follow-up, total cholesterol decreased by 6.3% in isoflavonoid-rich herbal preparation recipients (p = 0.011 and by 5.2% in placebo recipients (p = 0.020; low density lipoprotein (LDL cholesterol decreased by 7.6% in isoflavonoid-rich herbal preparation recipients (p = 0.040 and by 5.2% in placebo recipients (non-significant, NS; high density lipoprotein (HDL cholesterol decreased by 3.4% in isoflavonoid-rich herbal preparation recipients (NS and by 4.5% in placebo recipients (p = 0.038; triglycerides decreased by 6.0% in isoflavonoid-rich herbal preparation recipients (NS and by

  13. Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction

    International Nuclear Information System (INIS)

    Asano, K.; Asano, A.

    1988-01-01

    Specificity of the binding of sterols and related compounds with purified F-protein (fusion protein) of the HVJ (Sendai virus) was studied by binding competition with [ 3 H] cholesterol. Requirement for cholesterol or the A/B ring trans structure and nonrequirement for the 3-hydroxyl group were found in this binding. Binding of 125 I-labeled Z-Phe-Tyr, an inhibitory peptide of viral membrane-cell membrane fusion, was studied by using purified proteins and virions. F-Protein and virions showed a specific binding with the peptide, whereas the result was negative with hemagglutinin and neuraminidase protein. Thermolysin-truncated F-protein (an F-protein derivative deprived of a 2.5-kDa fragment from the N-terminal of the F 1 subunit and without fusogenic activity) exhibited a considerably diminished binding ability both to cholesterol and to inhibitory peptides. Therefore, the N-terminal hydrophobic sequence that was previously assigned as fusogenic seems to be the binding site of these molecules. In support of this, the binding of cholesterol with F-protein was inhibited by Z-Phe-Tyr and other fusion inhibitory peptides, whereas it was not affected with non-fusion-inhibitory Z-Gly-Phe. These results are discussed in relation to the notion that the binding of the N-terminal portion of the F 1 subunit of F-protein with cholesterol in the target cell membranes facilitiates the fusion reaction

  14. Optimizing the effect of plant sterols on cholesterol absorption in man.

    Science.gov (United States)

    Mattson, F H; Grundy, S M; Crouse, J R

    1982-04-01

    During three experimental periods, nine adults were hospitalized on a metabolic ward and fed a meal containing 500 mg of cholesterol as a component of scrambled eggs. In addition, the meal contained: 1) no additive, 2) 1 g beta-sitosterol, or 3) 2 g beta-sitosteryl oleate. Stools for the succeeding 5 days were analyzed to determine the percentage of the cholesterol in the test meal that was absorbed. The addition of beta-sitosterol resulted in a 42% decrease in cholesterol absorption; the beta-sitosteryl oleate caused a 33% reduction. These results indicate that the judicious addition of beta-sitosterol or beta-sitosteryl oleate to meals containing cholesterol-rich foods will result in a significant decrease in cholesterol absorption, with a consequent decrease in plasma cholesterol.

  15. Absolute requirement of cholesterol binding for Hedgehog gradient formation in Drosophila

    Directory of Open Access Journals (Sweden)

    Antoine Ducuing

    2013-05-01

    How morphogen gradients are shaped is a major question in developmental biology, but remains poorly understood. Hedgehog (Hh is a locally secreted ligand that reaches cells at a distance and acts as a morphogen to pattern the Drosophila wing and the vertebrate neural tube. The proper patterning of both structures relies on the precise control over the slope of Hh activity gradient. A number of hypotheses have been proposed to explain Hh movement and hence graded activity of Hh. A crux to all these models is that the covalent binding of cholesterol to Hh N-terminus is essential to achieve the correct slope of the activity gradient. Still, the behavior of cholesterol-free Hh (Hh-N remains controversial: cholesterol has been shown to either increase or restrict Hh range depending on the experimental setting. Here, in fly embryos and wing imaginal discs, we show that cholesterol-free Hh diffuses at a long-range. This unrestricted diffusion of cholesterol-free Hh leads to an absence of gradient while Hh signaling strength remains uncompromised. These data support a model where cholesterol addition restricts Hh diffusion and can transform a leveled signaling activity into a gradient. In addition, our data indicate that the receptor Patched is not able to sequester cholesterol-free Hh. We propose that a morphogen gradient does not necessarily stem from the active transfer of a poorly diffusing molecule, but can be achieved by the restriction of a highly diffusible ligand.

  16. Cholesterol tuning of BK ethanol response is enantioselective, and is a function of accompanying lipids.

    Directory of Open Access Journals (Sweden)

    Chunbo Yuan

    Full Text Available In the search to uncover ethanol's molecular mechanisms, the calcium and voltage activated, large conductance potassium channel (BK has emerged as an important molecule. We examine how cholesterol content in bilayers of 1,2-dioleoyl-3-phosphatidylethanolamine (DOPE/sphingomyelin (SPM and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS affect the function and ethanol sensitivity of BK. In addition, we examine how manipulation of cholesterol in biological membranes modulates ethanol's actions on BK. We report that cholesterol levels regulate the change in BK channel open probability elicited by 50 mM ethanol. Low levels of cholesterol (<20%, molar ratio supports ethanol activation, while high levels of cholesterol leads to ethanol inhibition of BK. To determine if cholesterol affects BK and its sensitivity to ethanol through a direct cholesterol-protein interaction or via an indirect action on the lipid bilayer, we used the synthetic enantiomer of cholesterol (ent-CHS. We found that 20% and 40% ent-CHS had little effect on the ethanol sensitivity of BK, when compared with the same concentration of nat-CHS. We accessed the effects of ent-CHS and nat-CHS on the molecular organization of DOPE/SPM monolayers at the air/water interface. The isotherm data showed that ent-CHS condensed DOPE/SPM monolayer equivalently to nat-CHS at a 20% concentration, but slightly less at a 40% concentration. Atomic force microscopy (AFM images of DOPE/SPM membranes in the presence of ent-CHS or nat-CHS prepared with LB technique or vesicle deposition showed no significant difference in topographies, supporting the interpretation that the differences in actions of nat-CHS and ent-CHS on BK channel are not likely from a generalized action on bilayers. We conclude that membrane cholesterol influences ethanol's modulation of BK in a complex manner, including an interaction with the channel protein

  17. A Novel Technique for Conjunctivoplasty in a Rabbit Model: Platelet-Rich Fibrin Membrane Grafting

    Directory of Open Access Journals (Sweden)

    Mehmet Erol Can

    2016-01-01

    Full Text Available Purpose. To investigate the effect of platelet-rich fibrin (PRF membrane on wound healing. Methods. Twenty-four right eyes of 24 New Zealand rabbits equally divided into 2 groups for the study design. After the creation of 5 × 5 mm conjunctival damage, it was secured with PRF membrane, which was generated from the rabbit’s whole blood samples in PRF membrane group, whereas damage was left unsutured in the control group. Three animals were sacrificed in each group on the 1st, 3rd, 7th, and 28th postoperative days. Immunohistochemical (IHC stainings and biomicroscopic evaluation were performed and compared between groups. Results. PRF membrane generated significant expressions of vascular endothelial growth factor (VEGF, transforming growth factor-beta (TGF-β, and platelet-derived growth factor (PDGF in the early postoperative period. However, the IHC evaluation allowed showing the excessive staining at day 28, in control group. Biomicroscopic evaluation revealed complete epithelialization in PRF membrane group, but none of the cases showed complete healing in the control group. Conclusions. This experimental study showed us the beneficial effects of the PRF membrane on conjunctival healing. Besides its chemical effects, it provides mechanical support as a scaffold for the migrating cells that are important for ocular surface regeneration. These overall results encourage us to apply autologous PRF membrane as a growth factor-enriched endogenous scaffold for ocular surface reconstruction.

  18. Effects of consumption of whole grain foods rich in lignans in healthy postmenopausal women with moderate serum cholesterol: a pilot study.

    Science.gov (United States)

    Durazzo, A; Carcea, M; Adlercreutz, H; Azzini, E; Polito, A; Olivieri, L; Zaccaria, M; Meneghini, C; Maiani, F; Bausano, G; Martiri, F; Samaletdin, A; Fumagalli, A; Raguzzini, A; Venneria, E; Foddai, M S; Ciarapica, D; Mauro, B; Volpe, F; Maiani, G

    2014-08-01

    This study aims at investigating the effect of an experimental period of intake of whole grain foods rich in lignans as part of an habitual diet on the plasma and urinary excretion of enterolignans, the biomarkers of lipid metabolism and the immunological and antioxidant status in a group of postmenopausal women with moderate serum cholesterol. A randomized double-blind crossover study was completed on 13 subjects in 12-weeks after protocol approval of an ethical committee. The subjects consumed whole grain foods high in lignans (30 g/d of breakfast cereals or biscuits, etc., 80 g/d of whole grain pasta) or refined grain foods for 4 weeks, separated by a 2-weeks wash-out period. A modest hypocholesterolemic effect (p < 0.05) of the whole grain diet was observed and the intake of whole grain products rich in lignans was also associated with an increase in urinary enterodiol excretion (p < 0.05).

  19. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  20. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos, Vazquez De La Parra Luis Francisco

    2016-01-01

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  1. Asymmetric polymeric membranes containing a metal-rich dense layer with a controlled thickness and method of making same

    KAUST Repository

    Peinemann, Klaus-Viktor

    2016-01-21

    A structure, and methods of making the structure are provided in which the structure can include: a membrane having a first layer and a second layer, the first layer comprising polymer chains formed with coordination complexes with metal ions, and the second layer consisting of a porous support layer formed of polymer chains substantially, if not completely, lacking the presence of metal ions. The structure can be an asymmetric polymeric membrane containing a metal-rich layer as the first layer. In various embodiments the first layer can be a metal-rich dense layer. The first layer can include pores. The polymer chains of the first layer can be closely packed. The second layer can include a plurality of macro voids and can have an absence of the metal ions of the first layer.

  2. Hydrostatic pressure decreases membrane fluidity and lipid desaturase expression in chondrocyte progenitor cells.

    Science.gov (United States)

    Montagne, Kevin; Uchiyama, Hiroki; Furukawa, Katsuko S; Ushida, Takashi

    2014-01-22

    Membrane biomechanical properties are critical in modulating nutrient and metabolite exchange as well as signal transduction. Biological membranes are predominantly composed of lipids, cholesterol and proteins, and their fluidity is tightly regulated by cholesterol and lipid desaturases. To determine whether such membrane fluidity regulation occurred in mammalian cells under pressure, we investigated the effects of pressure on membrane lipid order of mouse chondrogenic ATDC5 cells and desaturase gene expression. Hydrostatic pressure linearly increased membrane lipid packing and simultaneously repressed lipid desaturase gene expression. We also showed that cholesterol mimicked and cholesterol depletion reversed those effects, suggesting that desaturase gene expression was controlled by the membrane physical state itself. This study demonstrates a new effect of hydrostatic pressure on mammalian cells and may help to identify the molecular mechanisms involved in hydrostatic pressure sensing in chondrocytes. © 2013 Elsevier Ltd. All rights reserved.

  3. Cholesterol in brain disease: sometimes determinant and frequently implicated

    Science.gov (United States)

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  4. Zymosterol is located in the plasma membrane of cultured human fibroblasts

    International Nuclear Information System (INIS)

    Echevarria, F.; Norton, R.A.; Nes, W.D.; Lange, Y.

    1990-01-01

    Zymosterol (5 alpha-cholesta-8(9),24-dien-3 beta-ol) comprised a negligible fraction of the mass of sterol in cultured human fibroblasts but was well labeled biosynthetically with radioactive acetate. Treatment of cells with triparanol, a potent inhibitor of sterol delta 24-reductase, led to a marked increase in labeled zymosterol while its mass rose to 1 mol% of total sterol. All of this sterol could be chased into cholesterol. Furthermore, cell homogenates converted exogenous radiolabeled zymosterol to cholesterol. Three lines of evidence suggested that biosynthetically labeled zymosterol was associated with the plasma membrane. (1) About 80% of radiolabeled zymosterol was oxidized by the impermeant enzyme, cholesterol oxidase, in glutaraldehyde-fixed intact cells. (2) Sucrose density gradient analysis of homogenates showed that the equilibrium buoyant density profile of newly synthesized zymosterol was identical with that of the plasma membrane. (3) Newly synthesized zymosterol was transferred as readily from fixed intact fibroblasts to exogenous acceptors as was cholesterol. Given that cholesterol is synthesized within the cell, it is unclear why most of the zymosterol is in the plasma membrane. The pathway of cholesterol biosynthesis may compel zymosterol to flux through the plasma membrane. Alternatively, plasma membrane zymosterol may represent a separate pool, in equilibrium with the zymosterol in the intracellular biosynthetic pool

  5. Determination of the electroporation onset of bilayer lipid membranes as a novel approach to establish ternary phase diagrams: example of the L-α-PC/SM/cholesterol system

    NARCIS (Netherlands)

    van Uitert, I.; le Gac, Severine; van den Berg, Albert

    2010-01-01

    The lipid matrix of cell membranes contains phospholipids belonging to two main classes, glycero- and sphingolipids, as well as cholesterol. This matrix can exist in different phases, liquid disordered (l(d)), liquid ordered (l(o)) and possibly solid (s(o)), or even a combination of these. The

  6. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes

    Directory of Open Access Journals (Sweden)

    Hooman Khorshidi

    2016-01-01

    Full Text Available Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1 and the rest was used to get a membrane by PRGF-Endoret system (group 2. Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P0.05. Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here.

  7. Comparison of the Mechanical Properties of Early Leukocyte- and Platelet-Rich Fibrin versus PRGF/Endoret Membranes.

    Science.gov (United States)

    Khorshidi, Hooman; Raoofi, Saeed; Bagheri, Rafat; Banihashemi, Hodasadat

    2016-01-01

    Objectives. The mechanical properties of membranes are important factors in the success of treatment and clinical handling. The goal of this study was to compare the mechanical properties of early leukocyte- and platelet-rich fibrin (L-PRF) versus PRGF/Endoret membrane. Materials and Methods. In this experimental study, membranes were obtained from 10 healthy male volunteers. After obtaining 20 cc venous blood from each volunteer, 10 cc was used to prepare early L-PRF (group 1) and the rest was used to get a membrane by PRGF-Endoret system (group 2). Tensile loads were applied to specimens using universal testing machine. Tensile strength, stiffness, and toughness of the two groups of membranes were calculated and compared by paired t-test. Results. The mean tensile strength and toughness were higher in group 1 with a significant difference (P 0.05). Conclusions. The results showed that early L-PRF membranes had stronger mechanical properties than membranes produced by PRGF-Endoret system. Early L-PRF membranes might have easier clinical handling and could be a more proper scaffold in periodontal regenerative procedures. The real results of the current L-PRF should be in fact much higher than what is reported here.

  8. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI -tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr 83 and Glu 73 , respectively. When Glu 73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr 62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu 73 residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Arterial Retention of Remnant Lipoproteins Ex Vivo Is Increased in Insulin Resistance Because of Increased Arterial Biglycan and Production of Cholesterol-Rich Atherogenic Particles That Can Be Improved by Ezetimibe in the JCR:LA-cp Rat

    Science.gov (United States)

    Mangat, Rabban; Warnakula, Samantha; Borthwick, Faye; Hassanali, Zahra; Uwiera, Richard R.E.; Russell, James C.; Cheeseman, Christopher I.; Vine, Donna F.; Proctor, Spencer D

    2012-01-01

    Background Literature supports the “response-to-retention” hypothesis—that during insulin resistance, impaired metabolism of remnant lipoproteins can contribute to accelerated cardiovascular disease progression. We used the JCR:LA-cp rat model of metabolic syndrome (MetS) to determine the extent of arterial accumulation of intestinal-derived remnants ex vivo and potential mechanisms that contribute to exacerbated cholesterol deposition in insulin resistance. Methods and Results Arteries from control and MetS (insulin-resistant) JCR:LA-cp rats were perfused ex vivo with Cy5-labeled remnant lipoproteins, and their arterial retention was quantified by confocal microscopy. Arterial proteoglycans were isolated from control and MetS rats at 6, 12, and 32 weeks of age. There was a significant increase in the arterial retention of remnants and in associated cholesterol accumulation in MetS rats as compared to control rats. Mechanistic studies reveal that increased cholesterol deposition is a result of greater arterial biglycan content; longer glycosaminoglycans and increased production of cholesterol-rich intestinal-derived remnants, as compared to controls. Additionally, perfusion of vessels treated with ezetimibe, alone or in combination with simvastatin, with remnants isolated from the respective treatment group reduced ex vivo arterial retention of remnant-derived cholesterol ex vivo as compared to untreated controls. Conclusions Increased progression of atherosclerotic cardiovascular disease in MetS and type 2 diabetes mellitus might be explained in part by an increase in the arterial retention of cholesterol-rich remnants. Furthermore, ezetimibe alone or in combination treatment with simvastatin could be beneficial in ameliorating atherosclerotic cardiovascular disease in insulin resistance and MetS. PMID:23316299

  10. Cellular Cholesterol Facilitates the Postentry Replication Cycle of Herpes Simplex Virus 1.

    Science.gov (United States)

    Wudiri, George A; Nicola, Anthony V

    2017-07-15

    Cholesterol is an essential component of cell membranes and is required for herpes simplex virus 1 (HSV-1) entry (1-3). Treatment of HSV-1-infected Vero cells with methyl beta-cyclodextrin from 2 to 9 h postentry reduced plaque numbers. Transport of incoming viral capsids to the nuclear periphery was unaffected by the cholesterol reduction, suggesting that cell cholesterol is important for the HSV-1 replicative cycle at a stage(s) beyond entry, after the arrival of capsids at the nucleus. The synthesis and release of infectious HSV-1 and cell-to-cell spread of infection were all impaired in cholesterol-reduced cells. Propagation of HSV-1 on DHCR24 -/- fibroblasts, which lack the desmosterol-to-cholesterol conversion enzyme, resulted in the generation of infectious extracellular virions (HSV des ) that lack cholesterol and likely contain desmosterol. The specific infectivities (PFU per viral genome) of HSV chol and HSV des were similar, suggesting cholesterol and desmosterol in the HSV envelope support similar levels of infectivity. However, infected DHCR24 -/- fibroblasts released ∼1 log less infectious HSV des and ∼1.5 log fewer particles than release of cholesterol-containing particles (HSV chol ) from parental fibroblasts, suggesting that the hydrocarbon tail of cholesterol facilitates viral synthesis. Together, the results suggest multiple roles for cholesterol in the HSV-1 replicative cycle. IMPORTANCE HSV-1 infections are associated with a wide range of clinical manifestations that are of public health importance. Cholesterol is a key player in the complex interaction between viral and cellular factors that allows HSV-1 to enter host cells and establish infection. Previous reports have demonstrated a role for cellular cholesterol in the entry of HSV-1 into target cells. Here, we employed both chemical treatment and cells that were genetically defined to synthesize only desmosterol to demonstrate that cholesterol is important at stages following the

  11. Cholesterol-Induced Buckling in Physisorbed Polymer-Tethered Lipid Monolayers

    Directory of Open Access Journals (Sweden)

    Christoph A. Naumann

    2013-04-01

    Full Text Available The influence of cholesterol concentration on the formation of buckling structures is studied in a physisorbed polymer-tethered lipid monolayer system using epifluorescence microscopy (EPI and atomic force microscopy (AFM. The monolayer system, built using the Langmuir-Blodgett (LB technique, consists of 3 mol % poly(ethylene glycol (PEG lipopolymers and various concentrations of the phospholipid, 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC, and cholesterol (CHOL. In the absence of CHOL, AFM micrographs show only occasional buckling structures, which is caused by the presence of the lipopolymers in the monolayer. In contrast, a gradual increase of CHOL concentration in the range of 0–40 mol % leads to fascinating film stress relaxation phenomena in the form of enhanced membrane buckling. Buckling structures are moderately deficient in CHOL, but do not cause any notable phospholipid-lipopolymer phase separation. Our experiments demonstrate that membrane buckling in physisorbed polymer-tethered membranes can be controlled through CHOL-mediated adjustment of membrane elastic properties. They further show that CHOL may have a notable impact on molecular confinement in the presence of crowding agents, such as lipopolymers. Our results are significant, because they offer an intriguing prospective on the role of CHOL on the material properties in complex membrane architecture.

  12. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie

    2010-01-01

    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation...

  13. Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

    Science.gov (United States)

    Faundez, Victor; Koval, Michael; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2014-01-01

    Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV. PMID:24498201

  14. Clot retraction is mediated by factor XIII-dependent fibrin-αIIbβ3-myosin axis in platelet sphingomyelin-rich membrane rafts.

    Science.gov (United States)

    Kasahara, Kohji; Kaneda, Mizuho; Miki, Toshiaki; Iida, Kazuko; Sekino-Suzuki, Naoko; Kawashima, Ikuo; Suzuki, Hidenori; Shimonaka, Motoyuki; Arai, Morio; Ohno-Iwashita, Yoshiko; Kojima, Soichi; Abe, Mitsuhiro; Kobayashi, Toshihide; Okazaki, Toshiro; Souri, Masayoshi; Ichinose, Akitada; Yamamoto, Naomasa

    2013-11-07

    Membrane rafts are spatially and functionally heterogenous in the cell membrane. We observed that lysenin-positive sphingomyelin (SM)-rich rafts are identified histochemically in the central region of adhered platelets where fibrin and myosin are colocalized on activation by thrombin. The clot retraction of SM-depleted platelets from SM synthase knockout mouse was delayed significantly, suggesting that platelet SM-rich rafts are involved in clot retraction. We found that fibrin converted by thrombin translocated immediately in platelet detergent-resistant membrane (DRM) rafts but that from Glanzmann's thrombasthenic platelets failed. The fibrinogen γ-chain C-terminal (residues 144-411) fusion protein translocated to platelet DRM rafts on thrombin activation, but its mutant that was replaced by A398A399 at factor XIII crosslinking sites (Q398Q399) was inhibited. Furthermore, fibrin translocation to DRM rafts was impaired in factor XIII A subunit-deficient mouse platelets, which show impaired clot retraction. In the cytoplasm, myosin translocated concomitantly with fibrin translocation into the DRM raft of thrombin-stimulated platelets. Furthermore, the disruption of SM-rich rafts by methyl-β-cyclodextrin impaired myosin activation and clot retraction. Thus, we propose that clot retraction takes place in SM-rich rafts where a fibrin-αIIbβ3-myosin complex is formed as a primary axis to promote platelet contraction.

  15. Ordering effects of cholesterol and its analogues

    DEFF Research Database (Denmark)

    Róg, Tomasz; Pasenkiewicz-Gierula, Marta; Vattulainen, Ilpo

    2009-01-01

    Without any exaggeration, cholesterol is one of the most important lipid species in eukaryotic cells. Its effects on cellular membranes and functions range from purely mechanistic to complex metabolic ones, besides which it is also a precursor of the sex hormones (steroids) and several vitamins....... In this review, we discuss the biophysical effects of cholesterol on the lipid bilayer, in particular the ordering and condensing effects, concentrating on the molecular level or inter-atomic interactions perspective, starting from two-component systems and proceeding to many-component ones e.g., modeling lipid...... rafts. Particular attention is paid to the roles of the methyl groups in the cholesterol ring system, and their possible biological function. Although our main research methodology is computer modeling, in this review we make extensive comparisons between experiments and different modeling approaches....

  16. Anandamide-ceramide interactions in a membrane environment: Molecular dynamic simulations data.

    Science.gov (United States)

    Di Scala, Coralie; Mazzarino, Morgane; Yahi, Nouara; Varini, Karine; Garmy, Nicolas; Fantini, Jacques; Chahinian, Henri

    2017-10-01

    Anandamide is a lipid neurotransmitter that interacts with various plasma membrane lipids. The data here consists of molecular dynamics simulations of anandamide, C18-ceramide and cholesterol performed in vacuo and within a hydrated palmitoyl-oleoyl-phosphatidylcholine (POPC)/cholesterol membrane. Several models of anandamide/cholesterol and anandamide/ceramide complexes are presented. The energy of interaction and the nature of the intermolecular forces involved in each of these complexes are detailed. The impact of water molecules hydrating the POPC/cholesterol membrane for the stability of the anandamide/cholesterol and anandamide/ceramide complexes is also analyzed. From a total number of 1920 water molecules stochatiscally merged with the lipid matrix, 48 were eventually redistributed around the polar head groups of the anandamide/ceramide complex, whereas only 15 reached with the anandamide/cholesterol complex. The interpretation of this dataset is presented in the accompanying article "Ceramide binding to anandamide increases its half-life and potentiates its cytotoxicity in human neuroblastoma cells" [1].

  17. MILD CHOLESTEROL DEPLETION REDUCES AMYLOID-β PRODUCTION BY IMPAIRING APP TRAFFICKING TO THE CELL SURFACE

    Science.gov (United States)

    Guardia-Laguarta, Cristina; Coma, Mireia; Pera, Marta; Clarimón, Jordi; Sereno, Lidia; Agulló, José M.; Molina-Porcel, Laura; Gallardo, Eduard; Deng, Amy; Berezovska, Oksana; Hyman, Bradley T.; Blesa, Rafael; Gómez-Isla, Teresa; Lleó, Alberto

    2009-01-01

    It has been suggested that cellular cholesterol levels can modulate the metabolism of the amyloid precursor protein (APP) but the underlying mechanism remains controversial. In the current study, we investigate in detail the relationship between cholesterol reduction, APP processing and γ-secretase function in cell culture studies. We found that mild membrane cholesterol reduction led to a decrease in Aβ40 and Aβ42 in different cell types. We did not detect changes in APP intracellular domain or Notch intracellular domain generation. Western blot analyses showed a cholesterol-dependent decrease in the APP C-terminal fragments and cell surface APP. Finally, we applied a fluorescence resonance energy transfer (FRET)-based technique to study APP-Presenilin 1 (PS1) interactions and lipid rafts in intact cells. Our data indicate that cholesterol depletion reduces association of APP into lipid rafts and disrupts APP-PS1 interaction. Taken together, our results suggest that mild membrane cholesterol reduction impacts the cleavage of APP upstream of γ-secretase and appears to be mediated by changes in APP trafficking and partitioning into lipid rafts. PMID:19457132

  18. Membrane-Assisted Growth of DNA Origami Nanostructure Arrays

    Science.gov (United States)

    2015-01-01

    Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors—a three-layered rectangular block and a Y-shaped DNA structure—to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes. PMID:25734977

  19. Membrane-assisted growth of DNA origami nanostructure arrays.

    Science.gov (United States)

    Kocabey, Samet; Kempter, Susanne; List, Jonathan; Xing, Yongzheng; Bae, Wooli; Schiffels, Daniel; Shih, William M; Simmel, Friedrich C; Liedl, Tim

    2015-01-01

    Biological membranes fulfill many important tasks within living organisms. In addition to separating cellular volumes, membranes confine the space available to membrane-associated proteins to two dimensions (2D), which greatly increases their probability to interact with each other and assemble into multiprotein complexes. We here employed two DNA origami structures functionalized with cholesterol moieties as membrane anchors--a three-layered rectangular block and a Y-shaped DNA structure--to mimic membrane-assisted assembly into hierarchical superstructures on supported lipid bilayers and small unilamellar vesicles. As designed, the DNA constructs adhered to the lipid bilayers mediated by the cholesterol anchors and diffused freely in 2D with diffusion coefficients depending on their size and number of cholesterol modifications. Different sets of multimerization oligonucleotides added to bilayer-bound origami block structures induced the growth of either linear polymers or two-dimensional lattices on the membrane. Y-shaped DNA origami structures associated into triskelion homotrimers and further assembled into weakly ordered arrays of hexagons and pentagons, which resembled the geometry of clathrin-coated pits. Our results demonstrate the potential to realize artificial self-assembling systems that mimic the hierarchical formation of polyhedral lattices on cytoplasmic membranes.

  20. A novel disulfide-rich protein motif from avian eggshell membranes.

    Directory of Open Access Journals (Sweden)

    Vamsi K Kodali

    2011-03-01

    Full Text Available Under the shell of a chicken egg are two opposed proteinaceous disulfide-rich membranes. They are fabricated in the avian oviduct using fibers formed from proteins that are extensively coupled by irreversible lysine-derived crosslinks. The intractability of these eggshell membranes (ESM has slowed their characterization and their protein composition remains uncertain. In this work, reductive alkylation of ESM followed by proteolytic digestion led to the identification of a cysteine rich ESM protein (abbreviated CREMP that was similar to spore coat protein SP75 from cellular slime molds. Analysis of the cysteine repeats in partial sequences of CREMP reveals runs of remarkably repetitive patterns. Module a contains a C-X(4-C-X(5-C-X(8-C-X(6 pattern (where X represents intervening non-cysteine residues. These inter-cysteine amino acid residues are also strikingly conserved. The evolutionarily-related module b has the same cysteine spacing as a, but has 11 amino acid residues at its C-terminus. Different stretches of CREMP sequences in chicken genomic DNA fragments show diverse repeat patterns: e.g. all a modules; an alternation of a-b modules; or an a-b-b arrangement. Comparable CREMP proteins are found in contigs of the zebra finch (Taeniopygia guttata and in the oviparous green anole lizard (Anolis carolinensis. In all these cases the long runs of highly conserved modular repeats have evidently led to difficulties in the assembly of full length DNA sequences. Hence the number, and the amino acid lengths, of CREMP proteins are currently unknown. A 118 amino acid fragment (representing an a-b-a-b pattern from a chicken oviduct EST library expressed in Escherichia coli is a well folded, highly anisotropic, protein with a large chemical shift dispersion in 2D solution NMR spectra. Structure is completely lost on reduction of the 8 disulfide bonds of this protein fragment. Finally, solid state NMR spectra suggest a surprising degree of order in intact

  1. Glycosidic Bond Cleavage is Not Required for Phytosteryl Glycoside-Induced Reduction of Cholesterol Absorption in Mice

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Moreau, Robert A.

    2012-01-01

    Phytosteryl glycosides occur in natural foods but little is known about their metabolism and bioactivity. Purified acylated steryl glycosides (ASG) were compared with phytosteryl esters (PSE) in mice. Animals on a phytosterol-free diet received ASG or PSE by gavage in purified soybean oil along with tracers cholesterol-d7 and sitostanol-d4. In a three-day fecal recovery study, ASG reduced cholesterol absorption efficiency by 45 ± 6% compared with 40 ± 6% observed with PSE. Four hours after gavage, plasma and liver cholesterol-d7 levels were reduced 86% or more when ASG was present. Liver total phytosterols were unchanged after ASG administration but were significantly increased after PSE. After ASG treatment both ASG and deacylated steryl glycosides (SG) were found in the gut mucosa and lumen. ASG was quantitatively recovered from stool samples as SG. These results demonstrate that ASG reduces cholesterol absorption in mice as efficiently as PSE while having little systemic absorption itself. Cleavage of the glycosidic linkage is not required for biological activity of ASG. Phytosteryl glycosides should be included in measurements of bioactive phytosterols. PMID:21538209

  2. Cholesterol oxidation products and their biological importance

    Czech Academy of Sciences Publication Activity Database

    Kulig, W.; Cwiklik, Lukasz; Jurkiewicz, P.; Rog, T.; Vattulainen, I.

    2016-01-01

    Roč. 199, Sep (2016), s. 144-160 ISSN 0009-3084 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : cholesterol * oxidation * oxysterols * biological membranes * biophysical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.361, year: 2016

  3. How cholesterol interacts with proteins and lipids during its intracellular transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-01-01

    as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics...... for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how......Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions...

  4. Cholesterol-lowering drug, in combination with chromium chloride ...

    Indian Academy of Sciences (India)

    Amit Kumar Verma

    lipid bilayer and the integrity of membrane proteins. Leish- mania is such a ... and a possible receptor- mediated mechanism of action of cholesterol has been ... mane is a proposed drug which acts as an inhibitor for ergosterol synthesis for ...

  5. Amyloid protein unfolding and insertion kinetics on neuronal membrane mimics

    Science.gov (United States)

    Qiu, Liming; Buie, Creighton; Vaughn, Mark; Cheng, Kwan

    2010-03-01

    Atomistic details of beta-amyloid (Aβ ) protein unfolding and lipid interaction kinetics mediated by the neuronal membrane surface are important for developing new therapeutic strategies to prevent and cure Alzheimer's disease. Using all-atom MD simulations, we explored the early unfolding and insertion kinetics of 40 and 42 residue long Aβ in binary lipid mixtures with and without cholesterol that mimic the cholesterol-depleted and cholesterol-enriched lipid nanodomains of neurons. The protein conformational transition kinetics was evaluated from the secondary structure profile versus simulation time plot. The extent of membrane disruption was examined by the calculated order parameters of lipid acyl chains and cholesterol fused rings as well as the density profiles of water and lipid headgroups at defined regions across the lipid bilayer from our simulations. Our results revealed that both the cholesterol content and the length of the protein affect the protein-insertion and membrane stability in our model lipid bilayer systems.

  6. Flow-mediated vasodilation is not impaired when HDL-cholesterol is lowered by substituting carbohydrates for monounsaturated fat

    NARCIS (Netherlands)

    de Roos, NM; Bots, ML; Siebelink, E; Katan, MB

    Low-fat diets, in which carbohydrates replace some of the fat, decrease serum cholesterol. This decrease is due to decreases in LDL-cholesterol but in part to possibly harmful decreases in HDL-cholesterol. High-oil diets, in which oils rich in monounsaturated fat replace some of the saturated fat,

  7. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. Dairy products and plasma cholesterol levels

    Directory of Open Access Journals (Sweden)

    Lena Ohlsson

    2010-08-01

    Full Text Available Cholesterol synthesized in the body or ingested is an essential lipid component for human survival from our earliest life. Newborns ingest about 3–4 times the amount per body weight through mother's milk compared to the dietary intake of adults. A birth level of 1.7 mmol/L plasma total cholesterol will increase to 4–4.5 mmol/L during the nursing period and continue to increase from adulthood around 40% throughout life. Coronary artery disease and other metabolic disorders are strongly associated with low-density lipoprotein (LDL and high-density lipoprotein (HDL cholesterol as well as triacylglycerol concentration. Milk fat contains a broad range of fatty acids and some have a negative impact on the cholesterol rich lipoproteins. The saturated fatty acids (SFAs, such as palmitic acid (C16:0, myristic acid (C14:0, and lauric acid (C12:0, increase total plasma cholesterol, especially LDL, and constitute 11.3 g/L of bovine milk, which is 44.8% of total fatty acid in milk fat. Replacement of dairy SFA and trans-fatty acids with polyunsaturated fatty acids decreases plasma cholesterol, especially LDL cholesterol, and is associated with a reduced risk of cardiovascular disease. Available data shows different effects on lipoproteins for different dairy products and there is uncertainty as to the impact a reasonable intake amount of dairy items has on cardiovascular risk. The aim of this review is to elucidate the effect of milk components and dairy products on total cholesterol, LDL, HDL, and the LDL/HDL quotients. Based on eight recent randomized controlled trials of parallel or cross-over design and recent reviews it can be concluded that replacement of saturated fat mainly (but not exclusively derived from high-fat dairy products with low-fat dairy products lowers LDL/HDL cholesterol and total/HDL cholesterol ratios. Whey, dairy fractions enriched in polar lipids, and techniques such as fermentation, or fortification of cows feeding can be used

  9. A compact, multifunctional fusion module directs cholesterol-dependent homomultimerization and syncytiogenic efficiency of reovirus p10 FAST proteins.

    Directory of Open Access Journals (Sweden)

    Tim Key

    2014-03-01

    Full Text Available The homologous p10 fusion-associated small transmembrane (FAST proteins of the avian (ARV and Nelson Bay (NBV reoviruses are the smallest known viral membrane fusion proteins, and are virulence determinants of the fusogenic reoviruses. The small size of FAST proteins is incompatible with the paradigmatic membrane fusion pathway proposed for enveloped viral fusion proteins. Understanding how these diminutive viral fusogens mediate the complex process of membrane fusion is therefore of considerable interest, from both the pathogenesis and mechanism-of-action perspectives. Using chimeric ARV/NBV p10 constructs, the 36-40-residue ectodomain was identified as the major determinant of the differing fusion efficiencies of these homologous p10 proteins. Extensive mutagenic analysis determined the ectodomain comprises two distinct, essential functional motifs. Syncytiogenesis assays, thiol-specific surface biotinylation, and liposome lipid mixing assays identified an ∼25-residue, N-terminal motif that dictates formation of a cystine loop fusion peptide in both ARV and NBV p10. Surface immunofluorescence staining, FRET analysis and cholesterol depletion/repletion studies determined the cystine loop motif is connected through a two-residue linker to a 13-residue membrane-proximal ectodomain region (MPER. The MPER constitutes a second, independent motif governing reversible, cholesterol-dependent assembly of p10 multimers in the plasma membrane. Results further indicate that: (1 ARV and NBV homomultimers segregate to distinct, cholesterol-dependent microdomains in the plasma membrane; (2 p10 homomultimerization and cholesterol-dependent microdomain localization are co-dependent; and (3 the four juxtamembrane MPER residues present in the multimerization motif dictate species-specific microdomain association and homomultimerization. The p10 ectodomain therefore constitutes a remarkably compact, multifunctional fusion module that directs syncytiogenic

  10. Interaction of Soybean 7S Globulin Peptide with Cell Membrane Model via Isothermal Titration Calorimetry, Quartz Crystal Microbalance with Dissipation, and Langmuir Monolayer Study.

    Science.gov (United States)

    Zou, Yuan; Pan, Runting; Ruan, Qijun; Wan, Zhili; Guo, Jian; Yang, Xiaoquan

    2018-05-16

    To understand the underlying molecular mechanism of the cholesterol-lowering effect of soybean 7S globulins, the interactions of their pepsin-released peptides (7S-peptides) with cell membrane models consisting of dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine (DOPC), and cholesterol (CHOL) were systematically studied. The results showed that 7S-peptides were bound to DPPC/DOPC/CHOL liposomes mainly through van der Waals forces and hydrogen bonds, and the presence of higher CHOL concentrations enhanced the binding affinity (e.g., DPPC/DOPC/CHOL = 1:1:0, binding ratio = 0.114; DPPC/DOPC/CHOL = 1:1:1, binding ratio = 2.02). Compression isotherms indicated that the incorporation of 7S-peptides increased the DPPC/DOPC/CHOL monolayer fluidity and the lipid raft size. The presence of CHOL accelerated the 7S-peptide accumulation on lipid rafts, which could serve as platforms for peptides to develop into β-sheet rich structures. These results allow us to hypothesize that 7S-peptides may indirectly influence membrane protein functions via altering the membrane organization in the enterocytes.

  11. Transporters for the Intestinal Absorption of Cholesterol, Vitamin E, and Vitamin K.

    Science.gov (United States)

    Yamanashi, Yoshihide; Takada, Tappei; Kurauchi, Ryoya; Tanaka, Yusuke; Komine, Toko; Suzuki, Hiroshi

    2017-04-03

    Humans cannot synthesize fat-soluble vitamins such as vitamin E and vitamin K. For this reason, they must be obtained from the diet via intestinal absorption. As the deficiency or excess of these vitamins has been reported to cause several types of diseases and disorders in humans, the intestinal absorption of these nutrients must be properly regulated to ensure good health. However, the mechanism of their intestinal absorption remains poorly understood. Recent studies on cholesterol using genome-edited mice, genome-wide association approaches, gene mutation analyses, and the development of cholesterol absorption inhibitors have revealed that several membrane proteins play crucial roles in the intestinal absorption of cholesterol. Surprisingly, detailed analyses of these cholesterol transporters have revealed that they can also transport vitamin E and vitamin K, providing clues to uncover the molecular mechanisms underlying the intestinal absorption of these fat-soluble vitamins. In this review, we focus on the membrane proteins (Niemann-Pick C1 like 1, scavenger receptor class B type I, cluster of differentiation 36, and ATP-binding cassette transporter A1) that are (potentially) involved in the intestinal absorption of cholesterol, vitamin E, and vitamin K and discuss their physiological and pharmacological importance. We also discuss the related uncertainties that need to be explored in future studies.

  12. Genetic determinants of LDL, lipoprotein(a), triglyceride-rich lipoproteins and HDL: concordance and discordance with cardiovascular disease risk

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2011-01-01

    To evaluate whether new and known genetic determinants of plasma levels of LDL cholesterol, lipoprotein(a), triglyceride-rich lipoproteins, and HDL cholesterol associate with the risk of cardiovascular disease expected from the effect on lipoprotein levels. Concordance or discordance of such gene......To evaluate whether new and known genetic determinants of plasma levels of LDL cholesterol, lipoprotein(a), triglyceride-rich lipoproteins, and HDL cholesterol associate with the risk of cardiovascular disease expected from the effect on lipoprotein levels. Concordance or discordance...

  13. The role of membrane microdomains in transmembrane signaling through the epithelial glycoprotein Gp140/CDCP1

    Science.gov (United States)

    Alvares, Stacy M.; Dunn, Clarence A.; Brown, Tod A.; Wayner, Elizabeth E.; Carter, William G.

    2008-01-01

    Cell adhesion to the extracellular matrix (ECM) via integrin adhesion receptors initiates signaling cascades leading to changes in cell behavior. While integrin clustering is necessary to initiate cell attachment to the matrix, additional membrane components are necessary to mediate the transmembrane signals and the cell adhesion response that alter downstream cell behavior. Many of these signaling components reside in glycosphingolipid-rich and cholesterol-rich membrane domains such as Tetraspanin Enriched Microdomains (TEMs)/Glycosynapse 3 and Detergent-Resistant Microdomains (DRMs), also known as lipid rafts. In the following article, we will review examples of how components in these membrane microdomains modulate integrin adhesion after initial attachment to the ECM. Additionally, we will present data on a novel adhesion-responsive transmembrane glycoprotein Gp140/CUB Domain Containing Protein 1, which clusters in epithelial cell-cell contacts. Gp140 can then be phosphorylated by Src Family Kinases at tyrosine 734 in response to outside-in signals- possibly through interactions involving the extracellular CUB domains. Data presented here suggests that outside-in signals through Gp140 in cell-cell contacts assemble membrane clusters that associate with membrane microdomains to recruit and activate SFKs. Active SFKs then mediate phosphorylation of Gp140, SFK and PKCδ with Gp140 acting as a transmembrane scaffold for these kinases. We propose that the clustering of Gp140 and signaling components in membrane microdomains in cell-cell contacts contributes to changes in cell behavior. PMID:18269919

  14. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  15. The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis

    NARCIS (Netherlands)

    Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.

    2014-01-01

    Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic

  16. Macrophage mitochondrial damage from StAR transport of 7-hydroperoxycholesterol: implications for oxidative stress-impaired reverse cholesterol transport.

    Science.gov (United States)

    Korytowski, Witold; Wawak, Katarzyna; Pabisz, Pawel; Schmitt, Jared C; Girotti, Albert W

    2014-01-03

    StAR family proteins in vascular macrophages participate in reverse cholesterol transport (RCT). We hypothesize that under pathophysiological oxidative stress, StARs will transport not only cholesterol to macrophage mitochondria, but also pro-oxidant cholesterol hydroperoxides (7-OOHs), thereby impairing early-stage RCT. Upon stimulation with dibutyryl-cAMP, RAW264.7 macrophages exhibited a strong time-dependent induction of mitochondrial StarD1 and plasma membrane ABCA1, which exports cholesterol. 7α-OOH uptake by stimulated RAW cell mitochondria (like cholesterol uptake) was strongly reduced by StarD1 knockdown, consistent with StarD1 involvement. Upon uptake by mitochondria, 7α-OOH (but not redox-inactive 7α-OH) triggered lipid peroxidation and membrane depolarization while reducing ABCA1 upregulation. These findings provide strong initial support for our hypothesis. Copyright © 2013. Published by Elsevier B.V.

  17. Membrane domains and polarized trafficking of sphingolipids

    NARCIS (Netherlands)

    Maier, O; Slimane, TA; Hoekstra, D

    The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid-cholesterol enriched membrane microdomains, so called rafts. In

  18. Impact of two different saponins on the organization of model lipid membranes.

    Science.gov (United States)

    Korchowiec, Beata; Gorczyca, Marcelina; Wojszko, Kamila; Janikowska, Maria; Henry, Max; Rogalska, Ewa

    2015-10-01

    Saponins, naturally occurring plant compounds are known for their biological and pharmacological activity. This activity is strongly related to the amphiphilic character of saponins that allows them to aggregate in aqueous solution and interact with membrane components. In this work, Langmuir monolayer techniques combined with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and Brewster angle microscopy were used to study the interaction of selected saponins with lipid model membranes. Two structurally different saponins were used: digitonin and a commercial Merck Saponin. Membranes of different composition, namely, cholesterol, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol) were formed at the air/water and air/saponin solution interfaces. The saponin-lipid interaction was characterized by changes in surface pressure, surface potential, surface morphology and PM-IRRAS signal. Both saponins interact with model membranes and change the physical state of membranes by perturbing the lipid acyl chain orientation. The changes in membrane fluidity were more significant upon the interaction with Merck Saponin. A higher affinity of saponins for cholesterol than phosphatidylglycerols was observed. Moreover, our results indicate that digitonin interacts strongly with cholesterol and solubilize the cholesterol monolayer at higher surface pressures. It was shown, that digitonin easily penetrate to the cholesterol monolayer and forms a hydrogen bond with the hydroxyl groups. These findings might be useful in further understanding of the saponin action at the membrane interface and of the mechanism of membrane lysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Proliferation and differentiation of stem cells in contact with eluate from fibrin-rich plasma membrane

    Directory of Open Access Journals (Sweden)

    Fernanda Gimenez de Souza

    Full Text Available ABSTRACT Objective: To evaluate the ability of the eluate from fibrin-rich plasma (FRP membrane to induce proliferation and differentiation of isolated human adipose-derived stem cells (ASCs into chondrocytes. Method: FRP membranes were obtained by centrifugation of peripheral blood from two healthy donors, cut, and maintained in culture plate wells for 48 h to prepare the fibrin eluate. The SCATh were isolated from adipose tissue by collagenase digestion solution, and expanded in vitro. Cells were expanded and treated with DMEM-F12 culture, a commercial media for chondrogenic differentiation, and eluate from FRP membrane for three days, and labeled with BrdU for quantitative assessment of cell proliferation using the High-Content Operetta® imaging system. For the chondrogenic differentiation assay, the SCATh were grown in micromass for 21 days and stained with toluidine blue and aggrecan for qualitative evaluation by light microscopy. The statistical analysis was performed using ANOVA and Tukey's test. Results: There was a greater proliferation of cells treated with the eluate from FRP membrane compared to the other two treatments, where the ANOVA test showed significance (p < 0.001. The differentiation into chondrocytes was visualized by the presence of mucopolysaccharide in the matrix of the cells marked in blue toluidine and aggrecan. Conclusions: Treatment with eluate from FRP membrane stimulated cell proliferation and induced differentiation of the stem cells into chondrocytes, suggesting a potential application of FRP membranes in hyaline cartilage regeneration therapies.

  20. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    Science.gov (United States)

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. © 2012 The Authors; Microbial Biotechnology © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  1. Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains

    DEFF Research Database (Denmark)

    Rahbek-Clemmensen, Troels; Lycas, Matthew D.; Erlendsson, Simon

    2017-01-01

    is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive...... to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to...

  2. Cholesterol-induced protein sorting: an analysis of energetic feasibility

    DEFF Research Database (Denmark)

    Lundbaek, J A; Andersen, O S; Werge, T

    2003-01-01

    thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility...

  3. Viability and Biomechanics of Diced Cartilage Blended With Platelet-Rich Plasma and Wrapped With Poly (Lactic-Co-Glycolic) Acid Membrane.

    Science.gov (United States)

    Liao, Jun-Lin; Chen, Jia; He, Bin; Chen, Yong; Xu, Jia-Qun; Xie, Hong-Ju; Hu, Feng; Wang, Ai-Jun; Luo, ChengQun; Li, Qing-Feng; Zhou, Jian-Da

    2017-09-01

    The objective of this study was to investigate the viability and biomechanics of diced cartilage blended with platelet-rich plasma (PRP) and wrapped with poly (lactic-co-glycolic) acid (PLGA) membrane in a rabbit model. A total of 10 New Zealand rabbits were used for the study. Cartilage grafts were harvested from 1 side ear. The grafts were divided into 3 groups for comparison: bare diced cartilage, diced cartilage wrapped with PLGA membrane, and diced cartilage blended with PRP and wrapped with PLGA membrane. Platelet-rich plasma was prepared using 8 mL of auricular blood. Three subcutaneous pockets were made in the backs of the rabbits, and the grafts were placed in these pockets. The subcutaneous implant tests were conducted for safety assessment of the PLGA membrane in vivo. All of the rabbits were sacrificed at the end of 3 months, and the specimens were collected. The sections were stained with hematoxylin and eosin, toluidin blue, and collagen II immunohistochemical. Simultaneously, biomechanical properties of grafts were assessed. This sample of PLGA membrane was conformed to the current standard of biological evaluation of medical devices. Moderate resorption was seen at the end of 3 months in the gross assessment in diced cartilage wrapped with PLGA membrane, while diced cartilage blended with PRP had no apparent resorption macroscopically and favorable viability in vivo after 3 months, and the histological parameters supported this. Stress-strain curves for the compression test indicated that the modulus of elasticity of bare diced cartilage was 7.65 ± 0.59 MPa; diced cartilage wrapped with PLGA membrane was 5.98 ± 0.45 MPa; and diced cartilage blended with PRP and wrapped with PLGA membrane was 7.48 ± 0.55 MPa, respectively. Diced cartilage wrapped with PLGA membrane had moderate resorption macroscopically after 3 months. However, blending with PRP has beneficial effects in improving the viability of diced cartilages. Additionally, the

  4. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    Science.gov (United States)

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Changing rooster sperm membranes to facilitate cryopreservation

    Science.gov (United States)

    Cryopreservation damages rooster sperm membranes. Part of this damage is due to membrane transitioning from the fluid to the gel state as temperature is reduced. This damage may be prevented by increasing membrane fluidity at low temperatures by incorporating cholesterol or unsaturated lipids into t...

  6. ESR technique for noninvasive way to quantify cyclodextrins effect on cell membranes

    International Nuclear Information System (INIS)

    Grammenos, A.; Mouithys-Mickalad, A.; Guelluy, P.H.; Lismont, M.; Piel, G.; Hoebeke, M.

    2010-01-01

    Research highlights: → ESR: a new tool for cyclodextrins study on living cells. → Cholesterol and phospholipid extraction by Rameb in a dose- and time-dependent way. → Extracted phospholipids and cholesterol form stable aggregates. → ESR spectra show that lipid rafts are damaged by Rameb. → Quantification of the cholesterol extraction on cell membranes in a noninvasive way. -- Abstract: A new way to study the action of cyclodextrin was developed to quantify the damage caused on cell membrane and lipid bilayer. The Electron Spin Resonance (ESR) spectroscopy was used to study the action of Randomly methylated-beta-cyclodextrin (Rameb) on living cells (HCT-116). The relative anisotropy observed in ESR spectrum of nitroxide spin probe (5-DSA and cholestane) is directly related to the rotational mobility of the probe, which can be further correlated with the microviscosity. The use of ESR probes clearly shows a close correlation between cholesterol contained in cells and cellular membrane microviscosity. This study also demonstrates the Rameb ability to extract cholesterol and phospholipids in time- and dose-dependent ways. In addition, ESR spectra enabled to establish that cholesterol is extracted from lipid rafts to form stable aggregates. The present work supports that ESR is an easy, reproducible and noninvasive technique to study the effect of cyclodextrins on cell membranes.

  7. Sterol-recognition ability and membrane-disrupting activity of Ornithogalum saponin OSW-1 and usual 3-O-glycosyl saponins.

    Science.gov (United States)

    Malabed, Raymond; Hanashima, Shinya; Murata, Michio; Sakurai, Kaori

    2017-12-01

    OSW-1 is a structurally unique steroidal saponin isolated from the bulbs of Ornithogalum saundersiae, and has exhibited highly potent and selective cytotoxicity in tumor cell lines. This study aimed to investigate the molecular mechanism for the membrane-permeabilizing activity of OSW-1 in comparison with those of other saponins by using various spectroscopic approaches. The membrane effects and hemolytic activity of OSW-1 were markedly enhanced in the presence of membrane cholesterol. Binding affinity measurements using fluorescent cholestatrienol and solid-state NMR spectroscopy of a 3-d-cholesterol probe suggested that OSW-1 interacts with membrane cholesterol without forming large aggregates while 3-O-glycosyl saponin, digitonin, forms cholesterol-containing aggregates. The results suggest that OSW-1/cholesterol interaction is likely to cause membrane permeabilization and pore formation without destroying the whole membrane integrity, which could partly be responsible for its highly potent cell toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  9. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  10. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    Science.gov (United States)

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  11. Na,K-ATPase reconstituted in ternary liposome: the presence of cholesterol affects protein activity and thermal stability.

    Science.gov (United States)

    Yoneda, Juliana Sakamoto; Rigos, Carolina Fortes; de Lourenço, Thaís Fernanda Aranda; Sebinelli, Heitor Gobbi; Ciancaglini, Pietro

    2014-12-15

    Differential scanning calorimetry (DSC) was applied to investigate the effect of cholesterol on the thermotropic properties of the lipid membrane (DPPC and DPPE). The thermostability and unfolding of solubilized and reconstituted Na,K-ATPase in DPPC:DPPE:cholesterol-liposomes was also studied to gain insight into the role of cholesterol in the Na,K-ATPase modulation of enzyme function and activity. The tertiary system (DPPC:DPPE:cholesterol) (molar ratio DPPC:DPPE equal 1:1) when cholesterol content was increased from 0% up to 40% results in a slight decrease in the temperature of transition and enthalpy, and an increase in width. We observed that, without heating treatment, at 37°C, the activity was higher for 20mol% cholesterol. However, thermal inactivation experiments showed that the enzyme activity loss time depends on the cholesterol membrane content. The unfolding of the enzyme incorporated to liposomes of DPPC:DPPE (1:1mol) with different cholesterol contents, ranging from 0% to 40% mol was also studied by DSC. Some differences between the thermograms indicate that the presence of lipids promotes a conformational change in protein structure and this change is enough to change the way Na,K-ATPase thermally unfolds. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Science.gov (United States)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  13. Bright and photostable push-pull pyrene dye visualizes lipid order variation between plasma and intracellular membranes.

    Science.gov (United States)

    Niko, Yosuke; Didier, Pascal; Mely, Yves; Konishi, Gen-ichi; Klymchenko, Andrey S

    2016-01-11

    Imaging lipid organization in cell membranes requires advanced fluorescent probes. Here, we show that a recently synthesized push-pull pyrene (PA), similarly to popular probe Laurdan, changes the emission maximum as a function of lipid order, but outperforms it by spectroscopic properties. In addition to red-shifted absorption compatible with common 405 nm diode laser, PA shows higher brightness and much higher photostability than Laurdan in apolar membrane environments. Moreover, PA is compatible with two-photon excitation at wavelengths >800 nm, which was successfully used for ratiometric imaging of coexisting liquid ordered and disordered phases in giant unilamellar vesicles. Fluorescence confocal microscopy in Hela cells revealed that PA efficiently stains the plasma membrane and the intracellular membranes at >20-fold lower concentrations, as compared to Laurdan. Finally, ratiometric imaging using PA reveals variation of lipid order within different cellular compartments: plasma membranes are close to liquid ordered phase of model membranes composed of sphingomyelin and cholesterol, while intracellular membranes are much less ordered, matching well membranes composed of unsaturated phospholipids without cholesterol. These differences in the lipid order were confirmed by fluorescence lifetime imaging (FLIM) at the blue edge of PA emission band. PA probe constitutes thus a new powerful tool for biomembrane research.

  14. Accumulation of macular xanthophylls in unsaturated membrane domains.

    Science.gov (United States)

    Wisniewska, Anna; Subczynski, Witold K

    2006-05-15

    The distribution of macular xanthophylls, lutein and zeaxanthin, between domains formed in membranes made from an equimolar ternary mixture of dioleoylphosphatidylcholine/sphingomyelin/cholesterol, called a raft-forming mixture, was investigated. In these membranes, two domains are formed: the raft domain enriched in saturated lipids and cholesterol (detergent-resistant membranes, DRM), and the bulk domain enriched in unsaturated lipids (detergent-soluble membranes, DSM). These membrane domains have been separated using cold Triton X-100 extraction from membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that xanthophylls are substantially excluded from DRM and remain concentrated in DSM. Concentrations of xanthophylls in DRM and DSM calculated as the mole ratio of either xanthophyll to phospholipid were 0.005 and 0.03, respectively, and calculated as the mole ratio of either xanthophyll to total lipid (phospholipid + cholesterol) were 0.003 and 0.025, respectively. Thus, xanthophylls are over eight times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. It was also demonstrated using saturation-recovery EPR that at 1 mol%, neither lutein nor zeaxanthin affect the formation of membrane domains. The location of xanthophylls in domains formed from unsaturated lipids is ideal if they are to act as a lipid antioxidant, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular diseases.

  15. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    Science.gov (United States)

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  16. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.

    Science.gov (United States)

    Wang, Zhen; Schey, Kevin L

    2015-12-01

    Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.

  17. Common structural features of cholesterol binding sites in crystallized soluble proteins.

    Science.gov (United States)

    Bukiya, Anna N; Dopico, Alejandro M

    2017-06-01

    Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i ) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii ) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii ) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv ) the steroid's C21 and C26 constitute the "hot spots" most often seen for steroid-protein hydrophobic interactions; v ) common "cold spots" are C8-C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity.

    Science.gov (United States)

    Paiva, Aline Dias; de Oliveira, Michelle Dias; de Paula, Sérgio Oliveira; Baracat-Pereira, Maria Cristina; Breukink, Eefjan; Mantovani, Hilário Cuquetto

    2012-11-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by Bacteria and some Archaea. The assessment of the toxic potential of antimicrobial peptides is important in order to apply these peptides on an industrial scale. The aim of the present study was to investigate the in vitro cytotoxic and haemolytic potential of bovicin HC5, as well as to determine whether cholesterol influences bacteriocin activity on model membranes. Nisin, for which the mechanism of action is well described, was used as a reference peptide in our assays. The viability of three distinct eukaryotic cell lines treated with bovicin HC5 or nisin was analysed by using the MTT assay and cellular morphological changes were determined by light microscopy. The haemolytic potential was evaluated by using the haemoglobin liberation assay and the role of cholesterol on bacteriocin activity was examined by using model membranes composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DPoPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The IC(50) of bovicin HC5 and nisin against Vero cells was 65.42 and 13.48 µM, respectively. When the MTT assay was performed with MCF-7 and HepG2 cells, the IC(50) obtained for bovicin HC5 was 279.39 and 289.30 µM, respectively, while for nisin these values were 105.46 and 112.25 µM. The haemolytic activity of bovicin HC5 against eukaryotic cells was always lower than that determined for nisin. The presence of cholesterol did not influence the activity of either bacteriocin on DOPC model membranes, but nisin showed reduced carboxyfluorescein leakage in DPoPC membranes containing cholesterol. In conclusion, bovicin HC5 only exerted cytotoxic effects at concentrations that were greater than the concentration needed for its biological activity, and the presence of cholesterol did not affect its interaction with model membranes.

  19. Cholesterol impairment contributes to neuroserpin aggregation

    Science.gov (United States)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  20. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    Science.gov (United States)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; Duross, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-08-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1-/-) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1-/- cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders.

  1. PEG-lipid micelles enable cholesterol efflux in Niemann-Pick Type C1 disease-based lysosomal storage disorder

    Science.gov (United States)

    Brown, Anna; Patel, Siddharth; Ward, Carl; Lorenz, Anna; Ortiz, Mauren; DuRoss, Allison; Wieghardt, Fabian; Esch, Amanda; Otten, Elsje G.; Heiser, Laura M.; Korolchuk, Viktor I.; Sun, Conroy; Sarkar, Sovan; Sahay, Gaurav

    2016-01-01

    2-Hydroxy-propyl-β-cyclodextrin (HPβCD), a cholesterol scavenger, is currently undergoing Phase 2b/3 clinical trial for treatment of Niemann Pick Type C-1 (NPC1), a fatal neurodegenerative disorder that stems from abnormal cholesterol accumulation in the endo/lysosomes. Unfortunately, the extremely high doses of HPβCD required to prevent progressive neurodegeneration exacerbates ototoxicity, pulmonary toxicity and autophagy-based cellular defects. We present unexpected evidence that a poly (ethylene glycol) (PEG)-lipid conjugate enables cholesterol clearance from endo/lysosomes of Npc1 mutant (Npc1−/−) cells. Herein, we show that distearyl-phosphatidylethanolamine-PEG (DSPE-PEG), which forms 12-nm micelles above the critical micelle concentration, accumulates heavily inside cholesterol-rich late endosomes in Npc1−/− cells. This potentially results in cholesterol solubilization and leakage from lysosomes. High-throughput screening revealed that DSPE-PEG, in combination with HPβCD, acts synergistically to efflux cholesterol without significantly aggravating autophagy defects. These well-known excipients can be used as admixtures to treat NPC1 disorder. Increasing PEG chain lengths from 350 Da-30 kDa in DSPE-PEG micelles, or increasing DSPE-PEG content in an array of liposomes packaged with HPβCD, improved cholesterol egress, while Pluronic block copolymers capable of micelle formation showed slight effects at high concentrations. We postulate that PEG-lipid based nanocarriers can serve as bioactive drug delivery systems for effective treatment of lysosomal storage disorders. PMID:27572704

  2. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.

    Science.gov (United States)

    Kraft, Mary L

    2016-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with

  3. Two-photon time-lapse microscopy of BODIPY-cholesterol reveals anomalous sterol diffusion in chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Lund, F. W.; Lomholt, M. A.; Solanko, L. M.

    2012-01-01

    to sterol trafficking from the plasma membrane. Significant photobleaching, however, limits the possibilities for in-depth analysis of sterol dynamics using DHE. Co-trafficking studies with DHE and the recently introduced fluorescent cholesterol analog BODIPY-cholesterol (BChol) suggested that the latter...

  4. A novel cholesterol-producing Pichia pastoris strain is an ideal host for functional expression of human Na,K-ATPase α3β1 isoform.

    Science.gov (United States)

    Hirz, Melanie; Richter, Gerald; Leitner, Erich; Wriessnegger, Tamara; Pichler, Harald

    2013-11-01

    The heterologous expression of mammalian membrane proteins in lower eukaryotes is often hampered by aberrant protein localization, structure, and function, leading to enhanced degradation and, thus, low expression levels. Substantial quantities of functional membrane proteins are necessary to elucidate their structure-function relationships. Na,K-ATPases are integral, human membrane proteins that specifically interact with cholesterol and phospholipids, ensuring protein stability and enhancing ion transport activity. In this study, we present a Pichia pastoris strain which was engineered in its sterol pathway towards the synthesis of cholesterol instead of ergosterol to foster the functional expression of human membrane proteins. Western blot analyses revealed that cholesterol-producing yeast formed enhanced and stable levels of human Na,K-ATPase α3β1 isoform. ATPase activity assays suggested that this Na,K-ATPase isoform was functionally expressed in the plasma membrane. Moreover, [(3)H]-ouabain cell surface-binding studies underscored that the Na,K-ATPase was present in high numbers at the cell surface, surpassing reported expression strains severalfold. This provides evidence that the humanized sterol composition positively influenced Na,K-ATPase α3β1 stability, activity, and localization to the yeast plasma membrane. Prospectively, cholesterol-producing yeast will have high potential for functional expression of many mammalian membrane proteins.

  5. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function.

    Science.gov (United States)

    Desai, Aditya J; Dong, Maoqing; Harikumar, Kaleeckal G; Miller, Laurence J

    2015-09-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. Copyright © 2015 the American Physiological Society.

  6. Ultrastructural and cytochemical study of membrane alterations in x-irradiated liver tissue from normal and vitamin E-deficient ducklings

    International Nuclear Information System (INIS)

    Huijbers, W.A.R.; Oosterbaan, J.A.; Meskendorp-Haarsma, T.J.; Hardonk, M.J.; Molenaar, I.

    1979-01-01

    An investigation into the differential susceptibility of liver cellular membranes to peroxidative processes has been performed, using x irradiation on the liver surface, resulting in a a 3-mm penetrating gradient of membrane damage. Ultrastructural, cytochemical, and histochemical findings in this area point to a differential sensitivity of cellular membranes to x irradiation. The plasma membrane and the lysosomal membrane, containing much lipid and cholesterol and little membrane and the lysosomal membrane, containing much lipid and cholesterol and little vitamin E, are highly susceptible to x irradiation. Less sensitive are the membranes of mitochondria and endoplasmic reticulum, containing relatively much vitamin E and proteins and a lower amount of lipids and cholesterol

  7. The heat-compression technique for the conversion of platelet-rich fibrin preparation to a barrier membrane with a reduced rate of biodegradation.

    Science.gov (United States)

    Kawase, Tomoyuki; Kamiya, Mana; Kobayashi, Mito; Tanaka, Takaaki; Okuda, Kazuhiro; Wolff, Larry F; Yoshie, Hiromasa

    2015-05-01

    Platelet-rich fibrin (PRF) was developed as an advanced form of platelet-rich plasma to eliminate xenofactors, such as bovine thrombin, and it is mainly used as a source of growth factor for tissue regeneration. Furthermore, although a minor application, PRF in a compressed membrane-like form has also been used as a substitute for commercially available barrier membranes in guided-tissue regeneration (GTR) treatment. However, the PRF membrane is resorbed within 2 weeks or less at implantation sites; therefore, it can barely maintain sufficient space for bone regeneration. In this study, we developed and optimized a heat-compression technique and tested the feasibility of the resulting PRF membrane. Freshly prepared human PRF was first compressed with dry gauze and subsequently with a hot iron. Biodegradability was microscopically examined in vitro by treatment with plasmin at 37°C or in vivo by subcutaneous implantation in nude mice. Compared with the control gauze-compressed PRF, the heat-compressed PRF appeared plasmin-resistant and remained stable for longer than 10 days in vitro. Additionally, in animal implantation studies, the heat-compressed PRF was observed at least for 3 weeks postimplantation in vivo whereas the control PRF was completely resorbed within 2 weeks. Therefore, these findings suggest that the heat-compression technique reduces the rate of biodegradation of the PRF membrane without sacrificing its biocompatibility and that the heat-compressed PRF membrane easily could be prepared at chair-side and applied as a barrier membrane in the GTR treatment. © 2014 Wiley Periodicals, Inc.

  8. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Skovgaard, Nils; Hansen, Jesper Søndergaard

    2017-01-01

    The barrier properties of cellular membranes are increasingly attracting attention as a source of inspiration for designing biomimetic membranes. The broad range of potential technological applications makes the use of lipid and lately also polymeric materials a popular choice for constructing...... biomimetic membranes, where the barrier properties can be controlled by the composition of the membrane constituent elements. Here we investigate the membrane properties reported by the light-induced proton pumping activity of bacteriorhodopsin (bR) reconstituted in three vesicle systems of different...... membrane composition. Specifically we quantify how the resulting proton influx and efflux rates are influenced by the membrane composition using a variety of membrane modulators. We demonstrate that by adding hydrocarbons to vesicles with reconstituted bR formed from asolectin lipids the resulting...

  9. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  10. Vesicle fluctuation analysis of the effects of sterols on membrane bending rigidity

    DEFF Research Database (Denmark)

    Henriksen, Jonas Rosager; Rowat, Amy C.; Ipsen, John H.

    2004-01-01

    Sterols are regulators of both biological function and structure. The role of cholesterol in promoting the structural and mechanical stability of membranes is widely recognized. Knowledge of how the related sterols, lanosterol and ergosterol, affect membrane mechanical properties is sparse. This ...... on vesicle behaviour are also discussed. These recent modifications render vesicle fluctuation analysis an efficient and accurate method for determining how cholesterol, lanosterol, and ergosterol increase membrane bending rigidity....

  11. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40).

    Science.gov (United States)

    Yahi, Nouara; Aulas, Anaïs; Fantini, Jacques

    2010-02-05

    Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta) peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs) on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40) and chemically defined GSLs (GalCer, LacCer, GM1, GM3). Using the Langmuir monolayer technique, we show that Abeta(1-40) selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs). In contrast, Abeta(1-40) did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs). Cholesterol inhibited the interaction of Abeta(1-40) with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40) binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40) with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40). We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the influence

  12. How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer's beta amyloid peptide (Abeta1-40.

    Directory of Open Access Journals (Sweden)

    Nouara Yahi

    Full Text Available Membrane lipids play a pivotal role in the pathogenesis of Alzheimer's disease, which is associated with conformational changes, oligomerization and/or aggregation of Alzheimer's beta-amyloid (Abeta peptides. Yet conflicting data have been reported on the respective effect of cholesterol and glycosphingolipids (GSLs on the supramolecular assembly of Abeta peptides. The aim of the present study was to unravel the molecular mechanisms by which cholesterol modulates the interaction between Abeta(1-40 and chemically defined GSLs (GalCer, LacCer, GM1, GM3. Using the Langmuir monolayer technique, we show that Abeta(1-40 selectively binds to GSLs containing a 2-OH group in the acyl chain of the ceramide backbone (HFA-GSLs. In contrast, Abeta(1-40 did not interact with GSLs containing a nonhydroxylated fatty acid (NFA-GSLs. Cholesterol inhibited the interaction of Abeta(1-40 with HFA-GSLs, through dilution of the GSL in the monolayer, but rendered the initially inactive NFA-GSLs competent for Abeta(1-40 binding. Both crystallographic data and molecular dynamics simulations suggested that the active conformation of HFA-GSL involves a H-bond network that restricts the orientation of the sugar group of GSLs in a parallel orientation with respect to the membrane. This particular conformation is stabilized by the 2-OH group of the GSL. Correspondingly, the interaction of Abeta(1-40 with HFA-GSLs is strongly inhibited by NaF, an efficient competitor of H-bond formation. For NFA-GSLs, this is the OH group of cholesterol that constrains the glycolipid to adopt the active L-shape conformation compatible with sugar-aromatic CH-pi stacking interactions involving residue Y10 of Abeta(1-40. We conclude that cholesterol can either inhibit or facilitate membrane-Abeta interactions through fine tuning of glycosphingolipid conformation. These data shed some light on the complex molecular interplay between cell surface GSLs, cholesterol and Abeta peptides, and on the

  13. Altered GPM6A/M6 dosage impairs cognition and causes phenotypes responsive to cholesterol in human and Drosophila.

    Science.gov (United States)

    Gregor, Anne; Kramer, Jamie M; van der Voet, Monique; Schanze, Ina; Uebe, Steffen; Donders, Rogier; Reis, André; Schenck, Annette; Zweier, Christiane

    2014-12-01

    Glycoprotein M6A (GPM6A) is a neuronal transmembrane protein of the PLP/DM20 (proteolipid protein) family that associates with cholesterol-rich lipid rafts and promotes filopodia formation. We identified a de novo duplication of the GPM6A gene in a patient with learning disability and behavioral anomalies. Expression analysis in blood lymphocytes showed increased GPM6A levels. An increase of patient-derived lymphoblastoid cells carrying membrane protrusions supports a functional effect of this duplication. To study the consequences of GPM6A dosage alterations in an intact nervous system, we employed Drosophila melanogaster as a model organism. We found that knockdown of Drosophila M6, the sole member of the PLP family in flies, in the wing, and whole organism causes malformation and lethality, respectively. These phenotypes as well as the protrusions of patient-derived lymphoblastoid cells with increased GPM6A levels can be alleviated by cholesterol supplementation. Notably, overexpression as well as loss of M6 in neurons specifically compromises long-term memory in the courtship conditioning paradigm. Our findings thus indicate a critical role of correct GPM6A/M6 levels for cognitive function and support a role of the GPM6A duplication for the patient's phenotype. Together with other recent findings, this study highlights compromised cholesterol homeostasis as a recurrent feature in cognitive phenotypes. © 2014 WILEY PERIODICALS, INC.

  14. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles.

    Science.gov (United States)

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-08-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A diet rich in monounsaturated rapeseed oil reduces the lipoprotein cholesterol concentration and increases the relative content of n-3 fatty acids in serum in hyperlipidemic subjects.

    Science.gov (United States)

    Gustafsson, I B; Vessby, B; Ohrvall, M; Nydahl, M

    1994-03-01

    The effects of 3 wk on a diet rich in monounsaturated rapeseed oil were compared with those of a diet containing sunflower oil within a lipid-lowering diet. Ninety-five subjects with moderate hyperlipoproteinemia were randomly assigned to one of the two well-controlled diets prepared at the hospital kitchen. Total serum, low-density- and high-density-lipoprotein cholesterol concentrations decreased by 15%, 16%, and 11% (P oil diet and by 16%, 14%, and 13% (P oil diet. Serum triglycerides decreased more markedly (by 29%, P oil than on the rapeseed oil diet (14%, P oil diet but decreased on the sunflower oil diet. There was an increase in the alpha-tocopherol concentrations after both diets. The findings indicate that low erucic acid rapeseed oil can replace oils and fats rich in polyunsaturated fatty acids in a lipid-lowering diet.

  16. Fluorescence interference contrast based approach to study real time interaction of melittin with plasma membranes

    Science.gov (United States)

    Gupta, Sharad; Gui, Dong; Zandi, Roya; Gill, Sarjeet; Mohideen, Umar

    2014-03-01

    Melittin is an anti-bacterial and hemolytic toxic peptide found in bee venom. Cell lysis behavior of peptides has been widely investigated, but the exact interaction mechanism of lytic peptides with lipid membranes and its constituents has not been understood completely. In this paper we study the melittin interaction with lipid plasma membranes in real time using non-invasive and non-contact fluorescence interference contrast microscopy (FLIC). Particularly the interaction of melittin with plasma membranes was studied in a controlled molecular environment, where these plasma membrane were composed of saturated lipid, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and unsaturated lipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC) with and without cholesterol. We found out that melittin starts to form nanometer size pores in the plasma membranes shortly after interacting with membranes. But the addition of cholesterol in plasma membrane slows down the pore formation process. Our results show that inclusion of cholesterol to the plasma membranes make them more resilient towards pore formation and lysis of membrane.

  17. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: its role in modulating protein function

    Directory of Open Access Journals (Sweden)

    Frances Jane Sharom

    2014-03-01

    Full Text Available Multidrug resistance in cancer is linked to expression of the P-glycoprotein multidrug transporter (Pgp, ABCB1, which exports many structurally diverse compounds from cells. Substrates first partition into the bilayer and then interact with a large flexible binding pocket within the transporter’s transmembrane regions. Pgp has been described as a hydrophobic vacuum cleaner or an outwardly-directed drug/lipid flippase. Recent X-ray crystal structures have shed some light on the nature of the drug-binding pocket and suggested routes by which substrates can enter it from the membrane. Detergents have profound effects on Pgp function, and several appear to be substrates. Biochemical and biophysical studies in vitro, some using purified reconstituted protein, have explored the effects of the membrane environment. They have demonstrated that Pgp is involved in a complex relationship with its lipid environment, which modulates the behaviour of its substrates, as well as various functions of the protein, including ATP hydrolysis, drug binding and drug transport. Membrane lipid composition and fluidity, phospholipid headgroup and acyl chain length all influence Pgp function. Recent studies focusing on thermodynamics and kinetics have revealed some important principles governing Pgp-lipid and substrate-lipid interactions, and how these affect drug binding and transport. In some cells, Pgp is associated with cholesterol-rich microdomains which may modulate its functions. The relationship between Pgp and cholesterol remains an open question; however it clearly affects several aspects of its function in addition to substrate-membrane partitioning. The action of Pgp modulators appears to depend on their membrane permeability, and membrane fluidizers and surfactants reverse drug resistance, likely via an indirect mechanism. A detailed understanding of how the membrane affects Pgp substrates and Pgp’s catalytic cycle may lead to new strategies to combat

  18. Staphylococcus aureus produces membrane-derived vesicles that induce host cell death.

    Directory of Open Access Journals (Sweden)

    Mamata Gurung

    Full Text Available Gram-negative bacteria produce outer membrane vesicles that play a role in the delivery of virulence factors to host cells. However, little is known about the membrane-derived vesicles (MVs produced by gram-positive bacteria. The present study examined the production of MVs from Staphylococcus aureus and investigated the delivery of MVs to host cells and subsequent cytotoxicity. Four S. aureus strains tested, two type strains and two clinical isolates, produced spherical nanovesicles during in vitro culture. MVs were also produced during in vivo infection of a clinical S. aureus isolate in a mouse pneumonia model. Proteomic analysis showed that 143 different proteins were identified in the S. aureus-derived MVs. S. aureus MVs were interacted with the plasma membrane of host cells via a cholesterol-rich membrane microdomain and then delivered their component protein A to host cells within 30 min. Intact S. aureus MVs induced apoptosis of HEp-2 cells in a dose-dependent manner, whereas lysed MVs neither delivered their component into the cytosol of host cells nor induced cytotoxicity. In conclusion, this study is the first report that S. aureus MVs are an important vehicle for delivery of bacterial effector molecules to host cells.

  19. The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading

    Directory of Open Access Journals (Sweden)

    Anna Baulies

    2018-04-01

    Full Text Available Cancer cells exhibit mitochondrial cholesterol (mt-cholesterol accumulation, which contributes to cell death resistance by antagonizing mitochondrial outer membrane (MOM permeabilization. Hepatocellular mt-cholesterol loading, however, promotes steatohepatitis, an advanced stage of chronic liver disease that precedes hepatocellular carcinoma (HCC, by depleting mitochondrial GSH (mGSH due to a cholesterol-mediated impairment in mGSH transport. Whether and how HCC cells overcome the restriction of mGSH transport imposed by mt-cholesterol loading to support mGSH uptake remains unknown. Although the transport of mGSH is not fully understood, SLC25A10 (dicarboxylate carrier, DIC and SLC25A11 (2-oxoglutarate carrier, OGC have been involved in mGSH transport, and therefore we examined their expression and role in HCC. Unexpectedly, HCC cells and liver explants from patients with HCC exhibit divergent expression of these mitochondrial carriers, with selective OGC upregulation, which contributes to mGSH maintenance. OGC but not DIC downregulation by siRNA depleted mGSH levels and sensitized HCC cells to hypoxia-induced ROS generation and cell death as well as impaired cell growth in three-dimensional multicellular HCC spheroids, effects that were reversible upon mGSH replenishment by GSH ethyl ester, a membrane permeable GSH precursor. We also show that OGC regulates mitochondrial respiration and glycolysis. Moreover, OGC silencing promoted hypoxia-induced cardiolipin peroxidation, which reversed the inhibition of cholesterol on the permeabilization of MOM-like liposomes induced by Bax or Bak. Genetic OGC knockdown reduced the ability of tumor-initiating stem-like cells to induce liver cancer. These findings underscore the selective overexpression of OGC as an adaptive mechanism of HCC to provide adequate mGSH levels in the face of mt-cholesterol loading and suggest that OGC may be a novel therapeutic target for HCC treatment. Keywords: Cholesterol

  20. Effect of free cholesterol on incorporation of triolein in phospholipid bilayers

    International Nuclear Information System (INIS)

    Spooner, P.J.R.; Small, D.M.

    1987-01-01

    Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl- 13 C] triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13 C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13 C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentration. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholestery oleate. As with cholesteryl oleate, they suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer

  1. Cytosolic cholesterol ester hydrolase in adrenal cortex

    OpenAIRE

    Tocher, Douglas R.

    1983-01-01

    Cholesterol ester hydrolase (CEH) in adrenocortical cytosol was known to be phosphorylated and activated, in response to ACTH in a cAMPdependent protein kinase mediated process. The purification of CEH from bovine adrenocortical cytosol was attempted. The use of detergents to solubilise the enzyme from lipid-rich aggregates was investigated and sodium cholate was found to be effective. A purification procedure using cholate solubilised enzyme was developed. The detergent int...

  2. Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection

    Energy Technology Data Exchange (ETDEWEB)

    Barik, Md. Abdul, E-mail: abdulnpl@gmail.com; Dutta, Jiten Ch. [Department of Electronics and Communication Engineering, Tezpur University, Napaam, Tezpur, Assam 784028 (India)

    2014-08-04

    We have reported fabrication and characterization of polyaniline (PANI)/zinc oxide (ZnO) membrane-based junctionless carbon nanotube field effect transistor deposited on indium tin oxide glass plate for the detection of cholesterol (0.5–22.2 mM). Cholesterol oxidase (ChOx) has been immobilized on the PANI/ZnO membrane by physical adsorption technique. Electrical response has been recorded using digital multimeter (Agilent 3458A) in the presence of phosphate buffer saline of 50 mM, pH 7.0, and 0.9% NaCl contained in a glass pot. The results of response studies for cholesterol reveal linearity as 0.5–16.6 mM and improved sensitivity of 60 mV/decade in good agreement with Nernstian limit ∼59.2 mV/decade. The life time of this sensor has been found up to 5 months and response time of 1 s. The limit of detection with regression coefficient (r) ∼ 0.998 and Michaelis-Menten constant (K{sub m}) were found to be ∼0.25 and 1.4 mM, respectively, indicating high affinity of ChOx to cholesterol. The results obtained in this work show negligible interference with glucose and urea.

  3. Cholesterol Removal from Adult Skeletal Muscle impairs Excitation-Contraction Coupling and Aging reduces Caveolin-3 and alters the Expression of other Triadic Proteins

    Directory of Open Access Journals (Sweden)

    Genaro eBarrientos

    2015-04-01

    Full Text Available Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation-contraction coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not sarcoplasmic reticulum membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX activity and protein content of NOX2 subunits (p47phox and gp91phox, implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs excitation-contraction coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged

  4. Adjunctive Effect of Autologus Platelet-Rich Fibrin to Barrier Membrane in the Treatment of Periodontal Intrabony Defects.

    Science.gov (United States)

    Panda, Saurav; Sankari, Malaiappan; Satpathy, Anurag; Jayakumar, Doraiswamy; Mozzati, Marco; Mortellaro, Carmen; Gallesio, Giorgia; Taschieri, Silvio; Del Fabbro, Massimo

    2016-05-01

    Autologous platelet-rich fibrin (PRF) and barrier membranes in the treatment of intrabony defects in chronic periodontitis patients have shown significant clinical benefits. This study evaluates the additive effect of autologous PRF in combination with a barrier membrane versus the use of barrier membrane alone for the treatment of intrabony defects in chronic periodontitis patients. A randomized split-mouth design was used. Sixteen patients with 32 paired intrabony defects were included. In each patient 1 defect was treated using a resorbable collagen membrane along with PRF (test group) and the other defect by guided tissue regeneration alone (control group). The following clinical parameters were measured at baseline and after 9 months: plaque index, modified sulcus bleeding index, probing pocket depth, clinical attachment level, and gingival marginal level. The radiographic defect depth was also assessed at baseline and after 9 months. Test group showed a statistically significant improvement for probing depth (P = 0.002), clinical attachment level (P = 0.001), and radiographic defect depth (P < 0.001) after 9 months as compared with the control sites. Radiographic defect depth reduction was 58.19 ± 13.24% in the test group as compared with 24.86 ± 9.94% reduction in the control group. The adjunctive use of PRF in combination with barrier membrane is more effective in the treatment of intrabony defects in chronic periodontitis as compared with barrier membrane alone.

  5. Atomistic Monte Carlo simulation of lipid membranes

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  6. No Evidence for Spontaneous Lipid Transfer at ER-PM Membrane Contact Sites.

    Science.gov (United States)

    Merklinger, Elisa; Schloetel, Jan-Gero; Spitta, Luis; Thiele, Christoph; Lang, Thorsten

    2016-04-01

    Non-vesicular lipid transport steps play a crucial role in lipid trafficking and potentially include spontaneous exchange. Since membrane contact facilitates this lipid transfer, it is most likely to occur at membrane contact sites (MCS). However, to date it is unknown whether closely attached biological membranes exchange lipids spontaneously. We have set up a system for studying the exchange of lipids at MCS formed between the endoplasmic reticulum (ER) and the plasma membrane. Contact sites were stably anchored and the lipids cholesterol and phosphatidylcholine (PC) were not capable of transferring spontaneously into the opposed bilayer. We conclude that physical contact between two associated biological membranes is not sufficient for transfer of the lipids PC and cholesterol.

  7. Dietary and biliary cholesterol absorption in rats. Effect of dietary cholesterol level and cholesterol saturation of bile

    International Nuclear Information System (INIS)

    Wilson, M.D.

    1985-01-01

    The principal objective of this research was to determine if cholesterol introduced into the duodenum of rats in a micellar form as occurs with bile, is absorbed more efficiently than cholesterol presented in a nonmicellar form, as occurs with dietary cholesterol. Cholesterol absorption was measured during the constant intraduodenal infusion of liquid diets ([ 14 C] cholesterol) and artificial biles ([ 3 H] cholesterol) in thoracic lymph duct cannulated rats. Percentage absorption was calculated by dividing the rate of appearance of radiolabeled cholesterol in lymph by its rate of infusion when lymph cholesterol specific activity was constant. Results provide strong evidence that under certain conditions biliary cholesterol is more efficiently absorbed than is dietary cholesterol, and that this differential must be considered when evaluating the influence of diet or drug therapy on cholesterol absorption

  8. Free fatty acids and esters can be immobilized by receptor rich membranes from torpedo marmorata but not phospholipid acyl chains

    NARCIS (Netherlands)

    Rousselet, A.; Devaux, P.F.; Wirtz, K.W.A.

    1979-01-01

    A long chain spin labeled fatty acid and the corresponding ester have been introduced into receptor rich membranes from Torpedo Marmorata. Superimposed to a mobile component, typical of the lipid phase, a strongly immobilized component is seen on the ESR spectra, both at low temperature (−4°C) and

  9. Vesicle Origami and the Influence of Cholesterol on Lipid Packing.

    Science.gov (United States)

    Tanasescu, Radu; Lanz, Martin A; Mueller, Dennis; Tassler, Stephanie; Ishikawa, Takashi; Reiter, Renate; Brezesinski, Gerald; Zumbuehl, Andreas

    2016-05-17

    The artificial phospholipid Pad-PC-Pad was analyzed in 2D (monolayers at the air/water interface) and 3D (aqueous lipid dispersions) systems. In the gel phase, the two leaflets of a Pad-PC-Pad bilayer interdigitate completely, and the hydrophobic bilayer region has a thickness comparable to the length of a single phospholipid acyl chain. This leads to a stiff membrane with no spontaneous curvature. Forced into a vesicular structure, Pad-PC-Pad has faceted geometry, and in its extreme form, tetrahedral vesicles were found as predicted a decade ago. Above the main transition temperature, a noninterdigitated Lα phase with fluid chains has been observed. The addition of cholesterol leads to a slight decrease of the main transition temperature and a gradual decrease in the transition enthalpy until the transition vanishes at 40 mol % cholesterol in the mixture. Additionally, cholesterol pulls the chains apart, and a noninterdigitated gel phase is observed. In monolayers, cholesterol has an ordering effect on liquid-expanded phases and disorders condensed phases. The wavenumbers of the methylene stretching vibration indicate the formation of a liquid-ordered phase in mixtures with 40 mol % cholesterol.

  10. Embryonic cholesterol esterification is regulated by a cyclic AMP-dependent pathway in yolk sac membrane-derived endodermal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Siou-Huei Wang

    Full Text Available During avian embryonic development, endodermal epithelial cells (EECs absorb yolk through the yolk sac membrane. Sterol O-acyltransferase (SOAT is important for esterification and yolk lipid utilization during development. Because the major enzyme for yolk sac membrane cholesteryl ester synthesis is SOAT1, we cloned the avian SOAT1 promoter and elucidated the cellular functions of SOAT1. Treatments with either glucagon, isobutylmethylxanthine (IBMX, an adenylate cyclase activator (forskolin, a cAMP analog (dibutyryl-cAMP, or a low glucose concentration all increased SOAT1 mRNA accumulation in EECs from Japanese quail, suggesting that SOAT1 is regulated by nutrients and hormones through a cAMP-dependent pathway. Activity of protein kinase A (PKA was increased by IBMX, whereas co-treatment with the PKA inhibitor, H89 negated the increase in PKA activity. Cyclic AMP-induced EECs had greater cholesterol esterification than untreated EECs. By promoter deletion and point-mutation, the cAMP-response element (-349 to -341 bp was identified as critical in mediating transcription of SOAT1. In conclusion, expression of SOAT1 was regulated by a cAMP-dependent pathway and factors that increase PKA will increase SOAT1 to improve the utilization of lipids in the EECs and potentially modify embryonic growth.

  11. Exploration of molecular interactions in cholesterol superlattices: effect of multibody interactions.

    Science.gov (United States)

    Huang, Juyang

    2002-08-01

    Experimental evidences have indicated that cholesterol may adapt highly regular lateral distributions (i.e., superlattices) in a phospholipid bilayer. We investigated the formations of superlattices at cholesterol mole fraction of 0.154, 0.25, 0.40, and 0.5 using Monte Carlo simulation. We found that in general, conventional pairwise-additive interactions cannot produce superlattices. Instead, a multibody (nonpairwise) interaction is required. Cholesterol superlattice formation reveals that although the overall interaction between cholesterol and phospholipids is favorable, it contains two large opposing components: an interaction favoring cholesterol-phospholipid mixing and an unfavorable acyl chain multibody interaction that increases nonlinearly with the number of cholesterol contacts. The magnitudes of interactions are in the order of kT. The physical origins of these interactions can be explained by our umbrella model. They most likely come from the requirement for polar phospholipid headgroups to cover the nonpolar cholesterol to avoid the exposure of cholesterol to water and from the sharp decreasing of acyl chain conformation entropy due to cholesterol contact. This study together with our previous work demonstrate that the driving force of cholesterol-phospholipid mixing is a hydrophobic interaction, and multibody interactions dominate others over a wide range of cholesterol concentration.

  12. Specificity and kinetics of alpha-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe.

    Science.gov (United States)

    Shvadchak, Volodymyr V; Falomir-Lockhart, Lisandro J; Yushchenko, Dmytro A; Jovin, Thomas M

    2011-04-15

    Parkinson disease is characterized cytopathologically by the deposition in the midbrain of aggregates composed primarily of the presynaptic neuronal protein α-synuclein (AS). Neurotoxicity is currently attributed to oligomeric microaggregates subjected to oxidative modification and promoting mitochondrial and proteasomal dysfunction. Unphysiological binding to membranes of these and other organelles is presumably involved. In this study, we performed a systematic determination of the influence of charge, phase, curvature, defects, and lipid unsaturation on AS binding to model membranes using a new sensitive solvatochromic fluorescent probe. The interaction of AS with vesicular membranes is fast and reversible. The protein dissociates from neutral membranes upon thermal transition to the liquid disordered phase and transfers to vesicles with higher affinity. The binding of AS to neutral and negatively charged membranes occurs by apparently different mechanisms. Interaction with neutral bilayers requires the presence of membrane defects; binding increases with membrane curvature and rigidity and decreases in the presence of cholesterol. The association with negatively charged membranes is much stronger and much less sensitive to membrane curvature, phase, and cholesterol content. The presence of unsaturated lipids increases binding in all cases. These findings provide insight into the relation between membrane physical properties and AS binding affinity and dynamics that presumably define protein localization in vivo and, thereby, the role of AS in the physiopathology of Parkinson disease.

  13. What's Cholesterol?

    Science.gov (United States)

    ... LDL. Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  14. Management of multiple recession defects in esthetic zone using platelet-rich fibrin membrane: A 36-month follow-up case report.

    Science.gov (United States)

    Singh, Prabhjeet; Shukla, Sagrika; Singh, Kuldeep

    2018-01-01

    A patient undergoing orthodontic treatment presented with multiple recession defects in maxillary anterior region. After thorough clinical examination and assessment, measurements were recorded. Maxillary anterior teeth with recession defects of 3-4 mm were treated with coronally advanced flap and platelet-rich fibrin (PRF) membrane. Regular follow-up was maintained for the patient at 3, 6 , 12, 18, 24, 30, and 36 months. After 36 months, significant root coverage of 100 percent was observed in four defects and 50% coverage in one defect. This shows that PRF membrane along with coronally advanced provides a predictable and significant result for management of recession defects.

  15. Progress in surface and membrane science

    CERN Document Server

    Danielli, J F; Cadenhead, D A

    1972-01-01

    Progress in Surface and Membrane Science, Volume 5 covers the developments in the study of surface and membrane science. The book discusses the Mössbauer effect in surface science; the surface functional groups on carbon and silica; and the wetting phenomena pertaining to adhesion. The text also describes the physical state of phospholipids and cholesterol in monolayers, bilayers, and membranes; the characteristics of heterocoagulation; and the effects of calcium on excitable membranes and neurotransmitter action. Chemists, physiologists, biophysicists, and civil engineers will find the book i

  16. Platelet-rich fibrin or platelet-rich plasma – which one is better? an opinion

    Directory of Open Access Journals (Sweden)

    Shweta Bansal

    2017-01-01

    Full Text Available The healing of hard and soft tissue in mediated by a wide range of intracellular and extracellular events that are regulated by signaling proteins. Platelets can play a crucial role in periodontal regeneration as they are the reservoirs of growth factors and cytokines which are the key factors for regeneration of bone and maturation of soft tissue. Platelet-rich plasma (PRP is first generation platelet concentrate. However, the short duration of cytokine release and its poor mechanical properties have resulted in search of new material. Platelet-rich fibrin (PRF is a natural fibrin-based biomaterial prepared from an anticoagulant-free blood harvest without any artificial biochemical modification (no bovine thrombin is required that allows obtaining fibrin membranes enriched with platelets and growth factors. The slow polymerization during centrifugation, fibrin-based structure, ease of preparation, minimal expense makes PRF somewhat superior in some aspect to PRP.

  17. The effect of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for CVD risk reduction: a systematic review and meta-analysis of randomised-controlled trials.

    Science.gov (United States)

    Ho, Hoang V T; Sievenpiper, John L; Zurbau, Andreea; Blanco Mejia, Sonia; Jovanovski, Elena; Au-Yeung, Fei; Jenkins, Alexandra L; Vuksan, Vladimir

    2016-10-01

    Oats are a rich source of β-glucan, a viscous, soluble fibre recognised for its cholesterol-lowering properties, and are associated with reduced risk of CVD. Our objective was to conduct a systematic review and meta-analysis of randomised-controlled trials (RCT) investigating the cholesterol-lowering potential of oat β-glucan on LDL-cholesterol, non-HDL-cholesterol and apoB for the risk reduction of CVD. MEDLINE, Embase, CINAHL and Cochrane CENTRAL were searched. We included RCT of ≥3 weeks of follow-up, assessing the effect of diets enriched with oat β-glucan compared with controlled diets on LDL-cholesterol, non-HDL-cholesterol or apoB. Two independent reviewers extracted data and assessed study quality and risk of bias. Data were pooled using the generic inverse-variance method with random effects models and expressed as mean differences with 95 % CI. Heterogeneity was assessed by the Cochran's Q statistic and quantified by the I 2-statistic. In total, fifty-eight trials (n 3974) were included. A median dose of 3·5 g/d of oat β-glucan significantly lowered LDL-cholesterol (-0·19; 95 % CI -0·23, -0·14 mmol/l, Pcholesterol (-0·20; 95 % CI -0·26, -0·15 mmol/l, PLDL-cholesterol (I 2=79 %) and non-HDL-cholesterol (I 2=99 %). Pooled analyses showed that oat β-glucan has a lowering effect on LDL-cholesterol, non-HDL-cholesterol and apoB. Inclusion of oat-containing foods may be a strategy for achieving targets in CVD reduction.

  18. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki

    2012-09-01

    Full Text Available Abstract Background Fucoxanthin is a xanthophyll present in brown seaweeds and has several beneficial effects, including anti-obesity and anti-diabetic effects. However, we and another group previously observed that fucoxanthin increases serum cholesterol levels in rodents. Cholesterol is an important component of cell membranes and biosynthesis of bile acids. Serum cholesterol levels are also closely associated with atherosclerosis. Therefore, we sought to identify the mechanism underlying the increase in serum cholesterol levels by fucoxanthin. Methods Diabetic/obese KK-Ay mice were fed a diet containing 0.2% fucoxanthin for 4 weeks. The mice were sacrificed, and total blood samples were collected for the measurement of serum total cholesterol, HDL-cholesterol and non-HDL-cholesterol levels. Cholesterol content in tissues was also analyzed. Real-time PCR and Western blotting were performed to determine hepatic mRNA and protein expression of genes involved in cholesterol metabolism, respectively. Results Dietary fucoxanthin significantly increased serum HDL and non-HDL cholesterol levels, and reduced hepatic cholesterol content. In liver, the expression of SREBP1, SREBP2 and their target genes involved in cholesterol biosynthesis significantly increased and tended to increase in the fucoxanthin-fed mice, respectively. In contrast, hepatic levels of LDLR and SR-B1 proteins which is important factors for LDL-cholesterol and HDL-cholesterol uptake in the liver from serum, decreased to 60% and 80% in the fucoxanthin-fed mice, respectively, compared with the control mice. Further, we found that dietary fucoxanthin significantly increased the mRNA expression of proprotein convertase subtilisin/kexin type 9 (PCSK9, which enhances intracellular degradation of LDLR in lysosomes. Conclusions Fucoxanthin increased HDL-cholesterol and non-HDL-cholesterol levels in KK-Ay mice by inducing SREBP expression and reduced cholesterol uptake in the liver via

  19. Inclusion of Almonds in a Cholesterol-Lowering Diet Improves Plasma HDL Subspecies and Cholesterol Efflux to Serum in Normal-Weight Individuals with Elevated LDL Cholesterol.

    Science.gov (United States)

    Berryman, Claire E; Fleming, Jennifer A; Kris-Etherton, Penny M

    2017-08-01

    Background : Almonds may increase circulating HDL cholesterol when substituted for a high-carbohydrate snack in an isocaloric diet, yet little is known about the effects on HDL biology and function. Objective: The objective was to determine whether incorporating 43 g almonds/d in a cholesterol-lowering diet would improve HDL subspecies and function, which were secondary study outcomes. Methods: In a randomized, 2-period, crossover, controlled-feeding study, a diet with 43 g almonds/d (percentage of total energy: 51% carbohydrate, 16% protein, and 32% total and 8% saturated fat) was compared with a similar diet with an isocaloric muffin substitution (58% carbohydrate, 15% protein, and 26% total and 8% saturated fat) in men and women with elevated LDL cholesterol. Plasma HDL subspecies and cholesterol efflux from J774 macrophages to human serum were measured at baseline and after each diet period. Diet effects were examined in all participants ( n = 48) and in normal-weight (body mass index: almond diet, compared with the control diet, increased α-1 HDL [mean ± SEM: 26.7 ± 1.5 compared with 24.3 ± 1.3 mg apolipoprotein A-I (apoA-I)/dL; P = 0.001]. In normal-weight participants, the almond diet, relative to the control diet, increased α-1 HDL (33.7 ± 3.2 compared with 28.4 ± 2.6 mg apoA-I/dL), the α-1 to pre-β-1 ratio [geometric mean (95% CI): 4.3 (3.3, 5.7) compared with 3.1 (2.4, 4.0)], and non-ATP-binding cassette transporter A1 cholesterol efflux (8.3% ± 0.4% compared with 7.8% ± 0.3%) and decreased pre-β-2 (3.8 ± 0.4 compared with 4.6 ± 0.4 mg apoA-I/dL) and α-3 (23.5 ± 0.9 compared with 26.9 ± 1.1 mg apoA-I/dL) HDL ( P almonds for a carbohydrate-rich snack within a lower-saturated-fat diet may be a simple strategy to maintain a favorable circulating HDL subpopulation distribution and improve cholesterol efflux in normal-weight individuals with elevated LDL cholesterol. This trial was registered at clinicaltrials.gov as NCT01101230. © 2017

  20. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells.

    Science.gov (United States)

    Hsu, Sanford P C; Kuo, John S; Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P; Chi, Kwan-Hwa

    2018-01-23

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo . Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.

  1. Fluorescent Sterols and Cholesteryl Esters as Probes for Intracellular Cholesterol Transport

    Science.gov (United States)

    Solanko, Katarzyna A.; Modzel, Maciej; Solanko, Lukasz M.; Wüstner, Daniel

    2015-01-01

    Cholesterol transport between cellular organelles comprised vesicular trafficking and nonvesicular exchange; these processes are often studied by quantitative fluorescence microscopy. A major challenge for using this approach is producing analogs of cholesterol with suitable brightness and structural and chemical properties comparable with those of cholesterol. This review surveys currently used fluorescent sterols with respect to their behavior in model membranes, their photophysical properties, as well as their transport and metabolism in cells. In the first part, several intrinsically fluorescent sterols, such as dehydroergosterol or cholestatrienol, are discussed. These polyene sterols (P-sterols) contain three conjugated double bonds in the steroid ring system, giving them slight fluorescence in ultraviolet light. We discuss the properties of P-sterols relative to cholesterol, outline their chemical synthesis, and explain how to image them in living cells and organisms. In particular, we show that P-sterol esters inserted into low-density lipoprotein can be tracked in the fibroblasts of Niemann–Pick disease using high-resolution deconvolution microscopy. We also describe fluorophore-tagged cholesterol probes, such as BODIPY-, NBD-, Dansyl-, or Pyrene-tagged cholesterol, and eventual esters of these analogs. Finally, we survey the latest developments in the synthesis and use of alkyne cholesterol analogs to be labeled with fluorophores by click chemistry and discuss the potential of all approaches for future applications. PMID:27330304

  2. Aspirin locally disrupts the liquid-ordered phase

    Science.gov (United States)

    Alsop, Richard J.; Himbert, Sebastian; Dhaliwal, Alexander; Schmalzl, Karin; Rheinstädter, Maikel C.

    2018-02-01

    Local structure and dynamics of lipid membranes play an important role in membrane function. The diffusion of small molecules, the curvature of lipids around a protein and the existence of cholesterol-rich lipid domains (rafts) are examples for the membrane to serve as a functional interface. The collective fluctuations of lipid tails, in particular, are relevant for diffusion of membrane constituents and small molecules in and across membranes, and for structure and formation of membrane domains. We studied the effect of aspirin (acetylsalicylic acid, ASA) on local structure and dynamics of membranes composed of dimyristoylphosphocholine (DMPC) and cholesterol. Aspirin is a common analgesic, but is also used in the treatment of cholesterol. Using coherent inelastic neutron scattering experiments and molecular dynamics (MD) simulations, we present evidence that ASA binds to liquid-ordered, raft-like domains and disturbs domain organization and dampens collective fluctuations. By hydrogen-bonding to lipid molecules, ASA forms `superfluid' complexes with lipid molecules that can organize laterally in superlattices and suppress cholesterol's ordering effect.

  3. Cholesterol metabolism: increasingly complex; El metabolismo del colesterol: cada vez mas complejo

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza, J.; Valenzuela, R.; Valenzuela, A.

    2012-07-01

    Cholesterol is an important molecule; it is necessary for the biosynthesis of steroidal hormones, bile salts and to maintain the stability of biological membranes in animal cells. However, its excess is negative and is responsible for the development of many diseases involving the heart and brain, or in the generation of some types of cancer. For these reasons, the cellular cholesterol levels must be finely regulated and therefore, an infinite number of mechanisms participate in this regulation, which undertake the organism as a whole. These mechanisms should begin to operate efficiently from the intake of cholesterol from the diet, its incorporation into the enterocytes, where are involved carriers such as ABC and NCP1 transporters, PDZ structural motif, to name a few. It is also necessary an adequate regulation of circulating cholesterol and once inside the body, there should be a perfect harmony between the addition of cholesterol to various tissues, its metabolic use, the mechanisms of its tissue deposition, and the synthesis of this lipid. From this perspective, this review offers a general view of the molecular mechanisms that allow the regulation of extra and intracellular cholesterol levels. (Author) 82 refs.

  4. Membrane Protein Properties Revealed through Data-Rich Electrostatics Calculations.

    Science.gov (United States)

    Marcoline, Frank V; Bethel, Neville; Guerriero, Christopher J; Brodsky, Jeffrey L; Grabe, Michael

    2015-08-04

    The electrostatic properties of membrane proteins often reveal many of their key biophysical characteristics, such as ion channel selectivity and the stability of charged membrane-spanning segments. The Poisson-Boltzmann (PB) equation is the gold standard for calculating protein electrostatics, and the software APBSmem enables the solution of the PB equation in the presence of a membrane. Here, we describe significant advances to APBSmem, including full automation of system setup, per-residue energy decomposition, incorporation of PDB2PQR, calculation of membrane-induced pKa shifts, calculation of non-polar energies, and command-line scripting for large-scale calculations. We highlight these new features with calculations carried out on a number of membrane proteins, including the recently solved structure of the ion channel TRPV1 and a large survey of 1,614 membrane proteins of known structure. This survey provides a comprehensive list of residues with large electrostatic penalties for being embedded in the membrane, potentially revealing interesting functional information. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. How well does cholesteryl hemisuccinate mimic cholesterol in saturated phospholipid bilayers?

    Czech Academy of Sciences Publication Activity Database

    Kulig, W.; Tynkkynen, J.; Javanainen, M.; Manna, M.; Rog, T.; Vattulainen, I.; Jungwirth, Pavel

    2014-01-01

    Roč. 20, č. 2 (2014), 2121/1-2121/9 ISSN 1610-2940 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388963 Keywords : cholesterol * detergent * molecular dynamics simulations * membrane elasticity Subject RIV: CE - Biochemistry Impact factor: 1.736, year: 2014

  6. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin.

    Science.gov (United States)

    Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad

    2017-11-06

    Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.

  7. Nanoscale Membrane Domain Formation Driven by Cholesterol

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector; Vattulainen, I.

    2017-01-01

    Roč. 7, Apr 25 (2017), č. článku 1143. ISSN 2045-2322 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : molecular dynamics simulations * differential scanning calorimetry * pulmonary surfactant membranes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.259, year: 2016 https://www.nature.com/ articles /s41598-017-01247-9

  8. Communication: Orientational self-ordering of spin-labeled cholesterol analogs in lipid bilayers in diluted conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kardash, Maria E.; Dzuba, Sergei A., E-mail: dzuba@kinetics.nsc.ru [Voevodsky Institute of Chemical Kinetics and Combustion, 630090 Novosibirsk, Russia, and Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2014-12-07

    Lipid-cholesterol interactions are responsible for different properties of biological membranes including those determining formation in the membrane of spatial inhomogeneities (lipid rafts). To get new information on these interactions, electron spin echo (ESE) spectroscopy, which is a pulsed version of electron paramagnetic resonance (EPR), was applied to study 3β-doxyl-5α-cholestane (DCh), a spin-labeled analog of cholesterol, in phospholipid bilayer consisted of equimolecular mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phosphocholine. DCh concentration in the bilayer was between 0.1 mol.% and 4 mol.%. For comparison, a reference system containing a spin-labeled 5-doxyl-stearic acid (5-DSA) instead of DCh was studied as well. The effects of “instantaneous diffusion” in ESE decay and in echo-detected (ED) EPR spectra were explored for both systems. The reference system showed good agreement with the theoretical prediction for the model of spin labels of randomly distributed orientations, but the DCh system demonstrated remarkably smaller effects. The results were explained by assuming that neighboring DCh molecules are oriented in a correlative way. However, this correlation does not imply the formation of clusters of cholesterol molecules, because conventional continuous wave EPR spectra did not show the typical broadening due to aggregation of spin labels and the observed ESE decay was not faster than in the reference system. So the obtained data evidence that cholesterol molecules at low concentrations in biological membranes can interact via large distances of several nanometers which results in their orientational self-ordering.

  9. Effects of semen preservation on boar spermatozoa head membranes.

    Science.gov (United States)

    Buhr, M M; Canvin, A T; Bailey, J L

    1989-08-01

    Head plasma membranes were isolated from the sperm-rich fraction of boar semen and from sperm-rich semen that had been subjected to three commercial preservation processes: Extended for fresh insemination (extended), prepared for freezing but not frozen (cooled), and stored frozen for 3-5 weeks (frozen-thawed). Fluorescence polarization was used to determine fluidity of the membranes of all samples for 160 min at 25 degrees C and also for membranes from the sperm-rich and extended semen during cooling and reheating (25 to 5 to 40 degrees C, 0.4 degrees C/min). Head plasma membranes from extended semen were initially more fluid than from other sources (P less than 0.05). Fluidity of head membranes from all sources decreased at 25 degrees C, but the rate of decrease was significantly lower for membranes from cooled and lower again for membranes from frozen-thawed semen. Cooling to 5 degrees C reduced the rate of fluidity change for plasma membranes from the sperm-rich fraction, while heating over 30 degrees C caused a significantly greater decrease. The presence of Ca++ (10 mM) lowered the fluidity of the head plasma membranes from sperm-rich and extended semen over time at 25 degrees C but did not affect the membranes from the cooled or frozen-thawed semen. The change in head plasma membrane fluidity at 25 degrees C may reflect the dynamic nature of spermatozoa membranes prior to fertilization. Extenders, preservation processes and temperature changes have a strong influence on head plasma membrane fluidity and therefore the molecular organization of this membrane.

  10. Human Lipoproteins at Model Cell Membranes

    DEFF Research Database (Denmark)

    Browning, K L; Lind, T K; Maric, S

    2017-01-01

    High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid...... exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid...... support the notion of HDL acting as the 'good' cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the 'bad' cholesterol, depositing lipid material into the vascular wall....

  11. Increased expression of RXRα in dementia: an early harbinger for the cholesterol dyshomeostasis?

    Directory of Open Access Journals (Sweden)

    Katsel Pavel

    2010-09-01

    Full Text Available Abstract Background Cholesterol content of cerebral membranes is tightly regulated by elaborate mechanisms that balance the level of cholesterol synthesis, uptake and efflux. Among the conventional regulatory elements, a recent research focus has been nuclear receptors, a superfamily of ligand-activated transcription factors providing an indispensable regulatory framework in controlling cholesterol metabolism pathway genes. The mechanism of transcriptional regulation by nuclear receptors such as LXRs involves formation of heterodimers with RXRs. LXR/RXR functions as a sensor of cellular cholesterol concentration and mediates cholesterol efflux by inducing the transcription of key cholesterol shuffling vehicles namely, ATP-binding cassette transporter A1 (ABCA1 and ApoE. Results In the absence of quantitative data from humans, the relevance of expression of nuclear receptors and their involvement in cerebral cholesterol homeostasis has remained elusive. In this work, new evidence is provided from direct analysis of human postmortem brain gene and protein expression suggesting that RXRα, a key regulator of cholesterol metabolism is differentially expressed in individuals with dementia. Importantly, RXRα expression showed strong association with ABCA1 and ApoE gene expression, particularly in AD vulnerable regions. Conclusions These findings suggest that LXR/RXR-induced upregulation of ABCA1 and ApoE levels may be the molecular determinants of cholesterol dyshomeostasis and of the accompanying dementia observed in AD.

  12. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2017-01-01

    Roč. 8, č. 17 (2017), s. 4308-4313 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : giant unilamellar vesicles * single-molecule tracking * lipid bilayer membranes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016

  13. N-3 fatty acids and membrane microdomains: from model membranes to lymphocyte function.

    Science.gov (United States)

    Shaikh, Saame Raza; Teague, Heather

    2012-12-01

    This article summarizes the author's research on fish oil derived n-3 fatty acids, plasma membrane organization and B cell function. We first cover basic model membrane studies that investigated how docosahexaenoic acid (DHA) targeted the organization of sphingolipid-cholesterol enriched lipid microdomains. A key finding here was that DHA had a relatively poor affinity for cholesterol. This work led to a model that predicted DHA acyl chains in cells would manipulate lipid-protein microdomain organization and thereby function. We then review how the predictions of the model were tested with B cells in vitro followed by experiments using mice fed fish oil. These studies reveal a highly complex picture on how n-3 fatty acids target lipid-protein organization and B cell function. Key findings are as follows: (1) n-3 fatty acids target not just the plasma membrane but also endomembrane organization; (2) DHA, but not eicosapentaenoic acid (EPA), disrupts microdomain spatial distribution (i.e. clustering), (3) DHA alters protein lateral organization and (4) changes in membrane organization are accompanied by functional effects on both innate and adaptive B cell function. Altogether, the research over the past 10 years has led to an evolution of the original model on how DHA reorganizes membrane microdomains. The work raises the intriguing possibility of testing the model at the human level to target health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents.

    Science.gov (United States)

    Ward, Natalie; Sahebkar, Amirhossein; Banach, Maciej; Watts, Gerald

    2017-12-01

    Reduction in circulating cholesterol is an important step in lowering cardiovascular risk. Although statins are the most frequently prescribed cholesterol-lowering medication, there remains a significant portion of patients who require alternative treatment options. Nutraceuticals are increasingly popular as cholesterol-lowering agents. Despite the lack of long-term trials evaluating their use on cardiovascular endpoints and mortality, several studies have demonstrated their potential cholesterol-lowering effects. The purpose of this review is to provide an update on the role of nutraceuticals as cholesterol-lowering agents. The present review will focus on individual nutraceutical compounds, which have shown modest cholesterol-lowering abilities, as well as combination nutraceuticals, which may offer potential additive and/or synergistic effects. Berberine, red yeast rice, and plant sterols have moderate potential as cholesterol-lowering agents. Combination nutraceuticals, including the proprietary formulation, Armolipid Plus, appear to confer additional benefit on plasma lipid profiles, even when taken with statins and other agents. Although robust, long-term clinical trials to examine the effects of nutraceuticals on clinical outcomes are still required, their cholesterol-lowering ability, together with their reported tolerance and safety, offer a pragmatic option for lowering plasma cholesterol levels.

  15. Drug Release from ß-Cyclodextrin Complexes and Drug Transfer into Model Membranes Studied by Affinity Capillary Electrophoresis.

    Science.gov (United States)

    Darwish, Kinda A; Mrestani, Yahya; Rüttinger, Hans-Hermann; Neubert, Reinhard H H

    2016-05-01

    Is to characterize the drug release from the ß-cyclodextrin (ß-CD) cavity and the drug transfer into model membranes by affinity capillary electrophoresis. Phospholipid liposomes with and without cholesterol were used to mimic the natural biological membrane. The interaction of cationic and anionic drugs with ß-CD and the interaction of the drugs with liposomes were detected separately by measuring the drug mobility in ß-CD containing buffer and liposome containing buffer; respectively. Moreover, the kinetics of drug release from ß-CD and its transfer into liposomes with or without cholesterol was studied by investigation of changes in the migration behaviours of the drugs in samples, contained drug, ß-CD and liposome, at 1:1:1 molar ratio at different time intervals; zero time, 30 min, 1, 2, 4, 6, 8, 10 and 24 h. Lipophilic drugs such as propranolol and ibuprofen were chosen for this study, because they form complexes with ß-CD. The mobility of the both drug liposome mixtures changed with time to a final state. For samples of liposomal membranes with cholesterol the final state was faster reached than without cholesterol. The study confirmed that the drug release from the CD cavity and its transfer into the model membrane was more enhanced by the competitive displacement of the drug from the ß-CD cavity by cholesterol, the membrane component. The ACE method here developed can be used to optimize the drug release from CD complexes and the drug transfer into model membranes.

  16. What Is Cholesterol?

    Science.gov (United States)

    ... of Cholesterol There are two main types of cholesterol: LDL and HDL. The cholesterol blood test tells how much of each kind you have. Most cholesterol is LDL (low-density lipoprotein) cholesterol. This type is most ...

  17. Molecular Transport Studies Through Unsupported Lipid Membranes

    Science.gov (United States)

    Rock, William; Parekh, Sapun; Bonn, Mischa

    2014-03-01

    Dendrimers, spherical polymeric nanoparticles made from branched monomers around a central core, show great promise as drug delivery vehicles. Dendrimer size, core contents, and surface functionality can be synthetically tuned, providing unprecedented versatility. Polyamidoamine (PAMAM) dendrimers have been shown to enter cells; however, questions remain about their biophysical interactions with the cell membrane, specifically about the presence and size of transient pores. We monitor dendrimer-lipid bilayer interactions using unsupported black lipid membranes (BLMs) as model cell membranes. Custom bilayer slides contain two vertically stacked aqueous chambers separated by a 25 μm Teflon sheet with a 120 μm aperture where the bilayer is formed. We vary the composition of model membranes (cholesterol content and lipid phase) to create biomimetic systems and study the interaction of PAMAM G6 and G3 dendrimers with these bilayers. Dendrimers, dextran cargo, and bilayers are monitored and quantified using time-lapse fluorescence imaging. Electrical capacitance measurements are simultaneously recorded to determine if the membrane is porous, and the pore size is deduced by monitoring transport of fluorescent dextrans of increasing molecular weight. These experiments shed light on the importance of cholesterol content and lipid phase on the interaction of dendrimer nanoparticles with membranes.

  18. Cholesterol-Lowering Probiotics as Potential Biotherapeutics for Metabolic Diseases

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2012-01-01

    , incorporation of cholesterol into the cellular membrane, deconjugation of bile via bile salt hydrolase, coprecipitation of cholesterol with deconjugated bile, binding action of bile by fibre, and production of short-chain fatty acids by oligosaccharides. The present paper reviews the mechanisms of action of anti-cholesterolemic potential of probiotic microorganisms and probiotic food products, with the aim of lowering the risks of cardiovascular and coronary heart diseases.

  19. Regulation of CD4+ T-Cell Function by Membrane Cholesterol

    Science.gov (United States)

    2012-03-13

    and intracellular synthesis [Lehoux et al 1985]. Early studies using in vivo administration of radio-labeled squalene, a late cholesterol...mice expressing the HA of PR8/A/34 influenza virus in the pancreatic -cells (RAG2 KO, RIP-PR8/HA Tg mice) leads to fulminate autoimmune diabetes within...transgenic mouse model in which infusion of influenza PR8/HA-specific T-effector cells (from a TCR- PR8/HA Tg mouse) induces fulminate diabetes, we found

  20. Reference intervals for serum total cholesterol, HDL cholesterol and ...

    African Journals Online (AJOL)

    Reference intervals of total cholesterol, HDL cholesterol and non-HDL cholesterol concentrations were determined on 309 blood donors from an urban and peri-urban population of Botswana. Using non-parametric methods to establish 2.5th and 97.5th percentiles of the distribution, the intervals were: total cholesterol 2.16 ...

  1. NIR studies of cholesterol-dependent structural modification of the model lipid bilayer doped with inhalation anesthetics

    Science.gov (United States)

    Kuć, Marta; Cieślik-Boczula, Katarzyna; Rospenk, Maria

    2018-06-01

    The influence of cholesterol on the structure of the model lipid bilayers treated with inhalation anesthetics (enflurane, isoflurane, sevoflurane and halothane) was investigated employing near-infrared (NIR) spectroscopy combined with the Principal Component Analysis (PCA). The conformational changes occurring in the hydrophobic area of the lipid bilayers were analyzed using the first overtones of symmetric (2νs) and antisymmetric (2νas) stretching vibrations of the CH2 groups of lipid aliphatic chains. The temperature values of chain-melting phase transition (Tm) of anesthetic-mixed dipalmitoylphosphatidylcholine (DPPC)/cholesterol and dipalmitoylphosphatidylglycerol (DPPG)/cholesterol membranes, which were obtained from the PCA analysis, were compared with cholesterol-free DPPC and DPPG bilayers mixed with inhalation anesthetics.

  2. Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.

    Science.gov (United States)

    Leser, George P; Lamb, Robert A

    2017-05-01

    Influenza virus assembles and buds at the plasma membrane of virus-infected cells. The viral proteins assemble at the same site on the plasma membrane for budding to occur. This involves a complex web of interactions among viral proteins. Some proteins, like hemagglutinin (HA), NA, and M2, are integral membrane proteins. M1 is peripherally membrane associated, whereas NP associates with viral RNA to form an RNP complex that associates with the cytoplasmic face of the plasma membrane. Furthermore, HA and NP have been shown to be concentrated in cholesterol-rich membrane raft domains, whereas M2, although containing a cholesterol binding motif, is not raft associated. Here we identify viral proteins in planar sheets of plasma membrane using immunogold staining. The distribution of these proteins was examined individually and pairwise by using the Ripley K function, a type of nearest-neighbor analysis. Individually, HA, NA, M1, M2, and NP were shown to self-associate in or on the plasma membrane. HA and M2 are strongly coclustered in the plasma membrane; however, in the case of NA and M2, clustering depends upon the expression system used. Despite both proteins being raft resident, HA and NA occupy distinct but adjacent membrane domains. M2 and M1 strongly cocluster, but the association of M1 with HA or NA is dependent upon the means of expression. The presence of HA and NP at the site of budding depends upon the coexpression of other viral proteins. Similarly, M2 and NP occupy separate compartments, but an association can be bridged by the coexpression of M1. IMPORTANCE The complement of influenza virus proteins necessary for the budding of progeny virions needs to accumulate at budozones. This is complicated by HA and NA residing in lipid raft-like domains, whereas M2, although an integral membrane protein, is not raft associated. Other necessary protein components such as M1 and NP are peripherally associated with the membrane. Our data define spatial relationships

  3. A new cholesterol biosynthesis and absorption disorder associated with epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration.

    Science.gov (United States)

    Korematsu, Seigo; Uchiyama, Shin-ichi; Honda, Akira; Izumi, Tatsuro

    2014-06-01

    Cholesterol is one of the main components of human cell membranes and constitutes an essential substance in the central nervous system, endocrine system, and its hormones, including sex hormones. A 19-year-old male patient presented with failure to thrive, psychomotor deterioration, intractable epilepsy, hypogonadism, and cerebro-cerebello-bulbar degeneration. His serum level of cholesterol was low, ranging from 78.7 to 116.5 mg/dL. The serum concentrations of intermediates in the cholesterol biosynthesis pathway, such as 7-dehydrocholesterol, 8-dehydrocholesterol, desmosterol, lathosterol, and dihydrolanosterol, were not increased. In addition, the levels of the urinary cholesterol biosynthesis marker mevalonic acid, the serum cholesterol absorption markers, campesterol and sitosterol, and the serum cholesterol catabolism marker, 7α-hydroxycholesterol, were all low. A serum biomarker analysis indicated that the patient's basic abnormality differed from that of Smith-Lemli-Opitz syndrome and other known disorders of cholesterol metabolism. Therefore, this individual may have a new metabolic disorder with hypocholesterolemia because of decreased biosynthesis and absorption of cholesterol. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  5. Rho kinase inhibitor fasudil mitigates high-cholesterol diet-induced hypercholesterolemia and vascular damage.

    Science.gov (United States)

    Abdali, Nibrass Taher; Yaseen, Awny H; Said, Eman; Ibrahim, Tarek M

    2017-04-01

    The current study was designed to investigate the potential beneficial therapeutic outcome of Rho kinase inhibitor (fasudil) against hypercholesterolemia-induced myocardial and vascular injury in rabbits together with diet modification. Sixteen male rabbits were randomly divided into four groups: normal control group which received standard rabbit chow, hypercholesterolemic control group, and treated groups which received cholesterol-rich rabbit chow (1.5% cholesterol) for 8 weeks. Treated groups received either fasudil (100 mg/kg/day) or rosuvastatin (2.5 mg/kg/day) starting from the ninth week for further 4 weeks with interruption of the cholesterol-rich chow. Biochemical assessment of serum cholesterol, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL), and myocardial oxidative/antioxidant biomarkers malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH), besides biochemical assessment of serum nitric oxide (NO), creatine kinase (CK), and lactate dehydrogenase (LDH) activities and serum total antioxidant capacity (TAC), was conducted. Serum vascular cell adhesion molecule 1 (VCAM-1) and serum Rho-associated protein kinase 1 (ROCK-1) were also evaluated along with histopathological examination of aorta specimens. Fasudil administration significantly decreased serum cholesterol, triglyceride (TG), and LDL and significantly increased serum HDL, with concomitant decrease in serum CK and LDH activities, NO, and restoration of serum TAC. Myocardial MDA significantly declined; SOD activity and GSH contents were restored. Serum ROCK-1 and VCAM-1 levels significantly declined as well. Vascular improvement was confirmed with histopathological examination, which revealed normal aortic intema with the absence of atheromas. Fasudil has promising anti-atherogenic activity mediated primarily via alleviation of hypercholesterolemia-induced oxidative stress and modulation of inflammatory response.

  6. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    International Nuclear Information System (INIS)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A

    2008-01-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property

  7. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, R F; Linke, K; Teichert, H; Ehrmann, M A [Technische Universitaet Muenchen, Technische Mikrobiologie, Weihenstephaner Steig 16, 85350 Freising (Germany)], E-mail: rudi.vogel@wzw.tum.de

    2008-07-15

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  8. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    Science.gov (United States)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  9. Impact of Silver and Iron Nanoparticle Exposure on Cholesterol Uptake by Macrophages

    Directory of Open Access Journals (Sweden)

    Jonathan H. Shannahan

    2015-01-01

    Full Text Available Macrophages are central to the development of atherosclerosis by absorbing lipids, promoting inflammation, and increasing plaque deposition. Nanoparticles (NPs are becoming increasingly common in biomedical applications thereby increasing exposure to the immune and vascular systems. This project investigated the influence of NPs on macrophage function and specifically cholesterol uptake. Macrophages were exposed to 20 nm silver NPs (AgNPs, 110 nm AgNPs, or 20 nm Fe3O4 NPs for 2 h and NP uptake, cytotoxicity, and subsequent uptake of fluorescently labeled cholesterol were assessed. Macrophage uptake of NPs did not induce cytotoxicity at concentrations utilized (25 μg/mL; however, macrophage exposure to 20 nm AgNPs reduced subsequent uptake of cholesterol. Further, we assessed the impact of a cholesterol-rich environment on macrophage function following NP exposure. In these sets of experiments, macrophages internalized NPs, exhibited no cytotoxicity, and altered cholesterol uptake. Alterations in the expression of scavenger receptor-B1 following NP exposure, which likely influences cholesterol uptake, were observed. Overall, NPs alter cholesterol uptake, which may have implications in the progression of vascular or immune mediated diseases. Therefore, for the safe development of NPs for biomedical applications, it is necessary to understand their impact on cellular function and biological interactions in underlying disease environments.

  10. Inhibiting cholesterol degradation induces neuronal sclerosis and epileptic activity in mouse hippocampus

    Science.gov (United States)

    Chali, Farah; Djelti, Fathia; Eugene, Emmanuel; Valderrama, Mario; Marquer, Catherine; Aubourg, Patrick; Duykaerts, Charles; Miles, Richard; Cartier, Nathalie; Navarro, Vincent

    2015-01-01

    Elevations in neuronal cholesterol have been associated with several degenerative diseases. An enhanced excitability and synchronous firing in surviving neurons are among the sequels of neuronal death in these diseases and also in some epileptic syndromes. Here, we attempted to increase neuronal cholesterol levels, using a short hairpin RNA (shRNA) to suppress expression of the enzyme CYP46A1. This protein hydroxylates cholesterol and so facilitates trans-membrane extrusion. A sh-RNA CYP46A1construction coupled to an adeno-associated virus (AAV5) was injected focally and unilaterally into mouse hippocampus. It was selectively expressed first in neurons of the CA3a region. Cytoplasmic and membrane cholesterol increased, neuronal soma volume increased and then decreased before pyramidal cells died. As CA3a pyramidal cells died, inter-ictal EEG events occurred during exploration and non-REM sleep. With time, neuronal death spread to involve pyramidal cells and interneurons of the CA1 region. CA1 neuronal death was correlated with a delayed local expression of phosphorylated tau. Astrocytes were activated throughout the hippocampus and microglial activation was specific to regions of neuronal death. CA1 neuronal death was correlated with distinct aberrant EEG activity. During exploratory behaviour and rapid eye movement sleep, EEG oscillations at 7-10 Hz (theta) could accelerate to 14-21 Hz (beta) waves. They were accompanied by low amplitude, high-frequency oscillations of peak power at ~300Hz and a range of 250-350 Hz. While episodes of EEG acceleration were not correlated with changes in exploratory behaviour, they were followed in some animals by structured seizure-like discharges. These data strengthen links between increased cholesterol, neuronal sclerosis and epileptic behavior PMID:25847620

  11. Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor.

    Science.gov (United States)

    Shishkanova, T V; Volf, R; Krondak, M; Král, V

    2007-05-15

    A novel application of a single stranded (ss) oligonucleotide as an active component of polymeric membrane in an ion-selective electrode (ISE) is described. The original oligonucleotides, oligo(dA)(15), modified by cholesterol, triphenylmethyl and hexadecyl derivatives, were immobilized into poly(vinyl chloride) (PVC) membrane using extraction protocol. In parallel, the adsorption protocol was used to immobilize unmodified oligo(dA)(15) on the PVC membrane based on tridodecylmethyammonium chloride (TDDMA(+)Cl(-)). Immobilization of ss oligonucleotide probe through spacer was more effective for the potentiometric detection of the hybridization between complementary oligonucleotides. It was found that cholesterol-oligo(dA)(15) modified membranes were sensitive toward complementary oligo(dT)(15) in the concentration range 2-80 nM at pH 7. An explanation for the detection mechanism is proposed.

  12. Monitoring membrane hydration with 2-(dimethylamino)-6-acylnaphtalenes fluorescent probes

    DEFF Research Database (Denmark)

    Bagatolli, Luis

    2015-01-01

    of LAURDAN and PRODAN are exquisitely sensitive to cholesterol effects, allowing interpretations that correlate changes in membrane packing with membrane hydration. Different membrane model systems as well as innate biological membranes have been studied with this family of probes allowing interesting...... comparative studies. This chapter presents a short historical overview about these fluorescent reporters, discusses on different models proposed to explain their sensitivity to membrane hydration, and includes relevant examples from experiments performed in artificial and biological membranes....

  13. The evolution of violence in men: the function of central cholesterol and serotonin.

    Science.gov (United States)

    Wallner, Bernard; Machatschke, Ivo H

    2009-04-30

    Numerous studies point to central serotonin as an important modulator of maladaptive behaviors. In men, for instance, low concentrations of this neurotransmitter are related to hostile aggression. A key player in serotonin metabolism seems to be central cholesterol. It plays a fundamental role in maintaining the soundness of neuron membranes, especially in the exocytosis transport of serotonin vesicles into the synaptic cleft. In this review, we attempt an evolutionary approach to the neurobiological basis of human male violence. Hominid evolution was shaped by periods of starvation but also by energy demands of an increasingly complex brain. A lack of food resources reduces uptake of glucose and results in a decreased energy-supply for autonomous brain cholesterol synthesis. Consequently, concentrations of neuromembrane cholesterol decrease, which lead to a failure of the presynaptic re-uptake mechanism of serotonin and ultimately to low central serotonin. We propose that starvation might have affected the larger male brains earlier than those of females. Furthermore, this neurophysiological process diminished the threshold for hostile aggression, which in effect represented a prerequisite for being a successful hunter or scavenger. In a Darwinian sense, the odds to acquire reliable energetic resources made those males to attractive spouses in terms of paternal care and mate support. To underpin these mechanisms, a hypothetical four-stage model of synaptic membrane destabilization effected by a prolonged shortage of high-energy, cholesterol-containing food is illustrated.

  14. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts

    Science.gov (United States)

    Xu, Congfeng; Zhang, Yanhui H.; Thangavel, Muthusamy; Richardson, Mekel M.; Liu, Li; Zhou, Bin; Zheng, Yi; Ostrom, Rennolds S.; Zhang, Xin A.

    2009-01-01

    Tetraspanin CD82 suppresses cell migration, tumor invasion, and tumor metastasis. To determine the mechanism by which CD82 inhibits motility, most studies have focused on the cell surface CD82, which forms tetraspanin-enriched microdomains (TEMs) with other transmembrane proteins, such as integrins. In this study, we found that CD82 undergoes endocytosis and traffics to endosomes and lysosomes. To determine the endocytic mechanism of CD82, we demonstrated that dynamin and clathrin are not essential for CD82 internalization. Depletion or sequestration of sterol in the plasma membrane markedly inhibited the endocytosis of CD82. Despite the demand on Cdc42 activity, CD82 endocytosis is distinct from macropinocytosis and the documented dynamin-independent pinocytosis. As a TEM component, CD82 reorganizes TEMs and lipid rafts by redistributing cholesterol into these membrane microdomains. CD82-containing TEMs are characterized by the cholesterol-containing microdomains in the extreme light- and intermediate-density fractions. Moreover, the endocytosis of CD82 appears to alleviate CD82-mediated inhibition of cell migration. Taken together, our studies demonstrate that lipid-dependent endocytosis drives CD82 trafficking to late endosomes and lysosomes, and CD82 reorganizes TEMs and lipid rafts through redistribution of cholesterol.—Xu, C., Zhang, Y. H., Thangavel, M., Richardson, M. M., Liu, L., Zhou, B., Zheng, Y., Ostrom, R. S., Zhang, X. A. CD82 endocytosis and cholesterol-dependent reorganization of tetraspanin webs and lipid rafts. PMID:19497983

  15. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  16. Effect of plasma membrane fluidity on serotonin transport by endothelial cells

    International Nuclear Information System (INIS)

    Block, E.R.; Edwards, D.

    1987-01-01

    To evaluate the effect of plasma membrane fluidity of lung endothelial cells on serotonin transport, porcine pulmonary artery endothelial cells were incubated for 3 h with either 0.1 mM cholesterol hemisuccinate, 0.1 mM cis-vaccenic acid, or vehicle (control), after which plasma membrane fluidity and serotinin transport were measured. Fluorescence spectroscopy was used to measure fluidity in the plasma membrane. Serotonin uptake was calculated from the disappearance of [ 14 C]-serotonin from the culture medium. Cholesterol decreased fluidity in the subpolar head group and central and midacyl side-chain regions of the plasma membrane and decreased serotonin transport, whereas cis-vaccenic acid increased fluidity in the central and midacyl side-chain regions of the plasma membrane and also increased serotonin transport. Cis-vaccenic acid had no effect of fluidity in the subpolar head group region of the plasma membrane. These results provide evidence that the physical state of the central and midacyl chains within the pulmonary artery endothelial cell plasma membrane lipid bilayer modulates transmembrane transport of serotonin by these cells

  17. Differentiation of human keratinocytes: changes in lipid synthesis, plasma membrane lipid composition, and 125I-EGF binding upon administration of 25-hydroxycholesterol and mevinolin

    International Nuclear Information System (INIS)

    Ponec, M.; Kempenaar, J.; Weerheim, A.; Boonstra, J.

    1987-01-01

    We have studied the relationship between differentiation capacity, plasma membrane composition, and epidermal growth factor (EGF) receptor expression of normal keratinocytes in vitro. The plasma membrane composition of the cells was modulated experimentally by cholesterol depletion, using specific inhibitors of cholesterol synthesis, such as 25-hydroxycholesterol and mevinolin. Exposure of the cells towards these inhibitors resulted in a drastic decrease of cholesterol biosynthesis, as determined from 14 C-acetate incorporation into the various lipid fractions. This effect on cholesterol biosynthesis was reflected by changes in plasma membrane composition, as determined by lipid analysis of isolated plasma membrane fractions, these resulting in a decreased cholesterol-phospholipid ratio. The experimental modulation of plasma membrane composition by 25-hydroxycholesterol or mevinolin were accompanied by a decreased cornified envelope formation and by high expression of EGF binding sites. These phenomena were more pronounced in cells induced to differentiate by exposure of cells grown under low Ca2+ to normal Ca2+ concentrations, as compared to cells grown persistently under low Ca2+ concentrations. These results suggest a close correlation between plasma membrane composition, differentiation capacity, and EGF receptor expression

  18. Cholesterol esterification by mouse liver homogenate. Contribution to the study of ACYL-CoA: Cholesterol ACYL transferase in mammalian liver

    International Nuclear Information System (INIS)

    Soares, M.G.C.B.

    1976-01-01

    A cholesterol- esterifying enzyme from mouse liver has been partially characterized. The enzyme which showed optimum activity at pH 7,1 and required ATP and CoA, was identified as an acyl CoA: cholesterol acyl transferase (E.C.2.3.1.26). As a fuction of time the percentage of esterified cholesterol increased linearly during the first hour of incubation and continued to increase but not linearly with 4 hours, after which time no further net esterefication was observed. The relative concentration of esterified cholesterol remained constant between the fourth and twelveth hours of incubation but afterwards decreased when the incubation continued until 24 hours. The cholesterol- esterifying activity was 24,0+- 2,9 nmoles cholesterol esterified per gram tissue wet weight per minute. The mean percentages of free cholesterol esterified in and 24 hours respectively were 14,8+- 1,6 e 21,9+- 4,5. The subfractionation of labelled cholesteryl esters after one hour incubation of liver homogenate with 4-C 14 -Cholesterol showed the order of preference for the formation of the different ester classes to be monounsatured > diunsatured ≥ saturated >> polyunsaturated. The properties of the enzyme frommouse liver do not markedly differ from those of the previously recorded ACAT activity of rat liver. (Author) [pt

  19. Multifaceted Roles of ALG-2 in Ca2+-Regulated Membrane Trafficking

    Directory of Open Access Journals (Sweden)

    Masatoshi Maki

    2016-08-01

    Full Text Available ALG-2 (gene name: PDCD6 is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate directly or indirectly with the plasma membrane or organelle membranes involving the endosomal sorting complex required for transport (ESCRT system, coat protein complex II (COPII-dependent ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2 dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the subnetwork of interacting proteins.

  20. The cholesterol space of the rat; L'espace cholesterol du rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The experiments consisted in feeding daily to rats the same mass of radioactive cholesterol, over variable time intervals. From the evolution of the specific radioactivity of cholesterol carbon-14 in the organs as a function of time, information relative to the transport of cholesterol in the organism may be obtained. 1) The cholesterol space, defined as the group of molecules capable of being transferred from the organs into the serum and vice versa, represents at the most 50 per cent of the total cholesterol of the adult rat. 2) The incessant interchange between the tissual and the serum cholesterol renews entirely or for the most part the cholesterol molecules contained in the following organs: spleen, heart, adipose tissue, suprarenal glands, lungs, bone marrow, liver, erythrocytes. For a second group of organs: skin, testicles, kidneys, colon, bones, muscles, only a fraction of their cholesterol is renewable by this process. No transfer can be detected at the level of the brain. 3) The relative speeds of the various means of appearance (absorption, synthesis) and disappearance (excretion, transformation) of the cholesterol from its space are such that a stationary isotopic state is established around the eighth day, when the animal absorbs 5 milligrams of radioactive cholesterol daily. (author) [French] Les experiences ont consiste a faire ingerer quotidiennement une meme masse de cholesterol radioactif a des rats, durant des laps de temps variables. L'evolution de la radioactivite specifique du carbone-14 du cholesterol des organes en fonction du temps permet d'obtenir des renseignements relatifs au transport du cholesterol dans l'organisme. 1) L'espace cholesterol defini comme l'ensemble des molecules susceptibles d'etre transferees des organes dans le serum, et vice-versa, represente au plus 50 pour cent du cholesterol total du rat adulte. 2) Le va et vient incessant entre le cholesterol tissulaire et le cholesterol serique renouvelle en totalite ou en

  1. Significance of sterol structural specificity : desmosterol cannot replace cholesterol in lipid rafts

    NARCIS (Netherlands)

    Vainio, S.; Jansen, Maurice; Koivusalo, M.; Róg, T.; Karttunen, M.E.J.; Vattulainen, I.; Ikonen, E.

    2006-01-01

    Desmosterol is an immediate precursor of cholesterol in the Bloch pathway of sterol synthesis and an abundant membrane lipid in specific cell types. The significance of the difference between the two sterols, an additional double bond at position C24 in the tail of desmosterol, is not known. Here,

  2. Effects of a diet rich in arabinoxylan and resistant starch compared with a diet rich in refined carbohydrates on postprandial metabolism and features of the metabolic syndrome.

    Science.gov (United States)

    Schioldan, Anne Grethe; Gregersen, Søren; Hald, Stine; Bjørnshave, Ann; Bohl, Mette; Hartmann, Bolette; Holst, Jens Juul; Stødkilde-Jørgensen, Hans; Hermansen, Kjeld

    2018-03-01

    Low intake of dietary fibre is associated with the development of type 2 diabetes. Dyslipidaemia plays a key role in the pathogenesis of type 2 diabetes. Knowledge of the impact of dietary fibres on postprandial lipaemia is, however, sparse. This study aimed in subjects with metabolic syndrome to assess the impact on postprandial lipaemia and features of the metabolic syndrome of a healthy carbohydrate diet (HCD) rich in cereal fibre, arabinoxylan and resistant starch compared to a refined-carbohydrate western-style diet (WSD). Nineteen subjects completed the randomised, crossover study with HCD and WCD for 4-week. Postprandial metabolism was evaluated by a meal-challenge test and insulin sensitivity was assessed by HOMA-IR and Matsuda index. Furthermore, fasting cholesterols, serum-fructosamine, circulating inflammatory markers, ambulatory blood pressure and intrahepatic lipid content were measured. We found no diet effects on postprandial lipaemia. However, there was a significant diet × statin interaction on total cholesterol (P = 0.02) and LDL cholesterol (P = 0.002). HCD decreased total cholesterol (-0.72 mmol/l, 95% CI (-1.29; -0.14) P = 0.03) and LDL cholesterol (-0.61 mmol/l, 95% CI (-0.86; -0.36) P = 0.002) compared with WSD in subjects on but not without statin treatment. We detected no other significant diet effects. In subjects with metabolic syndrome on statins a 4-week diet rich in arabinoxylan and resistant starch improved fasting LDL and total cholesterol compared to subjects not being on statins. However, we observed no diet related impact on postprandial lipaemia or features of the metabolic syndrome. The dietary fibre x statin interaction deserves further elucidation.

  3. Diffusion mediated coagulation and fragmentation based study of domain formation in lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Laxminarsimha V., E-mail: laxman@iitk.ac.in [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roy, Subhradeep [Department of Biomedical Engineering and Mechanics (MC 0219), Virginia Tech, 495 Old Turner Street, Blacksburg, VA 24061 (United States); Das, Sovan Lal [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-15

    We estimate the equilibrium size distribution of cholesterol rich micro-domains on a lipid bilayer by solving Smoluchowski equation for coagulation and fragmentation. Towards this aim, we first derive the coagulation kernels based on the diffusion behaviour of domains moving in a two dimensional membrane sheet, as this represents the reality better. We incorporate three different diffusion scenarios of domain diffusion into our coagulation kernel. Subsequently, we investigate the influence of the parameters in our model on the coagulation and fragmentation behaviour. The observed behaviours of the coagulation and fragmentation kernels are also manifested in the equilibrium domain size distribution and its first moment. Finally, considering the liquid domains diffusing in a supported lipid bilayer, we fit the equilibrium domain size distribution to a benchmark solution.

  4. Construction of a catalytically inactive cholesterol oxidase mutant: investigation of the interplay between active site-residues glutamate 361 and histidine 447.

    Science.gov (United States)

    Yin, Ye; Liu, Pingsheng; Anderson, Richard G W; Sampson, Nicole S

    2002-06-15

    Cholesterol oxidase catalyzes the oxidation of cholesterol to cholest-5-en-3-one and its subsequent isomerization into cholest-4-en-3-one. Two active-site residues, His447 and Glu361, are important for catalyzing the oxidation and isomerization reactions, respectively. Double-mutants were constructed to test the interplay between these residues in catalysis. We observed that the k(cat) of oxidation for the H447Q/E361Q mutant was 3-fold less than that for H447Q and that the k(cat) of oxidation for the H447E/E361Q mutant was 10-fold slower than that for H447E. Because both doubles-mutants do not have a carboxylate at position 361, they do not catalyze isomerization of the reaction intermediate cholest-5-en-3-one to cholest-4-en-3-one. These results suggest that Glu361 can compensate for the loss of histidine at position 447 by acting as a general base catalyst for oxidation of cholesterol. Importantly, the construction of the double-mutant H447E/E361Q yields an enzyme that is 31,000-fold slower than wild type in k(cat) for oxidation. The H447E/E361Q mutant is folded like native enzyme and still associates with model membranes. Thus, this mutant may be used to study the effects of membrane binding in the absence of catalytic activity. It is demonstrated that in assays with caveolae membrane fractions, the wild-type enzyme uncouples platelet-derived growth factor receptor beta (PDGFRbeta) autophosphorylation from tyrosine phosphorylation of neighboring proteins, and the H447E/E361Q mutant does not. Thus maintenance of membrane structure by cholesterol is important for PDGFRbeta-mediated signaling. The cholesterol oxidase mutant probe described will be generally useful for investigating the role of membrane structure in signal transduction pathways in addition to the PDGFRbeta-dependent pathway tested.

  5. Break the fast? Update on patient preparation for cholesterol testing.

    Science.gov (United States)

    Naugler, Christopher; Sidhu, Davinder

    2014-10-01

    To provide an update on the clinical usefulness of nonfasting versus fasting lipid testing to improve patient compliance, patient safety, and clinical assessment in cholesterol testing. Recommendations are identified as supported by good, fair, and poor (conflicting or insufficient) evidence, according to the classifications adopted by the Canadian Task Force on Preventive Health Care. Screening for dyslipidemia as a risk factor for coronary artery disease and management of lipid-lowering medications are key parts of primary care. Recent evidence has questioned the fasting requirement for lipid testing. In population-based studies, total cholesterol, high-density lipoprotein cholesterol, and non-low-density lipoprotein cholesterol all varied by an average of 2% with fasting status. For routine screening, nonfasting cholesterol measurement is now a reasonable alternative to a fasting cholesterol measurement. For patients with diabetes, the fasting requirement might be an important safety issue because of problems with hypoglycemia. For the monitoring of triglyceride and low-density lipoprotein cholesterol levels in patients taking lipid-lowering medications, fasting becomes more important. Fasting for routine lipid level determinations is largely unnecessary and unlikely to affect patient clinical risk stratification, while nonfasting measurement might improve patient compliance and safety. Copyright© the College of Family Physicians of Canada.

  6. Lycopene from two food sources does not affect antioxidant or cholesterol status of middle-aged adults

    Directory of Open Access Journals (Sweden)

    Baker RA

    2004-09-01

    Full Text Available Abstract Background Epidemiological studies have reported associations between reduced cardiovascular disease and diets rich in tomato and/or lycopene. Intervention studies have shown that lycopene-containing foods may reduce cholesterol levels and lipid peroxidation, factors implicated in the initiation of cardiovascular disease. The objective of this study was to determine whether consumption of lycopene rich foods conferred cardiovascular protection to middle-aged adults as indicated by plasma lipid concentrations and measures of ex vivo antioxidants. Methods Ten healthy men and women consumed a low lycopene diet with no added lycopene (control treatment or supplemented with watermelon or tomato juice each containing 20 mg lycopene. Subjects consumed each treatment for three weeks in a crossover design. Plasma, collected weekly was analyzed for total cholesterol, high density lipoprotein cholesterol (HDL-C and triglyceride concentrations and for the antioxidant biomarkers of malondialdehyde formation products (MDA, plasma glutathione peroxidase (GPX and ferric reducing ability of plasma (FRAP. Data were analyzed using Proc Mixed Procedure and associations between antioxidant and lipid measures were identified by Pearson's product moment correlation analysis. Results Compared to the control diet, the lycopene-containing foods did not affect plasma lipid concentrations or antioxidant biomarkers. Women had higher total cholesterol, HDL-C and triglyceride concentrations than did the men. Total cholesterol was positively correlated to MDA and FRAP while HDL-C was positively correlated to MDA and GPX. GPX was negatively correlated to triglyceride concentration. Conclusions The inclusion of watermelon or tomato juice containing 20 mg lycopene did not affect plasma lipid concentrations or antioxidant status of healthy subjects. However, plasma cholesterol levels impacted the results of MDA and FRAP antioxidant tests.

  7. Lycopene from two food sources does not affect antioxidant or cholesterol status of middle-aged adults.

    Science.gov (United States)

    Collins, J K; Arjmandi, B H; Claypool, P L; Perkins-Veazie, P; Baker, R A; Clevidence, B A

    2004-09-15

    Epidemiological studies have reported associations between reduced cardiovascular disease and diets rich in tomato and/or lycopene. Intervention studies have shown that lycopene-containing foods may reduce cholesterol levels and lipid peroxidation, factors implicated in the initiation of cardiovascular disease. The objective of this study was to determine whether consumption of lycopene rich foods conferred cardiovascular protection to middle-aged adults as indicated by plasma lipid concentrations and measures of ex vivo antioxidants. Ten healthy men and women consumed a low lycopene diet with no added lycopene (control treatment) or supplemented with watermelon or tomato juice each containing 20 mg lycopene. Subjects consumed each treatment for three weeks in a crossover design. Plasma, collected weekly was analyzed for total cholesterol, high density lipoprotein cholesterol (HDL-C) and triglyceride concentrations and for the antioxidant biomarkers of malondialdehyde formation products (MDA), plasma glutathione peroxidase (GPX) and ferric reducing ability of plasma (FRAP). Data were analyzed using Proc Mixed Procedure and associations between antioxidant and lipid measures were identified by Pearson's product moment correlation analysis. Compared to the control diet, the lycopene-containing foods did not affect plasma lipid concentrations or antioxidant biomarkers. Women had higher total cholesterol, HDL-C and triglyceride concentrations than did the men. Total cholesterol was positively correlated to MDA and FRAP while HDL-C was positively correlated to MDA and GPX. GPX was negatively correlated to triglyceride concentration. The inclusion of watermelon or tomato juice containing 20 mg lycopene did not affect plasma lipid concentrations or antioxidant status of healthy subjects. However, plasma cholesterol levels impacted the results of MDA and FRAP antioxidant tests.

  8. Superiority of dietary safflower oil over olive oil in lowering serum cholesterol and increasing hepatic mRnas for the LDL receptor and cholesterol 7alpha-hydroxylase in exogenously hypercholesterolemic (exHC) rats.

    Science.gov (United States)

    Sato, M; Yoshida, S; Nagao, K; Imaizumi, K

    2000-06-01

    The exogenously hypercholesterolemic (ExHC) rat is a strain segregated from SD rats with a high response to dietary cholesterol. To understand the underlying mechanism(s) for this hypercholesterolemia, the interactive effects of dietary fatty acid and the susceptibility of rats to dietary cholesterol on the serum cholesterol concentration and hepatic mRNA abundance of the low-density lipoprotein (LDL) receptor, cholesterol 7alpha-hydroxylase (7alpha-hydroxylase) and 3-hydroxyl-3methylglutaryl (HMG) CoA reductase were examined. Both strains were fed on a diet supplemented with 10% each of olive, safflower or coconut oil with or without the addition of 1% cholesterol for one week. The ExHC rats fed on olive, safflower and coconut oil in combination with cholesterol respectively resulted in a 3.5-, 2.0- and 2.1-fold higher serum cholesterol concentration than that in the animals fed on the corresponding dietary fats without any supplementation of cholesterol (p safflower oil-containing diet supplemented with cholesterol resulted in a higher mRNA abundance of the LDL receptor and 7alpha-hydroxylase than in the corresponding fat-fed rats without cholesterol (p<0.05). There was no dietary cholesterol-dependent change of mRNA abundance in either strain fed on olive or coconut oil, except for a decreased abundance of HMG CoA reductase mRNA in the olive oil-fed ExHC rats and coconut oil-fed Sprague-Dawley (SD) rats (p<0.05). These results indicate that the hepatic mRNA abundance of the LDL receptor and of 7alpha-hydroxylase depended on the dietary combination of cholesterol and a fatty acid and suggest that a linoleic acid-rich diet may alleviate exogenous hypercholesterolemia by activating the process involved in the hepatic uptake and biliary excretion of serum cholesterol.

  9. The mevalonate pathway in neurons: It's not just about cholesterol.

    Science.gov (United States)

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cholesterol loaded cyclodextrin increases freezability of buffalo bull (Bubalus bubalis spermatozoa by increasing cholesterol to phospholipid ratio

    Directory of Open Access Journals (Sweden)

    J. S. Rajoriya

    2014-09-01

    Full Text Available Aim: The study was conducted to investigate the effect of cholesterol loaded cyclodextrin (CLC on freezability of buffalo spermatozoa. Materials and Methods: Murrah buffalo bull semen samples with progressive motility of 70% and greater were used. After the evaluation of motility and livability, four equal fractions of semen samples were made. Group I was kept as control and diluted with Tris, whereas Group II, III and IV were treated with CLC solution at the rate of 2.0, 3.0 and 4.0 mg/ml respectively to obtain 120 × 106 sperm/ml as final spermatozoa concentration. The aliquots of all the groups were incubated for action of CLC, followed by dilution and freezing. Evaluation at pre-freeze and post-thaw stage of progressive motility, viability and level of cholesterol and phospholipid was done. Results: The mean cholesterol content (μg/100 × 106 spermatozoa of Group I, II, III and IV at pre-freeze stage was 21.55±0.63, 49.56±1.38, 55.67±0.45 and 47.79±1.01 and at post-thaw stage were 13.18±0.45, 34.27±0.71, 36.21±0.48 and 33.68±0.56, respectively. At pre-freeze stage, cholesterol content was significantly (p<0.01 higher in Group III in comparison to other groups. The mean cholesterol and phospholipids content of fresh sperm was 24.14±0.58 and 51.13±0.66 μg/100 × 106 sperm cells, respectively, and C/P ratio of spermatozoa at fresh stage was 0.47±0.067. Conclusion: CLC treatment maintains the C/P ratio and plays an important role in maintaining membrane architecture of spermatozoa. Hence, addition of CLC may be helpful in increasing freezability of buffalo spermatozoa by increasing the C/P ratio of spermatozoa.

  11. Domains of increased thickness in microvillar membranes of the small intestinal enterocyte

    DEFF Research Database (Denmark)

    Kunding, Andreas H; Christensen, Sune M; Danielsen, E Michael

    2010-01-01

    The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role in orchestr......The apical surface of the enterocyte is sculpted into a dense array of cylindrical microvillar protrusions by supporting actin filaments. Membrane microdomains (rafts) enriched in cholesterol and glycosphingolipids comprise roughly 50% of the microvillar membrane and play a vital role...... in orchestrating absorptive/digestive action of dietary nutrients at this important cellular interface. Increased membrane thickness is believed to be a morphological characteristic of rafts. Thus, we investigated whether the high contents of lipid rafts in the microvillar membrane is reflected in local variations...... was clearly monophasic. The encountered domains of increased thickness (DITs) occupied 48% of the microvillar membrane and from the data we estimated the area of a single DIT to have a lower limit of 600 nm(2). In other experiments we mapped the organization of biochemically defined lipid rafts by immunogold...

  12. Pharmacological blockade of cholesterol trafficking by cepharanthine in endothelial cells suppresses angiogenesis and tumor growth.

    Science.gov (United States)

    Lyu, Junfang; Yang, Eun Ju; Head, Sarah A; Ai, Nana; Zhang, Baoyuan; Wu, Changjie; Li, Ruo-Jing; Liu, Yifan; Yang, Chen; Dang, Yongjun; Kwon, Ho Jeong; Ge, Wei; Liu, Jun O; Shim, Joong Sup

    2017-11-28

    Cholesterol is an important modulator of membrane protein function and signaling in endothelial cells, thus making it an emerging target for anti-angiogenic agents. In this study, we employed a phenotypic screen that detects intracellular cholesterol distribution in endothelial cells (HUVEC) and identified 13 existing drugs as cholesterol trafficking inhibitors. Cepharanthine, an approved drug for anti-inflammatory and cancer management use, was amongst the candidates, which was selected for in-depth mechanistic studies to link cholesterol trafficking and angiogenesis. Cepharanthine inhibited the endolysosomal trafficking of free-cholesterol and low-density lipoprotein in HUVEC by binding to Niemann-Pick disease, type C1 (NPC1) protein and increasing the lysosomal pH. The blockade of cholesterol trafficking led to a cholesterol-dependent dissociation of mTOR from the lysosomes and inhibition of its downstream signaling. Cepharanthine inhibited angiogenesis in HUVEC and in zebrafish in a cholesterol-dependent manner. Furthermore, cepharanthine suppressed tumor growth in vivo by inhibiting angiogenesis and it enhanced the antitumor activity of the standard chemotherapy cisplatin in lung and breast cancer xenografts in mice. Altogether, these results strongly support the idea that cholesterol trafficking is a viable drug target for anti-angiogenesis and that the inhibitors identified among existing drugs, such as cepharanthine, could be potential anti-angiogenic and antitumor agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The contribution of cholesterol and epigenetic changes to the pathophysiology of breast cancer.

    Science.gov (United States)

    Munir, Maliha T; Ponce, Christopher; Powell, Catherine A; Tarafdar, Kaiser; Yanagita, Teru; Choudhury, Mahua; Gollahon, Lauren S; Rahman, Shaikh M

    2018-05-04

    Breast cancer is one of the most commonly diagnosed cancers in women. Accumulating evidence suggests that cholesterol plays an important role in the development of breast cancer. Even though the mechanistic link between these two factors is not well understood, one possibility is that dysregulated cholesterol metabolism may affect lipid raft and membrane fluidity and can promote tumor development. Current studies have shown oxysterol 27-hydroxycholesterol (27-HC) as a critical regulator of cholesterol and breast cancer pathogenesis. This is supported by the significantly higher expression of CYP27A1 (cytochrome P450, family 27, subfamily A, polypeptide 1) in breast cancers. This enzyme is responsible for 27-HC synthesis from cholesterol. It has been shown that 27-HC can not only increase the proliferation of estrogen receptor (ER)-positive breast cancer cells but also stimulate tumor growth and metastasis in several breast cancer models. This phenomenon is surprising since 27-HC and other oxysterols generally reduce intracellular cholesterol levels by activating the liver X receptors (LXRs). Resolving this paradox will elucidate molecular pathways by which cholesterol, ER, and LXR are connected to breast cancer. These findings will also provide the rationale for evaluating pharmaceutical approaches that manipulate cholesterol or 27-HC synthesis in order to mitigate the impact of cholesterol on breast cancer pathophysiology. In addition to cholesterol, epigenetic changes including non-coding RNAs, and microRNAs, DNA methylation, and histone modifications, have all been shown to control tumorigenesis. The purpose of this review is to discuss the link between altered cholesterol metabolism and epigenetic modification during breast cancer progression. Copyright © 2018. Published by Elsevier Ltd.

  14. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Curtis, Lawrence R.

    2008-01-01

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [ 14 C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [ 14 C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [ 14 C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [ 14 C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [ 14 C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [ 14 C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism

  15. Chlordecone altered hepatic disposition of [14C]cholesterol and plasma cholesterol distribution but not SR-BI or ABCG8 proteins in livers of C57BL/6 mice.

    Science.gov (United States)

    Lee, Junga; Scheri, Richard C; Curtis, Lawrence R

    2008-06-15

    Organochlorine (OC) insecticides continue to occur in tissues of humans and wildlife throughout the world although they were banned in the United States a few decades ago. Low doses of the OC insecticide chlordecone (CD) alter hepatic disposition of lipophilic xenobiotics and perturb lipid homeostasis in rainbow trout, mice and rats. CD pretreatment altered tissue and hepatic subcellular distribution of exogenous [(14)C]cholesterol (CH) equivalents 4 and 16 h after a bolus intraperitoneal (ip) injection of 5 ml corn oil/kg that contained 10 mg CH/kg. CD pretreatment altered tissue distribution of exogenously administered [(14)C]CH by decreased hepatic and renal accumulation, and increased biliary excretion up to 300%. Biliary excretion of polar [(14)C]CH metabolites was not altered by CD. CD pretreatment decreased subcellular distribution of [(14)C]CH equivalents in hepatic cytosol and microsomes and lipoprotein-rich fraction-to-homogenate ratio. CD pretreatment increased the ratio of [(14)C]CH equivalents in high density lipoprotein (HDL) to that in plasma and reduced [(14)C]CH equivalents in the non-HDL fraction 4 h after a bolus lipid dose. CD pretreatment increased plasma non-HDL total CH by 80% 4 h after a bolus lipid dose. Scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter G8 (ABCG8) proteins were quantified by western blotting in hepatic membranes from control and CD treated mice. Liver membrane contents of SR-BI and ABCG8 proteins were unchanged by CD pretreatment. The data demonstrated that a single dose of CD altered CH homeostasis and lipoprotein metabolism.

  16. Ancient Systems of Sodium/Potassium Homeostasis as Predecessors of Membrane Bioenergetics.

    Science.gov (United States)

    Dibrova, D V; Galperin, M Y; Koonin, E V; Mulkidjanian, A Y

    2015-05-01

    Cell cytoplasm of archaea, bacteria, and eukaryotes contains substantially more potassium than sodium, and potassium cations are specifically required for many key cellular processes, including protein synthesis. This distinct ionic composition and requirements have been attributed to the emergence of the first cells in potassium-rich habitats. Different, albeit complementary, scenarios have been proposed for the primordial potassium-rich environments based on experimental data and theoretical considerations. Specifically, building on the observation that potassium prevails over sodium in the vapor of inland geothermal systems, we have argued that the first cells could emerge in the pools and puddles at the periphery of primordial anoxic geothermal fields, where the elementary composition of the condensed vapor would resemble the internal milieu of modern cells. Marine and freshwater environments generally contain more sodium than potassium. Therefore, to invade such environments, while maintaining excess of potassium over sodium in the cytoplasm, primordial cells needed means to extrude sodium ions. The foray into new, sodium-rich habitats was the likely driving force behind the evolution of diverse redox-, light-, chemically-, or osmotically-dependent sodium export pumps and the increase of membrane tightness. Here we present a scenario that details how the interplay between several, initially independent sodium pumps might have triggered the evolution of sodium-dependent membrane bioenergetics, followed by the separate emergence of the proton-dependent bioenergetics in archaea and bacteria. We also discuss the development of systems that utilize the sodium/potassium gradient across the cell membranes.

  17. Dysfunction of pulmonary surfactant mediated by phospholipid oxidation is cholesterol-dependent.

    Science.gov (United States)

    Al-Saiedy, Mustafa; Pratt, Ryan; Lai, Patrick; Kerek, Evan; Joyce, Heidi; Prenner, Elmar; Green, Francis; Ling, Chang-Chun; Veldhuizen, Ruud; Ghandorah, Salim; Amrein, Matthias

    2018-04-01

    Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5-10%). Surface activity was assessed in vitro in a captive bubble surfactometer (CBS). Surfactant chemistry, monolayer fluidity and thermodynamic behavior were also recorded before and after oxidation. We report that physiologic amounts of cholesterol combined with oxidation results in severe impairment of surfactant function. We also show that surfactant polyunsaturated phospholipids are the most susceptible to oxidative alteration. Membrane thermodynamic experiments showed significant surfactant film stiffening after free radical exposure in the presence of cholesterol. These results point to a previously unappreciated role for cholesterol in amplifying defects in surface activity caused by oxidation of pulmonary surfactant, a finding that may have implications for treating several lung diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Cholesterol testing and results

    Science.gov (United States)

    ... your cholesterol is in this normal range. LDL (Bad) Cholesterol LDL cholesterol is sometimes called "bad" cholesterol. ... to 3.3 mmol/l) are desired. VLDL (Bad) Cholesterol VLDL contains the highest amount of triglycerides. ...

  19. Cholesterol Facts and Statistics

    Science.gov (United States)

    ... Managing High Cholesterol Cholesterol-lowering Medicine High Cholesterol Statistics and Maps High Cholesterol Facts High Cholesterol Maps ... Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart ...

  20. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate lysosomal sphingolipid catabolism.

    Science.gov (United States)

    Sandhoff, Konrad

    2016-11-01

    Glycosphingolipids and sphingolipids of cellular plasma membranes (PMs) reach luminal intra-lysosomal vesicles (LVs) for degradation mainly by pathways of endocytosis. After a sorting and maturation process (e.g. degradation of sphingomyelin (SM) and secretion of cholesterol), sphingolipids of the LVs are digested by soluble enzymes with the help of activator (lipid binding and transfer) proteins. Inherited defects of lipid-cleaving enzymes and lipid binding and transfer proteins cause manifold and fatal, often neurodegenerative diseases. The review summarizes recent findings on the regulation of sphingolipid catabolism and cholesterol secretion from the endosomal compartment by lipid modifiers, an essential stimulation by anionic membrane lipids and an inhibition of crucial steps by cholesterol and SM. Reconstitution experiments in the presence of all proteins needed, hydrolase and activator proteins, reveal an up to 10-fold increase of ganglioside catabolism just by the incorporation of anionic lipids into the ganglioside carrying membranes, whereas an additional incorporation of cholesterol inhibits GM2 catabolism substantially. It is suggested that lipid and other low molecular modifiers affect the genotype-phenotype relationship observed in patients with lysosomal diseases. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Cholesterol overload impairing cerebellar function: the promise of natural products.

    Science.gov (United States)

    El-Sayyad, Hassan I H

    2015-05-01

    The cerebellum is the part of the brain most involved in controlling motor and cognitive function. The surface becomes convoluted, forming folia that have a characteristic internal structure of three layers including molecular, Purkinje cell, and granular layer. This complex neural network gives rise to a massive signal-processing capability. Cholesterol is a major constituent, derived by de novo synthesis and the blood-brain barrier. Cholesterol is tightly regulated between neurons and glia-that is, astrocytes, microglia, and oligodendrocytes-and is essential for normal brain development. The axon is wrapped by myelin (cholesterol, phospholipids, and glycosphingolipids) and made up of membranes of oligodendrocytes, separated by periodic gaps in the myelin sheath, called nodes of Ranvier. Hypercholesterolemia is associated with increased oxidative stress and the development of neurotoxicity and Alzheimer's disease. Treatment with natural products has been found to support improved brain function and reduce low-density-lipoprotein cholesterol level. Fish oil is one such product; among the many plant products are: Morus alba leaves, fruit, and bark; pomegranate fruit and peel; Barley β - glucans; date palm; and Allium sativum. The therapeutic potential was discussed in relation with the antilipidemic drugs, statins (HMG-CoA reductase inhibitors). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. FEL induced molecular operation on cultured fibroblast and cholesterol ester

    International Nuclear Information System (INIS)

    Awazu, Kunio; Ogino, Seiji; Nishimura, Eiichi; Tomimasu, Takio; Yasumoto, Masato.

    1997-01-01

    Free Electron Lasers can be used to molecular operation such as the delivery of a number of molecules into cells or the separation of cholesterol ester. First, cultured NIH3T3 cells are exposed to high-intensity short pulse Free Electron Laser (FEL). The FEL is tuned to an absorption maximum wavelength, 6.1 μm, which was measured by microscopic FTIR. A fluorescence dye in the cell suspension is more absorbed into the cell with the FEL exposure due to the FEL-induced mechanical stress to the cell membrane. A quantitative fluorescence microscopy is used to determine the efficiency of delivery. Second, as a compound in a lipid cell, cholesterol ester was exposed to 5.75 μm FEL. FTIR measurement was done to evaluate the modification of the cholesterol ester. The result showed that the fluorescence intensity of sample cells were higher than that of control cells, and there was significant difference between the control and the sample group. Blebbing and the colony formation of the cells were observed for cells with mechanical stress. As for the cholesterol ester, it can be modified by the FEL irradiation. These results showed that FEL can be used as a molecular operational tool by photo-chemical and photo-mechanical interaction. (author)

  3. [Germ cell membrane lipids in spermatogenesis].

    Science.gov (United States)

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  4. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    Science.gov (United States)

    Chapman, M. John; Ginsberg, Henry N.; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L.; Descamps, Olivier S.; Fisher, Edward; Kovanen, Petri T.; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G.; Ray, Kausik K.; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F.

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic studies for TRL and remnants, together with the epidemiological data suggestive of the association for circulating triglycerides and cardiovascular disease. For HDL, epidemiological, mechanistic, and clinical intervention data are consistent with the view that low HDL-C contributes to elevated cardiovascular risk; genetic evidence is unclear however, potentially reflecting the complexity of HDL metabolism. The Panel believes that therapeutic targeting of elevated triglycerides (≥1.7 mmol/L or 150 mg/dL), a marker of TRL and their remnants, and/or low HDL-C (<1.0 mmol/L or 40 mg/dL) may provide further benefit. The first step should be lifestyle interventions together with consideration of compliance with pharmacotherapy and secondary causes of dyslipidaemia. If inadequately corrected, adding niacin or a fibrate, or intensifying LDL-C lowering therapy may be considered. Treatment decisions regarding statin combination therapy should take into account relevant safety concerns, i.e. the risk of elevation of blood glucose, uric acid or liver enzymes with niacin, and myopathy, increased serum creatinine and cholelithiasis with fibrates. These recommendations will facilitate reduction in the substantial cardiovascular risk that persists in patients with cardiometabolic abnormalities at LDL-C goal. PMID:21531743

  5. Increased Hepatic Expression of Endothelial Lipase Inhibits Cholesterol Diet-Induced Hypercholesterolemia and Atherosclerosis in Transgenic Rabbits.

    Science.gov (United States)

    Wang, Chuan; Nishijima, Kazutoshi; Kitajima, Shuji; Niimi, Manabu; Yan, Haizhao; Chen, Yajie; Ning, Bo; Matsuhisa, Fumikazu; Liu, Enqi; Zhang, Jifeng; Chen, Y Eugene; Fan, Jianglin

    2017-07-01

    Endothelial lipase (EL) is a key determinant in plasma high-density lipoprotein-cholesterol. However, functional roles of EL on the development of atherosclerosis have not been clarified. We investigated whether hepatic expression of EL affects plasma lipoprotein metabolism and cholesterol diet-induced atherosclerosis. We generated transgenic (Tg) rabbits expressing the human EL gene in the liver and then examined the effects of EL expression on plasma lipids and lipoproteins and compared the susceptibility of Tg rabbits with cholesterol diet-induced atherosclerosis with non-Tg littermates. On a chow diet, hepatic expression of human EL in Tg rabbits led to remarkable reductions in plasma levels of total cholesterol, phospholipids, and high-density lipoprotein-cholesterol compared with non-Tg controls. On a cholesterol-rich diet for 16 weeks, Tg rabbits exhibited significantly lower hypercholesterolemia and less atherosclerosis than non-Tg littermates. In Tg rabbits, gross lesion area of aortic atherosclerosis was reduced by 52%, and the lesions were characterized by fewer macrophages and smooth muscle cells compared with non-Tg littermates. Increased hepatic expression of EL attenuates cholesterol diet-induced hypercholesterolemia and protects against atherosclerosis. © 2017 American Heart Association, Inc.

  6. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    International Nuclear Information System (INIS)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S.

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with [ 14 C]sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans

  7. Will Invertebrates Require Increasingly Carbon-Rich Food in a Warming World?

    Science.gov (United States)

    Anderson, Thomas R; Hessen, Dag O; Boersma, Maarten; Urabe, Jotaro; Mayor, Daniel J

    2017-12-01

    Elevated temperature causes metabolism and respiration to increase in poikilothermic organisms. We hypothesized that invertebrate consumers will therefore require increasingly carbon-rich diets in a warming environment because the increased energetic demands are primarily met using compounds rich in carbon, that is, carbohydrates and lipids. Here, we test this hypothesis using a new stoichiometric model that has carbon (C) and nitrogen (N) as currencies. Model predictions did not support the hypothesis, indicating instead that the nutritional requirements of invertebrates, at least in terms of food quality expressed as C∶N ratio, may change little, if at all, at elevated temperature. Two factors contribute to this conclusion. First, invertebrates facing limitation by nutrient elements such as N have, by default, excess C in their food that can be used to meet the increased demand for energy in a warming environment, without recourse to extra dietary C. Second, increased feeding at elevated temperature compensates for the extra demands of metabolism to the extent that, when metabolism and intake scale equally with temperature (have the same Q 10 ), the relative requirement for dietary C and N remains unaltered. Our analysis demonstrates that future climate-driven increases in the C∶N ratios of autotroph biomass will likely exacerbate the stoichiometric mismatch between nutrient-limited invertebrate grazers and their food, with important consequences for C sequestration and nutrient cycling in ecosystems.

  8. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  9. Activation of Endothelial Nitric Oxide (eNOS Occurs through Different Membrane Domains in Endothelial Cells.

    Directory of Open Access Journals (Sweden)

    Jason Tran

    Full Text Available Endothelial cells respond to a large range of stimuli including circulating lipoproteins, growth factors and changes in haemodynamic mechanical forces to regulate the activity of endothelial nitric oxide synthase (eNOS and maintain blood pressure. While many signalling pathways have been mapped, the identities of membrane domains through which these signals are transmitted are less well characterized. Here, we manipulated bovine aortic endothelial cells (BAEC with cholesterol and the oxysterol 7-ketocholesterol (7KC. Using a range of microscopy techniques including confocal, 2-photon, super-resolution and electron microscopy, we found that sterol enrichment had differential effects on eNOS and caveolin-1 (Cav1 colocalisation, membrane order of the plasma membrane, caveolae numbers and Cav1 clustering. We found a correlation between cholesterol-induced condensation of the plasma membrane and enhanced high density lipoprotein (HDL-induced eNOS activity and phosphorylation suggesting that cholesterol domains, but not individual caveolae, mediate HDL stimulation of eNOS. Vascular endothelial growth factor (VEGF-induced and shear stress-induced eNOS activity was relatively independent of membrane order and may be predominantly controlled by the number of caveolae on the cell surface. Taken together, our data suggest that signals that activate and phosphorylate eNOS are transmitted through distinct membrane domains in endothelial cells.

  10. Palmitoylation of POTE family proteins for plasma membrane targeting

    International Nuclear Information System (INIS)

    Das, Sudipto; Ise, Tomoko; Nagata, Satoshi; Maeda, Hiroshi; Bera, Tapan K.; Pastan, Ira

    2007-01-01

    The POTE gene family is composed of 13 paralogs and likely evolved by duplications and remodeling of the human genome. One common property of POTE proteins is their localization on the inner aspect of the plasma membrane. To determine the structural elements required for membrane localization, we expressed mutants of different POTEs in 293T cells as EGFP fusion proteins. We also tested their palmitoylation by a biotin-switch assay. Our data indicate that the membrane localizations of different POTEs are mediated by similar 3-4 short cysteine rich repeats (CRRs) near the amino-terminuses and that palmitoylation on paired cysteine residues in each CRR motif is responsible for the localization. Multiple palmitoylation in the small CRRs can result in the strong association of whole POTEs with plasma membrane

  11. Cholesterol tethered bioresponsive polycation as a candidate for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Ying [Second Affiliated Hospital, Medical College, Zhejiang University, Hangzhou 310009 (China); Wang Youxiang, E-mail: yx_wang@zju.edu.cn [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China); Hu Qiaoling; Shen Jiacong [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Zhejiang University, Hangzhou 310027 (China)

    2009-04-30

    The efficient unpacking of viral protein shell gave the inspiration for the synthesized vectors. In this research, novel cholesterol tethered bioresponsive polyethylenimine (PEI) was specially designed via disulfide-containing cross-linker. The cholesterol lipid had proved to increase the permeability of gene vector through cell membrane. The acid-base titration indicated that the synthesized polycation possessed efficient proton sponge effect, which was suggested to increase endosomal release of pDNA complexes into the cytoplasm. The cholesterol tethered polycation could effectively induce DNA condensation and form spherical particles with diameter about 200 nm at N/P ratio of 10. At glutathione concentration of 3 mM, the polyplexes were unpacked due to the bioresponsive cleavage of the disulfide bonds. The in-vitro experiment indicated that the polyplexes showed efficient transfection efficiency to HEK293T cells. All the results indicated that the bioresponsive polycation could be served as an effective trigger to control the release of DNA at the intracellular environment. The novel bioresponsive polycation might have great potential in non-viral gene delivery research and application.

  12. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  13. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  14. Characterization of Leukocyte-platelet Rich Fibrin, A Novel Biomaterial

    OpenAIRE

    Madurantakam, Parthasarathy; Yoganarasimha, Suyog; Hasan, Fadi K.

    2015-01-01

    Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in...

  15. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam; Noutsi, Bakiza Kamal; Chaieb, Saharoui

    2016-01-01

    to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration

  16. Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane

    OpenAIRE

    1990-01-01

    The platelet plasma membrane is lined by a membrane skeleton that appears to contain short actin filaments cross-linked by actin-binding protein. Actin-binding protein is in turn associated with specific plasma membrane glycoproteins. The aim of this study was to determine whether the membrane skeleton regulates properties of the plasma membrane. Platelets were incubated with agents that disrupted the association of the membrane skeleton with membrane glycoproteins. The consequences of this c...

  17. High blood cholesterol levels

    Science.gov (United States)

    Cholesterol - high; Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... There are many types of cholesterol. The ones talked about most are: ... lipoprotein (HDL) cholesterol -- often called "good" cholesterol ...

  18. UV inactivation of enzymes in supramolecular complexes of biological membranes. The phenomenon of photochemical allotropy

    International Nuclear Information System (INIS)

    Konev, S.V.; Volotovskij, I.D.; Sheiko, L.M.

    1978-01-01

    The photosensitivity of erythrocyte acetylcholinesterase (AChE) is different in its free and membrane-bound states. The modification of the structure of membraneous lipids by phospholipases A 2 , C and D or by cholesterol depletion is accompanied by a change in AChE photosensitivity. UV light was demonstrated to induce cooperative structural transitions in the erythrocyte membrane. This follows from the data obtained by circular dichroism and solubilization in detergents. In contrast to free AChE, UV light acts on the membraneous enzyme as a mixed inhibitor (simultaneous change in Vsub(max) and Ksub(m)). The anomalous behaviour of membrane-bound enzyme, termed the phenomenon of photochemical allotropy, is associated with a modification of the structure within the microenvironment of the residual AChE. The phenomenon depends on membrane integrity, and disappears after treatment of erythrocyte ghosts with ultrasound, trypsin, phospholipases and neuraminidase and remains unchanged in cholesterol-depleted membranes. The nature and localization of events responsible for this phenomenon are discussed. (author)

  19. Rooster sperm plasma membrane protein and phospholipid organization and reorganization attributed to cooling and cryopreservation

    Science.gov (United States)

    Cholesterol to phospholipid ratio is used as a representation for membrane fluidity, and predictor of cryopreservation success but results are not consistent across species and ignore the impact of membrane proteins. Therefore, this research explored the modulation of membrane fluidity and protein ...

  20. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    Full Text Available Elevated low-density lipoprotein (LDL-cholesterol is a risk factor for both Alzheimer's disease (AD and Atherosclerosis (CVD, suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1 high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2 Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3 oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL, induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4 LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5 cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6 ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  1. Why is the sn-2 chain of monounsaturated glycerophospholipids usually unsaturated whereas the sn-1 chain is saturated? Studies of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (SOPC) and 1-oleoyl-2-stearoyl-sn-glycero-3-phosphatidylcholine (OSPC) membranes with and without cholesterol

    DEFF Research Database (Denmark)

    Martinez-Seara, Hector; Róg, Tomasz; Karttunen, Mikko

    2009-01-01

    Despite the large number of possible glycerol-based phospholipids, biological membranes contain only a small number of them. For example, double bonds in acyl chains are preferably located in the sn-2 chain. The question that emerges is: Why? We have addressed this question through atomistic simu....... The differences between the two isomers are enhanced when cholesterol is present as a result of the interaction of the off-plane cholesterol methyl groups with the double-bond carbon segments in the lipid acyl chains....

  2. A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin.

    Science.gov (United States)

    Schurek, Eva-Maria; Völker, Linus A; Tax, Judit; Lamkemeyer, Tobias; Rinschen, Markus M; Ungrue, Denise; Kratz, John E; Sirianant, Lalida; Kunzelmann, Karl; Chalfie, Martin; Schermer, Bernhard; Benzing, Thomas; Höhne, Martin

    2014-04-18

    Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.

  3. Functionalized PHB granules provide the basis for the efficient side-chain cleavage of cholesterol and analogs in recombinant Bacillus megaterium.

    Science.gov (United States)

    Gerber, Adrian; Kleser, Michael; Biedendieck, Rebekka; Bernhardt, Rita; Hannemann, Frank

    2015-07-29

    Cholesterol, the precursor of all steroid hormones, is the most abundant steroid in vertebrates and exhibits highly hydrophobic properties, rendering it a difficult substrate for aqueous microbial biotransformations. In the present study, we developed a Bacillus megaterium based whole-cell system that allows the side-chain cleavage of this sterol and investigated the underlying physiological basis of the biocatalysis. CYP11A1, the side-chain cleaving cytochrome P450, was recombinantly expressed in the Gram-positive soil bacterium B. megaterium combined with the required electron transfer proteins. By applying a mixture of 2-hydroxypropyl-β-cyclodextrin and Quillaja saponin as solubilizing agents, the zoosterols cholesterol and 7-dehydrocholesterol, as well as the phytosterol β-sitosterol could be efficiently converted to pregnenolone or 7-dehydropregnenolone. Fluorescence-microscopic analysis revealed that cholesterol accumulates in the carbon and energy storage-serving poly(3-hydroxybutyrate) (PHB) bodies and that the membrane proteins CYP11A1 and its redox partner adrenodoxin reductase (AdR) are likewise localized to their surrounding phospholipid/protein monolayer. The capacity to store cholesterol was absent in a mutant strain devoid of the PHB-producing polymerase subunit PhaC, resulting in a drastically decreased cholesterol conversion rate, while no effect on the expression of the recombinant proteins could be observed. We established a whole-cell system based on B. megaterium, which enables the conversion of the steroid hormone precursor cholesterol to pregnenolone in substantial quantities. We demonstrate that the microorganism's PHB granules, aggregates of bioplastic coated with a protein/phospholipid monolayer, are crucial for the high conversion rate by serving as substrate storage. This microbial system opens the way for an industrial conversion of the abundantly available cholesterol to any type of steroid hormones, which represent one of the

  4. Differential sensitivity of cellular membranes to peroxidative processes

    International Nuclear Information System (INIS)

    Huijbers, W.A.R.

    1976-01-01

    A description is given of a morphological and cytochemical investigation into the effects of both vitamin E deficiency and X-irradiation on the ultrastructure and enzyme activities of several cellular membranes, particularly the plasma membrane and the membranes of lysosomes, mitochondria and endoplasmic reticulum. In the vitamin E deficient situation, the radicals and peroxides only originate near mitochondria and endoplasmic reticulum, so that these membrane systems suffer from changes. After irradiation of the liver of both the control duckling and the deficient duckling, radicals originate in all parts of the cell. Due to their high content of lipids and cholesterols, peroxides will occur mainly in plasma membranes and lysosomal membranes. Moreover, in these membranes there is hardly any protection by vitamin E

  5. Cholesterol IQ Quiz

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Jul 5,2017 Begin the quiz ... What Your Cholesterol Levels Mean Common Misconceptions Cholesterol IQ Quiz • HDL, LDL, and Triglycerides • Causes of High ...

  6. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa.

    Science.gov (United States)

    Feillet, F; Feillet-Coudray, C; Bard, J M; Parra, H J; Favre, E; Kabuth, B; Fruchart, J C; Vidailhet, M

    2000-04-01

    Normal or high levels of cholesterol have been measured in patients with anorexia nervosa (AN). Given that cholesterol intake in AN is usually very low, the reasons for this anomaly are not clearly understood. We studied lipid and lipoprotein profiles and endogenous cholesterol synthesis, estimated by serum lathosterol, in a population of 14 girls with AN, before and during a period of 30 days refeeding. The initial body mass index (BMI) of the patients was 13.41+/-1.62 kg/m(2). No changes were observed during refeeding in endocrine parameters (ACTH, cortisol and estradiol). At Day 0 the lipids data measured here showed normal levels of triglycerides, and total cholesterol at the upper limits of the normal range (5.44+/-1 mmol/l). At this time, total and LDL cholesterol were negatively correlated with transthyretin and BMI. Serum lathosterol (a precursor in cholesterol synthesis pathway) increased significantly (5.99+/-1.75 (Day 0) vs. 8.39+/-2.96 (Day 30); P=0.02) while there was a significant decrease in apo B (0.79+/-0.33 (Day 0) vs. 0. 60+/-0.17 g/l (Day 30), P=0.02) with refeeding. Thus, patients with initial high cholesterol levels have the worst nutritional status and high cholesterol levels are not related to a de novo synthesis. This profile returns to normal with refeeding. An increase of cellular cholesterol uptake may be responsible for this apparently paradoxical evolution with increase of cholesterol synthesis and decrease of apo B during renutrition.

  7. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  8. Phospholipid composition and a polybasic motif determine D6 PROTEIN KINASE polar association with the plasma membrane and tropic responses.

    Science.gov (United States)

    Barbosa, Inês C R; Shikata, Hiromasa; Zourelidou, Melina; Heilmann, Mareike; Heilmann, Ingo; Schwechheimer, Claus

    2016-12-15

    Polar transport of the phytohormone auxin through PIN-FORMED (PIN) auxin efflux carriers is essential for the spatiotemporal control of plant development. The Arabidopsis thaliana serine/threonine kinase D6 PROTEIN KINASE (D6PK) is polarly localized at the plasma membrane of many cells where it colocalizes with PINs and activates PIN-mediated auxin efflux. Here, we show that the association of D6PK with the basal plasma membrane and PINs is dependent on the phospholipid composition of the plasma membrane as well as on the phosphatidylinositol phosphate 5-kinases PIP5K1 and PIP5K2 in epidermis cells of the primary root. We further show that D6PK directly binds polyacidic phospholipids through a polybasic lysine-rich motif in the middle domain of the kinase. The lysine-rich motif is required for proper PIN3 phosphorylation and for auxin transport-dependent tropic growth. Polybasic motifs are also present at a conserved position in other D6PK-related kinases and required for membrane and phospholipid binding. Thus, phospholipid-dependent recruitment to membranes through polybasic motifs might not only be required for D6PK-mediated auxin transport but also other processes regulated by these, as yet, functionally uncharacterized kinases. © 2016. Published by The Company of Biologists Ltd.

  9. Effect of dietary fat on hepatic liver X receptor expression in P-glycoprotein deficient mice: implications for cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Lee Stephen D

    2008-06-01

    Full Text Available Abstract Pgp (P-glycoprotein, MDR1, ABCB1 is an energy-dependent drug efflux pump that is a member of the ATP-binding cassette (ABC family of proteins. Preliminary studies have reported that nonspecific inhibitors of Pgp affect synthesis and esterification of cholesterol, putatively by blocking trafficking of cholesterol from the plasma membrane to the endoplasmic reticulum, and that relative increases in Pgp within a given cell type are associated with increased accumulation of cholesterol. Several key efflux proteins involved in the cholesterol metabolic pathway are transcriptionally regulated by the nuclear hormone liver X receptor (LXR. Therefore, to examine the interplay between P-glycoprotein and the cholesterol metabolic pathway, we utilized a high fat, normal cholesterol diet to upregulate LXRα without affecting dietary cholesterol. Our research has demonstrated that mice lacking in P-glycoprotein do not exhibit alterations in hepatic total cholesterol storage, circulating plasma total cholesterol levels, or total cholesterol concentration in the bile when compared to control animals on either a normal (25% calories from dietary fat or high fat (45% calories from dietary fat diet. However, p-glycoprotein deficient mice (Mdr1a-/-/1b-/- exhibit increased hepatic LXRα protein expression and an elevation in fecal cholesterol concentration when compared to controls.

  10. LDL: The "Bad" Cholesterol

    Science.gov (United States)

    ... There are two main types of cholesterol: LDL (bad) cholesterol and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because a high LDL level leads to ...

  11. Home-Use Tests - Cholesterol

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  12. Supramolecular organization of the sperm plasma membrane during maturation and capacitation.

    Science.gov (United States)

    Jones, Roy; James, Peter S; Howes, Liz; Bruckbauer, Andreas; Klenerman, David

    2007-07-01

    In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.

  13. The Influence of Cholesterol on Fast Dynamics Inside of Vesicle and Planar Phospholipid Bilayers Measured with 2D IR Spectroscopy.

    Science.gov (United States)

    Kel, Oksana; Tamimi, Amr; Fayer, Michael D

    2015-07-23

    Phospholipid bilayers are frequently used as models for cell membranes. Here the influence of cholesterol on the structural dynamics in the interior of 1,2-dilauroyl-sn-glycero-3-phosphocholine (dilauroylphosphatidylcholine, DLPC) vesicles and DLPC planar bilayers are investigated as a function of cholesterol concentration. 2D IR vibrational echo spectroscopy was performed on the antisymmetric CO stretch of the vibrational probe molecule tungsten hexacarbonyl, which is located in the interior alkyl regions of the bilayers. The 2D IR experiments measure spectral diffusion, which is caused by the structural fluctuations of the bilayers. The 2D IR measurements show that the bilayer interior alkyl region dynamics occur on time scales ranging from a few picoseconds to many tens of picoseconds. These are the time scales of the bilayers' structural dynamics, which act as the dynamic solvent bath for chemical processes of membrane biomolecules. The results suggest that at least a significant fraction of the dynamics arise from density fluctuations. Samples are studied in which the cholesterol concentration is varied from 0% to 40% in both the vesicles (72 nm diameter) and fully hydrated planar bilayers in the form of aligned multibilayers. At all cholesterol concentrations, the structural dynamics are faster in the curved vesicle bilayers than in the planar bilayers. As the cholesterol concentration is increased, at a certain concentration there is a sudden change in the dynamics, that is, the dynamics abruptly slow down. However, this change occurs at a lower concentration in the vesicles (between 10% and 15% cholesterol) than in the planar bilayers (between 25% and 30% cholesterol). The sudden change in the dynamics, in addition to other IR observables, indicates a structural transition. However, the results show that the cholesterol concentration at which the transition occurs is influenced by the curvature of the bilayers.

  14. Effect of cholesterol supplementation on cryosurvival of goat spermatozoa

    Directory of Open Access Journals (Sweden)

    Sunita Behera

    2015-12-01

    Full Text Available Aim: Sperm membrane cholesterol influences cryodamage during cryopreservation. The present study was carried out to evaluate the effect of varying cholesterol levels in Tris based extenders on the freezability of sexually healthy Malabari buck semen. Materials and Methods: A total of 48 ejaculates from two adults healthy sexually healthy Malabari bucks were utilized for the study. The collected and pooled ejaculates were divided into four groups with Group I serving as Control - I, Group II and III were treated with 1 mg and 2 mg of cholesterol-loaded-cyclodextrin (CLC/120 × 106 spermatozoa, respectively, and Group IV treated with 1 mg methyl-β-cyclodextrin (MβCD served as Control - II. Manual freezing was carried out to cryopreserve the treated and control spermatozoa. Results: Treatment of semen samples with CLC resulted in improved maintenance of sperm motility at pre-freeze and post-thaw stages of cryopreservation without affecting hypo-osmotic swelling response. Treatment of semen with 1 mg of CLC/120 × 106 spermatozoa was observed to be better than treatment with 2 mg of CLC/120 × 106 spermatozoa. In general, MβCD treatment was found to result in significantly lower sperm characteristics than those of Control - I and CLC treatment at pre-feeze and post-thaw stages and when incubated up to 4 h. Conclusion: Cholesterol treatment of sexually healthy Malabari buck semen was found to hold promise for improving cryopreser-vability of spermatozoa.

  15. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  16. Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner

    DEFF Research Database (Denmark)

    Moesby, Lise; Corver, J; Erukulla, R K

    1995-01-01

    The alphavirus Semliki Forest virus (SFV) enters cells through receptor-mediated endocytosis. Subsequently, triggered by the acid pH in endosomes, the viral envelope fuses with the endosomal membrane. Membrane fusion of SFV has been shown previously to be dependent on the presence of cholesterol ...

  17. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Keywords: Endoplasmic reticulum stress, High cholesterol, Cardiovascular diseases, Non-alcoholic fatty liver disease, Non-alcoholic steatosis hepatitis

  18. Comparative evaluation of coronally advanced flap using amniotic membrane and platelet-rich fibrin membrane in gingival recession: An 18-month clinical study

    Directory of Open Access Journals (Sweden)

    Mohd Rehan

    2018-01-01

    Full Text Available Background: An amnion membrane is a placenta-derived tissue that consists of numerous growth factors, proteins, and stem cell reserves which help in accelerated wound healing and regeneration. Platelet-rich fibrin (PRF also releases growth factors after activation from the platelets and gets trapped within fibrin matrix which has been shown to stimulate the mitogenic response in the periosteum for bone repair and regeneration during normal wound healing. This preliminary, controlled, randomized clinical trial with an 18-month follow-up was aimed to evaluate the effectiveness of coronally advanced flap (CAF with either PRF membrane or bioresorbable amniotic membrane (AM in treatment of localized gingival recession defects. Materials and Methods: Sixteen healthy adult patients presenting with Miller Class I recession defects were treated surgically with CAF along with AM (Group I or PRF (Group II for coverage of the recession defects. For all patients, plaque index, gingival index, bleeding on probing, clinical attachment level, depth of recession, width of recession, width of attached gingiva, and gingival thickness were evaluated at 6 months and 18 months postoperatively. Statistical analysis was done using paired t-test, repeated measure analysis of variance test, Bonferroni test for intragroup comparison and unpaired t-test for intergroup comparison. Results: The results showed statistically nonsignificant (P < 0.01 difference in all clinical parameters at the 6- and 18-month follow-ups in both groups. Gingival recession in both PRF and amnion group when evaluated individually, significantly reduced from baseline to 6 months (P = 0.000 and from baseline to 18 months (P = 0.000. However, the mean value from 6 months to 18 months was statistically nonsignificant. Conclusion: The present study demonstrated that both CAF + PRF and CAF + AM are equally effective in providing clinically significant outcomes with respect to root coverage with AM

  19. Evaluation of Cholesterol as a Biomarker for Suicidality in a Veteran Sample.

    Science.gov (United States)

    Reuter, Chuck; Caldwell, Barbara; Basehore, Heather

    2017-08-01

    A reduction in total cholesterol may alter the microviscosity of the brain-cell-membrane, reducing serotonin receptor exposure. The resulting imbalance between serotonin and dopamine may lead to an increased risk for suicidality. The objective of this research was to evaluate total cholesterol as a biological marker for suicidality in a sample of US military veterans. The study population consisted of veterans who received care at the Coatesville Veterans Affairs Medical Center (VAMC) and were included in the Suicide Prevention Coordinator's database for having suicidal ideation with evidence of escalating intent, a documented suicide attempt, or committed suicide between 2009 and 2015. The veterans' medical data were obtained from the facility's computerized patient record system. The final sample was 188 observations from 128 unique veterans. Veterans with total cholesterol levels below 168 mg/dl appeared to have a higher suicide risk than those with higher levels. The cholesterol levels of veterans reporting suicidal ideation or attempt were significantly lower than the group reporting neither [F(2, 185) = 30.19, p cholesterol levels from an earlier visit in which they did not report suicidality. A latent class analysis revealed that among other differences, suicidal veterans were younger, leaner, and had more anxiety, sleep problems, and higher education than those being seen for an issue unrelated to suicidality. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Proteolytic processing of lysyl oxidase-like-2 in the extracellular matrix is required for crosslinking of basement membrane collagen IV.

    Science.gov (United States)

    López-Jiménez, Alberto J; Basak, Trayambak; Vanacore, Roberto M

    2017-10-13

    Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    Science.gov (United States)

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  2. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression.

    Science.gov (United States)

    Mohammadi, Asghar; Shabani, Mohamad; Naseri, Faezeh; Hosseni, Bita; Soltanmohammadi, Elham; Piran, Sadegh; Najafi, Mohammad

    2017-07-01

    Cholesterol homeostasis is dependent upon the sterol regulatory element binding protein 2 (SREBP-2) regulatory system and the functioning of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). Many studies have also reported that low density lipoprotein receptor (LDLR) levels in cellular membranes are related to the functioning of these proteins. The aim of this study was to investigate the association of lipid profiles with circulating PCSK9 protein values and SREBP-2 expression levels in normal subjects. The study involved 120 randomly chosen healthy subjects. Their lipid profiles were measured using routine laboratory techniques, and the plasma PCSK9 protein and SREBP-2 expression levels were determined by ELISA and real time quantitative PCR methods, respectively. A statistical analysis was carried out using a statistical software package. Linear regression analyses showed a significant correlation between total cholesterol and PCSK9 (3.54 ± 1.31 ng/mL), as well as between total cholesterol and SREBP-2 (0.1-35.38) (p = 0.002 and p = 0.02, respectively). Furthermore, multiple regression analyses showed strict correlations between PCSK9 and cholesterol-related parameters especially the total cholesterol/HDL-C ratio (β = 3.53, p = 0.001). There was no significant correlation between circulating PCSK9 and SREBP-2 expression levels (r = 1.2, p = 0.3). The study results revealed that serum cholesterol-related parameters are strictly associated with plasma PCSK9 values, suggesting that PCSK9 function has a greater effect on serum total cholesterol levels than SREBP-2 expression does. Furthermore, the total cholesterol/HDL-C ratio was a better indicator for evaluating PCSK9 level than total cholesterol.

  3. Cholesterol Transport Revisited : A New Turbo Mechanism to Drive Cholesterol Excretion

    NARCIS (Netherlands)

    de Boer, Jan Freark; Kuipers, Folkert; Groen, Albert K.

    A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are

  4. Cholesterol (image)

    Science.gov (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  5. Solubilization of human erythrocyte membranes by ASB detergents

    Directory of Open Access Journals (Sweden)

    C.C. Domingues

    2008-09-01

    Full Text Available Understanding the membrane solubilization process and finding effective solubilizing agents are crucial challenges in biochemical research. Here we report results on the interaction of the novel linear alkylamido propyl dimethyl amino propanosulfonate detergents, ASB-14 and ASB-16, with human erythrocyte membranes. An estimation of the critical micelle concentration of these zwitterionic detergents (ASB-14 = 100 µM and ASB-16 = 10 µM was obtained using electron paramagnetic resonance. The amount of proteins and cholesterol solubilized from erythrocytes by these detergents was then determined. The hemolytic activities of the ASB detergents were assayed and the detergent/lipid molar ratios for the onset of hemolysis (Re sat and total lysis (Re sol were calculated, allowing the determination of the membrane binding constants (Kb. ASB-14 presented lower membrane affinity (Kb = 7050 M-1 than ASB-16 (Kb = 15610 M-1. The amount of proteins and cholesterol solubilized by both ASB detergents was higher while Re sat values (0.22 and 0.08 detergent/lipid for ASB-14 and ASB-16, respectively were smaller than those observed with the classic detergents CHAPS and Triton X-100. These results reveal that, besides their well-known use as membrane protein solubilizers to enhance the resolution of two dimensional electrophoresis/mass spectrometry, ASB-14 and ASB-16 are strong hemolytic agents. We propose that the physicochemical properties of ASB detergents determine their membrane disruption efficiency and can help to explain the improvement in the solubilization of membrane proteins, as reported in the literature.

  6. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  7. N-Glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells.

    Science.gov (United States)

    Imjeti, Naga Salaija; Lebreton, Stéphanie; Paladino, Simona; de la Fuente, Erwin; Gonzalez, Alfonso; Zurzolo, Chiara

    2011-12-01

    Sorting of glycosylphosphatidyl-inositol--anchored proteins (GPI-APs) in polarized epithelial cells is not fully understood. Oligomerization in the Golgi complex has emerged as the crucial event driving apical segregation of GPI-APs in two different kind of epithelial cells, Madin-Darby canine kidney (MDCK) and Fisher rat thyroid (FRT) cells, but whether the mechanism is conserved is unknown. In MDCK cells cholesterol promotes GPI-AP oligomerization, as well as apical sorting of GPI-APs. Here we show that FRT cells lack this cholesterol-driven oligomerization as apical sorting mechanism. In these cells both apical and basolateral GPI-APs display restricted diffusion in the Golgi likely due to a cholesterol-enriched membrane environment. It is striking that N-glycosylation is the critical event for oligomerization and apical sorting of GPI-APs in FRT cells but not in MDCK cells. Our data indicate that at least two mechanisms exist to determine oligomerization in the Golgi leading to apical sorting of GPI-APs. One depends on cholesterol, and the other depends on N-glycosylation and is insensitive to cholesterol addition or depletion.

  8. Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1.

    Science.gov (United States)

    Ikigai, H; Akatsuka, A; Tsujiyama, H; Nakae, T; Shimamura, T

    1996-08-01

    El Tor hemolysin (ETH; molecular mass, 65 kDa) derived from Vibrio cholerae O1 spontaneously assembled oligomeric aggregates on the membranes of rabbit erythrocyte ghosts and liposomes. Membrane-associated oligomers were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting into two to nine bands with apparent molecular masses of 170 to 350 kDa. ETH assembled oligomers on a liposomal membrane consisting of phosphatidylcholine and cholesterol, but not on a membrane of phosphatidylcholine alone. Cholesterol could be replaced with diosgenin or ergosterol but not with 5alpha-cholestane-3-one, suggesting that sterol is essential for the oligomerization. The treatment of carboxyfluorescein-encapsulated liposomes with ETH caused a rapid release of carboxyfluorescein into the medium. Because dextrin 20 (molecular mass, 900 Da) osmotically protected ETH-mediated hemolysis, this hemolysis is likely to be caused by pore formation on the membrane. The pore size(s) estimated from osmotic protection assays was in the range of 1.2 to 1.6 nm. The pore formed on a rabbit erythrocyte membrane was confirmed morphologically by electron microscopy. Thus, we provide evidence that ETH damages the target by the assembly of hemolysin oligomers and pore formation on the membrane.

  9. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology.

    Science.gov (United States)

    Nordestgaard, Børge G

    2016-02-19

    Scientific interest in triglyceride-rich lipoproteins has fluctuated over the past many years, ranging from beliefs that these lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) to being innocent bystanders. Correspondingly, clinical recommendations have fluctuated from a need to reduce levels to no advice on treatment. New insight in epidemiology now suggests that these lipoproteins, marked by high triglycerides, are strong and independent predictors of ASCVD and all-cause mortality, and that their cholesterol content or remnant cholesterol likewise are strong predictors of ASCVD. Of all adults, 27% have triglycerides >2 mmol/L (176 mg/dL), and 21% have remnant cholesterol >1 mmol/L (39 mg/dL). For individuals in the general population with nonfasting triglycerides of 6.6 mmol/L (580 mg/dL) compared with individuals with levels of 0.8 mmol/L (70 mg/dL), the risks were 5.1-fold for myocardial infarction, 3.2-fold for ischemic heart disease, 3.2-fold for ischemic stroke, and 2.2-fold for all-cause mortality. Also, genetic studies using the Mendelian randomization design, an approach that minimizes problems with confounding and reverse causation, now demonstrate that triglyceride-rich lipoproteins are causally associated with ASCVD and all-cause mortality. Finally, genetic evidence also demonstrates that high concentrations of triglyceride-rich lipoproteins are causally associated with low-grade inflammation. This suggests that an important part of inflammation in atherosclerosis and ASCVD is because of triglyceride-rich lipoprotein degradation and uptake into macrophage foam cells in the arterial intima. Taken together, new insights now strongly suggest that elevated triglyceride-rich lipoproteins represent causal risk factors for low-grade inflammation, ASCVD, and all-cause mortality. © 2016 American Heart Association, Inc.

  10. Flavonoid-rich cocoa consumption affects multiple cardiovascular risk factors in a meta-analysis of short-term studies.

    Science.gov (United States)

    Shrime, Mark G; Bauer, Scott R; McDonald, Anna C; Chowdhury, Nubaha H; Coltart, Cordelia E M; Ding, Eric L

    2011-11-01

    A growing body of evidence suggests that the consumption of foods rich in polyphenolic compounds, particularly cocoa, may have cardioprotective effects. No review, however, has yet examined the effect of flavonoid-rich cocoa (FRC) on all major cardiovascular risk factors or has examined potential dose-response relationships for these effects. A systematic review and meta-analysis of randomized, controlled trials was performed to evaluate the effect of FRC on cardiovascular risk factors and to assess a dose-response relationship. Inclusion and exclusion criteria as well as dependent and independent variables were determined a priori. Data were collected for: blood pressure, pulse, total cholesterol, HDL cholesterol, LDL cholesterol, TG, BMI, C-reactive protein, flow-mediated vascular dilation (FMD), fasting glucose, fasting insulin, serum isoprostane, and insulin sensitivity/resistance indices. Twenty-four papers, with 1106 participants, met the criteria for final analysis. In response to FRC consumption, systolic blood pressure decreased by 1.63 mm Hg (P = 0.033), LDL cholesterol decreased by 0.077 mmol/L (P = 0.038), and HDL cholesterol increased by 0.046 mmol/L (P = 0.037), whereas total cholesterol, TG, and C-reactive protein remained the same. Moreover, insulin resistance decreased (HOMA-IR: -0.94 points; P FMD increased (1.53%; P FMD (P = 0.004), with maximum effect observed at a flavonoid dose of 500 mg/d; a similar relationship may exist with HDL cholesterol levels (P = 0.06). FRC consumption significantly improves blood pressure, insulin resistance, lipid profiles, and FMD. These short-term benefits warrant larger long-term investigations into the cardioprotective role of FRC.

  11. Cholesterol Test

    Science.gov (United States)

    ... artery disease. Other names for a cholesterol test: Lipid profile, Lipid panel What is it used for? If you ... Clinic [Internet]. Mayo Foundation for Medical Education and Research; c1998-2017.Cholesterol Test: Overview; 2016 Jan 12 [ ...

  12. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and

  13. Na+ Influx Induced by New Antimalarials Causes Rapid Alterations in the Cholesterol Content and Morphology of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Sudipta Das

    2016-05-01

    Full Text Available Among the several new antimalarials discovered over the past decade are at least three clinical candidate drugs, each with a distinct chemical structure, that disrupt Na+ homeostasis resulting in a rapid increase in intracellular Na+ concentration ([Na+]i within the erythrocytic stages of Plasmodium falciparum. At present, events triggered by Na+ influx that result in parasite demise are not well-understood. Here we report effects of two such drugs, a pyrazoleamide and a spiroindolone, on intraerythrocytic P. falciparum. Within minutes following the exposure to these drugs, the trophozoite stage parasite, which normally contains little cholesterol, was made permeant by cholesterol-dependent detergents, suggesting it acquired a substantial amount of the lipid. Consistently, the merozoite surface protein 1 and 2 (MSP1 and MSP2, glycosylphosphotidylinositol (GPI-anchored proteins normally uniformly distributed in the parasite plasma membrane, coalesced into clusters. These alterations were not observed following drug treatment of P. falciparum parasites adapted to grow in a low [Na+] growth medium. Both cholesterol acquisition and MSP1 coalescence were reversible upon the removal of the drugs, implicating an active process of cholesterol exclusion from trophozoites that we hypothesize is inhibited by high [Na+]i. Electron microscopy of drug-treated trophozoites revealed substantial morphological changes normally seen at the later schizont stage including the appearance of partial inner membrane complexes, dense organelles that resemble "rhoptries" and apparent nuclear division. Together these results suggest that [Na+]i disruptor drugs by altering levels of cholesterol in the parasite, dysregulate trophozoite to schizont development and cause parasite demise.

  14. Macrophage cholesterol efflux correlates with lipoprotein subclass distribution and risk of obstructive coronary artery disease in patients undergoing coronary angiography

    Directory of Open Access Journals (Sweden)

    Kremer Werner

    2009-04-01

    Full Text Available Abstract Background Studies in patients with low HDL have suggested that impaired cellular cholesterol efflux is a heritable phenotype increasing atherosclerosis risk. Less is known about the association of macrophage cholesterol efflux with lipid profiles and CAD risk in normolipidemic subjects. We have therefore measured macrophage cholesterol efflux in142 normolipidemic subjects undergoing coronary angiography. Methods Monocytes isolated from blood samples of patients scheduled for cardiac catheterization were differentiated into macrophages over seven days. Isotopic cholesterol efflux to exogenously added apolipoprotein A-I and HDL2 was measured. Quantitative cholesterol efflux from macrophages was correlated with lipoprotein subclass distribution in plasma from the same individuals measured by NMR-spectroscopy of lipids and with the extent of coronary artery disease seen on coronary angiography. Results Macrophage cholesterol efflux was positively correlated with particle concentration of smaller HDL and LDL particles but not with total plasma concentrations of HDL or LDL-cholesterol. We observed an inverse relationship between macrophage cholesterol efflux and the concntration of larger and triglyceride rich particles (VLDL, chylomicrons. Subjects with significant stenosis on coronary angiography had lower cholesterol efflux from macrophages compared to individuals without significant stenosis (adjusted p = 0.02. Conclusion Macrophage cholesterol efflux is inversely correlated with lipoprotein particle size and risk of CAD.

  15. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.

    2013-01-01

    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible

  16. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Binding of the Antagonist Caffeine to the Human Adenosine Receptor hA2AR in Nearly Physiological Conditions.

    Directory of Open Access Journals (Sweden)

    Ruyin Cao

    Full Text Available Lipid composition may significantly affect membrane proteins function, yet its impact on the protein structural determinants is not well understood. Here we present a comparative molecular dynamics (MD study of the human adenosine receptor type 2A (hA(2AR in complex with caffeine--a system of high neuro-pharmacological relevance--within different membrane types. These are POPC, mixed POPC/POPE and cholesterol-rich membranes. 0.8-μs MD simulations unambiguously show that the helical folding of the amphipathic helix 8 depends on membrane contents. Most importantly, the distinct cholesterol binding into the cleft between helix 1 and 2 stabilizes a specific caffeine-binding pose against others visited during the simulation. Hence, cholesterol presence (~33%-50% in synaptic membrane in central nervous system, often neglected in X-ray determination of membrane proteins, affects the population of the ligand binding poses. We conclude that including a correct description of neuronal membranes may be very important for computer-aided design of ligands targeting hA(2AR and possibly other GPCRs.

  18. Fluorescent Lipids: Functional Parts of Fusogenic Liposomes and Tools for Cell Membrane Labeling and Visualization

    Directory of Open Access Journals (Sweden)

    Christian Kleusch

    2012-01-01

    Full Text Available In this paper a rapid and highly efficient method for controlled incorporation of fluorescent lipids into living mammalian cells is introduced. Here, the fluorescent molecules have two consecutive functions: First, they trigger rapid membrane fusion between cellular plasma membranes and the lipid bilayers of their carrier particles, so called fusogenic liposomes, and second, after insertion into cellular membranes these molecules enable fluorescence imaging of cell membranes and membrane traffic processes. We tested the fluorescent derivatives of the following essential membrane lipids for membrane fusion: Ceramide, sphingomyelin, phosphocholine, phosphatidylinositol-bisphosphate, ganglioside, cholesterol, and cholesteryl ester. Our results show that all probed lipids could more efficiently be incorporated into the plasma membrane of living cells than by using other methods. Moreover, labeling occurred in a gentle manner under classical cell culture conditions reducing cellular stress responses. Staining procedures were monitored by fluorescence microscopy and it was observed that sphingolipids and cholesterol containing free hydroxyl groups exhibit a decreased distribution velocity as well as a longer persistence in the plasma membrane compared to lipids without hydroxyl groups like phospholipids or other artificial lipid analogs. After membrane staining, the fluorescent molecules were sorted into membranes of cell organelles according to their chemical properties and biological functions without any influence of the delivery system.

  19. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions.

    Science.gov (United States)

    Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław

    2017-08-01

    The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.

  20. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    Science.gov (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases. © 2014 médecine/sciences – Inserm.