WorldWideScience

Sample records for reprocessing plant safeguards

  1. EURATOM safeguards. Safeguards verifications in reprocessing plants

    International Nuclear Information System (INIS)

    Heppleston, M.

    1999-01-01

    This paper provides a brief historical view of the legal basis for EURATOM. The specific application of safeguards to large scale reprocessing plants, from the theoretical model to the practical application of inspection is considered. The challenge to adequately safeguard major commercial reprocessing facilities has led to many novel approaches being developed. These lessons will also benefit other safeguard projects as a result. Good cooperation between the operator and regulator is essential for the satisfactory installation of adequate safeguard controls. The use of modern data processing technology combined with other diverse monitoring techniques has shown that a major industrial scale reprocessing plant can be controlled under international safeguards to provide a high level of assurance [ru

  2. Safeguarding a future industrial reprocessing plant

    International Nuclear Information System (INIS)

    1978-11-01

    This paper is submitted to Working Group 5, Sub-Group B for information. It is being submitted to Working Group 4 for discussion at their meeting in January 1979 and shows that by a combination of accountancy, surveillance and containment a reliable safeguards system can be designed for the reprocessing of fuels of the BWR and PWR type. Its arguments can, in general terms, be applied to plants for reprocessing LMFBR fuels, with due allowance for future advances which should improve our overall knowledge of the reliability of safeguards systems. In the reprocessing of fast reactor (LMFBR) fuels, as compared with LWR fuels, the main differences are the higher plutonium concentration and lower heavy metal throughput in the early stages of the reprocessing operations. At later stages in the process (after plutonium/uranium separation) the plants could be similar and have similar safeguarding problems. Plants for reprocessing LMFBR on a commercial scale will not be in operation for a number of years. In these plants greater attention may have to be paid to safeguards at the early stages, especially to waste/raffinate streams, than in the PWR/BWR reprocessing plant. The actual balance between containment, surveillance and accountancy adopted will depend on the status of the technology of safeguards and reprocessing. It can be anticipated that improvements to measurement systems will be made which may allow greater reliance on actual measurement. Treatment and recycle of solid wastes will advance and could therefore lead to improvements in accountancy in, for example, the ''head-end''

  3. Safeguards for reprocessing and enrichment plants

    International Nuclear Information System (INIS)

    1977-01-01

    Agency safeguards are entering a new phase with the coming under active safeguards for the first time of reprocessing plants in several regions of the world. This is taking place at a time when not only the safeguards aspect itself is coming under international scrutiny, but also at a time when the necessity of reprocessing plants is being called into question. Attracting less attention at the moment, but potentially of equal significance, are the enrichment plants that soon will be coming under Agency safeguards. It is not unreasonable in view of the present controversies to ask what is the significance of these reprocessing and enrichment plants, what are the problems concerning safeguards that appear to have given rise to the controversies, and how these problems are to be solved. The question of significance is an easy one to answer. The output of these plants is material which some people consider can be used directly for military purposes, whereas the output from other plants, for instance, reactors, would require long and extensive processing before it could be used for military purposes. Like most short answers, this one is an over-simplification which requires some elaboration to make it strictly accurate. For example, the material output of a power reactor is in the form of irradiate assemblies containing plutonium which is potentially of military use if the irradiation had been within a certain range. However, to utilize this plutonium under clandestine conditions, the highly radioactive material would have to be secretly transported to a reprocessing plant and there would have to be simultaneous falsification of the reactor material accounts and the plant records. Such falsification would be difficult to conceal. The total time required to obtain usable plutonium would be many months. Diversion of material from a uranium fabrication plant making fuel for power reactors would be easier physically but strategically it would be of little value. The

  4. Containment/surveillance concepts for international safeguards in reprocessing plants

    International Nuclear Information System (INIS)

    Bleck, M.E.; Cameron, C.P.; Camp, A.L.

    1980-01-01

    This paper examines the potential role of advanced containment/surveillance instrumentation systems for international safeguards in reprocessing plants. Several conceptual systems for the surveillance of containment boundary penetrations in a reference reprocessing plant are described and evaluated. The results of the evaluation aid in understanding the potential capabilities and limitations of containment/surveillance as an international safeguards concept in this type of facility

  5. International safeguards for reprocessing plants. Final report

    International Nuclear Information System (INIS)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems

  6. International safeguards for reprocessing plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kratzer, M.; Scheinman, L.; Sievering, N.; Wonder, E.; Lipman, D.; Immerman, W.; Elliott, J.M.; Crane, F.

    1981-04-01

    Proliferation risks inherent in reprocessing show the need to employ technically effective safeguards which can detect, with a high degree of assurance and on a timely basis, the diversion of significant quantities of fissionable material. A balance must be struck between what is technically feasible and effective and what is institutionally acceptable. Purpose of this report is to examine the several technical approaches to safeguards in light of their prospective acceptability. This study defines the economic, political and institutional nature of the safeguards problem; surveys generically alternative technical approaches to international safeguards including their effectiveness and relative development; characterizes the institutional implications and uncertainties associated with the acceptance and implementation of each technical alternative; and integrates these assessments into a set of overall judgments on feasible directions for reprocessing plant safeguards systems.

  7. Report of the LASCAR forum: Large scale reprocessing plant safeguards

    International Nuclear Information System (INIS)

    1992-01-01

    This report has been prepared to provide information on the studies which were carried out from 1988 to 1992 under the auspices of the multinational forum known as Large Scale Reprocessing Plant Safeguards (LASCAR) on safeguards for four large scale reprocessing plants operated or planned to be operated in the 1990s. The report summarizes all of the essential results of these studies. The participants in LASCAR were from France, Germany, Japan, the United Kingdom, the United States of America, the Commission of the European Communities - Euratom, and the International Atomic Energy Agency

  8. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  9. Lessons Learned in International Safeguards - Implementation of Safeguards at the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Ehinger, Michael H.; Johnson, Shirley

    2010-01-01

    The focus of this report is lessons learned at the Rokkasho Reprocessing Plant (RRP). However, the subject of lessons learned for application of international safeguards at reprocessing plants includes a cumulative history of inspections starting at the West Valley (New York, U.S.A.) reprocessing plant in 1969 and proceeding through all of the efforts over the years. The RRP is the latest and most challenging application the International Atomic Energy Agency has faced. In many ways the challenges have remained the same, timely inspection and evaluation with limited inspector resources, with the continuing realization that planning and preparations can never start early enough in the life cycle of a facility. Lessons learned over the years have involved the challenges of using ongoing advances in technology and dealing with facilities with increased throughput and continuous operation. This report will begin with a review of historical developments and lessons learned. This will provide a basis for a discussion of the experiences and lessons learned from the implementation of international safeguards at RRP.

  10. Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)

    International Nuclear Information System (INIS)

    Johnson, Shirley J.; Ehinger, Michael

    2010-01-01

    This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of 'safeguards by design'. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how 'safeguardability' was introduced into RRP.

  11. Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Shirley J.; Ehinger, Michael

    2010-08-07

    This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of ‘safeguards by design’. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how ‘safeguardability’ was introduced into RRP.

  12. Research and development of safeguards measures for the large scale reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Masahiro; Sato, Yuji; Yokota, Yasuhiro; Masuda, Shoichiro; Kobayashi, Isao; Uchikoshi, Seiji; Tsutaki, Yasuhiro; Nidaira, Kazuo [Nuclear Material Control Center, Tokyo (Japan)

    1994-12-31

    The Government of Japan agreed on the safeguards concepts of commercial size reprocessing plant under the bilateral agreement for cooperation between the Japan and the United States. In addition, the LASCAR, that is the forum of large scale reprocessing plant safeguards, could obtain the fruitful results in the spring of 1992. The research and development of safeguards measures for the Rokkasho Reprocessing Plant should be progressed with every regard to the concepts described in both documents. Basically, the material accountancy and monitoring system should be established, based on the NRTA and other measures in order to obtain the timeliness goal for plutonium, and the un-attended mode inspection approach based on the integrated containment/surveillance system coupled with radiation monitoring in order to reduce the inspection efforts. NMCC has been studying on the following measures for a large scale reprocessing plant safeguards (1) A radiation gate monitor and integrated surveillance system (2) A near real time Shipper and Receiver Difference monitoring (3) A near real time material accountancy system operated for the bulk handling area (4) A volume measurement technique in a large scale input accountancy vessel (5) An in-process inventory estimation technique applied to the process equipment such as the pulse column and evaporator (6) Solution transfer monitoring approach applied to buffer tanks in the chemical process (7) A timely analysis technique such as a hybrid K edge densitometer operated in the on-site laboratory (J.P.N.).

  13. Safeguards implementation in UP3 reprocessing plant

    International Nuclear Information System (INIS)

    Laurent, J.P.; Regnier, J.; Talbourdet, Y.; De Jong, P.

    1991-01-01

    The implementation of safeguards in a large size reprocessing plant is a challenge, considering the high throughput of nuclear material and the sophisticated automation of such facilities. In the case of UP3, a pragmatic and realistic approach has been devised and is applied through an efficient cooperation between the safeguards organizations, the french national authorities and the operator. In essence, they consist in verification of every significant inputs and outputs, in timely analysis by NDA (e.g. solutions of dissolution through an on site k-edge equipment), in monitoring selected parts of the inprocess inventory and in specific containment/surveillance systems for the spent fuel storage ponds and the PuO2 storage. (author)

  14. Use of fuel reprocessing plant instrumentation for international safeguards

    International Nuclear Information System (INIS)

    Ayers, A.L.

    1977-01-01

    The International Atomic Energy Agency has a program for developing instrumentation to be used by safeguards inspectors at reprocessing facilities. These instruments have generally been individual pieces of equipment for improving the accuracy of existing measurement instrumentation or equipment to perform nondestructive assay on a selected basis. It is proposed that greater use be made of redundant plant instrumentation and data recovery systems that could augment plant instrumentation to verify the validity of plant measurements. Use of these methods for verfication must be proven as part of an operating plant before they can be relied upon for safeguards surveillance. Inspectors must be qualified in plant operations, or have ready access to those so qualified, if the integrity of the operation is to be properly assessed. There is an immediate need for the development and in-plant proof testing of an integrated gamma, passive neutron, and active neutron measurement system for drum quantities of radioactive trash. The primary safeguards effort should be limited to plutonium and highly enriched uranium

  15. Coordinated safeguards for materials management in a fuel reprocessing plant. Volume I

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Schelonka, E.P.; Shipley, J.P.; Smith, D.B.; Augustson, R.H.; Barnes, J.W.

    1977-09-01

    A materials management system is described for safeguarding special nuclear materials in a fuel-reprocessing plant. Recently developed nondestructive-analysis techniques and process-monitoring devices are combined with conventional chemical analyses and process-control instrumentation for improved materials accounting data. Unit-process accounting based on dynamic material balances permits localization of diversion in time and space, and the application of advanced statistical methods supported by decision-analysis theory ensures optimum use of accounting information for detecting diversion. This coordinated safeguards system provides maximum effectiveness consistent with modest cost and minimum process interference. Modeling and simulation techniques are used to evaluate the sensitivity of the system to single and multiple thefts and to compare various safeguards options. The study identifies design criteria that would improve the safeguardability of future plants

  16. Simulation of nuclear fuel reprocessing for safeguards

    International Nuclear Information System (INIS)

    Canty, M.J.; Dayem, H.A.; Kern, E.A.; Spannagel, G.

    1983-11-01

    For safeguarding the chemical process area of future reprocessing plants the near-real-time material accountancy (NRTMA) method might be applied. Experimental data are not yet available for testing the capability of the NRTMA method but can be simulated using a digital computer. This report describes the mathematical modeling of the Pu-bearing components of reprocessing plants and presents first results obtained by simulation models. (orig.) [de

  17. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  18. Meeting the safeguards challenges of a commercial reprocessing plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Chesnay, B.; Pearsall, C.; Takeda, S.; Tomikawa, H.; Fujimaki, K.; Iwamoto, T.

    2004-01-01

    Never before has the IAEA taken on such a large challenge as implementing a safeguards system at a commercial reprocessing plant. The challenges lay in a wide range of areas. This paper will present an overview of how specific challenges are being met in: Providing an initial and continuing design verification approach that maintains continuity of knowledge for the life-time of the plant; Providing a robust safeguards approach, including added assurance measures to confirm the operational conditions of the facility; Providing verification systems with the highest sensitivity and reliability, while also being cost efficient; Providing timely and accurate analytical laboratory results; Providing sufficient authentication to joint-use, unattended verification systems to assure that independent conclusions can be reached; Providing a comprehensive integrated software system that allows for remote inspector data handling and evaluation and thus reducing inspection effort. A primary prerequisite to developing and implementing a safeguards approach of this magnitude is the transparent and interactive cooperation of the State and the operator. The JNFL Project has been a model example of this cooperation. This cooperation has been in the areas of system security, operational modifications, schedule adjustments, technical development and financial support. (author)

  19. International safeguards for a light-water reactor fuels reprocessing plant: containment and surveillance concepts

    International Nuclear Information System (INIS)

    Cameron, C.P.; Bleck, M.E.

    1980-12-01

    Concepts for containment/surveillance for reprocessing plants are described, conceptual designs are developed, and their effectiveness is evaluated. A technical approach to design of containment/surveillance systems is presented, and design considerations are discussed. This is the second in a series of reports. The first described the basis for the study of international safeguards for reprocessing plants. In this second report, only containment/surveillance is discussed. The third report will discuss the integration of concepts for containment/surveillance and material accountancy

  20. Fully integrated safeguards and security for reprocessing plant monitoring

    International Nuclear Information System (INIS)

    Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

    2011-01-01

    Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

  1. Analytical chemistry needs for nuclear safeguards in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.

    1977-01-01

    A fuel reprocessing plant designed to process 1500 tons of light water reactor fuel per year will recover 15 tons of Pu during that time, or approximately 40 to 50 kg of Pu per day. Conventional nuclear safeguards accountability has relied on batch accounting at the head and tail ends of the reprocessing plant with semi-annual plant cleanout to determine in-process holdup. An alternative proposed safeguards system relies on dynamic material accounting whereby in-line NDA and conventional analytical techniques provide indications on a daily basis of SNM transfers into the system and information of Pu holdup within the system. Some of the analytical requirements and problems for dynamic materials accounting in a nuclear fuel reprocessing plant are described. Some suggestions for further development will be proposed

  2. Role of near-real-time accounting in international safeguards for reprocessing plants

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Dietz, R.J.; Shipley, J.P.

    1979-01-01

    The effectiveness of conventional nuclear materials accounting systems, both national and international, is constrained by the fundamental process features of high-throughput nuclear facilities and the economic limits of effective nuclear materials management consistent with production goals. Conventional accounting, complemented by near-real-time accounting, may meet projected IAEA performance goals for detecting diversion in medium- and high-throughput reprocessing facilities projected for the late 1900's. The design of materials accounting systems for international safeguards in reprocessing plants is discussed, paying particular attention to the question of international verification. Specific problems in measurement techniques, data evaluation, and systems structure are identified, and the current status of research and development efforts is reviewed

  3. Base case industrial reprocessing plant

    International Nuclear Information System (INIS)

    1978-11-01

    This paper briefly describes an industrial scale plant for reprocessing thermal oxide fuel. This description was used as a base case by the Group for their later assessments and for comparing actual national plans for reprocessing plants. The plant described uses the Purex process and assumes an annual throughput of 1000 t/U. The maintenance, safety and safeguards philosophy is described. An indication of the construction schedule and capital and operating costs is also given

  4. Development of safeguards approach for the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Johnson, S.J.; Abedin-Zadeh, R.; Pearsall, C.; Chesnay, B.; Creusot, C.; Ehinger, M.; Kuhn, E.; Robson, N.; Higuchi, H.; Takeda, S.; Fujimaki, K.; Ai, H.; Uehara, S.; Amano, H.; Hoshi, K.

    2001-01-01

    Full text: The Rokkasho Reprocessing Plant (RRP), which is currently undergoing construction and commissioning by the Japan Nuclear Fuels Limited (JNFL), is scheduled to begin active operations in 2005. The planned operating capacity is 800 tonnes of spent fuel per year containing approximately 8 tonnes of plutonium. The International Atomic Energy Agency (IAEA) and the Japan safeguards authorities are working with JNFL to develop a Safeguards Approach that is both effective and efficient. In order to accomplish this goal, a number of advanced concepts are being introduced and many currently applied safeguards measures are being enhanced. These new and improved techniques and procedures will provide for more sensitive and reliable verification of nuclear material and facility operations while reducing the required inspection effort. The Safeguards Approach incorporates systematic Design Information Examination and Verification (DIE/DIV) during all phases of construction, commissioning and operation. It incorporates installed, unattended radiation and solution measurement and monitoring systems along with a number of inspector attended measurement systems. While many of the measurement systems will be independent-inspector controlled, others will require authentication of a split signal from operator controlled systems. The independent and/or authenticated data from these systems will be transmitted over a network to a central inspector center for evaluation. Near-Real-Time-Accountancy (NRTA) will be used for short period sequential analysis of the operator and inspector data which, when combined with Solution Monitoring data, will provide higher assurance in the verification of nuclear material for timeliness and of the operational status of the facility. Samples will be taken using a facility installed, but IAEA authenticated, automatic sampling system and will then be transferred to a jointly used IAEA-JSGO On-Site Laboratory (OSL). This paper provides an

  5. Preliminary concepts: coordinated safeguards for materials management in a thorium--uranium fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Barnes, J.W.; Dayem, H.A.; Dietz, R.J.; Shipley, J.P.

    1978-10-01

    This report addresses preliminary concepts for coordinated safeguards materials management in a typical generic thorium--uranium-fueled light-water reactor (LWR) fuels reprocessing plant. The reference facility is designed to recover thorium and uranium from first-generation (denatured 235 U) startup fuels, first-recycle and equilibrium (denatured 233 U) thorium--uranium LWR fuels, and to recover the plutonium generated in the 238 U denaturant as well. 12 figures, 3 tables

  6. A study of safeguards approach for the area of plutonium evaporator in a large scale reprocessing plant

    International Nuclear Information System (INIS)

    Sakai, Hirotada; Ikawa, Koji

    1994-01-01

    A preliminary study on a safeguards approach for the chemical processing area in a large scale reprocessing plant has been carried out. In this approach, plutonium inventory at the plutonium evaporator will not be taken, but containment and surveillance (C/S) measures will be applied to ensure the integrity of an area specifically defined to include the plutonium evaporator. The plutonium evaporator area consists of the evaporator itself and two accounting points, i.e., one before the plutonium evaporator and the other after the plutonium evaporator. For newly defined accounting points, two alternative measurement methods, i.e., accounting vessels with high accuracy and flow meters, were examined. Conditions to provide the integrity of the plutonium evaporator area were also examined as well as other technical aspects associated with this approach. The results showed that an appropriate combination of NRTA and C/S measures would be essential to realize a cost effective safeguards approach to be applied for a large scale reprocessing plant. (author)

  7. Euratom experience in safeguarding reprocessing and thermal reactor mixed oxide fuel fabrication facilities within the European Community

    International Nuclear Information System (INIS)

    1978-11-01

    The legal basis and instruments for the application of safeguards in the European Community are described. Euratom safeguards apply throughout the fuel cycle starting at the ore stage. Euratom has had experience in the application of safeguards to small and medium size reprocessing and MOX fabrication plants. In reprocessing plants accountancy, containment and surveillance methods are applied and the plant is divided into three material balance areas. Similar procedures are applied at fabrication plants. Euratom inspectors apply their main verification activities at strategic points but have the right of access at any time to all places which contain nuclear material. Under the Euratom-IAEA Agreements 'Joint Teams' of Euratom and IAEA inspectors will operate together to minimise the burden on operators and to avoid duplication of effort while enabling both organisations to achieve their safeguards objectives

  8. Process monitoring for reprocessing plant safeguards: a summary review

    International Nuclear Information System (INIS)

    Kerr, H.T.; Ehinger, M.H.; Wachter, J.W.; Hebble, T.L.

    1986-10-01

    Process monitoring is a term typically associated with a detailed look at plant operating data to determine plant status. Process monitoring has been generally associated with operational control of plant processes. Recently, process monitoring has been given new attention for a possible role in international safeguards. International Safeguards Project Office (ISPO) Task C.59 has the goal to identify specific roles for process monitoring in international safeguards. As the preliminary effort associated with this task, a review of previous efforts in process monitoring for safeguards was conducted. Previous efforts mentioned concepts and a few specific applications. None were comprehensive in addressing all aspects of a process monitoring application for safeguards. This report summarizes the basic elements that must be developed in a comprehensive process monitoring application for safeguards. It then summarizes the significant efforts that have been documented in the literature with respect to the basic elements that were addressed

  9. Authentication of reprocessing plant safeguards data through correlation analysis

    International Nuclear Information System (INIS)

    Burr, T.L.; Wangen, L.E.; Mullen, M.F.

    1995-04-01

    This report investigates the feasibility and benefits of two new approaches to the analysis of safeguards data from reprocessing plants. Both approaches involve some level of plant modeling. All models involve some form of mass balance, either applied in the usual way that leads to material balances for individual process vessels at discrete times or applied by accounting for pipe flow rates that leads to material balances for individual process vessels at continuous times. In the first case, material balances are computed after each tank-to-tank transfer. In the second case, material balances can be computed at any desired time. The two approaches can be described as follows. The first approach considers the application of a new multivariate sequential test. The test statistic is a scalar, but the monitored residual is a vector. The second approach considers the application of recent nonlinear time series methods for the purpose of empirically building a model for the expected magnitude of a material balance or other scalar variable. Although the report restricts attention to monitoring scalar time series, the methodology can be extended to vector time series

  10. Safeguarding aspects of large-scale commercial reprocessing plants

    International Nuclear Information System (INIS)

    1979-03-01

    The paper points out that several solutions to the problems of safeguarding large-scale plants have been put forward: (1) Increased measurement accuracy. This does not remove the problem of timely detection. (2) Continuous in-process measurement. As yet unproven and likely to be costly. (3) More extensive use of containment and surveillance. The latter appears to be feasible but requires the incorporation of safeguards into plant design and sufficient redundancy to protect the operators interests. The advantages of altering the emphasis of safeguards philosophy from quantitative goals to the analysis of diversion strategies should be considered

  11. IAEA verification of materials accounting in commercial reprocessing plants

    International Nuclear Information System (INIS)

    Gutmacher, R.G.; Hakkila, E.A.

    1987-01-01

    The reprocessing plants currently under International Atomic Energy Agency (IAEA) safeguards have design capacities up to 210 tonnes of heavy metal per year. All of the plants use conventional materials accounting for safeguards. However, several larger commercial reprocessing plants are being designed with capacities of 350 to 1200 tonnes of heavy metal per year. It is likely that many of these plants, as well as some of the existing smaller ones, will adopt near-real-time materials accounting. The major effect of the combination of larger plants and near-real-time accounting on IAEA safeguards will be the demand for greater timeliness of verification. Continuous inspector presence may be required, as well as more on-site measurements by the inspector. In this paper, the authors review what needs to be verified, as well as current inspector activities in the process area. The bulk of the paper describes rapid, easy-to-use measurement techniques and instruments that may be applied to on-site verification measurements

  12. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance

  13. Materials management in an internationally safeguarded fuels reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

    1980-04-01

    The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

  14. Noble gas atmospheric monitoring for international safeguards at reprocessing plants

    International Nuclear Information System (INIS)

    Nakhleh, C.W.; Poths, J.; Stanbro, W.D.; Perry, R.T. Jr.; Wilson, W.B.; Fearey, B.L.

    1997-01-01

    The use of environmental sampling is a major component of the improvements of International Atomic Energy Agency safeguards being carried out under Program 93+2. Nonradioactive noble gas isotopic measurements in the effluent stream of large reprocessing facilities may provide useful confirmatory information on the burnup and reactor type of the spent fuel undergoing reprocessing. The authors have taken and analyzed stack samples at an operating facility. The data show clear fission signals. The authors are currently applying a maximum-likelihood estimation procedure to determine the fuel burnup from these data. They anticipate that the general features involved in the table noble gas problem--selection of appropriate signals, measurement of those signals under realistic conditions, and inverse calculation of parameters of interest from the environmental data--will be present in all environmental sampling problems. These methods should therefore be widely applicable

  15. Problem statement: international safeguards for a light-water reactor fuels reprocessing plant

    International Nuclear Information System (INIS)

    Shipley, J.P.; Hakkila, E.A.; Dietz, R.J.; Cameron, C.P.; Bleck, M.E.; Darby, J.L.

    1979-03-01

    This report considers the problem of developing international safeguards for a light-water reactor (LWR) fuel reprocessing/conversion facility that combines the Purex process with conversion of plutonium nitrate to the oxide by means of plutonium (III) oxalate precipitation and calcination. Current international safeguards systems are based on the complementary concepts of materials accounting and containment and surveillance, which are designed to detect covert, national diversion of nuclear material. This report discusses the possible diversion threats and some types of countermeasures, and it represents the first stage in providing integrated international safeguards system concepts that make optimum use of available resources. The development of design methodology to address this problem will constitute a significant portion of the subsequent effort. Additionally, future technology development requirements are identified. 8 figures, 1 table

  16. Design verification for large reprocessing plants (Proposed procedures)

    International Nuclear Information System (INIS)

    Rolandi, G.

    1988-07-01

    In the 1990s, four large commercial reprocessing plants will progressively come into operation: If an effective and efficient safeguards system is to be applied to these large and complex plants, several important factors have to be considered. One of these factors, addressed in the present report, concerns plant design verification. Design verification provides an overall assurance on plant measurement data. To this end design verification, although limited to the safeguards aspects of the plant, must be a systematic activity, which starts during the design phase, continues during the construction phase and is particularly performed during the various steps of the plant's commissioning phase. The detailed procedures for design information verification on commercial reprocessing plants must be defined within the frame of the general provisions set forth in INFCIRC/153 for any type of safeguards related activities and specifically for design verification. The present report is intended as a preliminary contribution on a purely technical level, and focusses on the problems within the Agency. For the purpose of the present study the most complex case was assumed: i.e. a safeguards system based on conventional materials accountancy, accompanied both by special input and output verification and by some form of near-real-time accountancy involving in-process inventory taking, based on authenticated operator's measurement data. C/S measures are also foreseen, where necessary to supplement the accountancy data. A complete ''design verification'' strategy comprehends: informing the Agency of any changes in the plant system which are defined as ''safeguards relevant''; ''reverifying by the Agency upon receiving notice from the Operator on any changes, on ''design information''. 13 refs

  17. Design considerations for an integrated safeguards system for fuel-reprocessng plants

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1982-05-01

    This report presents design ideas for safeguards systems in nuclear fuels reprocessing plants. The report summarizes general safeguards requirements and describes a safeguards system concept being developed and tested at the Idaho Chemical Processing Plant. The report gives some general concepts intended for design consideration and a checklist of specific problems that should be considered. The report is intended as an aid for the safeguards system designer and as a source of useful information

  18. Remotex and servomanipulator needs in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Garin, J.

    1981-01-01

    Work on the conceptual design of a pilot-scale plant for reprocessing breeder reactor fuels is being performed at Oak Ridge National Laboratory. The plant design will meet all current federal regulations for repocessing plants and will serve as prototype for future production plants. A unique future of the concept is the incorporation of totally remote operation and maintenance of the process equipment within a large barn-like hot cell. This approach, caled Remotex, utilizes servomanipulators coupled with television viewing to extend man's capabilities into the hostile cell environment. The Remotex concept provides significant improvements for fuel reprocessing plants and other nuclear facilities in the areas of safeguarding nuclear materials, reducing radiation exposure, improving plant availability, recovering from unplanned events, and plant decommissioning

  19. Safeguards and security modeling for electrochemical plants

    International Nuclear Information System (INIS)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D.

    2013-01-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers

  20. Safeguards and security modeling for electrochemical plants

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, B.B.; Duran, F.A.; Mendoza, L.A.; Parks, M.J.; Dominguez, D.; Le, T.D. [Sandia National Laboratories, PO Box 5800 MS 0747, Albuquerque, NM 87185 (United States)

    2013-07-01

    Safeguards and security design for reprocessing plants can lead to excessive costs if not incorporated early in the design process. The design for electrochemical plants is somewhat uncertain since these plants have not been built at a commercial scale in the past. The Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, has been used for safeguards design and evaluation for multiple reprocessing plant types. The SSPM includes the following capabilities: -) spent fuel source term library, -) mass tracking of elements 1-99 and bulk solid/liquids, -) tracking of heat load and activity, -) customisable measurement points, -) automated calculation of ID and error propagation, -) alarm conditions and statistical tests, and -) user-defined diversion scenarios. Materials accountancy and process monitoring data can provide more timely detection of material loss specifically to protect against the insider threat. While the SSPM is capable of determining detection probabilities and examining detection times for material loss scenarios, it does not model the operations or spatial effects for a plant design. The STAGE software was chosen to model the physical protection system. STAGE provides a framework to create end-to-end scalable force-on-force combat simulations. It allows for a complete 3D model of a facility to be designed along with the design of physical protection elements. This software, then, can be used to model operations and response for various material loss scenarios. The future integration of the SSPM model data with the STAGE software will provide a more complete analysis of diversion scenarios to assist plant designers.

  1. Design aspects of water usage in the Windscale nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wharton, J.; Bullock, M.J.

    1982-01-01

    The safeguard requirements of a nuclear fuel reprocessing plant place unique constraints on a designer which, in turn, affect the scope for the exercise of water economy. These constraints are examined within the context of the British Nuclear Fuels Limited reprocessing plants at Windscale and indicate the scope for water conservation. The plants and their design principles are described with particular reference to water services and usage. Progressive design development is discussed to illustrate the increasing importance of water economy. (author)

  2. Report on the NGS3 Working Group on Safeguards by Design For Aqueous Reprocessing Plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Shirley J.; Ehinger, Michael; Schanfein, Mark

    2011-02-01

    The objective of the Working Group on SBD for Aqueous Reprocessing Facilities was to provide recommendations, for facility operators and designers, which would aid in the coordination and integration of nuclear material accountancy and the safeguards requirements of all concerned parties - operators, state/regional authorities, and the IAEA. The recommendations, which are to be provided to the IAEA, are intended to assist in optimizing facility design and operating parameters to ensure the safeguardability of the facility while minimizing impact on the operations. The one day Working Group session addressed a wide range of design and operating topics.

  3. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    McCaskey, Alex [ORNL; Billings, Jay Jay [ORNL; de Almeida, Valmor F [ORNL

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usability and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.

  4. Workshop on instrumentation and analyses for a nuclear fuel reprocessing hot pilot plant

    International Nuclear Information System (INIS)

    Babcock, S.M.; Feldman, M.J.; Wymer, R.G.; Hoffman, D.

    1980-05-01

    In order to assist in the study of instrumentation and analytical needs for reprocessing plants, a workshop addressing these needs was held at Oak Ridge National Laboratory from May 5 to 7, 1980. The purpose of the workshop was to incorporate the knowledge of chemistry and of advanced measurement techniques held by the nuclear and radiochemical community into ideas for improved and new plant designs for both process control and inventory and safeguards measurements. The workshop was athended by experts in nuclear and radiochemistry, in fuel recycle plant design, and in instrumentation and analysis. ORNL was a particularly appropriate place to hold the workshop since the Consolidated Fuel Reprocessing Program (CFRP) is centered there. Requirements for safeguarding the special nuclear materials involved in reprocessing, and for their timely measurement within the process, within the reprocessing facility, and at the facility boundaries are being studied. Because these requirements are becoming more numerous and stringent, attention is also being paid to the analytical requirements for these special nuclear materials and to methods for measuring the physical parameters of the systems containing them. In order to provide a focus for the consideration of the workshop participants, the Hot Experimental Facility (HEF) being designed conceptually by the CFRP was used as a basis for consideration and discussions

  5. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  6. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    International Nuclear Information System (INIS)

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system

  7. Safeguard sleuths

    International Nuclear Information System (INIS)

    Lowry, D.

    1989-01-01

    A report of the conference of the European Safeguards Research and Development Association, which tries to prevent the diversion of nuclear materials to military uses is given. Some of the problems encountered by safeguards inspectors are mentioned, such as being able to follow the material through the maze of piping in a reprocessing plant, the linguistic difficulties if the inspector does not speak the operator's language, the difference between precision and accuracy and the necessity of human inspection, containment and surveillance systems. Unexplained outages at a reprocessing plant are always treated as suspicious, as are power failures which prevent normal surveillance. The UK practice of allocating civil fuel temporarily to military use at Harwell also makes safeguard policing more difficult. (UK)

  8. Solution Monitoring Evaluated by Proliferation Risk Assessment and Fuzzy Optimization Analysis for Safeguards in a Reprocessing Process

    Directory of Open Access Journals (Sweden)

    Mitsutoshi Suzuki

    2013-01-01

    Full Text Available Solution monitoring (SM has been used in a nuclear reprocessing plant as an additional measure to provide assurance that the plant is operated as declared. The inline volume and density monitoring equipment with dip tubes is important for safety and safeguards purposes and is a typical example of safeguards by design (SBD. Recently safety, safeguards, and security by design (3SBD are proposed to promote an efficient and effective generation of nuclear energy. In 3SBD, proliferation risk assessment has the potential to consider likelihood of the incidence and proliferation risk in safeguards. In this study, risk assessment methodologies for safeguards and security are discussed and several mathematical methods are presented to investigate risk notion applied to intentional acts of facility misuse in an uncertainty environment. Proliferation risk analysis with the Markov model, deterrence effect with the game model, and SBD with fuzzy optimization are shown in feasibility studies to investigate the potential application of the risk and uncertainty analyses in safeguards. It is demonstrated that the SM is an effective measurement system using risk-informed and cost-effective SBD, even though there are inherent difficulties related to the possibility of operator’s falsification.

  9. Fuel reprocessing plant - no solution for the economy of the region

    International Nuclear Information System (INIS)

    Elvers, G.

    1986-01-01

    Both for the construction and operation stage, the direct and indirect impact of the fuel reprocessing plant on employment on the whole will be negative. It is not altogether certain either that there will be no adverse effects for the areas of tourism. The top organization of German trade unions (DGB) holds that a different structure-political concept from the one represented by the large-scale project of the fuel reprocessing plant would be more appropriate for the region. Employment in the steel and construction industries must be safeguarded by corresponding programmes, and new employment must be created in small- and medium-size companies. (DG) [de

  10. Inspection activities of other strategic points (OSPs) at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kaifuki, Yukinobu; Ebata, Takashi; Nakano, Sadayuki; Fujimaki, Kazunori

    2008-01-01

    At Rokkasho Reprocessing Plant (RRP), Active Test (AT) using actual spent fuels for the final confirmation of the equipment and the system has been performed since March 31, 2006 toward the commercial operation. The safeguards inspection during AT is required in the same manner as commercial operation condition because plutonium is handled. In RRP automated verification systems are established by using unattended verification systems including a number of process monitoring systems along with main plutonium handling process from the spent fuel storage until the MOX product storages. Even under the modernized safeguards, inspection activities at Other Strategic Points (OSPs) are required to confirm plant status in accordance with requirements of the IAEA safeguards criteria. This paper presents procedures and inspection activities at OSPs which has been implemented in RRP since start of AT. (author)

  11. Fuel cycle of nuclear power plants and safeguards system of nuclear weapon nonproliferation

    International Nuclear Information System (INIS)

    Malek, Z.

    1980-10-01

    The international safeguard system of nuclear weapon nonproliferation and the IAEA safeguard system are briefly described. In Czechoslovakia, a decree was issued in 1977 governing the accounting for and control of nuclear materials. The contents of the decree are presented. Described are computer processing of accounting data, technical criteria for the safeguard system application, containment and inspection in the IAEA safeguard system. The method is shown of the control of and accounting for nuclear materials in nuclear power plants and in fuel manufacturing, reprocessing and enrichment plants. Nondestructive and destructive methods of nuclear materials analysis are discussed. Nondestructive methods used include gamma spectrometry, neutron techniques, X-ray fluores--cence techniques. (J.P.)

  12. The use of the hybrid K-edge densitometer for routine analysis of safeguards verification samples of reprocessing input liquor

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.

    1991-01-01

    Following successful tests of a hybrid K-edge instrument at TUI Karlsruhe and the routine use of a K-edge densitometer for safeguards verification at the same laboratory, the Euratom Safeguards Directorate of the Commission of the European Communities decided to install the first such instrument into a large industrial reprocessing plant for the routine verification of samples taken from the input accountancy tanks. This paper reports on the installation, calibration, sample handling procedure and the performance of this instrument after one year of routine operation

  13. Safeguards Envelope Progress FY08

    International Nuclear Information System (INIS)

    Bean, Robert; Metcalf, Richard; Bevill, Aaron

    2008-01-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant's large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis

  14. Nuclear safeguards technology 1986

    International Nuclear Information System (INIS)

    1987-01-01

    This publication presents the results of the sixth in a series of international symposia on nuclear material safeguards. Development efforts related to safeguards for reprocessing plants constituted over twenty per cent of the programme. Other papers present results of over four years of field testing of near real time material accountancy at a plant in Japan, and results for a lesser period of time at a plant in Scotland. Papers reporting work on destructive and non-destructive measurement procedures or equipment constituted another thirty per cent of the programme, more if measurements in reprocessing and poster presentations are included. In honour of the tenth anniversary of the founding of the Safeguards Analytical Laboratory, two sessions were devoted to a review of destructive analytical measurement procedures. Some subjects received only minor attention during the Symposium. The statistical theory of random sampling, safeguards for uranium enrichment plants, material accountancy systems and several other topics appear only incidentally in the programme, but primarily because there are few remaining problems, not because there is little remaining interest

  15. Design and Implementation of Equipment for Enhanced Safeguards of a Plutonium Storage in a Reprocessing Plant

    International Nuclear Information System (INIS)

    Richir, P.; Dechamp, L.; Buchet, P.; Dransart, P.; Dzbikowicz, Z.; Peerani, P.; ); Pierssens, L.; Persson, L.; Ancius, D.; Synetos, S.; ); Edmonds, N.; Homer, A.; Benn, K.-A.; Polkey, A.

    2015-01-01

    The Nuclear Security unit (NUSEC) of the Institute for Transuranium Elements (ITU, JRC) was entrusted by DG ENER to design and implement equipment in order to achieve enhanced safeguards of a plutonium dioxide storage located on the MAGNOX reprocessing plant in Sellafield (UK). Enhanced safeguards must lead to a win-win situation for all parties involved. In this case the DG ENER inspectorate will save inspection time, manpower and future financial resources and the operator will have the right to access its storage without the need for inspector presence. To reach this goal, while at the same time taking into account current budget constraints, NUSEC developed applications that use equipment commonly used in the safety and security fields but so far have not been used in safeguards. For instance, two laser scanners are used to detect entry/exit events into and out of the store and to provide the necessary information to an algorithm in order to categorize objects/people passing the scanners, e.g., a Fork Lift Truck, a trolley used to bring in PuO 2 containers, a system used for the dispatch of cans, people, etc. An RFID reader is used to identify equipment duly authorized to access the store. All PuO 2 containers arriving from the production line must be weighed, identified and measured using gamma and neutron detectors before they can be transferred to the store. For this purpose an Unattended Combined Measurement System (UCMS) was designed and manufactured by the JRC in order to do all verification activities using a single instrument. This paper describes the design features of the equipment and its implementation with the support of the Sellafield Ltd. in the framework of the MAGNOX store project. (author)

  16. Direction of reprocessing technology development based on 30 years operation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nomura, S; Tanaka, T.; Ohshima, H.

    2006-01-01

    Full text: Full text: Recent global interest focuses the possibility of recycling of spent fuel with advanced fast reactor fuel cycle system. Goal of closed fuel cycle is to achieve the maximum use of uranium resources and minimum disposal of waste by multi recycle of TRU as a competitive nuclear energy system. The future reprocessing and fuel fabrication system should be synchronized completely with the advanced reactor system and waste treatment and disposal back-end system to complete closed fuel cycle. To realize such system, current reprocessing system should be changed to handle Pu-U-Minor Actinide with more reductions in the cost and less waste volume, as well as an inherent proliferation resistance. For the successful industrialization of advanced reprocessing technology, it is necessary to combine three key elements of R and D efforts, engineering base demonstration and experiences of plant operation. Tokai Reprocessing Facilities licensed a maximum capacity of 0.7tHM/day began a hot operation in 1977 and reprocessed l,100tHM U02 spent fuel and 20tHM ATR-MOX with a continuous technological improvements under IAEA full scope safeguards. With 30 years experience, candidate of key technologies proposed for realizing the next advanced reprocessing are as follows: 1) Simplified co-extraction process of Pu-Np-U by using multistage centrifugal extractors in stead of pulsed columns; 2) Corrosion free components in acid condition by using corrosion resistant refractory alloys and ceramics; 3) Co-conversion technology to MA containing MOX powder by micro-wave heating method for a short process for MA containing MOX pellets fabrication; 4) Advanced verification of high level radioactive liquid waste combining separation technology of TRU and LLFP elements; 5) Advanced chemical analysis and monitoring system for TRU elements in a plant. These advanced reprocessing technologies will be applied mainly to reprocess the LWR spent fuel accumulated past and future

  17. IAEA symposium on international safeguards. Extended synopses

    International Nuclear Information System (INIS)

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials

  18. Optimizing near real time accountability for reprocessing

    International Nuclear Information System (INIS)

    Cipiti, Benjamin B.

    2010-01-01

    Near Real Time Accountability (NRTA) of actinides at high precision in reprocessing plants has been a long sought-after goal in the safeguards community. Achieving this goal is hampered by the difficulty of making precision measurements in the reprocessing environment, equipment cost, and impact to plant operations. Thus the design of future reprocessing plants requires an optimization of different approaches. The Separations and Safeguards Performance Model, developed at Sandia National Laboratories, was used to evaluate a number of NRTA strategies in a UREX+ reprocessing plant. Strategies examined include the incorporation of additional actinide measurements of internal plant vessels, more use of process monitoring data, and the option of periodic draining of inventory to key tanks. Preliminary results show that the addition of measurement technologies can increase the overall measurement uncertainty due to additional error propagation, so care must be taken when designing an advanced system. Initial results also show that relying on a combination of different NRTA techniques will likely be the best option. The model provides a platform for integrating all the data. The modeling results for the different NRTA options under various material loss conditions will be presented.

  19. Development of solution monitoring software for enhanced safeguards at a large scale reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Van Handenhove, Carl; Breban, Domnica; Creusot, Christophe [International Atomic Energy Agency, Vienna (Austria); Dransart, Pascal; Dechamp, Luc [Joint Research Centre, European Commission, Ispra, Varese, (Italy); Jarde, Eric [Euriware, Equeurdreville (France)

    2011-12-15

    The implementation of an effective and efficient IAEA safeguards approach at large scale reprocessing facilities with large throughput and continuous flow of nuclear material requires the introduction of enhanced safeguards measures to provide added assurance about the absence of diversion of nuclear material and confirmation that the facility is operated as declared. One of the enhanced safeguards measures, a Solution Monitoring and Measurement System (SMMS), comprising data collection instruments, data transmission equipment and an advanced Solution Monitoring Software (SMS), is being implemented at a large scale reprocessing plant in Japan. SMS is designed as a tool to enable automatic calculations of volumes, densities and flow-rates in selected process vessels, including most of the vessels of the main nuclear material stream. This software also includes automatic features to support the inspectorate in verifying inventories and inventory changes. The software also enables one to analyze the flows of nuclear material within the process and of specified 'cycles' of operation, and, in order to provide assurance that the facility is being operated as declared to compare these with those expected (reference signatures). The configuration and parameterization work (especially the analytical and comparative work) for the implementation and configuration of the SMS has been carried out jointly between the IAEA, Euriware-France (the software developer) and the Joint Research Centre (JRC)-Ispra. This paper describes the main features of the SMS, including the principles underlying the automatic analysis functionalities. It then focuses on the collaborative work performed by the JRC-Ispra, Euriware and the IAEA for the parameterization of the software (vessels and cycles of operation), including the current status and the future challenges.

  20. IAEA symposium on international safeguards. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The most important subjects treated in 188 papers presented by the participants from member state and IAEA Safeguards Inspectors at the Symposium were as follows: implementation of IAEA safeguards; national support programs to the IAEA safeguards; experiences in application of safeguard monitoring devices; improved methods for verification of plutonium; highly enriched uranium; surveillance of spent fuel storage facilities, reprocessing plants, fuel fabrication plants; excess weapon grade plutonium and other fissile materials Refs, figs, tabs

  1. Safeguards Envelope Progress FY08

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Richard Metcalf; Aaron Bevill

    2008-09-01

    The Safeguards Envelope Project met its milestones by creating a rudimentary safeguards envelope, proving the value of the approach on a small scale, and determining the most appropriate path forward. The Idaho Chemical Processing Plant’s large cache of reprocessing process monitoring data, dubbed UBER Data, was recovered and used in the analysis. A probabilistic Z test was used on a Markov Monte Carlo simulation of expected diversion data when compared with normal operating data. The data regarding a fully transient event in a tank was used to create a simple requirement, representative of a safeguards envelope, whose impact was a decrease in operating efficiency by 1.3% but an increase in material balance period of 26%. This approach is operator, state, and international safeguards friendly and should be applied to future reprocessing plants. Future requirements include tank-to-tank correlations in reprocessing facilities, detailed operations impact studies, simulation inclusion, automated optimization, advanced statistics analysis, and multi-attribute utility analysis.

  2. SAFEGUARDS ENVELOPE: PREVIOUS WORK AND EXAMPLES

    International Nuclear Information System (INIS)

    Metcalf, Richard; Bevill, Aaron; Charlton, William; Bean, Robert

    2008-01-01

    The future expansion of nuclear power will require not just electricity production but fuel cycle facilities such as fuel fabrication and reprocessing plants. As large reprocessing facilities are built in various states, they must be built and operated in a manner to minimize the risk of nuclear proliferation. Process monitoring has returned to the spotlight as an added measure that can increase confidence in the safeguards of special nuclear material (SNM). Process monitoring can be demonstrated to lengthen the allowable inventory period by reducing accountancy requirements, and to reduce the false positive indications. The next logical step is the creation of a Safeguards Envelope, a set of operational parameters and models to maximize anomaly detection and inventory period by process monitoring while minimizing operator impact and false positive rates. A brief example of a rudimentary Safeguards Envelope is presented, and shown to detect synthetic diversions overlaying a measured processing plant data set. This demonstration Safeguards Envelope is shown to increase the confidence that no SNM has been diverted with minimal operator impact, even though it is based on an information sparse environment. While the foundation on which a full Safeguards Envelope can be built has been presented in historical demonstrations of process monitoring, several requirements remain yet unfulfilled. Future work will require reprocessing plant transient models, inclusion of 'non-traditional' operating data, and exploration of new methods of identifying subtle events in transient processes

  3. Transformative monitoring approaches for reprocessing.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.

    2011-09-01

    The future of reprocessing in the United States is strongly driven by plant economics. With increasing safeguards, security, and safety requirements, future plant monitoring systems must be able to demonstrate more efficient operations while improving the current state of the art. The goal of this work was to design and examine the incorporation of advanced plant monitoring technologies into safeguards systems with attention to the burden on the operator. The technologies examined include micro-fluidic sampling for more rapid analytical measurements and spectroscopy-based techniques for on-line process monitoring. The Separations and Safeguards Performance Model was used to design the layout and test the effect of adding these technologies to reprocessing. The results here show that both technologies fill key gaps in existing materials accountability that provide detection of diversion events that may not be detected in a timely manner in existing plants. The plant architecture and results under diversion scenarios are described. As a tangent to this work, both the AMUSE and SEPHIS solvent extraction codes were examined for integration in the model to improve the reality of diversion scenarios. The AMUSE integration was found to be the most successful and provided useful results. The SEPHIS integration is still a work in progress and may provide an alternative option.

  4. Tokai advanced safeguards technology exercise task T-F: study of selected capabilities needed to apply DYMAC principles to safeguarding the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Lowry, L.L.; Augustson, R.H.

    1979-10-01

    Selected technical capabilities needed to apply the DYMAC principles to safeguarding the Tokai reproprocessing plant are presented. The measurements needed to close the mass balance around the process line and the analysis methods for assessing the results were investigated. Process conditions at the Tokai plant were used when numerical values were needed to assist the analyis. A rationale is presented for the selection of instruments (x-ray fluorescence spectrometers, x-ray densitometers, and gamma-ray spectrometers) best suited to establishing plutonium concentrations and inventories in the feed tanks. The current state of the art in estimating inventory in contactors is reviewed and profitable directions for further work are recommended. A generalized performance surface has been developed that can measure the diversion sensitivity of the safeguard system when the instrument performance levels, the number of measurements made, and the false alarm probability are specified. An analysis of its application to the Tokai plant is given. Finally, a conceptual approach to the problem of IAEA safeguards verification is discussed. It appears possible that, in the process of verifying, the full power of the plant operator's safeguard system can be brought to the service of the IAEA

  5. Present status of fuel reprocessing plant in PNC

    International Nuclear Information System (INIS)

    Koyama, Kenji

    1981-01-01

    In the fuel reprocessing plant of the Power Reactor and Nuclear Fuel Development Corporation, its hot test has now been completed. For starting its full-scale operation duly, the data are being collected on the operation performance and safety. The construction was started in June, 1971, and completed in October, 1974. In July, 1977, spent fuel was accepted in the plant, and the hot test was started. In September, the same year, the first fuel shearing was made. So far, a total of about 31 t U from both BWR and PWR plants has been processed, thus the hot test was entirely completed. The following matters are described: hot test and its results, research on Pu and U mixed extraction, utilization of product plutonium, development of safeguard technology, and repair work on the acid recovery evaporation tank. (J.P.N.)

  6. Japanese national reference reprocessing plant

    International Nuclear Information System (INIS)

    1978-08-01

    This paper gives a general description of the proposed Japanese national reprocessing plant and of the design philosophy. The plant is in most respects similar to the base case reprocessing plant, with an annual throughput of 100-1500 tU. The plant would be co-located with a fuel fabrication facility

  7. Outline of material accountancy system for Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Kitamura, Touko; Yamazaki Yoshihiro; Ai, Hironobu

    2004-01-01

    In January 2004, Facility Attachment (FA) for Rokkasho Reprocessing Plant (RRP) was entered into force and the safeguards has been implemented in accordance with the FA. So operator must carry out the effectual material accountancy on the basis of facility operation. RRP is large and complex facility and operated based on automatic and remote system. For efficient material accounting viewpoint, the system especially automatic data collection is established using RRP computer network. The paper describes the outline of material accountancy system, the structure of RRP computer network including how to collect the source data, to convert the batch data and the reporting. (author)

  8. PIPEX - A model of a design concept for reprocessing plants with improved containment and surveillance features

    International Nuclear Information System (INIS)

    1979-03-01

    This paper explains that the PIPEX concept is essentially a reprocessing plant using the PUREX process but with in-built improved containment and surveillance features resulting in increased health protection and environmental safety as well as higher resistance to diversion of fissile material. The paper gives a general description of the design and operating philosophy of such a plant and goes on to examine the safeguards and safety principles and implications

  9. Demonstration and development of safeguards techniques in the PNC reprocessing plant. Part of a coordinated programme on the use of installed instrumentation in fuel reprocessing facilities for safeguards purposes

    International Nuclear Information System (INIS)

    Kurihara, H.

    1979-04-01

    A hull-monitoring system in the Head-End facility and systems for surveillance and containment in the spent fuel receiving and storage facility at Tokai Reprocessing Plant are described. Operating experience on them is analyzed

  10. Reprocessing plants safety

    International Nuclear Information System (INIS)

    Davies, A.G.; Leighton, C.; Millington, D.

    1989-01-01

    The reprocessing of irradiated nuclear fuel at British Nuclear Fuels (BNFL) Sellafield site consists of a number of relatively self-contained activities carried out in separate plants across the site. The physical conditions and time scales applied in reprocessing and storage make it relatively benign. The potential for minor releases of radioactivity under fault conditioning is minimised by plant design definition of control procedures, training and supervision. The risks to both the general public and workforce are shown to be low with all the safety criteria being met. Normal operating conditions also have the potential for some occupational radiation exposure and the plant and workers are monitored continuously. Exposure levels have been reduced steadily and will continue to fall with plant improvements. (U.K.)

  11. Study of the application of near-real-time materials accountancy to safeguards for reprocessing facilities

    International Nuclear Information System (INIS)

    Ikawa, Koji; Ihara, Hitoshi; Nishimura, Hideo; Hirata, Mitsuho; Sakuragi, Hirotaka; Ido, Masaru.

    1983-09-01

    This report describes the results of TASTEX task F, the basic purpose of which was to investigate the feasibility of applying the basic concepts of near-real-time materials accountancy to small or medium-sized spent fuel reprocessing facilities, using the PNC-Tokai facility as a model. The background of Task-F and the proposed IAEA requirements on reprocessing plant safeguards are briefly shown. A model of near-real-time materials accountancy based on weekly material balances covering the entire process MBA is outlined, and the effectiveness of this model is evaluated based on simulation and analysis procedures developed for the study. The results show that the proposed materials accountancy model should provide sufficient information to satisfy IAEA guidelines for detection goals. Field testing of the model began in 1980, and the preliminary evaluation of this field test data shows that weekly in-process physical inventories are possible without affecting process operations. This report also describes studies related to IAEA verification procedures, and identifies necessary further work. (author)

  12. The use of artificial intelligence for safeguard fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from minirun campaigns conducted at the Barnwell Nuclear Fuels Plant have been utilized to study the suitability of computer-based artificial intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software. The computer software accepted as input process data customarily used for process operations that had previously been recorded on magnetic tape during the 1980 miniruns. The OPS5 AI language was used to construct an expert system for simulated monitoring of the process. Such expert systems facilitate the employment of the heuristic reasoning used by human observers to form reasoned conclusions from incomplete, inaccurate, or otherwise fuzzy data

  13. Aggregated systems model for nuclear safeguards decisions

    International Nuclear Information System (INIS)

    1979-03-01

    This report summarizes a general analytical tool designed to assist nuclear safeguards decision-makers. The approach is based on decision analysis--a quantitative procedure for evaluating complex decision alternatives with uncertain outcomes. The report describes the general analytical approach in the context of safeguards decisions at a hypothetical nuclear fuel reprocessing plant

  14. Processing large sensor data sets for safeguards : the knowledge generation system.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

    2012-04-01

    Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

  15. Noble gas atmospheric monitoring at reprocessing facilities

    International Nuclear Information System (INIS)

    Nakhleh, C.W.; Perry, R.T. Jr.; Poths, J.; Stanbro, W.D.; Wilson, W.B.; Fearey, B.L.

    1997-01-01

    The discovery in Iraq after the Gulf War of the existence of a large clandestine nuclear-weapon program has led to an across-the-board international effort, dubbed Programme 93+2, to improve the effectiveness and efficiency of International Atomic Energy Agency (IAEA) safeguards. One particularly significant potential change is the introduction of environmental monitoring (EM) techniques as an adjunct to traditional safeguards methods. Monitoring of stable noble gas (Kr, Xe) isotopic abundances at reprocessing plant stacks appears to be able to yield information on the burnup and type of the fuel being processed. To estimate the size of these signals, model calculations of the production of stable Kr, Xe nuclides in reactor fuel and the subsequent dilution of these nuclides in the plant stack are carried out for two case studies: reprocessing of PWR fuel with a burnup of 35 GWd/tU, and reprocessing of CAND fuel with a burnup of 1 GWd/tU. For each case, a maximum-likelihood analysis is used to determine the fuel burnup and type from the isotopic data

  16. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-07-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system

  17. Development of a computerized nuclear materials control and accounting system for a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Crawford, J.M.; Ehinger, M.H.; Joseph, C.; Madeen, M.L.

    1979-01-01

    A computerized nuclear materials control and accounting system (CNMCAS) for a fuel reprocessing plant is being developed by Allied-General Nuclear Services at the Barnwell Nuclear Fuel Plant. Development work includes on-line demonstration of near real-time measurement, measurement control, accounting, and processing monitoring/process surveillance activities during test process runs using natural uranium. A technique for estimating in-process inventory is also being developed. This paper describes development work performed and planned, plus significant design features required to integrate CNMCAS into an advanced safeguards system. 2 refs

  18. Safeguarding the Plutonium Fuel Cycle

    International Nuclear Information System (INIS)

    Johnson, S.J.; Lockwood, D.

    2013-01-01

    In developing a Safeguards Approach for a plutonium process facility, two general diversion and misuse scenarios must be addressed: 1) Unreported batches of undeclared nuclear material being processed through the plant and bypassing the accountancy measurement points, and 2) The operator removing plutonium at a rate that cannot be detected with confidence due to measurement uncertainties. This paper will look at the implementation of international safeguards at plutonium fuel cycle facilities in light of past lessons learned and current safeguards approaches. It will then discuss technical areas which are currently being addressed as future tools to improve on the efficiency of safeguards implementation, while maintaining its effectiveness. The discussion of new improvements will include: safeguards by design (SBD), process monitoring (PM), measurement and monitoring equipment, and data management. The paper is illustrated with the implementation of international safeguards at the Rokkasho Reprocessing Plant in Japan and its accountancy structure is detailed. The paper is followed by the slides of the presentation

  19. The use of artificial intelligence for safeguarding fuel reprocessing plants

    International Nuclear Information System (INIS)

    Wachter, J.W.; Forgy, C.L.

    1987-01-01

    Recorded process data from the ''Minirun'' campaigns conducted at the Barnwell Nuclear Fuel Plant (BNFP) in Barnwell, South Carolina during 1980 to 1981 have been utilized to study the suitability of computer-based Artificial Intelligence (AI) methods for process monitoring for safeguards purposes. The techniques of knowledge engineering were used to formulate the decision-making software which operates on the process data customarily used for process operations. The OPS5 AI language was used to construct an Expert System for this purpose. Such systems are able to form reasoned conclusions from incomplete, inaccurate or otherwise ''fuzzy'' data, and to explain the reasoning that led to them. The programs were tested using minirun data taken during simulated diversions ranging in size from 1 to 20 L of solution that had been monitored previously using conventional procedural techniques. 13 refs., 3 figs

  20. Recent advances in safeguards operations

    International Nuclear Information System (INIS)

    Agu, B.; Iwamoto, H.

    1983-01-01

    The facilities and nuclear materials under IAEA safeguards have steadily increased in the past few years with consequent increases in the manpower and effort required for the implementation of effective international safeguards. To meet this challenge, various techniques and instruments have been developed with the assistance, support and cooperation of the Member States. Improved NDA equipment now permits accurate verification of plutonium and HEU bearing items; and optical and TV surveillance systems have improved remarkably. Experience in safeguarding nuclear facilities now includes fast-reactor fuel reprocessing and enrichment plants, even though the Hexapartite Safeguards Project is yet to define an agreed approach for safeguarding enrichment plants. The establishment of field offices now enables the IAEA to adequately implement safeguards at important facilities and also with more effective use of manpower. Closer cooperation with Member States via liaison or similar committees makes for effective safeguards implementation and the speedy solution of attendant problems. The technical support programmes from the Member States continue to provide the basis of the recent advances in safeguards techniques and instrumentation. (author)

  1. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  2. Preliminary field tests of near-real-time materials accountancy system at the Tokai Reprocessing Plant (TASK F)

    International Nuclear Information System (INIS)

    Tsutsumi, Masayori; Sawahata, Toshio; Sugiyama, Toshihide; Tanaka, Kazuhiko; Suyama, Naohiro

    1982-01-01

    A study of applying the proposed near-real-time material accountancy model to the Tokai Reprocessing Plant, PNC (Power Reactor and Nuclear Fuel Development Corp.), showed that the model was feasible and effective to meet the IAEA (International Atomic Energy Agency) safeguards criteria in terms of detection timeliness and sensitivity. This study using the computer simulation technique is shown in this paper. In order to investigate the applicability of the model to the actual plant, the field test was carried out on the process in the material balance area (MBA) which covers the area from the input accountability vessel (IAV) to the product accountability vessel (PAV), in cooperation with JAERI. The key measuring points for dynamic physical inventory counts (D-PIT) are shown. The results of test evaluation are as follows: For timely detection, it will be able to evaluate an abnoumal accountancy in process by using the MUFd (material unaccounted for) obtained by the D-PIT about once every week. Therefore, this seems to satisfy the timely detection of IAEA safeguards criteria. As for detection, sensitivity and verification procedures, in order to clarify these criteria for a large scale reprocessing plant, further research and development will be required. In addition, since the field test was carried out along with normal plant operation, additional man-power problem was also considered. (Wakatsuki, Y.)

  3. A study of statistical tests for near-real-time materials accountancy using field test data of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ihara, Hitoshi; Nishimura, Hideo; Ikawa, Koji; Miura, Nobuyuki; Iwanaga, Masayuki; Kusano, Toshitsugu.

    1988-03-01

    An Near-Real-Time Materials Accountancy(NRTA) system had been developed as an advanced safeguards measure for PNC Tokai Reprocessing Plant; a minicomputer system for NRTA data processing was designed and constructed. A full scale field test was carried out as a JASPAS(Japan Support Program for Agency Safeguards) project with the Agency's participation and the NRTA data processing system was used. Using this field test data, investigation of the detection power of a statistical test under real circumstances was carried out for five statistical tests, i.e., a significance test of MUF, CUMUF test, average loss test, MUF residual test and Page's test on MUF residuals. The result shows that the CUMUF test, average loss test, MUF residual test and the Page's test on MUF residual test are useful to detect a significant loss or diversion. An unmeasured inventory estimation model for the PNC reprocessing plant was developed in this study. Using this model, the field test data from the C-1 to 85 - 2 campaigns were re-analyzed. (author)

  4. Safeguards approach for irradiated fuel

    International Nuclear Information System (INIS)

    Harms, N.L.; Roberts, F.P.

    1987-03-01

    IAEA verification of irradiated fuel has become more complicated because of the introduction of variations in what was once presumed to be a straightforward flow of fuel from reactors to reprocessing plants, with subsequent dissolution. These variations include fuel element disassembly and reassembly, rod consolidation, double-tiering of fuel assemblies in reactor pools, long term wet and dry storage, and use of fuel element containers. This paper reviews future patterns for the transfer and storage of irradiated LWR fuel and discusses appropriate safeguards approaches for at-reactor storage, reprocessing plant headend, independent wet storage, and independent dry storage facilities

  5. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  6. Italian experience with pilot reprocessing plants

    International Nuclear Information System (INIS)

    Cao, S.; Dworschak, H.; Rolandi, G.; Simonetta, R.

    1977-01-01

    Problems and difficulties recently experienced in the reprocessing technology of high burnup power reactor fuel elements have shown the importance of pilot plant experiments to optimize the separation processes and to test advanced equipment on a representative scale. The CNEN Eurex plant, in Saluggia (Vercelli), with a 50 kg/d thruput, in operation since '71, has completed several reprocessing campaigns on MTR type fuel elements. Two different chemical flowsheets based respectively on TBP and tertiary amines were thoroughly tested and compared: a concise comparative evaluation of the results obtained with the two schemes is given. Extensive modifications have then been introduced (namely a new headend cell equipped with a shear) to make the plant suitable to reprocess power reactor fuels. The experimental program of the plant includes a joint CNEN-AECL reprocessing experiment on CANDU (Pickering) type fuel elements to demonstrate a two cycle, amine based recovery of the plutonium. Later, a stock of high burnup fuel elements from the PWR Trino power station will be reprocessed to recover Pu and U with a Purex type flowsheet. ITREC, the second CNEN experimental reprocessing plant located at Trisaia Nuclear Center (Matera), started active operation two years ago. In the first campaign Th-U mixed oxide fuel elements irradiated in the Elk River reactor were processed. Results of this experiment are reported. ITREC special design features confer a high degree of versability to the plant allowing for substantial equipment modification under remote control conditions. For this reason the plant will be principally devoted in the near future to advanced equipment testing. Along this line high speed centrifugal contactor of a new type developed in Poland will be tested in the plant in the frame of a joint experiment between CNEN and the Polish AEC. Later on the plant program will include experimental campaign on fast reactor fuels; a detailed study on this program is in

  7. Methodology and preliminary models for analyzing nuclear safeguards decisions

    International Nuclear Information System (INIS)

    1978-11-01

    This report describes a general analytical tool designed to assist the NRC in making nuclear safeguards decisions. The approach is based on decision analysis--a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material, demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria), and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  8. Can a safeguards accountancy system really detect an unauthorized removal

    International Nuclear Information System (INIS)

    Ehinger, M.H.; Ellis, J.H.

    1981-11-01

    Theoretical investigations and system studies indicate safeguards material balance data from reprocessing plants can be used to detect unauthorized removals. Plant systems have been modeled and simulated data used to demonstrate the techniques. But how sensitive are the techniques when used with actual plant data. What is the effect of safeguards applications on plant operability. Can safeguards be acceptable to plant operators, and are there any benefits to be derived. The Barnwell Nuclear Fuel Plant (BNFP) has been devoted to answering these and other questions over the past several years. A computerized system of near-real-time accounting and in-process inventory has been implemented and demonstrated during actual plant test runs. Measured inventories and hourly material balance closures have been made to assess safeguards in an operating plant application. The tests have culminated in actual removals of material from the operating plant to investigate the response and measure the sensitivity of the safeguards and data evaluation system

  9. Evaluation and development plan of NRTA measurement methods for the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Li, T.K.; Hakkila, E.A.; Flosterbuer, S.F.

    1995-01-01

    Near-real-time accounting (NRTA) has been proposed as a safeguards method at the Rokkasho Reprocessing Plant (RRP), a large-scale commercial boiling water and pressurized water reactors spent-fuel reprocessing facility. NRTA for RRP requires material balance closures every month. To develop a more effective and practical NRTA system for RRP, we have evaluated NRTA measurement techniques and systems that might be implemented in both the main process and the co-denitration process areas at RRP to analyze the concentrations of plutonium in solutions and mixed oxide powder. Based on the comparative evaluation, including performance, reliability, design criteria, operation methods, maintenance requirements, and estimated costs for each possible measurement method, recommendations for development were formulated. This paper discusses the evaluations and reports on the recommendation of the NRTA development plan for potential implementation at RRP

  10. Results of Active Test of Uranium-Plutonium Co-denitration Facility at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Numao, Teruhiko; Nakayashiki, Hiroshi; Arai, Nobuyuki; Miura, Susumu; Takahashi, Yoshiharu; Nakamura, Hironobu; Tanaka, Izumi

    2007-01-01

    In the U-Pu co-denitration facility at Rokkasho Reprocessing Plant (RRP), Active Test which composes of 5 steps was performed by using uranium-plutonium nitrate solution that was extracted from spent fuels. During Active Test, two kinds of tests were performed in parallel. One was denitration performance test in denitration ovens, and expected results were successfully obtained. The other was validation and calibration of non-destructive assay (NDA) systems, and expected performances were obtained and their effectiveness as material accountancy and safeguards system was validated. (authors)

  11. Discharges from a fast reactor reprocessing plant

    International Nuclear Information System (INIS)

    Barnes, D.S.

    1987-01-01

    The purpose of this paper is to assess the environmental impact of the calculated routine discharges from a fast reactor fuel reprocessing plant. These assessments have been carried out during the early stages of an evolving in-depth study which culminated in the design for a European demonstration reprocessing plant (EDRP). This plant would be capable of reprocessing irradiated fuel from a series of European fast reactors. Cost-benefit analysis has then been used to assess whether further reductions in the currently predicted routine discharges would be economically justified

  12. Gaseous isotope correlation technique for safeguards at reprocessing facilities

    International Nuclear Information System (INIS)

    Ohkubo, Michiaki.

    1988-03-01

    The isotope correlation technique based on gaseous stable fission products can be used as a means of verifying the input measurement to fuel reprocessing plants. This paper reviews the theoretical background of the gaseous fission product isotope correlation technique. The correlations considered are those between burnup and various isotopic ratios of Kr and Xe nuclides. The feasibility of gaseous ICT application to Pu input accountancy of reprocessing facilities is also discussed. The technique offers the possibility of in situ measurement verification by the inspector. (author). 16 refs, 7 figs

  13. Report on the FR Germany: US technical workshop on near-real-time material accounting for reprocessing plants

    International Nuclear Information System (INIS)

    Weh, R.; Hakkila, E.A.; Canty, M.J.

    1986-01-01

    A technical workshop on the subject of near-real-time material accounting in an industrial scale reprocessing plant was held. Organized within the context of the US DOE - FR German Ministry of Research and Technology (BMFT) agreement in the field of international safeguards, the workshop was initiated by the Deutsche Gesellschaft fur Wiederaufarbeitung von Kernbrennstoffen, responsible for the construction and operation of a planned industrial scale reprocessing plant in the FR Germany. The workshop's objective was to establish the current state of the art for near-real-time accounting and to bring out a common understanding and consensus among experts from both countries which seve as a basis for the definition of problems still to be solved. A summary of the workshop presentations, preliminary conclusions drawn by the experts attending as well as some implications for the application of dynamic balancing are given

  14. Separations and safeguards model integration.

    Energy Technology Data Exchange (ETDEWEB)

    Cipiti, Benjamin B.; Zinaman, Owen

    2010-09-01

    Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

  15. Symposium on international safeguards: Addressing verification challenges. Book of extended synopses

    International Nuclear Information System (INIS)

    2006-01-01

    A safeguards symposium has traditionally been organized by the Safeguards Department approximately every four years. The 2006 symposium addresses challenges to IAEA safeguards that have emerged or grown more serious since 2001. The increase in size and flexibility of uranium enrichment plants, for instance, and the spread of enrichment technology to a wider circle of States, pose challenges to traditional safeguards approaches. The procurement and supply networks discovered in 2004, dealing in sensitive nuclear technology and information, have serious implications for the future effectiveness of IAEA safeguards. The symposium will provide an opportunity for the IAEA and Member States to discuss options for dealing constructively with trade in sensitive nuclear technology. Reflecting developments since 2001, the 2006 symposium will focus on current challenges to the safeguards system, improving collection and analysis of safeguards information (analysis, processing tools, satellite imagery), advances in safeguards techniques and technology (future technology, neutron techniques, spent fuel verification, reprocessing, environmental sampling, containment and surveillance), further strengthening safeguards practices and approaches (safeguards approaches, integrated safeguards, R/SSAC, destructive analysis, non-destructive analysis, enrichment, reprocessing, spent fuel transfer) and future challenges. This publication contains 183 extended synopses, each of them was indexed separately

  16. Symposium on international safeguards: Addressing verification challenges. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A safeguards symposium has traditionally been organized by the Safeguards Department approximately every four years. The 2006 symposium addresses challenges to IAEA safeguards that have emerged or grown more serious since 2001. The increase in size and flexibility of uranium enrichment plants, for instance, and the spread of enrichment technology to a wider circle of States, pose challenges to traditional safeguards approaches. The procurement and supply networks discovered in 2004, dealing in sensitive nuclear technology and information, have serious implications for the future effectiveness of IAEA safeguards. The symposium will provide an opportunity for the IAEA and Member States to discuss options for dealing constructively with trade in sensitive nuclear technology. Reflecting developments since 2001, the 2006 symposium will focus on current challenges to the safeguards system, improving collection and analysis of safeguards information (analysis, processing tools, satellite imagery), advances in safeguards techniques and technology (future technology, neutron techniques, spent fuel verification, reprocessing, environmental sampling, containment and surveillance), further strengthening safeguards practices and approaches (safeguards approaches, integrated safeguards, R/SSAC, destructive analysis, non-destructive analysis, enrichment, reprocessing, spent fuel transfer) and future challenges. This publication contains 183 extended synopses, each of them was indexed separately.

  17. Methodology and preliminary models for analyzing nuclear-safeguards decisions

    International Nuclear Information System (INIS)

    Judd, B.R.; Weissenberger, S.

    1978-11-01

    This report describes a general analytical tool designed with Lawrence Livermore Laboratory to assist the Nuclear Regulatory Commission in making nuclear safeguards decisions. The approach is based on decision analysis - a quantitative procedure for making decisions under uncertain conditions. The report: describes illustrative models that quantify the probability and consequences of diverted special nuclear material and the costs of safeguarding the material; demonstrates a methodology for using this information to set safeguards regulations (safeguards criteria); and summarizes insights gained in a very preliminary assessment of a hypothetical reprocessing plant

  18. Special safeguards study. Scopes of work

    International Nuclear Information System (INIS)

    1975-06-01

    The Special Safeguards Study (SSS) will be conducted by a combination of (1) contacts with other agencies, (2) NRC staff studies and analysis and (3) contracted studies in specific areas. Most of the study effort will be carried out by contractual support activities. These activities will be devoted to providing technical information, primarily qualitative because of the short term of the study, to enable the staff to determine the most cost-effective sets of measures for plutonium recycle and high-enriched uranium fuel cycle safeguards. The scope of work for these activities is given. The scope of work describes tasks that range from confirming the Commission's safeguards objective to defining specific protection systems for the following siting arrangements: dispersed sites, collocated fuel cycle plants, and mixed parks where reactors, reprocessing plants and fuel fabrication plants are collocated. (U.S.)

  19. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  20. Development of Tokai reprocessing plant maintenance support system (TORMASS) in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Shimizu, Kazuyuki; Tomita, Tsuneo; Sakai, Katsumi

    2008-01-01

    The maintenance work of many equipments such as mechanical, electrical and instrumentations installed in Tokai reprocessing plant has been performed more then 10,000 times per year and about 90% of maintenances were preventive work. For the maintenance management, optimization of maintenance information is required. Therefore, Tokai Reprocessing Plant Maintenance Support System (TORMASS) was developed from 1985 to 1992 as the aim of construction for suitable maintenance management system. About 24,000 equipments of specifications and about 261,000 maintenance detail were registered in this system. TORMASS has been used for the repair, inspection and replacement of equipment since 1992. (author)

  1. Study of assessing aqueous reprocessing process for the pipeless reprocessing plant

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Morioka, Nobuo; Fumoto, Hiromichi; Nishimura, Kenji; Chikazawa, Takahiro

    2000-02-01

    The purpose of this study is to investigate the possibility of new reprocessing process for the purpose of introducing pipeless plant concept, where aqueous separation methods other than solvent extraction method are adopted in order to develop more economical FBR fuel (MOX fuel) reprocessing process. At it's first stage, literature survey on precipitation method, crystallization method and ion-exchange method was performed. Based on the results, following processes were candidated for pipeless reprocessing plant. (1) The process adopting crystallization method and peroxide precipitation method (2) The process adopting oxalate precipitation method (3) The process under mild aqueous conditions (crystallization method and precipitation method) (4) The process adopting crystallization method and ion-exchange method (5) The process adopting crystallization method and solvent extraction method. The processes (1)-(5) were compared with each others in terms of competitiveness to the conventional reference process, and merits and demerits were evaluated from the viewpoint of applicability to pipeless reprocessing plant, safety, economy, Efficiencies in consumption of Resources, non-proliferation, and, Operation and Maintenance. As a result, (1) The process adopting crystallization method and peroxide precipitation method was selected as the most reasonable process to pipeless plant. Preliminary criticality safety analyses, main process chemical flowsheet, main equipment list and layout of mobile vessels and stations were reported for the (1) process. (author)

  2. The UK safeguards R and D support program

    International Nuclear Information System (INIS)

    Patrick, B.H.; Andrew, G.; Tuley, J.N.

    1991-01-01

    The UK Safeguards R and D Programme in support of IAEA safeguards was formally initiated in 1981. Funding is provided by HM Government through the Department of Energy, responsibility for managing and carrying out the work being placed in the hands of the UK Atomic Energy Authority The programme covers safeguards in a variety of areas, including reprocessing and enrichment plants, nuclear materials in waste, authentication of facility computer systems, training courses for safeguards inspectors, containment and surveillance, destructive and non-destructive assay techniques and techniques for assessing diversion path analysis. In this paper an overview of the work is presented

  3. Role of materials accounting in integrated safeguards systems for reprocessing plants

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.

    1981-01-01

    Integration of materials accounting and containment/surveillance techniques for international safeguards requires careful examination and definition of suitable inspector activities for verification of operator's materials accounting data. The inspector's verification procedures are designed to protect against data falsification and/or the use of measurement uncertainties to conceal missing material. Materials accounting activities are developed to provide an effective international safeguards system when combined with containment/surveillance activities described in a companion paper

  4. The 4th technological meeting of Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Ohnishi, Tohru; Maki, Akira; Shibata, Satomi; Yatogi, Hideo; Nyui, Daisuke; Hashimoto, Takakazu; Fukuda, Kazuhito; Ohzeki, Tatsuya

    2001-11-01

    ''The 4th technological meeting of Tokai Reprocessing Plant (TRP)'' was held in JNFL Rokkasho site on October 11 th , 2001. The report contains the proceedings, transparencies and questionnaires of the meeting. This time, we reported about ''Maintenance and repair results of Tokai Reprocessing Plant'' based on technology and knowledge accumulated in Tokai Reprocessing Plant. (author)

  5. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  6. ERDA activities related to reprocessing and plutonium recycle

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    1977-01-01

    ERDA has redirected its program in support of the LWR fuel cycle from one emphasizing the commercialization of existing fuel cycle technology to a broader based assessment of alternative fuel cycle concepts with the emphasis on safeguardability and avoidance of proliferation risks. As part of this program, ERDA will evaluate a number of possible technical and institutional options to reduce proliferation risks. ERDA will continue its current program of LWR fuel reprocessing R and D with added emphasis on improved safeguards capability as well as the applicability of conventional reprocessing technology to large multinational plants. These activities and supporting design studies will provide the basis for a decision regarding the design of an optimized system for the management of spent LWR fuel. Such a system would provide a model for the development of future domestic and foreign facilities and programs. A recently completed ERDA study of the benefits of LWR reprocessing and recycle would also be expected to be factored into such a decision. The study concluded that based on currently available data, recycle of uranium and plutonium in LWR's is attractive from the standpoint of economics and resource utilization relative to the discarding of spent fuel. The LWR reprocessing/recycle picture today is clouded by several unresolved policy issues. These include the need for adequate spent fuel storage capacity for both domestic and foreign reactors; the possibility of foreign reprocessing of U.S. produced fuel; the possibility of the disposal of foreign fuel in the U.S.; the possible need to dispose of wastes generated by multinational reprocessing plants; and finally, determination of the optimum balance between recycling recovered plutonium and saving it for the breeder

  7. UP3 plant first reprocessing campaigns

    International Nuclear Information System (INIS)

    Leudet, A.; Hugelmann, D.; Fournier, W.; Dalverny, G.

    1991-01-01

    The UP3 plant start up has been achieved in two successive steps. The first one, from November 89 to April 90, involved all the facilities but T1, the head-end facility. During that period, shearing, dissolution and the first cycle extraction operations were performed in UP2 plant. 100 tons of fuel have been reprocessed that way. The second step began in August 1990, with the T1 facility start-up and the reprocessing of the resulting active solutions in the rest of the plant. This second phase involving the entire UP3 plant continued until the end of January 1991. At that time, 160 tons of fuel have been completely treated in UP3 plant

  8. Refurbishment of the BNFL Magnox reprocessing plant

    International Nuclear Information System (INIS)

    Carr, V.M.; Edgar, R.

    1998-01-01

    The Magnox Reprocessing Plant was commissioned in 1964. Since then it has reprocessed more than 35,000 t of irradiated uranium metal fuel. The plant is subject to routine shutdowns to allow maintenance and project work to be undertaken. During the 1997 shutdown the opportunity was taken to replace several life limiting parts of the plant to ensure Magnox reprocessing capability well beyond the year 2010. This shutdown was the largest and most complex undertaken by Magnox Reprocessing, with a total committed value of 130 million UK pounds, 17.5 million UK pounds committed in the shutdown itself and the balance on installation, design and procurement preparing for the shutdown. The work was completed within safety targets, to programme and within budget. The lessons learned and experience gained have been fed into the methodologies and procedures for planning future project and shutdown work within BNFL. This report is part of the output from this process of continually improving performance. (author)

  9. Working conditions in nuclear reprocessing plants

    International Nuclear Information System (INIS)

    1986-12-01

    In the context of the project, the working conditions of workers in reprocessing plants and associated plant of the fuel circuit were thoroughly examined. The project design and course of the project are a good example of a precautionary technical assessment necessary for social policy reasons, which is in the public interest and is required by the Trade Unions. By working conditions, one means the whole set of scientific/technical, medical, legal, economic and political conditions for the permanent employment of workers in reprocessing plants including the associated parts of the fuel circuit. (orig./HP) [de

  10. The influence of size of plant upon reprocessing costs

    International Nuclear Information System (INIS)

    1978-10-01

    This paper reviews recent published estimates for capital and operating costs of reprocessing plants in an attempt to establish a relative variation of unit reprocessing costs with plant design capacity and load factor. It is concluded that capital costs follow the well established ''rule of thumb'' for chemical plants in being proportional to (design capacity)sup(2/3). Operating costs vary significantly with variation in labour costs. Unit reprocessing costs are presented as a function of plant design capacity, load factor and method of financing

  11. Survey of economics of spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1976-01-01

    Literature data are surveyed on the economic problems of reprocessing spent fuel from light-water reactors in the period 1970 to 1975 and on the capacity of some reprocessing plants, such as NFS, Windscale, Marcoule, etc. The sharp increase in capital and production costs is analyzed and the future trend is estimated. The question is discussed of the use of plutonium and the cost thereof. The economic advantageousness previously considered to be the primary factor is no longer decisive due to new circumstances. The main objective today is to safeguard uninterrupted operation of nuclear power plants and the separation of radioactive wastes from the fuel cycle and the safe disposal thereof. (Oy)

  12. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  13. Benchmark data for a large reprocessing plant for evaluation of advanced data analysis algorithms and safeguards system design

    International Nuclear Information System (INIS)

    Burr, T.L.; Coulter, C.A.; Wangen, L.E.

    1998-02-01

    This report describes the simulation and analysis of solution level and density (L,D) in all key main process tanks in a large reprocessing plant. In addition, initial provisions were made to include temperature (T) data in the analysis at a later time. FacSim, a simulation program developed at Los Alamos, was used to generate simulated process operating data for the Rokkasho Reprocessing Plant (RRP) that is now under construction in Japan. Both normal facility operation and more than thirty abrupt diversion scenarios were modeled over 25-day periods of simulated operation beginning with clean startup of the facility. The simulation tracked uranium, plutonium (both +3 and +4 oxidation states), HNO 3 diluent, and tributyl phosphate from the input accountability vessel to the plutonium output accountability vessel, with the status of each process vessel and many pipes recorded at intervals of approximately four minutes. These data were used to determine solution volume and density values in each process vessel as a function of time

  14. Evaluation on maintenance technology developed in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2008-01-01

    Tokai reprocessing plant (TRP) has been processing 1,140 tons of spent fuels, including 29tons of Fugen MOX fuels, since the beginning of its active operation in Sept.1977. For 30 years operation of TRP, many technological problems have been overcome to obtain the stable and reliable operation. This knowledge of maintenance technology could contribute to the safety and stable operation of Rokkasho reprocessing plant (RRP), as well as to the design and construction of the next reprocessing plant. (author)

  15. How safe are nuclear safeguards

    International Nuclear Information System (INIS)

    Sullivan, E.

    1979-01-01

    Reports of weaknesses in IAEA safeguards have alarmed the US and since September 1977, US officials have refused to certify that the IAEA can adequately safeguard nuclear material the US exports. For political reasons, the IAEA safeguards system cannot perform an actual policing role or physically protect strategic material. The IAEA can only send out inspectors to verify bookkeeping and install cameras to sound the alarm should a diversion occur. Based on these IAEA reports and on interviews with scientists and US officials, the following serious problems hampering the Agency's safeguards effort can be identified: no foolproof safeguards for commercial reprocessing plants, uranium enrichment facilities, or fast breeder reactors; equipment failure and unreliable instruments; faulty accounting methods; too few well-trained inspectors; restrictions on where inspectors can go; commercial conflicts. Programs by the US, Canada, West Germany, Japan, and developing nations devised to better safeguards are briefly discussed. Some experts question whether international safeguards can be improved quickly enough to successfully deter nuclear weapons proliferation, given the rapid spread of nuclear technology to the third world

  16. Some developments in safeguards techniques

    International Nuclear Information System (INIS)

    Beets, C.

    1977-01-01

    The fundamental principles of safeguards and the research and development of safeguards techniques are described. Safeguard accountancy based upon the partition of the fuel cycle into suitable material balance areas will be further improved. Implementation of international safeguards in the European fuel fabrication and reprocessing facilities is described. The effectiveness of a material accounting system depends on the quality of the quantitative data. The allocation of the tasks in the framework of an integrated safeguards is concerned with R and D work only and has no bearing on the allocation of the implementation costs. Bulk measurements, sampling and destructive or non-destructive analysis of samples are described for the determination of batch data. Testing of the safeguards techniques as a keystone in relation to plant instrumentation programmes are still being developed throughout the world. In addition to accountancy and control, it also includes an effective physical security program. The system of international safeguards that prevailed in the sixties has been re-modelled to comply with the new requirements of the Non-Proliferation Treaty and with the growth of nuclear energy

  17. Reprocessing RTR fuel in the La Hague plants

    International Nuclear Information System (INIS)

    Thomasson, J.; Drain, F.; David, A.

    2001-01-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  18. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, F-78140 Velizy (France); Drain, F.; David, A. [SGN, F-78182 Saint Quentin en Yvelines (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  19. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, 78 - Velizy Villacoublay (France); Drain, F.; David, A. [SGN, 78 - Saint Quentin en Yveline (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for their research and testing reactors spent fuel back-end management. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  20. Goals of measurement systems for international safeguards

    International Nuclear Information System (INIS)

    de Montmollin, J.M.; Weinstock, E.V.

    1979-01-01

    The safeguards applied by the International Atomic Energy Agency are based on technical performance goals and criteria that have been developed, but not officially adopted by the Agency. The goals derive in part from the external consequences that safeguards are intended to prevent and in some cases on internal considerations of feasibility. To the extent that these goals may not be attainable, as may be the case with large-throughput bulk reprocessing plants, the Agency is placed in a difficult position. In this paper safeguards goals and criteria and their underlying rationales are critically examined. Suggestions for a more rational and workable structure of performance goals are offered

  1. Monitoring, controlling and safeguarding radiochemical streams at spent fuel reprocessing facilities with optical and gamma-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Bryan, S.A.; Orton, C.R.; Levitskaia, T.G.; Fraga, C.G.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-usable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MCA) at these facilities require time-consuming and resource intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop

  2. The integration of process monitoring for safeguards

    International Nuclear Information System (INIS)

    Cipiti, Benjamin B.; Zinaman, Owen R.

    2010-01-01

    The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

  3. International safeguards in large-scale nuclear facilities

    International Nuclear Information System (INIS)

    Gupta, D.; Heil, J.

    1977-01-01

    The trend in the energy sector in most of the world's industrialized areas shows rather clearly that the rate of installing nuclear plants will be very high and that the largest possible units of nuclear material handling and storage facilities will be built. Various experiments and analyses of measurement methods relevant to safeguards in typical nuclear facilities such as a fuel reprocessing or a fabrication plant have shown that the associated measurement errors as obtained under normal operating conditions are such that they are mainly dominated by systematic errors, which may lie in the range of percentages of the measured amount so that a material balance in such a plant could not normally be closed with any higher accuracy. For example, in a reprocessing plant with a throughput of 1500t U/a and a corresponding throughput of 15t Pu/a, a systematic error of 1% would cause a measurement uncertainty of around 70kg Pu in case a material balance is struck twice a year. Such a large amount may be considered to be unacceptable from the point of view of international safeguards since it arises out of a single plant. The simplest way of getting around the problem would be to strike a material balance more frequently over a given period. This could, however, lead to an enormous increase in the technical and financial burden for the operator of a facility. This paper analyses this problem in some detail for some facilities and shows that, for example, with a properly developed information system in such plants and a combination of containment, surveillance and accountancy measures, a safeguards system can be built up for such facilities. (author)

  4. International and institutional aspects of reprocessing and plutonium management

    International Nuclear Information System (INIS)

    1978-09-01

    Various institutional alternatives applicable to reprocessing, plutonium management and recycle are considered, not as a definitive analysis but rather as a basis for identifying the institutional approaches and measures which the Working Group might wish to examine more thoroughly. Seven alternatives arrangements for reprocessing are presented. These range from suspending the operation of existing reprocessing plants through placing national facilities under safeguards to limiting reprocessing to a few large facilities subject to plutonium management, multinational or international control. Finally, the comprehensive alternative of an International Nuclear Fuel Authority with worldwide responsibility for reprocessing and plutonium management is considered. Plutonium management alternatives to complement the reprocessing options, are then outlined. These include national discretion on the separation and disposition of plutonium under safeguards, an agreed Code of Practice for plutonium management at national facilities and the international storage of plutonium. The advantages and disadvantages of the alternative are discussed tentatively. It is recognised that the alternatives are presented in a simplified form and that their elements can be combined or separated in many ways. Although strengthening the institutions relating to the peaceful uses of nuclear energy is imperative and can contribute to non-proliferation, such arrangements might open other proliferation risks through the spread of sensitive materials, facilities and technology. While there are risks with any fuel cycle, where plutonium in quantity is separated these risks are of a high order. Although these can be mitigated, they will have to be set against the energy and economic case for reprocessing and alternatives other than plutonium considered

  5. Operations monitoring concept. Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Kerr, H.T.

    1985-01-01

    Operations monitoring is a safeguards concept which could be applied in future fuel cycle facilities to significantly enhance the effectiveness of an integrated safeguards system. In general, a variety of operations monitoring techniques could be developed for both international and domestic safeguards application. The goal of this presentation is to describe specific examples of operations monitoring techniques as may be applied in a fuel reprocessing facility. The operations monitoring concept involves monitoring certain in-plant equipment, personnel, and materials to detect conditions indicative of the diversion of nuclear material. An operations monitoring subsystem should be designed to monitor operations only to the extent necessary to achieve specified safeguards objectives; there is no intent to monitor all operations in the facility. The objectives of the operations monitoring subsystem include: verification of reported data; detection of undeclared uses of equipment; and alerting the inspector to potential diversion activities. 1 fig

  6. Material control for a reprocessing plant

    International Nuclear Information System (INIS)

    Rundquist, D.; Bray, G.; Donelson, S.; Glancy, J.; Gozani, T.; Harris, L.; McNamera, R.; Pence, D.; Ringham, M.

    1976-01-01

    Adequate control of special nuclear material (SNM) implies a basic knowledge of the quantities of SNM processed through or contained within a fuels processing facility with sufficient accuracy that diversion of the SNM for deleterious purposes can be detected in a timely manner. This report to the Lawrence Livermore Laboratory (LLL) describes the primary process streams containing plutonium that are handled routinely within a spent fuel reprocessing plant and conversion facility. As an aid in implementing the objectives of the accountability system in a realistic situation, the Allied General Nuclear Services (AGNS) reprocessing plant now under construction near Barnwell, South Carolina, was chosen as the study model. The AGNS plant processes are discussed in detail emphasizing those portions of the process that contain significant quantities of plutonium. The unit processes within the separations plant, nitrate storage, plutonium product facility and the analytical laboratory are described with regard to the SNM control system currently planned for use in the facilities. A general discussion of laboratory techniques, nondestructive assay and process instrumentation for plutonium process and product material from a reprocessing plant is included. A comprehensive discussion is given of holdup measurements in plutonium recycle facilities. A brief preliminary overview is presented of alternative processing strategies for LWR fuel. An extensive review and summary of modeling efforts for liquid-liquid extraction cycles is included. A comprehensive bibliography of previous modeling efforts is covered

  7. Fast reactor system factors affecting reprocessing plant design

    International Nuclear Information System (INIS)

    Allardice, R.H.; Pugh, O.

    1982-01-01

    The introduction of a commercial fast reactor electricity generating system is very dependent on the availability of an efficient nuclear fuel cycle. Selection of fuel element constructional materials, the fuel element design approach and the reactor operation have a significant influence on the technical feasibility and efficiency of the reprocessing and waste management plants. Therefore the fast reactor processing plant requires liaison between many design teams -reactor, fuel design, reprocessing and waste management -often with different disciplines and conflicting objectives if taken in isolation and an optimised approach to determining several key parameters. A number of these parameters are identified and the design approach discussed in the context of the reprocessing plant. Radiological safety and its impact on design is also briefly discussed. (author)

  8. Waste management in reprocessing plants

    International Nuclear Information System (INIS)

    Mortreuil, M.

    1982-01-01

    This lecture will give a survey of the French policy for the management of wastes in reprocessing plants. In consideration of their radioactivity, they must be immobilized in matrix in such a manner that they are stored under optimal safety conditions. A general review on the nature, nucleide content and quantity of the various wastes arising from thermal nuclear fuel reprocessing is given in the light of the French plants UP1 at Marcoule and UP2 at La Hague. The procedures of treatment of such wastes and their conditioning into inert packages suitable for temporary or terminal storage are presented, especially concerning the continuous vitrification process carried out for fission product solutions. The requirements of each option are discussed and possible alternative solutions are exposed. (orig./RW)

  9. Multipurpose simulator ''MR TRIOS'' for reprocessing plant

    International Nuclear Information System (INIS)

    Mitsui, Takeshi; Uehara, Shigeru; Takata, Hideo; Kamishima, Naoyuki

    1993-01-01

    MHI (Mitsubishi Heavy Industries) has developed MR TRIOS (Mitsubishi Reprocessing plant TRansient simulation code for Integrated process for Operation Support), the realtime dynamic simulator, for multipurpose use to support the Reprocessing Plant operation in various aspects. MR TRIOS integrates the Simulation Models of the unit process in a Reprocessing Plant, including Shearing, Dissolution, NOx absorption, Accountability and Adjustment and Co-decontamination process, where each Simulation Model has two kinds of models: Process and Control System. MR TRIOS can simulate the process behavior of the unit process in an integrated manner as well as independently. It is supported by MR CONTROL, the simulator control program developed by MHI. From MR TRIOS one can obtain real-time process values, such as temperature, pressure, density, flow rate, and concentration of nuclides, enabling the evaluation of the process dynamic characteristics under various operating conditions. MR TRIOS has proved to be an effective tool for the comprehensive study of the process and system dynamics, for operation technique improvements and for training

  10. Surveillance system using the CCTV at the fuel transfer pond in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Hayakawa, T.; Fukuhara, J.; Ochiai, K.; Ohnishi, T.; Ogata, Y.; Okamoto, H.

    1991-01-01

    The Fuel Transfer Pond (FTP) in the Tokai Reprocessing Plant (TRP) is a strategic point for safeguards. Spent fuels, therefore, in the FTP have been surveyed by the surveillance system using the underwater CCTV. This system was developed through the improvement of devices composed of cameras and VCRs and the provision of tamper resistance function as one of the JASPAS (Japan Support Program for Agency Safeguards) program. The purpose of this program is to realize the continuous surveillance of the slanted tunnel through which the spent fuel on the conveyor is moved from the FTP to the Mechanical Processing Cell (MPC). This paper reports that, when this surveillance system is applied to an inspection device, the following requirements are needed: To have the ability of continuous and unattended surveillance of the spent fuel on the conveyor path from the FTP to the MPC; To have the tamper resistance function for continuous and unattended surveillance of the spent fuel

  11. Contamination of incinerator at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takahashi, Mutsuo

    1994-01-01

    Originally, at Tokai Reprocessing Plant an incinerator was provided in the auxiliary active facility(waste treatment building). This incinerator had treated low level solid wastes generated every facilities in the Tokai Reprocessing Plant since 1974 and stopped the operation in March 1992 because of degeneration. The radioactivity inventory and distribution was evaluated to break up incinerator, auxiliary apparatuses(bag filter, air scrubbing tower, etc.), connecting pipes and off-gas ducts. This report deals with the results of contamination survey of incinerator and auxiliary apparatuses. (author)

  12. Occupational dose at Rokkasho reprocessing plant (RRP)

    International Nuclear Information System (INIS)

    Takashima, F.; Taguchi, R.; Kano, M.; Moriyama, T.; Ogaki, K.; Noda, K.

    2008-01-01

    In Japan, Rokkasho Reprocessing Plant (RRP) is going to start the operation in service as the first large-scale commercial reprocessing plant of spent fuels that has annual reprocessing quantity of 800tU pr in maximum. The occupational external exposure is controlled for the purpose of keeping dose as low as reasonably achievable, and it is monitored by the personal dosimeter. On the other hand, the occupational internal exposure is controlled for the purpose of preventing, and it is monitored by the periodical evaluation of internal dose from the radioactive concentration in air of workplace. The individual doses of radiation workers are less than the dose limits in the statute and our lower management values enough. Dose data will be stored continuously and the rational management method will be examined. (author)

  13. Process data in safeguards at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1988-01-01

    The desire to improve timeliness and sensitivity of material control and accounting capabilities is the basis for evaluation and upgrade of regulatory requirements throughout the nuclear industry. Improvements invariably require better measurement capabilities and more frequent measurements. Operating plants typically include a broad range of measurements and equipment devoted to process control. How can these measurements be used to benefit safeguards? A part of the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory has focused on the use of process data for safeguards. This report discusses recent safeguards demonstrations and current activities in a test facility at Oak Ridge

  14. Optimization of the sizes and dates of starting up of reprocessing plants

    International Nuclear Information System (INIS)

    Nagashima, Kikusaburo

    1977-01-01

    It is desirable to complete the nuclear fuel cycle domestically for promoting nuclear power generation in Japan, and the reprocessing of spent fuel is indispensable. However, the capacity of the reprocessing plant in PNC and the reprocessing by the commissioning to foreign countries will be insufficient by the latter half of 1980s. In the planning of the second reprocessing plant in Japan, the following problems remain yet to be solved. The international regulation and the laws in Japan regarding the storage and transport of spent fuel, the disposal of radioactive wastes, and the recycling of plutonium must be established. The consensus of the public on the necessity and the safety of fuel reprocessing must be obtained. The technical investigation about fuel reprocessing and related business must be carried out sufficiently, including the necessity of introducing the technology from abroad. The economy and various conditions for industrializing fuel reprocessing must be studied. The economy of fuel reprocessing plants, the reprocessing cost taking escalation into account, mean reprocessing cost, the optimization of the time of starting full operation and the time of starting-up, the rise of reprocessing cost due to the escalation of operational cost are explained. Numerical calculation was carried out about the second reprocessing plant in Japan, and the results are examined. (Kako, I.)

  15. Nondestructive assay measurements applied to reprocessing plants

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lee, R. Stephen; Ottmar, Herbert; Guardini, Sergio

    1999-01-01

    Nondestructive assay for reprocessing plants relies on passive gamma-ray spectrometry for plutonium isotopic and plutonium mass values of medium-to-low-density samples and holdup deposits; on active x-ray fluorescence and densitometry techniques for uranium and plutonium concentrations in solutions; on calorimetry for plutonium mass in product; and passive neutron techniques for plutonium mass in spent fuel, product, and waste. This paper will describe the radiation-based nondestructive assay techniques used to perform materials accounting measurements. The paper will also discuss nondestructive assay measurements used in inspections of reprocessing plants [ru

  16. Tokai Advanced Safeguards Technology Exercise (TASTEX). An experience in international co-operation on safeguards

    International Nuclear Information System (INIS)

    Fukuda, G.; Koizumi, T.; Higuchi, K.

    1983-01-01

    TASTEX stands for Tokai Advanced Safeguards Technology Exercise, and was the joint programme of Japan, the United States of America, France and the International Atomic Energy Agency for developing, testing and evaluating advanced safeguards technology to be used in reprocessing facilities. The TASTEX programme, which started early in 1978 and successfully ended in May 1981, consisted of thirteen safeguards-technology-related tasks, from Task A to M. They were classified into four groups from the viewpoints of their usefulness and effectiveness: (1) Tasks technically feasible for international safeguards application in the near future: Tasks E, G, H and part of Task A (underwater CCTV and monitoring cameras); (2) Tasks which can be used in the future if research and development are continued: Tasks F, I, J, C and the other part of Task A (exclusive of the themes shown in (1)); (3) Tasks which may be used in future at the Tokai Reprocessing Facility if research and development are continued: Tasks K and L; and (4) Tasks which are difficult to be used at the Tokai Reprocessing Facility: Tasks B, D and M. The tasks classified under Group (1) are being developed further as part of the JASPAS (Japan Support Programme for Agency's Safeguards) project. (author)

  17. Development of safety evaluation technology for fire and explosion in reprocessing plant

    International Nuclear Information System (INIS)

    Miura, Akihiko

    2005-01-01

    Based on some lessons learned from the accidents in the reprocessing plant all over the world, Japan Nuclear Cycle Development Institute (JNC) has researched and developed the safety technologies for the reprocessing plants and its related facilities. This paper describes some accidental information around the reprocessing plants and its related research activities in JNC. (author)

  18. Plant for retention of 14C in reprocessing plants for LWR fuel elements

    International Nuclear Information System (INIS)

    Braun, H.; Gutowski, H.; Bonka, H.; Gruendler, D.

    1983-01-01

    The 14 C produced from nuclear power plants is actually totally emitted from nuclear power plants and reprocessing plants. Using the radiation protection principles proposed in ICRP 26, 14 C should be retained at heavy water moderated reactors and reprocessing plants due to a cost-benefit analysis. In the frame of a research work to cost-benefit analysis, which was sponsored by the Federal Minister of the Interior, an industrial plant for 14 C retention at reprocessing plants for LWR fuel elements has been planned according to the double alkali process. The double alkali process has been chosen because of the sufficient operation experience in the conventional chemical technique. In order to verify some operational parameters and to gain experiences, a cold test plant was constructed. The experiment results showed that the double alkali process is a technically suitable method with high operation security. Solidifying CaCO 3 with cement gives a product fit for final disposal

  19. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    International Nuclear Information System (INIS)

    Musembi, Mutava Victor; Jeong, Seung Young; Kwon, Eun Ha

    2013-01-01

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making

  20. Analysis of UREX+1a and Pyroprocessing Technologies from Safeguards Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Musembi, Mutava Victor [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jeong, Seung Young [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of); Kwon, Eun Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    Various advanced and more easily safeguard-able reprocessing technologies have been proposed and are currently at different stages of development. This paper briefly analyses two proposed next generation reprocessing technologies, i. e. UREX+1a and pyroprocessing. It goes on to suggest various measures that can be taken to safeguard these technologies against nuclear proliferation. Due to the significant proliferation risks associated with PUREX, more proliferation resistant technologies are required in spent fuel reprocessing. UREX+1a and pyroprocessing can be suitable replacements since Pu is not separated from other TRUs after reprocessing. Implementations of technology specific safeguard measures can help enhance the proliferation resistance of these technologies. Since there is no technology which is foolproof, a MUF uncertainty estimation/quantification technology needs to be developed. These uncertainty estimates can then be used in a safeguards probabilistic risk assessment (PRA) system to quantify the risks associated with a particular reprocessing technology. To further safeguard these technologies, additional safeguard measures are needed for defense in depth. This may include implementation of multiple, independent, and redundant layers of defense such that no single layer, no matter how robust, is solely relied upon. Quantification of safeguard uncertainties related to UREX+1a and pyroprocessing can be used to benchmark these technologies against PUREX and between themselves for policy making.

  1. Radiological impact of emissions from reprocessing plants during normal operation

    International Nuclear Information System (INIS)

    Bonka, H.; Gruendler, D.; Hesel, D.; Muenster, M.; Schmidtlein, P.; Suender, B.

    1977-01-01

    When comparing the expected radiation exposure due to emissions from reprocessing plants with those from nuclear power plants it can be seen that the emissions from reprocessing plants contribute much more to the radiation exposure of the population than those from nuclear power plants. In the vicinity of reprocessing plants the highest contributions to the radiation exposure of the population are delivered by the following radionuclides: T, C 14 , Kr 85 , Sr 90 , Ru 106 , I 129 , Cs 134 , Cs 137 and Ce 144 as will as the Pu- and Cm-isotopes. Among these nuclides T, C 14 , Kr 85 und I 129 are globally distributed. While for T the contribution to the collective dose due to globally distributed T is small in comparison with the first pass exposure, the global contribution predominates for C 14 and Kr 85 . If an integration time of less than 10 5 years is considered, the contribution due to first pass exposure predominates for I 129 . When taking the radiation protection of the population into consideration, it seems sensible to retain 10% of T, 80 to 90% of C 14 , 90% of Kr 85 and 99,5% of I 129 in reprocessing plants and dispose of this material in a controlled manner. The fraction of the aerosols released should be about 10 -9 . Considering the global effects and the increasing number of nuclear power plants and reprocessing plants, an international agreement should be reached on these matters. (orig.) [de

  2. Nuclear safeguards policy

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Claims have been made that Australia's nuclear safeguards policy, announced in 1977, has changed. However, examination of the texts of nuclear safeguards agreements negotiated by Australia shows that the policy has been implemented and adhered to. The purpose of these agreements is to obtain assurance that uranium exported is used exclusively for peaceful purposes. The questions of reprocessing, transfer to third countries and the application of IAEA safeguards are discussed

  3. Development of exhaust air filters for reprocessing plants

    International Nuclear Information System (INIS)

    Furrer, J.; Kaempffer, R.; Jannakos, K.; Apenberg, W.

    1975-01-01

    Investigations of the iodine loading capacity of highly impregnated iodine sorption material (AC 6,120/H 1 ) for the GWA-filters (GWA: reprocessing plant for 1,500 metric tons per year of uranium) have been continued for low NO 2 -contents of the simulated dissolver offgas from GWA. When fully loading AC 6,120/H 1 , a conversion to silver iodides of Ag + of the impregnation of about 80% was reached in experiments with 1% NO 2 in the carrier gas. Despite the consumption of a substantial portion of the impregnation removal efficiencies > 99.99% were measured for a bed depth corresponding to a GWA filter stage. The test facility allowing to examine the behavior and the capacity of the AC 6,120/H 1 iodine sorption material under actual conditions at SAP Marcoule (reprocessing plant) has been completed except for installation in the reprocessing plant. (orig.) [de

  4. Feasibility study for adapting ITREC plant to reprocessing LMFBR fuels

    International Nuclear Information System (INIS)

    Moccia, A.; Rolandi, G.

    1976-05-01

    The report evaluates the feasibility of adapting ITREC plant to the reprocessing LMFBR fuels, with the double purpose of: 1) recovering valuable Pu contained in these fuels and recycling it to the fabrication plant; 2) trying, on a pilot scale, the chemical process technology to be applied in a future industrial plant for reprocessing the fuel elements discharged from fast breeder power reactors

  5. Multi-purpose simulator 'MR TRIOS' for reprocessing plant

    International Nuclear Information System (INIS)

    Mitsui, Takeshi; Ariyoshi, Masahiro

    1993-01-01

    MHI(Mitsubishi Heavy Industries, Ltd.) has developed MR TRIOS(Mitsubishi Reprocessing plant TRansient simulator of Integrated process for Operation Support), the realtime dynamic simulator, for multipurpose use to support the Reprocessing Plant operation in various aspects. MR TRIOS integrates the simulation models of the unit process in reprocessing plant, including shearing, dissolution, NO x absorption, accountability and adjustment and co-decontamination process, where each simulation model has two kinds of models, one is Process and the other is Control System. MR TRIOS can simulate the process behavior of the above listed unit process in an integrated manner as well as independently. It is realized by MR CONTROL, the simulator control program developed by MHI. We can get from MR TRIOS the real-time process values, such as temperature, pressure, density, flow rate and concentration of eminent nuclides etc. enabling the evaluation of the process dynamic characteristics under various operating conditions. MR TRIOS has been proved to be an effective tool for the comprehensive study of the process and system dynamics, for operation technique improvements and for training. In this report we will show the introductory outline of multi-purpose simulator 'MR TRIOS' for reprocessing plant and also show the possibility to clarify the fundamental technical requirement to realize the effective material accountancy measure for Head-end Area. (author)

  6. Status of project design work for a German reprocessing plant

    International Nuclear Information System (INIS)

    Lang, K.; Zuehlke, P.

    1976-01-01

    A reprocessing plant will be built within the framework of a comprehensive waste management center planned by the Federal Government to treat the fuel elements unloaded from German nuclear power stations. On the basis of an annual throughput of 1,400 te of uranium averaged over the life of the plant, the center will be able to serve between 45,000 and 50,000 MWe of installed nuclear generating capacity. A comprehensive conceptual design study of the reprocessing plant to be built has been completed on the basis of the operating experience accumulated at the Karlsruhe reprocessing plant and the development work carried out by the Karlsruhe Nuclear Research Center and in the light also of an intensive exchange of experience with British and French reprocessing companies within the framework of United Reprocessors GmbH. This conceptual design study is the foundation for the preliminary project to be carried out on a collaborative basis by KEWA and PWK. (orig.) [de

  7. Target values for nuclear material safeguards measurements - motivation or burden to operators?

    International Nuclear Information System (INIS)

    Weh, R.; Kuhn, K.D.

    1989-01-01

    The analytical determination of material streams and inventories plays an important part in those nuclear facilities called bulk-handling facilities in safeguards terminology. Reprocessing plants and mixed-oxide fabrication facilities are typical examples. With respect to their safeguards, the relevant regulations attach fundamental importance to material accountancy. The balance itself is examined by International Atomic Energy Agency (IAEA) inspectors and within the boundaries of the European Communities by Euratom inspectors as well, with regard to formal correctness. The analytical methods of accountancy in, for example, reprocessing plants, make high demands on the qualifications of the analyst. A conscientious analyst will, of course, try to fulfill his task as well and effectively as possible. These target values will become a burden, however, when they have been drawn up for purely scientific interest and the operator has been urged to achieve them on the pretext of improving safeguards. There are basically two reasons for which the authors have misgivings in this respect. First, the measurement system, which the material balance is based on, has to conform to the latest international regulations. This could easily lead to a permanent obligation of updating for the plants concerned. Second, the goal quantities set by the IAEA will induce an attempt to adjust measurement techniques and chemical analysis to goals totally unsuitable for large-scale plants

  8. Safeguards approaches for conversion and gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Stanuch, C.; Whitaker, M.; Lockwood, D.; Boyer, B.

    2013-01-01

    This paper describes recent studies and investigations of new safeguards measures and inspection tools to strengthen international safeguards at GCEPs (Gas Centrifuge Enrichment Plants) and conversion plants. The IAEA has indicated that continuous, unattended process monitoring should play a central role in future safeguards approaches for conversion plants and GCEPs. Monitoring safeguards relevant information from accountancy scales, process load cells, and unit header pipes can make existing safeguards approaches more efficient by replacing repetitive, routine, labor-intensive inspection activities with automated systems. These systems can make the safeguards approach more effective by addressing more completely the safeguards objectives at these facilities. Automated collection and analysis of the data can further enable the IAEA to move towards a fully-information driven inspection regime with randomized (from the operator's perspective), short-notice inspections. The reduction in repetitive on-site inspection activities would also be beneficial to plant operators, but only if sensitive and proprietary information can be protected and the new systems prove to be reliable. New facilities that incorporate Safeguards by Design into the earliest design stages can facilitate the effective DIV (Design Information Verification) of the plant to allow the inspectors to analyze the capacity of the plant, to project maximum production from the plant, and to provide a focus on the areas in the plant where credible diversion scenarios could be attempted. Facilitating efficient nuclear material accountancy by simplifying process pipework and making flow measurement points more accessible can allow for easier estimation of plant holdup and a potential reduction in the number of person-days of inspection. Lastly, a universal monitoring standard that tracks the location, movement, and use of UF 6 cylinders may enhance the efficiency of operations at industry sites and would

  9. Simulation and analysis of plutonium reprocessing plant data

    International Nuclear Information System (INIS)

    Burr, T.; Coulter, A.; Wangen, L.

    1996-01-01

    It will be difficult for large-throughput reprocessing plants to meet International Atomic Energy Agency (IAEA) detection goals for protracted diversion of plutonium by materials accounting alone. Therefore, the IAEA is considering supplementing traditional material balance analysis with analysis of solution monitoring data (frequent snapshots of such solution parameters as level, density, and temperature for all major process vessels). Analysis of solution monitoring data will enhance safeguards by improving anomaly detection and resolution, maintaining continuity of knowledge, and validating and improving measurement error models. However, there are costs associated with accessing and analyzing the data. To minimize these costs, analysis methods should be as complete as possible simple to implement, and require little human effort. As a step toward that goal, the authors have implemented simple analysis methods for use in an off-line situation. These methods use solution level to recognize major tank activities, such as tank-to-tank transfers and sampling. In this paper, the authors describe their application to realistic simulated data (the methods were developed by using both real and simulated data), and they present some quantifiable benefits of solution monitoring

  10. Air conditioning facilities in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kawasaki, Michitaka; Oka, Tsutomu

    1987-01-01

    Reprocessing plants are the facilities for separating the plutonium produced by nuclear reaction and unconsumed remaining uranium from fission products in the spent fuel taken out of nuclear reactors and recovering them. The fuel reprocessing procedure is outlined. In order to ensure safety in handling radioactive substances, triple confinement using vessels, concrete cells and buildings is carried out in addition to the prevention of criticality and radiation shielding, and stainless steel linings and drip trays are installed as occasion demands. The ventilation system in a reprocessing plant is roughly divided into three systems, that is, tower and tank ventilation system to deal with offgas, cell ventilation system for the cells in which main towers and tanks are installed, and building ventilation system. Air pressure becomes higher from tower and tank system to building system. In a reprocessing plant, the areas in a building are classified according to dose rate. The building ventilation system deals with green and amber areas, and the cell ventilation system deals with red area. These three ventilation systems are explained. Radiation monitors are installed to monitor the radiation dose rate and air contamination in working places. The maintenance and checkup of ventilation systems are important. (Kako, I.)

  11. Criticality safety evaluation in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Shirai, Nobutoshi; Nakajima, Masayoshi; Takaya, Akikazu; Ohnuma, Hideyuki; Shirouzu, Hidetomo; Hayashi, Shinichiro; Yoshikawa, Koji; Suto, Toshiyuki

    2000-04-01

    Criticality limits for equipments in Tokai Reprocessing Plant which handle fissile material solution and are under shape and dimension control were reevaluated based on the guideline No.10 'Criticality safety of single unit' in the regulatory guide for reprocessing plant safety. This report presents criticality safety evaluation of each equipment as single unit. Criticality safety of multiple units in a cell or a room was also evaluated. The evaluated equipments were ones in dissolution, separation, purification, denitration, Pu product storage, and Pu conversion processes. As a result, it was reconfirmed that the equipments were safe enough from a view point of criticality safety of single unit and multiple units. (author)

  12. Non-proliferation and international safeguards. [Booklet by IAEA

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This booklet consists of 13 separate, brief analyses related to the subject title, namely: The International Scope of IAEA Safeguards; Application of Safeguards Procedures; Computer-Based Safeguards Information and Accounting System; IAEA Training Activities Related to State Systems of Nuclear Materials Accountancy and Control; Surveillance and Containment Measures to Support IAEA Safeguards; International Plutonium Management; Safeguards for Reprocessing and Enrichment Plants; Non-Destructive Assay: Instruments and Techniques for Agency Safeguards; The Safeguards Analytical Laboratory: Its Functions and Analytical Facilities; Resolution of the UN General Assembly on the Treaty on the Non-Proliferation of Nuclear Weapons of 12 June 1968; The Treaty on the Non-Proliferation of Nuclear Weapons; Final Declaration of the Review Conference of the Parties to the Treaty on the Non-Proliferation of Nuclear Weapons, May 1975; Resolutions on the IAEA's Work in the Field of the Peaceful Uses of Atomic Energy, adopted by the UN General Assembly on 8 and 12 December, 1977; and a Map on the NPT situation in the world (with explanations).

  13. Tritium control in reprocessing plants

    International Nuclear Information System (INIS)

    Goumondy, J.P.; Miquel, P.

    1977-01-01

    There is a danger that the T which is formed in water reactors will prove detrimental to the environment over the next few years, and studies have been undertaken to develop techniques to contain and process it where possible. In order to retain T, which is present largely in the fuel and on the possible to adapt for use in the conventional design of reprocessing plant. In this process T is maintained in the form of an aqueous solution in the high-active area of the plant. Control is achieved by restricting as far as possible the ingress of non-tritiated water into this area, and by setting up a tritiated water barrier at the first U and Pu extraction stage, stripping the tritium-containing solvent at that point with ordinary water. In this way the T can be extracted in a small volume of water with a view to intermediate storage, disposal at sea additional processing to remove the T from the water. Experiments carried out so far have demonstrated the effectiveness of the T barrier and have shown what equipment would be required for the application of the process in new reprocessing plants. (orig.) [de

  14. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  15. The European experience in safeguarding nuclear fuel recycle processes and Pu stores

    International Nuclear Information System (INIS)

    Synetos, Sotiris

    2013-01-01

    Civil nuclear programs in the European Union member states have from their onset included fuel recycling as an option. The EURATOM Treaty gives to the European Commission the obligation to apply safeguards controls to all civil Nuclear Material in the European Union, and to facilitate the implementation of IAEA safeguards. The European Commission (EURATOM) has thus gained years of experience in safeguarding reprocessing plants, Pu storages, and MOX fuel fabrication plants and is currently participating in the development of approaches and measures for safeguarding long term repositories. The aim of this paper is to present the regulator's views and experience on safeguarding nuclear fuel recycle processes and Pu stores, which is based on the following principles: -) Early involvement of the control organizations in the design of the safeguards measures to be developed for a plant (currently referred to as Safeguards by Design); -) Early definition of a safeguards strategy including key measurement points; -) The design and development of plant specific Safeguards equipment, including an on site laboratory for sample analysis; -) The development by the operator of an appropriate Nuclear Material accountancy system to facilitate their declaration obligations; -) The introduction of an inspection regime allowing comprehensive controls under the restrictions imposed by financial and Human Resources limitations; -) Optimization of the inspection effort by using unattended measuring stations, containment and surveillance systems and secure remote transmission of data to the regulator's headquarters. The paper is followed by the slides of the presentation. (authors)

  16. Process information systems in nuclear reprocessing

    International Nuclear Information System (INIS)

    Jaeschke, A.; Keller, H.; Orth, H.

    1987-01-01

    On a production management level, a process information system in a nuclear reprocessing plant (NRP) has to fulfill conventional operating functions and functions for nuclear material surveillance (safeguards). Based on today's state of the art of on-line process control technology, the progress in hardware and software technology allows to introduce more process-specific intelligence into process information systems. Exemplified by an expert-system-aided laboratory management system as component of a NRP process information system, the paper demonstrates that these technologies can be applied already. (DG) [de

  17. Some problems relating to application of safeguards in the future

    International Nuclear Information System (INIS)

    Tolchenkov, D.L.

    1983-01-01

    By the end of this century there will have been a considerable increase in the amount of nuclear material and the number of facilities subject to IAEA safeguards. The IAEA will therefore be faced with problems due to the increased volume of safeguards activity, the application of safeguards to new types of facility and to large facilities, the optimization of the existing IAEA safeguards system and so on. The authors analyse the potential growth in the IAEA's safeguards activities up to the year 2000 and consider how to optimize methods for the application of safeguards, taking into account a number of factors relating to a State's nuclear activity, the application of full-scope IAEA safeguards etc. On the basis of a hypothetical model of the nuclear fuel cycle that allows for the factors considered as part of the International Nuclear Fuel Cycle Evaluation (INFCE), the authors assess the possible risk of diversion as a function of a full-scope safeguards effort. They also examine possible conceptual approaches to safeguarding large-scale facilities such as fuel reprocessing and uranium enrichment plants. (author)

  18. Summary of achievements in safeguards implementation at the Nukem plant

    International Nuclear Information System (INIS)

    Bigliocca, C.

    1983-01-01

    This document reviews the achievements in safeguards development studies and in safeguards implementation in a highly enriched uranium fuel fabrication plant. The study was performed at the Nukem plant of Wolfgang-Hanau (Federal Republic of Germany). The report is the result of the combined efforts of the Joint Research Centre (Ispra Establishment, Safeguards and fissile material management project) and the Safegards Directorate of Euratom, with the continuous collaboration of the operator of the plant

  19. Safeguards aspects for future fuel management alternatives

    International Nuclear Information System (INIS)

    Richter, B.; Stein, G.; Gerstler, R.

    1987-01-01

    In the future, more flexible fuel management strategies will be realized in light-water reactor power stations. The incentives for this development are based on considerations related to safe and economic plant operation, e.g. improved fuel strategies can save fuel resources and waste management efforts. A further important aspect of the nuclear fuel cycle deals with recycling strategies. At the back-end of the fuel cycle, the direct final disposal of spent fuel will have to be assessed as an alternative to recycling strategies. These major development fields will also have consequences for international safeguards. In particular, reactor fuel strategies may involve higher burn-up, conditioning of spent fuel directly in the power plant, gadolinium-poisoned fuel and different levels of enrichment. These strategies will have an impact on inspection activities, especially on the applicability of NDA techniques. The inspection frequency could also be affected in recycling strategies using MOX fuel. There may be problems with NDA methods if reprocessed feed is used in enrichment plants. On the other hand, the direct final disposal of spent fuel will raise safeguards problems regarding design verification, long-term safeguarding and the very feasibility of inaccessible nuclear material

  20. Design measures to facilitate implementation of safeguards at future water cooled nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The report is intended to present guidelines to the State authorities, designers and prospective purchasers of future water cooled power reactors which, if taken into account, will minimize the impact of IAEA safeguards on plant operation and ensure efficient and effective acquisition of safeguards data to the mutual benefit of the Member State, the plant operator and the IAEA. These guidelines incorporate the IAEA's experience in establishing and carrying out safeguards at currently operating nuclear power plants, the ongoing development of safeguards techniques and feedback of experience from plant operators and designers on the impact of IAEA safeguards on plant operation. The following main subjects are included: The IAEA's safeguards function for current and future nuclear power plants; summary of the political and legal foundations of the IAEA's safeguards system; the technical objective of safeguards and the supply and use of required design information; safeguards approaches for nuclear power plants; design implications of experience in safeguarding nuclear power plants and guidelines for future water cooled reactors to facilitate the implementation of safeguards

  1. Safeguards and security progress report, January-December 1985

    International Nuclear Information System (INIS)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments

  2. Safeguards and security progress report, January-December 1985

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

  3. Nuclear safety in fuel-reprocessing plants

    International Nuclear Information System (INIS)

    Hennies, H.H.; Koerting, K.

    1976-01-01

    The danger potential of nuclear power and fuel reprocessing plants in normal operation is compared. It becomes obvious that there are no basic differences. The analysis of possible accidents - blow-up of an evaporator for highly active wastes, zircaloy burning, cooling failure in self-heating process solutions, burning of a charged solvent, criticality accidents - shows that they are kept under control by the plant layout. (HP) [de

  4. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  5. Consolidated Fuel Reprocessing Program. Operating experience with pulsed-column holdup estimators

    International Nuclear Information System (INIS)

    Ehinger, M.H.

    1986-01-01

    Methods for estimating pulsed-column holdup are being investigated as part of the Safeguards Assessment task of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory. The CFRP was a major sponsor of test runs at the Barnwell Nuclear Fuel plant (BNFP) in 1980 and 1981. During these tests, considerable measurement data were collected for pulsed columns in the plutonium purification portion of the plant. These data have been used to evaluate and compare three available methods of holdup estimation

  6. Task 5c: measurement and instrumentation under subsystem design of the LLL safeguard material control program. [For fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-31

    A product survey was conducted of all security products currently available on the market. Documentation is presented of the survey and a printout of the data is included. A general description is given of new but recommended instrumentation and security devices for application to fuel reprocessing plants. Security systems and hardware recommended for development, assembly, and testing are discussed briefly. (DLC)

  7. Advanced safeguards research and development plan with an emphasis on its impact on nuclear power-plant design

    International Nuclear Information System (INIS)

    Tobin, S.J.; Demuth, S.F.; Miller, M.C.; Swinhoe, M.T.; Thomas, K.E.

    2007-01-01

    One tool for reducing the concern of nuclear proliferation is enhanced safeguards. Present safeguards have evolved over the past 40 years, and future safeguards will grow from this strong base to implement new technologies for improving our ability to quantify nuclear material. This paper will give an overview of the advanced technology research and development plan for safeguarding. One of the research facilities planned by the Department of Energy is the Advanced Fuel Cycle Facility (AFCF), to develop a novel nuclear fuel recycling program. Since the Advanced Fuel Cycle Facility will receive and reprocess spent fuel and will fabricate fast-reactor fuel, a wide breadth of safeguards technologies is involved. A fundamental concept in safeguards is material control and accounting (MCA). 4 topics concerning MCA and requiring further research have been identified: 1) measuring spent fuel, 2) measuring the plutonium content in the electro-refiner with pyro-processing, 3) measuring plutonium in the presence of other actinides, and 4) measuring neptunium and americium in the presence of other actinides. As for the long-term research and development plan for the AFCF, it will include improving MCA techniques as well as introducing new techniques that are not related to MCA, for example, enhanced containment and surveillance, or enhanced process monitoring. The top priority will stay quantifying the plutonium as accurately as possible and to reach this purpose 4 relevant technologies have been identified: 1) the microcalorimeter, 2) the passive neutron-albedo reactivity, 3) list-mode data acquisition, and 4) a liquid-scintillator multiplicity counter. Incorporating safeguards into the initial design of AFCF (safeguards by design) is a central concept. As the technology research and development plan for the Advanced Fuel Cycle Facility is examined, particular attention will be given to safeguards technologies that may affect the physical design of nuclear power plants

  8. Material balance areas and frequencies for large reprocessing plants

    International Nuclear Information System (INIS)

    Burr, T.

    1994-01-01

    It has long been recognized that facilities with a large nuclear material throughput will probably not meet the International Atomic Energy Agency (IAEA) goal for detecting trickle diversion of plutonium over periods of about one year. The reason is that measurement errors for plutonium concentration and for liquid volume are often approximately relative over a fairly wide range of true values. Therefore, large throughput facilities will tend to have large uncertainties assigned to their annual throughput. By the same argument, if frequent balances are performed over small material balance areas, then the uncertainty associated with each balance period for each balance area will be small. However, trickle diversion would still be difficult to detect statistically. Because the IAEA will soon be faced with safeguarding a new large-scale reprocessing plant in Japan, it is timely to reconsider the advantages and disadvantages of performing frequent material balances over small balance areas (individual tanks where feasible). Therefore, in this paper the authors present some simulation results to study the effect of balance frequency on loss detection probability, and further simulation results to study possibilities introduced by choosing small balance areas. They conclude by recommending frequent balances over small areas

  9. Future of the reprocessing business at the RT-1 plant

    International Nuclear Information System (INIS)

    Bukharin, O.

    1995-01-01

    Economic viability of reprocessing operations at the RT-1 plant is provided by the contracts with nuclear utilities from Finland and Hungary. Finland will stop sending fuel to Mayak for reprocessing after 1996. Hungary will be capable to resolve the problem of spent fuel domestically some time in the future. This increases vulnerability of the reprocessing business at Mayak to future political uncertainties. (author)

  10. Study on reprocessing plant during transition period from LWR to FBR

    International Nuclear Information System (INIS)

    Shimada, Takashi; Matsui, Minefumi; Nishimura, Masashi; Ishida, Yasuhiro; Mori, Yukihide; Kuroda, Kazuhiko

    2011-01-01

    We have proposed a concept of a reprocessing plant suitable for the transition period from the light water reactors (LWRs) to the fast breeder reactors (FBRs) by making comparison of two plant concepts: (1) Independent Plant which processes LWR fuel and FBR fuel in separately constructed lines and (2) Modularized Plant which processes LWR fuel and FBR fuel in a same line. We made construction plans based on the reference power generation plan, and evaluated the Pu supply capability using the power generation plan as an indicator of plant operation flexibility. In general, a margin of processing capacity increases the Pu supply capability. The margin of the Modularized Plant necessary to obtain equivalent Pu supply capability is smaller than that of the Independent Plant. Also the margin of the Independent Plant results in decrease in the plant utilization factor. But the margin of the Modularized Plant results in little decrease in the plant utilization factor, because the Modularized Plant can address the types of reprocessing fuel to adjust to Pu demand and processing capacity. Therefore, the Modularized Plant has a greater potential for the reprocessing plants during transition period. (author)

  11. Safeguards activities in Japan

    International Nuclear Information System (INIS)

    Osabe, Takeshi

    1998-01-01

    Current Japanese State System for Accountancy and Control (SSAC) has been developing and fully satisfies requirements of both IAEA Safeguards and bilateral partners. However, the public attention on the national and international safeguards activities were increased and the safeguards authorities were required to promote the objective assessment of safeguards implementation to avoid mistrust in safeguards activities which directly influence the public acceptance of nuclear energy in itself. Additionally, since Japan has promoted to complete nuclear fuel cycle including spent fuel reprocessing, enrichment and mixed oxide fuel fabrication this would require further assurance of Japanese non-proliferation commitment. Japan supports the introduction of strengthened safeguards. In this context it is particularly important to strengthen the relationship between national and the IAEA safeguards to contribute actively to the IAEA safeguards in development and utilization of new technologies towards more effective and efficient IAEA safeguards

  12. General Atomic reprocessing pilot plant: description and results of initial testing

    International Nuclear Information System (INIS)

    1977-12-01

    In June 1976 General Atomic completed the construction of a reprocessing head-end cold pilot plant. In the year since then, each system within the head end has been used for experiments which have qualified the designs. This report describes the equipment in the plant and summarizes the results of the initial phase of reprocessing testing

  13. Turning point of U.S. government decision in US-Japan nuclear fuel reprocessing negotiation in 1977

    International Nuclear Information System (INIS)

    Izumi, Yoshinori

    2010-01-01

    U.S. President Carter's Nuclear Nonproliferation Policy, announced in April 1977, which terminated federal funding for reprocessing, was a shock to the Atomic Energy Authority of the Japanese Government that had promoted the construction of Tokai Reprocessing Plant (TRP). After that, it became necessary to negotiate the 'Joint Determination for the Effective Safeguardability of TRP' subject to the 1968 Agreement for cooperation between the Government of Japan and the Government of the United States of America concerning civil use of Atomic Energy. Negotiations for the 'Joint Determination for the Effective Safguardability of TRP' were conducted in the U.S.-Japan Nuclear Fuel Reprocessing Negotiation and Joint Field Work meetings from April to September 1977. Both governments agreed to the TRP operation's terms and conditions including 'Joint Determination for the Effective Safeguardability of TRP' in the third negotiation. In spite of the hard position on reprocessing stated in the Nuclear Nonproliferation Policy enacted by President Carter, these negotiations concluded accepting the operation of TRP with condition. In this paper, I will explore the reasons for the abovementioned political decision by the U.S. government based on its disclosure documents. (author)

  14. Analysis of the options - rationale for servomanipulator maintenance in future reprocessing plants

    International Nuclear Information System (INIS)

    Herndon, J.N.; Hamel, W.R.

    1984-04-01

    The currently available maintenance systems which can be applied, in various combinations, to large-volume in-cell maintenance operations are: (1) contact, (2) overhead cranes, (3) power manipulators, (4) mechanical master/slave manipulators, and (5) servomanipulators. The requirements for reprocessing plant maintenance are reviewed, and the capabilities of remote maintenance systems are described. A basic trade-off analysis of these remote maintenance systems considering reprocessing plant requirements is given. Justification is given for selecting the overhead crane/servomanipulator-based maintenance concept as the option most desirable for future large reprocessing plant maintenance. 23 references, 6 tables

  15. Safety problems in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Amaury, P.; Jouannaud, C.; Niezborala, F.

    1979-01-01

    The document first situates the reprocessing in the fuel cycle as a whole. It shows that a large reprocessing plant serves a significant number of reactors (50 for a plant of 1500 tonnes per annum). It then assesses the potential risks with respect to the environment as well as with respect to the operating personnel. The amounts of radioactive matter handled are very significant and their easily dispersible physical form represents very important risks. But the low potential energy likely to bring about this dispersion and the very severe and plentiful confinement arrangements are such that the radioactive risks are very small, both with respect to the environment and the operating personnel. The problems of the interventions for maintenance or repairs are mentioned. The intervention techniques in a radioactive environment are perfected, but they represent the main causes of operating personnel irradiation. The design principle applied in the new plants take this fact into account, involving a very significant effort to improve the reliability of the equipment and ensuring the provision of devices enabling the failing components to be replaced without causing irradiation of the personnel [fr

  16. Impact of the Tokai reprocessing plant on the workers and on the surrounding environment

    International Nuclear Information System (INIS)

    Tago, I.

    1996-01-01

    The Tokai reprocessing plant began operation in September 1977 to establish oxide fuel reprocessing technology in Japan. Its designed capacity is about 0.7 metric tons of uranium per day. This report gives an example of the evaluation of the health and environmental aspects of a reprocessing plant. (author)

  17. Remote handling in reprocessing plants

    International Nuclear Information System (INIS)

    Streiff, G.

    1984-01-01

    Remote control will be the rule for maintenance in hot cells of future spent fuel reprocessing plants because of the radioactivity level. New handling equipments will be developed and intervention principles defined. Existing materials, recommendations for use and new manipulators are found in the PMDS' documentation. It is also a help in the choice and use of intervention means and a guide for the user [fr

  18. Comparison for thorium fuel cycle facilities of two different capacities for implementation of safeguards

    International Nuclear Information System (INIS)

    Gangotra, Suresh; Grover, R.B.; Ramakumar, K.L.

    2013-01-01

    Highlights: • Facilities for implementation of safeguards for thorium fuel cycle have been compared. • Two concepts have been compared. • In one concept, the facilities are designed in hub and spoke concept. • In second concept the facilities are designed as self-contained concept. • The comparison is done on a number of factors, which affect safeguardability and proliferation resistance. -- Abstract: Thorium based nuclear fuel cycle has many attractive features, its inherent proliferation resistance being one of them. This is due to the presence of high energy gamma emitting daughter products of U 232 associated with U 233 . This high energy gamma radiation also poses challenges in nuclear material accounting. A typical thorium fuel cycle facility has a number of plants including a fuel fabrication plant for initial and equilibrium core, a reprocessed U 233 fuel fabrication plant, a reprocessing plant, a fuel assembly/disassembly plant and associated waste handling and management plants. A thorium fuel cycle facility can be set up to serve reactors at a site. Alternatively, one can follow a hub and spoke approach with a large thorium fuel cycle facility acting as a hub, catering to the requirements of reactors at several sites as spokes. These two concepts have their respective merits and shortcomings in terms of engineering and economics. The present paper is aimed at comparing the merits and challenges for implementation of safeguards on the two concepts viz. a large fuel cycle hub catering to reactors at several sites versus a small fuel cycle facility dedicated to reactors at a single site

  19. Comparison for thorium fuel cycle facilities of two different capacities for implementation of safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Gangotra, Suresh, E-mail: sgangotra@yahoo.co.in; Grover, R.B.; Ramakumar, K.L.

    2013-09-15

    Highlights: • Facilities for implementation of safeguards for thorium fuel cycle have been compared. • Two concepts have been compared. • In one concept, the facilities are designed in hub and spoke concept. • In second concept the facilities are designed as self-contained concept. • The comparison is done on a number of factors, which affect safeguardability and proliferation resistance. -- Abstract: Thorium based nuclear fuel cycle has many attractive features, its inherent proliferation resistance being one of them. This is due to the presence of high energy gamma emitting daughter products of U{sup 232} associated with U{sup 233}. This high energy gamma radiation also poses challenges in nuclear material accounting. A typical thorium fuel cycle facility has a number of plants including a fuel fabrication plant for initial and equilibrium core, a reprocessed U{sup 233} fuel fabrication plant, a reprocessing plant, a fuel assembly/disassembly plant and associated waste handling and management plants. A thorium fuel cycle facility can be set up to serve reactors at a site. Alternatively, one can follow a hub and spoke approach with a large thorium fuel cycle facility acting as a hub, catering to the requirements of reactors at several sites as spokes. These two concepts have their respective merits and shortcomings in terms of engineering and economics. The present paper is aimed at comparing the merits and challenges for implementation of safeguards on the two concepts viz. a large fuel cycle hub catering to reactors at several sites versus a small fuel cycle facility dedicated to reactors at a single site.

  20. Hybrid KED/XRF measurement of minor actinides in reprocessing plants

    International Nuclear Information System (INIS)

    Hsue, S.T.; Collins, M.L.

    1996-01-01

    Minor actinides have received considerable attention recently in the nuclear power industry. Because of their potential value as recycle fuels in thermal and breeder reactors, reprocessing plants may have an economic incentive to extract Np, Am, and Cm from their waste streams. This report discusses the technique of hybrid densitometry and its potential to measure Np and Am in reprocessing plants. Precision estimates are made for the hybrid analysis of Np and Am in two types of dissolver solutions

  1. Experience of iodine removal in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Kikuchi, K.; Komori, Y.; Takeda, K.

    1985-01-01

    In the Tokai reprocessing plant about 170 ton of irradiated fuels have been processed since the beginning of hot operations in 1977. There was no effective equipment for iodine removal from the off-gas except for alkaline scrubbers when the plant construction was completed. In order to reduce the iodine discharge to the atmosphere, silver-exchanged zeolite (AgX) filters were installed additionally in 1979 and 1980, and they have been effective. However, those decontamination factors (DFs) were not as high as expected, and increasing the reprocessing amount of spent fuels it became necessary to lower the iodine discharge to the atmosphere. Therefore, other iodine removal equipment is planned to be installed in the plant. Concerning these investigations and development of iodine removal techniques, the iodine concentration of actual off-gases was measured and useful data were obtained

  2. NO/sub x/ emissions from Hanford nuclear fuels reprocessing plants

    International Nuclear Information System (INIS)

    Pajunen, A.L.; Dirkes, R.L.

    1978-01-01

    Operation of the existing Hanford nuclear fuel reprocessing facilities will increase the release of nitrogen oxides (NO/sub x/) to the atmosphere over present emission rates. Stack emissions from two reprocessing facilities, one waste storage facility and two coal burning power plants will contain increased concentrations of NO/sub x/. The opacity of the reprocessing facilities' emissions is predicted to periodically exceed the State and local opacity limit of twenty percent. Past measurements failed to detect differences in the ambient air NO/sub x/ concentration with and without reprocessing plant operations. Since the facilities are not presently operating, increases in the non-occupational ambient air NO/sub x/ concentration were predicted from theoretical diffusion models. Based on the calculations, the annual average ambient air NO/sub x/ concentration will increase from the present level of less than 0.004 ppM to less than 0.006 ppM at the Hanford site boundaries. The national standard for the annual mean ambient air NO 2 concentration is 0.05 ppM. Therefore, the non-occupational ambient air NO/sub x/ concentration will not be increased to significant levels by reprocessing operations in the Hanford 200 Areas

  3. Application of safeguards techniques to the Eurodif gas diffusion plant

    International Nuclear Information System (INIS)

    Coates, J.H.; Goens, J.R.

    1979-01-01

    The characteristic features of gas diffusion plants are such that safeguards procedures specifically suited for this technique can be proposed. The first of these features is the fact that appreciably altering the enrichment level of the plant product is not possible without making easily detectable changes either in the plant structure itself or in the movement of incoming and outgoing materials. Furthermore, because of the size of gas diffusion plants large stocks of uranium are present in them. Although inventory differences may be small in relative terms, they are large in abosolute terms and exceed the quantities of low-enriched uranium considered significant from the standpoint of safeguards. Lastly, the impossibility for economic reasons for taking a physical inventory of the plant after it has been emptied prevents a comparison of the physical inventory with the book inventory. It would therefore seem that the safeguarding of a gas diffusion plant should be focused on the movement of nuclear material between the plant and the outside world. The verification of inputs and outputs can be considered satisfactory from the safeguards standpoint as long as it is possible to make sure of the containment of the plant and of the surveillance for the purpose of preventing clandestine alterations of structure. The description of the Eurodif plant and the movement of materials planned there at present indicate that the application of such a safeguards technique to the plant should be acceptable to the competent authorities. For this purpose a monitoring area has been set aside in which the inspectors will be able to keep track of all movements between the outside world and the enrichment plant

  4. General Atomic Reprocessing Pilot Plant: engineering-scale dissolution system description

    International Nuclear Information System (INIS)

    Yip, H.H.

    1979-04-01

    In February 1978, a dissolver-centrifuge system was added to the cold reprocessing pilot plant at General Atomic Company, which completed the installation of an HTGR fuel head-end reprocessing pilot plant. This report describes the engineering-scale equipment in the pilot plant and summarizes the design features derived from development work performed in the last few years. The dissolver operating cycles for both thorium containing BISO and uranium containinng WAR fissile fuels are included. A continuous vertical centrifuge is used to clarify the resultant dissolver product solution. Process instrumentation and controls for the system reflect design philosophy suitable for remote operation

  5. UK Safeguards R and D Project progress report for the period May 1987 -April 1988

    International Nuclear Information System (INIS)

    Packer, T.W.

    1988-09-01

    The main categories of task included in the United Kingdom safeguards research and development programme are summarised in the first section. These are: tasks concerned with the development of instruments and techniques for reprocessing and centrifuge enrichment plant safeguards; tasks concerned with the development of instruments and techniques for general application in the field of safeguards; tasks which are services to the International Atomic Energy Authority and exploratory and short term tasks which occur from time to time. The next three sections contain progress reports on the individual tasks and section 6 lists reports and papers relevant to work on UK safeguards research and development published between May 1987 and April 1988. (U.K.)

  6. Potential safety-related incidents with possible applicability to a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Perkins, W.C.; Durant, W.S.; Dexter, A.H.

    1980-12-01

    The occurrence of certain potential events in nuclear fuel reprocessing plants could lead to significant consequences involving risk to operating personnel or to the general public. This document is a compilation of such potential initiating events in nuclear fuel reprocessing plants. Possible general incidents and incidents specific to key operations in fuel reprocessing are considered, including possible causes, consequences, and safety features designed to prevent, detect, or mitigate such incidents

  7. Aerosols released in accidents in reprocessing plants

    International Nuclear Information System (INIS)

    Ballinger, M.Y.; Owczarski, P.C.; Hashimoto, K.; Nishio, G.; Jordan, S.; Lindner, W.

    1987-01-01

    For analyzing the thermodynamic and radiological consequences of solvent fire accidents in reprocessing plants, intensive investigations on burning contaminated condensible liquids were performed at Kernforschungszentrum Karlsruhe (KfK), Pacific Northwest Laboratory (PNL), and Japan Atomic Energy Research Institute (JAERI). In small- and large-scale tests, KfK studied the behavior of kerosene, tributyl phosphate, HNO 3 mixture fires in open air and closed containments. The particle release from uranium-contaminated pool fires was investigated. Different filter devices were tested. For analyzing fires, PNL has developed the FIRIN computer code and has generated small-scale fire data in support of that code. The results of the experiments in which contaminated combustible liquids were burned demonstrate the use of the FIRIN code in simulating a solvent fire in a nuclear reprocessing plant. To demonstrate the safety evaluation of a postulated solvent fire in an extraction process of a reprocessing pant, JAERI conducted large-scale fire tests. Behavior of solvent fires in a cell and the integrity of high-efficiency particulate air (HEPA) filters due to smoke plugging were investigated. To evaluate confinement of radioactive materials released from the solvent fire, the ventilation systems with HEPA filters were tested under postulated fire conditions

  8. Review of Design Data for Safety Assessment of Tokai Reprocessing Plant. Control of hydrogen gas produced by radiolysis of reprocessing solutions at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Omori, E.; Surugaya, N.; Takaya, A.; Nakamura, H.; Maki, A.; Yamanouchi, T.

    1999-10-01

    Radioactive materials in aqueous solution at a nuclear fuel reprocessing plant causes radiolytic generation of several gases including hydrogen. Hydrogen accumulating in equipment can be an explosion hazard. In such plants, though the consideration in the design has been fundamentally made in order to remove the ignition source from the equipment, the hydrogen concentration in the equipment should not exceed the explosion threshold. It is, therefore, desired to keep the hydrogen concentration lower than the explosion threshold by dilution with the air introduced into equipment, from the viewpoint which previously prevents the explosion. This report describes the calculation of hydrogen generation, evaluation of hydrogen concentration under abnormal operation and consideration of possible improvement at Tokai Reprocessing Plant. The amount of hydrogen generation was calculated for each equipment from available data on radiolysis induced by radioactive materials. Taking into consideration for abnormal condition that is single failure of air supply and loss of power supply, the investigation was made on the method for controlling so that the hydrogen concentration may not exceed the explosion threshold. Possible means which can control the concentration of hydrogen gas under the explosion threshold have been also investigated. As the result, it was found that hydrogen concentration of most equipment was kept under the explosion threshold. It was also shown that improvement of the facility was necessary on the equipment in which the concentration of the hydrogen may exceed the explosion threshold. Proposals based on the above results are also given in this report. The above content has been described in 'Examination of the hydrogen produced by the radiolysis' which is a part of 'Reviews of Design Data for Safety Assessment of Tokai Reprocessing Plant' (JNC TN8410 99-002) published in February 1999. This report incorporates the detail evaluation so that operation

  9. Status of the decommissioning program of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Detilleux, E.J.

    1976-01-01

    Reprocessing operations at the Eurochemic demonstration plant stopped in December 1974, after 8 years of operation. Immediately thereafter, cleaning and decontamination were begun as the first phase of the decommissioning program. The facility and reprocessing program are described to indicate the magnitude of the problem, and the requirements of the local authorities are reviewed. The technical decommissioning program consists of several phases: (1) plant cleaning and rinsing, (2) establishment of the final fissile-material balance, (3) plant decontamination for access to process equipment, (4) equipment dismantling, and (5) conditioning and storage of newly generated wastes. The two first phases have been completed, and the third one is nearing completion. Some dismantling has been performed, including the plutonium dioxide production unit. Waste-conditioning and surface-storage facilities have been built to meet the dismantling requirements. Since reprocessing may be resumed in the future, decontamination has been performed with ''smooth'' reagents to limit corrosion and dismantling has been limited to subfacilities

  10. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under provisions concerning the reprocessing business in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area; employee; radioactive waste and marine discharging facilities. Any person who gets permission for design of reprocessing facilities and method of the construction shall file an application, listing name and address of the person and the works or the place of enterprise where reprocessing facilities are to be set up, design of such facilities and method of the construction, in and out-put chart of nuclear fuel materials in reprocessing course, etc. Records shall be made and kept for particularly periods in each works or enterprise on inspection of reprocessing facilities, control of dose, operation, maintenance, accident of reprocessing facilities and weather. Detailed prescriptions are settled on entrance limitation to controlled area, exposure dose, inspection and check, regular independent examination and operation of reprocessing facilities, transportation in the works or the enterprise, storage, disposal, safeguard and measures in dangerous situations, etc. Reports shall be filed on exposure dose of employees and other specified matters in the forms attached and in the case otherwise defined. (Okada, K.)

  11. Unattended safeguards instrumentation at centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Smith, L. Eric; Lebrun, Alain R.; Labella, Rocco

    2014-01-01

    As global uranium enrichment capacity under international safeguards expands, the International Atomic Energy Agency (IAEA) is challenged to develop effective safeguards approaches at gaseous centrifuge enrichment plants, particularly high‑capacity plants, while working within budgetary constraints. New safeguards approaches should meet the high‑level verification objectives for such facilities (i.e., timely detection of: diversion of declared material, excess production beyond declared amounts, and production of enrichment levels higher than declared), but should also strive for efficiency advantages in implementation, for both the IAEA and operators. Under the Agency’s State- level approach to safeguards implementation, the Agency needs a flexible toolbox of technologies, allowing tailoring of safeguards measures for each individual enrichment facility. In this paper, the potential roles and development status for three different types of unattended measurement instrumentation are discussed. On‑Line Enrichment Monitors (OLEM) could provide continuous enrichment measurement for 100% of the declared gas flowing through unit header pipes. Unattended Cylinder Verification Stations (UCVS) could provide unattended verification of the declared uranium mass and enrichment of 100% of the cylinders moving through the plant, but also apply and verify an ‘NDA Fingerprint’ to preserve verification knowledge on the contents of each cylinder throughout its life in the facility. Sharing of the operator’s load cell signals from feed and withdrawal stations could count all cylinders introduced to the process and provide periodic monitoring of the uranium mass balance for in‑process material. The integration of load cell, OLEM and UCVS data streams offers the possibility for 100% verification of declared cylinder flow, and enables the periodic verification of the declared 235 U mass balance in the plant. These new capabilities would enhance the IAEA

  12. Demonstration of an automated electromanometer for measurement of solution in accountability vessels in the Tokai Reprocessing Plant (part II)

    International Nuclear Information System (INIS)

    Yamonouchi, T.; Fukuari, Y.; Hayashi, M.; Komatsu, M.; Suyama, N.; Uchida, T.

    1982-01-01

    This report describes the results of an operational field test of the automated electromanometer system installed at the input accountability vessel (251V10) and the plutonium product accountability vessel (266V23) in the Tokai Reprocessing Plant. This system has been in use since September 1979 when it was installed in the PNC plant by BNL as part of Task-E, one of the thirteen tasks, in the Tokai Advanced Safeguards Technology Exercise (TASTEX) program. The first report on the progress of this task was published by S. Suda, et al., in the Proceedings of the INMM 22nd Annual Meeting. In this paper, further results of measurement and data analysis are shown. Also, the reliability and applicability of this instrument for accountability, safeguards, and process control purposes are investigated using the data of 106 batches for 251V10 and 40 batches for 266V23 obtained during two campaigns in 1981. There were small but significant differences relative to the plant's measurements for both vessels of 251V10 and 266V23; however, the difference for 251V10 was slightly decreased in the latest vessel calibration. Initially, there were many spurious signals originating with the raw data caused by a software error in the system. However, almost normal conditions were obtained after corrections of the program were made

  13. Features in the aspect of materials in reprocessing plants

    International Nuclear Information System (INIS)

    Tanaka, Toshikazu; Suzuki, Kazuhiro

    1992-01-01

    The process of the reprocessing plant installed in Rokkasho, Aomori Prefecture, by Japan Nuclear Fuel Service Co., Ltd. is the Purex wet process experienced in Japan and abroad, and which can obtain the uranium and plutonium products of high purity at high recovery rate. This process is to melt spent fuel with nitric acid, and extract and separate uranium, plutonium and fission products from the obtained solution by utilizing the difference in chemical properties. The yearly amount of treatment of the reprocessing plant of this company is 800 t uranium. In order to ensure the safety in the reprocessing plant that handles the solution with high radioactivity, the function of confining radioactive substances in definite areas is demanded. For the purpose, the machinery, equipment and piping containing radioactive substances are made of the materials having the corrosion resistance against nitric acid, and welded structure is adopted to prevent leakage. Negative pressure is maintained in waste gas treatment facilities in relation to cells, and in the cells in relation to the building. The outline of the facilities, the materials of the main machinery and equipment, and the applied technologies are reported. (K.I.)

  14. Development of a Safeguards Approach for a Pyroprocessing Plant by IAEA Member State Support Program

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, H. D.; Song, D. Y.; Eom, S. H.; Lee, T. H.; Ahn, S. K.; Park, S. H.; Han, B. Y.; Choi, Y.

    2012-01-01

    The objective of this project is to analyze the safeguard ability of pyroprocess facility and to establish the safeguards system for pyroprocess by developing the technology of nuclear material accounting for unit process, surveillance technology and nuclear characteristic analysis technology which are needed to demonstrate the safeguards technology of pyroprocess. Therefore, the development of a safeguards approach for pyroprocessing facilities is required as the interest of pyroprocessing increases. Regarding this issue, the IAEA made a contract the 3-years long Member State Support Program (MSSP) for the 'Support for Development of a Safeguards Approach for a Pyroprocessing Plant' with the Republic of Korea (ROK) in July 2008. Even though the pyroprocess technology is currently being developed all over the world, its safeguards approach has not been established yet, and especially, nuclear material accountancy technology which is the core of safeguards has not been established as well. Therefore, the development of new accountancy technology which is appropriate for the construction of pyroprocess facility is needed. Due to the nature of the process, pyroprocess has various kinds of process material form, and the composition of Pu and U isotopes included in process material is not homogeneous. Also, the existing nuclear material accountancy technology for a wet reprocessing facility is hard to apply because of a large quantity of gamma-ray radiation which is emitted from the fissile products in process material. In this report, the study for the development of a safeguards approach for a pyroprocessing plant pyroprocessing has been described. As the previous results six pyroprocessing facility concepts suggested by US, Japan, and Republic of Korea had been summarized and analyzed, and the determination principles were established to determine a reference pyroprocessing facility concept. The reference pyroprocessing facility was determined to be the ESPF of KAERI

  15. Gas chromatographic analysis of extractive solvent in reprocessing plants

    International Nuclear Information System (INIS)

    Marlet, B.

    1984-01-01

    Operation of a reprocessing plant using the Purex process is recalled and analytical controls for optimum performance are specified. The aim of this thesis is the development of analytical methods using gas chromatography required to follow the evolution of the extraction solvent during spent fuel reprocessing. The solvent at different concentrations, is analysed along the reprocessing lines in organic or aqueous phases. Solvent degradation interferes with extraction and decomposition products are analysed. The solvent becomes less and less efficient, also it is distilled and quality is checked. Traces of solvent should also be checked in waste water. Analysis are made as simple as possible to facilitate handling of radioactive samples [fr

  16. Nuclear fuel re-processing plant

    International Nuclear Information System (INIS)

    Sasaki, Yuko; Honda, Takashi; Shoji, Saburo; Kobayashi, Shiro; Furuya, Yasumasa

    1989-01-01

    In a nuclear fuel re-processing plant, high Si series stainless steels not always have sufficient corrosion resistance in a solution containing only nitric acid at medium or high concentration. Further, a method of blowing NOx gases may possibly promote the corrosion of equipment constituent materials remarkably. In view of the above, the corrosion promoting effect of nuclear fission products is suppressed without depositing corrosive metal ions as metals in the nitric acid solution. That is, a reducing atmosphere is formed by generating NOx by electrolytic reduction thereby preventing increase in the surface potential of stainless steels. Further, an anode is disposed in the nitric acid solution containing oxidative metal ions to establish an electrical conduction and separate them by way of partition membranes and a constant potential or constant current is applied while maintaining an ionic state so as not to deposit metals. Thus, equipments of re-processing facility can be protected from corrosion with no particular treatment for wastes as radioactive materials. (K.M.)

  17. Summary of safeguards interactions between Los Alamos and Chinese scientists

    International Nuclear Information System (INIS)

    Eccleston, G.W.

    1994-01-01

    Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions

  18. Fuel reprocessing plant: No qualitative differences as compared to other sensitive process plants

    International Nuclear Information System (INIS)

    Schweinoch, J.

    1986-01-01

    Nuclear power plants like the fuel reprocessing plant belong to the highly sensitive installations in respect of safety, but involve the same risks qualitatively as liquid-gas plants or chemical plants. Therefore no consequences for basic rights are discernible. The police can take adequate preventive measures. The regulations governing police action provide proper and sufficient warrants. (DG) [de

  19. Administrative and managerial controls for the operation of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Guidelines are provided for the administrative and managerial controls necessary for the safe and efficient operation of nuclear fuel reprocessing plants. Topics covered include: administrative organization; review and audit; facility administrative policies and procedures; and tests and inspections. Recognizing that administrative practices vary among organizations operating nuclear fuel reprocessing plants, the standard incorporates flexibility that provides for compliance by any organization

  20. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  1. To Russia with love: how the Australian Government's much vaunted safeguards policy has been watered down, step by step

    International Nuclear Information System (INIS)

    Milliken, R.

    1981-01-01

    Australia's uranium safeguards policy was announced in May 1977. The following conditions were included: no contracts could be signed until safeguards agreements had been concluded; uranium sold must remain Australian owned until it had been processed into a form attracting IAEA safeguards inspection; and prior Australian consent was required before a customer could reprocess Australian uranium, transfer it to a third country, or enrich it to a grade higher than that needed for normal power plants. Australia has signed 9 safeguards agreements and two more are due to be finalised soon. The author discusses changes in policy since the first agreement was signed. One problem has been conflict between commercial and safeguards issues

  2. Research and development on air cleaning system of reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Naruki, K.

    1985-01-01

    Present status in Japan of R and D on air cleaning systems, especially of the fuel reprocessing plant is summarized. The description is centered on the R and D and experience of Tokai-reprocessing plant, which covers the plant air cleaning system, effort carried out for decreasing I 2 effluence in the actual vented off-gas, and R and D for recovery of Kr and 3 H. Some experimental results for the evaluation of HEPA filter are also described

  3. Evaluation of methods for seismic analysis of nuclear fuel reprocessing plants, part 1

    International Nuclear Information System (INIS)

    Tokarz, F.J.; Murray, R.C.; Arthur, D.F.; Feng, W.W.; Wight, L.H.; Zaslawsky, M.

    1975-01-01

    Currently, no guidelines exist for choosing methods of structural analysis to evaluate the seismic hazard of nuclear fuel reprocessing plants. This study examines available methods and their applicability to fuel reprocessing plant structures. The results of this study should provide a basis for establishing guidelines recommending methods of seismic analysis for evaluating future fuel reprocessing plants. The approach taken is: (1) to identify critical plant structures and place them in four categories (structures at or near grade; deeply embedded structures; fully buried structures; equipment/vessels/attachments/piping), (2) to select a representative structure in each of the first three categories and perform static and dynamic analysis on each, and (3) to evaluate and recommend method(s) of analysis for structures within each category. The Barnwell Nuclear Fuel Plant is selected as representative of future commercial reprocessing plants. The effect of site characteristics on the structural response is also examined. The response spectra method of analysis combined with the finite element model for each category is recommended. For structures founded near or at grade, the lumped mass model could also be used. If a time history response is required, a time-history analysis is necessary. (U.S.)

  4. The establishment of in-process plutonium mass equation in Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamaya, Kosuke; Ebata, Takashi; Yamazaki, Yoshihiro; Kawai, Akio; Iwamoto, Tomonori

    2008-01-01

    At Rokkasho Reprocessing Plant (RRP), Active Test (AT) using actual spent fuels for the final confirmation of the equipment and the system has been performed toward the commercial operation. From the safeguards viewpoint, performance of material accountancy equipment is confirmed and data for evaluating parameters of the inspection equipment is obtained by making use of the AT period. RRP is applied to Near Real Time material Accountancy (NRTA). Under the NRTA scheme, the inventory at a cut-off time during process operation needs to be accounted for. There are some un-measurable inventories of plutonium in the process, which will be calculated from inventory estimation equations. The amount of these plutonium inventories calculated from the equations is so large that it is essential to improve the inventory estimation equations to be quite accurate. Therefore, correctness of the inventory estimation equations is evaluated by using process operation data obtained during AT. This paper describes the results of evaluating the inventory estimation equations by using the process operation data and the NRTA procedure under continuous operating condition as well. (author)

  5. Third International Meeting on Next Generation Safeguards: Safeguards-by-Design at Enrichment Facilities

    International Nuclear Information System (INIS)

    Long, Jon D.; McGinnis, Brent R.; Morgan, James B.; Whitaker, Michael; Lockwood, Dunbar; Shipwash, Jacqueline L.

    2011-01-01

    The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working

  6. Nuclear material safeguards surveillance and accountancy by isotope correlation techniques

    International Nuclear Information System (INIS)

    Persiani, P.J.; Goleb, J.A.; Kroc, T.K.

    1981-11-01

    The purpose of this study is to investigate the applicability of isotope correlation techniques (ICT) to the Light Water Reactor (LWR) and the Liquid Metal Fast Breeder Reactor (LMFBR) fuel cycles for nuclear material accountancy and safeguards surveillance. The isotopic measurement of the inventory input to the reprocessing phase of the fuel cycle is the primary direct determination that an anomaly may exist in the fuel management of nuclear material. The nuclear materials accountancy gap which exists between the fabrication plant output and the input to the reprocessing plant can be minimized by using ICT at the dissolver stage of the reprocessing plant. The ICT allows a level of verification of the fabricator's fuel content specifications, the irradiation history, the fuel and blanket assemblies management and scheduling within the reactor, and the subsequent spent fuel assembly flows to the reprocessing plant. The investigation indicates that there exist relationships between isotopic concentration which have predictable, functional behavior over a range of burnup. Several cross-correlations serve to establish the initial core assembly-averaged composition. The selection of the more effective functionals will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors on the correlation functions and respective sensitivities to isotopic compositional changes have been examined and found to be consistent with current measurement methods

  7. Outline of center for research and development in Rokkasho reprocessing plant site

    International Nuclear Information System (INIS)

    Araya, S.; Kanatsugu, K.; Shakutsui, M.

    1998-01-01

    Japan Nuclear Fuel Ltd.(JNFL) is now constructing a commercial nuclear fuel reprocessing plant at Rokkasho Mura, introducing French Technology on the main processes of it. In October 1995 prior to the reprocessing plant operation, JNFL established the CENTER FOR RESEARCH and DEVELOPMENT (Center for R and D) inside the plant site to perform various tests which are intended to improve the safety, availability and reliability of the reprocessing plant. The test facility of the center was constructed from 1991 to 1995, and now many tests have been being performed in the center. A full-scale mock-up of the Head end process components based on French Technology, which consist of a tilting crane, shearing machine, dissolver, hull rinser, end piece rinser and maintenance equipment, was moved into a new building from the Head End Demonstration Test facility in Kobe (reported in RECOD '91). Functional tests and system performance tests are carried out under cold conditions (non radioactive). As equipment and piping layout in the cell and working area layout outside of the cell are simulated to the reprocessing plant design, it is possible to test remote maintainability and repairability under the same condition as the reprocessing plant except radioactive condition. A full-scale mock-up of the Centrifugal clarifier based on French Technology, which can clarify the dissolution solution is operated to confirm clarification performance under various cold conditions and is tested for the maintainability and the repairability. A sampling bench imported from France is the same one planed to be operated in the reprocessing plant which samples for various analysis from each process. The sampling bench is tested to confirm operability, maintainability and reliability. Also the sampling piping and pneumatic piping are going to be install to the sampling bench for a system test of sampling system. Two types of MERC (Mobile Equipment Replacement Cask), which replace worn parts remotely

  8. The refurbishment of the D1206 fuel reprocessing plant

    International Nuclear Information System (INIS)

    Bailey, G.

    1988-01-01

    The term decommissioning can be applied not only to reactors but to any nuclear plant, laboratory, building or part of a building that may have been associated with radioactive material and needs to be restored to clean conditions. In this case the decommissioning and reconstruction of the Dounreay Fast Reactor fuel reprocessing plant, so that plutonium oxide could be reprocessed as well as enriched uranium fuel, is described. The work included improving containment and shielding, building a new head-end treatment cave for the more complex and larger fuel elements, improving the ventilation and constructing a new dissolver. In this paper the breakdown cave and dissolver cell are described and compared and the work done explained. (U.K.)

  9. Current status of process monitoring for IAEA safeguards

    International Nuclear Information System (INIS)

    Koroyasu, M.

    1987-06-01

    Based on literature survey, this report tries to answer some of the following questions on process monitoring for safeguards purposes of future large scale reprocessing plants: what is process monitoring, what are the basic elements of process monitoring, what kinds of process monitoring are there, what are the basic problems of process monitoring, what is the relationship between process monitoring and near-real-time materials accountancy, what are actual results of process monitoring tests and what should be studied in future. A brief description of Advanced Safeguards Approaches proposed by the four states (France, U.K., Japan and U.S.A.), the approach proposed by the U.S.A., the description of the process monitoring, the main part of the report published as a result of one of the U.S. Support Programmes for IAEA Safeguards and an article on process monitoring presented at an IAEA Symposium held in November 1986 are given in the annexes. 24 refs, 20 figs, tabs

  10. Outline of human machine interface at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Niioka, T.; Miyazaki, T.; Fujita, D.; Esashika, A.; Yoshida, Y.; Nakamura, W.; Tochigi, T.; Yoshimoto, A.; Yokoi, M.

    2006-01-01

    The Japan Nuclear Fuel Limited (JNFL) has been performing the active tests since the end of March, 2006, for its Rokkasho Reprocessing Plant using the spent fuels retrieved from the Light Water Reactors. At the early stage of the tests relatively low burn-up fuels have been used, and the burn-up will be increased at later stages until the start of commercial operation planned next year. The plant is operated from the main control room in the Control Building, where two types of operator consoles are located for plant monitoring and operation. The Operator Interface Station (OIS) driven by computer systems is chiefly used for instrumentation and control for production activities during normal operation. In addition to this, safety panels composed of hardware circuits are installed for nuclear safety functions such as criticality safety management, explosion protection, and confinement of radioactive materials. This paper outlines the Human Machine Interface features applied to the Rokkasho Reprocessing Plant. (authors)

  11. Intergovernmental action of neighbours against the Wackersdorf reprocessing plant

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    BV Art. 11, para. 2; BBauG section 12 (Federal Building Law). Art.11, para. 2 BV does not require that local development planning for a reprocessing plant should take into consideration the effects on neighbouring municipalities as a result of post-construction activities, in this case the transport of radioactive material via certain routes. Such supra-regional aspects go beyond the planning basis of a local government. These are the headnotes of a decision by the Bavarian Higher Administrative Court (BayVerfGH, 29.4.1987 - Vf. 5 - VII - 86). The issue of the proceedings commenced by a collective action is the question whether an area development plan for the purpose of erecting the Wackersdorf reprocessing plant infringes the constitutional rights of the town of Nuernberg due to the fact that after commissioning of the plant, radioactive material will be transported to and from the plant, and the envisaged route for the transports leads through the urban area. (orig./HP) [de

  12. Application of ICP-MS in Environmental Sampling Analysis for Safeguards

    International Nuclear Information System (INIS)

    Eko Pudjadi; Petrus Zacharias; Budi Prayitno

    2004-01-01

    Environmental samples measured by ICP-MS were analyzed for safeguards. There are two isotopes in environmental sampling that is used to find out the origin of nuclear materials and verify undeclared nuclear activities. Uranium isotopes are 234 U, 235 U, 236 U and 238 U and Plutonium isotopes are 239 Pu, 240 Pu, 241 Pu and 242 Pu. Uranium isotopes are used to verify an existing of nuclear power plants, enrichment plants or reprocessing plants. Plutonium isotopes are used to clarify global fallout from nuclear weapon testing and accident of nuclear facility or military purposes. The high sensitivity of ICP-MS can detect the isotopic fingerprint and trace elements in ppb concentration; ICP-MS has been applied to measure 235 U isotopic ratio and 240 Pu/ 239 Pu isotopic ratios. The sensitivity of ICP-MS is high precision and low operational cost in environmental sampling and can be considered in nuclear power design based on safeguards for development countries. (author)

  13. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-01-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the U.S. Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  14. Radiation exposures in reprocessing facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Hayes, G.; Caldwell, R.D.; Hall, R.M.

    1979-06-01

    Two large reprocessing facilities have been operating at the Savannah River Plant since 1955. The plant, which is near Aiken, South Carolina, is operated for the US Department of Energy by the Du Pont Company. The reprocessing facilities have a work force of approximately 1,800. The major processes in the facilities are chemical separations of irradiated material, plutonium finishing, and waste management. This paper presents the annual radiation exposure for the reprocessing work force, particularly during the period 1965 through 1978. It also presents the collective and average individual annual exposures for various occupations including operators, mechanics, electricians, control laboratory technicians, and health physicists. Periodic and repetitive work activities that result in the highest radiation exposures are also described. The assimilation of radionuclides, particularly plutonium, by the work force is reviewed. Methods that have been developed to minimize the exposure of reprocessing personnel are described. The success of these methods is illustrated by experience - there has been no individual worker exposure of greater than 3.1 rems per year and only one plutonium assimilation greater than the maximum permissible body burden during the 24 years of operation of the facilities

  15. Safeguards Licensing Aspects of a Future Gen IV Test Facility - a Case Study

    International Nuclear Information System (INIS)

    Lindell, M. Aberg; Grape, S.; Hakansson, A.; Svaerd, S. Jacobsson

    2010-01-01

    The scope of this study covers safeguards licensing aspects of a possible future Gen IV demonstration facility. As a basis for the investigation, the facility was assumed to be located in Sweden, comprising a lead-cooled fast reactor and a reprocessing plant with fuel fabrication. The aim has been to identify safeguards requirements that may be set by the IAEA and the Swedish Radiation Safety Authority, and also to suggest how the safeguards system could be implemented in practice. The changed usage and handling of nuclear fuel, as compared to that of today, has been examined in order to determine how today's safeguards measures can be modified and extended to meet the needs of the demonstration facility. This work is part of GENIUS, the Swedish Gen IV research and development programme, which emphasizes lead-cooled fast reactors. (author)

  16. DOE enrichment plants-safeguards means business

    International Nuclear Information System (INIS)

    Donnelly, R.

    1987-01-01

    The Portsmouth Gaseous Diffusion Plant, owned by the US Department of Energy (DOE) and operated by Martin Marietta Energy Systems, Inc., is a full service enrichment plant. Its long enriching cascade can process uranium hexafluoride (UF 6 ) feeds at almost any 235 U level and can produce UF 6 over the complete spectrum from depleted to very highly enriched uranium. The DOE uranium enrichment program is a government-owned enterprise operating as a business. The operating concerns of the DOE uranium enrichment plants and their safeguards programs have evolved together over the past three decades, and that evolution will likely continue. As the risk associated with possession, processing, and shipment of strategic nuclear material increased, the protection and control of it increased; as the value of the product grew with time, better ways were found to measure and conserve it. In each of these areas, safeguards objectives and the business requirements of the plant are complementary, and the progress made in one area has been reflected by progress in the other. The plant's material control and accountability program has become crucial to such business requirements as quantifying the enriched uranium (separative work units) produced in each monthly period and convincing financial auditors that the multibillion dollar enriched uranium assets located at the Portsmouth plant are properly stated

  17. Head-end process technology for the new reprocessing plants in France and Japan

    International Nuclear Information System (INIS)

    Saudray, D.; Hugelmann, D.; Cho, A.

    1991-01-01

    Major technological innovations brought to the new UP3 and UP2-800 reprocessing plants of COGEMA LA HAGUE and also to the JNFS ROKKASHO plant concern the head-end process. The continuous process designed allows for high throughputs whilst meeting stringent safety requirements. The head-end of each plant includes two lines for each operation in order to guarantee availability. This paper presents the T1 head-end facility of the UP3 plant as well as the few adaptations implemented in the ROKKASHO Reprocessing Plant to fulfill the particular design requirements in Japan

  18. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  19. Summary of the status of the NFS reprocessing plant

    International Nuclear Information System (INIS)

    Clark, J.R.

    The modification program at the West Valley, New York, reprocessing plant is described. The program involves expansion, improving the plant's on-stream factor and reducing the occupational exposures, installing natural phenomena protection, and improving effluent control and waste management. Licencing requirements and their effects on scheduling are discussed. (E.C.B.)

  20. TASTEX: Tokai Advanced Safeguards Technology Exercise

    International Nuclear Information System (INIS)

    1982-01-01

    During the years 1978 to 1981 the Governments of France, Japan and the United States of America cooperated with the International Atomic Energy Agency in the TASTEX (Tokai Advanced Safeguards Technology Exercise) programme. The aim of this programme was to improve the technology for the application of international safeguards at reprocessing facilities, and the results are presented in the present report

  1. Experience in the construction of a spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Yamashita, Hiroshi

    1976-01-01

    The construction and operation of a reprocessing plant was first published in 1956. The Reprocessing Expert Committee of AEC was established in 1959, and the preliminary design was finished in 1964 by NCP of Britain. The detailed design was completed in 1969 by SGN of France, and the training of operators was carried out in parallel with this in France. The results of the safety investigation was approved in Jan. 1970, and the construction was started in June 1971. The site of the reprocessing plant is the eastern part of the Tokai Establishment of PNC. The process adopted is the wet Purex process having been established in large practical plants. The treating capacity is 0.7 t/day. The main processes are acceptance and storage, mechanical treatment, and chemical treatment. The reprocessing facilities comprise the main shop, the analysis station, the main exhaust stack, the decontamination station, the solid waste store, the sea discharge pipe, and other incidental facilities. The construction works were about 7 months behind the schedule when the water flow test was finished. The chemical test was finished in March, 1975, and the uranium test is in progress since Sept., 1975. The problems for future are the developments of effective waste treatment and storing techniques, and the researches have been carried out by PNC. The construction project of the second plant is urgently required, since it takes 10 years from planning to operation. (Kako, I.)

  2. Nuclear accountability data at the EUREX reprocessing plant

    International Nuclear Information System (INIS)

    Ilardi, S.; Pozzi, F.

    1976-01-01

    In the present work the physical inventory's and fissile material balance's data, which have been collected during the irradiated MTR fuel reprocessing campaign at the EUREX plant in Saluggia (VC), are reported, together with the most important procedures of fissile material accountability

  3. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  4. Plan for the civil reprocessing pilot plant of China

    International Nuclear Information System (INIS)

    Wang, D.Y.; Chen, M.

    1987-01-01

    Based on the R and D work, experience on plant operation and site situation, the necessity and feasibility of building a pilot plant for civil reprocessing in China are discussed. The capacity of 100 kg HM/day (LWR) and 3 kg HM/day (MTR) has been proposed. The plant consists of cold testing facility and hot pilot facility. It is expected to complete the pilot plant in 1990's. This paper also describes the purpose, scale, process and equipment of the pilot plant

  5. Access control system for two person rule at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Yanagisawa, Sawako; Ino, Munekazu; Yamada, Noriyuki; Oota, Hiroto; Iwasaki, Mitsuaki; Kodani, Yoshiki; Iwamoto, Tomonori

    2014-01-01

    Following the amendment and enforcement of Regulation of Reprocessing Activity on March 29th 2012, two person rule has become compulsory for the specific rooms to counter and prevent the sabotage or theft of nuclear materials by the insiders at reprocessing plant in Japan. The rooms will include those which contains cooling systems for decay heat removal from spent fuels and so on, scavenging systems to prevent the hydrogen accumulation, and those which contains nuclear material. To ensure the two person rule at Rokkasho Reprocessing Plant, JNFL has recently, after comprehensive study, introduced efficient and effective access control system for the rooms mentioned above. The system is composed of bio-attestation devices, surveillance cameras and electronic locks to establish access control system. This report outlines the access control system for two person rule and introduces the operation. (author)

  6. Solvent management in a reprocessing plant

    International Nuclear Information System (INIS)

    Guillaume, B.; Germain, M.; Puyou, M.; Rouyer, H.

    1987-01-01

    Solvent management in large capacity reprocessing plant is studied to limit production of organic wastes. Chemical processing increases life time of solvent. Low pressure distillation allows the recycling of TBP and diluent at a low activity level. Besides heavy degradation products are eliminated. For the safety the flash point of distillated diluent increases slightly. Tests on an industrial scale started in 1985 and since more than 500 cubic meters were treated [fr

  7. Selective absorption pilot plant for decontamination of fuel reprocessing plant off-gas

    Energy Technology Data Exchange (ETDEWEB)

    Stephenson, M.J.; Eby, R.S.; Huffstetler, V.C.

    1977-10-01

    A fluorocarbon-based selective absorption process for removing krypton-85, carbon-14, and radon-222 from the off-gas of conventional light water and advanced reactor fuel reprocessing plants is being developed at the Oak Ridge Gaseous Diffusion Plant in conjunction with fuel recycle work at the Oak Ridge National Laboratory and at the Savannah River Laboratory. The process is characterized by an especially high tolerance for many other reprocessing plant off-gas components. This report presents detailed drawings and descriptions of the second generation development pilot plant as it has evolved after three years of operation. The test facility is designed on the basis of removing 99% of the feed gas krypton and 99.9% of the carbon and radon, and can handle a nominal 15 scfm (425 slm) of contaminated gas at pressures from 100 to 600 psig (7.0 to 42.2 kg/cm/sup 2/) and temperatures from minus 45 to plus 25/sup 0/F (-43 to -4/sup 0/C). Part of the development program is devoted to identifying flowsheet options and simplifications that lead to an even more economical and reliable process. Two of these applicative flowsheets are discussed.

  8. Design and development of effluent treatment plants for the Sellafield reprocessing factory

    International Nuclear Information System (INIS)

    Howden, M.

    1989-01-01

    The reprocessing of spent nuclear fuel has been carried out at Sellafield since the early 1950s. The storage of fuel in water filled ponds prior to reprocessing and the reprocessing operation itself results in the generation of a number of radioactive liquid effluents. The highly active liquors are stored in stainless steel tanks and will, with the commissioning of the Windscale Vitrification Plant, be converted into glass for long term storage and disposal. The medium and low active liquors are, after appropriate treatment, discharged to sea well below the Authorised Limits which are set by the appropriate Regulatory Bodies. Since 1960 these have been the Department of the Environment and the Ministry of Agriculture, Fisheries and Food. Even though the discharges have been well below the limits set, BNFL have for many years adopted a policy of reducing the levels of activity still further. Considerable progress has already been made, by changing reprocessing operations regimes but more importantly by the development and construction of specialised effluent treatment plants. Further reductions are, however, planned. Two major effluent treatment plants form the main basis of BNFL's policy to reduce activity discharges from Sellafield. The first, the Site Ion Exchange Effluent Plant, to treat storage pond water was brought into operation in 1985. The second, the enhanced Actinide Removal Plant to treat medium and low active effluents, is programmed to operate in 1992. (author)

  9. Safety aspects of LWR fuel reprocessing and mixed oxide fuel fabrication plants

    International Nuclear Information System (INIS)

    Fischer, M.; Leichsenring, C.H.; Herrmann, G.W.; Schueller, W.; Hagenberg, W.; Stoll, W.

    1977-01-01

    The paper is focused on the safety and the control of the consequences of credible accidents in LWR fuel reprocessing plants and in mixed oxide fuel fabrication plants. Each of these plants serve for many power reactor (about 50.000 Mwel) thus the contribution to the overall risk of nuclear energy is correspondingly low. Because of basic functional differences between reprocessing plants, fuel fabrication plants and nuclear power reactors, the structure and safety systems of these plants are different in many respects. The most important differences that influence safety systems are: (1) Both fuel reprocessing and fabrication plants do not have the high system pressure that is associated with power reactors. (2) A considerable amount of the radioactivity of the fuel, which is in the form of short-lived radionuclides has decayed. Therefore, fuel reprocessing plants and mixed oxide fuel fabrication plants are designed with multiple confinement barriers for control of radioactive materials, but do not require the high-pressure containment systems that are used in LWR plants. The consequences of accidents which may lead to the dispersion of radioactive materials such as chemical explosions, nuclear excursions, fires and failure of cooling systems are considered. A reasonable high reliability of the multiple confinement approach can be assured by design. In fuel reprocessing plants, forced cooling is necessary only in systems where fission products are accumulated. However, the control of radioactive materials can be maintained during normal operation and during the above mentioned accidents, if the dissolver off-gas and vessel off-gas treatment systems provide for effective removal of radioactive iodine, radioactive particulates, nitrogen oxides, tritium and krypton 85. In addition, the following incidents in the dissolver off-gas system itself must be controlled: failures of iodine filters, hydrogen explosion in O 2 - and NOsub(x)-reduction component, decomposition of

  10. Development and evaluation of methods for safeguards use of solution monitoring data

    International Nuclear Information System (INIS)

    Burr, T.; Wangen, L.

    1996-09-01

    This report describes the effort to develop, implement, and evaluate data analysis methods for solution-monitoring measurements in the plutonium nitrate storage at the Tokai Reprocessing Plant (TRP). The intent is to address TRP-specific issues to some extent, as well as to anticipate the data analysis needs at future reprocessing plants (especially the new Rokkasho reprocessing plant (RRP)) in Japan. The essential difference between a plant like TRP and a more modern plant like RRP is that one expects more and better instrumentation in the tanks in a modern plant. Because the TRP solution monitoring hardware is scheduled to be upgraded, the authors de-emphasized the effort to handle information-poor plants like TRP. This report mostly describes the analysis methods and software for finding and identifying all key tank events. To a large extent they have to experiment with several candidate methods for implementing their analysis objectives. Therefore, they chose to use a prototyping software system called S-PLUS, which is an object-oriented statistical programming and graphics package. The intent is to eventually implement selected portions of their current solution-monitoring toolkit in a more robust and user-friendly system. The authors describe their current software system as being far more than they needed for their own in-house use (menus are provided for the user who doesn't want to type any S-PLUS commands), but less than is needed for a fieldable system. Mostly as a result of working on this project, they have come to conclude that solution monitoring is a potentially very valuable asset to nuclear safeguards at a modern reprocessing plant

  11. Solvent distillation studies for a purex reprocessing plant

    International Nuclear Information System (INIS)

    Ginisty, C.; Guillaume, B.

    1990-01-01

    A distillation system has been developed for regeneration of Purex solvent and will be implemented for the first time in a reprocessing plant. The results are described and analyzed, with emphasis on laboratory experiments which were made with a radioactive plant solvent. Particularly the distillation provides a good separation of solvent degradation products, which was verified by measurements of interfacial tension and plutonium or ruthenium retention. 16 refs., 3 figs., 5 tabs

  12. Design of the vitrification plant for HLLW generated from the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Vematsu, K.

    1986-01-01

    Power Reactor and Nuclear Fuel Development Corporation (PNC) is now designing a vitrification plant. This plant is for the solidification of high-level liquid waste (HLLW) which is generated from the Tokai Reprocessing Plant, and for the demonstration of the vitrification technology. The detailed design of the plant which started in 1982 was completed in 1984. At present the design improvement is being made for the reduction of construction cost and for the licensing which is going to be applied in 1986. The construction will be started in autumn 1987. The plant has a large shielded cell with low flow ventilation, and employs rack-mounted module system and high performance two-armed servomanipulator system to accomplish the fully remote operations and maintenance. The vitrification of HLLW is based on the liquid-fed Joule-heated ceramic melter process. The processing capacity is equivalent to the reprocessing of 0.7 ton of heavy metals per day. The glass production rate is about 9 kg/h, and about 300 kg of glass is poured periodically from the bottom of the melter into a canister. Produced glass is stored under the forced air cooling condition

  13. Integrated safeguards and security for the INEL Special Isotope Separation Plant

    International Nuclear Information System (INIS)

    Warner, G.F.; Zack, N.R.

    1990-01-01

    This paper describes the development of the safeguards and security system that was to be used for the Special Isotope Separation (SIS) Production Plant. The US Department of Energy has postponed the construction of the SIS Plant that was to be built at the Idaho National Engineering Laboratory (INEL) site near Idaho Falls, Idaho. The Plant was designed to produce weapons grade plutonium from DOE owned fuel grade plutonium by converting off-spec. plutonium dioxide into metal buttons that would meet required chemical and isotopic specifications. Because this was to be a completely new facility there was a unique opportunity to provide an in-depth, ''state-of-the- art'' safeguards and security system without attempting to overlay upon an existing, older system. This facility was being designed to be in complete compliance with the new DOE Orders by integrating safeguards and security into the plant operating system and by providing graded protection to the areas of varying sensitivity within the plant

  14. An Approach to Safeguards by Design (SBD) for Fuel Cycle Facilities

    International Nuclear Information System (INIS)

    Sankaran Nair, P.; Gangotra, S.; Karanam, R.

    2015-01-01

    Implementation of safeguards in bulk handling facilities such as fuel fabrication facilities and reprocessing facilities are a challenging task. This is attributed to the nuclear material present in the facility in the form of powder, pellet, green pellet, solution and gaseous. Additionally material hold up, material unaccounted for (MUF) and the operations carried out round the clock add to the difficulties in implementing safeguards. In facilities already designed or commissioned or operational, implementation of safeguards measures are relatively difficult. The authors have studied a number of measures which can be adopted at the design stage itself. Safeguard By Design (SBD) measures can help in more effective implementation of safeguards, reduction of cost and reduction in radiological dose to the installation personnel. The SBD measures in the power reactors are comparatively easier to implement than in the fuel fabrication plants, since reactors are item counting facilities while the fuel fabrication plants are bulk handling type of facilities and involves much rigorous nuclear material accounting methodology. The safeguards measures include technical measures like dynamic nuclear material accounting, near real time monitoring, remote monitoring, use of automation, facility imagery, Radio Frequency Identification (RFID) tagging, reduction of MUF in bulk handling facilities etc. These measures have been studied in the context of bulk handling facilities and presented in this paper. Incorporation of these measures at the design stage (SBD) is expected to improve the efficiency of safeguardability in such bulk handling and item counting facilities and proliferation resistance of nuclear material handled in such facilities. (author)

  15. Isotope correlations for safeguards surveillance and accountancy methods

    International Nuclear Information System (INIS)

    Persiani, P.J.; Kalimullah.

    1982-01-01

    Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The ICT allows the verification of: fabricator's uranium and plutonium content specifications, shipper/receiver differences between fabricator output and reactor input, reactor plant inventory changes, reprocessing batch specifications and shipper/receiver differences between reactor output and reprocessing plant input. The investigation indicates that there exist predictable functional relationships (i.e. correlations) between isotopic concentrations over a range of burnup. Several cross-correlations serve to establish the initial fuel assembly-averaged compositions. The selection of the more effective correlations will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors through the correlations have been examined to identify the sensitivity of the isotope correlations to measurement errors, and to establish criteria for measurement accuracy in the development and selection of measurement methods. 6 figures, 3 tables

  16. New measurement techniques correct PU inventory in Japanese reprocessing plant

    International Nuclear Information System (INIS)

    2003-01-01

    Full text: At its briefing to the Japan Atomic Energy Commission on 28 January 2003, the Japan Safeguards Office (JSGO) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT) announced that, due to the introduction of more precise sampling and analytical measurement techniques for measuring plutonium in the high active liquid waste (HALW) storage tanks at the Tokai Reprocessing Plant (TRP), the Japan Nuclear Cycle Development Institute (JNC) is correcting the amount of plutonium declared in past accountancy reports to the IAEA. The corrected amounts are expected to be in line with IAEA's own independent verification data and based on measurement methodologies endorsed by the IAEA. The IAEA has recognized for some time that the amount of nuclear material transferred to waste storage had not been adequately measured in the past and has worked with the facility operators and State authorities to introduce improved measurement techniques. IAEA Director General, Dr. Mohamed ElBaradei stressed however, that 'the Agency remains confident in its conclusion that no nuclear material has been diverted from the facility'. This conclusion is based on a range of activities under the NPT Safeguards Agreement between the Agency and Japan, as well as under the Additional Protocol to that Agreement which gives the Agency broad access to nuclear fuel-cycle related information and locations. TRP, in Tokai-mura, Ibaraki prefecture in Japan, was built in the early 1970s, using 1960s-era design and technology. The IAEA began inspecting the facility in 1977. In its annual evaluation of safeguards implementation, as reported to the IAEA's Board of Governors in the Safeguards Implementation Report, the Secretariat has regularly noted the need for strengthening safeguards implementation at TRP, particularly with respect to procedures used for the measurement of nuclear material in the waste produced. In 1996, Japan and the IAEA reached agreement on IAEA sampling, on a

  17. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, T.R.; Harrison, R. [UKAEA, Nuclear Materials Control Dep., Dounreay (United Kingdom)

    1997-07-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  18. The reprocessing of irradiated MTR fuel and the nuclear material accountancy - Dounreay, UKAEA

    International Nuclear Information System (INIS)

    Barrett, T.R.; Harrison, R.

    1997-01-01

    The reprocessing of irradiated HEU MTR fuel is a sensible part of a safeguards regime. It brings together fuel otherwise scattered around the world into a concerted accountancy and protection arrangement. From a nuclear material accountants view the overall accountancy performance has been excellent. While investigations have been required for a few individual MUFs or trends, very little effort has required to be expended by the Nuclear Materials Control Department. That is a definition of a 'good plant'; it operates, measures and records input and output streams, and then the accountancy falls into place. As identified in this paper, the accountancy of the nuclear material processed in the plant is well founded and sound. The accountancy results over several decades confirm the adequacy of the safeguards arrangements at Dounreay. The processing makes good commercial sense and meets the current philosophy of recycling valuable resource materials. The risk of operating the full fuel cycle are less than those of extended storage of irradiated fuel at disparate diverse locations. The reprocessing at Dounreay accords with all of these philosophies. The assessed risk is at a very low level, well within published UK HSE 'tolerability of risk' regulatory guidelines. The impact of the operations are similarly low within the guidelines, for the operators and for the general public. (author)

  19. The main chemical safety problems in main process of nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Song Fengli; Zhao Shangui; Liu Xinhua; Zhang Chunlong; Lu Dan; Liu Yuntao; Yang Xiaowei; Wang Shijun

    2014-01-01

    There are many chemical reactions in the aqueous process of nuclear fuel reprocessing. The reaction conditions and the products are different so that the chemical safety problems are different. In the paper the chemical reactions in the aqueous process of nuclear fuel reprocessing are described and the main chemical safety problems are analyzed. The reference is offered to the design and accident analysis of the nuclear fuel reprocessing plant. (authors)

  20. The Text of the Safeguards Agreement of 18 March 1976 between the Agency, France and Pakistan

    International Nuclear Information System (INIS)

    1976-01-01

    The text of the Agreement of 18 March 1976 between the Agency, France and Pakistan for the application of safeguards with respect to a fuel reprocessing plant and to nuclear material, facilities, equipment and relevant technological information supplied by France to Pakistan for the development of peaceful uses of nuclear energy is reproduced in this document for the information of all Members

  1. The Text of the Safeguards Agreement of 18 March 1976 between the Agency, France and Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-06-22

    The text of the Agreement of 18 March 1976 between the Agency, France and Pakistan for the application of safeguards with respect to a fuel reprocessing plant and to nuclear material, facilities, equipment and relevant technological information supplied by France to Pakistan for the development of peaceful uses of nuclear energy is reproduced in this document for the information of all Members.

  2. General criteria for the project of nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-01-01

    Recommendations are presented establishing the general criteria for the project of nuclear fuel reprocessing plants to be licensed according to the legislation in effect. They apply to all the plant's systems, components and structures which are important to operation safety and to the public's health and safety. (F.E.) [pt

  3. Report of the study grou: Data Processing in Reprocessing Plants

    International Nuclear Information System (INIS)

    1976-08-01

    A study group to examine Data Processing in Spent Fuel Reprocessing Plants was created at the request of the Head of Productions and entrusted to the Director of the La Hague Centre. The groupe was made up of engineers working in different fields: piloting, architecture, building outfits, services etc. To begin with the group examined the solutions proposed by the La Hague Centre for the replacement of data processing units in service at the time but too old and unreliable to meet the safety rules laid down. Secondly, as a contribution towards France's heritage in the fuel reprocessing field, the group investigated systems and configurations for possible application to the equipment of future plants. The results of these studies were submitted in January 1974 [fr

  4. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  5. Enhancements in the thorp reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Wakem, M.J.; Brownridge, M. [Thorp Technical Dept. and Research and Technology, BNFL plc, Sellafield, seascale, Cumbria, CA (United Kingdom)

    2000-07-01

    A number of successful enhancements have been made to the process at the Thorp reprocessing plant at Sellafield. After a long and detailed Research and Development programme followed by an intensive design/construction project, Thorp was inactively commissioned with first active shear in March 1994. The plant has now reached a mature stage in its development, following successful active commissioning demonstrating flowsheet or better performance in the solvent extraction cycles. Enhancements are now sought to achieve a range of objectives. Against a background of ever tighter regulatory control both in terms of safety and environmental discharge, BNFL are continuing to invest in further improvements with short, medium and longer term objectives to improve plant throughput; expand the range of feed fuels; reduce environmental discharges and reduce running costs. This paper describes a few of these enhancements. (authors)

  6. Enhancements in the thorp reprocessing plant

    International Nuclear Information System (INIS)

    Wakem, M.J.; Brownridge, M.

    2000-01-01

    A number of successful enhancements have been made to the process at the Thorp reprocessing plant at Sellafield. After a long and detailed Research and Development programme followed by an intensive design/construction project, Thorp was inactively commissioned with first active shear in March 1994. The plant has now reached a mature stage in its development, following successful active commissioning demonstrating flowsheet or better performance in the solvent extraction cycles. Enhancements are now sought to achieve a range of objectives. Against a background of ever tighter regulatory control both in terms of safety and environmental discharge, BNFL are continuing to invest in further improvements with short, medium and longer term objectives to improve plant throughput; expand the range of feed fuels; reduce environmental discharges and reduce running costs. This paper describes a few of these enhancements. (authors)

  7. Head-end iodine removal from a reprocessing plant with a solid sorbent

    International Nuclear Information System (INIS)

    Wilhelm, J.G.; Furrer, J.; Schultes, E.

    1976-01-01

    In the first large-scale reprocessing plant planned in the Federal Republic of Germany a total amount of 580 kg of iodine per annum will be released in the fuel dissolution process for a maximum heavy metal throughput of 1800 tons per year and 40,000 MWd/t of burnup. The main portion of the iodine is formed by the 129 I (T/sub 1/2/ = 1.6 x 10 7 a) isotope of which 82 Ci at the maximum are released every year. With the scheduled fuel element storage time of greater than or equal to 220 d the simultaneous release of 131 I is less than or equal to 12.5 Ci the mass of which does not play any part. According to the computer model presently imposed in the Federal Republic of Germany for treatment of the environmental impact by radioiodine, a total decontamination factor of 340 must be attained. This implies a long-term diffusion factor of 1 x 10 -7 s/m 3 for releases via the stack of the reprocessing plant and a limit value of 50 mrem/a at the maximum for the thyroid dose to the critical group of the population via the ingestion path. The flowsheet for dissolver off-gas cleaning in a reprocessing plant employing solid iodine sorption material and the arrangement of filter components are discussed. The principle of an iodine sorption filter is described which allows exhaustive loading of the iodine sorption material. The removal reactions of different organic iodine compounds and the loading capacity and removal efficiency of the iodine sorption material in the original dissolver off-gases of reprocessing plants are indicated. Studies on the influence of filter poisons are reported.Operating experience gathered with a first iodine sorption filter in operation is discussed; this filter has been used to remove practically all iodine produced in the dissolver off-gas of the Karlsruhe Reprocessing Pilot Plant (WAK). Direct measurement of 129 I in samples of filter material using a low energy photon spectrometer is briefly reported

  8. Improving Materials Accountancy for Reprocessing using hiRX

    International Nuclear Information System (INIS)

    Cipiti, B.; McDaniel, M.; Havrilla, G.

    2015-01-01

    The High Resolution X-ray (hiRX) technology has the potential to replace K-Edge and Hybrid K-Edge Densitometry (HKED) for routine accountability measurements in reprocessing. This technology may significantly reduce plutonium measurement uncertainty in a simpler and less costly instrument. X-ray optics are used to generate monochromatic excitation of a sample and selectively collect emitted X-rays of the target elements. The result is a spectrum with a peak specific to one element with negligible background. Modeling was used to examine how safeguards could be improved through the use of hiRX at existing aqueous reprocessing plants. This work utilized the Separation and Safeguards Performance Model (SSPM), developed at Sandia National Laboratories, to examine how reduced measurement uncertainty decreases the overall inventory difference measurement error. Material loss scenarios were also modelled to determine the effect on detection probability for protracted diversion of nuclear material. Current testing of hiRX is being used to inform the modelling effort, but a 0.1% measurement uncertainty for uranium and plutonium concentration is an optimistic goal based on laboratory results. Modeling results showed that a three-fold improvement in the ability to detect a protracted diversion of plutonium may be possible if the 0.1% uncertainty goal can be achieved. The modelling results will be presented along with a discussion of the current experimental campaign results. In addition, a qualitative cost analysis will be presented to compare the use of hiRX with HKED. (author)

  9. Trends in fuel reprocessing safety research

    International Nuclear Information System (INIS)

    Tsujino, Takeshi

    1981-01-01

    With the operation of a fuel reprocessing plant in the Power Reactor and Nuclear Fuel Development Corporation (PNC) and the plan for a second fuel reprocessing plant, the research on fuel reprocessing safety, along with the reprocessing technology itself, has become increasingly important. As compared with the case of LWR power plants, the safety research in this field still lags behind. In the safety of fuel reprocessing, there are the aspects of keeping radiation exposure as low as possible in both personnel and local people, the high reliability of the plant operation and the securing of public safety in accidents. Safety research is then required to establish the safety standards and to raise the rate of plant operation associated with safety. The following matters are described: basic ideas for the safety design, safety features in fuel reprocessing, safety guideline and standards, and safety research for fuel reprocessing. (J.P.N.)

  10. IAEA Guidance for Safeguards Implementation in Facility Design and Construction

    International Nuclear Information System (INIS)

    Sprinkle, J.; Hamilton, A.; Poirier, S.; Catton, A.; Ciuculescu, C.; Ingegneri, M.; Plenteda, R.

    2015-01-01

    ), · International Safeguards in the Design of Conversion Plants (NF-T-4.8, tbd), · International Safeguards in the Design of Enrichment Plants (NF-T-4.9, tbd), · International Safeguards in the Design of Reprocessing Plants (NF-T-3.2, tbd), The presentation will address how these publications can be shared and promoted. It will include lessons learned and suggestions how to affect the new facility bidding process in a constructive way. (author)

  11. Guide to the selection, training, and licensing or certification of reprocessing plant operators. Volume I

    International Nuclear Information System (INIS)

    1976-06-01

    The Code of Federal Regulations, Title 10, Part 55, establishes procedures and criteria for the licensing of operators, including senior operators, in ''Production and Utilization Facilities'', which includes plants for reprocessing irradiated fuel. A training guide is presented which will facilitate the licensing of operators for nuclear reprocessing plants by offering generalized descriptions of the basic principles (theory) and the unit operations (mechanics) employed in reprocessing spent fuels. In the present volume, details about the portions of a training program that are of major interest to management are presented

  12. Guide to the selection, training, and licensing or certification of reprocessing plant operators. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-06-01

    The Code of Federal Regulations, Title 10, Part 55, establishes procedures and criteria for the licensing of operators, including senior operators, in ''Production and Utilization Facilities'', which includes plants for reprocessing irradiated fuel. A training guide is presented which will facilitate the licensing of operators for nuclear reprocessing plants by offering generalized descriptions of the basic principles (theory) and the unit operations (mechanics) employed in reprocessing spent fuels. In the present volume, details about the portions of a training program that are of major interest to management are presented. (JSR)

  13. A survey of methods to immobilize tritium and carbon-14 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Taylor, P.

    1991-02-01

    This report reviews the literature on methods to separate and immobilize tritium ( 3 H) and carbon-14 ( 14 C) released from U0 2 fuel in a nuclear fuel reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future application in Canada. The calculated inventories of both 3 H and 14 C in used fuel are low; special measures to limit releases of these radionuclides from reprocessing plants are not currently in place, and may not be necessary in future. If required, however, several possible approaches to the concentration and immobilization of both radionuclides are available for development. Technology to control these radionuclides in reactor process streams is in general more highly developed than for reprocessing plant effluent, and some control methods may be adaptable to reprocessing applications

  14. Advance purex process for the new reprocessing plants in France and in Japan

    International Nuclear Information System (INIS)

    Viala, M.

    1991-01-01

    In the early Eighties, Japanese utilities formed the Japan Nuclear Fuel Service Co (JNFS), which is in charge of the construction and the operation of the first commercial reprocessing plant in Japan to be erected in Rokkasho Village, Aomori Prefecture. Following a thorough worldwide examination of available processes and technologies, JNFS selected the French technology developed for UP3 and UP2 800 for the plants' main facilities. For these three new plants, the 40-year old PUREX process which is used worldwide for spent fuel reprocessing, has been significantly improved. This paper describes some of the innovative features of the selected processes

  15. International safeguards in large scale nuclear facilities

    International Nuclear Information System (INIS)

    Gupta, D.; Heil, J.

    1977-01-01

    The trend in the energy sector in most of the industrialized areas of the world shows rather clearly, that the rate of installation of nuclear plants will be very high and that the largest possible units of nuclear material handling and storage facilities will be built. Various experiments and analyses of measurement methods relevant to safeguards, in typical nuclear facilities like a fuel reprocessing or a fabrication plant, have shown that the associated measurement errors as obtained under normal operating conditions are such that they are mainly dominated by systematic errors and that such systematic errors may lie in the range of percentages of the measured amount so that a material balance in such a plant could not normally be closed with high accuracy. The simplest way of going around the problem would be to increase the frequency of striking a material balance over a given period of time. This could however lead to an anormous increase in the technical and financial burden for the operator of a facility. The present paper analyses this problem in some detail for some facilities and shows that with a properly developed information system in such plants and a combination of containment, surveillance and accountancy measures, safeguards statements for relatively low significant amounts can be made with the attainable range of measurement accuracies

  16. Development of integrated parameter database for risk assessment at the Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Tamauchi, Yoshikazu

    2011-01-01

    A study to develop a parameter database for Probabilistic Safety Assessment (PSA) for the application of risk information on plant operation and maintenance activity is important because the transparency, consistency, and traceability of parameters are needed to explanation adequacy of the evaluation to third parties. Application of risk information for the plant operation and maintenance activity, equipment reliability data, human error rate, and 5 factors of 'five-factor formula' for estimation of the amount of radioactive material discharge (source term) are key inputs. As a part of the infrastructure development for the risk information application, we developed the integrated parameter database, 'R-POD' (Rokkasho reprocessing Plant Omnibus parameter Database) on the trial basis for the PSA of the Rokkasho Reprocessing Plant. This database consists primarily of the following 3 parts, 1) an equipment reliability database, 2) a five-factor formula database, and 3) a human reliability database. The underpinning for explaining the validity of the risk assessment can be improved by developing this database. Furthermore, this database is an important tool for the application of risk information, because it provides updated data by incorporating the accumulated operation experiences of the Rokkasho reprocessing plant. (author)

  17. Status report - expert knowledge of operators in fuel reprocessing plants, enrichment plants and fuel fabrication plants

    International Nuclear Information System (INIS)

    Preuss, W.; Kramer, J.; Wildberg, D.

    1987-01-01

    The necessary qualifications of the responsible personnel and the knowledge required by personnel otherwise employed in nuclear plants are among the requirements for licensing laid down in paragraph 7 of the German Atomic Energy Act. The formal regulations for nuclear power plants are not directly applicable to plants in the fuel cycle because of the differences in the technical processes and the plant and work organisation. The aim of the project was therefore to establish a possible need for regulations for the nuclear plants with respect to the qualification of the personnel, and to determine a starting point for the definition of the required qualifications. An extensive investigation was carried out in the Federal Republic of Germany into: the formal requirements for training; the plant and personnel organisation structures; the tasks carried out by the responsible and otherwise employed personnel; and the state of training. For this purpose plant owners and managers were interviewed and the literature and plant specific documentation (e.g. plant rules) were reviewed. On the basis of literature research, foreign practices were determined and used to make comparative evaluations. The status report is divided into three separate parts for the reprocessing, the uranium enrichment, and the manufacture of the fuel elements. On the basis of the situation for reprocessing plants (particularly that of the WAK) and fuel element manufacturing plants, the development of a common (not uniform) regulation for all the examined plants in the fuel cycle was recommended. The report gives concrete suggestions for the content of the regulations. (orig.) [de

  18. The safety of the new reprocessing plants of La Hague

    International Nuclear Information System (INIS)

    Devillers, C.; Dubois, G.

    1987-09-01

    In this document the authors show the main guiding lines on which is based the safety of the new reprocessing plant of La Hague. They are: - the objectives: to limit the impacts on workers and environment - the methods: safety analysis based on the checking and evaluation of significant risks. - the means: to make a safety plant by the use of quality assurance in the conception and in the plant construction [fr

  19. Indian experience in fuel reprocessing

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1977-01-01

    Plant scale experience in fuel reprocessing in India was started with the successful design, execution and commissioning of the Trombay plant in 1964 to reprocess aluminium clad metallic uranium fuel from the 40 MWt research reactor. The plant has helped in generating expertise and trained manpower for future reprocessing plants. With the Trombay experience, a larger plant of capacity 100 tonnes U/year to reprocess spent oxide fuels from the Tarapur (BWR) and Rajasthan (PHWR) power reactors has been built at Tarapur which is undergoing precommissioning trial runs. Some of the details of this plant are dealt with in this paper. In view of the highly corrosive chemical attack the equipment and piping are subjected to in a fuel reprocessing plant, some of them require replacement during their service if the plant life has to be extended. This calls for extensive decontamination for bringing the radiation levels low enough to establish direct accesss to such equipment. For making modifications in the plant to extend its life and also to enable expansion of capacity, the Trombay plant has been successfully decontaminated and partially decommissioned. Some aspects of thi decontamination campaign are presented in this paper

  20. Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

    2009-10-01

    High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next

  1. Information disclosure of troubles occurring at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamada, Tatsuya; Yoneyama, Mitsuru; Shinozaki, Yoshinori

    2005-01-01

    At Rokkasho Reprocessing Plant (RRP), efforts are made so that troubles occurred are promptly reported and announced publicly, and for minor troubles, etc., announcement to the society is made through the web-site and publicity magazines, so as to assure the transparency of the business. (author)

  2. The fuel reprocessing plant at Wackersdorf

    International Nuclear Information System (INIS)

    Held, M.

    1986-01-01

    For a more systematic discussion about the fuel reprocessing plant at Wackersdorf, the colloquium tried to cover the most important questions put forward in the controversies: economic efficiency and energy-political needs; safety and ecological repercussions; inner safety and consequences for basic rights and the regional economic structure; majority decisions and participation of the population of the region. Elements of evaluation are the conservation of resources, health, economic efficiency, and citizens' rights of liberty. The related basic ethical questions are considered. The 18 contributions are individually recorded in the data base. (DG) [de

  3. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.; Harris, D.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK

  4. Nuclear fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Harris, D.W.; Mills, A.

    1983-01-01

    Nuclear fuel reprocessing has been carried out on an industrial scale in the United Kingdom since 1952. Two large reprocessing plants have been constructed and operated at Windscale, Cumbria and two smaller specialized plants have been constructed and operated at Dounreay, Northern Scotland. At the present time, the second of the two Windscale plants is operating, and Government permission has been given for a third reprocessing plant to be built on that site. At Dounreay, one of the plants is operating in its original form, whilst the second is now operating in a modified form, reprocessing fuel from the prototype fast reactor. This chapter describes the development of nuclear fuel reprocessing in the UK, commencing with the research carried out in Canada immediately after the Second World War. A general explanation of the techniques of nuclear fuel reprocessing and of the equipment used is given. This is followed by a detailed description of the plants and processes installed and operated in the UK. (author)

  5. Computer aided radiation protection system at Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ishida, J.; Saruta, J.; Yonezawa, R.

    1996-01-01

    Radiation control for workers and workforce has been carried out strictly and effectively taking into account ALARA principle at Tokai Reprocessing Plant (TRP) which has treated about 860 tons of irradiated fuels by now since 1977. The outline of radiation control method at TRP has already been described. This paper briefly describes our experiences and the capabilities of Radiological Information Management System (RIMS) for the safety operation of TRP, followed by radiation exposure control and activity discharge control as examples. By operating the RIMS, the conditions of workplace such as dose equivalent rate and air-contamination are easily and rapidly grasped to take prompt countermeasures for radiological protection, localization and elimination of contamination, and also the past experience data are properly applied to new radiological works to reduce exposures associated with routine and special repetitive maintenance operations at TRP. Finally, authors would like to emphasize that the form and system for radiological control of reprocessing plant has been established throughout our 15-year-experience at TRP. (author)

  6. Revisit of analytical methods for the process and plant control analyses during reprocessing of fast reactor fuels

    International Nuclear Information System (INIS)

    Subba Rao, R.V.

    2016-01-01

    CORAL (COmpact facility for Reprocessing of Advanced fuels in Lead cell) is an experimental facility for demonstrating the reprocessing of irradiated fast reactor fuels discharged from the Fast Breeder Test Reactor (FBTR). The objective of the reprocessing plant is to achieve nuclear grade plutonium and uranium oxides with minimum process waste volumes. The process flow sheet for the reprocessing of spent Fast Reactor Fuel consists of Transport of spent fuel, Chopping, Dissolution, Feed conditioning, Solvent Extraction cycle, Partitioning Cycle and Re-conversion of Plutonium nitrate and uranium nitrate to respective oxides. The efficiency and performance of the plant to achieve desired objective depends on the analyses of various species in the different steps adopted during reprocessing of fuels. The analytical requirements in the plant can be broadly classified as 1. Process control Analyses (Analyses which effect the performance of the plant- PCA); 2. Plant control Analyses (Analyses which indicates efficiency of the plant-PLCA); 3. Nuclear Material Accounting samples (Analyses which has bearing on nuclear material accounting in the plant - NUMAC) and Quality control Analyses (Quality of the input bulk chemicals as well as products - QCA). The analytical methods selected are based on the duration of analyses, precision and accuracies required for each type analytical requirement classified earlier. The process and plant control analyses requires lower precision and accuracies as compared to NUMAC analyses, which requires very high precision accuracy. The time taken for analyses should be as lower as possible for process and plant control analyses as compared to NUMAC analyses. The analytical methods required for determining U and Pu in process and plant samples from FRFR will be different as compared to samples from TRFR (Thermal Reactor Fuel Reprocessing) due to higher Pu to U ratio in FRFR as compared TRFR and they should be such that they can be easily

  7. Radiation protection experience during active commissioning of the Thorp reprocessing plant

    International Nuclear Information System (INIS)

    Spour, K.; Hutton, E.

    1996-01-01

    BNFL's Thermal Oxide Reprocessing Plant (Thorp) reprocesses uranium oxide fuel assemblies which have been irradiated in thermal reactors in the UK and overseas. Plans for the plant were first announced in 1974. Application for planning permission was submitted in 1977, and government permission to construct the plant was granted after the Windscale inquiry in 1977. The plant was given the license to start active commissioning in head end in early 1994, and then in chemical plants in late 1994. Presently the whole of the process is being challenged in a planned commissioning strategy which will last into 1996. Thorp is designed to reprocess the spent oxide fuel into uranium trioxide (UO 3 ) and plutonium dioxide (PuO 2 ). The Thorp complex can be essentially broken down into three distinct areas: Thorp receipt and storage provides pond storage for fuel awaiting reprocessing in Thorp. Head end fuel is transferred from receipt and storage into the feed pond where it is monitored to check fissile content, burn up and cooling time. The individual fuel assemblies for LWR fuel, or cans in the case of AGR fuel, are transferred onto the shear elevator and carried up to the shear cave. The fuel is sheared into small lengths to optimize the dissolution of the fuel inside the cladding. The sheared fuel and cladding debris is directed via a chute into one of three dissolvers, each with a nominal 1.8 teU capacity and dissolved in 8M nitric acid for approximately 16 hours. The cladding hulls are retained in a removable basket and sent for encapsulation. Insoluble fission products and fine particles of cladding are removed by centrifugation. Clarified dissolver solution is then accounted for by measurements taken for volume, mass and isotopic composition. Following this, the solution is transferred to buffer storage tarns and fed onto the chemical separation area. The liquor is transferred to the chemical separation area where it undergoes first cycle separation in pulsed columns

  8. Roles of programmable logic controllers in fuel reprocessing plants

    International Nuclear Information System (INIS)

    Mishra, Hrishikesh; Balakrishnan, V.P.; Pandya, G.J.

    1999-01-01

    Fuel charging facility is another application of Programmable Logic Controllers (PLC) in fuel reprocessing plants, that involves automatic operation of fuel cask dolly, charging motor, pneumatic doors, clutches, clamps, stepper motors and rod pushers in a pre-determined sequence. Block diagram of ACF system is given for underlining the scope of control and interlocks requirements involved for automation of the fuel charging system has been provided for the purpose at KARP Plant, Kalpakkam

  9. Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  10. The need to study of bounding accident in reprocessing plant

    International Nuclear Information System (INIS)

    Segawa, Satoshi; Fujita, Kunio

    2013-01-01

    There is a clear consensus that the severe accident corresponds to the core damage accident for power reactors. On the other hand, for FCFs, there is no clear consensus on what is the accident to assess the safety in the region of beyond design basis, or what is the accident which has very low probability but large consequence. The need to examine a bounding consequence of each type of accident is explained to advance the rationality of safety management and regulation and, as a result, to reinforce the safety of a reprocessing plant. The likelihood of occurrence of an accident causing a bounding consequence should correspond to that of a severe accident at a nuclear power plant. The bounding consequence will be derived using the deterministic method and sound engineering judgment supplemented by the probabilistic method. Once an agreement on such a concept is reached among regulators, operators and related experts it will help to provide a solid basis to ensure the safety of a reprocessing plant independent of that of a nuclear power plant. In this paper, we show a preliminary risk profile of RRP calculated by QSA (Quantitative Safety Assessment) which JNFL developed. The profile shows that bounding consequences of various accidents in a range of occurrence frequency corresponding to a severe accident at a nuclear power plant. And we find that the bounding consequence of high-level liquid waste boiling is the largest among all in this range. Therefore, the risk of this event is shown in this paper as an example. To build a common consensus about bounding accidents among concerned parties will encourage regulatory body to introduce such an idea for more effective regulation with scientific rationality. Additionally the study of bounding accidents can contribute to substantial development for accident management strategy as reprocessing operators. (authors)

  11. Light water reactor fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    1977-07-01

    This document was originally intended to provide the basis for an environmental impact statement to assist ERDA in making decisions with respect to possible LWR fuel reprocessing and recycling programs. Since the Administration has recently made a decision to indefinitely defer reprocessing, this environmental impact statement is no longer needed. Nevertheless, this document is issued as a report to assist the public in its consideration of nuclear power issues. The statement compares the various alternatives for the LWR fuel cycle. Costs and environmental effects are compared. Safeguards for plutonium from sabotage and theft are analyzed

  12. Radiological considerations in the design of Reprocessing Uranium Plant (RUP) of Fast Reactor Fuel Cycle Facility (FRFCF), Kalpakkam

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    A Fast Reactor Fuel Cycle Facility (FRFCF) being planned at Indira Gandhi Centre for Atomic Research, Kalpakkam is an integrated facility with head end and back end of fuel cycle plants co-located in a single place, to meet the refuelling needs of the prototype fast breeder reactor (PFBR). Reprocessed uranium oxide plant (RUP) is one such plant in FRFCF to built to meet annual requirements of UO 2 for fabrication of fuel sub-assemblies (FSAs) and radial blanket sub-assemblies (RSAs) for PFBR. RUP receives reprocessed uranium oxide powder (U 3 O 8 ) from fast reactor fuel reprocessing plant (FRP) of FRFCF. Unlike natural uranium oxide plant, RUP has to handle reprocessed uranium oxide which is likely to have residual fission products activity in addition to traces of plutonium. As the fuel used for PFBR is recycled within these plants, formation of higher actinides in the case of plutonium and formation of higher levels of 232 U in the uranium product would be a radiological problem to be reckoned with. The paper discussed the impact of handling of multi-recycled reprocessed uranium in RUP and the radiological considerations

  13. The next generation safeguards initiative

    International Nuclear Information System (INIS)

    Tobey, William

    2008-01-01

    NGSI or the Next Generation Safeguards Initiative is designed to revitalize the U.S. safeguards technical base, as well as invest in human resources, and to mobilize our primary asset - the U.S. National Laboratories - as well as industry and academia to restore capabilities. While NGSI is a U.S. effort it is intended to serve as a catalyst for a much broader commitment to international safeguards in partnership with the IAEA and other countries. Initiatives over the last years include such as the Proliferation Security Initiative, UN Security Council Resolution 1540, the Global Initiative to Combat Nuclear Terrorism, and initiatives of the G-8 and NSG to discourage the spread of enrichment and reprocessing. NGSI augments this agenda by providing a means to strengthen the technical and political underpinnings of IAEA safeguards. Priorities and envisioned activities under NGSI are the following. (1) Cooperation with IAEA and others to promote universal adoption of safeguards agreements and the Additional Protocol including greater information sharing between member states and the IAEA, investigation of weaponization and procurement activities, and options to strengthen the state-level approach to safeguards. (2) NGSI anticipates the deployment of new types of reactors and fuel cycle facilities, as well as the need to use limited safeguards resources effectively and efficiently, especially in plants that pose the largest burden specifically complex, bulk-handling facilities. (3) NGSI will encourage a generational improvement in current safeguards technologies including improvement of precision and speed of nuclear measurements, performance of real-time process monitoring and surveillance in unattended mode, enabling in-field, pre-screening and analysis of nuclear and environmental samples, and collection, integration, analysis and archiving safeguards-relevant information from all available sources.(4) NGSI will address human capital management. Training and

  14. Contribution of the ''safeguarded'' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in Safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. Management has many reasons to exercise stringent control of nuclear materials stemming from the value and hazardous nature of the materials being used, and the requirements of relevant national legislation. Because systems at a plant and within a State are generally designed to control quantities of nuclear materials within limits smaller than those specified in the I.A.E.A.'s Safeguards objectives, experience at the plant level has contributed significantly to the development of International Safeguards procedures. In making such contributions, plant management and the national authorities have a common objective with that of the I.A.E.A. in developing a Safeguards system which is both technically-effective and cost-effective. The pursuit of this objective requires that implementation of the Safeguards system can be modified in the light of relevant practical experience of plant operators and of the I.A.E.A. The familiar Blue Book (INFCIRC 153) recognises clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective I.A.E.A. system of Safeguards. It is therefore helpful to review the relevant contributions from the 'Safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of

  15. Operating experience in reprocessing

    International Nuclear Information System (INIS)

    Schueller, W.

    1983-01-01

    Since 1953, reprocessing has accumulated 180 years of operating experience in ten plants, six of them with 41 years of operation in reprocessing oxide fuel from light water reactors. After abortive, premature attempts at what is called commercial reprocessing, which had been oriented towards the market value of recoverable uranium and plutonium, non-military reprocessing technologies have proved their technical feasibility, since 1966 on a pilot scale and since 1976 on an industrial scale. Reprocessing experience obtained on uranium metal fuel with low and medium burnups can now certainly be extrapolated to oxide fuel with high burnup and from pilot plants to industrial scale plants using the same technologies. The perspectives of waste management of the nuclear power plants operated in the Federal Republic of Germany should be viewed realistically. The technical problems still to be solved are in a balanced relationship to the benefit arising to the national economy out of nuclear power generation and can be solved in time, provided there are clearcut political boundary conditions. (orig.) [de

  16. Strengthening IAEA safeguards using high-resolution commercial satellite imagery

    International Nuclear Information System (INIS)

    Zhang Hui

    2001-01-01

    satellite imagery, such as the above-ground high stack associated with the underground reprocessing plant at Israel Dimona nuclear complex is clearly visible in the IKONOS images. Furthermore, construction of nuclear production facilities not only involves a great many activities (such as the shipment of various materials), but also takes a long period of time. So commercial satellites with several days' revisit time and one-meter resolution would detect these facilities and activities. Finally, once these dedicated nuclear production facilities are operating, there would be some visible signatures to be detected by high resolution images, such as the vapor plumes from cooling towers associated with a plutonium-production reactor can be seen clearly in the IKONOS images. These case studies show the new high-resolution commercial observation satellite imagery should be taken as one useful tool but not the standalone tool for strengthening IAEA safeguards. (author)

  17. The validation of waste assay systems during active test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Tamura, Takayuki; Miura, Yasushi; Iwamoto, Tomonori

    2007-01-01

    In order to implement accurate material accountancy at Rokkasho Reprocessing Plant (RRP) as a large scale reprocessing plant, it is necessary to introduce accurate measurement systems not only for mainstream material, but also appropriate measurement systems for solid waste materials. In this sense, the generated wastes by the active test operation have been measured with the Non-Destructive Assay Systems, such as Rokkasho Hulls Measurement System (RHMS) and Waste Crate Assay System (WCAS) for accountancy. This paper describes the experience of the NDA operation and the evaluation results for accountancy. (author)

  18. Input measurements in reprocessing plants

    International Nuclear Information System (INIS)

    Trincherini, P.R.; Facchetti, S.

    1980-01-01

    The aim of this work is to give a review of the methods and the problems encountered in measurements in 'input accountability tanks' of irradiated fuel treatment plants. This study was prompted by the conviction that more and more precise techniques and methods should be at the service of safeguards organizations and that ever greater efforts should be directed towards promoting knowledge of them among operators and all those general area of interest includes the nuclear fuel cycle. The overall intent is to show the necessity of selecting methods which produce measurements which are not only more precise but are absolutely reliable both for routine plant operation and for safety checks in the input area. A description and a critical evaluation of the most common physical and chemical methods are provided, together with an estimate of the precision and accuracy obtained in real operating conditions

  19. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robert Bean; Casey Durst

    2009-10-01

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a

  20. Safety aspects of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Donoghue, J.K.; Charlesworth, F.R.; Fairbairn, A.

    1977-01-01

    decommissioning and demolition procedures must be anticipated and suitable provision made. Application of these principles is illustrated by experience gained in the surveillance of reprocessing plants. United Kingdom regulatory procedures for the licensing and inspection of reprocessing plant, and statutory requirements influencing safety in design, construction and operation are reviewed. Recent developments in safety legislation including the Health and Safety at Work Act, 1974, are discussed

  1. Reprocessing in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rossney, G [United Reprocessors G.m.b.H., Karlsruhe (F.R. Germany)

    1976-04-01

    The status of reprocessing activities within the member organizations of United Reprocessors is reviewed. The U.K. government has approved overseas deals by BNFL which will help to pay for their planned plant of 1000 te U p.a. at Windscale. In Germany KEWA has selected a site at Aschenburg as a fuel cycle centre where they plan to build a utility financed reprocessing plant of 1500 te U p.a. France has formed a new fuel cycle corporation, Cogema, which hopes to participate in the large volume of Japanese business negotiated by BNFL. United Reprocessors have agreed to pool their technology which may be available to organisations wishing to construct reprocessing plants in their own countries.

  2. Tamper and radiation resistant instrumentation for safeguarding special nuclear materials

    International Nuclear Information System (INIS)

    Parsons, B.B.; Wells, J.L.

    1977-01-01

    A tamper-resistant liquid level/accountability instrumentation system for safeguards use has been developed and tested. The tests demonstrate the accuracy of liquid level measurement using TDR (Time Domain Reflectometry) techniques and the accuracy of differential pressure and temperature measurements utilizing a custom designed liquid level sensor probe. The calibrated liquid level, differential pressure, and temperature data provide sufficient information to accurately determine volume, density, and specific gravity. Test solutions used include ordinary tap water, diluted nitric acid in varying concentrations, and diluted uranium trioxide also in varying concentrations. System operations and preliminary test results conducted at the General Electric Midwest Fuel Recovery Plant and the National Bureau of Standards, respectively, suggest that the system will provide the safeguards inspector with an additional tool for real-time independent verification of normal operations and special nuclear materials accountancy data for chemical reprocessing plants. This paper discusses the system design concepts, including a brief description of the tamper and radiation resistant features, the preliminary test results, and the significance of the work

  3. DIRECT DISMANTLING OF REPROCESSING PLANT CELLS THE EUREX PLANT EXPERIENCEe2d12c

    International Nuclear Information System (INIS)

    Gili, M.; Troiani, F.; Risoluti, P.

    2003-01-01

    After finishing the reprocessing campaigns in 1970-1983, the EUREX pilot reprocessing plant of ENEA Saluggia Research Center started into a new phase, aiming to materials and irradiated fuel systemation and radioactive wastes conditioning. In 1997 the project ''CORA'' for a vitrification plant for the high and intermediate liquid radioactive wastes started. The ''CORA'' plant will be hosted in some dismantled cells of the EUREX plant, reusing many of the EUREX plant auxiliary systems, duly refurbished, saving money and construction time and avoiding a new nuclear building in the site. Two of the cells that will be reused were part of the EUREX chemical process (solvent recovery and 2nd extraction cycle) and the components were obviously internally contaminated. In 2000 the direct (hands-on) dismantling of one of them started and has been completed in summer 2002; the second one will be dismantled in the next year and then the ''CORA'' plant will be assembled inside the cells. Special care w as taken to avoid spread of contamination in the cells, where ''CORA'' installation activities will start in the next years, during the dismantling process The analysis of data and results collected during the dismantling of the first cell shows that direct dismantling can be achieved with careful choice of tools, procedures and techniques, to reduce volumes of wastes to be disposed and radiological burden

  4. Radiological prevention in a reprocessing plant

    International Nuclear Information System (INIS)

    Trenta, G.

    1983-01-01

    Prevention has received a peculiar conceptual formulation in working activities with radiation risk. In order to point out the operative aspects of this formulation the authors relates here the considerations, the criteria an the precautionary measures which have guided the choice or that have been actuated to reduce the risk for the workers of the EUREX reprocessing plant. The general aspect of this formulationa has a philosophical and doctrinarian course, peculiar in the probabilistic safety approach and in radioprotection methodology. The authors quotes here some concepts and some specific application of both but he shows above all the medical aspects of the radioprotection

  5. Commissioning and Operational Experience in Power Reactor Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: spradhan@barctara.gov.in [Tarapur Based Reprocessing Plant, Bhabha Atomic Research Centre, Tarapur (India)

    2014-10-15

    After completing design, construction, commissioning, operation and maintenance experience of the reprocessing plants at Tarapur, Mumbai and Kalpakkam a new reprocessing plant is commissioned and put into operation at BARC, Tarapur since 2011. Subsequent to construction clearance, commissioning of the plant is taken in many steps with simultaneous review by design and safety committees. In spite of vast experience, all the staff was retrained in various aspects of process and utility operations and in operation of innovative changes incorporated in the design. Operating personnel are licensed through an elaborate procedure consisting of various check lists followed by personnel interview. Commissioning systems were divided in sub-systems. Sub-systems were commissioned independently and later integrated testing was carried out. For commissioning, extreme operating conditions were identified in consultation with designers and detailed commissioning procedures were made accordingly. Commissioning was done in different conditions to ensure safety, smooth operation and maintainability. Few modifications were carried out based on commissioning experience. Technical specifications for operation of the plant are made in consultation with designers and reviewed by safety committees. Operation of the plant was carried out after successful commissioning trials with Deep Depleted Uranium (DDU). Emergency operating procedures for each design basis accident were made. Performance of various systems, subsystems are quite satisfactory and the plant has given very good capacity factor. (author)

  6. Assessment of proliferation resistances of aqueous reprocessing techniques using the TOPS methodology

    International Nuclear Information System (INIS)

    Åberg Lindell, M.; Grape, S.; Håkansson, A.; Jacobsson Svärd, S.

    2013-01-01

    Highlights: • Proliferation resistances of three possible LFR fuel cycles are assessed. • The TOPS methodology has been chosen for the PR assessment. • Reactor operation, reprocessing and fuel fabrication are examined. • Purex, Ganex, and a combination of Purex, Diamex and Sanex, are compared. • The safeguards analysis speaks in favor of Ganex as opposed to the Purex process. - Abstract: The aim of this study is to assess and compare the proliferation resistances (PR) of three possible Generation IV lead-cooled fast reactor fuel cycles, involving the reprocessing techniques Purex, Ganex and a combination of Purex, Diamex and Sanex, respectively. The examined fuel cycle stages are reactor operation, reprocessing and fuel fabrication. The TOPS methodology has been chosen for the PR assessment, and the only threat studied is the case where a technically advanced state diverts nuclear material covertly. According to the TOPS methodology, the facilities have been divided into segments, here roughly representing the different forms of nuclear material occurring in each examined fuel cycle stage. For each segment, various proliferation barriers have been assessed. The results make it possible to pinpoint where the facilities can be improved. The results show that the proliferation resistance of a fuel cycle involving recycling of minor actinides is higher than for the traditional Purex reprocessing cycle. Furthermore, for the purpose of nuclear safeguards, group actinide extraction should be preferred over reprocessing options where pure plutonium streams occur. This is due to the fact that a solution containing minor actinides is less attractive to a proliferator than a pure Pu solution. Thus, the safeguards analysis speaks in favor of Ganex as opposed to the Purex process

  7. Development and application of a safeguards system in a fabrication plant for highly enriched uranium

    International Nuclear Information System (INIS)

    Cuypers, M.; Stricht, E. van der

    1979-01-01

    This paper gives a general view of the safeguards activities performed at the Nukem Fabrication plant (Hanau, Federal Republic of Germany) during the last seven years. The main safeguards-relevant features of the plant are given and discussed. The importance is stressed of a good working relationship between the three principal partners, viz. the operator, the safeguards authority and the latter's technical support service. The definition, implementation and improvement of safeguards equipment and activities are outlined. The paper describes the internal organization established by the operator to fulfil his responsibilities, the safeguards philosophy, the Non-Destructive Assay equipment permanently installed by Euratom Safeguards, the results obtained, and the evaluation of the material balances. Conclusions are drawn (and specific comments made throughout the paper) from the experience gained over this period of seven years. (author)

  8. Plutonium, proliferation, and the price of reprocessing

    International Nuclear Information System (INIS)

    Gilinsky, V.

    1978-01-01

    France and Britain disagree with the US on whether deferring fuel reprocessing that provides plutonium for export can help contain proliferation. The US has veto power over reprocessing of US-supplied fuels for non-EURATOM countries, but exceptions will be made for movement within the EURATOM community. Political issues will be influenced by the magnitude of the financial investments, however, and commercial considerations have until recently dominated and complicated international safeguards. The author notes that US policy was reversed by the gradual acknowledgment that the same international inspection of plutonium stockpiles would not work as it had for low-enriched fuel and that economic interests must have a lower priority to avoiding proliferation. He cites the combination of sudden policy shifts, failure to prove that present reactors are best, and long-term distrust of US economic motives as failing to persuade either the French or British, who feel the best safeguard is provided by their high-security reprocessing facilities. Still to be resolved are the conditions under which plutonium must be returned to its owners, a problem that must determine safe international transport and storage and international management. Technical fixes, such as the CIVEX process, cannot contribute to the solution for several decades, while reprocessing is no longer considered a first step in waste disposal and would be more expensive and complicated than present waste disposal procedures. The author concedes merit in President Carter's requirement of separating ''the legitimate and necessary use of uranium'' and nuclear fuels that are also explosives

  9. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01

    The risks involved in the routine release of 85 Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of 85 Kr. Instead of releasing the 85 Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing 85 Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from 85 Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of 85 Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for 85 Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated 3 H and 14 C also encourage delaying implementation of the 85 Kr recovery in the early plants

  10. Safety-related concrete structure design and construction of Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Morishita, Hideki; Munakata, Yoshinari; Togashi, Akihito

    2003-01-01

    The Rokkasho Reprocessing Plant of the Japan Nuclear Fuel Co. Ltd., is a facility to reprocess remained uranium without firing and newly formed plutonium contained in spent fuels used at the nuclear power stations, to produce fuels to be repeatedly used. Constructions in this facility has some characteristics shown as follows: 1) radiation shielding and seismic isolated functions like those at the nuclear power plants, 2) reduction of wall thickness based on partially using heavy concrete at walls required for radiation shielding, 3) protective design against fly-coming matters such as aircrafts, 4) construction period reduction based on winter construction and large scale block engineering. Here were described characteristics of designs on radiation shielding, seismic isolated and fly-coming matters protection construction engineering and quality control on concrete. (G.K.)

  11. State-of-the-art report on accident analysis and risk analysis of reprocessing plants in European countries

    International Nuclear Information System (INIS)

    Nomura, Yasushi

    1985-12-01

    This report summarizes informations obtained from America, England, France and FRG concerning methodology, computer code, fundamental data and calculational model on accident/risk analyses of spent fuel reprocessing plants. As a result, the followings are revealed. (1) The system analysis codes developed for reactor plants can be used for reprocessing plants with some code modification. (2) Calculational models and programs have been developed for accidental phenomenological analyses in FRG, but with insufficient data to prove them. (3) The release tree analysis codes developed in FRG are available to estimate radioactivity release amount/probability via off-gas/exhaustair lines in the case of accidents. (4) The computer codes developed in America for reactor-plant environmental transport/safety analyses of released radioactivity can be applied to reprocessing facilities. (author)

  12. The development of in-cell remote inspection system in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Ishibashi, Yuzo

    1985-01-01

    In the Tokai fuel reprocessing plant, the containment is triple, i.e. the vessel containing radioactive material, then the concrete cell structure and finally the housing building. The fuel reprocessing plant is now proceeding with the development of an in-cell remote inspection system. The inspection system is for inspection of the cell itself and the equipment etc. in the cell, concerning the integrity. Described are the following: the course taken and problems in development of the remote inspection system; development of the floor rambling type remote inspection equipment and the multiple armed type, both for inspection of in-cell ''drip trays''; in-cell equipment inspection devices in specifications etc.; problems in its future development. (Mori, K.)

  13. Safety assessment of UP3-A reprocessing plant

    International Nuclear Information System (INIS)

    Mercier, J.P.; Guezenec, J.Y.; Poirier, M.C.

    1992-02-01

    This presentation describes how the safety assessment was made of UP3-A plant of the La Hague establishment for the building permit and operating license within the context of French nuclear regulations and the national debate on the need for reprocessing. Other factors discussed are how the public was involved, how the regulations were improved in the process and what the different stages of commissioning consisted of. (author)

  14. Simulation study of near-real-time accounting in a generic reprocessing plant

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1992-01-01

    Our simulation program FacSim has been used to estimate balance closure variances for a number of real proposed nuclear material processing facilities that rely primarily on item measurements. We are enhancing the program so that it can be applied to facilities such as reprocessing plants that handle bulk materials ad primarily perform bulk and flow measurements. The extended simulation program can apply any of several types of sequential statistical tests to near-real-time accounting information to evaluate the capability of the facility accounting system to detect material and operational anomalies in a timely fashion. The program allows facility designers and operators to evaluate measurement and anomaly detection strategies before system implementation and to demonstrate facility's capability for maintaining accurate inventory information during plant operation. These features are illustrated by application to a generic reprocessing plant

  15. Example of material accounting and verification of reprocessing input

    International Nuclear Information System (INIS)

    Koch, L.; Schoof, S.

    1981-01-01

    An example is described in this paper of material accounting at the reprocessing input point. Knowledge of the fuel history and chemical analyses of the spent fuel permitted concepts to be tested which have been developed for the determination of the input by the operator and for its verification by nuclear material safeguards with the intention of detecting a protracted as well as an abrupt diversion. Accuracies obtained for a material balance of a PWR fuel reprocessing campaign are given. 6 refs

  16. Reprocessing of MTR fuel at Dounreay

    International Nuclear Information System (INIS)

    Hough, N.

    1997-01-01

    UKAEA at Dounreay has been reprocessing MTR fuel for over 30 years. During that time considerable experience has been gained in the reprocessing of traditional HEU alloy fuel and more recently with dispersed fuel. Latterly a reprocessing route for silicide fuel has been demonstrated. Reprocessing of the fuel results in a recycled uranium product of either high or low enrichment and a liquid waste stream which is suitable for conditioning in a stable form for disposal. A plant to provide this conditioning, the Dounreay Cementation Plant is currently undergoing active commissioning. This paper details the plant at Dounreay involved in the reprocessing of MTR fuel and the treatment and conditioning of the liquid stream. (author)

  17. Safeguards by Design at the Encapsulation Plant in Finland

    International Nuclear Information System (INIS)

    Ingegneri, M.; Baird, K.; Park, W.-S.; Coyne, J.M.; Enkhjin, L.; Chew, L.S.; Plenteda, R.; Sprinkle, J.; Yudin, Y.; Ciuculescu, C.; Koutsoyannopoulos, C.; Murtezi, M.; Schwalbach, P.; Vaccaro, S.; Pekkarinen, J.; Thomas, M.; Zein, A.; Honkamaa, T.; Hamalainen, M.; Martikka, E.; Moring, M.; Okko, O.

    2015-01-01

    Finland has launched a spent fuel disposition project to encapsulate all of its spent fuel assemblies and confine the disposal canisters in a deep geological repository. The construction of the underground premises started several years ago with the drilling, blasting and reinforcement of tunnels and shafts to ensure the safe deep underground construction and disposal techniques in the repository, while the design of the encapsulation plant (EP) enters the licencing phase preliminary to its construction. The spent fuel assemblies, which have been safeguarded for decades at the nuclear power plants, are going to be transported to the EP, loaded into copper canisters and stored in underground tunnels where they become inaccessible after backfilling. Safeguards measures are needed to ensure that final spent fuel verification is performed before its encapsulation and that no nuclear material is diverted during the process. This is an opportunity for the inspectorates to have the infrastructure necessary for the safeguards equipment incorporated in the design of the encapsulation plant before licencing for construction occurs. The peculiarity of this project is that it is going to run for more than a century. Therefore, significant changes are to be expected in the technical capabilities available for implementing safeguards (e.g., verification techniques and instruments), as well as in the process itself, e.g., redesign for the encapsulation of future fuel types. For these reasons a high degree of flexibility is required in order to be able to shift to different solutions at a later stage while minimizing the interference with the licencing process and facility operations. This paper describes the process leading to the definition of the technical requirements by IAEA and Euratom to be incorporated in the facility's design. (author)

  18. Application of probabilistic safety assessment to Rokkasho reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Miyata, Takashi; Takebe, Kazumi; Tamauchi, Yoshikazu

    2008-01-01

    A probabilistic safety assessment (PSA) is made on the boiling accident of a highly active liquid waste tank, which may result in significant consequences, in accordance with the procedure for PSA developed for nuclear power plants. Obtained as results are the frequency of boiling accident of a certain tank of 2.0x10 -8 /y (frequency of boiling accident of any tank of 4.1x10 0-8 /y), its error factor of approx. 6, and information on the relative risk importance based on the FV index and RAW for various components, systems and activities of personnel and on the sensitivity of key parameters. Furthermore, the effect of the time required for repairing failed instruments on the frequency of accident, how to deal with the common cause of failure of the duplicated dynamic components, one of which is at least in operation, and conservative exposure dose in the event of an accident are examined. The database for the Rokkasho reprocessing plant has not been established yet, but the PSA results utilizing available failure rate databases of existing nuclear power plants and reprocessing plants in Japan and abroad can be used effectively to optimize operations and maintenance, if they are interpreted properly and some uncertainties are taken into account. (author)

  19. Concept of a tritium extraction facility for a reprocessing plant

    International Nuclear Information System (INIS)

    Tunaboylu, K.; Paulovic, M.; Ulrich, D.

    1991-01-01

    There are several alternatives for reducing the release of tritium to the environment originating from the wastewater of a reprocessing plant. Such alternatives, which are applicable for sites not located by the sea or by large rivers, are limited to either injection of tritiated wastewater into suitable deep geological formations, or final disposal into a deep underground repository after adequate treatment similar to other low and intermediate active waste. Removal of tritium from the wastewater by enrichment represents a further feasible option of the second alternative, which allows reduction of the huge volume of tritiated water to be treated before disposal. A significant volume reduction increases the safety of the subsequent steps such as transport, interim storage and final disposal of tritiated waste, furthermore, decreases the corresponding overall waste management cost. The projected Wackersdorf reprocessing plant has been considered as a reference for assessing the permitted tritium releases and other site characteristics. (orig.)

  20. Nuclear safeguards considerations for pebble bed reactors (PBRs)

    International Nuclear Information System (INIS)

    Moses, David L.

    2012-01-01

    Recent reports by the Department of Energy National Laboratories have discussed safeguards considerations for low enriched uranium (LEU)-fueled pebble bed reactors (PBRs) and the need for bulk accountancy of the plutonium in “used fuel.” These reports fail to account for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency (IAEA) “provisional” guidelines for termination of safeguards on “measured discards.” The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel is not sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of the uranium minor isotopes 232 U and 236 U in the used fuel at the target burnup of ∼90 Gigawatt-days per metric ton (GWD/MT) exceed standard specification limits for reprocessed uranium and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the 236 U content to fall within specification. Hence, the PBR used fuel is less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBR specific activity of a reprocessed uranium isotopic mixture and its A 2 values for effective dose limits if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light-water-reactor used fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product (technetium, 99 Tc) and plutonium contamination. Thus, the potentially recoverable uranium from PBR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant consideration is that reprocessing technologies for

  1. Determination of plutonium in highly radioactive liquid waste by spectrophotometry using neodymium as an internal standard for safeguards analysis. Japan support program for agency safeguards (JASPAS) JC-19

    International Nuclear Information System (INIS)

    Taguchi, Shigeo; Surugaya, Naoki; Sato, Soichi; Kurosawa, Akira; Watahiki, Masaru; Hiyama, Toshiaki

    2006-06-01

    A spectrophotometric determination using neodymium as an internal standard was developed for safeguards verification analysis of plutonium in highly radioactive liquid waste which is produced by the reprocessing of spent nuclear fuel. The internal standard is used as a means to analyze plutonium and also to authenticate the instrument conditions. The method offers reduced sample preparation and analysis time compared to isotope dilution mass spectrometry. The sample was mixed with a known amount of internal standard. Subsequently, plutonium was quantitatively oxidized to Pu(VI) by the addition of Ce(IV) for spectrophotometry. Plutonium concentration was calculated from a relation between Nd(III)/Pu(VI) molar extinction coefficient ratio and their absorbance ratio. The relative expanded uncertainty of the repeated analysis (n=5) was 8.9% (coverage factor k=2) for a highly radioactive liquid waste sample (173 mg L -1 ). The determination limit was 6 mg L -1 (ten fold's the standard deviation). This method was validated through comparison experiments with isotope dilution mass spectrometry. The analytical results of plutonium in highly radioactive liquid waste using this method were agree well with values obtained using isotope dilution mass spectrometry. The proposed method can be applied to independent on-site safeguards analysis at the Tokai Reprocessing Plant. (author)

  2. Monitoring of low-level radioactive liquid effluent in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Mizutani, Tomoko; Koarashi, Jun; Takeishi, Minoru

    2009-01-01

    The Tokai reprocessing plant (TRP), the first reprocessing plant in Japan, has discharged low-level liquid wastes to the Pacific Ocean since the start of its operation in 1977. We have performed liquid effluent monitoring to realize an appropriate radioactive discharge control. Comparing simple and rapid analytical methods with labor-intensive radiochemical analyses demonstrated that the gross-alpha and gross-beta activities agreed well with the total activities of plutonium isotopes ( 238 Pu and 239+240 Pu) and major beta emitters (e.g., 90 Sr and 137 Cs), respectively. The records of the radioactive liquid discharge from the TRP showed that the normalized discharges of all nuclides, except for 3 H, were three or four orders of magnitude lower than those from the Sellafield and La Hague reprocessing plants. This was probably due to the installation of multistage evaporators in the liquid waste treatment process in 1980. The annual public doses for a hypothetical person were estimated to be less than 0.2 μSv y -1 from the aquatic pathway. Plutonium radioactivity ratios ( 238 Pu/ 239+240 Pu) of liquid effluents were determined to be 1.3-3.7, while those of the seabed sediment samples collected around the discharge point were 0.003-0.059, indicating no remarkable accumulation of plutonium in the regional aquatic environment. Thus, we concluded that there were no significant radiological effects on the public and the aquatic environment during the past 30-year operation of the TRP. (author)

  3. Implications for advanced safeguards derived from PR and PP case study results

    International Nuclear Information System (INIS)

    Boyer, Brian D.

    2009-01-01

    The proliferation resistance and physical protection (PR and PP) working group produced a case study on the Example Sodium Fast Reactor (ESFR). The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry fuel storage facility and a spent fuel reprocessing facility using pyroprocessing technology. This study revealed how safeguards would be applied at such site consisting of integrated multiple fuel cycle facilities and the implications of what safeguards technology and safeguards concepts would need to be adapted and developed to safeguard successfully this Generation IV nuclear energy system concept. The major safeguards concepts driving our safeguards analysis are timeliness goals and material quantity goals. Because the fresh transuranic (TRU) fuel to be produced in the ESFR fuel fabrication facility contains plutonium, the ESFR will be reprocessing, using in the reactor, and storing material on site that will have IAEA defined 'direct-use material' in it with stringent timeliness goals and material quantity goals that drive the safeguards implementation. Specifically, the TRU fresh fuel, pyroprocessing in process material, LWR spent fuel sent to the ESFR, and TRU spent fuel will contain plutonium. This material will need to be verified at interim intervals four times per year because the irradiated direct-use material, as defined previously, has three-month timeliness goals and 8 kg material quantity goals for plutonium. The TRU in-process material is, of course, irradiated direct-use material as defined by the IAEA. Keeping the plutonium and uranium together with TRu products should provide a radiation barrier. this radiation barrier slows down the ability to reprocess the fuel. Furthermore, the reprocessing technique, if it has some intrinsic proliferation resistance, will need major modifications to be able to separate plutonium from the uranium and TRU mixture. The ESFR design

  4. Decontamination and decommissioning of the West Valley Reprocessing Plant

    International Nuclear Information System (INIS)

    Daugherty, H.F.; Keel, R.

    1986-11-01

    This report presents the decontamination and decommissioning (D and D) activities at the West Valley Nuclear Fuel Reprocessing Plant through September 1, 1986. The topics addressed are: D and D of areas for reuse by the Liquid Waste Treatment System (LWTS); D and D of areas for reuse as High Level Waste (HLW) canister storage; and technologies developed in D and D work

  5. Remote systems and remote maintenance of a reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Funaya, T.

    1977-01-01

    The design concept and overall maintenance philosophy applied in the Power Reactor and Nuclear Fuel Development Corporation Reprocessing Plant at Tokai-mura, Japan, are briefly introduced. Details on remote systems and remote maintenance in mechanical processing areas are described

  6. Radioactive wastes management in fiscal year 1983 in the fuel reprocessing plant

    International Nuclear Information System (INIS)

    1985-01-01

    In the nuclear fuel reprocessing plant of Power Reactor and Nuclear Fuel Development Corporation, the releases of radioactive gaseous and liquid wastes are so managed not to exceed the respective objective release levels. Of the radioactive liquid wastes, the high level concentrated wastes are stored in tanks and the low level wastes are stored in tanks or asphalt solidified. For radioactive solid wastes, high level solid wastes are stored in casks, low level solid wastes and asphalt solids in drums etc. The releases of radioactive gaseous and liquid wastes in the fiscal year 1983 were below the objective release levels. The radioactive wastes management in the fuel reprocessing plant in fiscal year 1983 is given in tables, the released quantities, the stored quantities, etc. (Mori, K.)

  7. Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants

    International Nuclear Information System (INIS)

    Laughter, Mark D.; Whitaker, J. Michael; Howell, John

    2010-01-01

    Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF 6 feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load

  8. Fast breeder reactor fuel reprocessing in France

    International Nuclear Information System (INIS)

    Bourgeois, M.; Le Bouhellec, J.; Eymery, R.; Viala, M.

    1984-08-01

    Simultaneous with the effort on fast breeder reactors launched several years ago in France, equivalent investigations have been conducted on the fuel cycle, and in particular on reprocessing, which is an indispensable operation for this reactor. The Rapsodie experimental reactor was associated with the La Hague reprocessing plant AT1 (1 kg/day), which has reprocessed about one ton of fuel. The fuel from the Phenix demonstration reactor is reprocessed partly at the La Hague UP2 plant and partly at the Marcoule pilot facility, undergoing transformation to reprocess all the fuel (TOR project, 5 t/y). The fuel from the Creys Malville prototype power plant will be reprocessed in a specific plant, which is in the design stage. The preliminary project, named MAR 600 (50 t/y), will mobilize a growing share of the CEA's R and D resources, as the engineering needs of the UP3 ''light water'' plant begins to decline. Nearly 20 tonnes of heavy metals irradiated in fast breeder reactors have been processed in France, 17 of which came from Phenix. The plutonium recovered during this reprocessing allowed the power plant cycle to be closed. This power plant now contains approximately 140 fuel asemblies made up with recycled plutonium, that is, more than 75% of the fuel assemblies in the Phenix core

  9. Remote repair and inspection technics in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Koyama, Kenji; Ishibashi, Yuzo; Otani, Yosikuni

    1986-01-01

    Tokai reprocessing plant of Power Reactor and Nuclear Fuel Development Corp. is the only factory in Japan which treats 0.7 t/day of the spent fuel from LWR power stations and recovers remaining uranium and newly produced plutonium. Since the reprocessing plant started the hot test in September, 1977, about eight years have elapsed, and 233 t of spent fuel was treated as of August, 1985. During this period, the development of various remote working techniques have been carried out to cope with the failure of equipment and to strengthen the preventive maintenance of equipment. In this report, the development of the techniques for the remote repair of leaking dissolving tanks and the development of the remote inspection system for confirming the soundness of equipment in cells are described. In nuclear facilities, from the viewpoint of the reduction of radiation exposure accompanying the works under high radiation, labor saving, the increase of capacity factor by shortening the period of repair works, the improvement of safety and reliability of the facilities by perfecting checkup and inspection and so on, it is strongly desired to put robots in practical use for maintenance and inspection. (Kako, I.)

  10. Reprocessing considerations for a developing country

    International Nuclear Information System (INIS)

    This paper describes some of the alternatives for dealing with spent fuel that face a developing country. It then discusses the considerations that affect decisions on the size and siting of reprocessing plants, and shows how small plants may be suitable in countries without the means to transport spent fuel easily. The paper also outlines the reasons for reprocessing in India, and describes the development of India's reprocessing capability. It shows how the economic conditions in India, such as low skilled labour costs, make reprocessing plants of 100 to 200 tonnes U/yr capacity economic, and includes a table giving technical data on a 100 t U/yr national plant for inclusion in the reference cases used by INFCE Working Group 4

  11. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    International Nuclear Information System (INIS)

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-01-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R and D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R and D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants

  12. Fast breeder reactor fuel reprocessing R and D: technological development for a commercial plant

    International Nuclear Information System (INIS)

    Colas, J.; Saudray, D.; Coste, J.A.; Roux, J.P.; Jouan, A.

    1987-01-01

    The technological developments undertaken by the CEA are applied to a plant project of a 50 t/y capacity, having to reprocess in particular the SUPERPHENIX 1 reactor fuel. French experience on fast breeder reactor fuel reprocessing is presented, then the 50 t/y capacity plant project and the research and development installations. The R and D programs are described, concerning: head-end operations, solvent extractions, Pu02 conversion and storage, out-of-specification Pu02 redissolution, fission products solution vitrification, conditioning of stainless steel hulls by melting, development of remote operation equipments, study of corrosion and analytical problems

  13. Technical specifications on the welding in fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Karino, Motonobu; Uryu, Mitsuru; Matsui, N.; Nakazawa, Fumio; Imanishi, Makoto; Koizumi; Kazuhiko; Sugawara, Junichi; Tanaka, Hideo

    1999-04-01

    The past specifications SGN of the welding in JNC was reexamined for the reprocessing plants in order to further promote the quality control. The specification first concerns the quality of raw materials, items of the quality tests, material management, and qualification standards of the welders. It extends over details of the welding techniques, welding design, welding testings, inspection and the judgment standards. (H. Baba)

  14. Safeguards Considerations for the Design of a Future Fast Neutron Sodium Cooled Reactor

    International Nuclear Information System (INIS)

    Cazalet, J.; Raymond, P.; Masson, M.; Saturnin, A.

    2015-01-01

    Incorporating safeguards at an early stage of a reactor design is a way to increase the effectiveness and efficiency of safeguards measures minimizing the possibilities of misuse of the plant or nuclear material diversion. It also reduces the impact on the construction and operation cost. At the preliminary phase, the design will integrate: confinement, containment, surveillance features and non-destructive assay equipment. Taking into account these requirements will help the operator in the approval of the plant at the design phase by national and international authorities in charge of Nuclear Material accounting and safeguards. A large amount of work has been made by the GEN IV International Forum to assess the proliferation resistance of nuclear systems. The IAEA has developed guidelines on ''Safeguards by design'' describing reference requirements for future nuclear facilities. Based on these studies, this communication details implementation of safeguards in the design of a sodium cooled fast neutron reactor (SFR) currently studied in France. Specificities are the use of MOX fuel with high concentration of plutonium and the potential capacity of breeding. A great attention should be paid to avoid diversion of nuclear material contained in fresh or irradiated fuel. Scenarios of reactor misuse are analyzed. The identification of diversion pathways and requirements for nuclear material accountancy, leads to an approach of safeguards, specific to SFR: Material Balance Areas (MBA) and some key measurement points (KMP) are characterized. Specific instrumentation assay helping in the identification and/or characterization of fuel elements and the inventory of nuclear material is described. As concerns the fuel cycle, the safeguards of the reprocessing unit will be progressively increased through the development of materials monitoring and the implementation of these measures at strategic locations of buildings, thus providing real-time information

  15. UF6 test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-06-01

    A functional test loop capable of simulating UF 6 flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. Purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized

  16. Absorption process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Stephenson, M.J.; Dunthorn, D.I.; Reed, W.D.; Pashley, J.H.

    1975-01-01

    The Oak Ridge Gaseous Diffusion Plant selective absorption process for the collection and recovery of krypton and xenon is being further developed to demonstrate, on a pilot scale, a fluorocarbon-based process for removing krypton from the off-gas of an LMFBR fuel reprocessing plant. The new ORGDP selective absorption pilot plant consists of a primary absorption-stripping operation and all peripheral equipment required for feed gas preparation, process solvent recovery, process solvent purification, and krypton product purification. The new plant is designed to achieve krypton decontamination factors in excess of 10 3 with product concentration factors greater than 10 4 while processing a feed gas containing typical quantities of common reprocessing plant off-gas impurities, including oxygen, carbon dioxide, nitrogen oxides, water, xenon, iodine, and methyl iodide. Installation and shakedown of the facility were completed and some short-term tests were conducted early this year. The first operating campaign using a simulated reprocessing plant off-gas feed is now underway. The current program objective is to demonstrate continuous process operability and performance for extended periods of time while processing the simulated ''dirty'' feed. This year's activity will be devoted to routine off-gas processing with little or no deliberate system perturbations. Future work will involve the study of the system behavior under feed perturbations and various plant disturbances. (U.S.)

  17. Contribution of the 'safeguarded' to the development of safeguards

    International Nuclear Information System (INIS)

    Anderson, A.R.

    1977-01-01

    The development of an efficient system of international safeguards requires close and detailed interaction between the safeguarding authority and those being safeguarded, i.e. the plant operator and the State System to which he belongs. Such interaction is found in other control systems but the degree of international collaboration involved in safeguards is perhaps unique and it is valuable to review and analyse the contributions which have arisen from prudent management considerations. The familiar ''Blue Book'' (INFCIRC 153) recognizes clearly the need for an effective State's System of accounting for and control of nuclear materials as a necessary pre-requisite for the development and implementation of an effective IAEA system of safeguards. It is therefore helpful to summarize the relevant contributions from the 'safeguarded' in terms of the components of the State's System specified in paragraph 32 of the Blue Book. This paper reviews the continuing contributions stemming from plant and national experience, with particular emphasis on the development of measurement systems and physical inventory procedures relevant to safeguards. Attention is also drawn to those areas where the specific objectives of IAEA Safeguards lead to requirements additional to those required for management purposes. (author)

  18. Alternative reprocessing schemes evaluation

    International Nuclear Information System (INIS)

    1979-02-01

    This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented

  19. Improved verification methods for safeguards verifications at enrichment plants

    International Nuclear Information System (INIS)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D.

    2009-01-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF 6 cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  20. Improved verification methods for safeguards verifications at enrichment plants

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, A.; Kane, S. C.; Bourva, L.; Poirier, S.; Loghin, N. E.; Langlands, D. [Department of Safeguards, International Atomic Energy Agency, Wagramer Strasse 5, A1400 Vienna (Austria)

    2009-07-01

    The International Atomic Energy Agency (IAEA) has initiated a coordinated research and development programme to improve its verification methods and equipment applicable to enrichment plants. The programme entails several individual projects to meet the objectives of the IAEA Safeguards Model Approach for Gas Centrifuge Enrichment Plants updated in 2006. Upgrades of verification methods to confirm the absence of HEU (highly enriched uranium) production have been initiated and, in particular, the Cascade Header Enrichment Monitor (CHEM) has been redesigned to reduce its weight and incorporate an electrically cooled germanium detector. Such detectors are also introduced to improve the attended verification of UF{sub 6} cylinders for the verification of the material balance. Data sharing of authenticated operator weighing systems such as accountancy scales and process load cells is also investigated as a cost efficient and an effective safeguards measure combined with unannounced inspections, surveillance and non-destructive assay (NDA) measurement. (authors)

  1. Potential fire or explosion risks in reprocessing plants

    International Nuclear Information System (INIS)

    Lefort, G.

    1983-05-01

    Installation for reprocessing are large chemical plants handling large quantities of inflammable solvents and products allowing large risk of fire. Further, the chemical process involves the use of oxidizer and reducer agents which can have a very strong chemical activity and by certain circumstances create overpressures or large explosions. This paper shows the principal radioactive consequences we can retain in safety analyses. As an example the combustion phenomenon involved in a solid waste storage silo with irradiated uranium traces is described [fr

  2. Progress and experiences from the decommissioning of the eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gillis, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2008-01-01

    The Eurochemic reprocessing facility at Dessel in Belgium, was constructed from 1960 to 1966. After shutdown, the plant was decontaminated from 1975 to 1979 to keep safe standby conditions at reasonable cost. When it was decided in 1986 not to resume reprocessing in Belgium, the main Belgoprocess activities changed to processing and storage of radioactive waste and to decontamination and decommissioning of obsolete nuclear facilities. The industrial decommissioning was started in 1990. This document presents the project: overview of decommissioning activities and equipment used, automation in decontamination, ensuring health and safety during the operations, release of decontaminated materials, current situation of the decommissioning activities and quality assurance program. (A.L.B.)

  3. Determination of trace amounts of uranium in a reprocessing plant by solution spectrofluorimetry

    International Nuclear Information System (INIS)

    Mauchien, P.; Cauchetier, Ph.

    1983-01-01

    To establish inventory tables accurately and satisfy safeguards requirements - and also to ensure satisfactory operation of a reprocessing plant - it is essential to determine the uranium content of numerous solutions where the uranium is present only in trace quantities. For this purpose a method is proposed which relies on the fluorescence of uranyl solutions exposed to ultra-violet radiation. After a brief theoretical summary, the parameters which influence the measurements most strongly are enumerated: medium, temperature, nature of the matrix, and choice of wavelength of the incident radiation. It is then apparent that the measurement must be performed by internal calibration (using the proportional addition method) and that it is useful to obtain a fluorescence spectrum which enables us to verify the presence of uranium. The applications of this method at the La Hague plant are described, where it has been used since October 1981 by shift teams, notably to check the following points: the attack acid (before receiving the fuel), the foot of the first-cycle column, the carbonated solvent washing solution and the solutions of the effluent treatment unit. It is in fact used throughout the plant, even for checking uranium in PuO 2 oxide. The method makes it possible to avoid organic reagents such as pyridine and, in many cases, cumbersome effluent-generating separations. Determinations are possible - to give one example - by simple dilution in the fission-product concentrates and in plutonium solutions where the Pu/U ratio is as great as 1000/1. In pure solutions the detection limit with the equipment used at present is a few μg per litre in the measuring tank. In general, the accuracy is a few per cent. (author)

  4. EURATOM safeguards implementation in France and cooperation with the IAEA

    International Nuclear Information System (INIS)

    Oddou, J.

    2013-01-01

    International safeguards in France are applied both by: -) the European Commission (EC), through the Chapter 7 of the EURATOM Treaty; -) the International Atomic Energy Agency (IAEA) as France is a party to the NPT and has concluded a safeguards agreement with IAEA. With the exception of mining, France has a complete nuclear fuel cycle from ore concentrates to waste. Based on the legal framework of the EURATOM Treaty, all civil nuclear facilities and all civil nuclear materials are safeguarded by EURATOM wherever they are in France. Therefore the two conversion plants, the two enrichment plants, the three fuel fabrication plants, the 59 nuclear power plants including the EPR of Flamanville under construction, the 2 reprocessing plants in La Hague, the five facilities for waste treatment and numerous research centers and reactors of CEA are declared and controlled by the European Commission. The activities of the EURATOM inspectors are of various kind depending of the facility and the type of inspection. The most common checks are: identification and counting of the nuclear material, verification of accountancy declaration vs. physical follow-up of the nuclear material, non-destructive analysis and destructive analysis after sampling in large bulk handling facilities. There is a strong cooperation between IAEA and EC: the majority of IAEA inspections in France are joint team inspections with the EC. This pooling of equipment and teams can save money and human resources. Equipment for containment and surveillance are paid whether by the EC or by the IAEA and can be used by both bodies of inspectors. With the principle of 'One Job One Person', verification activities are done only once and it saves time for the inspectors and the operators. The paper is followed by the slides of the presentation. (A.C.)

  5. A comprehensive fuel nuclide analysis at the reprocessing plant

    International Nuclear Information System (INIS)

    Arenz, H.J.; Koch, L.

    1983-01-01

    The composition of spent fuel can be determined by various methods. They rely partially on different information. Therefore the synopsis of the results of all methods permits a detection of systematic errors and their explanation. Methods for determining the masses of fuel nuclides at the reprocessing input point range from pure calculations (shipper data) to mere experimental determinations (volumetric analysis). In between, a mix of ''fresh'' experimental results and ''historical'' data is used to establish a material balance. Deviations in the results obtained by the individual methods can be attributed to the information source, which is unique for the method in question. The methodology of the approach consists of three steps: by paired comparison of the operator analysis (usually volumetric or gravimetric) with remeasurements the error components are determined on a batch-by-batch basis. Using the isotope correlation technique the operator data as well as the remeasurements are checked on an inter-batch basis for outliers, precision and bias. Systematic errors can be uncovered by inter-lab comparison of remeasurements and confirmed by using historical information. Experience collected during the reprocessing of LWR fuel at two reprocessing plants prove the flexibility and effectiveness of this approach. An example is presented to demonstrate its capability in detecting outliers and determining systematic errors. (author)

  6. Remote maintenance in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Herndon, J.N.

    1985-01-01

    Remote maintenance techniques applied in large-scale nuclear fuel reprocessing plants are reviewed with particular attention to the three major maintenance philosophy groupings: contact, remote crane canyon, and remote/contact. Examples are given, and the relative success of each type is discussed. Probable future directions for large-scale reprocessing plant maintenance are described along with advanced manipulation systems for application in the plants. The remote maintenance development program within the Consolidated Fuel Reprocessing Program at the Oak Ridge National Laboratory is also described. 19 refs., 19 figs

  7. Standard model for safety analysis report of fuel reprocessing plants

    International Nuclear Information System (INIS)

    1979-12-01

    A standard model for a safety analysis report of fuel reprocessing plants is established. This model shows the presentation format, the origin, and the details of the minimal information required by CNEN (Comissao Nacional de Energia Nuclear) aiming to evaluate the requests of construction permits and operation licenses made according to the legislation in force. (E.G.) [pt

  8. Melter operation results in chemical test at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kanehira, Norio; Yoshioka, Masahiro; Muramoto, Hitoshi; Oba, Takaaki; Takahashi, Yuji

    2005-01-01

    Chemical Test of the glass melter system of the Vitrification Facility at Rokkasho Reprocessing Plant (RRP) was performed. In this test, basic performance of heating-up of the melter, melting glass, pouring glass was confirmed using simulated materials. Through these tests and operation of all modes, good results were gained, and training of operators was completed. (author)

  9. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications. This report provides an overview of the status of reprocessing technology and its future prospects in terms of various criteria in Section 2. Section 3 provides a review of emerging technologies which have been attracting the interest of Member States, especially in the international initiatives for future development of innovative nuclear systems. A historical review of IAEA activities associated with spent fuel reprocessing, traceable back to the mid-1970s, is provided in Section 4, and conclusions in Section 5. A list of references is provided at the end the main text for readers interested in further information on the related topics. Annex I summarizes the current status of reprocessing facilities around the world, including the civil operational statistics of Purex-based plants, progress with decommissioning and

  10. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  11. A review of liquor transfer systems for use in nuclear reprocessing plants

    International Nuclear Information System (INIS)

    Singh, J.

    1982-01-01

    Liquor pumping systems for use in nuclear fuel reprocessing plants are described. Comparison of the operating characteristics and system constants are made between the air lift/Vacuum Operated Slug Lift, power fluidics and ejector pump systems. (author)

  12. Cyber Security Evaluation of the Wireless Communication for the Mobile Safeguard Systems in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Lee, S.; Kim, Y.S.; Ye, S.H.

    2015-01-01

    This paper introduces cyber security evaluation results and a design of the wireless communication technology to apply to safeguard systems in nuclear power plants. While wireless communication technologies can generally make mobility and efficiency on plant operation, those have seldom been installed on the nuclear I&C systems due to the negative concern of unexpected outcomes that stem from electromagnetic interference and cyber attack. New design of advanced digital safeguard and I&C systems uses computer-based systems for the safeguard and safety functions. On the other hand, those are being exposed to various types of new and existing cyber threats, vulnerabilities and risks which significantly increase the likelihood that those could be compromised. In order to employ the wireless communication technology in safeguard function, licencees assess and manage the potential for adverse effects on safeguard and safety functions so as to provide high assurance that critical functions are properly protected cyber attack. It is expected that the safeguard function, specifically on the area of real-time monitoring, logging, can be enhanced by employing the mobile safeguard devices (: smart phone, laptop, smart pad, etc). In this paper, we deal with the cyber security evaluation, which consists of threat analysis, vulnerability test, establishment of security plan, and design solutions for the wireless communication on the basis of IEEE 802.11(Wi-Fi) protocol. Proposed evaluation and design solution could be a basis for the design of wireless communication and mobile safeguard systems in nuclear power plants. (author)

  13. Safety demonstration tests of postulated solvent fire accidents in extraction process of a fuel reprocessing plant, (2)

    International Nuclear Information System (INIS)

    Tukamoto, Michio; Takada, Junichi; Koike, Tadao; Nishio, Gunji; Uno, Seiichiro; Kamoshida, Atsusi; Watanabe, Hironori; Hashimoto, Kazuichiro; Kitani, Susumu.

    1992-03-01

    Demonstration tests of hypothetical solvent fire in an extraction process of the reprocessing plant were carried out from 1984 to 1985 in JAERI, focusing on the confinement of radioactive materials during the fire by a large-scale fire facility (FFF) to evaluate the safety of air-ventilation system in the plant. Fire data from the demonstration test were obtained by focusing on fire behavior at cells and ducts in the ventilation system, smoke generation during the fire, transport and deposition of smoke containing simulated radioactive species in the ventilation system, confinement of radioactive materials, and integrity of HEPA filters by using the FFF simulating an air-ventilation system of the reference reprocessing plant in Japan. The present report is published in a series of the report Phase I (JAERI-M 91-145) of the demonstration test. Test results in the report will be used for the verification of a computer code FACE to evaluate the safety of postulated fire accidents in the reprocessing plant. (author)

  14. Safeguards '85

    International Nuclear Information System (INIS)

    Gruemm, H.

    1981-01-01

    IAEA safeguards watch over the pledge of those non-nuclear weapon countries, which are signatories to the NPT, to refrain from using nuclear installations for military purposes. At present, some 700 installations are inspected in 50 countries, among them 117 nuclear power plants. Further advancement of these safeguards measures serves to develop new methods and equipment for safeguards inspection, ensure that the growing numbers of new plants are inspected, and achieve complete coverage of the eleven countries not signatories to the NPT. However, the long term effectiveness of safeguards will depend on progress being made in the contractual obligations fur nuclear disarmament and in assuring the continuity of supply to non-nuclear weapon countries by the atomic powers and the supplier countries. (orig.) [de

  15. Management of regenerant effluent waste at reprocessing plant, Tarapur- a new approach

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Munish; Bajpai, D D; Mudaiya, Avinash; Varadarajan, N [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    Power Reactor Fuel Reprocessing (PREFRE) Plant, Tarapur has been processing zircaloy clad spent fuel arising from PHWR namely RAPS and MAPS. The plant has been provided with a water pool to receive and store the irradiated fuel assemblies from the reactor site for an interim period before they are taken up for chop-leach and further reprocessing by PUREX process. This paper highlights the important and innovative modifications like introduction of a cation exchanger for water polishing and using nitric acid as regenerant. The regenerant effluent (nitric acid) is recycled to the main process cells where it is mixed and further treated along with process waste stream. This is a step towards minimising effluent generation. The paper describes the advantages of modified system like operational simplification, manpower, man-rem saving and minimising release of activity to environment. 3 figs., 4 tabs.

  16. Occupational exposure at the nuclear fuel reprocessing plant at Sellafield in Cumbria

    International Nuclear Information System (INIS)

    Coyle, A.; Partington, C.

    1991-01-01

    The nuclear reprocessing plant at Sellafield employs approximately 6500 people in a wide range of activities involving radioactive materials. The exposure to personnel over the period 1978-1989 is reviewed. Information is presented on collective and average dose exposure which both show significant downward trends. The current annual collective dose for reprocessing operations is 21.4 man Sv and the average whole body exposure 3.7 mSv.y -1 , taking account of both internal and external exposure. The introduction of radiological design targets for new plants and the use of formal ALARP assessments on projects has contributed substantially to the observed reduction in dose uptake. Experience also indicates that significant dose reduction can be achieved by heightening the awareness of both managers and workers of the dose implications of their work and working methods. (author)

  17. Process analysis in a THTR trial reprocessing plant

    International Nuclear Information System (INIS)

    Brodda, B.G.; Filss, P.; Kirchner, H.; Kroth, K.; Lammertz, H.; Schaedlich, W.; Brocke, W.; Buerger, K.; Halling, H.; Watzlawik, K.H.

    1979-01-01

    The demands on an analytical control system for a THTR trial reprocessing plant are specified. In a rather detailed example, a typical sampling, sample monitoring and measuring process is described. Analytical control is partly automated. Data acquisition and evaluation by computer are described for some important, largely automated processes. Sample management and recording of in-line and off-line data are carried out by a data processing system. Some important experiments on sample taking, sample transport and on special analysis are described. (RB) [de

  18. Annual report on the environmental radiation monitoring around Tokai Reprocessing Plant. FY 2001. Document on present state of affairs

    International Nuclear Information System (INIS)

    Shinohara, Kunihiko; Takeishi, Minoru; Miyagawa, Naoto

    2002-06-01

    Environmental radiation monitoring around the Tokai Reprocessing Plant has been performed since 1975, based on ''Safety Regulations for the Tokai Reprocessing Plant, Chapter IV - Environmental Monitoring''. This annual report presents the results of the environmental monitoring and the dose estimation to the hypothetical inhabitant due to the radioactivity discharged from the plant during April 2001 to March 2002. Appendices present comprehensive information, such as monitoring program, monitoring results, meteorological data and annual discharges from the plant. (author)

  19. Multivariate diagnostics and anomaly detection for nuclear safeguards

    International Nuclear Information System (INIS)

    Burr, T.

    1994-01-01

    For process control and other reasons, new and future nuclear reprocessing plants are expected to be increasingly more automated than older plants. As a consequence of this automation, the quantity of data potentially available for safeguards may be much greater in future reprocessing plants than in current plants. The authors first review recent literature that applies multivariate Shewhart and multivariate cumulative sum (Cusum) tests to detect anomalous data. These tests are used to evaluate residuals obtained from a simulated three-tank problem in which five variables (volume, density, and concentrations of uranium, plutonium, and nitric acid) in each tank are modeled and measured. They then present results from several simulations involving transfers between the tanks and between the tanks and the environment. Residuals from a no-fault problem in which the measurements and model predictions are both correct are used to develop Cusum test parameters which are then used to test for faults for several simulated anomalous situations, such as an unknown leak or diversion of material from one of the tanks. The leak can be detected by comparing measurements, which estimate the true state of the tank system, with the model predictions, which estimate the state of the tank system as it ''should'' be. The no-fault simulation compares false alarm behavior for the various tests, whereas the anomalous problems allow one to compare the power of the various tests to detect faults under possible diversion scenarios. For comparison with the multivariate tests, univariate tests are also applied to the residuals

  20. Economic feasibility study of regional centers for nuclear fuel reprocessing in the developing countries

    International Nuclear Information System (INIS)

    Bakeshloo, A.A.

    1977-01-01

    The fuel cycle costs for the following three different economic alternatives were studied: (1) Reprocessing in an industrialized country (such as the U.S.); (2) Reprocessing in the individual developing country; (3) Reprocessing in a regional center. The nuclear fuel cycle cost for the ''Throw-away'' fuel cycle was evaluated. Among the six regions which were considered in this study, region one (South America including Mexico) was selected for the economic analysis of the nuclear fuel cycle for the above three alternatives. For evaluation of the cases where the fuel is reprocessed in a regional center or in an individual developing country, a unit reprocessing cost equation was developed. An economic evaluation was developed to estimate the least expensive method for transporting radioactive nuclear material by either leased or purchased shipping casks. The necessary equations were also developed for estimating plutonium transportation and the safeguard costs. On the basis of nuclear material and services requirements and unit costs for each component, the levelized nuclear fuel cycle costs for each alternative were estimated. Finally, by a comparison of cost, among these three alternatives plus the ''Throw-away'' case,it was found that it is not at all economical to build individual reprocessing plants inside the developing countries in region one. However, it also was found that the economic advantage of a regional center with respect to the first alternative is less than a 4% difference between their total fuel cycle costs. It is concluded that there is no great economic advantage in any developing countries to seek to process their fuel in one of the advanced countries. Construction of regional reprocessing centers is an economically viable concept

  1. Contribution to the study of the degradation of the solvent used in a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Goasmat, F.

    1984-01-01

    The degradation of a mixed solvent (tributylphosphate - hydrocarbons) in a fuel reprocessing plant (UP 2 at La Hague, France) is studied in this thesis. Laboratory studies on degradation mechanisms, decomposition products and regeneration processes are reviewed in a bibliographic synthesis. Solvent degradation is investigated on a real solvent from a reprocessing plant. Influence of degradation on solvent performance is shown and regeneration processes should be improved. Many regeneration processes are tested on solvent from the plant and results are discussed. Separation and analysis of degradation products show the polyfunctional structure of compounds formed [fr

  2. PSA application on the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Ishida, Michihiko; Nakano, Takafumi; Morimoto, Kazuyuki; Nojiri, Ichiro

    2003-01-01

    The Periodic Safety Review (PSR) of the Tokai Reprocessing Plant (TRP) has been carrying out to obtain an overall view of actual plant safety. As a part of the PSR, Probabilistic Safety Assessment (PSA) methodology has been applied to evaluate the relative importance of safety functions that prevent the progress of events causing to postulated accidents. Based on the results of the safety reassessments of the TRP that was carried out in 1999, event trees were developed to model sequences of postulated accidents. Event trees were quantified by using the results of fault tree analysis and human reliability analysis. In the quantification, the reliability data generally used in PSA of nuclear power plants were mainly used. Operating experiences of the TRP were also utilized to evaluated both component/system reliability and human reliability. The relative importance of safety functions was evaluated by using two major importance measures, Fussell-Vesely and Risk Achievement Worth both generally used in PSA of nuclear power plants. Through these evaluations, some useful insights into the safety of the TRP have been obtained. The results of the relative importance measures would be utilized to qualify TRP component/equipment important to the safety. (author)

  3. Optimal installation program for reprocessing plants

    International Nuclear Information System (INIS)

    Kubokawa, Toshihiko; Kiyose, Ryohei

    1976-01-01

    Optimization of the program of installation of reprocessing plants is mathematically formulated as problem of mixed integer programming, which is numerically solved by the branch-and-bound method. A new concept of quasi-penalty is used to obviate the difficulties associated with dual degeneracy. The finiteness of the useful life of the plant is also taken into consideration. It is shown that an analogous formulation is possible for the cases in which the demand forecasts and expected plant lives cannot be predicted with certainty. The scale of the problem is found to have kN binary variables, (k+2)N continuous variables, and (k+3)N constraint conditions, where k is the number of intervals used in the piece-wise linear approximation of a nonlinear objective function, and N the overall duration of the period covered by the installation program. Calculations are made for N=24 yr and k=3, with the assumption that the plant life is 15 yr, the plant scale factor 0.5, and the maximum plant capacity 900 (t/yr). The results are calculated and discussed for four different demand forecasts. The difference of net profit between optimal and non-optimal installation programs is found to be in the range of 50 -- 100 M$. The pay-off matrix is calculated, and the optimal choice of action when the demand cannot be forecast with certainty is determined by applying Bayes' theory. The optimal installation program under such conditions of uncertainty is obtained also with a stochastic mixed integer programming model. (auth.)

  4. Fast reactor fuel reprocessing in the UK

    International Nuclear Information System (INIS)

    Allardice, R.H.; Williams, J.; Buck, C.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the U.K. since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium based fast reactor system and the importance of establishing at an early stage fast reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high burn-up thermal reactor oxide fuel. In consequence, the U.K. has decided to reprocess irradiated fuel from the 250 MW(E) Prototype Fast Reactor as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small scale fully active demonstration plant have been carried out over the past 5 years and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant a parallel development programme has been initiated to provide the basis for the design of a large scale fast reactor fuel reprocessing plant to come into operation in the late 1980s to support the projected U.K. fast reactor installation programme. The paper identifies the important differences between fast reactor and thermal reactor fuel reprocessing technologies and describes some of the development work carried out in these areas for the small scale P.F.R. fuel reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast reactor fuel reprocessing plant is outlined and the current design philosophy is discussed

  5. Decommissioning of nuclear facilities: COGEMA expertise devoted to UP1 reprocessing plant dismantling programme

    International Nuclear Information System (INIS)

    Gay, A.

    2001-01-01

    Over the last past decades, the French nuclear industry has acquired a great experience and know-how in the field of dismantling. Today this experience amounts to more than 200,000 hours. The fundamental aims within dismantling strategy are the same as for all nuclear facilities: minimising doses received by workers, minimising waste volume and adapting waste management to radioactivity levels, minimising costs. French experience is based on technologies which are currently used in nuclear maintenance facilities. Dismantling is a dynamic process especially in the field of decontamination (chemical and mechanical), cleaning, robotics and remote control operations. The strategy for the dismantling of former UP1 reprocessing plant is based on the feedback of experience gained through the dismantling of other facilities such as the AT1 workshop at La Hague. This workshop, a pilot plant for reprocessing of fast-breeder reactor fuels (Rapsodie and Phenix) has to be dismantled to IAEA level 3 (unrestricted site use), excluding civil works structures. Currently conducted by trained shifts, this dismantling project should end in 1999. The experience already acquired proves that chemical rinsings with the use of specific reagents is sufficient to decontaminate the hot cells and that the use of remote operations or robotics is not as important as previously envisaged. The UP1 reprocessing plant of Marcoule operated from 1958 to 1997. End of the operation was pronounced on the 31st of December 1997. 20,000 tons of spent fuels were reprocessed at UP1. The cleaning and dismantling operations at the Marcoule site depend upon the CEA, EDF and COGEMA. The Defence and Industry Ministries asked for a specific structure to be set up. An economic interest group called CODEM was created in May 1996. CODEM decides, finances and supervises dismantling operations, while respecting the constraints of nuclear safety, environmental protection and cost-effectiveness. The cleaning operations of

  6. In-line analytical instrumentation in nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Rao, V.K.; Bhargava, V.K.; Marathe, S.G.

    1979-01-01

    In nuclear fuel reprocessing plants where uranium and plutonium are separated from highly radioactive fission products, continuous monitoring of these constituents is helpful in many ways. Apart from quick detection of possible process malfunctions, in-line monitoring protects operating personnel from radiation hazards, reduces the cost of laboratory analysis and increases the overall efficiency of the process. A review of a proqramme of work on the design, fabrication and testing of some in-line instruments viz. gamma absorptiometer for uranium, neutron monitor for plutonium, acidity monitor for scrub nitric acid etc., their feasibility studies in the laboratory as well as in the pilot plant is presented. (auth.)

  7. Statement on the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1984-01-01

    Oak Ridge National Laboratory has chosen the following objectives for future reprocessing plant design: reduced radiation exposure to workers; minimal environmental impact; improved plant operation and maintenance; improved accountability; no plutonium diversion; and reduced overall capital and operating cost. These objectives lead to a plant with totally remote operation. The Breeder Reactor Engineering Test (BRET) has been designed to perform a key role in demonstrating advanced reprocessing technology. It has been scheduled to be available to reprocess spent fuel from the Fast Flux Test Facility. The principal features of the Consolidated Fuel Reprocessing Program and of the BRET facility are appropriate for all reactor types

  8. Fuel reprocessing and environmental problem

    International Nuclear Information System (INIS)

    Ichikawa, Ryushi

    1977-01-01

    The radioactive nuclides which are released from the reprocessing plants of nuclear fuel are 137 Cs, 106 Ru, 95 Zr and 3 H in waste water and 85 Kr in the atmosphere. This release affects the environment for example, the reprocessing plant of the Nuclear Fuel Service Co in the USA releases about 2 x 10 5 Ci/y of 85 Kr, which is evaluated as about 0.025 mr/y as external exposure dose. The radioactivity in milk around this plant was measured as less than 10 pCi/lit of 129sup(I. The radioactive concentration in the sea, especially in fish and shellfish, was measured near the reprocessing plant of Windscale in UK. The radioactive release rate from this plants more than 10)5sup( Ci/y as the total amount of )137sup(Cs, )3sup(H, )106sup(Ru, )95sup(Zr, )95sup(Nb, )90sup(Sr, )144sup(Ce, etc., and the radioactivity in seaweeds near Windscale is about 400 pCi/g as the maximum value, and the mayonnaise which was made of this seaweeds contained about 1 pCi/g of )106sup(Ru, which is estimated as about 7 mr/y for the digestive organ if 100 g is eaten every day. On the other hand, the experimental result is presented for the reprocessing plant of La Hague in France, in which the radioactive release rate from this plant is about 10)4sup( Ci/y, and the radioactivity in sea water and shellfish is about 4 pCi/l of )106sup(Ru and about 400 pCi/kg of )137 Cs, respectively, near this plant. The philosophy of ALAP (as low as practicable) is also applied to reprocessing plants. (Nakai, Y.)

  9. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  10. Spent solvent treatment process at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Akihiro; Saka, Munenori; Araya, Toshiyuki; Kitamura, Tomohiro; Wakamatsu, Toshiyuki

    2005-01-01

    In order to dispose of spent organic solvent and diluent produced by the PUREX method, it is desirable that it should be in stable form for easy handling. For this reason, spent solvent is reduced to powder form and further molded so that it becomes easier to handle for temporary storage at Rokkasho Reprocessing Plant (RRP). In this paper, the treatment unit for reducing spent solvent to powder form and the treatment unit for modeling the powder are introduced as well as their treatment results during Chemical Test. (author)

  11. Government on the spot over Sellafield's reprocessing plant

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The 18-year gestation of British Nuclear Fuels' Thermal Oxide Reprocessing Plant (THORP) is almost at an end. Only one hurdle seemingly remains - the authorisation to dispose of its wastes. Opponents see this as the last chance to scrap what they regard as an environmental and financial white elephant. BNF's original rationale for THORP has grown increasingly threadbare since it was proposed in the mid-1970s - and the Government may now be forced into a last-minute rethink of the consequences of allowing it to be commissioned. (Author)

  12. Technical Review of Operator's Destructive Analyses at the Rokkasho Reprocessing Plant: Strengthening the Transparency of the Operator's Measurement System

    International Nuclear Information System (INIS)

    Sato, N.; Katchi, T.; Niitsu, Y.; Duhamel, G.; Decaillon, J.-G.; Toervenyi, A.; Sayama, H.; Hara, S.

    2015-01-01

    The Rokkasho Reprocessing Plant is a large-scale nuclear facility in Japan. For the purposes of process control, product management and nuclear material accountancy for safeguards purposes, the laboratory of the facility operator analyzes thousands of samples from various process streams and with a multitude of matrices. Transparency of operational procedures, quality control measures and sample analytical results among the facility operator and state and international safeguards authorities are required to assess the facility operator's measurement system, and thus to assure a credible safeguards approach. The facility operator, Japan Nuclear Fuel, Limited (JNFL), is engaged in continuous improvement of its nuclear material analyzes. For the declarations to the inspectorates, it is important that JNFL and the safeguards authorities be able to confirm that the analytical methods used by JNFL are reliable and meet the latest version of the International Target Values. Since 2012 JNFL, the IAEA and the SSAC have carried out several technical reviews of the destructive analysis (DA) processes as a means of strengthening the transparency of the DA measurement systems. The goal of the DA technical reviews is to (1) assess past commitments of the JNFL plan for analytical improvement, (2) review the JNFL Quality System by means of documentation reviews and in-field demonstrations, and (3) review the analytical performance of the JNFL lab through its own results or from inter-laboratory comparison exercises. Throughout this process, subject-matter experts from all organizations met with JNFL laboratory staff and discussed analytical concerns and solutions. The outcome of these technical reviews was a series of recommendations to JNFL for strengthening its plan for continuous improvement. This paper presents the methodology of the DA technical reviews, the communication scheme and some examples of the outcome for JNFL to improve its DA methods and analytical

  13. The Safeguards analysis applied to the RRP. Automatic sampling authentication system

    International Nuclear Information System (INIS)

    Ono, Sawako; Nakashima, Shinichi; Iwamoto, Tomonori

    2004-01-01

    The sampling for analysis from vessels and columns at the Rokkasho Reprocessing Plant (RRP) is performed mostly by the automatic sampling system. The safeguards sample for the verification also will be taken using these sampling systems and transfer to the OSL though the pneumatic transfer network owned and controlled by operator. In order to maintaining sample integrity and continuity of knowledge (CoK) for throughout the sample processing. It is essential to develop and establish the authentication measures for the automatic sampling system including transfer network. We have developed the Automatic Sampling Authentication System (ASAS) under consultation by IAEA. This paper describes structure, function and concept of ASAS. (author)

  14. Filtering with the Centered Moving Median to Effectively Monitor Solution Processes for Safeguard Purposes

    Energy Technology Data Exchange (ETDEWEB)

    Richir, Patrice; Dzbikowicz, Zdzislaw [Institute for Transuranium Elements (ITU), Joint Research Centre (JRC), European Commission, Ispra, Varese (Italy)

    2012-06-15

    Reprocessing plants require continuous and integrated safeguards activities by inspectors of the IAEA and Euratom because of their proliferation-sensitivity as complex facilities handling large quantities of direct use nuclear material. In support of both organizations, the JRC has developed a solution monitoring software package (DAI, Data Analysis and Interpretation) which has been implemented in the main commercial European reprocessing plants and which allows enhanced monitoring of nuclear materials in the processed solutions. This tool treats data acquired from different sensor types (e.g. from pressure transducers monitoring the solution levels in tanks). Collected signals are often noisy because of the instrumentation itself and/or because of ambient and operational conditions (e.g. pumps, ventilation systems or electromagnetic interferences) and therefore require filtering. Filtering means reduction of information and has to be applied correctly to avoid misinterpretation of the process steps. This paper describes the study of some filters one of which is the centered moving median which has been revealed as a powerful tool for solution monitoring.

  15. Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F [ORNL; Birdwell Jr, Joseph F [ORNL; DePaoli, David W [ORNL; Gauld, Ian C [ORNL

    2009-10-01

    A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

  16. A study on graded approach for risk assessment of the Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Shoji, Tatsuro; Kohata, Yuuji; Takebe, Kazumi; Tamauchi, Yoshikazu; Hayashi, Kazuya; Kurosu, Katsuya

    2005-01-01

    In a reprocessing plant, radioactive materials exist in several chemical processes and storage facilities, therefore we should evaluate risks of many events with various types, scenarios, frequencies and consequences in order to assess total risk of the plant. In order to assess risks of many events efficiently and effectively, the 'Graded Approach' should be applied to the assessment method taking account of importance of the consequence, complexity of scenarios and necessitated uncertainty. Therefore, we have developed a simplified quantitative method, so-called the 'improved risk index method', based on the 'risk index method' recommended by US NRC as qualitative risk evaluation method for 'Integrated safety analysis (ISA)' of fuel cycle facilities, to enhance quantitability, consistency and traceability in evaluation. The results of the 'improved risk index method' well agree with the detailed PSA in spite of the simplification. We will use this method in combination with the detailed PSA method, and will use the results for risk-informed management/regulation of the Rokkasho reprocessing plant. (author)

  17. Nuclear safeguards

    International Nuclear Information System (INIS)

    Estrampres, J.

    2010-01-01

    Close cooperation with the Ministry of Industry with representation from the UNESA Safeguards Group, has meant that, after almost two years of intense meetings and negotiations, Spain has a specific plant to plant agreement for the application of Safeguards under this new method. This is an agreement which aims to be a benchmark for all other EU countries, as the IAEA tends to apply a generic agreement that, in many cases, majority interferes in the nuclear power plants own processes. (Author).

  18. Krypton separation from waste gas of a reprocessing plant by low temperature rectification

    International Nuclear Information System (INIS)

    1987-01-01

    6 lectures at this seminar describe and evaluate the results of the research and development work on low temperature krypton separation from the waste gas of the reprocessing of nuclear fuels. They are used for making decisions for the process to be used in the future on a large scale at the Wackersdorf reprocessing plant. 2 further lectures deal with alternatives to this process, which were also developed: the freon washing and low temperature adsorption of krypton. All the lectures were included separately in the INIS and ENERGY databases. (RB) [de

  19. Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Mark Schanfein; Philip Casey Durst

    2012-07-01

    The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

  20. Structure of safeguards systems

    International Nuclear Information System (INIS)

    Shipley, J.P.

    1978-06-01

    An effective safeguards system for domestic nuclear fuel cycle facilities consists of several important subsystems that must coordinate their functions with plant management and process control. The safeguards system must not unnecessarily disrupt plant operations, compromise safety requirements, or infringe on employee working conditions. This report describes concepts, which have been developed with the cooperation of the nuclear industry and the safeguards community, for achieving these objectives

  1. Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades

    International Nuclear Information System (INIS)

    Edmunds, T.; Saleh, R.; Zevanove, S.

    1992-02-01

    As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility's planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S ampersand S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS

  2. THORP and the economics of reprocessing

    International Nuclear Information System (INIS)

    Berkhout, F.; Walker, W.

    1990-11-01

    This Report compares the costs of reprocessing spent fuels at the new THORP reprocessing plant at Sellafield with the alternative of storing them prior to final disposal. It finds that even when the cost of constructing THORP is treated as a sunk cost, reprocessing has no decisive economic advantage over spent fuel storage. Electric utilities in Western Europe and Japan have already largely paid for the construction of the new British and French reprocessing plants. Today, their economic judgements therefore depend on the future costs of operating and eventually decommissioning the plants, and of dealing with the resulting wastes and separated products. The costs attached to reprocessing have risen mainly due to the higher estimated costs of waste management and decommissioning, and to the costs of coping with unwanted plutonium. Most of these costs are passed directly on to utilities and thus electricity consumers under the terms of cost-plus contracts. Using cost estimates favourable to the reprocessing option, the total future undiscounted liabilities arising from the first ten years of THORP reprocessing come to Pound 2.4-3.7 billion at today's prices. This compares with the more predictable although still burdensome fuel storage, conditioning and disposal costs of Pound 3.0-3.8 billion. If disposal is not anticipated, the economic advantage shifts decisively in favour of spent fuel storage: Pound 0.9-1.3 billion against Pound 1.4-2.4 billion for reprocessing. (author)

  3. Capital and operating costs of irradiated natural uranium reprocessing plants

    International Nuclear Information System (INIS)

    Thiriet, L.; Jouannaud, C.; Couture, J.; Duboz, J.

    1966-01-01

    This paper presents first a method of analysing natural uranium reprocessing plants investment costs (method similar to LANG and BACH well known in the fuel oil industry) and their operating costs (analysed according to their economic type). This method helps establishing standard cost structures for these plants, allowing thus comparisons between existing or planned industrial facilities. It also helps evaluating the foreseeable consequences of technical progress. Some results obtained are given, concerning: the investment costs sensitivity to the various technical parameters defining the fuel and their comparison according to the country or the economic area taken into account. Finally, the influence of the plants size on their investment costs is shown. (author) [fr

  4. RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS

    International Nuclear Information System (INIS)

    JOE, J.

    2007-01-01

    Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders

  5. Advanced safeguards systems development for chemical processing plants. Final report for Fiscal Year 1979

    International Nuclear Information System (INIS)

    Johnson, C.E.

    1980-01-01

    A computer system is being installed by INEL to test and evaluate safeguards monitoring concepts in an operating nuclear fuel processing plant. Safeguards development sensors and instruments installed in the ICPP provide plant information to a computer data acquisition and analysis system. Objective of the system is to collect data from process and safeguards sensors and show how this data can be analyzed to detect diversion operations or improper plant operation, and to test the performance of the monitoring devices. Approximately one-third of the installation designs and one-eighth of the installations were completed in FY 1979. The ICPP processing schedule for FY 1980 permits installation of the remaining monitoring devices before process startup in the fourth quarter of FY 1980. All computer hardware was delivered and checked out in FY 1979. Computer software system designs were completed with the majority of the programming scheduled for FY 1980. Sensor and instrument development in FY 1979 emphasized device testing for ICPP monitoring applications

  6. Development of enrichment and reprocessing technologies in Japan

    International Nuclear Information System (INIS)

    Amanuma, Tsuyoshi

    1978-01-01

    The present status of the development of fuel cycle technologies for LWR systems in Japan is reviewed. As for the uranium enrichment technology, recent development of the centrifuge method is briefly explained. The construction schedule of the pilot plant at Ningyo-Toge is also shown. The completion of the plant is expected in 1980, and 7000 machines will be in full operation. Other methods such as gaseous diffusion, chemical separation, and laser method are shortly described. Comparisons among these different methods are also made in various economical aspects. As for the reprocessing technologies, those concerning with environmental problems, nuclear non-proliferation, and safeguard measures are explained. Recovery of krypton and xenon, method of co-process, and co-operative research and development with IAEA are the main topics here. Finally, the technological development in the field of high-level radioactive waste disposal is explained. The construction schedule of an experimental facility (CPF), development of solidification techniques, and the methods of final disposal are the main topics treated here. (Aoki, K.)

  7. Zirconium-made equipment for the new La Hague reprocessing plants

    International Nuclear Information System (INIS)

    Decours, J.; Demay, R.; Bernard, C.; Mouroux, J.P.; Simonnet, J.

    1991-01-01

    The use of zirconium was developed to solve some problems of severe corrosion in boiling nitric medium, and to guarantee the service life of the equipment concerned. The paper presents the experience gained since the early 1970s, when the first units made of zirconium were used in French reprocessing plants. For the new La Hague UP3 and UP2 800 plants, it was decided to extend the use of zirconium to make large-scale equipment and, to do so, a major R and D program was implemented, of which the main results are presented

  8. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  9. Implementation of integrated safeguards at Nuclear Fuel Plant Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, Vasilica; Ivana, Tiberiu; Epure, Gheorghe

    2010-01-01

    The nuclear activity in ROMANIA was for many years under Traditional Safeguards (TS) and has developed in good conditions this type of nuclear safeguards. Now, the opportunity exists to improve the performance and quality of the safeguards activity and increase the accountancy and control of nuclear material by passing to Integrated Safeguards (IS). The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional to the Agreement between the Socialist Republic of Romania Government and IAEA related to safeguards as part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol content published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between Nuclear Fuel Plant (NFP) representatives and IAEA inspectors was in June 2005. In Feb. 2007 an IAEA mission visited NFP and established the main steps for implementing the IS. There were visited the storages, technological flow, and was reviewed the disposal times for different nuclear materials, the applied chemical analysis, measuring methods, weighting method and elaborating procedure of the documents and lists. At that time the IAEA and NFP representatives established the main points for starting the IS at NFP: performing the Short Notice Random Inspections (SNRI); communication of the days established for SNRI for each year; communication of the estimated deliveries and shipments for first quarter and then for the rest of the year: daily mail box declaration (DD) with respect to the deposit time for several nuclear materials i.e. advance notification (AN) for each nuclear material transfer (shipments and receipts), others. At 01 June 2007 Romania has passed officially to Integrated Safeguards and NFP (WRMD) has taken all measures to implement this objective. (authors)

  10. Monitoring of released radioactive gaseous and liquid effluent at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Oka, M.; Keta, S.; Nagai, S.; Kano, M.; Ishihara, N.; Moriyama, T.; Ogaki, K.; Noda, K.

    2009-01-01

    Rokkasho Reprocessing Plant (RRP) Rokkasho Reprocessing Plant started its active tests with spent fuel at the end of March 2006. When spent fuels are sheared and dissolved, radioactive gaseous effluent and radioactive liquid effluent such as krypton-85, tritium, etc. are released into the environment. In order to limit the public dose as low as reasonably achievable in an efficient way, RRP removes radioactive material by evaporation, rinsing, filtering, etc., and then releases it through the main stack and the sea discharge pipeline that allow to make dispersion and dilution very efficiently. Also, concerning the radioactive gaseous and liquid effluent to be released into the environment, the target values of annual release have been defined in the Safety Rule based on the estimated annual release evaluated at the safety review of RRP. By monitoring the radioactive material in gaseous exhaust and liquid effluent RRP controls it not to exceed the target values. RRP reprocessed 430 tUpr of spent fuel during Active Test (March 2006 to October 2008). In this report, we report about: The outline of gaseous and liquid effluent monitoring. The amount of radioactive gaseous and liquid effluent during the active test. The performance of removal of radioactive materials in gaseous and liquid effluents. The impact on the public from radioactive effluents during the active test. (author)

  11. Reprocessing business in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, W L

    1985-01-01

    The development of the process for separating uranium, plutonium and fission products from irradiated fuel began in Britain in late 1940s, and the first separation plant was operated at Sellafield in 1952. This plant was operated very well for more than 12 years with the overall availability over 95%. The second separation plant to meet the needs of the growing nuclear power program became operational in 1964. This plant has been extremely successful, but the significant improvement was made to extend the operating life of the key items. In mid 1970s, by the introduction of uranium oxide fuel reactors, significant reprocessing capacity became to be required. Therefore, it was decided to embark upon the development of a thermal oxide reprocessing plant (THORP) to complement the existing facilities at Sellafield. The THORP is a very large complex of plants. The first duty for the THORP is to reprocess 6,000 t U of oxide fuel in 10 years. But the plant is designed for the life of 25 years. The plant has the capacity of 1200 tes/year. The scope covered by the THORP, the plant processes and the wastes produced from the THORP are described. (Kako, I.).

  12. UF/sub 6/ test loop for evaluation and implementation of international enrichment plant safeguards

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W. Jr.

    1987-01-01

    A functional test loop capable of simulating UF/sub 6/ flows, pressures, and pipe deposits characteristic of gas centrifuge enrichment plant piping has been designed and fabricated by the Enrichment Safeguards Program of Martin Marietta Energy Systems, Inc., for use by the International Atomic Energy Agency (IAEA) at its Safeguards Analytical Laboratory in Seibersdorf, Austria. The purpose of the test loop is twofold: (1) to enable the IAEA to evaluate and to calibrate enrichment safeguards measurement instrumentation to be used in limited frequency-unannounced access (LFUA) inspection strategy measurements at gas centrifuge enrichment plants and (2) to train IAEA inspectors in the use of such instrumentation. The test loop incorporates actual sections of cascade header pipes from the centrifuge enrichment plants subject to IAEA inspections. The test loop is described, applications for its use by the IAEA are detailed, and results from an initial demonstration session using the test loop are summarized. By giving the IAEA the in-house capability to evaluate LFUA inspection strategy approaches, to develop inspection procedures, to calibrate instrumentation, and to train inspectors, the UF/sub 6/ cascade header pipe test loop will contribute to the IAEA's success in implementing LFUA strategy inspections at gas centrifuge enrichment facilities subject to international safeguards inspections

  13. Corrosion control in nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Steele, D.F.

    1986-01-01

    This article looks in detail at tribology-related hazards of corrosion in irradiated fuel reprocessing plants and tries to identify and minimize problems which could contribute to disaster. First, the corrosion process is explained. Then the corrosion aspects at each of four stages in reprocessing are examined, with particular reference to oxide fuel reprocessing. The four stages are fuel receipt and storage, fuel breakdown and dissolution, solvent extraction and product concentration and waste management. Results from laboratory and plant corrosion trails are used at the plant design stage to prevent corrosion problems arising. Operational procedures which minimize corrosion if it cannot be prevented at the design stage, are used. (UK)

  14. Advanced-safeguards systems development for chemical-processing plants. Final report for FY 1980

    International Nuclear Information System (INIS)

    Cartan, F.O.

    1981-04-01

    The program is installing a computer system to test and evaluate process monitoring as a new Safeguards function to supplement the usual physical security and accountability functions. Safeguards development sensors and instruments installed in the Idaho Chemical Processing Plant (ICPP) provide information via a data acquisition system to a Safeguards analysis computer. The monitoring function can significantly enhance current material control (accountability) and containment surveillance capabilities for domestic and international Safeguards uses. Installation of sensors and instruments in the ICPP was more than 75% complete in FY-1980. Installation work was halted at the request of ICPP operations near the end of the year to eliminate possible conflict with instrument calibrations prior to plant startup. Some improvements to the computer hardware were made during FY-1980. Sensor and instrument development during FY-1980 emphasized device testing for ICPP monitoring applications. Pressure transducers, pressure switches, a bubble flowmeter, and load cells were tested; an ultrasonic liquid-in-line sensor was developed and tested. Work on the portable, isotope-ratio mass spectrometer led to the comparison of the HP quadrupole instrument with a small magnetic instrument and to the selection of the quadrupole

  15. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    International Nuclear Information System (INIS)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V.

    1997-01-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs

  16. Removal efficiency of silver impregnated filter materials and performance of iodie filters in the off-gas of the Karlsruhe reprocessing plant WAK

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, F.J.; Herrmann, B.; Hoeflich, V. [Wiederaufarbeitungsanlage Karlsruhe (Germany)] [and others

    1997-08-01

    An almost quantitative retention of iodine is required in reprocessing plants. For the iodine removal in the off-gas streams of a reprocessing plant various sorption materials had been tested under realistic conditions in the Karlsruhe reprocessing plant WAK in cooperation with the Karlsruhe research center FZK. The laboratory results achieved with different iodine sorption materials justified long time performance tests in the WAK Plant. Technical iodine filters and sorption materials for measurements of iodine had been tested from 1972 through 1992. This paper gives an overview over the most important results, Extended laboratory, pilot plant, hot cell and plant experiences have been performed concerning the behavior and the distribution of iodine-129 in chemical processing plants. In a conventional reprocessing plant for power reactor fuel, the bulk of iodine-129 and iodine-127 is evolved into the dissolver off-gas. The remainder is dispersed over many aqueous, organic and gaseous process and waste streams of the plant. Iodine filters with silver nitrate impregnated silica were installed in the dissolver off-gas of the Karlsruhe reprocessing plant WAK in 1975 and in two vessel vent systems in 1988. The aim of the Karlsruhe iodine research program was an almost quantitative evolution of the iodine during the dissolution process to remove as much iodine with the solid bed filters as possible. After shut down of the WAK plant in December 1990 the removal efficiency of the iodine filters at low iodine concentrations had been investigated during the following years. 12 refs., 2 figs., 2 tabs.

  17. Development and demonstration of near-real-time accounting systems for reprocessing plants

    International Nuclear Information System (INIS)

    Cobb, D.D.; Hakkila, E.A.; Dayem, H.A.; Shipley, J.P.; Baker, A.L.

    1981-01-01

    A program to develop and demonstrate near-real-time accounting systems for reprocessing plants has been active at Los Alamos since 1976. The technology has been developed through modeling and simulation of process operation and measurement systems and evaluation of these data using decision analysis techniques. Aspects of near-real-time systems have been demonstrated successfully at the AGNS reprocessng plant as part of a joint study of near-real-time accounting

  18. Spent fuel reprocessing system availability definition by process simulation

    International Nuclear Information System (INIS)

    Holder, N.; Haldy, B.B.; Jonzen, M.

    1978-05-01

    To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported

  19. Remote handling developments for inspection and repair of highly active reprocessing plant

    International Nuclear Information System (INIS)

    Jones, E.L.

    1988-01-01

    Having the capability to carry out regular and comprehensive inspection of active plant can have benefits beyond the need to satisfy the possible requirements of National Regulatory Authorities. Intermediate inspection can provide qualitative data on the state of the plant, whilst regular inspection can provide quantitative data on which to base predictive judgments. Information of this sort can allow confidence in predicting the actual life of the plant as opposed to the theoretical. The following paper addresses the areas of plant inspection and repair by reference to specific projects either already completed or at an advanced stage of development at BNFL's Sellafield reprocessing plant. (author)

  20. Fast-reactor fuel reprocessing in the United Kingdom

    International Nuclear Information System (INIS)

    Allardice, R.H.; Buck, C.; Williams, J.

    1977-01-01

    Enriched uranium metal fuel irradiated in the Dounreay Fast Reactor has been reprocessed and refabricated in plants specifically designed for the purpose in the United Kingdom since 1961. Efficient and reliable fuel recycle is essential to the development of a plutonium-based fast-reactor system, and the importance of establishing at an early stage fast-reactor fuel reprocessing has been reinforced by current world difficulties in reprocessing high-burnup thermal-reactor oxide fuel. The United Kingdom therefore decided to reprocess irradiated fuel from the 250MW(e) Prototype Fast Reactor (PFR) as an integral part of the fast reactor development programme. Flowsheet and equipment development work for the small-scale fully active demonstration plant has been carried out since 1972, and the plant will be commissioned and ready for active operation during 1977. In parallel, a comprehensive waste-management system has been developed and installed. Based on this development work and the information which will arise from active operation of the plant, a parallel development programme has been initiated to provide the basis for the design of a large-scale fast-reactor fuel-reprocessing plant to come into operation in the late 1980s to support the projected UK fast-reactor installation programme. The paper identifies the important differences between fast-reactor and thermal-reactor fuel-reprocessing technologies and describes some of the development work carried out in these areas for the small-scale PFR fuel-reprocessing operation. In addition, the development programme in aid of the design of a larger scale fast-reactor fuel-reprocessing plant is outlined and the current design philosophy discussed. (author)

  1. Results of technical and economical examinations for substantiation of special plant design for reprocessing and radioactive wastes disposal

    International Nuclear Information System (INIS)

    Galkin, A.V.; Baldov, A.N.

    2001-01-01

    In the paper the results of technical and economical examinations for substantiation of special plant design for reprocessing and radioactive wastes disposal are presented. Ground for the examination conducting was Health of Nation Programme ratified by the President and a number of Governmental decisions. The special plant is planned in the Mangystau Region. In the framework of feasibility study the data base by the worldwide known technologies was implemented, on reprocessing and experience of radioactive waste disposal. The technical requirements for the special plant construction are determined. The alternative options by structure content and site location of the special plant and radioactive waste disposal are cited

  2. The treatment of liquid effluents of reprocessing plants by a chemical process: French experience

    International Nuclear Information System (INIS)

    Fernandez, N.; Taillard, D.

    1977-01-01

    The goal of radioactive effluent processing is to obtain a liquid with a residual activity level allowing disposal and a minimum amount of slurries. Insolubilization methods used in France are described to eliminate fission products in reprocessing plants effluents i.e. strontium, cesium, ruthenium and antimony; others radioelements are generally carried away with others precipitates. Evolution of the process is expressed in terms of reprocessing needs and improvements. Decontamination factors better than 100 are now possible with concentration factors between 30 and 50 [fr

  3. Development of remote maintenance technology for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Kawahara, Akira; Saito, Masayuki; Kawamura, Hironobu; Yamade, Atsushi; Sugiyama, Sen; Sugiyama, Sakae.

    1986-01-01

    In the plants for reprocessing spent nuclear fuel containing fission products, due to the facts that the facilities are in high radiations fields, and the surfaces of equipments are contaminated with radioactive substances, the troubles of process equipments are directly connected to the remarkable drop of the rate of operation of the facilities. Therefore, the development of various remote maintenance techniques has been carried out so far, but this time, Hitachi Ltd. got a chance to take part in the repair of spent fuel dissolving tanks in the Tokai Reprocessing Plant of Power Reactor and Nuclear Fuel Development Corp. and the development of several kinds of remote checkup equipment related to the repair work. Especially in the repair of the dissolving tanks, a radiation-withstanding checkup and repair apparatus which has high remote operability taking the conditions of radioactive environment and the restriction of the repaired objects in consideration was required, and a dissolving tank repairing robot composed of six kinds has been developed. The key points of the development were the selective use of high radiation-withstanding parts and materials, small size structure and the realization of full remote operability. The full remote maintenance apparatus of this kind is unique in the world, and applicable to wide fields. (Kako, I.)

  4. Implications for Advanced Safeguards Derived from PR and PP Case Study Results

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Brian D. [Los Alamos National Laboratory, Nuclear Nonproliferation Division, N-4, Safeguards and Security Group, P. O. Box 1663, N-4, Mail Stop E541, Los Alamos, New Mexico 87545 (United States)

    2009-06-15

    The proliferation resistance and physical protection (PR and PP) working group produced a case study on the Example Sodium Fast Reactor (ESFR). The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry fuel storage facility and a spent fuel reprocessing facility using pyro-processing technology. This study revealed how safeguards would be applied at such site consisting of integrated multiple fuel cycle facilities and the implications of what safeguards technology and safeguards concepts would need to be adapted and developed to safeguard successfully this Generation IV nuclear energy system concept. The major safeguards concepts driving our safeguards analysis are timeliness goals and material quantity goals. Because the fresh transuranic (TRU) fuel to be produced in the ESFR fuel fabrication facility contains plutonium, the ESFR will be reprocessing, using in the reactor, and storing material on site that will have IAEA defined 'direct use material' in it with stringent timeliness goals and material quantity goals that drive the safeguards implementation. Specifically, the TRU fresh fuel, pyro-processing in process material, LWR spent fuel sent to the ESFR, and TRU spent fuel will contain plutonium. This material will need to be verified at interim intervals four times per year because the irradiated direct use material, as defined previously, has three-month timeliness goals and 8 kg material quantity goals for plutonium. The TRU in-process material is, of course, irradiated direct-use material because of keeping the plutonium and uranium together with TRU products that should provide a radiation barrier that slows down the ability to reprocess the fuel and by the process if it intrinsically will take major modification to be able to separate plutonium from the uranium and TRU mixture. This is an issue that the ESFR design must answer to state it has valuable

  5. Experience of in-cell visual inspection using CCD camera in hot cell of Reprocessing Plant

    International Nuclear Information System (INIS)

    Reddy, Padi Srinivas; Amudhu Ramesh Kumar, R.; Geo Mathews, M.; Ravisankar, A.

    2013-01-01

    This paper describes the selection, customization and operating experience of the visual inspection system for the hot cell of a Reprocessing Plant. For process equipment such as fuel chopping machine, dissolver, centrifuge, centrifugal extractors etc., viewing of operations and maintenance using manipulators is required. For this, the service of in-cell camera is essential. The ambience of the hot cell of Compact facility for Reprocessing of Advanced fuels in Lead cell (CORAL) for the reprocessing of fast reactor spent fuel has high gamma radiation and acidic vapors. Black and white Charge Coupled Device (CCD) camera has been used in CORAL incorporating in-house modifications to suit the operating ambient conditions, thereby extending the operating life of the camera. (author)

  6. Extraction process technology for the new reprocessing plants in France and Japan

    International Nuclear Information System (INIS)

    Boullis, B.; Drain, F.; Hugelman, D.

    1991-01-01

    The new reprocessing plants UP3 and UP2-800 in France and Rokkasho in Japan use or will use an improved technology for their extraction cycles. The equipment selected are pulse columns (cylindrical and annular) and mixer-settlers (normal type and extra-flat type). This paper presents the equipment selected for each plant and the extensive R and D performed especially for pulsed columns by CEA and also the results of first active runs in UP3

  7. Safeguard management for operation security in nuclear power plants (NPPs)

    International Nuclear Information System (INIS)

    Woo, Tae-Ho; Lee, Un-Chul

    2011-01-01

    Safeguard modeling is conducted for the successful operations in the nuclear power plants (NPPs). The characteristics of the secure operation in NPPs are investigated using the network effect method which is quantified by the Monte-Carlo algorithm. Fundamentally, it is impossible to predict the exact time of a terror incident. So, the random sampling for the event frequency is a reasonable method, including the characteristics of network effect method such as the zero-sum quantification. The performance of operation with safeguard is the major concern of this study. There are three kinds of considerations as the neutronics, thermo-hydraulics, and safeguard properties which are organized as an aspect of safeguard considerations. The result, therefore, can give the stability of the operations when the power is decided. The maximum value of secure operation is 12.0 in the third month and the minimum value is 1.0 in the 18th and 54th months, in a 10 years period. Thus, the stability of the secure power operation increases 12 times higher than the lowest value according to this study. This means that the secure operation is changeable in the designed NPPs and the dynamical situation of the secure operation can be shown to the operator.

  8. Simulations of Atmospheric Krypton-85 to Assess the Detectability of Clandestine Nuclear Reprocessing

    International Nuclear Information System (INIS)

    Ross, O.; Ahlswede, J.; Annewandter, R.; Kalinowski, M.B.; Rast, S.; Schluenzen, K.H.

    2010-01-01

    The results of this study were achieved in the project 'Simulation of Atmospheric Noble Gas Concentrations to Assess Sampling Procedures for the Detection of Clandestine Nuclear Reprocessing' (IAEA GER 1643) in the joint programme of IAEA and Federal Government of Germany. In the first year of the project the detectability of additional krypton-85 sources was investigated using atmospheric transport modelling. Krypton-85 is released into the air during reprocessing of spent nuclear fuel rods. Therefore the krypton-85 signature can possibly be used for the detection of undeclared plutonium separation. First, the global krypton-85 background produced by known reprocessing facilities from 1971 until 2006 was simulated with the atmospheric general circulation model ECHAM5 using annual emission data. The model results were evaluated by extensive comparison with measurements performed by the German Federal Office for Radiation Protection. Of particular interest for an assessment of the detectability of unknown sources is the background variability. The variability of concentrations is very high over central Europe, where the large reprocessing plants La Hague and Sellafield are located, and it is very low on the Southern Hemisphere, where no nuclear reprocessing takes place. The analysis of concentration time series on various time scales allows partly a distinction between fluctuations caused by the variability of the sources from variations due to atmospheric dynamics. Furthermore the detection sensitivity to a set of arbitrarily specified source locations is analysed with a Lagrangian particle dispersion model. This, in combination with the location specific background variability, is giving first benchmarks on the capability of using krypton-85 for IAEA Safeguards based on the Additional Protocols foreseeing environmental sampling. (author)

  9. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    International Nuclear Information System (INIS)

    Persiani, P.J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs

  10. Solvent distillations studies for a reprocessing plant

    International Nuclear Information System (INIS)

    Ginisty, C.; Guillaume, B.

    1989-01-01

    The substantial amounts of solvent used in large reprocessing plants are such that considerable care must be paid to solvent management to limit the production of organic wastes. The installation of intensive treatment by chemical regeneration serves to increase the service life of the solvent. General solvent management, combined with a distillation unit under reduced pressure also helps to recycle the two components of the solvent at a low activity level. Distillation also serves to remove the heavy degradation products that are generally responsible for poor hydraulic behavior and for the holdup of radioactive products such as plutonium, zirconium and ruthenium. From the safety standpoint, the flashpoint of the distilled diluent tends to rise. It can therefore be recycled without risk

  11. Experience and projects concerning treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Fukuda, G.; Matsumoto, K.; Miyahara, K.

    1984-01-01

    The active operation of Tokai reprocessing plant started in September 1977, and about 170 t U of spent fuel were reprocessed between then and December 1982. During this period, the low-level waste processing plant reduced the amount of radioactivity discharged into the environment. For radioactive liquid waste, the treatment procedures consist mainly of evaporation to keep the discharge into the sea at a low level. For combustible low-level solid waste and the solvent waste, which is of low tributyl phosphate content, incineration has been used successfully (burned: about 150 t of combined LLSW, about 50 m 3 of solvent waste, i.e. diluent waste). Most of the past R and D work was devoted to reducing the activity discharged into the environment. Current R and D work is concerned with the treatment of solvent waste, the conditioning of solid wastes, the bituminization of low-level liquid waste and the vitrification of high-level liquid waste. The paper describes present practices, R and D work and future aspects of the treatment, conditioning and storage of all radioactive wastes from Tokai reprocessing plant. (author)

  12. Technetium-99 and strontium-90: Abundance determination at ultratrace sensitivity by AMS as signatures of undeclared nuclear reprocessing activity

    International Nuclear Information System (INIS)

    McAninch, J.E.; Proctor, I.D.

    1995-03-01

    The purpose of this White Paper is to examine the use of the ultratrace technique Accelerator Mass Spectrometry (AMS) to lower detection limits for 99 Tc and 90 Sr, and to examine the utility of these isotopes as signatures of a convert reprocessing facility. The International Atomic Energy Agency (IAEA) has committed to improving the effectiveness of the IAEA Safeguards System. This is in some degree a result of the discovery in 1991 of an undeclared Iraqi EMIS program. Recommendations from the March 1993 Consultants Group Meeting have resulted in several studies and follow on field trials to identify environmental signatures from covert nuclear fuel reprocessing activity. In particular, the April, 1993 reports of the Standing Advisory Group on Safeguards Implementation (SAGSI) identified the long-lived radioisotopes Technetium-99 and strontium-90 as two reliable signatures of fuel reprocessing activity. This report also suggested pathways in the chemical processing of irradiated fuel where these elements would be volatilized and potentially released in amounts detectable with ultratrace sensitivity techniques. Based on measured 99 Tc background levels compiled from a variety of sources, it is estimated that AMS can provide 10% measurements of environmental levels of 99 Tc in a few minutes using modestly sized samples: a few grams for soils, plants, or animal tissues; one to several liters for rain or seawater samples; and tens to hundreds of cubic meters for air sampling. Small sample sizes and high sample throughput result in significant increases in feasibility, cost effectiveness, and quality of data for a regional monitoring program. Similar results are expected for 90 Sr

  13. On-Line Monitoring for Process Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plants

    International Nuclear Information System (INIS)

    Bryan, S.; Levitskaia, T.; Casella, A.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has established international safe- guards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and re- source burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using ultra-violet and visible, near infrared and Raman spectroscopy. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid solvent extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion, and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating with the PUREX flowsheet. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of

  14. The safety of the reprocessing plant of Cogema La Hague

    International Nuclear Information System (INIS)

    Ledermann, P.

    1997-01-01

    The risks associated to the operation of a reprocessing plant come from the important quantities of radioactive matter. To insure the reprocessing safety consists in keeping, in any circumstance, the containment of radioactive matter. That this objective that leads the safety at any step of the factory life. Three risks families are listed: the risks from nuclear origin, associated to the specific physico-chemical behaviours of radioactive matter (dispersion and criticality, thermal risks and risks bound to the hydrogen production); the second family is the group of internal risks resulting from the industrial activity (chemical risks, fire risks, dysfunctions of electric installations or falls of loads); the last family is the group of external risks resulting from the impact of events reaching the site where are established the installations (risks associated to climatic conditions, risks associated to surrounding activities such explosions, fires, impact resulting from the fall of a tourism plane or road transport of hazardous matter). (N.C.)

  15. Decontamination and remote dismantling tests in the Itrec reprocessing plant

    International Nuclear Information System (INIS)

    Candelieri, T.; Gerardi, A.; Soffietto, G.

    1993-01-01

    The scope of this research is to evaluate the advantages of the rack removal system in the dismantling of reprocessing installations. The objective of this work is to verify experimentally the possibility of the decontamination of any particular module and the capability of the remote dismantling of components installed in the mobile rack. In particular, the main objective is to develop remotely operated equipment for the dismantling of centrifugal contactors. The decontamination of the equipment which represents the most important preliminary phase of the decommissioning operation, allowed to obtain low-level radioactivity. A supporting programme has been performed in order to collect sufficient data for the project and design of the remote dismantling machine. On the basis of technological cold test results, the project of the dismantling machine's construction has been optimized. Positive results obtained during the hot dismantling operations on the Rack 6 bis attested the effectiveness of the rack removal system as an original design which facilitates decommissioning of reprocessing plants. 2 tabs., 18 figs

  16. Contribution of research and development and engineering to a large reprocessing plant project. Extension of the La Hague plant

    International Nuclear Information System (INIS)

    Boutaud de la Combe, P.; Courouble, J.M.; Sauteron, J.; Redon, A.

    1983-01-01

    Two reprocessing plants are operated by Cogema: Marcoule (since 1958) and La Hague (since 1967). Since 1976 the latter has been reprocessing LWR assemblies in its 'HAO' workshop, operation of which has provided industrial experience in the reprocessing of this type of fuel. This experience will be drawn upon in the construction of extensions to the La Hague plant, namely the UP3 plant, which will have a capacity of 800 t/a, and UP2-800, which will expand the present plant likewise to a capacity of 800 t/a. These extensions will contain a number of improvements, particularly in the areas of safety and waste treatment, and of procedure and equipment. A considerable R and D contribution is provided by the French Atomic Energy Commission (CEA), which is the licence holder, with its laboratories at Fontenay and the pilot workshop and industrial prototypes service at Marcoule. This activity supports all phases of the project, from the establishment of basic principles to the definition of essential characteristics of equipment, covering also the testing of full-scale prototypes (mock-ups) for the principal components: rotating continuous dissolver, swinging decanter, subcritical pulsed columns, used-solvent distilling apparatus, fission-product vitrification furnace, etc. Engineering work for the new facilities is performed by the Societe generale pour les techniques nouvelles in four phases: (1) establishment of basic data; (2) preparation of preliminary plans (including an estimate and a preliminary schedule) and of the preliminary safety reports; (3) drafting of the 'project' file, giving definitive costs and deadlines; (4) implementation, up to and including the operational testing stage. All phases of design and implementation are subject to a quality assurance programme. Extension of the La Hague plant represents an investment of 23,500 million French francs (in July 1981). Construction is expected to be completed in 1989. (author)

  17. Catalogue and classification of technical safety rules for light-water reactors and reprocessing plants

    International Nuclear Information System (INIS)

    Bloser, M.; Fichtner, N.; Neider, R.

    1975-08-01

    This report on the cataloguing and classification of technical rules for land-based light-water reactors and reprocessing plants contains a list of classified rules. The reasons for the classification system used are given and discussed

  18. Study on the abnormal reaction in an evaporator at a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Sugikawa, Susumu; Ohsaki, Hiroshi

    2004-01-01

    The calculation code was constructed in order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions. This report describes the model of the calculation code and the result of the trial calculation. (author)

  19. Improvement of shearing machine in the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Takae, Akiyoshi; Otani, Yoshikuni

    1994-01-01

    The shearing machine in the Tokai Reprocessing Plant has been improved and refurbished through its operational experience for about 20 years. Every component except the shear housing and magazine is changed for improved things by PNC, while the shearing machine had been designed and fabricated originally by a French Company. The improvement of the shearing machine was carried out for the purpose of settling the problems which were experienced in the past operation, and improving durability, remote maintainability, and operability. The details of their improvement work are described. (author)

  20. Advanced Purex process for the new French reprocessing plants

    International Nuclear Information System (INIS)

    Viala, M.; Ledermann, P.; Pradel, P.

    1993-01-01

    The paper describes the main process innovations of the new Cogema reprocessing plants of La Hague (UP3 and UP2 800). Major improvements of process like the use of rotary dissolvers and annular columns, and also entirely new processes like solvent distillation and plutonium oxidizing dissolution, yield an advanced Purex process. The results of these innovations are significant improvements for throughput, end-products purification performances and waste minimization. They contribute also to limit personnel exposure. The main results of the first three years of operation are described. (author). 3 refs., 5 figs

  1. Termination of international safeguards on nuclear material discards: An IAEA update

    International Nuclear Information System (INIS)

    Larrimore, J.A.

    1995-01-01

    The IAEA adopted a policy for termination of international safeguards on measured discards in mid-1994. The policy addresses a broad range of termination of safeguards on nuclear material in waste with a focus on conditioned waste arising from reprocessing. The safeguards relevant aspects of waste handling up to the point of termination must be approved, and a determination made that the waste type, form of conditioning and nuclear material concentration satisfy specific criteria. In addition, the State where the terminated waste will be stored is requested to notify the IAEA of future movement or processing of the waste. Cases of international transfers of conditioned waste are also addressed

  2. Concept of off-gas purification in reprocessing plants

    International Nuclear Information System (INIS)

    Henrich, E.; von Ammon, R.

    1986-01-01

    Concepts and individual processes for the off-gas purification in reprocessing plants are described which are suited to achieve a better retention of the gaseous and volatile radionuclides 129 I, 85 Kr, 14 C, and tritium. Improved and new process steps have been developed to the cold pilot plant scale. Essential individual process steps are an efficient iodine desorption from the dissolver solution, improved and new off-gas scrubs with nitric acid, a cryogenic as well as a selective absorption process for rare gas recovery plus the required prepurification steps and a process for the continuous and pressure-free fixation and storage of krypton in a metal matrix. Individual facilities have been selected and combined to investigate integrated dissolver off-gas systems. Advanced concepts based on a process using low flows and loads of all off-gas streams including the cell ventilation off-gas are briefly discussed

  3. Reprocessing of nuclear fuels - status report

    International Nuclear Information System (INIS)

    Schueller, W.

    1976-01-01

    The paper gives a survey on reprocessing plants at present under construction, in operation, and planned, as well as on the most important process steps such as receipt, storage, conversion, the extraction process, purification of the end products, gaseous waste treatment and waste treatment, and repair and maintenance of reprocessing plants. An outline on operational experience with WAK follows. (HR/LN) [de

  4. Abnormal reactions in a evaporator in a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kida, Takashi; Umeda, Miki; Sugikawa, Susumu

    2003-01-01

    In order to evaluate a self-accelerated reaction in an evaporator in a fuel reprocessing plant due to organic-nitric acid reactions, a development of a calculation code is under way. Mock-up tests were performed to investigate the fluid dynamic behavior of the organic solvent in the evaporator. Based on these results, the model of the calculation code was constructed. This report describes the results of mock-up tests and the model of the calculation code. (author)

  5. Methods for separating actinides from reprocessing and refabrication plant wastes

    International Nuclear Information System (INIS)

    Tedder, D.W.; Finney, B.C.; Blomeke, J.O.

    1979-01-01

    Chemical processing flowsheets have been developed to partition actinides from all actinide-bearing LWR fuel reprocessing and refabrication plant wastes. These wastes include high-activity-level liquids, scrap recovery liquors, HEPA filters and incinerator ashes, and chemical salt wastes such as sodium carbonate scrub solutions, detergent cleanup streams, and alkaline off-gas scrubber liquors. The separations processes that were adopted for this study are based on solvent extraction, cation exchange chromatography, and leaching with Ce 4+ -HNO 3 solution

  6. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant

    International Nuclear Information System (INIS)

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building is divided into three parts - each part is isolated from the others. In the middle of 2008, after the removal of the NDA-IPAN/GEA installation, the eastern part will be demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS approach will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also

  7. Safeguards operations in the integral fast reactor fuel cycle

    International Nuclear Information System (INIS)

    Goff, K.M.; Benedict, R.W.; Brumbach, S.B.; Dickerman, C.E.; Tompot, R.W.

    1994-01-01

    Argonne National Laboratory is currently demonstrating the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety, operation, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The safeguards aspects of the fuel cycle demonstration must be approved by the United States Department of Energy, but a further goal of the program is to develop a safeguards system that could gain acceptance from the Nuclear Regulatory Commission and International Atomic Energy Agency. This fuel cycle is described with emphasis on aspects that differ from aqueous reprocessing and on its improved safeguardability due to decreased attractiveness and diversion potential of all process streams, including the fuel product

  8. Spent fuel reprocessing past experience and future prospects

    International Nuclear Information System (INIS)

    Megy, J.

    1983-09-01

    A large experience has been gathered from the early fifties till now in the field of spent fuel reprocessing. As the main efforts in the world have been made for developping the reactors and the fuel fabrication industry to feed them, the spent fuel reprocessing activities came later and have not yet reached the industrial maturity existing to day for plants such as PWRs. But in the principal nuclear countries spent fuel reprocessing is to day considered as a necessity with two simultaneous targets: 1. Recovering the valuable materials, uranium and plutonium. 2. Conditionning the radioactive wastes to ensure safe definitive storage. The paper reviews the main steps: 1. Reprocessing for thermal reactor fuels: large plants are already operating or in construction, but in parallel a large effort of R and D is still under way for improvements. 2. The development of fast breeder plants implies associated fuel reprocessing facilities: pilot plants have demonstrated the closing of the cycle. The main difficulties encountered will be examined and particularly the importance of taking into account the problems of effluents processing and wastes storage [fr

  9. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  10. DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

    2009-07-01

    A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

  11. French nuclear plant safeguard pump qualification testing: EPEC test loop

    International Nuclear Information System (INIS)

    Guesnon, H.

    1985-01-01

    This paper reviews the specifications to which nuclear power plant safeguard pumps must be qualified, and surveys the qualification methods and program used in France to verify operability of the pump assembly and major pump components. The EPEC test loop is described along with loop capabilities and acheivements up to now. This paper shows, through an example, the Medium Pressure Safety Injection Pump designed for service in 1300 MW nuclear power plants, and the interesting possibilities offered by qualification testing

  12. The thermal oxide reprocessing plant at Sellafield: three years of active operation in the chemical separation plant

    International Nuclear Information System (INIS)

    Philips, C.

    1998-01-01

    The Thermal Oxide Reprocessing Plant at British Nuclear Fuels' Sellafield site started operating in March 1994 with the shearing of its first irradiated fuel. In January 1995 the Chemical Separation part of the plant commenced processing the irradiated fuel feed solution that had been produced in the previous year by the Head End plant. By the Spring of 1998 over 1400 t of irradiated fuel has been reprocessed in Thorp, and the plant is being steadily and successfully ramped up to its normal operating throughput. The performance of the Thorp Chemical Separation Plant has been excellent, with the solvent extraction contactors performing as predicted by the extensive development programme. In particular the uranium-plutonium separation stage, which received intensive development to deal with the effects of the fission product technetium, has given an overall separation performance well in excess of the minimum flowsheet requirement. Decontamination of the uranium and plutonium products from fission products has in general been better than flowsheet requirements and the solvent extraction equipment has operated stably under the automatic controls developed during the R and D programme. Discharges of contaminants to waste streams have generally been in line with, or better than, expectation. This paper compares with flowsheet predictions a range of the key fission product and transuranic decontamination factors achieved in Thorp, shows how waste stream discharges are a small fraction of Sellafield Site discharge limits, demonstrates how uranium - plutonium separation performance has compared with expectation and summarises the overall performance of the Chemical Separation Plant. (author)

  13. Experience and prospects in reprocessing

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1997-01-01

    Reprocessing nuclear fuels is a long and successful industrial story. For decades, commercial reprocessing plants have been operating in France, the United Kingdom and Japan. The industrial outcome is clear and widely recognized: thousand tons of spent fuels have been reprocessed in these plants. Over the years, these facilities have been adapted to new types of fuel. Thus, the nuclear industry has fully demonstrated its ability to cope with technological change and its capacity to adapt itself to improvements. For decades, technical capability has been stressed and emphasized by nuclear industrial leaders as the most important point. This is no longer the case. Today the industry has to face a new commercial reality and to find the most adaptable answer to the utilities' requirements. This paper presents the current achievements and medium and long-term trends of the nuclear reprocessing activity, the ongoing commercial changes and gives an outlook for future evolutions. International political factors will also be examined. (author)

  14. Safeguards and security by design support for the next generation nuclear plant project - Progress in safeguards by design (SBD) by the United States National Nuclear Security Administration (NNSA)

    International Nuclear Information System (INIS)

    Bjornard, T.; Casey Durst, P.

    2013-01-01

    The Next Generation Nuclear Plant (NGNP) project was authorized by the United States Energy Policy Act of 2005 with the principal objective of designing, licensing, and building a Generation IV nuclear plant capable of producing both high-temperature process heat and electricity. The two candidate NGNP reactor concepts are pebble- and prismatic-fueled high-temperature gas reactors that will be licensed by the U.S. Nuclear Regulatory Commission (NRC). The conceptual design phase of the project was completed in December 2010. This paper summarizes support provided to the NGNP project to facilitate consideration of international safeguards during the design phase, or safeguards by design (SBD). Additional support was provided for domestic safeguards (material control and accounting) and physical protection, or safeguards and security by design (2SBD). The main focus of this paper is on SBD and international safeguards. Included is an overview of the international safeguards guidance contained in guidance reports for SBD. These reports contain guidance and suggestions intended to be useful to the industry design teams, but they do not contain ready-made solutions. Early and frequent interaction of design stakeholders with the International Atomic Energy Agency and the NRC are essential to a successful endeavor. The paper is followed by the slides of the presentation. (author)

  15. A JNFL - COGEMA cooperation. Focus on the uranium tests of the Rokkasho mura Reprocessing Plant

    International Nuclear Information System (INIS)

    Griffon, Jean-Paul; Ohtou, Yoshihiro

    2005-01-01

    Description of a new type of cooperation for the start-up of the Rokkasho-mura Reprocessing Plant. After recalling the background of this cooperation the paper describes its main features: training on a sister plant and in RRP facilities, on site assistance backed-up by a dedicated team having full access to the sister plant information from the design stage to actual operations. (author)

  16. Study for Safeguards Challenges to the Most Probably First Indonesian Future Power Plant of the Pebble Bed Modular Reactor

    International Nuclear Information System (INIS)

    Susilowati, E.

    2015-01-01

    In the near future Indonesia, the fourth most populous country, plans to build a small size power plant most probably a Pebble Bed Modular Reactor PBMR. This first nuclear power plant (NPP) is aimed to provide clear picture to the society in regard to performance and safety of nuclear power plant operation. Selection to the PBMR based on several factor including the combination of small size of the reactor and type of fuel allowing the use of passive safety systems, resulting in essential advantages in nuclear plant design and less dependence on plant operators for safety. In the light of safeguards perspective this typical reactor is also quite difference with previous light water reactor (LWR) design. From the fact that there are a small size large number of elements present in the reactor produced without individual serial numbers combine to on-line refueling same as the CANDU reactor, enforcing a new challenge to safeguards approach for this typical reactor. This paper discusses a bunch of safeguards measures have to be prepared by facility operator to support successfully international nuclear material and facility verification including elements of design relevant to safeguards need to be accomplished in consultation to the regulatory body, supplier or designer and the Agency/IAEA such as nuclear material balance area and key measurement point; possible diversion scenarios and safeguards strategy; and design features relevant to the IAEA equipment have to be installed at the reactor facility. It is deemed that result of discussion will alleviate and support the Agency approaching safeguards measure that may be applied to the purpose Indonesian first power plant of PBMR construction and operation. (author)

  17. Safeguards planning in a plant design process

    International Nuclear Information System (INIS)

    Heinrich, L.A.

    1977-01-01

    The safeguards efforts for the partitioning fuel cycle are considered. Included in the discussion are the organization of the safeguards study, the development of safeguards criteria, the expression of these criteria as requirements for facility design, and some preliminary details of the implementation of these requirements in facility and process layout

  18. Management of low level wastes at Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Moriya, N.; Ochi, E.

    2006-01-01

    Full text: At Rokkasho Reprocessing Plant (RRP), after start-up of the commercial operation, radioactive wastes will be generated. Wastes generated from a reprocessing plant generally consist of many kinds of characteristics in view of ''activity level'', ''nuclide composition'', ''chemical properties'', ''physical properties'', and so on. For stable operation of a reprocessing plant, we should t reat , ''condition'' and ''dispose'' these wastes considering these wastes characteristics. To contribute to the nuclear fuel cycle project, it is important to evaluate technologies such as, ''Treatment'', ''Conditioning'' and ''Final Disposal'', not only for technical but also for economical aspects. Considering the final disposal in the future, the basic policy in ''Treatment'' and ''Conditioning'' at RRP is shown below: Recover and reuse chemicals (such as nitric acid and TBP, etc.) in plant; Radioactive waste shall be divided, classified and managed according to activity level, nuclide composition, the radiation level, its physical properties, chemical properties, etc.; Treat them based on ''classification'' management with proper combination; Condition them as intermediate forms in order to keep flexibility in the future disposal method; Original volume of annually generated wastes at RRP is estimated as 5600m3 except highly radioactive vitrified waste, and these wastes shall be treated in the following units, which are now under commisioning, in order to reduce and stabilize wastes. Low-level concentrated liquid waste to be treated with a ''Drying and peptization'' unit; Spent solvent to be treated with a ''Pyrolysis and hydrothermal solidification'' unit; Relatively low-level non-alfa flammable wastes to be treated with a ''Incineration and hydrothermal solidification'' unit; CB/BP (Channel Box and Burnable Poison) to be processed with a ''Cutting'' unit; Other wastes to be kept as their generated state with a ''Intermediate storage''. As a result of these

  19. How to simplify the analytics for input-output accountability measurements in a reprocessing plant

    International Nuclear Information System (INIS)

    Ottmar, H.; Eberle, H.; Matussek, P.; Michel-Piper, I.

    1986-02-01

    An analytical approach to high-performance uranium and plutonium accountancy measurements in reprocessing input and output solutions is presented, which provides larger operational simplicity than the conventionally applied chemical methods. The proposed alternative is based on energy-dispersive absorption edge and fluorescence X-ray spectrometry, using the proven and reliable K-edge densitometry technique as reference method. Two X-ray densitometers developed for accurate and reliable uranium and plutonium analysis in both the feed and product solutions are described. Practical experiences and results from their performance evaluation on actual process solutions from a reprocessing plant are presented and discussed. (orig.) [de

  20. International Atomic Energy Agency Safeguards: Challenge and response

    Science.gov (United States)

    Spector, Leonard S.

    2017-11-01

    This article provides a critical review of the nuclear accounting and inspection system of the International Atomic Energy Agency (IAEA), known as "IAEA safeguards." The article focuses on the multiple challenges the Agency confronts in verifying that all nuclear activities in the countries under its safeguards system are being pursued for exclusively peaceful purposes. The principal challenges noted are those posed by: undeclared facilities, the development of enrichment and reprocessing capabilities, illicit procurement activities, denial of inspector access, difficulties in verifying absence of weaponization activities, and difficulties in establishing that all nuclear-relevant activities in a state are peaceful. The article is in the form of annotated PowerPoint briefing slides.

  1. Noble Gas Measurement and Analysis Technique for Monitoring Reprocessing Facilities

    International Nuclear Information System (INIS)

    William S. Charlton

    1999-01-01

    An environmental monitoring technique using analysis of stable noble gas isotopic ratios on-stack at a reprocessing facility was developed. This technique integrates existing technologies to strengthen safeguards at reprocessing facilities. The isotopic ratios are measured using a mass spectrometry system and are compared to a database of calculated isotopic ratios using a Bayesian data analysis method to determine specific fuel parameters (e.g., burnup, fuel type, fuel age, etc.). These inferred parameters can be used by investigators to verify operator declarations. A user-friendly software application (named NOVA) was developed for the application of this technique. NOVA included a Visual Basic user interface coupling a Bayesian data analysis procedure to a reactor physics database (calculated using the Monteburns 3.01 code system). The integrated system (mass spectrometry, reactor modeling, and data analysis) was validated using on-stack measurements during the reprocessing of target fuel from a U.S. production reactor and gas samples from the processing of EBR-II fast breeder reactor driver fuel. These measurements led to an inferred burnup that matched the declared burnup with sufficient accuracy and consistency for most safeguards applications. The NOVA code was also tested using numerous light water reactor measurements from the literature. NOVA was capable of accurately determining spent fuel type, burnup, and fuel age for these experimental results. Work should continue to demonstrate the robustness of this system for production, power, and research reactor fuels

  2. Informing the public on technical effectiveness of international safeguards

    International Nuclear Information System (INIS)

    Hunt, H.M.

    1994-01-01

    In recent years, public interest regarding IAEA (International Atomic Energy Agency) safeguards effectiveness has partially shifted to detection of undeclared nuclear facilities. Nevertheless, important segments of the public remain vitally interested in whether international safeguards would be able to reliably and definitively detect diversion of bomb quantities of plutonium or highly enriched uranium from open-quotes bulk handlingclose quotes facilities. There now exists a sizable body of unclassified technical reports, based on experimental results over many years, written by various experts, describing actual capabilities and limitations of safeguards techniques and systems, which collectively lead to definitive evaluations of technical safeguards effectiveness. For a large-scale operation of spent fuel reprocessing, plutonium fuel fabrication, or gas centrifuge uranium enrichment, an undisputable conclusion is that international safeguards systems would be unable to reliably and definitively detect the diversion in a one-year period of a significant quantity of plutonium or enriched uranium; moreover, diversion of many significant quantities per year (from such an operation) would have negligible probability of definitive detection if conducted in accordance with particle diversion scenarios. To properly inform the public and government agencies, reports on technical effectiveness of international safeguards should incorporate these basic conclusions

  3. Framework for Integrating Safety, Operations, Security, and Safeguards in the Design and Operation of Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Darby, John L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Horak, Karl Emanuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); LaChance, Jeffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tolk, Keith Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Whitehead, Donnie Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-10-01

    The US is currently on the brink of a nuclear renaissance that will result in near-term construction of new nuclear power plants. In addition, the Department of Energy’s (DOE) ambitious new Global Nuclear Energy Partnership (GNEP) program includes facilities for reprocessing spent nuclear fuel and reactors for transmuting safeguards material. The use of nuclear power and material has inherent safety, security, and safeguards (SSS) concerns that can impact the operation of the facilities. Recent concern over terrorist attacks and nuclear proliferation led to an increased emphasis on security and safeguard issues as well as the more traditional safety emphasis. To meet both domestic and international requirements, nuclear facilities include specific SSS measures that are identified and evaluated through the use of detailed analysis techniques. In the past, these individual assessments have not been integrated, which led to inefficient and costly design and operational requirements. This report provides a framework for a new paradigm where safety, operations, security, and safeguards (SOSS) are integrated into the design and operation of a new facility to decrease cost and increase effectiveness. Although the focus of this framework is on new nuclear facilities, most of the concepts could be applied to any new, high-risk facility.

  4. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  5. Safety demonstration tests on pressure rise in ventilation system and blower integrity of a fuel-reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Junichi; Suzuki, Motoe; Tsukamoto, Michio; Koike, Tadao; Nishio, Gunji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-12-01

    In JAERI, the demonstration test was carried out as a part of safety researches of the fuel-reprocessing plant using a large-scale facility consist of cells, ducts, dumpers, HEPA filters and a blower, when an explosive burning due to a rapid reaction of thermal decomposition for solvent/nitric acid occurs in a cell of the reprocessing plant. In the demonstration test, pressure response propagating through the facility was measured under a blowing of air from a pressurized tank into the cell in the facility to elucidate an influence of pressure rise in the ventilation system. Consequently, effective pressure decrease in the facility was given by a configuration of cells and ducts in the facility. In the test, transient responses of HEPA filters and the blower by the blowing of air were also measured to confirm the integrity. So that, it is confirmed that HEPA filters and the blower under pressure loading were sufficient to maintain the integrity. The content described in this report will contribute to safety assessment of the ventilation system in the event of explosive burning in the reprocessing plant. (author)

  6. Continuous monitoring of plutonium solution in a conversion plant

    International Nuclear Information System (INIS)

    Hassan, B.; Piana, M.; Mousalli, G.; Saukkonen, H.; Hosima, T.; Kawa, T.

    2000-01-01

    This paper describes the implementation of a safeguards Tank Monitoring System (TAMS) in a Plutonium Conversion Plant (PCP). TAMS main objective is to provide the International Atomic Energy Agency (IAEA) (the Agency) with continuous data for safeguards evaluation and review of inventories and flows of plutonium solutions. It has been designed to monitor, in unattended mode, the inventory of each tank and transactions of solutions between tanks, as well as to confirm the absence of borrowing plutonium solutions from and to a neighboring reprocessing plant. The instrumentation consists of one electronic scanner that collects pressure data from electromanometers connected to the tank dip tubes, one uninterruptable power supply and one personal computer operating in a Windows-NT environment. The pressure data transmitted to the acquisition system is saved and converted to volume and density values, coupled with a graph capability to display events in each tank at intervals of 15 seconds. The system operation has not only strengthened the safeguards measures in PCP but also reduced inspection effort while minimizing intrusion to normal plant activities and radiation exposure to personnel. TAMS is a powerful, reliable tool that has significantly improved the effectiveness of safeguards implementation at PCP. The future combined use of TAMS with remote monitoring (RM) will further enhance efficiency of the safeguards measures at PCP. (author)

  7. Total Data Management System for the La Hague spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Chabert, J.; Coignaud, G.; Perot, J.P.; Fournier, W.; Silvain, B.

    1991-01-01

    Operation of the UP2 and UP3 reprocessing plants at La Hague, France, generates considerable data processing requirements. To meet these requirements, a Total Data Management System (TDMS) has been designed and installed to operate the biggest Ethernet industrial network in Europe. This network, called Haguenet, interconnects a large number of computers and user terminals. The TDMS' main operational functions are plant operation and production data management, maintenance data management, technical documents management and computer-aided design (CAD). Extensive experience was gained through the design and operation of the TDMS at La Hague. (author)

  8. Operating experience and development of fluidized-bed denitrators for UNH at Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Minoru; Nakamichi, Hideya; Takeda, Seiichiro; Kubota, Kanya; Katoh, Shuji

    1983-01-01

    The fluidized bed denitrator for uranyl nitrate hexahydrate (UNH) at Tokai reprocessing plant has been operated since 1976. About 170 tons of spent fuel have been reprocessed, and the denitrator has encountered numerous operational problems during the period. This report deals with these technical problems and the associated countermeasures taken, including the dismantling and reconstruction of equipment and the improvement of operating method. The major problems encountered were as follows: (1) the crystallization of UNH on the UNH feeding line, (2) spray nozzle clogging and candle filter clogging, (3) particle growth, (4) plugging of the drawing-out line by nozzle caking, and (5) slugging in fluidized-bed denitration. The total quantity and quality of UO 3 products obtained so far at the plant are also briefly described together with some future R and D programs such as the improvement of UO 3 reactivity and the automation of denitrators. (Aoki, K.)

  9. Reprocessing of LEU silicide fuel at Dounreay

    International Nuclear Information System (INIS)

    Cartwright, P.

    1996-01-01

    UKAEA have recently reprocessed two LEU silicide fuel elements in their MTR fuel reprocessing plant at Dounreay. The reprocessing was undertaken to demonstrate UKAEA's commitment to the world-wide research reactor communities future needs. Reprocessing of LEU silicide fuel is seen as a waste treatment process, resulting in the production of a liquid feed suitable for conditioning in a stable form of disposal. The uranium product from the reprocessing can be used as a blending feed with the HEU to produce LEU for use in the MTR cycle. (author)

  10. Reprocessing and waste management in the UK

    International Nuclear Information System (INIS)

    Mogg, C.S.; Howarth, G.G.

    1987-01-01

    The paper concerns the progress in irradiated fuel reprocessing and waste management at the Sellafield site. Magnox fuel reprocessing is reviewed and oxide fuel reprocessing, due to commence in the early 1990s, is compared with existing practices. The article describes how magnox fuel reprocessing will be sustained by recent additions of new plant and shows how waste management downstream of reprocessing will be integrated across the Sellafield site. This article was first presented as a paper at the Waste Management '87 (1-5 March, Tucson, Arizona) conference. (author)

  11. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for such matters as designation of reprocessing undertaking, permission of construction of reprocessing facilities, permission and approval of alteration (of plan for reprocessing facilities), etc. The regulations also cover application for prior inspection, execution of prior inspection, technical standards concerning performance of reprocessing facilities, certificate of prior inspection, reprocessing facilities subject to welding inspection, application for welding inspection, execution of welding inspection, facilities not subject to welding inspection, approval of welding method, welding inspection for imported equipment, certificate of welding inspection, reprocessing facilities subject to regular inspection, application for regular inspection, technical standards for regular inspection, operation plan, application for approval of joint management, record keeping, restriction on access to areas under management, measures concerning exposure to radioactive rays, patrol and checking in reprocessing facilities, operation of reprocessing facilities, self-imposed regular inspection of reprocessing facilities, transportation within plant or operation premises, storage, waste disposal within plant or operation premises, safety rules, notice of disassembly, measures for emergency, notice of abolition of business, notice of disorganization, measures concerning cancellation of designation, submission of report, etc. (Nogami, K.)

  12. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L F; Nemec, J F; Koochi, A K

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively. (DLC)

  13. Decommissioning alternatives for the West Valley, New York, Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Munson, L.F.; Nemec, J.F.; Koochi, A.K.

    1978-06-01

    The methodology and numerical values of NUREG-0278 were applied to four decommissioning alternatives for the West Valley Fuel Reprocessing Plant. The cost and impacts of the following four alternatives for the process building, fuel receiving and storage, waste tank farm, and auxiliary facilities were assessed: (1) layaway, (2) protective storage, (3) preparation for alternate nuclear use, and (4) dismantlement. The estimated costs are 5.7, 11, 19, and 31 million dollars, respectively

  14. New Measures to Safeguard Gas Centrifuge Enrichment Plants

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

    2011-01-01

    As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

  15. Selection of construction materials for equipment in an experimental reprocessing plant

    International Nuclear Information System (INIS)

    Mizrahi, R.; Cragnolino, G.A.

    1994-01-01

    A review is made of the most significant corrosion problems that may be present in different stages of the process in a spent fuel reprocessing plant. The influence of different variables is analyzed: concentration of nitric acid and other oxidizing species, temperature, etc., in corrosion of materials of most frequent use in pipings and equipment. The materials are austenitic stainless steels and refractory metals, especially zirconium and its alloys. Both general and localized corrosion phenomena are analyzed for these materials. Selection criteria for the use of adequate material in different components of the plant are also discussed. (author). 32 refs., 20 figs., 3 tabs

  16. Advanced techniques for analytic liquid wastes management in the Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Madic, C.; Moulin, J.P.; Runge, S.; Schott, R.; Kashiwai, T.; Hayashi, M.

    1991-01-01

    The JNFS Rokkasho reprocessing plant is a large scale commercial reprocessing plant. Liquid waste treatment relies on concentration by evaporation. The management of liquid wastes is rather sophisticated and implies, beside the organic wastes, sorting out between process and non-process, acidic and salt-bearing, tritiated and low tritiated streams and also according to their level of activity. A particular attention had to be paid to the analytical wastes, as their particularity is to contain not only a significant amount of radioactivity but also some fissile material and exotic chemicals which are useful for analytical purpose but unwanted in the main process mainly because of their corrosive and chelating properties. The analytical wastes are sorted out according to their activity level and fissile material content. On the one hand, a specific process has been developed to recover the bulk of plutonium from the analytical wastes. On the other hand, the foreseeable amount of unwanted chemicals (such as chloride ions) has been drastically reduced by carefully selecting all the analytical methods either by modification of already known methods or in some cases by working out new methods

  17. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-01-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  18. Development of a continuous dissolution process for the new reprocessing plants at La Hague

    International Nuclear Information System (INIS)

    Auchapt, P.; Patarin, L.; Tarnero, M.

    1984-08-01

    The French Commissariat a l'Energie Atomique has designed a continuous rotary dissolver for LWR fuel reprocessing. An industrial prototype has been tested since 1979 at the Service des Prototypes Industriels, at Marcoule. This type of dissolver will be installed at the COGEMA's Reprocessing Plants at La Hague. The advantages of a continuous process are listed, compared to batch dissolutions (chemistry, operation, capacity). The industrial prototype, featuring safe geometry, is described. The R and D program is indicated, and the main results of inactive tests already performed on the industrial prototype are given, including heating, mechanical, and chemical tests (UO 2 dissolutions at 4tU per day)

  19. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  20. Computerization of the nuclear material accounting system for safeguards purposes at nuclear power plants with WWER-440 reactors

    International Nuclear Information System (INIS)

    Antonov, V.P.; Konnov, Yu.I.; Semenets, A.N.

    1983-01-01

    The paper sets forth the basic principles underlying nuclear material accounting at nuclear power plants with WWER-440 reactors. It briefly describes the general structure and individual units in a program for computerized accounting. The use of this program is illustrated by the actual accounting data from the fifth unit of the Novovoronezh nuclear power station. The NUMIS program seems to be of interest both for the purposes of IAEA safeguards and for nuclear power plant operators in countries where power plants with WWER-440 reactors subject to IAEA safeguards are either in operation or under construction. The research in question was conducted initially under an IAEA research contract; the system is now being developed further and tested under the IAEA-USSR technical and scientific co-operation programme on safeguards. (author)

  1. A Safeguardability Check-List for Safeguards by Design

    Energy Technology Data Exchange (ETDEWEB)

    Sevini, F. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy); Renda, G. [European Commission, DG Energy, Directorate E ' Nuclear Safeguards' , Unit 4 ' Inspections: reactors, storages and others facilities, Luxembourg (Luxembourg); Sidlova, V. [European Commission - Joint Research Centre, Institute for Transuranium Elements, Nuclear Security Unit, Ispra (Italy)

    2011-12-15

    Safeguards by design is a complex step-by-step interactive decision process involving various stake-holders and design choices to be made over a certain period of time. The resulting plant design should be a compromise among economical, safety, security and safeguards implementation constraints. Access to technology and equipment, as well as to the nuclear fuel cycle, determines the basic choices that the designer has to make. Once the boundary conditions for a given facility have been fixed, the designer still faces the challenge of setting several design and operational parameters that will require various trade-offs . Concerning safeguards, these can be seen in three groups, i.e. those related to the general design and its intrinsic proliferation resistance; those related to the specific lay-out and planning; those related to the actual safeguards instrumentation, its effectiveness and efficiency. The paper aims at describing a model for a phased, or 'layered' approach to safeguards-by-design, focusing on the example of off-load reactors.

  2. All-Optical Atom Trap Trace Analysis: Potential Use of 85Kr in Safeguards Activities

    International Nuclear Information System (INIS)

    Kohler, M.; Sahling, P.; Sieveke, C.; Kirchner, G.

    2015-01-01

    Sensitive measurement techniques for the detection of anthropogenic tracers demand measurement resolutions down to single atoms, as it has been demonstrated by the first atom trap trace analysis experiments. However, technical limitations had lowered the sample throughput to about 200 per year per machine. We have developed an all-optical apparatus which allows higher sample throughput and small sample sizes at the same time. Krypton-85 as anthropogenic isotope is an ideal tracer for nuclear activities since the only relevant source term is fission. An increased 85Kr concentration in an air sample indicates, that a plume was passing by during sampling. In practice, however, its applicability may be limited by the global and regional background concentrations caused by the emissions of nuclear fuel reprocessing plants. The potential of 85Kr monitoring for safeguards applications has been discussed extensively. Among these is the short range detection of elevated concentrations of 85Kr in the vicinity of reprocessing plants. Our ATTA technique needs sample sizes of about 1 l of air only and thus for the first time will allow simple environmental sampling of 85Kr with high spatial and temporal resolution. The design of such a study including local sampling and tracer transport modelling in proximity to a reprocessing plants is outlined. In addition, such a study could be used also for validating near-field atmospheric dispersion models if the 85Kr source term is known. The potential of environmental analyzes of 85Kr during an IAEA short-notice access is discussed. It is shown that it crucially depends on the emission dynamics after shut-down of fuel dissolution which needs further study. (author)

  3. Nuclear fuel cycle: (5) reprocessing of irradiated fuel

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.A.

    1977-09-01

    The evolution of the reprocessing of irradiated fuel and the recovery of plutonium from it is traced out, starting by following the Manhatten project up to the present time. A brief description of the plant and processes used for reprocessing is given, while the Purex process, which is used in all plants today, is given special attention. Some of the important safety problems of reprocessing plants are considered, together with the solutions which have been adopted. Some examples of the more important safety aspects are the control of activity, criticality control, and the environmental impact. The related topic of irradiated fuel transport is briefly discussed.

  4. Application of electrochemical techniques in fuel reprocessing- an overview

    Energy Technology Data Exchange (ETDEWEB)

    Rao, M K; Bajpai, D D; Singh, R K [Power Reactor Fuel Reprocessing Plant, Tarapur (India)

    1994-06-01

    The operating experience and development work over the past several years have considerably improved the wet chemical fuel reprocessing PUREX process and have brought the reprocessing to a stage where it is ready to adopt the introduction of electrochemical technology. Electrochemical processes offer advantages like simplification of reprocessing operation, improved performance of the plant and reduction in waste volume. At Power Reactor Fuel Reprocessing plant, Tarapur, work on development and application of electrochemical processes has been carried out in stages. To achieve plant scale application of these developments, a new electrochemical cycle is being added to PUREX process at PREFRE. This paper describes the electrochemical and membrane cell development activities carried out at PREFRE and their current status. (author). 5 refs., 4 tabs.

  5. Implementation of integrated safeguards in Nuclear Fuel Plant at Pitesti, Romania

    International Nuclear Information System (INIS)

    Olaru, V.; Ivana, T.; Epure, Gh.

    2009-01-01

    The nuclear activity was conducted for many years in Romania under Traditional Safeguards (TS) and has developed in good conditions the specific nuclear safeguards. Now there is a good opportunity to improve the performance and quality of the safeguards activity and at the same time to increase the accountancy and control of nuclear materials by passing to Integrated Safeguards (IS) implementation. The legal framework is the Law 100/2000 for ratification of the Protocol between Romania and International Atomic Energy Agency (IAEA), additional completion to the Agreement between the Socialist Republic of Romania Government and IAEA relating to safeguards. It is part of the Treaty on the non-proliferation of nuclear weapons published in the Official Gazette no. 3/31 January 1970, and the Additional Protocol published in the Official Gazette no. 295/ 29.06.2000. The first discussion about Integrated Safeguards (IS) between the Nuclear Fuel Plant (FCN) representatives and IAEA inspectors has taken place in June 2005. In Feb. 2007 an IAEA mission visited FCN and established the main steps for implementing the IS. There were visited the storage and the technological flow and it was reviewed the residence times for different nuclear materials, the applied chemical analysis, metrological methods, weighting method and procedures of elaborating the implied documents and lists. At the same time the IAEA and FCN representatives established the main points for implementing the IS at FCN i.e. performing the Short Notice Random Inspections (SNRI), communicating the eligible days for SNRI for each year, communicating the estimated deliveries and shipments for the first quarter and then for the rest of the year, mail box daily declaration (DD) with respect to the residence time for several nuclear materials, advance notification (AN) for each nuclear material transfer (shipments and receipts), etc. At 01 June 2007 Romania has passed officially to Integrated Safeguards and FCN (RO

  6. Reprocessing the truth

    International Nuclear Information System (INIS)

    Goldsmith, E.; Bunyard, P.; Hildyard, N.

    1978-01-01

    Comments are made on the Report by the Inspector, Mr. Justice Parker, after the public inquiry into the application by British Nuclear Fuels Limited for permission to construct and operate a thermal oxide reprocessing plant at their Windscale works. Particular questions raised include: corrosion or storage of spent fuel, vitrification of radioactive waste; radiation effects, and permissible levels; radioactive emissions, critical groups and critical pathways; risks; reprocessing economics; commitment to the FBR; sociological aspects, including employment, nuclear weapon proliferation and terrorism, and Britain's moral responsibilities. (U.K.)

  7. Progress and experiences from the decommissioning of the Eurochemic reprocessing plant - 16022

    International Nuclear Information System (INIS)

    Walthery, Robert; Lewandowski, Patrick; Ooms, Bart; Reusen, Nancy; Van Laer, Wim

    2009-01-01

    Belgoprocess started the industrial decommissioning of the main process building of the former EUROCHEMIC reprocessing plant in 1990, after completion of a pilot project in which two buildings were emptied and decontaminated to background levels. The remaining structures were demolished and the concrete debris was disposed of as industrial waste and green field conditions restored. The Eurochemic reprocessing plant operated from 1966 to 1974 to process fuel from power reactors and research reactors. The main building is a large concrete structure, comprising a surface area of 55,000 m 2 , concrete volume 12,500 m 3 , and 1,500 Mg of metal components. The building is divided into multiple cells. About 106 individual cell structures have to be dismantled, involving the removal and decontamination of equipment from each cell, the decontamination of the cell walls, ceilings and floors, the dismantling of the ventilation system. Most of the work involves hands-on operations under protective clothing tailored to each specific task. Tool automation and automatic positioning systems are successfully applied. In view of the final demolition of the main process building, the main process building has been divided into three parts - each part is isolated from the others. In September 2008 the eastern part of the building has been demolished. The paper presents a status overview of the decommissioning and decontamination activities at the main process building of the former Eurochemic reprocessing plant on the nuclear site of Dessel in Belgium. The specific BELGOPROCESS strategy will be highlighted, in which the decommissioning activities are carried out on an industrial scale with special emphasis on cost minimisation, the use of technology on an industrial representative scale and the specific alpha contamination of equipment and building surfaces, requiring that the decommissioning work is done with adequate protective clothing. Also specific breathing and cooling air

  8. Radioactive airborne effluent discharged from Tokai reprocessing plant. 1998-2007

    International Nuclear Information System (INIS)

    Nakada, Akira; Miyauchi, Toru; Akiyama, Kiyomitsu; Momose, Takumaro; Kozawa, Tomoyasu; Yokota, Tomokazu; Ohtomo, Hiroyuki

    2008-10-01

    This report provides the data set of atmospheric discharges from Tokai reprocessing plant in Tokai-mura, Japan over the period from 1998 to 2007. Daily and weekly data are shown for 85 Kr that is continuously monitored and for the other nuclides (alpha emitters, beta emitters, 3 H, 14 C, 129 I and 131 I) whose activities are evaluated based on weekly samplings (Weekly sampling is continuous for 1 week). The data contained in this report are expected to apply for studying the behavior of the radioactive airborne effluent in the environment. (author)

  9. Seismic analysis of the Nuclear Fuel Service Reprocessing Plant at West Valley, New York: documentation

    International Nuclear Information System (INIS)

    Murray, R.C.; Nelson, T.A.; Davito, A.M.

    1977-01-01

    This material was generated as part of a seismic case review of the NFS Reprocessing Plant. This study is documented in UCRL-52266. The material is divided into two parts: mathematical model information, and ultimate load calculations and comparisons

  10. Review of selected dynamic material control functions for international safeguards

    International Nuclear Information System (INIS)

    Lowry, L.L.

    1980-09-01

    With the development of Dynamic Special Nuclear Material Accounting and Control systems used in nuclear manufacturing and reprocessing plants, there arises the question as to how these systems affect the IAEA inspection capabilities. The systems in being and under development provide information and control for a variety of purposes important to the plant operator, the safeguards purpose being one of them. This report attempts to judge the usefulness of these dynamic systems to the IAEA and have defined 12 functions that provide essential information to it. If the information acquired by these dynamic systems is to be useful to the IAEA, the inspectors must be able to independently verify it. Some suggestions are made as to how this might be done. But, even if it should not be possible to verify all the data, the availability to the IAEA of detailed, simultaneous, and plant-wide information would tend to inhibit a plant operator from attempting to generate a floating or fictitious inventory. Suggestions are made that might be helpful in the design of future software systems, an area which has proved to be fatally deficient in some systems and difficult in all

  11. Development of the system for the estimation of materials flow in pyrochemical reprocessing plant. Characteristic evaluation of the oxide electrowinning plant

    International Nuclear Information System (INIS)

    Okamura, Nobuo; Tozawa, Katuhiro; Sato, Koji

    2002-07-01

    The operation of the plant with the non-aqueous reprocessing technology depends on the materials handling equipment closely. Because the value of decontamination factor of the products in the plant is low, treatment of nuclear materials requires remote operation technology. So the system for the evaluation of materials flow in the plant was built to evaluate the production ability of the plant and to check out the plant operation from the viewpoint of materials flow. The system is only based on information of the treatment abilities of materials handling machines and process installations and the arrangement of process installations in the reprocessing cell that influences a way to operate materials handling machines intensity. Therefore the system can be used to estimate the characteristics of non-aqueous plants that are not in detail design stage. The amount of production and the characteristics of the oxide electrowinning plant (operation term 200days/year, plant capacity 50tHM/year in design) designed in Feasibility Study Phase1 were estimated using the system. The results show that the practical amount of production of the plant design is about 88% of the designed value. To increase the amount of production, it is more useful to speed up materials handling machine time than to install new installation or to give priority to conduct bottleneck processes. It is because materials handling influences the production ability of the plant deeply. (author)

  12. APL used for control of a reprocessing plant

    International Nuclear Information System (INIS)

    Petruschka, B.

    1975-05-01

    A package of interactive APL functions for data maintaining and processing is discussed in some detail. The data is recorded during the cycle of irradiated fuels and is used to control the reprocessing plant at the Karlsruhe Nuclear Research Center (WAK). First nuclear fuel processing is explained. A short justification is given of the reasons why the program language APL and the facilities of the file subsystem APL PLUS had been chosen for data handling. This is followed by the description of workspace and file organisation, all mainfunctions and files are described. Finally all functions are listed, an example of a user session and the output of daily and monthly reports from terminal and high-speed printer are presented. (orig.) [de

  13. Selected nondestructive assay instrumentation for an international safeguards system at uranium enrichment plants

    International Nuclear Information System (INIS)

    Tape, J.W.; Baker, M.P.; Strittmatter, R.; Jain, M.; Evans, M.L.

    1979-01-01

    A selected set of nondestructive assay instruments for an international safeguards system at uranium enrichment plants is currently under development. These instruments are of three types: in-line enrichment meters for feed, product, and tails streams; area radiation monitors for direct detection of high-enriched uranium production, and an enrichment meter for spent alumina trap material. The current status of the development of each of these instruments is discussed, with supporting data, as well as the role each would play in a total international safeguards system. 5 figures

  14. Environmental assessment for Breeder Reprocessing Engineering Test (BRET): Revision 1

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1989-03-01

    This Environmental Assessment (EA) is for the proposed installation and operation of an integrated breeder fuel reprocessing test system in the shielded cells of the Fuels and Materials Examination Facility (FMEF) at Hanford and the associated modifications to the FMEF to accommodate BRET. These modifications would begin in FY-1986 subject to Congressional authorization. Hot operations would be scheduled to start in the early 1990's. The system, called the Breeder Reprocessing Engineering Test (BRET), is being designed to provide a test capability for developing the demonstrating fuel reprocessing, remote maintenance, and safeguards technologies for breeder reactor fuels. This EA describes (1) the action being proposed, (2) the existing environment which would be affected, (3) the potential environmental impacts from normal operations and severe accidents from the proposed action, (4) potential conflicts with federal, state, regional, and/or local plans for the area, and (5) environmental implications of alternatives considered to the proposed action. 41 refs., 10 figs., 31 tabs

  15. Nuclear fuel reprocessing deactivation plan for the Idaho Chemical Processing Plant, Revision 1

    International Nuclear Information System (INIS)

    Patterson, M.W.

    1994-10-01

    The decision was announced on April 28, 1992 to cease all United States Department of Energy (DOE) reprocessing of nuclear fuels. This decision leads to the deactivation of all fuels dissolution, solvent extraction, krypton gas recovery operations, and product denitration at the Idaho Chemical Processing Plant (ICPP). The reprocessing facilities will be converted to a safe and stable shutdown condition awaiting future alternate uses or decontamination and decommissioning (D ampersand D). This ICPP Deactivation Plan includes the scope of work, schedule, costs, and associated staffing levels necessary to achieve a safe and orderly deactivation of reprocessing activities and the Waste Calcining Facility (WCF). Deactivation activities primarily involve shutdown of operating systems and buildings, fissile and hazardous material removal, and related activities. A minimum required level of continued surveillance and maintenance is planned for each facility/process system to ensure necessary environmental, health, and safety margins are maintained and to support ongoing operations for ICPP facilities that are not being deactivated. Management of the ICPP was transferred from Westinghouse Idaho Nuclear Company, Inc. (WINCO) to Lockheed Idaho Technologies Company (LITCO) on October 1, 1994 as part of the INEL consolidated contract. This revision of the deactivation plan (formerly the Nuclear Fuel Reprocessing Phaseout Plan for the ICPP) is being published during the consolidation of the INEL site-wide contract and the information presented here is current as of October 31, 1994. LITCO has adopted the existing plans for the deactivation of ICPP reprocessing facilities and the plans developed under WINCO are still being actively pursued, although the change in management may result in changes which have not yet been identified. Accordingly, the contents of this plan are subject to revision

  16. Simulation enabled safeguards assessment methodology

    International Nuclear Information System (INIS)

    Bean, Robert; Bjornard, Trond; Larson, Tom

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wire-frame construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed. (authors)

  17. Simulation Enabled Safeguards Assessment Methodology

    International Nuclear Information System (INIS)

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-01-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment Methodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed

  18. Computer integrated construction at AB building in reprocessing plant

    International Nuclear Information System (INIS)

    Takami, Masahiro; Azuchi, Takehiro; Sekiguchi, Kenji

    1999-01-01

    JNFL (Japan Nuclear Fuel Limited) is now processing with construction of the spent nuclear fuel reprocessing plant at Rokkasho Village in Aomori Prefecture, which is coming near to the busiest period of construction. Now we are trying to complete the civil work of AB Building and KA Building in a very short construction term by applying CIC (Computer Integrated Construction) concept, in spite of its hard construction conditions, such as the massive and complicated building structure, interferences with M and E (Mechanical and Electrical) work, severe winter weather, remote site location, etc. The key technologies of CIC are three-dimensional CAD, information network, and prefabrication and mechanization of site work. (author)

  19. Estimation of gamma dose rate from hulls and shield design for the hull transport cask of Fuel Reprocessing Plant (FRP)

    International Nuclear Information System (INIS)

    Chandrasekaran, S.; Rajagopal, V.; Jose, M.T.; Venkatraman, B.

    2012-01-01

    In Fuel Reprocessing Plant (FRP), un-dissolved clad of fuel pins known as hulls are the major sources of high level solid waste. Safe handling, transport and disposal require the estimation of radioactivity as a consequent of gamma dose rate from hulls in fast reactor fuel reprocessing plant in comparison with thermal reactor fuel. Due to long irradiation time and low cooling of spent fuel, the evolution of activation products 51 Cr, 58 Co, 54 Mn and 59 Fe present as impurities in the fuel clad are the major sources of gamma radiation. Gamma dose rate from hull container with hulls from Fuel Sub Assembly (FSA) and Radial Sub Assembly (RSA) of Fuel Reprocessing Plant (FRP) was estimated in order to design the hull transport cask. Shielding computations were done using point kernel code, IGSHIELD. This paper describes the details of source terms, estimation of dose rate and shielding design of hull transport cask in detail. (author)

  20. Select Generic Dry-Storage Pilot Plant Design for Safeguards and Security by Design (SSBD) per Used Fuel Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Scott Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sprinkle, James K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-26

    As preparation to the year-end deliverable (Provide SSBD Best Practices for Generic Dry-Storage Pilot Scale Plant) for the Work Package (FT-15LA040501–Safeguards and Security by Design for Extended Dry Storage), the initial step was to select a generic dry-storage pilot plant design for SSBD. To be consistent with other DOE-NE Fuel Cycle Research and Development (FCR&D) activities, the Used Fuel Campaign was engaged for the selection of a design for this deliverable. For the work Package FT-15LA040501–“Safeguards and Security by Design for Extended Dry Storage”, SSBD will be initiated for the Generic Dry-Storage Pilot Scale Plant described by the layout of Reference 2. SSBD will consider aspects of the design that are impacted by domestic material control and accounting (MC&A), domestic security, and international safeguards.

  1. Reprocessing decision

    International Nuclear Information System (INIS)

    Heising, C.D.

    1978-01-01

    The United States must decide whether to permit, delay, or prohibit the reprocessing and recycling of nuclear spent fuel. To permit reprocessing would allow recycle as early as 1985; to delay the decision for a later administration to deal with means spent fuel would mount up at nuclear reactor sites; to prohibit would eliminate recycling and mandate permanent storage. Bayesian decision analysis was used to examine reprocessing costs associated with risks and economic benefits. Three distinct categories of risk that are important in the nuclear fuel cycle are discussed. These are: health, environment, and safety risks; nuclear theft and sabotage; and nuclear weapons proliferation risks. Results are discussed from comparing nine routes to weapons-usuable mterial available to nonweapons states that desire a nuclear capability. These are: production reactor and military reporcessor; research reacotr and military reprocessor; power plant plus military reprocessor or commercial reprocessor; enrichment (centrifuge, gaseous diffusion, electromagnetic separation, or aerodynamic jet cascade); and accelerator. It was found that the commercial power reactor-commercial reprocessor route is comparatively unattractive to a nonweapons state. In summary, allowing nuclear fuel reprocessing to go forward in the United States can be expected to increase the costs to society by a maximum $360 million a year. This is approximately one-seventh of the expected benefit (reduced electricity bills) to be dderived by society from closing the fuel cycle. It appears that the permitting reprocessing now is logically preferable to delaying or prohibiting the technology, the author concludes

  2. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  3. Commissioning and operating experience of compressed air system of a reprocessing plant (Paper No. 5.10)

    International Nuclear Information System (INIS)

    Nair, M.K.T.; Bajpai, D.D.; Mishra, A.K.; Kulkarni, H.B.; Raje, R.V.; Rajeshwar, S.

    1992-01-01

    Compressed air system is one of the most important utility systems, required in the continued operation of a radiochemical plant. Moisture and oil free compressed air is used in large scale for process control and process operations in reprocessing plants. Commissioning and operating experience of this system is described in detail, to indicate the importance of the system in the overall design and operation of such chemical plant. (author). 1 tab

  4. The safeguards on-site laboratory at Sellafield. Five years operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Duinslaeger, L.; Belle, P. van; Mayer, K.; Casteleyn, K.; Abousahl, S.; Daures, P.; Eberle, H.; Enright, T.; Guiot, A.; Hild, M.; Horta Domenech, J.; Lajarge, P.; Laurent, P.; Le Terrier, A.; Lynch, B.; Marucci, M.; Millet, S.; Ottmar, H.; Richir, P.; Street, S.; Vallet, P.; Zuleger, E. [European Commission, Karlsruhe (Germany). Inst. for Transuranium Elements

    2004-06-01

    The start of operation of the large reprocessing facilities led Euratom Safeguards to a new approach for verification analysis of samples taken at the facility: the installation of on-site laboratories. The availability of analytical capabilities for independent verification measurements at the site of these facilities offers obvious advantages in view of timeliness of results. The 'On-Site Laboratory' (OSL) at the BNFL Sellafield site was the first ever and entered into operation in 1999. For almost five years, the Institute for Transuranium Elements (ITU) has been operating the laboratory under routine conditions. During this period, more than one thousand safeguards samples were analysed. The experience gained in the management, logistics and operation of the OSL allow a critical review based on a significant period in time. This includes also aspects of training of staff, maintenance of equipment, flow of information, and improvements in the efficiency. The analytical issues are of key importance: based on the operational experience, the measurement methods were adapted (changing boundary conditions), the distribution of samples according to material type changed (start up of MOS fabrication plant), and the cutback in resources triggered a further streamlining of the analytical efforts. (orig.)

  5. Radiation protection aspects in decommissioning of a fuel reprocessing plant

    International Nuclear Information System (INIS)

    Kotrappa, P.; Joshi, P.P.; Theyyunni, T.K.; Sidhwa, B.M.; Nadkarni, M.N.

    1980-01-01

    The decontamination of a fuel reprocessing plant which underwent partial decommissioning is described. The following radiation protection aspects of the work are discussed: dismantling and removal of process vessels, columns and process off-gas filters; decontamination of various process areas; and management of liquid and solid wastes. The work was completed safely by using personnel protective equipment such as plastic suits and respirators (gas, particulate and fresh air). Total dose commitment for this work was around 3000 man-rems, including dose received by staff for certain jobs related to the operation of a section of the plant. The external dose was kept below the annual limit of 5000 mrems for any individual. No internal contamination incident occurred which caused a dose commitment in excess of 10% of the annual limit. The fact that all the work was completed by the staff normally associated with the operation of the plant contributed significantly to the management and control of personnel exposures. (H.K.)

  6. Status of Safeguards and Separations Model Development at Plant and Molecular Levels

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, Valmor F [ORNL; Hay, Benjamin [ORNL; DePaoli, David W [ORNL

    2009-10-01

    A primary goal of the Safeguards and Separations IPSC effort is the development of process modeling tools that allow dynamic simulations of separations plant operations under various configurations and conditions, and integration of relevant safeguards analyses. A requirement of the effort is to develop codes on modern, expandable architectures, with flexibility to explore and evaluate a wide range of process options. During FY09, efforts at ORNL have been focused on two priority tasks toward achieving the IPSC goal: (1) a top-down exploration of architecture - Subtask 1: Explore framework for code development and integration for plant-level simulation; and (2) a bottom-up fundamental modeling effort - Subtask 2: Development of molecular-level agent design code. Subtask 1 is important because definition and development of architecture is a key issue for the overall effort, as selection of an overall approach and code/data requirements is a necessary first step in the organization, design and development of separations and safeguards codes that will be incorporated. The agent design effort of Subtask 2 is a molecular-level modeling effort that has a direct impact on a near-term issue of the Separations and Waste Forms Campaign. A current focus of experimental efforts is the development of robust agents and processes for separation of Am/Cm. Development of enhanced agent-design codes will greatly accelerate discovery and experimental testing.

  7. Status of Safeguards and Separations Model Development at Plant and Molecular Levels

    International Nuclear Information System (INIS)

    de Almeida, Valmor F.; Hay, Benjamin; DePaoli, David W.

    2009-01-01

    A primary goal of the Safeguards and Separations IPSC effort is the development of process modeling tools that allow dynamic simulations of separations plant operations under various configurations and conditions, and integration of relevant safeguards analyses. A requirement of the effort is to develop codes on modern, expandable architectures, with flexibility to explore and evaluate a wide range of process options. During FY09, efforts at ORNL have been focused on two priority tasks toward achieving the IPSC goal: (1) a top-down exploration of architecture - Subtask 1: Explore framework for code development and integration for plant-level simulation; and (2) a bottom-up fundamental modeling effort - Subtask 2: Development of molecular-level agent design code. Subtask 1 is important because definition and development of architecture is a key issue for the overall effort, as selection of an overall approach and code/data requirements is a necessary first step in the organization, design and development of separations and safeguards codes that will be incorporated. The agent design effort of Subtask 2 is a molecular-level modeling effort that has a direct impact on a near-term issue of the Separations and Waste Forms Campaign. A current focus of experimental efforts is the development of robust agents and processes for separation of Am/Cm. Development of enhanced agent-design codes will greatly accelerate discovery and experimental testing.

  8. Material control and accounting at a CANDU reactor: the instrumented safeguards scheme

    International Nuclear Information System (INIS)

    Stirling, A.J.; Payne, E.

    1985-01-01

    While CANDU reactors differ from LWRs quite markedly in the way they operate, the principles of materials accounting and safeguards are equally applicable. Indeed, since CANDU fuel is not reprocessed, the relatively simple procedure of item accounting is sufficient for CANDUs. However, on-power refueling means that automatic item counting is needed to independently confirm operator records. Surveillance and sealing techniques for spent fuel are needed for a practical system. The equipment developed has allowed the IAEA to apply safeguards at reasonable cost and with minimal interference to the utility operating the station

  9. Evaluation technology for burnup and generated amount of plutonium by measurement of Xenon isotopic ratio in dissolver off-gas at reprocessing facility (Joint research)

    International Nuclear Information System (INIS)

    Okano, Masanori; Kuno, Takehiko; Shirouzu, Hidetomo; Yamada, Keiji; Sakai, Toshio; Takahashi, Ichiro; Charlton, William S.; Wells, Cyndi A.; Hemberger, Philip H.

    2006-12-01

    The amount of Pu in the spent fuel was evaluated from Xe isotopic ratio in off-gas in reprocessing facility, is related to burnup. Six batches of dissolver off-gas (DOG) at spent fuel dissolution process were sampled from the main stack in Tokai Reprocessing Plant (TRP) during BWR fuel (approx. 30GWD/MTU) reprocessing campaign. Xenon isotopic ratio was determined with Gas Chromatography/Mass Spectrometry. Burnup and generated amount of Pu were evaluated with Noble Gas Environmental Monitoring Application code (NOVA), developed by Los Alamos National Laboratory. Inferred burnup evaluated by Xe isotopic measurements and NOVA were in good agreement with those of the declared burnup in the range from -3.8% to 7.1%. Also, the inferred amount of Pu in spent fuel was in good agreed with those of the declared amount of Pu calculated by ORIGEN code in the range from -0.9% to 4.7%. The evaluation technique is applicable for both burnup credit to achieve efficient criticality safety control and a new measurement method for safeguards inspection. (author)

  10. Reprocessing in breeder fuel cycles

    International Nuclear Information System (INIS)

    Burch, W.D.; Groenier, W.S.

    1982-01-01

    Over the past decade, the United States has developed plans and carried out programs directed toward the demonstration of breeder fuel reprocessing in connection with the first breeder demonstration reactor. A renewed commitment to moving forward with the construction of the Clinch River Breeder Reactor (CRBR) has been made, with startup anticipated near the end of this decade. While plans for the CRBR and its associated fuel cycle are still being firmed up, the basic research and development programs required to carry out the demonstrations have continued. This paper updates the status of the reprocessing plans and programs. Policies call for breeder recycle to begin in the early to mid-1990's. Contents of this paper are: (1) evolving plans for breeder reprocessing (demonstration reprocessing plant, reprocessing head-end colocated at an existing facility); (2) relationship to LWR reprocessing; (3) integrated equipment test (IET) facility and related hardware development activities (mechanical considerations in shearing and dissolving, remote operations and maintenance demonstration phase of IET, integrated process demonstration phase of IET, separate component development activities); and (4) supporting process R and D

  11. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  12. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    International Nuclear Information System (INIS)

    1980-01-01

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options

  13. A Comparative Study on Safeguards Implementation under Bilateral Nuclear Cooperation Agreements and the IAEA Comprehensive Safeguards Agreement

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jihye; Kim, Ki-Hyun; Lee, Young Wook [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2016-10-15

    A Nuclear Cooperation Agreement (NCA) requires several conditions, so-called obligations, on the items under the agreement such as: 1) peaceful use, 2) retransfer consent, 3) consent prior to reprocessing or enrichment and 4) safeguards and security. These obligations of the NCAs are imposed by the supplier country. The Comprehensive Safeguards Agreement (CSA) between the International Atomic Energy Agency (IAEA) and its member states require similar activities. However, there is a significant gap in nuclear material accountancy between safeguards implementation under the NCA and CSA. The difference of those two frameworks is compared herein, focusing on the unique features of the NCA safeguards and its implications are presented. In this study, the NCAs between the ROK and Canada, Australia and US were analyzed since each of them is one of the ROK’s major nuclear trading partners. The safeguards implementation under the NCA is usually specified in an Administrative Arrangement (AA) under the Agreement. The ROK has two AAs in force with Canada and Australia among 29 countries with NCA. Recently, the AA with Canada was revised in December 2015, with those concepts mentioned above. The AA with the US is currently under discussion. Cooperation in nuclear energy between two countries could be further enhanced through reliable implementation of the NCA undertakings. Taking into account the unique features of the NCA, we need to establish effective strategy for fulfilling the obligation under the Agreement.

  14. Problems of nuclear fuel reprocessing in Japan

    International Nuclear Information System (INIS)

    Tanaka, Naojiro

    1974-01-01

    The reprocessing capacity of the plant No. 1 of Power Reactor and Nuclear Fuel Development Corporation, which is scheduled to start operation in fiscal year 1975, will be insufficient after fiscal year 1978 for the estimated demand for reprocessing based on Japanese nuclear energy development program. Taking into consideration the results examined by JAIF's study team to Europe and the U.S., it is necessary that Japan builds 2nd reprocessing plant. But there will be a gap from 1978 to 1984 during which Japan must rely on overseas reprocessing services. The establishment of a reprocessing system is a task of national scale, and there are many problems to be solved before it can be done. These include the problems of site and environment, the problem of treatment and disposal of radioactive wastes, the raising of huge required funds and so on. Therefore, even if a private enterprise is allowed to undertake the task, it will be impossible to achieve the aim without the cooperation and assistance of the government. (Wakatsuki, Y.)

  15. Reprocessing of spent fuel and public acceptance

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1977-01-01

    The public acceptance has to be considered regarding whole atomic power rather than the reprocessing of nuclear fuel separately, and the problems concerned are as follows; the release of radioactive materials in the normal and abnormal operations of reprocessing plants, the disposal of wastes with high level radioactivity, the transportation of high level radioactive material, the relation to the economic activity near nuclear plants, the environmental effect of 85 Kr. and 3 H, etc., and the physical protection for reprocessing facility itself, the special handling of the materials of very high radioactivity level such as fission products and plutonium, the radiation exposure of operators, and the demonstration of reprocessing techniques of commercial base, etc., as a part of the nuclear fuel cycle, and the relation between atomic power and other technologies in energy supply, the evalution of atomic power as the symbol of huge scale science, and the energy problem within the confrontation of economic development and the preservation of environment and resources regarding whole nuclear energy. The situations of fuel reprocessing in USA, UK, France, Germany and Japan are explained from the viewpoint of the history. The general background for the needs of nuclear energy in Japan, the image of nuclear energy and fuel reprocessing entertained by the general public, and the special feature of reprocessing techniques are described. (Nakai, Y.)

  16. Record of the second joint meetings of sub-groups A and B, Palo Alto, California, 24-25 January 1979

    International Nuclear Information System (INIS)

    1979-03-01

    The items discussed include the economic assessment of reprocessing and recycle, the safeguarding of reprocessing plants, an assessment of proliferation resistance, and alternative institutional arrangements

  17. Base case Pu-nitrate to Pu-oxide conversion plant

    International Nuclear Information System (INIS)

    1978-10-01

    This paper explains that the plutonium recovered in the course of reprocessing spent fuel is obtained in the form of plutonium nitrate, whereas PuO 2 is required for the fabrication of fuel rods. The reference conversion plant described in the paper converts plutonium nitrate into plutonium dioxide powder by precipitation with oxalic acid followed by calcination. The paper also describes the main features of the safety, maintenance and safeguards philosophy used in its design

  18. Chemical forms and discharge ratios to stack and sea of tritium from Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Mikami, Satoshi; Akiyama, Kiyomitsu; Miyabe, Kenjiro

    2002-03-01

    Chemical forms and discharge ratios to stack and sea of tritium form Tokai Reprocessing Plant of Japan Nuclear Cycle Development Institute (JNC) were investigated by analyzing monitoring data. It was ascertained that approximately 70-80% of tritium discharged from the main stack was tritiated water vapor (HTO) and approximately 20-30% was tritiated hydrogen (HT) as a result of analyzing the data taken from reprocessing campaign's in 1994, 1995, 1996, 1997, 2000 and 2001, and also that the amount of tritium released from the stack was less than 1% of tritium inventory in spent fuel and the amount of tritium released into sea was approximately 20-40% of inventory. (author)

  19. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Hisanori; Nagayama, Tetsuya; Horigome, Kazushi; Ishibashi, Atsushi; Kitao, Takahiko; Surugaya, Naoki

    2014-01-01

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  20. Risk assessment approach for Rokkasho reprocessing plant

    International Nuclear Information System (INIS)

    Ootou, Y.; Tamauchi, Y.; Hayashi, Y.; Takebe, K.; Miyata, T.

    2006-01-01

    Full text: It is desirable that the operation and maintenance of Rokkasho Reprocessing Plant (RRP) be established and conducted with maximum effectiveness and efficiency, making the best use of risk information to help the plant achieve further enhanced safety. Risk assessment is applied for RRP, and upgraded risk information is established. In the basic design phase, the potential incidents and accidents that might occur in the plant were identified systematically and exhaustively adopting the HAZOP method. After screening the potential for occurrence, the design basis accidents (DBAs) were identified and it was confirmed that the plant would not put the general public at risk of significant radiation exposure in the case of such accidents, even when assuming the single failure of dynamic apparatus in the prevention and mitigation systems. To support the deterministic safety assessment mentioned above, the risk assessment was conducted during the basic design phase. Of the DBAs and out-of-design basis accidents excluded from DBAs because of extremely rare occurrence possibilities, the risk assessment was conducted for such accidents which might cause relatively high consequence for the general public. The risk assessment was conducted using the PSA method generally used for nuclear power plants. After that, a review of the occurrence frequency assessment for some of the accidents was made, taking into account information relating to detailed design and operation procedures. Typical examples are a loss of the hydrogen scavenging function in the plutonium solution tank and a loss of cooling capability in the high-active liquid waste storage tank. The occurrence frequency for a loss of the hydrogen scavenging function was less than 10 -5 /year. The occurrence frequency for a loss of cooling capability was less than 10 -7 /year. In addition, an importance assessment (FV index, Risk Achievement Worth) was conducted, such as a contribution to the occurrence frequency

  1. A prototype for actinide alpha monitoring in liquid effluents of reprocessing plants

    International Nuclear Information System (INIS)

    Bardone, G.; Mattia, B.; Durante, R.; Frazzoli, F.V.

    1983-01-01

    The report deals with the design criteria of prototype measuring device, based on the alpha spectrometry, aimed to the determination of actinides solutions in reprocessing plants. The described instrument is considered as the result of a preliminary stage of development. Taking into account the experimental results obtained with Pu bearing solutions the performances achievable are evaluated; in particular, it turns out that the minimum detectable activity is about 10 -5 Ci/l

  2. Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation

    International Nuclear Information System (INIS)

    Boyer, Brian David; Erpenbeck, Heather H.; Miller, Karen A.; Ianakiev, Kiril D.; Reimold, Benjamin A.; Ward, Steven L.; Howell, John

    2010-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235 U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

  3. Isotopic safeguards data bank (ISTLIB) and control program (MISTY)

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1978-09-01

    As part of the U.S. program to provide technical assistance to the International Atomic Energy Agency (IAEA), the Pacific Northwest Laboratory (PNL) has developed a computer code and data bank to aid in the safeguards verification of spent fuel content at the head end of a reprocessing facility. A description and user instructions that uses isotopic safeguards techniques are presented for MISTY, a computer program for analyzing an isotopic data base (ISTLIB). The input, operating procedures, and output from MISTY are explained in detail. An output listing of an example computer run is provided to illustrate the program's operation. The contents of the data bank are summarized, and show the isotopic data sets that are available

  4. Maintenance management of emergency power supply equipment (uninterruptible power supply) in Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nishida, Kyosuke; Hiyama, Hisao; Shibata, Satomi; Iwasaki, Shogo; Inami, Shinichi

    2009-01-01

    Uninterruptible power supply systems are installed in the Tokai reprocessing plant in preparation for the emergency case that the commercial power supply is stopped by an accidental or intentional interruption in the supply of electricity. The uninterruptible power supply system particularly provides a temporary power source to the important devices for the radiation control of nuclear critical monitoring in the plant. Thus, the system is potentially important and essential for nuclear plants. The paper reports the current activities such as regular inspections, replacement of parts and system update, to maintain the function of uninterruptible power supply systems. (author)

  5. Nondestructive measurement of spent fuel assemblies at the Tokai Reprocessing and Storage Facility

    International Nuclear Information System (INIS)

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Lee, D.M.

    1979-12-01

    Nondestructive verification of irradiated fuel assemblies is an integral part of any safeguards system for a reprocessing facility. Available techniques are discussed with respect to the level of verification provided by each. A combination of high-resolution gamma spectrometry, neutron detectors, and gross gamma activity profile monitors provide a maximum amount of information in a minimum amount of time

  6. Off-gas processing method in reprocessing plant

    International Nuclear Information System (INIS)

    Kobayashi, Yoshihiro; Seki, Eiji.

    1990-01-01

    Off-gases containing a radioactive Kr gas generated in a nuclear fuel reprocessing plant are at first sent to a Kr gas separator. Then, the radioactive Kr gas extracted there is introduced to a Kr gas fixing device. A pretreatment and a post-treatment are applied by using a non-radioactive clean inert gas except for the Kr gas as a purge gas. If the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device after applying the post-treatment, the off gases are returned to the Kr gas separator. Accordingly, in a case where the radioactive Kr gas is contained in the off-gases discharged from the Kr gas fixing device, it is not necessary to apply the fixing treatment to all of the off gases. In view of the above, increase of the amount of processing gases can be suppressed and the radioactive Kr gas can be fixed efficiently and economically. (I.N.)

  7. Characteristics of radioactive waste streams generated in HTGR fuel reprocessing

    International Nuclear Information System (INIS)

    Lin, K.H.

    1976-01-01

    Results are presented of a study concerned with identification and characterization of radioactive waste streams from an HTGR fuel reprocessing plant. Approximate quantities of individual waste streams as well as pertinent characteristics of selected streams have been estimated. Most of the waste streams are unique to HTGR fuel reprocessing. However, waste streams from the solvent extraction system and from the plant facilities do not differ greatly from the corresponding LWR fuel reprocessing wastes

  8. EURATOM safeguards efforts in the development of spent fuel verification methods by non-destructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Matloch, L.; Vaccaro, S.; Couland, M.; De Baere, P.; Schwalbach, P. [Euratom, Communaute europeenne de l' energie atomique - CEEA (European Commission (EC))

    2015-07-01

    The back end of the nuclear fuel cycle continues to develop. The European Commission, particularly the Nuclear Safeguards Directorate of the Directorate General for Energy, implements Euratom safeguards and needs to adapt to this situation. The verification methods for spent nuclear fuel, which EURATOM inspectors can use, require continuous improvement. Whereas the Euratom on-site laboratories provide accurate verification results for fuel undergoing reprocessing, the situation is different for spent fuel which is destined for final storage. In particular, new needs arise from the increasing number of cask loadings for interim dry storage and the advanced plans for the construction of encapsulation plants and geological repositories. Various scenarios present verification challenges. In this context, EURATOM Safeguards, often in cooperation with other stakeholders, is committed to further improvement of NDA methods for spent fuel verification. In this effort EURATOM plays various roles, ranging from definition of inspection needs to direct participation in development of measurement systems, including support of research in the framework of international agreements and via the EC Support Program to the IAEA. This paper presents recent progress in selected NDA methods. These methods have been conceived to satisfy different spent fuel verification needs, ranging from attribute testing to pin-level partial defect verification. (authors)

  9. Transport and reprocessing of irradiated nuclear fuel

    International Nuclear Information System (INIS)

    Lenail, B.

    1981-01-01

    This contribution deals with transport and packaging of oxide fuel from and to the Cogema reprocessing plant at La Hague (France). After a general discussion of nuclear fuel and the fuel cycle, the main aspects of transport and reprocessing of oxide fuel are analysed. (Auth.)

  10. Reliability analysis of repairable safety systems of a reprocessing plant allowing for tolerable system downtimes

    International Nuclear Information System (INIS)

    Schaefer, H.

    1987-01-01

    GRS has been engaged in safety analysises of the German Reprocessing Plant for several years. The development and verification of appropriate reliability analysis methods, the generation of data as well as the search for an adequate structural presentation of the results to form a basis of recommendations for technical or administrative measures or contributions to risk oriented evaluations have been or are in the process of being established. In contrast to NPP-studies, the reliability assessment of safety systems of a reprocessing plant is applied to repairable and often relatively small systems allowing for tolerable system downtimes. A sketch of the diverse cooling systems of a vessel containing a selfheating solution is given. The interruption of the cooling function for about one day might be tolerable before boiling will be reached. This interval is suitable for transfer of the solution to a spare vessel or for repairing the failed components, thus restoring the cooling function

  11. A numerical simulation of 129I in the atmosphere emitted from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A global chemical transport model, MOZART-4, is applied to investigate the behavior of 129 I emitted from nuclear fuel reprocessing plants in Europe (Sellafield in the UK and La Hague in France). The result of numerical simulation for more than fifty-year period from the 1950s is validated by comparison with measurements of 129 I around the world and analyzed to clarify the characteristic of the distributions of concentration and deposition of 129 I. The modeled concentrations of 129 I in precipitation in Europe and the United States and inventories in the seawater around Japan and the Gulf of Mexico are in the same order as measurements. the emitted 129 I to the atmosphere is distributed all over the Northern Hemisphere due mainly to the prevailing westerlies and can be an important source of supply of artificial 129 I for the seawater remote from the point source such as a nuclear fuel reprocessing plant. (author)

  12. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Grison, J [Compagnie Generale des Matieres Nucleaires (COGEMA), Centre de la Hague, 50 - Cherbourg (France)

    1980-10-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis.

  13. Plutonium determination by spectrophotometry of plutonium (VI): control of the nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Grison, J.

    1980-01-01

    The plutonium (VI) spectrophotometric determination, after AgO oxidation in 3 M nitric acid medium, is used for the running-control of the nuclear fuel reprocessing plant at La Hague. Analytical device used in glove-box or shielded-cell is briefly described. This method is fast, sensitive, unfailing and gives simple effluents. It is applied by day and night shifts, during Light Water Reactor fuel reprocessing campaign, for 0.5 mg/l up to 20 g/l plutonium solutions. Reference solution measurements have a 0.8 to 1.4 % relative standard deviation; duplicate plutonium determinations give a 0.3% relative standard deviation for sample analysis. There is a discrepancy (- 0.3% to - 0.9%) between the spectrophotometric method results and the isotopic dilution analysis [fr

  14. Achievements and questions in the accountability of nuclear materials and their verification for safeguards purposes

    International Nuclear Information System (INIS)

    Deron, S.

    1990-01-01

    A very accurate accountability of nuclear materials is required throughout the industrial nuclear fuel cycle for technical reasons and safety purposes but also for commercial, physical protection and safeguards objectives. The present note intends to illustrate with a few samples the performance presently achieved and the major questions which the analysts are facing in these areas. The examples taken concern the accountability of feed and product materials at LWR nuclear fuel fabrication plants and spent fuel reprocessing plants. They were selected because they constitute major components of the flow and inventory of the nuclear fuel materials at key measurement points in nuclear industry. The factors limiting the quality of the assays and accountability of these industrial materials and some observations regarding the need and use of reference materials and quality control programmes in support of accurate accounting are presented. 7 refs

  15. Incineration of dry burnable waste from reprocessing plants with the Juelich incineration process

    International Nuclear Information System (INIS)

    Dietrich, H.; Gomoll, H.; Lins, H.

    1987-01-01

    The Juelich incineration process is a two stage controlled air incineration process which has been developed for efficient volume reduction of dry burnable waste of various kinds arising at nuclear facilities. It has also been applied to non nuclear industrial and hospital waste incineration and has recently been selected for the new German Fuel Reprocessing Plant under construction in Wackersdorf, Bavaria, in a modified design

  16. A global-scale dispersion analysis of iodine-129 from nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Nishizawa, Masato; Suzuki, Takashi; Nagai, Haruyasu; Togawa, Orihiko

    2010-01-01

    A three-dimensional global chemical transport model, MOZART-2, is applied to investigate the global-sale dispersion of Iodine-129 from nuclear fuel reprocessing plants. The concentration and deposition of 129 I obtained by MOZART-2 are dispersed all over the Northern Hemisphere. The emission of 129 I to the atmosphere is thus important in considering the transport of 129 I to remote sites. (author)

  17. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  18. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  19. Low and medium level liquid waste processing at the new La Hague reprocessing plant

    International Nuclear Information System (INIS)

    Alexandre, D.

    1986-05-01

    Reprocessing of spent nuclear fuels produces low and medium activity liquid wastes. These radioactive wastes are decontamined before release in environment. The new effluent processing plant, which is being built at La Hague, is briefly described. Radionuclides are removed from liquid wastes by coprecipitation. The effluent is released after decantation and filtration. Insoluble sludges are conditioned in bitumen [fr

  20. Dynamic analysis and response spectra for the main processing building of a reprocessing plant

    International Nuclear Information System (INIS)

    Mischke, J.; Hilpert, H.J.; Henkel, F.O.

    1984-01-01

    The article deals with the determination of the floor response spectra for the main processing building of the planned reprocessing plant due to the special loading conditions of earthquake, airplane crash and blast. With these spectra the stress and strain of the components and their bearing forces which react on the building can be calculated. (orig.) [de