WorldWideScience

Sample records for reprocessing mox spent

  1. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  2. A study on adsorption onto TODGA resin after electrolytic reduction in ERIX process for reprocessing spent FBR-MOX fuel

    International Nuclear Information System (INIS)

    Hoshi, Harutaka; Arai, Tsuyoshi; Wei, Yuezhou; Kumagai, Mikio; Asakura, Toshihide; Morita, Yasuji

    2005-01-01

    For reprocessing spent FBR-MOX fuel, an advanced aqueous reprocessing process ''ERIX process'' has been developed. In this system, hydrazine is used as reduction holding reagent for the valance adjustment of U by electrolytic reduction in nitric acid solution. Therefore, hydrazine is contained in high level liquid waste after separation of U, Pu and Np. Effect of hydrazine on adsorption of FP onto TODGA resin was examined. When hydrazine concentration was less than 0.3 M, effect on the distribution coefficient was negligibly small. After electrolytic reduction, some elements exist as lower valence state. Ru and Tc are most difficult elements to control their behavior in aqueous process. The distribution coefficient of both Ru and Tc onto TODGA decreased after electrolytic reduction, because they are reduced to lower valence. Hence, it is difficult for Ru or Tc to diffuse to allover the process and separation of MA from Tc and Ru was enhanced by electrolytic reduction. (author)

  3. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  4. Reprocessing of spent plasma

    International Nuclear Information System (INIS)

    Pierini, G.

    1981-01-01

    This invention relates to a process for removing helium and other impurities from a mixture containing deuterium and tritium, a deuterium/tritium mixture when purified in accordance with such a process and, more particularly, to a process for the reprocessing of spent plasma removed from a thermofusion reactor. (U.K.)

  5. Effect of high burn-up and MOX fuel on reprocessing, vitrification and disposal of PWR and BWR spent fuels based on accurate burn-up calculation

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, T.; Iwasaki, T.; Wada, K. [Tohoku Univ., Graduate School of Engineering, Dept. of Quantum Science and Energy Engineering, Sendai 980-8579 (Japan); Suyama, K. [Japan Atomic Energy Agency, Shirakata-Shirane 2-4, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2006-07-01

    To examine the procedures of the reprocessing, the vitrification and the geologic disposal, precise burn-up calculation for high burn-up and MOX fuels has been performed for not only PWR but also BWR by using SWAT and SWAT2 codes which are the integrated bum-up calculation code systems combined with the bum-up calculation code, ORIGEN2, and the transport calculation code, SRAC (the collision probability method) or MVP (the continuous energy Monte Carlo method), respectively. The calculation results shows that all of the evaluated items (heat generation and concentrations of Mo and Pt) largely increase and those significantly effect to the current procedures of the vitrification and the geologic disposal. The calculation result by SWAT2 confirms that the bundle calculation is required for BWR to be discussed about those effects in details, especially for the MOX fuel. (authors)

  6. Simulation of facility operations and materials accounting for a combined reprocessing/MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Coulter, C.A.; Whiteson, R.; Zardecki, A.

    1991-01-01

    We are developing a computer model of facility operations and nuclear materials accounting for a facility that reprocesses spent fuel and fabricates mixed oxide (MOX) fuel rods and assemblies from the recovered uranium and plutonium. The model will be used to determine the effectiveness of various materials measurement strategies for the facility and, ultimately, of other facility safeguards functions as well. This portion of the facility consists of a spent fuel storage pond, fuel shear, dissolver, clarifier, three solvent-extraction stages with uranium-plutonium separation after the first stage, and product concentrators. In this facility area mixed oxide is formed into pellets, the pellets are loaded into fuel rods, and the fuel rods are fabricated into fuel assemblies. These two facility sections are connected by a MOX conversion line in which the uranium and plutonium solutions from reprocessing are converted to mixed oxide. The model of the intermediate MOX conversion line used in the model is based on a design provided by Mike Ehinger of Oak Ridge National Laboratory (private communication). An initial version of the simulation model has been developed for the entire MOX conversion and fuel fabrication sections of the reprocessing/MOX fuel fabrication facility, and this model has been used to obtain inventory difference variance estimates for those sections of the facility. A significant fraction of the data files for the fuel reprocessing section have been developed, but these data files are not yet complete enough to permit simulation of reprocessing operations in the facility. Accordingly, the discussion in the following sections is restricted to the MOX conversion and fuel fabrication lines. 3 tabs

  7. Characteristics of plutonium, curium and uranium in hulls of FUGEN MOX spent fuel by destructive analysis

    International Nuclear Information System (INIS)

    Iijima, Shizuka; Goto, Yuichi; Samoto, Hirotaka; Shichi, Ryo; Shimizu, Takenori

    2011-01-01

    We have been developing a non-destructive assay system called hulls monitor for nuclear fuel materials retained in hulls at the Tokai Reprocessing Plant (TRP). The hulls monitor is based on a passive neutron measurement method, so its applicability should be evaluated by a destructive analysis of hulls that are recovered from the reprocessing process. In this study, hulls came from the Advanced Thermal Reactor (ATR) FUGEN were taken from the dissolution process of TRP and destructively analyzed. Two kinds of hulls from ATR-MOX spent fuel assemblies and from ATR-UO 2 spent fuel assemblies were taken and soaked with nitric acid then fused with ammonium hydrogen sulfate, followed by Pu, 244 Cm, U mass determination by alpha spectrometry and ICP-AES. The characteristics of hulls came from MOX spent fuel assemblies were revealed by comparison of ATR-MOX spent fuel with ATR-UO 2 spent fuel. (author)

  8. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Kidd, S.

    2008-01-01

    The closed fuel cycle is the most sustainable approach for nuclear energy, as it reduces recourse to natural uranium resources and optimises waste management. The advantages and disadvantages of used nuclear fuel reprocessing have been debated since the dawn of the nuclear era. There is a range of issues involved, notably the sound management of wastes, the conservation of resources, economics, hazards of radioactive materials and potential proliferation of nuclear weapons. In recent years, the reprocessing advocates win, demonstrated by the apparent change in position of the USA under the Global Nuclear Energy Partnership (GNEP) program. A great deal of reprocessing has been going on since the fourties, originally for military purposes, to recover plutonium for weapons. So far, some 80000 tonnes of used fuel from commercial power reactors has been reprocessed. The article indicates the reprocessing activities and plants in the United Kigdom, France, India, Russia and USA. The aspect of plutonium that raises the ire of nuclear opponents is its alleged proliferation risk. Opponents of the use of MOX fuels state that such fuels represent a proliferation risk because the plutonium in the fuel is said to be 'weapon-use-able'. The reprocessing of used fuel should not give rise to any particular public concern and offers a number of potential benefits in terms of optimising both the use of natural resources and waste management.

  9. Analysis of the implications of the USSR providing reprocessing and MOX fabrication services to other countries

    International Nuclear Information System (INIS)

    1994-01-01

    This brief analysis, which is based on unclassified sources, seeks to identify what some of the implications would be if the Soviets started to move actively to try to provide reprocessing and MOX fabrication services to the US and other countries. While information on Soviet intentions is limited, it postulates that the Soviets would offer to reprocess spent LWR at competitive prices, fabricate the plutonium and reenrich the uranium, and sell these products back to the customer. Since it is not known whether they would insist on returning the waste from reprocessing or would be prepared to keep it, we comment briefly on what the implications of either of these actions might be

  10. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V

    2000-07-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOX {yields} MOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  11. Pyro-electrochemical reprocessing of irradiated MOX fast reactor fuel, testing of the reprocessing process with direct MOX fuel production

    International Nuclear Information System (INIS)

    Kormilitzyn, M.V.; Vavilov, S.K.; Bychkov, A.V.; Skiba, O.V.; Chistyakov, V.M.; Tselichshev, I.V.

    2000-01-01

    One of the advanced technologies for fast reactor fuel recycle is pyro-electrochemical molten salt technology. In 1998 we began to study the next phase of the irradiated oxide fuel reprocessing new process MOXMOX. This process involves the following steps: - Dissolution of irradiated fuel in molten alkaline metal chlorides, - Purification of melt from fission products that are co-deposited with uranium and plutonium oxides, - Electrochemical co-deposition of uranium and plutonium oxides under the controlled cathode potential, - Production of granulated MOX (crushing,salt separation and sizing), and - Purification of melt from fission products by phosphate precipitation. In 1998 a series of experiments were prepared and carried out in order to validate this process. It was shown that the proposed reprocessing flowsheet of irradiated MOX fuel verified the feasibility of its decontamination from most of its fission products (rare earths, cesium) and minor-actinides (americium, curium)

  12. Hydrothermal synthesis for fabrication and reprocessing of MOX nuclear fuel

    International Nuclear Information System (INIS)

    Ohta, Suguru; Yamamura, Tomoo; Shirasaki, Kenji; Satoh, Isamu; Shikama, Tatsuo

    2011-01-01

    To improve the nuclear proliferation resistance and to minimize use of chemicals, a new reprocessing and fabrication process of 'mixed oxide' (MOX) fuel was proposed and studied by using simulated spent fuel solutions. The process is consisting of the two steps, i.e. the removal of fission product (FP) from dissolved spent fuel by using carbonate solutions (Step-1), and hydrothermal synthesis of uranium dioxides (Step-2). In Step-1, rare earth (the precipitation ratio: 90%) and alkaline earth (10-50% for Sr) as FP were removed based on their low solubility of hydroxides and carbonate salts, with uranium kept dissolved for the certain carbonate solutions of weak base (Type 2) or mixtures of relatively strong base and weak base (Type 3). In Step-2, the features of uranium dioxides UO 2+x particles, i.e. stoichiometry (x=0.05-0.2), size (0.2-3 μm) and shape (cubic, spherical, rectangular parallelpiped, etc.), were controlled, and the cesium was removed down to 40 ppm by an addition of organic additives. The decontamination factors (DF) for cesium exceeds 10 5 , whereas the total DF of all the simulated FP were as low as the order of 10 which requires future studies for removal of alkaline earth, Re and Tc etc. (author)

  13. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Schmitt, D.

    1985-01-01

    How should the decision in favour of reprocessing and against alternative waste management concepts be judged from an economic standpoint. Reprocessing is not imperative neither for resource-economic reasons nor for nuclear energy strategy reasons. On the contrary, the development of an ultimate storage concept representing a real alternative promising to close, within a short period of time, the nuclear fuel cycle at low cost. At least, this is the result of an extensive economic efficiency study recently submitted by the Energy Economics Institute which investigated all waste management concepts relevant for the Federal Republic of Germany in the long run, i.e. direct ultimate storage of spent fuel elements (''Other waste disposal technologies'' - AE) as well as reprocessing of spent fuel elements where re-usable plutonium and uranium are recovered and radioactive waste goes to ultimate storage (''Integrated disposal'' - IE). Despite such fairly evident results, the government of the Federal Republic of Germany has favoured the construction of a reprocessing plant. From an economic point of view there is no final answer to the question whether or not the argumentation is sufficient to justify the decision to construct a reprocessing plant. This is true for both the question of technical feasibility and issues of overriding significance of a political nature. (orig./HSCH) [de

  14. Spent fuel reprocessing method

    International Nuclear Information System (INIS)

    Shoji, Hirokazu; Mizuguchi, Koji; Kobayashi, Tsuguyuki.

    1996-01-01

    Spent oxide fuels containing oxides of uranium and transuranium elements are dismantled and sheared, then oxide fuels are reduced into metals of uranium and transuranium elements in a molten salt with or without mechanical removal of coatings. The reduced metals of uranium and transuranium elements and the molten salts are subjected to phase separation. From the metals of uranium and transuranium elements subjected to phase separation, uranium is separated to a solid cathode and transuranium elements are separated to a cadmium cathode by an electrolytic method. Molten salts deposited together with uranium to the solid cathode, and uranium and transuranium elements deposited to the cadmium cathode are distilled to remove deposited molten salts and cadmium. As a result, TRU oxides (solid) such as UO 2 , Pu 2 in spent fuels can be reduced to U and TRU by a high temperature metallurgical method not using an aqueous solution to separate them in the form of metal from other ingredients, and further, metal fuels can be obtained through an injection molding step depending on the purpose. (N.H.)

  15. Evironmental assessment factors relating to reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    1978-05-01

    This document is in two parts. Part I presents the criteria and evaluation factors, based primarily on US experience, which may be used to carry out an environmental assessment of spent fuel reprocessing. The concept of As Low as is Reasonably Achievable (ALARA) is introduced in limiting radiation exposure. The factors influencing both occupational and general public radiation exposure are reviewed. Part II provides information on occupational and general public radiation exposure in relation to reprocessing taken from various sources including UNSCEAR and GESMO. Some information is provided in relation to potential accidents at reprocessing or MOX fuel refabrication plants. The magnitude of the services, energy, land use and non-radiological effluents for the reference design of reprocessing plant are also presented

  16. Safeguarding of large scale reprocessing and MOX plants

    International Nuclear Information System (INIS)

    Howsley, R.; Burrows, B.; Longevialle, H. de; Kuroi, H.; Izumi, A.

    1997-01-01

    In May 97, the IAEA Board of Governors approved the final measures of the ''93+2'' safeguards strengthening programme, thus improving the international non-proliferation regime by enhancing the effectiveness and efficiency of safeguards verification. These enhancements are not however, a revolution in current practices, but rather an important step in the continuous evolution of the safeguards system. The principles embodied in 93+2, for broader access to information and increased physical access already apply, in a pragmatic way, to large scale reprocessing and MOX fabrication plants. In these plants, qualitative measures and process monitoring play an important role in addition to accountancy and material balance evaluations in attaining the safeguard's goals. This paper will reflect on the safeguards approaches adopted for these large bulk handling facilities and draw analogies, conclusions and lessons for the forthcoming implementation of the 93+2 Programme. (author)

  17. Reprocessing of spent nuclear fuel

    International Nuclear Information System (INIS)

    Gal, I.

    1964-12-01

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing

  18. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plants for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  19. Spent fuel management: reprocessing or storage

    International Nuclear Information System (INIS)

    Lima Soares, M.L. de; Oliveira Lopes, M.J. de.

    1986-01-01

    A review of the spent fuel management concepts generally adopted in several countries is presented, including an analysis of the brazilian situation. The alternatives are the reprocessing, the interim storage and the final disposal in a repository after appropriate conditioning. The commercial operating reprocessing facilities in the Western World are located in France and in the United Kingdom. In the USA the anti-reprocessing policy from 1977 changed in 1981, when the Government supported the resumption of commercial reprocessing and designated the private sector as responsible for providing these services. Small scale facilities are operating in India, Italy, Japan and West Germany. Pilot plant for LWR fuel are being planned by Spain, Pakistan and Argentina. (Author) [pt

  20. Reprocessing method for spent fuel

    International Nuclear Information System (INIS)

    Fujie, Makoto; Shoji, Yuichi; Kobayashi, Tsuguyuki.

    1997-01-01

    After reducing oxides of uranium (U), plutonium (Pu) and miner actinides in spent fuels by magnesium (Mg) in a molten salt, rear earth element oxides and salts of alkali metals and alkaline earth metals contained in the molten salt phase are separated and removed. Further, the Mg phase containing the reduced metals is evaporated to separate and remove Mg, thereby recovering U, Pu and minor actinides. In a lithium (Li) process, Li 2 O also generated in the reduction step is regenerated to Li simultaneously, and the reduction is conducted while suppressing the Li 2 O concentration in the molten salt low. This can improve the reduction rate of oxides of U, Pu and minor actinides compared with conventional cases. Since Li 2 O is regenerated into Li in the reduction step of the Li process, deposited Li 2 O is not carried to an electrolysis purification step, and recovering rate of U, Pu and minor actinides is not lowered. (T.M.)

  1. Status and trends in spent fuel reprocessing

    International Nuclear Information System (INIS)

    2005-09-01

    The management of spent fuel arising from nuclear power production is a crucial issue for the sustainable development of nuclear energy. The IAEA has issued several publications in the past that provide technical information on the global status and trends in spent fuel reprocessing and associated topics, and one reason for this present publication is to provide an update of this information which has mostly focused on the conventional technology applied in the industry. However, the scope of this publication has been significantly expanded in an attempt to make it more comprehensive and by including a section on emerging technologies applicable to future innovative nuclear systems, as are being addressed in such international initiatives as INPRO, Gen IV and MICANET. In an effort to be informative, this publication attempts to provide a state-of-the-art review of these technologies, and to identify major issues associated with reprocessing as an option for spent fuel management. It does not, however, provide any detailed information on some of the related issues such as safety or safeguards, which are addressed in other relevant publications. This report provides an overview of the status of reprocessing technology and its future prospects in terms of various criteria in Section 2. Section 3 provides a review of emerging technologies which have been attracting the interest of Member States, especially in the international initiatives for future development of innovative nuclear systems. A historical review of IAEA activities associated with spent fuel reprocessing, traceable back to the mid-1970s, is provided in Section 4, and conclusions in Section 5. A list of references is provided at the end the main text for readers interested in further information on the related topics. Annex I summarizes the current status of reprocessing facilities around the world, including the civil operational statistics of Purex-based plants, progress with decommissioning and

  2. Management of spent solvents of reprocessing origin

    International Nuclear Information System (INIS)

    Manohar, S.; Srinivas, C.; Vincent, T.; Wattal, P.K.

    2001-01-01

    Spent solvents of reprocessing origin constitute a major portion of radioactive liquid organic wastes arising from nuclear activity. An in-depth study of this waste stream has led to the evolution of a complete management option, which addresses not only the concern of radioactivity but also its organic nature. This is based on alkaline hydrolysis of Tri-n-butyl phosphate (TBP), which converts it into aqueous soluble products, viz. sodium salt of dibutyl phosphoric acid and butanol. During the process of alkaline hydrolysis almost all the activity associated with the waste gets transferred into the aqueous phase. The recovered diluent virtually free of activity and TBP can be recycled, and in case of it not meeting reprocessing standards, can be incinerated. The process generated aqueous waste is found compatible with cement and can be immobilized in cement matrix. (author)

  3. Legal questions concerning the termination of spent fuel element reprocessing

    International Nuclear Information System (INIS)

    John, Michele

    2005-01-01

    The thesis on legal aspects of the terminated spent fuel reprocessing in Germany is based on the legislation, jurisdiction and literature until January 2004. The five chapters cover the following topics: description of the problem; reprocessing of spent fuel elements in foreign countries - practical and legal aspects; operators' responsibilities according to the atomic law with respect to the reprocessing of Geman spent fuel elements in foreign countries; compatibility of the prohibition of Geman spent fuel element reprocessing in foreign countries with international law, European law and German constitutional law; results of the evaluation

  4. International Atomic Energy Agency (IAEA) Activity on Technical Influence of High Burnup UOX and MOX Water Reactor Fuel on Spent Fuel Management

    International Nuclear Information System (INIS)

    Lovasic, Z.; Einziger, R.

    2009-01-01

    This paper briefly reviews the results of the International Atomic Energy Agency (IAEA) project investigating the influence of high burnup and mixed-oxide (MOX) fuels, from water power reactors, on spent fuel management. These data will provide information on the impacts, regarding spent fuel management, for those countries operating light-water reactors (LWR)s and heavy-water reactors (HWR)s with zirconium alloy-clad uranium dioxide (UOX) fuels, that are considering the use of higher burnup UOX or the introduction of reprocessing and MOX fuels. The mechanical designs of lower burnup UOX and higher burnup UOX or MOX fuel are very similar, but some of the properties (e.g., higher fuel rod internal pressures; higher decay heat; higher specific activity; and degraded cladding mechanical properties of higher burnup UOX and MOX spent fuels) may potentially significantly affect the behavior of the fuel after irradiation. These properties are reviewed. The effects of these property changes on wet and dry storage, transportation, reprocessing, re-fabrication of fuel, and final disposal were evaluated, based on regulatory, safety, and operational considerations. Political and strategic considerations were not taken into account since relative importance of technical, economic and strategic considerations vary from country to country. There will also be an impact of these fuels on issues like non-proliferation, safeguards, and sustainability, but because of the complexity of factors affecting those issues, they are only briefly discussed. Data gaps were also identified during this investigation. The pros and cons of using high burnup UOX or MOX, for each applicable issue in each stage of the back end of the fuel cycle, were evaluated and are discussed.. Although, in theory, higher burnup fuel and MOX fuels mean a smaller quantity of spent fuel, the potential need for some changes in design of spent fuel storage, transportation, handling, reprocessing, re-fabrication, and

  5. Reprocessing

    International Nuclear Information System (INIS)

    Couture, J.; Rougeau, J.-P.

    1987-01-01

    The course of development of a comprehensive nuclear power industry has its own pace which implies the timely progressive and consistent mastery of each industrial step. In the nuclear fuel it is not surprising that the back-end services have lastly reached the industrial stage. In France, we have now fully completed the industrial demonstration of the closed fuel cycle. Our experience covers all necessary steps : transportation of spent fuel, storage, reprocessing, waste conditioning, recovered uranium recycling, plutonium recycling in thermal MOX fuels, plutonium-based fuel for FBR. While FBR development is a long term target, recycling of fissile materials in present LWR reactors appears to be a source of noticable savings. In the meantime rational management of waste material is the key for increased safety and better environment protection. Reprocessing activity is certainly the major achievement of the back-end strategy. The proven efficiency of this technique as it is implemented at La Hague facility gives the full assurance of a smooth operation of the under completion UP3 unit. The base-load management system which applies during the first ten years of its operation will make possible a noticable reduction of the commercial price for reprocessing services by the end of the century. Industrial maturity being confirmed, economic maturity is now the outstanding merit of the reprocessing and recycling strategy. It is a permanent challenge, to which the response is definitely positive in the sense of reducing the nuclear KWh production cost. (author)

  6. Method of reprocessing spent nuclear fuels

    International Nuclear Information System (INIS)

    Kamiyama, Hiroaki; Inoue, Tadashi; Miyashiro, Hajime.

    1987-01-01

    Purpose: To facilitate the storage management for the wastes resulting from reprocessing by chemically separating transuranium elements such as actionoid elements together with uranium and plutonium. Method: Spent fuels from a nuclear reactor are separated into two groups, that is, a mixture of uranium, plutonium and transuranium elements and cesium, strontium and other nuclear fission products. Virgin uranium is mixed to adjust the mixture of uranium, plutonium and transuranium elements in the first group, which is used as the fuels for the nuclear reactor. After separating to recover useful metals such as cesium and strontium are separated from short half-decay nuclear fission products of the second group, other nuclear fission products are stored and managed. This enables to shorten the storage period and safety storage and management for the wastes. (Takahashi, M.)

  7. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  8. Power Reactor Fuel Reprocessing Plant-2, Tarapur: a benchmark in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    Power Reactor Fuel Reprocessing Plant-2 (PREFRE-2) is latest operating spent nuclear fuel reprocessing plant in India. This plant has improved design based on latest technology and feedback provided by the earlier plants. The design of PREFRE-2 plant is in five cycles of solvent extraction using TBP as extractant. The plant is commissioned in year 2011 after regulatory clearances

  9. Reprocessing of spent fuel and public acceptance

    International Nuclear Information System (INIS)

    Imai, Ryukichi

    1977-01-01

    The public acceptance has to be considered regarding whole atomic power rather than the reprocessing of nuclear fuel separately, and the problems concerned are as follows; the release of radioactive materials in the normal and abnormal operations of reprocessing plants, the disposal of wastes with high level radioactivity, the transportation of high level radioactive material, the relation to the economic activity near nuclear plants, the environmental effect of 85 Kr. and 3 H, etc., and the physical protection for reprocessing facility itself, the special handling of the materials of very high radioactivity level such as fission products and plutonium, the radiation exposure of operators, and the demonstration of reprocessing techniques of commercial base, etc., as a part of the nuclear fuel cycle, and the relation between atomic power and other technologies in energy supply, the evalution of atomic power as the symbol of huge scale science, and the energy problem within the confrontation of economic development and the preservation of environment and resources regarding whole nuclear energy. The situations of fuel reprocessing in USA, UK, France, Germany and Japan are explained from the viewpoint of the history. The general background for the needs of nuclear energy in Japan, the image of nuclear energy and fuel reprocessing entertained by the general public, and the special feature of reprocessing techniques are described. (Nakai, Y.)

  10. Spent fuel management in France: Reprocessing, conditioning, recycling

    International Nuclear Information System (INIS)

    Giraud, J.P.; Montalembert, J.A. de

    1994-01-01

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m 3 per year of mine tailings. By the year 2000, less than 500 m 3 of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory

  11. Storage and Reprocessing of Spent Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Addressing the problem of waste, especially high-level waste (HLW), is a requirement of the nuclear fuel cycle that cannot be ignored. We explore the two options employed currently, long-term storage and reprocessing.

  12. Power Reactor Fuel Reprocessing Plant-1: a stepping stone in Indian PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pradhan, Sanjay; Dubey, K.; Qureshi, F.T.; Lokeswar, S.P.

    2017-01-01

    India has low reserves of uranium and high reserves of thorium. In order to optimize resource utilization India has adopted a closed fuel cycle to ensure long-term energy security. The optimum resource utilization is feasible only by adopting reprocessing, conditioning and recycle options. It is very much imperative to view spent fuel as a vital resource material and not a waste to be disposed off. Thus, spent nuclear fuel reprocessing forms an integral part of the Indian Nuclear Energy Programme. Aqueous reprocessing based on PUREX technology is in use for more than 50 years and has reached a matured status

  13. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1981-01-01

    This rule is stipulated under the provisions of reprocessing business in the law concerning regulation of nuclear raw materials, nuclear fuel materials and nuclear reactors and to execute them. Basic terms are defined, such as exposure radiation dose, cumulative dose, control area, security area, surrounding monitoring area, worker, radioactive waste and facility for discharging into the sea. The application for the designation for reprocessing business under the law shall include the maximum reprocessing capacities per day and per year of each kind of spent fuel, to be reprocessed and the location, structure and equipment of reprocessing facilities as specified in the regulation. Records shall be made in each works or enterprise on the inspection, operation and maintenance of reprocessing facilities, radiation control, accidents and weather, and kept for particular periods respectively. Reprocessing enterprisers shall set up control area, security area and surrounding monitoring area to restrict entrance, etc. Specified measures shall be taken by these enterprisers concerning the exposure radiation doses of workers. Reprocessing facilities shall be inspected and examined more than once a day. The regular self-inspection and operation of reprocessing facilities, the transport and storage of nuclear fuel materials, the disposal of radioactive wastes in works or enterprises where reprocessing facilities are located, and security rules are defined in detail, respectively. (Okada, K.)

  14. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1980-01-01

    The office ordinance is established under the provisions related to reprocessing businesses of the law concerning regulation of nuclear raw materials, nuclear fuel materials and reactors, to enforce the provisions. The basic terms are defined, such as exposure radiation dose; accumulated dose; controlled area; maintenance area; surrounding watch area; employee; radioactive waste; the facilities for discharge to sea. An application for the designation of reprocessing businesses shall be filed, listing the following matters: the maximum daily and yearly reprocessing capacities for each kind of spent fuel; the location and general structure of reprocessing facilities; the structures of buildings; the structure and equipments of main reprocessing facilities, the storage facilities for products and the disposal facilities for radioactive wastes; the equipments of measuring and control system facilities and radiation control facilities, etc. Records shall be made on the inspection of reprocessing facilities, radiation control, operation, maintenance, the accidents of reprocessing facilities and weather, and kept for the period from one to ten years, respectively. Any person engaging in reprocessing businesses shall set up control, maintenance and surrounding watch areas, and take specified measures to restrict the entrance of persons. The measures to be taken against exposure radiation dose, the inspection, regular independent examination and operation of reprocessing facilities and other related matters are stipulated in detail. (Okada, K.)

  15. Reprocessing flowsheet and material balance for MEU spent fuel

    International Nuclear Information System (INIS)

    Abraham, L.

    1978-10-01

    In response to nonproliferation concerns, the high-temperature gas-cooled reactor (HTGR) Fuel Recycle Development Program is investigating the processing requirements for a denatured medium-enriched uranium--thorium (MEU/Th) fuel cycle. Prior work emphasized the processing requirements for a high-enriched uranium--thorium (HEU/Th) fuel cycle. This report presents reprocessing flowsheets for an HTGR/MEU fuel recycle base case. Material balance data have been calculated for reprocessing of spent MEU and recycle fuels in the HTGR Recycle Reference Facility (HRRF). Flowsheet and mass flow effects in MEU-cycle reprocessing are discussed in comparison with prior HEU-cycle flowsheets

  16. Cost analysis of the US spent nuclear fuel reprocessing facility

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, E.A.; Deinert, M.R. [Department of Mechanical Engineering, University of Texas, Austin TX (United States); Cady, K.B. [Department of Theoretical and Applied Mechanics, Cornell University, Ithaca NY (United States)

    2009-09-15

    The US Department of Energy is actively seeking ways in which to delay or obviate the need for additional nuclear waste repositories beyond Yucca Mountain. All of the realistic approaches require the reprocessing of spent nuclear fuel. However, the US currently lacks the infrastructure to do this and the costs of building and operating the required facilities are poorly established. Recent studies have also suggested that there is a financial advantage to delaying the deployment of such facilities. We consider a system of government owned reprocessing plants, each with a 40 year service life, that would reprocess spent nuclear fuel generated between 2010 and 2100. Using published data for the component costs, and a social discount rate appropriate for intergenerational analyses, we establish the unit cost for reprocessing and show that it increases slightly if deployment of infrastructure is delayed by a decade. The analysis indicates that achieving higher spent fuel discharge burnup is the most important pathway to reducing the overall cost of reprocessing. The analysis also suggests that a nuclear power production fee would be a way for the US government to recover the costs in a manner that is relatively insensitive to discount and nuclear power growth rates. (author)

  17. Spent fuel reprocessing past experience and future prospects

    International Nuclear Information System (INIS)

    Megy, J.

    1983-09-01

    A large experience has been gathered from the early fifties till now in the field of spent fuel reprocessing. As the main efforts in the world have been made for developping the reactors and the fuel fabrication industry to feed them, the spent fuel reprocessing activities came later and have not yet reached the industrial maturity existing to day for plants such as PWRs. But in the principal nuclear countries spent fuel reprocessing is to day considered as a necessity with two simultaneous targets: 1. Recovering the valuable materials, uranium and plutonium. 2. Conditionning the radioactive wastes to ensure safe definitive storage. The paper reviews the main steps: 1. Reprocessing for thermal reactor fuels: large plants are already operating or in construction, but in parallel a large effort of R and D is still under way for improvements. 2. The development of fast breeder plants implies associated fuel reprocessing facilities: pilot plants have demonstrated the closing of the cycle. The main difficulties encountered will be examined and particularly the importance of taking into account the problems of effluents processing and wastes storage [fr

  18. Reprocessing of spent nuclear fuel; Prerada isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za visoku aktivnost, Vinca, Beograd (Serbia and Montenegro)

    1963-12-15

    This report covers: chemical-technology investigation of modified purex process for reprocessing of spent fuel; implementation of the procedure for obtaining plutonium peroxide and oxalate; research in the field of uranium, plutonium, and fission products separation by inorganic ion exchangers and extraction by organic solutions; study of the fission products in the heavy water RA reactor.

  19. Reasons for and against reprocessing of spent fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Gries, W

    1983-06-01

    In the following the reasons for and against the main methods of waste disposal are compared. The author examines the advantages and disadvantages of waste disposal by reprocessing of spent fuel assemblies or by immediate ultimate storage. To get a general idea the pros and cons are arranged and analysed according to the following subjects: - technology/science, - safety/environment, - profitability, - political aspects.

  20. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  1. Spent solvent treatment process at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Sasaki, Akihiro; Saka, Munenori; Araya, Toshiyuki; Kitamura, Tomohiro; Wakamatsu, Toshiyuki

    2005-01-01

    In order to dispose of spent organic solvent and diluent produced by the PUREX method, it is desirable that it should be in stable form for easy handling. For this reason, spent solvent is reduced to powder form and further molded so that it becomes easier to handle for temporary storage at Rokkasho Reprocessing Plant (RRP). In this paper, the treatment unit for reducing spent solvent to powder form and the treatment unit for modeling the powder are introduced as well as their treatment results during Chemical Test. (author)

  2. Survey of economics of spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Valvoda, Z.

    1976-01-01

    Literature data are surveyed on the economic problems of reprocessing spent fuel from light-water reactors in the period 1970 to 1975 and on the capacity of some reprocessing plants, such as NFS, Windscale, Marcoule, etc. The sharp increase in capital and production costs is analyzed and the future trend is estimated. The question is discussed of the use of plutonium and the cost thereof. The economic advantageousness previously considered to be the primary factor is no longer decisive due to new circumstances. The main objective today is to safeguard uninterrupted operation of nuclear power plants and the separation of radioactive wastes from the fuel cycle and the safe disposal thereof. (Oy)

  3. The reasons for and against reprocessing of spent fuel elements

    International Nuclear Information System (INIS)

    Gries, W.

    1983-01-01

    In the following the reasons for and against the main methods of waste disposal are compred. The author examines the advantages and disadvantages of waste disposal by reprocessing of spent fuel assemblies or by immediate ultimate storage. To get a general idea the pros and cons are arranged and analysed according to the following subjects: - technology/science, - safety/environment, - profitability, - political aspects. (orig./UA) [de

  4. gamma-ray spectra measurements for long cooled MOX spent fuels

    International Nuclear Information System (INIS)

    Murakami, Kiyonobu; Kobayashi, Iwao

    1993-09-01

    Gamma-ray spectra of spent fuels have important informations in the estimation of burnup rate, concentration of fission products, cooling time and etc. which are required in the fuel loading control of reactors and special nuclear materials accountancy from the view point of safe guard. Although, some available data are given about uranium dioxide fuels, few data are given about uranium and plutonium dioxide mixtures (MOX fuels). Especially, there is few data about MOX fuels which are irradiated in thermal reactors and cooled more than ten years. Gamma-ray spectra are measured for PuO 2 -UO 2 fuel rods (IFA-159, IFA-160) which are irradiated at HBWR in Norway up to 9,420 and 5,340MWd/t respectively. Gamma-ray spectra had been measured about the two fuels ten years ago at the spent fuel pond of Japan Demonstration Reactor (JPDR). The objectives of this measurement is to know how decayed the gamma-ray spectra in these ten years and some fission products are there which are effective to estimate burnup rate of spent MOX fuels. (author)

  5. Reprocessing of AHWR spent-fuel: Challenges and strategies

    International Nuclear Information System (INIS)

    Kant, S.

    2005-01-01

    Reprocessing of advanced heavy water reactor (AHWR) spent-fuel involves separation of Th, 233 U and Pu, from the fission products and from one another. A proper combination of Purex and Thorex processes is required. The technology development for a reprocessing facility is extremely complex owing to high fissile content, high levels of irradiation, presence high of levels of 232 U, difficulty in thoria dissolution, presence of thorium as the major constituent, problems due to third phase formation with Th, etc. It demands for development of suitable dissolution, solvent extraction, criticality control, U-Pu partitioning, and other equipments and/or techniques. Process modelling, simulation and optimisation are crucial in predicting behaviour of equipments/cycles, and in arriving at safe and optimum flowsheet. A significant success in this field has been achieved. This paper describes the reprocessing aspects pertaining to AHWR spent-fuel, indicating the major technological challenges, strategies to be followed and development requirements. A schematic flowsheet is proposed for Th- 233 U-Pu separation. (author)

  6. Extending Spent Fuel Storage until Transport for Reprocessing or Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, Brett; Chiguer, Mustapha; Grahn, Per; Sampson, Michele; Wolff, Dietmar; Bevilaqua, Arturo; Wasinger, Karl; Saegusa, Toshiari; Seelev, Igor

    2016-09-01

    Spent fuel (SF) must be stored until an end point such as reprocessing or geologic disposal is imple-mented. Selection and implementation of an end point for SF depends upon future funding, legisla-tion, licensing and other factors that cannot be predicted with certainty. Past presumptions related to the availability of an end point have often been wrong and resulted in missed opportunities for properly informing spent fuel management policies and strategies. For example, dry cask storage systems were originally conceived to free up needed space in reactor spent fuel pools and also to provide SFS of up to 20 years until reprocessing and/or deep geological disposal became available. Hundreds of dry cask storage systems are now employed throughout the world and will be relied upon well beyond the originally envisioned design life. Given present and projected rates for the use of nuclear power coupled with projections for SF repro-cessing and disposal capacities, one concludes that SF storage will be prolonged, potentially for several decades. The US Nuclear Regulatory Commission has recently considered 300 years of storage to be appropriate for the characterization and prediction of ageing effects and ageing management issues associated with extending SF storage and subsequent transport. This paper encourages addressing the uncertainty associated with the duration of SF storage by de-sign – rather than by default. It suggests ways that this uncertainty may be considered in design, li-censing, policy, and strategy decisions and proposes a framework for safely extending spent fuel storage until SF can be transported for reprocessing or disposal – regardless of how long that may be. The paper however is not intended to either encourage or facilitate needlessly extending spent fuel storage durations. Its intent is to ensure a design and safety basis with sufficient margin to accommodate the full range of potential future scenarios. Although the focus is primarily on

  7. Apparatus and method for reprocessing and separating spent nuclear fuels

    International Nuclear Information System (INIS)

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H.; Coops, M.S.

    1983-01-01

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A non-oxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel. (author)

  8. A utility analysis of MOX recycling policy

    International Nuclear Information System (INIS)

    Pfaeffli, J.L.

    1990-01-01

    The author presents the advantages of recycling of plutonium and uranium from spent reactor fuel assemblies as follows: natural uranium and enrichment savings, mixed oxide fuel (MOX) fuel assembly cost, MOX compatibility with plant operation, high burnups, spent MOX reprocessing, and non-proliferation aspects.Disadvantages of the recycling effort are noted as well: plutonium degradation with time, plutonium availability, in-core fuel management, administrative authorizations by the licensings authorities, US prior consent, and MOX fuel fabrication capacity. Putting the advantages and disadvantages in perspective, it is concluded that the recycling of MOX in light water reactors represents, under the current circumstances, the most appropriate way of making use of the available plutonium

  9. SMOPY, a new NDA tool for safeguards of LEU and MOX spent fuel

    International Nuclear Information System (INIS)

    Lebrun, A.; Merelli, M.; Szabo, J.-L.; Huver, M.; Arenas-Carrasco, J.

    2001-01-01

    Upon IAEA request, the French support program to IAEA Safeguards has developed a new device for control of the irradiated LEU and MOX fuels. The Safeguards Mox Python (SMOPY) is the achievement of a 4 years R and D program supported by CEA and COGEMA in partnership with Eurisys Mesures. The SMOPY system is based on the combination of 2 NDA techniques (passive neutron and room temperature gamma spectrometry) and on line interpretation tools (automatic gamma spectrum interpretation, depletion code EVO). Through the measurement managing software, all this contributes to the fully automatic measurement, interpretation and characterization of any kind of spent fuel. The device is transportable (50 kg, 60 cm) and is composed of four parts: 1. the measurement head with one high efficiency fission chamber and a micro room temperature gamma spectrometric probe; 2. the carrier which carries the measurement head. The carrier bottom fits the racks for accurate positioning and its top fits operator's fuel moving tool; 3. the portable electronic cabinet which includes both neutron and gamma electronic cards; 4. the portable PC which gets inspectors data, controls the measurement, get measured values, interprets them and immediately provides the inspector with worthwhile info for appropriate on the field decisions. Main features of SMOPY are: Discrimination of MOX versus LEU irradiated fuels in any case (conservative case is one cycle MOX versus three cycles LEU after short cooling time); Full characterization of irradiated LEU (burnup, cooling time, Pu amounts ...); Partial Defect Test on LEU fuels. A first version of SMOPY has been tested in industrial condition during summer 2000. This tests shown a need of shielding improvement around the gamma detector. A new version has been build a will be qualified during a new field test and then the system will be ready for routine operation in IAEA and commercial delivery. After giving details about the system itself, this paper

  10. Reprocessing of spent nuclear fuels in OECD countries

    International Nuclear Information System (INIS)

    1977-01-01

    This report deals with the adequacy of projected reprocessing capacity, the short-term measures proposed in view of the lack of sufficient reprocessing capacity, the longer term measures proposed in view of the lack of sufficient reprocessing capacity, the alternatives to reprocessing and the cooperative arrangements

  11. Current Status of Spent Fast Reactor Fuel Reprocessing and Waste Treatment in Various Countries: United States of America

    International Nuclear Information System (INIS)

    2011-01-01

    Due to the previous strategic US decision on treating SNF as waste and not pursuing the reprocessing option, development work for the FR fuel cycle was only performed in a few laboratories, although interest is now increasing again. ORNL together with ANL have been influential in promoting the wider use of centrifugal contactors (favoured due to the high fissile content and decay power of FR fuel materials), associated remote handling systems and hardware prototypes for most unit operations in the reprocessing conceptual designs in the context of their development of the Consolidated Fuel Reprocessing Program. There is limited experience with reprocessing tests on the Fast Flux Text Facility (FFTF) MOX fuel. ORNL has undertaken small tests on laboratory scale dissolution and solvent extraction of MOX fuel irradiated to 220 GW/t HM burnup at around 2 kg batch scale [180-186]. The initiative called the breeder reprocessing engineering test (BRET) was started in the 1980s with a focus on the developmental activity of the US DOE to demonstrate breeder fuel reprocessing technology while closing the fuel cycle for the FFTF. The process was supposed to be installed at the existing Fuels and Materials Examination Facility (FMEF) at the Hanford Site, Richland, Washington. The major objectives of BRET were to: - Develop and demonstrate reprocessing technology and systems for breeder fuel; - Close the fuel cycle for the FFTF; - Provide an integrated test of breeder reactor fuel cycle technology - reprocessing, safeguards and waste management. The quest for pyrochemical alternatives to aqueous reprocessing has been under way in the USA since the late 1950s. Approaches examined at various levels of development and for a variety of fuels include alloy melting, FP volatilization and adsorption, fluoride and chloride volatility methods, redox solvent extractions between liquid salt and metal phases, precipitation and fractional crystallization, and electrowinning and electro

  12. Spent fuel reprocessing system availability definition by process simulation

    International Nuclear Information System (INIS)

    Holder, N.; Haldy, B.B.; Jonzen, M.

    1978-05-01

    To examine nuclear fuel reprocessing plant operating parameters such as maintainability, reliability, availability, equipment redundancy, and surge storage requirements and their effect on plant throughput, a computer simulation model of integrated HTGR fuel reprocessing plant operations is being developed at General Atomic Company (GA). The simulation methodology and the status of the computer programming completed on reprocessing head end systems is reported

  13. Ministerial ordinance on the establishment of a reserve fund for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    1984-01-01

    The ministerial ordinance provides for a reserve fund for spent nuclear fuel reprocessing, according to the Electricity Enterprises Act. The Government designates an electricity enterprise that must deposit a reserve fund for spent nuclear fuel reprocessing. The electricity enterprise concerned must deposit a certain sum of money as a reserve fund which is the payment left over from spent fuel reprocessing at the end of a fiscal year minus the same at the end of the preceding year less a certain sum, when the former exceeds the latter. Then, concerning the remainder of the reserve fund in the preceding year, a certain sum must be subtracted from this reserve fund. (Mori, K.)

  14. Solvent extraction for spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Masui, Jinichi

    1986-01-01

    The purex process provides a solvent extraction method widely used for separating uranium and plutonium from nitric acid solution containing spent fuel. The Tokai Works has adopted the purex process with TPB-n dodecane as the extraction agent and a mixer settler as the solvent extraction device. The present article outlines the solvent extraction process and discuss the features of various extraction devices. The chemical principle of the process is described and a procedure for calculating the number of steps for countercurrent equilibrium extraction is proposed. Discussion is also made on extraction processes for separating and purifying uranium and plutonium from fission products and on procedures for managing these processes. A small-sized high-performance high-reliability device is required for carrying out solvent extraction in reprocessing plants. Currently, mixer settler, pulse column and centrifugal contactor are mainly used in these plants. Here, mixer settler is comparted with pulse column with respect to their past achievements, design, radiation damage to solvent, operation halt, controllability and maintenance. Processes for co-extraction, partition, purification and solvent recycling are described. (Nogami, K.)

  15. Analysis and study of spent fuel reprocessing technology from birth to present

    International Nuclear Information System (INIS)

    Takahashi, Keizo

    2006-01-01

    As for the nuclear fuel reprocessing of the spent fuel, although there was argument of pros and cons, it was decided to start Rokkasho reprocessing project further at the Japan Atomic Energy Commission of ''Long-Term Program for Research, Development and Utilization of Nuclear Energy'' in year 2004. The operation of Tokai Reprocessing is going steadily to reprocess spent fuel more than 1,100 tons. In this paper, history, present status and future of reprocessing technology is discussed focusing from military Pu production, Magnox fuel reprocessing to oxide fuel reprocessing. Amount of reprocessed fuel are estimated based on fuel type. Then, history of reprocessing, US, UK, France, Germany, Russian, Belgian and Japan is presented and compared on technology, national character, development organization, environmental protection, and high active waste vitrification. Technical requirements are increased from Pu production fuel, Magnox fuel and oxide fuel mainly because of higher burnup. Reprocessing technology is synthetic of engineering and accumulation of operational experience. The lessons learned from the operational experience of the world will be helpful for establishment of nuclear fuel reprocessing technology in Japan. (author)

  16. Pilot and pilot-commercial plants for reprocessing spent fuels of FBR type reactors

    International Nuclear Information System (INIS)

    Shaldaev, V.S.; Sokolova, I.D.

    1988-01-01

    A review of modern state of investigations on the FBR mixed oxide uranium-plutonium fuel reprocessing abroad is given. Great Britain and France occupy the leading place in this field, operating pilot plants of 5 tons a year capacity. Technology of spent fuel reprocessing and specific features of certain stages of the technological process are considered. Projects of pilot and pilot-commercial plants of Great Britain, France, Japan, USA are described. Economic problems of the FBR fuel reprocessing are touched upon

  17. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1987-01-01

    Regulations specified here cover application for such matters as designation of reprocessing undertaking, permission of construction of reprocessing facilities, permission and approval of alteration (of plan for reprocessing facilities), etc. The regulations also cover application for prior inspection, execution of prior inspection, technical standards concerning performance of reprocessing facilities, certificate of prior inspection, reprocessing facilities subject to welding inspection, application for welding inspection, execution of welding inspection, facilities not subject to welding inspection, approval of welding method, welding inspection for imported equipment, certificate of welding inspection, reprocessing facilities subject to regular inspection, application for regular inspection, technical standards for regular inspection, operation plan, application for approval of joint management, record keeping, restriction on access to areas under management, measures concerning exposure to radioactive rays, patrol and checking in reprocessing facilities, operation of reprocessing facilities, self-imposed regular inspection of reprocessing facilities, transportation within plant or operation premises, storage, waste disposal within plant or operation premises, safety rules, notice of disassembly, measures for emergency, notice of abolition of business, notice of disorganization, measures concerning cancellation of designation, submission of report, etc. (Nogami, K.)

  18. Development of MOX facilities and the impact on the nuclear fuel markets

    International Nuclear Information System (INIS)

    Patterson, J.

    1990-01-01

    Mixed-oxide (MOX) fuel is nearing maturity as a fuel supply option. This paper briefly reviews the history and current status of the MOX fuel market, including the projected increase in demand for MOX fuel as more plutonium becomes available from the operation of commercial irradiated fuel reprocessing plants in Europe. The uncertainties of such projected demand are discussed, together with the anticipated requirements from the next generation of MOX fabrication plants. The impact of the growing demand for MOX fuel is assessed in the traditional sectors of the uranium fuel cycle. Finally, the author turns to a generalized treatment of the economic aspects of MOX fuel utilization, showing the financially attractive regimes of MOX use which will benefit nuclear power utilities and continue to ensure that MOX fuel can consolidate its position as a mature fuel supply option in those countries that have opted to recycle their spent fuel

  19. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing

    International Nuclear Information System (INIS)

    Ferreira, Rafael Vicente de Padua

    2008-01-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  20. Status and trends in spent fuel reprocessing. Proceedings of an advisory group meeting

    International Nuclear Information System (INIS)

    1999-08-01

    Spent fuel management has always been an important part of the nuclear fuel cycle and is still one of the most important activities in all countries exploiting the peaceful use of nuclear energy. Continuous attention is being given by the IAEA to the collection, analysis and exchange of information on spent fuel management. Its role in this area is to provide a forum for exchanging information and to coordinate and encourage closer co-operation among Member States in certain research and developing activities that are of common interest. As part of spent fuel management, reprocessing activities have been reviewed from time to time on a low profile level under the terminology 'spent fuel treatment'. However, spent fuel treatment covers, in broad terms, spent fuel storage (short, interim and long term), fuel rod consolidation, reprocessing and, in case the once-through cycle is selected, conditioning of the spent fuel for disposal. Hence the reprocessing activities under the heading 'spent fuel treatment' were somewhat misleading. Several meetings on spent fuel treatment have been organized during the fast decade: an Advisory Group meeting (AGM) in 1992, a Technical Committee meeting in 1995 and recently an Advisory Group meeting from 7 to 10 September 1998. The objectives of the meetings were to review the status and trends of spent fuel reprocessing, to discuss the environmental impact and safety aspects of reprocessing facilities and to define the most important issues in this field. Notwithstanding the fact that the Summary of the report does not include aspects of military reprocessing, some of the national presentations do refer to some relevant aspects (e.g. experience, fissile stockpiles)

  1. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1979-01-01

    The regulations are defined under provisions concerning the reprocessing business in the law for the regulations of nuclear source materials, nuclear fuel materials and reactors. The basic concepts and terms are explained, such as: exposure dose; accumulative dose; controlled area; safeguarded area; inspected surrounding area; employee; radioactive waste and marine discharging facilities. Any person who gets permission for design of reprocessing facilities and method of the construction shall file an application, listing name and address of the person and the works or the place of enterprise where reprocessing facilities are to be set up, design of such facilities and method of the construction, in and out-put chart of nuclear fuel materials in reprocessing course, etc. Records shall be made and kept for particularly periods in each works or enterprise on inspection of reprocessing facilities, control of dose, operation, maintenance, accident of reprocessing facilities and weather. Detailed prescriptions are settled on entrance limitation to controlled area, exposure dose, inspection and check, regular independent examination and operation of reprocessing facilities, transportation in the works or the enterprise, storage, disposal, safeguard and measures in dangerous situations, etc. Reports shall be filed on exposure dose of employees and other specified matters in the forms attached and in the case otherwise defined. (Okada, K.)

  2. Economic assessment factors relating to spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    This paper is in two parts. Part I discusses the factors to be applied in an economic assessment of reprocessing. It sets forth three basic cost components, namely capital costs, operating costs and the cost of capital utilization. It lists the various components of each cost area. Part II proposes a relationship between these respective cost areas, tabulates a range of costs and then develops unit costs for reprocessing operations. Finally, an addendum to the paper gives a more detailed breakdown of the capital costs of a reprocessing plant

  3. Simulation of spent fuel reprocessing processes: Realizations and prospects

    International Nuclear Information System (INIS)

    Boullis, B.

    1986-12-01

    The separation of uranium and plutonium in the Purex process is very complex and for the extension of reprocessing plants optimization of the process requires mathematical modelling. The development of this model is reviewed [fr

  4. Isotopic Details of the Spent Catawba-1 MOX Fuel Rods at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Ronald James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    The United States Department of Energy funded Shaw/AREVA MOX Services LLC to fabricate four MOX Lead Test Assemblies (LTA) from weapons-grade plutonium. A total of four MOX LTAs (including MX03) were irradiated in the Catawba Nuclear Station (Unit 1) Catawba-1 PWR which operated at a total thermal power of 3411 MWt and had a core with 193 total fuel assemblies. The MOX LTAs were irradiated along with Duke Energy s irradiation of eight Westinghouse Next Generation Fuel (NGF) LEU LTAs (ref.1) and the remaining 181 LEU fuel assemblies. The MX03 LTA was irradiated in the Catawba-1 PWR core (refs.2,3) during cycles C-16 and C-17. C-16 began on June 5, 2005, and ended on November 11, 2006, after 499 effective full power days (EFPDs). C-17 started on December 29, 2006, (after a shutdown of 48 days) and continued for 485 EFPDs. The MX03 and three other MOX LTAs (and other fuel assemblies) were discharged at the end of C-17 on May 3, 2008. The design of the MOX LTAs was based on the (Framatome ANP, Inc.) Mark-BW/MOX1 17 17 fuel assembly design (refs. 4,5,6) for use in Westinghouse PWRs, but with MOX fuel rods with three Pu loading ranges: the nominal Pu loadings are 4.94 wt%, 3.30 wt%, and 2.40 wt%, respectively, for high, medium, and low Pu content. The Mark-BW/MOX1 (MOX LTA) fuel assembly design is the same as the Advanced Mark-BW fuel assembly design but with the LEU fuel rods replaced by MOX fuel rods (ref. 5). The fabrication of the fuel pellets and fuel rods for the MOX LTAs was performed at the Cadarache facility in France, with the fabrication of the LTAs performed at the MELOX facility, also in France.

  5. Extraction of Uranium Using Nitrogen Dioxide and Carbon Dioxide for Spent Fuel Reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Kayo Sawada; Daisuke Hirabayashi; Youichi Enokida [EcoTopia Science Institute, Nagoya University, Nagoya, 464-8603 (Japan)

    2008-07-01

    For the reprocessing of spent nuclear fuels, a new method to extract actinides from spent fuel using highly compressed gases, nitrogen dioxide and carbon dioxide was proposed. Uranium extraction from broken pieces, whose average grain size was 5 mm, of uranium dioxide pellet with nitrogen dioxide and carbon dioxide was demonstrated in the present study. (authors)

  6. The regulations concerning the reprocessing business of spent fuels

    International Nuclear Information System (INIS)

    1978-01-01

    In compliance with ''The law for the regulations of nuclear source material, nuclear fuel material and reactors'' these regulations prescribe concerning reprocessing facilities: The procedures to apply for the approval of the design and method of construction and the approval of the change thereof; as well as the procedure to apply for the inspection of the facilities, and details of the inspection (in sections 2-6). After that, the regulations require the enterpriser of reprocessing business to keep necessary records and take necessary measures for safety concerning the facilities, operation of reprocessing equipments, and transportation, storage on disposal of used fuel, materials separated therefrom or materials contaminated by either of them (in sections 8-16). Further, the regulations prescribe the procedure to apply for the approval of the safety rule required to the enterpriser of reprocessing business by above mentioned law and specifies items which should be included into the rule (section 17). Moreover, the regulations require the enterpriser to submit reports of each use of the internationally controllled material and specifies the items which should be included into these reports (section 19). (Matsushima, A.)

  7. Reprocessing of spent nuclear fuels. Status and trends

    International Nuclear Information System (INIS)

    Hultgren, Aa.

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs

  8. Reprocessing of spent nuclear fuel; Prerada isluzenog nuklearnog goriva

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    This volume contains the following reports: Experimental facility for testing and development of pulsed columns and auxiliary devices; Chemical-technology study of the modified 'Purex' process; Chemical and radiometric control analyses; Chromatographic separation of rare earth elements on paper treated by di-n butylphosphate; Preliminary study of some organic nitrogen extracts significant in fuel reprocessing.

  9. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    The report gives a general summary of the Swedish KBS-project on management and disposal of vitrified reprocessed waste. Its final aim is to demostrate that the means of processing and managing power reactor waste in an absolutely safe way, as stipulated in the Swedish so called Conditions Act, already exist. Chapters on Storage facility for spent fuel, Intermidiate storage of reprocessed waste, Geology, Final repository, Transportation, Protection, and Siting. (L.E.)

  10. Development of some operations in technological flowsheet for spent VVER fuel reprocessing at a pilot plant

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Galkin, B.Ya; Lyubtsev, R.I.; Romanovskii, V.N.; Velikhov, E.P.

    1981-01-01

    The fuel reprocessing pilot plants for high active materials would permit the study and development or particular processing steps and flowsheet variations; in some cases, these experimental installations realize on a small scale practically all technological chains of large reprocessing plants. Such a fuel reprocessing pilot plant with capacity of 3 kg U/d has been built at V. G. Khlopin Radium Institute. The pilot plant is installed in the hot cell of radiochemical compartment, and is composed of the equipments for fuel element cutting and dissolving, the preparation of feed solution (clarification, correction), extraction reprocessing and the production of uranium, plutonium and neptunium concentrates, the complex processing of liquid and solid wastes and a special unit for gas purification and analysis. In the last few years, a series of experiments have been carried out on the reprocessing of spent VVER fuel. (J.P.N.)

  11. Oxidizing dissolution of spent MOX47 fuel subjected to water radiolysis: Solution chemistry and surface characterization by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Jegou, C., E-mail: christophe.jegou@cea.f [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Caraballo, R.; De Bonfils, J.; Broudic, V.; Peuget, S. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France); Vercouter, T. [Commissariat a l' Energie Atomique (CEA), Saclay Reasearch Center, B.P. 11, F-91191 Gif-sur-Yvette Cedex (France); Roudil, D. [Commissariat a l' Energie Atomique (CEA), Marcoule Reasearch Center, B.P. 17171, F-30207 Bagnols-sur-Ceze Cedex (France)

    2010-04-01

    The mechanisms of oxidizing dissolution of spent MOX fuel (MIMAS TU2 (registered) ) subjected to water radiolysis were investigated experimentally by leaching spent MOX47 fuel samples in pure water at 25 deg. C under different oxidizing conditions (with and without external gamma irradiation); the leached surfaces were characterized by Raman spectroscopy. The highly oxidizing conditions resulting from external gamma irradiation significantly increased the concentration of plutonium (Pu(V)) and uranium (U(VI)) compared with a benchmark experiment (without external irradiation). The oxidation behavior of the plutonium-enriched aggregates differed significantly from that of the UO{sub 2} matrix after several months of leaching in water under gamma irradiation. The plutonium in the aggregates appears to limit fuel oxidation. The only secondary phases formed and identified to date by Raman spectroscopy are uranium peroxides that generally precipitate on the surface of the UO{sub 2} grains. Concerning the behavior of plutonium, solution analysis results appear to be compatible with a conventional explanation based on an equilibrium with a Pu(OH){sub 4(am)} phase. The fission product release - considered as a general indicator of matrix alteration - from MOX47 fuel also increases under external gamma irradiation and a change in the leaching mode is observed. Diffusive leaching was clearly identified, coinciding with the rapid onset of steady-state actinide concentrations in the bulk solution.

  12. MOX fuel fabrication technology in J-MOX

    International Nuclear Information System (INIS)

    Osaka, Shuichi; Yoshida, Ryouichi; Yamazaki, Yukiko; Ikeda, Hiroyuki

    2014-01-01

    Japan Nuclear Fuel Ltd. (JNFL) has constructed JNFL MOX Fuel Fabrication Plant (J-MOX) since 2010. The MIMAS process has been introduced in the powder mixing process from AREVA NC considering a lot of MOX fuel fabrication experiences at MELOX plant in France. The feed material of Pu for J-MOX is MH-MOX powder from Rokkasho Reprocessing Plant (RRP) in Japan. The compatibility of the MH-MOX powder with the MIMAS process was positively evaluated and confirmed in our previous study. This paper describes the influences of the UO2 powder and the recycled scrap powder on the MOX pellet density. (author)

  13. Determination of overall decontamination factors for common impurity elements in PHWR spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pant, D.K.; Bhalerao, B.A.; Gupta, K.K.; Kulkarni, P.G.; Gurba, P.B.; Janardan, P.; Changrani, R.D.; Dey, P.K.

    2009-01-01

    An attempt has been made to determine overall decontamination factors for elemental impurities normally encountered in the U 3 O 8 product obtained by reprocessing of PHWR spent fuel. The solution obtained by dissolution of spent fuel and corresponding U 3 O 8 product were analyzed for 24 elemental impurities by ICP-AES for this purpose. Decontamination factors achieved for major neutron poisons are in the range of 200-400. (author)

  14. Reprocessing techniques of LWR spent fuel for reutilization in hybrid systems and IV generation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Aruquipa, Wilmer; Velasquez, Carlos E.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Barros, Graiciany de P. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Since the era of nuclear technology begins, nuclear reactors have been produced spent fuel. This spent fuel contains material that could be recycle and reprocessed by different processes. All these processes aim to reduce the contribution to the final repository through the re-utilization of the nuclear material. Therefore, some new reprocessing options with non-proliferation characteristics have been proposed and the goal is to compare the different techniques used to maximize the effectiveness of the spent fuel utilization and to reduce the volume and long-term radiotoxicity of high-level waste by irradiation with neutron with high energy such as the ones created in hybrid reactors. In order to compare different recovery methods, the cross sections of fuels are calculated with de MCNP code, the first set consists of thorium-232 spiked with the reprocessed material and the second set in depleted uranium that containing 4.5% of U-235 spiked with the reprocessed material; These sets in turn are compared with the cross section of the UO{sub 2} in order to evaluate the efficiency of the reprocessed fuel as nuclear fuel. (author)

  15. The nuclear future; prospects for reprocessing and mixed oxide nuclear fuel; why use MOX in civil reactors?

    International Nuclear Information System (INIS)

    Bay, H.

    2002-01-01

    There are many answer to the question 'Why use MOX in civil reactors?'. The most likely one is because plutonium is an energy source and MOX is used when it is economic to do so. Other incentives include the reduction of global separated plutonium stocks and the subsequent potential reduction of proliferation risk. (author)

  16. The MOX

    International Nuclear Information System (INIS)

    Legay, Christophe

    1997-06-01

    In this report, the author first proposes a presentation of plutonium with a brief history of its discovery and the discovery of other transuranic elements, a presentation of its main characteristics, and a description of its production ways. He also proposes an overview of data regarding world plutonium production and plutonium stock situation. The second part addresses the MOX fuel in relationship with the choice of non proliferation. The author describes the MOX fuel cycle (production, use in reactor, and reprocessing) and outlines the environmental and economic benefits of this fuel, and its interest within the frame of struggle against nuclear proliferation. The third part addresses the present situation and perspectives. He comments the American posture (principles and recent statements), discusses alternatives regarding nuclear wastes, and outlines MOX opportunities by evoking the French case and international perspectives, and the benefits in terms of matching irreversibility and safety

  17. Prospect of spent fuel reprocessing and back-end cycling in China in 1990's

    International Nuclear Information System (INIS)

    Ke Youzhi; Wang Rengtao

    1987-01-01

    According to the CHinese Program of nuclear energy in 1990's, the amount of spent fuel by the year 2000 is estimated in this paper. Reprocessing is considered as an important link in the back-end fuel cycle. A pilot plant is scheduled for hot start up in 1996. The main goal of the study is LWR spent fuel reprocessing. We will use the experience gained from reprocessing of production reactor fuel and last research results. The advanced foreign technigue and experience will be introduced. The study emphasizes on the test of technology, equipments, instrumentation and automation, development of remote maintenance and decontamination. China will start to demonstrate the way for fuel cycle. (author)

  18. Trends for minimization of radioactive waste arising from spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Polyakov, A.S.; Koltunov, V.S.; Marchenko, V.I.; Ilozhev, A.P.; Mukhin, I.V.

    2000-01-01

    Research and development of technologies for radioactive waste (RAW) minimization arising from spent nuclear fuel reprocessing are discussed. Novel reductants of Pu and Np ions, reagents of purification recycled extractant, possibility of the electrochemical methods are studied. The partitioning of high activity level waste are considered. Examples of microbiological methods decomposition of radioactive waste presented. (authors)

  19. Removal of spent fuel from the TVR reactor for reprocessing and proposals for the RA reactor spent fuel handling

    International Nuclear Information System (INIS)

    Volkov, E.B.; Konev, V.N.; Shvedov, O.V.; Bulkin, S.Yu; Sokolov, A.V.

    2002-01-01

    The 2,5 MW heavy-water moderated and cooled research reactor TVR was located at the Moscow Institute for Theoretical and Experimental Physics site. In 1990 the final batch of spent nuclear fuel (SNF) from the TVR reactor was transported for reprocessing to Production Association (PA) 'Mayak'. This transportation of the SNF was a part of TVR reactor decommissioning. The special technology and equipment was developed in order to fulfill the preparation of TVR SNF for transportation. The design of the TVR reactor and the fuel elements used are similar to the design and fuel elements of the RA reactor. Two different ways of RA spent fuel elements for transportation to reprocessing plant are considered: in aluminum barrels, and in additional cans. The experience and equipment used for the preparing TVR fuel elements for transportation can help the staff of RA reactor to find the optimal way for these technical operations. (author)

  20. Evaluation on maintenance technology developed in Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2008-01-01

    Tokai reprocessing plant (TRP) has been processing 1,140 tons of spent fuels, including 29tons of Fugen MOX fuels, since the beginning of its active operation in Sept.1977. For 30 years operation of TRP, many technological problems have been overcome to obtain the stable and reliable operation. This knowledge of maintenance technology could contribute to the safety and stable operation of Rokkasho reprocessing plant (RRP), as well as to the design and construction of the next reprocessing plant. (author)

  1. The economics of reprocessing versus direct disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Bunn, M.; Holdren, J.P.; Fetter, S.; Zwaan, B. van der

    2007-01-01

    The economics of reprocessing versus direct disposal of spent nuclear fuel are assessed. The break-even uranium price at which reprocessing spent nuclear fuel from existing light water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is estimated for a wide range of reprocessing prices and other fuel cycle costs and parameters. The contribution of each fuel cycle option to the cost of electricity is also estimated. A similar analysis is performed for the breakeven uranium price at which deploying fast neutron reactors (FRs) would become competitive compared with a once-through fuel cycle in LWRs, for a range of differences in capital cost between LWRs and FRs. Available information about reprocessing prices and various other fuel cycle costs and input parameters are reviewed, as well as the quantities of uranium likely to be recoverable worldwide at a range of different possible future prices. It is concluded that the once-through fuel cycle is likely to remain significantly cheaper than reprocessing and recycling in either LWRs or FRs for at least the next 50 years. Finally, there is a discussion of how scarce and expensive repository space would have to become before separation and transmutation would be economically attractive. (author)

  2. Crud in the solvent extraction process for spent fuel reprocessing

    International Nuclear Information System (INIS)

    Chen Jing

    2004-01-01

    The crud occurred in Purex process is caused by the degradations of extractant and solvent and the existence of insoluble solid particle in the nuclear fuel reprocessing. The crud seriously affects the operation of the extraction column. The present paper reviews the study status on the crud in the Purex process. It is generally accepted that in the Purex process, particularly in the first cycle, the crud occurrence is related to the capillary chemistry phenomena resulting from the deposits of Zr with TBP degradation products HDBP, H 2 MBP, H 3 PO 4 and the insoluble particle RuO 2 and Pd. The occurrence of deposits and the type of crud are tightly related to the molar ratio of HDBP and Zr, and the aqueous pH. In addition, the effect of degradation products from the diluent, such as kerosene, is an unnegligible factor to cause the crud. The crud can be discharged from the extraction equipment with Na 2 CO 3 or oxalic acid. In the study on simulating the crud, the effects of the deposits of Zr with TBP degradation products HDBP, H 2 MBP and H 2 PO 4 , and the insoluble particle RuO 2 and Pd should be considered at the same time. (authors)

  3. Evaluation of full MOX core capability for a 900 MWe PWR

    International Nuclear Information System (INIS)

    Joo, Hyung-Kook; Kim, Young-Jin; Jung, Hyung-Guk; Kim, Young-Il; Sohn, Dong-Seong

    1996-01-01

    Full MOX capability of a PWR core with 900 MWe capacity has been evaluated in view of plutonium consumption and design feasibility as an effective means for spent fuel management. Three full MOX cores have been conceptually designed; for annual cycle, for 18-month cycle, and for 18-month cycle with high moderation lattice. Fissile and total plutonium quantities at discharge are significantly reduced to 60% and 70% respectively of initial value for standard full MOX cores. It is estimated that one full MOX core demands about 1 tonne of plutonium per year to be reloaded, which is equivalent to reprocessing of spent nuclear fuels discharged from five nuclear reactors operating with uranium fuels. With low-leakage loading scheme, a full MOX core with either annual or 18-month cycle can be designed satisfactorily by installing additional rod cluster control system and modifying soluble boron system. Overall high moderation lattice case promises better core nuclear characteristics. (author)

  4. The use of curium neutrons to verify plutonium in spent fuel and reprocessing wastes

    International Nuclear Information System (INIS)

    Miura, N.

    1994-05-01

    For safeguards verification of spent fuel, leached hulls, and reprocessing wastes, it is necessary to determine the plutonium content in these items. We have evaluated the use of passive neutron multiplicity counting to determine the plutonium content directly and also to measure the 240 Pu/ 244 Cm ratio for the indirect verification of the plutonium. Neutron multiplicity counting of the singles, doubles, and triples neutrons has been evaluated for measuring 240 Pu, 244 Cm, and 252 Cf. We have proposed a method to establish the plutonium to curium ratio using the hybrid k-edge densitometer x-ray fluorescence instrument plus a neutron coincidence counter for the reprocessing dissolver solution. This report presents the concepts, experimental results, and error estimates for typical spent fuel applications

  5. Burning of MOX fuels in LWRs; fuel history effects on thermal properties of hull and end piece wastes and the repository performance

    International Nuclear Information System (INIS)

    Hirano, Fumio; Sato, Seichi; Kozaki, Tamotsu

    2012-01-01

    The thermal impacts of hull and end piece wastes from the reprocessing of MOX spent fuels burned in LWRs on repository performance were investigated. The heat generation rates in MOX spent fuels and the resulting heat generation rates in hull and end piece wastes change depending on the history of MOX fuels. This history includes the burn-up of UO 2 spent fuels from which the Pu is obtained, the cooling period before reprocessing, the storage period of fresh MOX fuels before being loaded into an LWR, as well as the burn-up of the MOX fuels. The heat generation rates in hull and end piece wastes from the reprocessing of MOX spent fuels with any of those histories are significantly larger than those from UO 2 spent fuels with burn-ups of 45 GWd/THM. If a temperature below 80degC is specified for cement-based materials used in waste packages after disposal, the allowable number of canisters containing compacted hull and end pieces in a package for 45 and 70 GWd-MOX needs to be limited to a value of 0.4-1.6, which is significantly lower than 4.0 for 45 GWd-UO 2 . (author)

  6. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    International Nuclear Information System (INIS)

    Van Hecke, K.; Goethals, P.

    2006-01-01

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  7. Research on advanced aqueous reprocessing of spent nuclear fuel: literature study

    Energy Technology Data Exchange (ETDEWEB)

    Van Hecke, K.; Goethals, P.

    2006-07-15

    The goal of the partitioning and transmutation strategy is to reduce the radiotoxicity of spent nuclear fuel to the level of natural uranium in a short period of time (about 1000 years) and thus the required containment period of radioactive material in a repository. Furthermore, it aims to reduce the volume of waste requiring deep geological disposal and hence the associated space requirements and costs. Several aqueous as well as pyrochemical separation processes have been developed for the partitioning of the long-lived radionuclides from the remaining of the spent fuel. This report aims to describe and compare advanced aqueous reprocessing methods.

  8. MOX fuel fabrication and utilisation in LWRs worldwide

    International Nuclear Information System (INIS)

    Provost, J.-L.; Schrader, M.; Nomura, S.

    2000-01-01

    Early in the development of the nuclear programme, a large part of the countries using nuclear energy has studied the reprocessing and recycling option in order to develop a safe conditioning of fission products and to recycle fissile materials in reactors. In the sixties, the feasibility of recycling plutonium in LWRs has been successfully demonstrated by several experimentations of MOX rod irradiations in different countries. Based on the background of the MOX behaviour collected during the seventies and on the results of the important MOX experimentation program implemented during this period, a large part of the European utilities decided at the beginning of the eighties to use MOX fuel in LWRs on an industrial scale. The main goals of the utilities were to use as a fuel an available fissile material and to control the stockpile of separated plutonium. Today, the understanding of the behaviour of plutonium fuel has grown significantly since the launch of the first R and D programmes on LWR and FR MOX fuels. Plutonium oxide physical and neutron behaviour is well known, its modelling is now available as well as experimentally validated. Up to now, more than 750 tHM MOX fuel (more than 2000 FAs) have been loaded in 29 PWRs and in 2 BWRs in Europe, corresponding to the recycling of about 35 t of plutonium. Reprocessing/recycling technology has reached maturity in the main nuclear industry countries. Spent fuel reprocessing and recycling of the separated fissile materials remains the main option for the back-end cycle. Today, the operation of MOX-recycling LWRs is considered satisfactory. Experience feedback shows that, in global terms, MOX cores behaviour is equivalent to that of UO 2 cores in terms of operation and safety. (author)

  9. THE ECONOMICS OF REPROCESSING vs. DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    International Nuclear Information System (INIS)

    Bunn, Matthew; Fetter, Steve; Holdren, John P.; Zwaan, Bob van der

    2003-01-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices

  10. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management

    International Nuclear Information System (INIS)

    2008-01-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX TM process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel cycles

  11. The transportation of PuO2 and MOX fuel and management of irradiated MOX fuel

    International Nuclear Information System (INIS)

    Dyck, H.P.; Rawl, R.; Durpel, L. van den

    2000-01-01

    Information is given on the transportation of PuO 2 and mixed-oxide (MOX) fuel, the regulatory requirements for transportation, the packages used and the security provisions for transports. The experience with and management of irradiated MOX fuel and the reprocessing of MOX fuel are described. Information on the amount of MOX fuel irradiated is provided. (author)

  12. Design and fabrication of stainless steel components for long life of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Natarajan, R.; Ramkumar, P.; Sundararaman, V.; Kamachi Mudali, U.; Baldev Raj; Shanmugam, K.

    2010-01-01

    Reprocessing of spent nuclear fuels based on the PUREX process is the proven process with many commercial plants operating satisfactorily worldwide. The process medium being nitric acid, austenitic stainless steel is the material of construction as it is the best commercially available material for meeting the conditions in the reprocessing plants. Because of the high radiation fields, contact maintenance of equipment and systems of these plants are very time consuming and costly unlike other chemical process plants. Though the plants constructed in the early years required extensive shut downs for replacement of equipment and systems within the first fifteen years of operation itself, development in the field of stainless steel metallurgy and fabrication techniques have made it possible to design the present day plants for an operating life period of forty years. A review of the operational experience of the PUREX process based aqueous reprocessing plants has been made in this paper and reveals that life limiting failures of equipment and systems are mainly due to corrosion while a few are due to stresses. Presently there are no standards for design specification of materials and fabrication of reprocessing plants like the nuclear power plants, where well laid down ASTM and ASME codes and standards are available which are based on the large scale operational feedbacks on pressure vessels for conventional and nuclear industries. (author)

  13. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor; Marshall, Frances M.; Adelfang, Pablo; Bradley, Edward [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina Elena [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris La Defense (France)

    2016-03-15

    International activities in the back end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. In the future inventories of LEU SNF will continue to be created and the back end solution of RR SNF remains a critical issue. The IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, drew up a report presenting available reprocessing and recycling services for RR SNF. This paper gives an overview of the report, which will address all aspects of reprocessing and recycling services for RR SNF.

  14. Cost probability analysis of reprocessing spent nuclear fuel in the US

    International Nuclear Information System (INIS)

    Recktenwald, G.D.; Deinert, M.R.

    2012-01-01

    The methods by which nuclear power's radioactive signature could be reduced typically require the reprocessing of spent nuclear fuel. However, economic assessments of the costs that are associated with doing this are subject to a high degree of uncertainty. We present a probabilistic analysis of the costs to build, operate and decommission the facilities that would be required to reprocess all US spent nuclear fuel generated over a one hundred year time frame, starting from a 2010 power production rate. The analysis suggests a total life-cycle cost of 2.11 ± 0.26 mills/kWh, with a 90% and 99% confidence that the overall cost would remain below 2.45 and 2.75 mills/kWh respectively. The most significant effects on cost come from the efficiency of the reactor fleet and the growth rate of nuclear power. The analysis shows that discounting results in life-cycle costs decreasing as recycling is delayed. However the costs to store spent fuel closely counter the effect of discounting when an intergenerational discount rate is used.

  15. Removal of carbon dioxide in reprocessing spent nuclear fuel off gas by adsorption

    International Nuclear Information System (INIS)

    Fukumatsu, Teruki; Munakata, Kenzo; Tanaka, Kenji; Yamatsuki, Satoshi; Nishikawa, Masabumi

    1998-01-01

    The off gas produced by reprocessing spent nuclear fuel includes various radioactivities and these nuclei should be removed. In particular, 14 C mainly released as the form of carbon dioxide is one of the most required gaseous radioactivities to be removed because it has long a half-life. One of the methods to remove gaseous nuclei is the use of adsorption technique. The off gas contains water vapor which influences adsorption process of carbon dioxide. In this report, behavior of adsorption of carbon dioxide on various adsorbent and influence on adsorption behavior of carbon dioxide by containing water vapor are discussed. (author)

  16. Explosion risks linked to red oils in the spent fuels reprocessing plants

    International Nuclear Information System (INIS)

    2008-06-01

    This paper presents the risk of explosion associated with reactions between tributyl phosphate (TBP) and its degradation products and nitrates from nitric acid or associated with heavy metals (uranium and plutonium); These reactions may lead to the formation of unstable compounds known as 'red oils'. The feedback explosions linked to the formation of such compounds occurring in spent fuel reprocessing plants round the world, is briefly discussed. The main measures to control these risks, implemented in French factories concerned are also presented. (N.C.)

  17. Studies in the dissolver off-gas system for a spent FBR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Heinrich, E.; Huefner, R.; Weirich, F.

    1982-01-01

    Investigations of possible modifications of the process steps of a dissolver off-gas (DOG) system for a spent FBR fuel reprocessing plant are reported. The following operations are discussed: iodine removal from the fuel solution; behaviour of NOsub(x) and iodine in nitric acid off-gas scrubbers at different temperatures and nitric acid concentrations; iodine desorption from the scrub acid; selective absorption of noble gases in refrigerant-12; cold traps. The combination of suitable procedures to produce a total DOG system is described. (U.K.)

  18. Available Reprocessing and Recycling Services for Research Reactor Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2017-01-01

    The high enriched uranium (HEU) take back programmes will soon have achieved their goals. When there are no longer HEU inventories at research reactors and no commerce in HEU for research reactors, the primary driver for the take back programmes will cease. However, research reactors will continue to operate in order to meet their various mission objectives. As a result, inventories of low enriched uranium spent nuclear fuel will continue to be created during the research reactors' lifetime and, therefore, there is a need to develop national final disposition routes. This publication is designed to address the issues of available reprocessing and recycling services for research reactor spent fuel and discusses the various back end management aspects of the research reactor fuel cycle.

  19. Handling of spent nuclear fuel and final storage of nitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    The following stages of handling and transport of the fuel on its way to final storage are dealt with in the report. 1) The spent nuclear fuel is stored at the power station or in the central fuel storage facility awaiting reprocessing. 2) The fuel is reprocessed, i.e. uranium, plutonium and waste are separated from each other. Reprocessing does not take place in Sweden. The highlevel waste is vitrified and can be sent back to Sweden in the 1990s. 3) Vitrified waste is stored for about 30 years awaiting deposition in the final repository. 4) The waste is encapsulated in highly durable materials to prevent groundwater from coming into contact with the waste glass while the radioactivity of the waste is still high. 5) The canisters are emplaced in a final repository which is built at a depth of 500 m in rock of low permeability. 6) All tunnels and shafts are filled with a mixture of clay and sand of low permeability. A detailed analysis of possible harmful effects resulting from normal acitivties and from conceivable accidents is presented in a special section. (author)

  20. Available reprocessing and recycling services for research reactor spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tozser, Sandor Miklos; Adelfang, Pablo; Bradley, Ed [International Atomic Energy Agency, Vienna (Austria); Budu, Madalina [SOSNY Research and Development Company, Moscow (Russian Federation); Chiguer, Mustapha [AREVA, Paris (France)

    2015-05-15

    International activities in the back-end of the research reactor (RR) fuel cycle have so far been dominated by the programmes of acceptance of highly-enriched uranium (HEU) spent nuclear fuel (SNF) by the country where it was originally enriched. These programmes will soon have achieved their goals and the SNF take-back programmes will cease. However, the needs of the nuclear community dictate that the majority of the research reactors continue to operate using low enriched uranium (LEU) fuel in order to meet the varied mission objectives. As a result, inventories of LEU SNF will continue to be created and the back-end solution of RR SNF remains a critical issue. In view of this fact, the IAEA, based on the experience gained during the decade of international cooperation in supporting the objectives of the HEU take-back programmes, will draw up a report presenting available reprocessing and recycling services for research reactor spent nuclear fuel. This paper gives an overview of the guiding document which will address all aspects of Reprocessing and Recycling Services for RR SNF, including an overview of solutions, decision making support, service suppliers, conditions (prerequisites, options, etc.), services offered by the managerial and logistics support providers with a focus on available transport packages and applicable transport modes.

  1. Spent fuel handling and storage facility for an LWR fuel reprocessing plant

    International Nuclear Information System (INIS)

    Baker, W.H.; King, F.D.

    1979-01-01

    The facility will have the capability to handle spent fuel assemblies containing 10 MTHM/day, with 30% if the fuel received in legal weight truck (LWT) casks and the remaining fuel received in rail casks. The storage capacity will be about 30% of the annual throughput of the reprocessing plant. This size will provide space for a working inventory of about 50 days plant throughput and empty storage space to receive any fuel that might be in transit of the reprocessing plant should have an outage. Spent LWR fuel assemblies outside the confines of the shipping cask will be handled and stored underwater. To permit drainage, each water pool will be designed so that it can be isolated from the remaining pools. Pool water quality will be controlled by a filter-deionizer system. Radioactivity in the water will be maintained at less than or equal to 2 x 10 -4 Ci/m 3 ; conductivity will be maintained at 1 to 2 μmho/cm. The temperature of the pool water will be maintained at less than or equal to 40 0 C to retard algae growth and reduce evaporation. Decay heat will be transferred to the environment via a heat exchanger-cooling tower system

  2. How can Korea secure uranium enrichment and spent fuel reprocessing rights?

    International Nuclear Information System (INIS)

    Roh, Seungkook; Kim, Wonjoon

    2014-01-01

    South Korea is heavily dependent on energy resources from other countries and nuclear energy accounts for 31% of Korea's electric power generation as a major energy. However, Korea has many limitations in uranium enrichment and spent fuel reprocessing under the current Korea-U.S. nuclear agreement, although they are economically and politically important to Korea due to a significant problems in nuclear fuel storages. Therefore, in this paper, we first examine those example countries – Japan, Vietnam, and Iran – that have made nuclear agreements with the U.S. or have changed their agreements to allow the enrichment of uranium and the reprocessing of spent fuel. Then, we analyze those countries' nuclear energy policies and review their strategic repositioning in the relationship with the U.S. We find that a strong political stance for peaceful usage of nuclear energy including the legislation of nuclear laws as was the case of Japan. In addition, it is important for Korea to acquire advanced technological capability such as sodium-cooled fast reactor (SFR) because SFR technologies require plutonium to be used as fuel rather than uranium-235. In addition, Korea needs to leverage its position in nuclear agreement between China and the U.S. as was the case of Vietnam

  3. On-Line Monitoring for Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plant

    International Nuclear Information System (INIS)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.

    2009-01-01

    Advanced techniques enabling enhanced safeguarding of the spent fuel reprocessing plants are urgently needed. Our approach is based on prerequisite that real time monitoring of the solvent extraction flowsheets provides unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and must be able to withstand harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes, has been recently developed by our research team. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from Hanford nuclear waste storage tanks. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information, which can be gained by the utilization of UV-vis-NIR capabilities. Raman and UV-vis-NIR spectroscopies are analytical techniques that have extensively been extensively applied for measuring the various organic and inorganic compounds including actinides. The corresponding spectrometers used under the laboratory conditions are easily convertible to the process-friendly configurations allowing remote measurements under the flow conditions. A fiber optic Raman probe allows monitoring of the high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. The actinides and lanthanides are monitored remotely by UV-vis-NIR spectroscopy in aqueous and organic phases. In this report, we will present our recent results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels available at

  4. Swedish approach to spent fuel management as regards intermediate storage and reprocessing

    International Nuclear Information System (INIS)

    Gustafsson, B.

    1980-01-01

    The cost of spent fuel management has been calculated to be between SEK 0.006 and 0.015 per kWh, depending upon what assumptions are made. Assuming that spent fuel from 12 reactors is reprocessed and that the radioactive waste is conditioned, transported, temporarily stored, and finally disposed of, the alternative cost SEK 0.006/kWh results from a low estimate of the costs incurred for the waste and a high estimate of credits allowed for recovered uranium and plutonium. This, in turn, assumes a certain real price increase for uranium and a value for plutonium corresponding to the quantity of energy represented by the material. The high alternative is based on a high estimate of the costs incurred for the waste and a low estimate of the credits allowed for recovered uranium and plutonium. This, in turn, assumes today's price for uranium and no credits at all for plutonium. Swedish power producers are now reserving SEK 0.01/kWh for future investment requirements for spent fuel management and waste disposal. The total allocation up to the current year amounts to about SEK 1000 million. Capacity for the temporary storage of spent fuel exists at the Swedish nuclear power plants. As a result of the construction of a central storage facility for spent fuel (CLAB) in Sweden, this buffer capacity will be increased to accommodate fuel from approximately 12 years of operation. The CLAB has a design capacity of 3000 tons of spent fuel. Construction of the facility, which is basically a rock cavern containing water-filled pools, started in May 1980 with operation planned in early 1985. Expansion of capacity for an additional 6000 tons is possible if it is needed. As a result of planned domestic measures, freedom of action with respect to the back-end of the nuclear fuel cycle will be obtained; a high degree of independence from industrial and political developments abroad will also be obtained

  5. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    DelCul, Guillermo Daniel [ORNL; Trowbridge, Lee D [ORNL; Renier, John-Paul [ORNL; Ellis, Ronald James [ORNL; Williams, Kent Alan [ORNL; Spencer, Barry B [ORNL; Collins, Emory D [ORNL

    2009-02-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the {sup 235}U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of {sup 238}Pu due to the presence of {sup 236}U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance.

  6. Analysis of the Reuse of Uranium Recovered from the Reprocessing of Commercial LWR Spent Fuel

    International Nuclear Information System (INIS)

    DelCul, Guillermo D.; Trowbridge, Lee D.; Renier, John-Paul; Ellis, Ronald James; Williams, Kent Alan; Spencer, Barry B.; Collins, Emory D.

    2009-01-01

    This report provides an analysis of the factors involved in the reuse of uranium recovered from commercial light-water-reactor (LWR) spent fuels (1) by reenrichment and recycling as fuel to LWRs and/or (2) by recycling directly as fuel to heavy-water-reactors (HWRs), such as the CANDU (registered trade name for the Canadian Deuterium Uranium Reactor). Reuse is an attractive alternative to the current Advanced Fuel Cycle Initiative (AFCI) Global Nuclear Energy Partnership (GNEP) baseline plan, which stores the reprocessed uranium (RU) for an uncertain future or attempts to dispose of it as 'greater-than-Class C' waste. Considering that the open fuel cycle currently deployed in the United States already creates a huge excess quantity of depleted uranium, the closed fuel cycle should enable the recycle of the major components of spent fuel, such as the uranium and the hazardous, long-lived transuranic (TRU) actinides, as well as the managed disposal of fission product wastes. Compared with the GNEP baseline scenario, the reuse of RU in the uranium fuel cycle has a number of potential advantages: (1) avoidance of purchase costs of 11-20% of the natural uranium feed; (2) avoidance of disposal costs for a large majority of the volume of spent fuel that is reprocessed; (3) avoidance of disposal costs for a portion of the depleted uranium from the enrichment step; (4) depending on the 235 U assay of the RU, possible avoidance of separative work costs; and (5) a significant increase in the production of 238 Pu due to the presence of 236 U, which benefits somewhat the transmutation value of the plutonium and also provides some proliferation resistance

  7. Challenges associated with extending spent fuel storage until reprocessing or disposal

    International Nuclear Information System (INIS)

    Carlsen, Brett; Saegusa, Toshiari; Wasinger, Karl; Grahn, Per; Wolff, Dietmar; Waters, Michael; Bevilacqua, Arturo

    2014-01-01

    Existing spent fuel storage (SFS) practices are the result of the past presumptions that an end point, e.g. sufficient reprocessing and/or disposal capacity, would be available within the short term (approximately 50 years). Consequently, long term storage (between approximately 50 and 100 years) considerations have not been included in planning the back end of the nuclear fuel cycle. The present reality shows that no country has yet neither licensed nor built nor operated a deep geological repository for spent fuel (SF) and/or high level waste (HLW). Further, present and projected SF generation rates - more than 10 000 metric tons of heavy metal (MTHM) a year - far exceed the current capacity for disposal - 0 MTHM - or reprocessing - 4 800 MTHM a year - and will continue to do so for the rest of this decade. As a result, the SFS periods will extend. Moreover, as the SFM end point - reprocessing and/or disposal - is not presently defined with certainty in most countries, SFS periods will extend over periods within or beyond the long term in those countries. The IAEA has started in October 2010 a programmatic activity to consider challenges associated with extending SFS durations. After four consultants meetings and two technical meetings, a need has been identified for a SFS framework based on renewable storage periods - with as many renewals as may be needed - to ensure safe and secure SFS until sufficient reprocessing and/or disposal capacity is implemented. Over the course of the technical meetings, the consultants have worked with delegates of 36 Member States and 2 International Organizations to emphasize the importance of establishing programs that can provide sufficient confidence that age-related degradation will be recognized and addressed to effectively prevent unacceptable consequences. This paper considers a number of topics from the perspective of assuring safe and effective SFS as storage periods extend including: SFS concepts, packaging of SF

  8. EdF speaks about economic advantages of fuel reprocessing as compared with interim storage

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The French company Electricite de France (EdF) will prefer nuclear fuel reprocessing and plutonium recycling to spent fuel storage also in the years after 2000. This option is economically advantageous if the proportional cost of reprocessing does not exceed 1900 FRF/kg heavy metal. Economic analysis shows that this is feasible. EdF will soon have to reprocess annually about 1000 Mt spent fuel to supply enough plutonium for MOX fuel fabrication to feed as many as 28 PWR units and the Superphenix reactor. Spent fuel reprocessing is seen as promising as long as the efficiency of the MOX fuel approaches that of natural uranium based fuel. The French national industrial, political and legal context of EdF operations is also considered. (P.A.)

  9. Direction of reprocessing technology development based on 30 years operation of Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Nomura, S; Tanaka, T.; Ohshima, H.

    2006-01-01

    Full text: Full text: Recent global interest focuses the possibility of recycling of spent fuel with advanced fast reactor fuel cycle system. Goal of closed fuel cycle is to achieve the maximum use of uranium resources and minimum disposal of waste by multi recycle of TRU as a competitive nuclear energy system. The future reprocessing and fuel fabrication system should be synchronized completely with the advanced reactor system and waste treatment and disposal back-end system to complete closed fuel cycle. To realize such system, current reprocessing system should be changed to handle Pu-U-Minor Actinide with more reductions in the cost and less waste volume, as well as an inherent proliferation resistance. For the successful industrialization of advanced reprocessing technology, it is necessary to combine three key elements of R and D efforts, engineering base demonstration and experiences of plant operation. Tokai Reprocessing Facilities licensed a maximum capacity of 0.7tHM/day began a hot operation in 1977 and reprocessed l,100tHM U02 spent fuel and 20tHM ATR-MOX with a continuous technological improvements under IAEA full scope safeguards. With 30 years experience, candidate of key technologies proposed for realizing the next advanced reprocessing are as follows: 1) Simplified co-extraction process of Pu-Np-U by using multistage centrifugal extractors in stead of pulsed columns; 2) Corrosion free components in acid condition by using corrosion resistant refractory alloys and ceramics; 3) Co-conversion technology to MA containing MOX powder by micro-wave heating method for a short process for MA containing MOX pellets fabrication; 4) Advanced verification of high level radioactive liquid waste combining separation technology of TRU and LLFP elements; 5) Advanced chemical analysis and monitoring system for TRU elements in a plant. These advanced reprocessing technologies will be applied mainly to reprocess the LWR spent fuel accumulated past and future

  10. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-27

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO`s engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs.

  11. Transport of HIFAR spent fuel from Lucas Heights Research Establishment to the United Kingdom for reprocessing. Public Environmental Report

    International Nuclear Information System (INIS)

    1995-01-01

    The normal operations of HIFAR produce thirty-eight spent fuel elements annually. Since 1958, when operations began, 1,660 spent fuel elements have been accumulated and are stored in ANSTO's engineered interim storage facilities at Lucas Heights. In the light of the limited size of these storage facilities and following the Research Reactor Review (1993) and an Inter-Agency Review, the Commonwealth Government announced its decision to reduce the number of spent fuel elements stored at the site. Therefore, ANSTO has been authorised to negotiate the terms for shipment of spent fuel elements of United Kingdom (UK) origin to the Dounreay reprocessing plant in Scotland. This Public Environment Report, prepared under the Environment Protection (Impact of Proposals) Act 1974, describes the potential impacts and risks of a proposed initial shipment of 120 spent fuel elements to the Dounreay reprocessing plant. It describes the intended packaging and transport procedures and considers possible alternative methods of dealing with the continued production of spent fuel rods and the limited storage capacity at LHRL. The exhaustive analysis of every phase of operations involved in the shipping of a cask of spent HIFAR fuel elements from Lucas Heights to Dounreay, for reprocessing, has shown that there are no significant environmental or public health impacts from such a shipment conducted in accordance with standard, internationally established procedures. 18 refs., 12 tabs., 2 figs

  12. Spent nuclear fuel reprocessing and international law. Germany's obligations under international law in matters of spent fuel reprocessing and the relevant contracts concluded with France and the United Kingdom

    International Nuclear Information System (INIS)

    Heintschel v Heinegg, W.

    1999-01-01

    The review presented is an excerpt from an expert opinion written by the author in December last year, in response to changes in nuclear energy policy announced by the new German government. The reprocessing of spent nuclear fuels from German power reactors in the reprocessing facilities of France (La Hague) and the UK (Sellafield) is not only based on contracts concluded by the German electric utilities and the French COGEMA or the British BNFL, but has been agreed as well by an exchange of diplomatic notes between the French Ministry of Foreign Affairs and the German ambassador in Paris, the German Foreign Ministry and the French ambassador as well as the British ambassador in Bonn. The article therefore first examines from the angle of international law the legal obligations binding the states involved, and Germany in particular, in matters of spent fuel reprocessing contracts. The next question arising in this context and discussed by the article is that of whether and how much indemnification can be demanded by the reprocessing companies, or their governments, resp., if Germany should discontinue spent fuel reprocessing and thus might be made liable for breach of the bilateral agreements. (orig/CB) [de

  13. Calculation of burn-up data for spent LWR-fuels with respect to the design of spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Gasteiger, R.

    1976-11-01

    The design of spent fuel reprocessing plants makes necessary a detailed knowledge of the composition of the incoming fuels as a function of burn-up. This report gives a broad review on the composition of radionuclides in fuels (fission products, actinides) and structural materials for different burn-up data. (orig.) [de

  14. Status of nuclear fuel reprocessing, spent fuel storage, and high-level waste disposal. Nuclear Fuel Cycle Committee, California Energy Resources Conservation and Development Commission. Draft report

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    An analysis of the current status of technologies and issues in the major portions of the back-end of the nuclear fuel cycle is presented. The discussion on nuclear fuel reprocessing covers the reprocessing requirement, reprocessing technology assessment, technology for operation of reprocessing plants, and approval of reprocessing plants. The chapter devoted to spent fuel storage covers the spent fuel storge problem, the legislative response, options for maintaining full core discharge capacity, prospective availability of alterntive storage options, and the outlook for California. The existence of a demonstrated, developed high-level waste disposal technology is reviewed. Recommendations for Federal programs on high-level waste disposal are made

  15. Trivalent lanthanide/actinide separation in the spent nuclear fuel wastes' reprocessing

    International Nuclear Information System (INIS)

    Narbutt, J.; Krejzler, J.

    2006-01-01

    Separation of trivalent actinides, in particular americium and curium, from lanthanides is an important step in an advanced partitioning process for future reprocessing of spent nuclear fuels. Since the trivalent actinides and lanthanides have similar chemistries, it is rather difficult to separate them from each other. The aim of presented work was to study solvent extraction of Am(III) and Eu(III) in a system containing diethylhemi-BTP (6-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2'-bipyridine) and COSAN (protonated bis(chlorodicarbollido)cobalt(III)). The system was chosen by several groups working in the integrated EC research Project EUROPART. Several physicochemical properties of the extraction system were analyzed and discussed

  16. Conception and development of a computer-aided design for a spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Blayrac, M.

    1989-06-01

    A spent fuel reprocessing plant is composed of connected equipments. The aim of this study is the creation of schemes representing the different workshops of the plant and the calculation of linkage characteristics (flux) from a graphic description of functional structures. The program, written in FORTRAN 77, based on mass, flow rate and energy conservation, uses a module library each corresponding to an elementary operation of chemical engineering. Verification is necessary for result quality and accuracy. The important number of parameters and variables used in the program, requires a diagnosis accelerating research of errors for correction. Knowledges used in these last operations are qualitative (knowledge of experts) and quantitative (results of calculations) for the development of an expert system written in D-PROLOG [fr

  17. Radioactive characteristics of spent fuels and reprocessing products in thorium fueled alternative cycles

    International Nuclear Information System (INIS)

    Maeda, Mitsuru

    1978-09-01

    In order to provide one fundamental material for the evaluation of Th cycle, compositions of the spent fuels were calculated with the ORIGEN code on following fuel cycles: (1) PWR fueled with Th- enriched U, (2) PWR fueled with Th-denatured U, (3) CANDU fueled with Th-enriched U and (4) HTGR fueled with Th-enriched U. Using these data, product specifications on radioactivity for their reprocessing were calculated, based on a criterion that radioactivities due to foreign elements do not exceed those inherent in nuclear fuel elements, due to 232 U in bred U or 228 Th in recovered Th, respectively. Conclusions are as the following: (1) Because of very high contents of 232 U and 228 Th in the Th cycle fuels from water moderated reactors, especially from PWR, required decontamination factors for their reprocessing will be smaller by a factor of 10 3 to 10 4 , compared with those from U-Pu fueled LWR cycle. (2) These less stringent product specifications on the radioactivity of bred U and recovered Th will justify introduction of some low decontaminating process, with additional advantage of increased proliferation resistance. (3) Decontamination factors required for HTGR fuel will be 10 to 30 times higher than for the other fuels, because of less 232 U and 228 Th generation, and higher burn-up in the fuel. (author)

  18. Study of the stability of organic ligands usable for the spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Draye, Micheline

    1994-01-01

    The first part of this research thesis on the stability of organic ligands in radioactive environment, reports the study of the stability of the dicyclohexano-18-crown-6 (DCH18C6) in radioactive environment by using several analytical techniques (nuclear magnetic resonance or NMR, X-ray diffraction, Fourier transform infrared spectroscopy or FTIR, gas chromatography or GC, and coupled gas chromatography/mass spectroscopy). The seven main radiolysis products of DCH18C6 are identified and then synthesised to be tested in radioactive environment. These products are soluble in nitric medium, and partially precipitate plutonium, but cannot in any case disturb the reprocessing process based on a continuous extraction system. Chemical yields are computed and DCH18C6 appears to be a serious candidate for the reprocessing of spent nuclear fuels. The second part reports the study of the stability of the poly(4-vinylpyridine) or P4VP in radioactive environment. It appears that gamma radiations produce radicals in the P4VP which recombine in function of the irradiation dose. However, this material is very stable in acid environment and radioactive environment [fr

  19. Silver iodide reduction in aqueous solution: application to iodine enhanced separation during spent nuclear fuels reprocessing

    International Nuclear Information System (INIS)

    Badie, Jerome

    2002-01-01

    Silver iodide is a key-compound in nuclear chemistry either in accidental conditions or during the reprocessing of spent nuclear fuel. In that case, the major part of iodine is released in molecular form into the gaseous phase at the time of dissolution in nitric acid. In French reprocessing plants, iodine is trapped in the dissolver off-gas treatment unit by two successive steps: the first consists in absorption by scrubbing with a caustic soda solution and in the second, residual iodine is removed from the gaseous stream before the stack by chemisorption on mineral porous traps made up of beds of amorphous silica or alumina porous balls impregnated with silver nitrate. Reactions of iodine species with the impregnant are assumed to lead to silver iodide and silver iodate. Enhanced separation policy would make necessary to recover iodine from the filters by silver iodide dissolution during a reducing treatment. After a brief silver-iodine chemical bibliographic review, the possible reagents listed in the literature were studied. The choice has been made to use ascorbic acid and hydroxylamine. An experimental work on silver iodide reduction by this two compounds allowed us to determinate reaction products, stoichiometry and kinetics parameters. Finally, the process has been initiated on stable iodine loaded filters samples. (author) [fr

  20. An analysis of development and research on spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Borges Silverio, Leticia; Queiroz Lamas, Wendell de

    2011-01-01

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated.

  1. An analysis of development and research on spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Borges Silverio, Leticia; Lamas, Wendell de Queiroz [University of Taubate, Postgraduate Programme in Mechanical Engineering, Rua Daniel Danelli, s/n, Jd. Morumbi, Taubate, SP 12060-440 (Brazil)

    2011-01-15

    Nuclear energy comes back to the discussions on the world stage as an energy source that does not contribute to global warming during production process. It can be chosen as the main source of power generation in some countries or complement the energy matrix in others. In this context, there is the need to develop new technologies for the management of radioactive waste generated by the production process. Final repositories for spent fuel are not yet in commercial operation, and techniques for fuel reprocessing have been developed, because after use, the fuel still has materials that produce energy. Some countries already use reprocessing, and develop research to make it more secure and more competitive, while others prefer to adopt policies to prevent developments in this area due to the problem of nuclear proliferation. In another line of research, new reactors are being developed in order to reduce the amount of waste in energy production and some will be designed to work in closed loop, recycling the materials generated. (author)

  2. Spent fuel reprocessing and minor actinide partitioning safety related research at the UK National Nuclear Laboratory

    International Nuclear Information System (INIS)

    Carrott, Michael; Flint, Lauren; Gregson, Colin; Griffiths, Tamara; Hodgson, Zara; Maher, Chris; Mason, Chris; McLachlan, Fiona; Orr, Robin; Reilly, Stacey; Rhodes, Chris; Sarsfield, Mark; Sims, Howard; Shepherd, Daniel; Taylor, Robin; Webb, Kevin; Woodall, Sean; Woodhead, David

    2015-01-01

    The development of advanced separation processes for spent nuclear fuel reprocessing and minor actinide recycling is an essential component of international R and D programmes aimed at closing the nuclear fuel cycle around the middle of this century. While both aqueous and pyrochemical processes are under consideration internationally, neither option will gain broad acceptance without significant advances in process safety, waste minimisation, environmental impact and proliferation resistance; at least when compared to current reprocessing technologies. The UK National Nuclear Laboratory (NNL) is developing flowsheets for innovative aqueous separation processes. These include advanced PUREX options (i.e. processes using tributyl phosphate as the extractant for uranium, plutonium and possibly neptunium recovery) and GANEX (grouped actinide extraction) type processes that use diglycolamide based extractants to co-extract all transuranic actinides. At NNL, development of the flowsheets is closely linked to research on process safety, since this is essential for assessing prospects for future industrialisation and deployment. Within this context, NNL is part of European 7. Framework projects 'ASGARD' and 'SACSESS'. Key topics under investigation include: hydrogen generation from aqueous and solvent phases; decomposition of aqueous phase ligands used in separations prior to product finishing and recycle of nitric acid; dissolution of carbide fuels including management of organics generated. Additionally, there is a strong focus on use of predictive process modelling to assess flowsheet sensitivities as well as engineering design and global hazard assessment of these new processes. (authors)

  3. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded

  4. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  5. Internal dose evaluation from actinide intakes during nuclear power reactor spent fuel reprocessing

    International Nuclear Information System (INIS)

    Pawar, S.K.; Kumar, Ranjeet; Gamre, Rupali; Purohit, R.G.

    2011-01-01

    Full text: Indian PHWR reactors are using natural uranium as fuel. After use they are discharged from the core and send for fuel reprocessing to extract the unused uranium and plutonium. Plutonium and other actinides are formed by activation of 238 U with neutrons and subsequent decay. During reprocessing of the spent fuel, major long lived actinides (Pu, Am and U) may become radiological safety hazard. Actinides intakes are more probable during declading and chopping of spent fuel. During routine plant operation in reprocessing, exposure to Pu is a major concern along with Am and U in working environment due to its higher radiological hazard and occupational workers are likely to get exposed to plutonium, Americium and Uranium mostly through inhalation. Internally deposited Pu-isotopes, Am-isotope and U-isotopes are estimated using techniques such as lung counting (in-vivo) and urine and faecal bioassay (in-vitro). Evaluation of internal dose of actinides is dependent upon urinary excreted activity. To estimate the internally deposited Pu, U and Am at an intake level of about one ALI (ICRP-78, 1997) of occupational workers, urine bioassay is the preferred technique due to high detection sensitivity, ease of sample handling and economical method. A small and measurable fraction of internally deposited Pu, Am and U are excreted through urine whose content is dependent on time of inhalation, quantity and type of chemical form of inhaled material (S and M class). A standardized radiochemical analysis method for separation and estimation of Pu, Am and U is used to evaluate the urinary excreted activity and internal dose. Several measurements techniques are employed for the estimation of plutonium, Americium and Uranium for example, Alpha Spectrometry, Gamma Spectrometry, Neutron Activation Analysis, Mass Spectrometry and Fission Track Analysis. The radiochemical separation followed by alpha counting and/or spectrometry is chosen due to its ease of handling and

  6. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  7. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  8. The effect of dissolved hydrogen on the dissolution of 233U doped UO2(s) high burn-up spent fuel and MOX fuel

    International Nuclear Information System (INIS)

    Carbol, P.; Spahiu, K.

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of 233 U doped UO 2 (s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H 2 pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H 2 pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO 2 , high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10 -6 /yr - 10 -8 /yr with a recommended value of 4x10 -7 /yr for dissolved hydrogen concentrations above 10 -3 M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO 2 and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB

  9. Applications of chemical sensors in spent fuel reprocessing and waste management

    International Nuclear Information System (INIS)

    Achuthan, P.V.

    2012-01-01

    Environmental friendly power generation is essential to preserve the quality of life for the future generations. For more than fifty years, nuclear energy has proven its potential as an economically and commercially viable alternative to conventional energy. More over it is a clean source of energy with minimum green house effect. Recent data on climate changes have stressed the need for more caution on atmospheric discharges, hence a revival of interest in nuclear energy is in the offing. The entire world is committed to protect the atmosphere from polluting agents. Even nuclear power plants and the fuel cycle facilities are looking forward to reduce the already low gaseous emissions further and also to develop ways and means of controlling the impact of the small but significant radiotoxicity of the wastes generated in the nuclear fuel cycle. Spent fuel reprocessing and associated waste management, an integral part of the nuclear fuel cycle, employs chemical processes for the recovery of fuel value and for the conditioning of the reprocessed waste. In this respect they can be classified as a chemical plant dealing with radioactive materials. Hence it is essential to keep the gaseous, liquid and solid discharges at the lowest possible levels to comply with the regulations of discharges stipulated by the regulatory authorities. Elaborate cleaning and detection systems are needed for effective control of these discharges from both radioactive and chemical contamination point of view. Even though radiation detectors, which are non specific to the analytes, are the major tools for these controls, analyte specific chemical sensors can play a vital role in controlling the chemical vapours/gases generated during processing. The presentation will cover the major areas where chemical sensors play a significant role in this industry. (author)

  10. Composite reprocessing of spent nuclear fuel - is a way to low waste nuclear power

    International Nuclear Information System (INIS)

    Kosyakov, Valentin

    2005-01-01

    Further development of nuclear power in many respects depend on the solution of the problems connected to high level radioactive wastes (HLRW), containing highly toxic long-lived radionuclides. Long-term controlled storage of HLRW manages expensively and any advanced technology of reprocessing of spent nuclear fuel (SNF), besides recovery of the basic products, should be aimed at the reduction of this waste amount. However, the existing SNF reprocessing technology, using PUREX - process, is aimed only at extraction of uranium and plutonium, considering the remaining fraction (other transuranium elements and all fission products) as HLRW. In this work an attempt is made to give quantitative and qualitative characteristics to the isotopes and the elements which are included in the composition of HLRW after 15-years storage. Depending on the radiation properties of the isotopes included, these elements were divided into three categories: 1. The elements represented by only stable isotopes; 2. The elements represented by mostly low radioactive isotopes; 3. The elements represented by highly toxic long-lived radionuclides. As a result it appeared, that the weight percentage of the elements of the first, the second and the third categories in HLRW was: 60, 25 and 15% respectively. It means, that the amount of the real HLRW to be disposed in a deep geological repository could be reduced at least by a factor of 6, if to recover completely only 7 most dangerous elements (Sr, J, Cs, Sm, Np, Am and Cm) from the solution remaining after extraction of uranium and plutonium. Then it is meaningful to recover the elements of the first category from the remaining mix. As the main part of this fraction is represented by rare earth elements and noble metals, which can easily find many useful application. (author)

  11. Process development for fabrication of zircaloy- 4 of dissolver assembly for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Tonpe, Sunil; Saibaba, N.; Jairaj, R.N.; Ravi Shankar, A.; Kamachi Mudali, U.; Raj, Baldev

    2010-01-01

    Spent fuel reprocessing for fast breeder reactor (FBR) requires a dissolver made of a material which has resistance to corrosion as the process involves Nitric Acid as the process medium. Various materials to achieve minimum corrosion rates have been tried for this operation. Particularly the focus was on the use of advanced materials with high performance (corrosion rate and product life) for high concentrations greater than 8 N and temperatures (boiling and vapour) of Nitric Acid employed in the dissolver unit. The different commercially available materials like SS316L , Pure Titanium, Ti - 5% Ta and Ti - 5% Ta - 1.8% Nb were tried and the corrosion behavior of these materials was studied in detail. As this is continuous process of evolution of new materials, it was decided to try out zircaloy - 4 as the material of construction for construction due to its excellent corrosion resistance properties in Nitric Acid environment. The specifications were stringent and the geometrical configurations of the assembly were very intricate in shape. On accepting the challenge of fabrication of dissolver, NFC has made different fixtures for Electron Beam Welding and TIG Welding. Various trials were carried out for optimization of various operating parameter like beam current, Acceleration voltage, welding speed to get adequate weld penetration. Both EB welding and TIG welding process were standardized and qualified by carrying out a number of trials and testing these welds by various weld qualification procedures like radiography, Liquid dye penetrant testing etc. for different intricate weld geometries. All the welds were simulated with samples to optimize the weld parameters. Tests such as include metallographic (for microstructure and HAZ), mechanical (for weld strength) and chemical (material analysis for gases) were conducted and all the weld samples met the acceptable criteria. Finally the dissolver was made meeting stringent specifications. All the welds were checked

  12. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  13. Handbook on process and chemistry on nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki; Asakura, Toshihide; Adachi, Takeo

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  14. Handbook on process and chemistry on nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Atsuyuki (ed.) [Tokyo Univ., Tokyo (Japan); Asakura, Toshihide; Adachi, Takeo (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment] [and others

    2001-12-01

    'Wet-type' nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of 'wet-type' reprocessing, because it contributes to establish and develop fuel reprocessing process and nuclear fuel cycle treating high burn-up UO{sub 2} fuel and spent MOX fuel, and to utilize 'wet-type' reprocessing technology much widely. This handbook summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing', from FY 1993 until FY 2000. (author)

  15. Stabilization of neptunium valence states in nitric media for spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Feldhaus, P.

    1996-12-01

    A possibility of standarizing the extraction-behavior of Neptunium during the reprocessing of spent nuclear fuel corresponding to PUREX-Process was investigated. The aim of the work was a qualitative dirigation of the Transuraniumelement (TRUE) into the raffinat of the first extraction cycle by a complete redoxconversion of the Neptunium valence states to unextractable Np(V). In the beginning the theoretical and experimental research focussed on the redoxchemistry of the actinide during the fuel dissolution and the feed preparation. Thereby the nitrous acid, which is produced by a radiological, photochemical and reductive degradation of the nitric acid, revealed an ambivalent influence on the Neptunium valences. By a short-term increase in HNO 2 -concentration the Np(V)-fraction could be obviously risen. The use of some stabilizing reagents inhibited a later reoxidation to Np(VI) also catalyzed by nitrous acid. The urea used for this purpose also led to a further increase in the obtained conversion rates due to a Np(VI)-reduction. The analysis of the valence distribution was performed by an extraction method. This had been compared to chromatographic separation in some preliminary investigations and had turned out to be comparably reliable and easily manageable. (orig.) [de

  16. Dose evaluation model for radionuclides released from the spent nuclear fuel reprocessing plant in Rokkasho

    International Nuclear Information System (INIS)

    Hisamatsu, Shun'ichi; Iyogi, Takashi; Inaba, Jiro; Chiang, Jing-Hsien; Suwa, Hiroji; Koide, Mitsuo

    2007-01-01

    A dose evaluation model was developed for radionuclides released from the spent nuclear fuel reprocessing plant which is located in Rokkasho, Aomori Prefecture, and now undergoing test operation. The dose evaluation model suitable for medium- and long-term dose assessments for both prolonged and short-term releases of radionuclides to the atmosphere was developed on the PC. The ARAC-2, a particle tracing type dispersion model coupled with 3-D wind field calculation by a mass conservative model, was adopted as the atmospheric dispersion model. The terrestrial transfer model included movement in soil and groundwater as well as an agricultural and livestock farming system. The available site-specific social and environmental characteristics were incorporated in the model. Growing of the crops was also introduced and radionuclides absorbed were calculated from weight increase from the start of deposition to harvest, and transfer factors. Most of the computer code system of the models was completed by 2005, and this paper reports the results of the development. (author)

  17. Optimal measurement uncertainties for materials accounting in a fast breeder reactor spent-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Dayem, H.A.; Kern, E.A.; Markin, J.T.

    1982-01-01

    Optimization techniques are used to calculate measurement uncertainties for materials accountability instruments in a fast breeder reactor spent-fuel reprocessing plant. Optimal measurement uncertainties are calculated so that performance goals for detecting materials loss are achieved while minimizing the total instrument development cost. Improved materials accounting in the chemical separations process (111 kg Pu/day) to meet 8-kg plutonium abrupt (1 day) and 40-kg plutonium protracted (6 months) loss-detection goals requires: process tank volume and concentration measurements having precisions less than or equal to 1%; accountability and plutonium sample tank volume measurements having precisions less than or equal to 0.3%, short-term correlated errors less than or equal to 0.04%, and long-term correlated errors less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having precisions less than or equal to 0.4%, short-term correlated errors less than or equal to 0.1%, and long-term correlated errors less than or equal to 0.05%

  18. Used mixed oxide fuel reprocessing at RT-1 plant

    Energy Technology Data Exchange (ETDEWEB)

    Kolupaev, D.; Logunov, M.; Mashkin, A.; Bugrov, K.; Korchenkin, K. [FSUE PA ' Mayak' , 30, Lenins str, Ozersk, 460065 (Russian Federation); Shadrin, A.; Dvoeglazov, K. [ITCP ' PRORYV' , 2/8 Malaya Krasmoselskay str, Moscow, 107140 (Russian Federation)

    2016-07-01

    Reprocessing of the mixed uranium-plutonium spent nuclear fuel of the BN-600 reactor was performed at the RT-1 plant twice, in 2012 and 2014. In total, 8 fuel assemblies with a burn-up from 73 to 89 GW day/t and the cooling time from 17 to 21 years were reprocessed. The reprocessing included the stages of dissolution, clarification, extraction separation of U and Pu with purification from the fission products, refining of uranium and plutonium at the relevant refining cycles. Dissolution of the fuel composition of MOX used nuclear fuel (UNF) in nitric acid solutions in the presence of fluoride ion has occurred with the full transfer of actinides into solution. Due to the high content of Pu extraction separation of U and Pu was carried out on a nuclear-safe equipment designed for the reprocessing of highly enriched U spent nuclear fuel and Pu refining. Technological processes of extraction, separation and refining of actinides proceeded without deviations from the normal mode. The output flow of the extraction outlets in their compositions corresponded to the regulatory norms and remained at the level of the compositions of the streams resulting from the reprocessing of fuel types typical for the RT-1 plant. No increased losses of Pu into waste have been registered during the reprocessing of BN-600 MOX UNF an compare with VVER-440 uranium UNF reprocessing. (authors)

  19. Simulation codes of chemical separation process of spent fuel reprocessing. Tool for process development and safety research

    International Nuclear Information System (INIS)

    Asakura, Toshihide; Sato, Makoto; Matsumura, Masakazu; Morita, Yasuji

    2005-01-01

    This paper reviews the succeeding development and utilization of Extraction System Simulation Code for Advanced Reprocessing (ESSCAR). From the viewpoint of development, more tests with spent fuel and calculations should be performed with better understanding of the physico-chemical phenomena in a separation process. From the viewpoint of process safety research on fuel cycle facilities, it is important to know the process behavior of a key substance; being highly reactive but existing only trace amount. (author)

  20. Design lead shielded casks for shipment and spent fuel from power reactors to reprocessing plant at Tarapur

    International Nuclear Information System (INIS)

    Seetharamaiah, P.

    1975-01-01

    Spent fuels from the Tarapur and Rajasthan Atomic Power Stations (TAPS and RAPS) are shipped to Fuel Reprocessing Plant at Tarapur in heavily lead shielded casks weighing about 65 tonnes as they are highly radioactive. The design of the casks has to meet stringemt requirements of safety and the integrity should be ensured to contain activity under credible accidents during handling and transportation. The paper presents the design of two casks for TAPS and RAPS spent fuel transportation particularly with reference to stress analysis considerations. The analysis also includes the handling gadgets and tie down attachments on the rail wagon and road trailer. (author)

  1. Determination of fissile fraction in MOX (mixed U + Pu oxides) fuels for different burnup values

    International Nuclear Information System (INIS)

    Ozdemir, Levent; Acar, Banu Bulut; Zabunoglu, Okan H.

    2011-01-01

    When spent Light Water Reactor fuels are processed by the standard Purex method of reprocessing, plutonium (Pu) and uranium (U) in spent fuel are obtained as pure and separate streams. The recovered Pu has a fissile content (consisting of 239 Pu and 241 Pu) greater than 60% typically (although it mainly depends on discharge burnup of spent fuel). The recovered Pu can be recycled as mixed-oxide (MOX) fuel after being blended with a fertile U makeup in a MOX fabrication plant. The burnup that can be obtained from MOX fuel depends on: (1) isotopic composition of Pu, which is closely related to the discharge burnup of spent fuel from which Pu is recovered; (2) the type of fertile U makeup material used (depleted U, natural U, or recovered U); and (3) fraction of makeup material in the mix (blending ratio), which in turn determines the total fissile fraction of MOX. Using the Non-linear Reactivity Model and the code MONTEBURNS, a step-by-step procedure for computing the total fissile content of MOX is introduced. As was intended, the resulting expression is simple enough for quick/hand calculations of total fissile content of MOX required to reach a desired burnup for a given discharge burnup of spent fuel and for a specified fertile U makeup. In any case, due to non-fissile (parasitic) content of recovered Pu, a greater fissile fraction in MOX than that in fresh U is required to obtain the same burnup as can be obtained by the fresh U fuel.

  2. A review of reprocessing, partitioning, and transmutation of spent nuclear fuel and the implications for Canada

    International Nuclear Information System (INIS)

    Jackson, D.P.

    2006-01-01

    The current status of the reprocessing, partitioning, and transmutation of used nuclear fuel are reviewed in the context of assessing the possible application of these technologies to used CANDU fuel. The status of commercial reprocessing is briefly surveyed and recent progress in world R and D programs on the transmutation of FP's and actinides using Accelerator Driven Systems is summarized. The implications of reprocessing for Canada are explored from the point of view of a long strategy for managing used CANDU fuel in terms of the costs of initiating reprocessing domestically at some time in the future including public and occupational radiation doses, and the wastes generated. (author)

  3. Engineering test of stripping performance by multi-centrifugal contactors system for spent nuclear reprocessing

    International Nuclear Information System (INIS)

    Masayuki Takeuchi; Tadahiro Washiya; Hiroki Nakabayashi; Takashi Suganuma; Shinnichi Aose

    2005-01-01

    Japan Nuclear Cycle Development Institute (JNC) has been developing centrifugal contactors which are compact and high performance for solvent extraction process in industrial reprocessing plant. The stripping performance including equilibrium time for distribution and hydraulic behavior of the multi-centrifugal contactors were mainly evaluated by using uranium nitrite solution on engineering scale (10 kgHM/hr). In particular, the effects of feed temperature of stripping solution and O/A on the stripping performance were focused in this test. As results, no hydraulic problem such as overflow and entrainment were observed in multi-centrifugal contactors system through all conditions, and the uranium and acid concentrations showed desirable profiles which were nearly consistent with calculated one by MIXSET-X code. As to stripping performance, uranium leak concentration in solvent reached to less than 0.01 g/L, which is target of the stripping performance on this centrifugal contactors system, within nine stages on all conditions. It was also found that the effect of feed temperature of stripping solution (35 degree C → 60 degree C) or O/A (1.0→0.8) on stripping performance corresponds to distribution capacity of two contactors, respectively. The stage efficiency for a contactor was estimated as 97-98% on stripping stage. There were no uranium leaks (less than 40μg/L) in spent solvent discharged from the final stage. The profiles of uranium concentration in multi-contactors become stable within 10 minutes after the stripping test starting. In this way, it was demonstrated that the centrifugal contactors system has good stripping performance on engineering scale. (authors)

  4. A novel waste form for disposal of spent-nuclear-fuel reprocessing waste: A vitrifiable cement

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1999-01-01

    A cement capable of being hot isostatically pressed into a glass ceramic has been proposed as the waste form for spent-nuclear-fuel reprocessing wastes at the Idaho National Engineering and Environmental Laboratory (INEEL). This intermediate cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed INEEL wastes, blast furnace slag, reactive silica, and INEEL soil or vermiculite, which were activated with potassium or sodium hydroxide. Following autoclave processing, the cements were characterized. X-ray diffraction analysis revealed three notable crystalline phases: quartz, calcite, and fluorite. Results of compressive strength testing ranged from 1452 and 4163 psi, exceeding the US Nuclear Regulatory Commission (NRC)-suggested standard of >500 psi. From American National Standards Institute/American Nuclear Society 16.1-1986 leach testing, effective diffusivities for Cs were determined to be on the order of 10 -11 to 10 -10 cm 2 /s and for Sr were 10 -12 cm 2 /s, which are four orders of magnitude less than diffusivities in some other radwaste materials. Average leach indices (LI) were 9.6 and 11.9 for Cs and Sr, respectively, meeting the NRC Standard of LI > 6. The 28-day Materials Characterization Center-1 leach testing resulted in normalized elemental mass losses between 0.63 and 28 g/(m 2 ·day) for Cs and between 0.34 and 0.70 g/(m 2 ·day) industry-accepted standard while Cs losses indicate a process sensitive parameter

  5. Experience in constructing a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    Towards the end of 1970, Japan Gasoline Co. Ltd. (JGC) and Saint-Gobain Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. The work executed by JGC in this project is reported and consisted of: (1) Procurement, inspection and schedule control of equipment and materials other than those imported from Europe; (2) Conclusion of contracts with various subcontractors relating to the building construction, piping and other work; and (3) Supervision of field work. The field work began in June 1971 and was completed in about 40 months. The overall field labour mobilized during that time totalled about 410,000 man-days, and 900,000 man-hours were spent by the JGC engineers. With the object of constructing a high-quality plant, JGC since 1969 has started to investigate subcontractors in Japan as well as undertaking the selection, education and training of prospective subcontractors. For the welding work in particular, techniques were imported from France and domestic techniques were developed at the same time. Completion of the blank tests was estimated to require 33 months, but the schedule was delayed about seven months for various reasons. Obviously there is room for many improvements when constructing future nuclear chemical plants. However, careful consideration should also be given from the basic design stage onward, to the methods and sequence of construction so that a simplified plan can be obtained from which the work could be easily executed without resorting to special technology. This would lead to reduction in construction time, and a safer and more reliable plant at lower cost. (author)

  6. The effect of dissolved hydrogen on the dissolution of {sup 233}U doped UO{sub 2}(s) high burn-up spent fuel and MOX fuel

    Energy Technology Data Exchange (ETDEWEB)

    Carbol, P. [Inst. for Transuranium Elements, Karlsruhe (Germany); Spahiu, K. (ed.) [and others

    2005-03-01

    In this report the results of the experimental work carried out in a large EU-research project (SFS, 2001-2004) on spent fuel stability in the presence of various amounts of near field hydrogen are presented. Studies of the dissolution of {sup 233}U doped UO{sub 2}(s) simulating 'old' spent fuel were carried out as static leaching tests, autoclave tests with various hydrogen concentrations and electrochemical tests. The results of the leaching behaviour of a high burn-up spent fuel pellet in 5 M NaCl solutions in the presence of 3.2 bar H{sub 2} pressure and of MOX fuel in dilute synthetic groundwater under 53 bar H{sub 2} pressure are also presented. In all the experimental studies carried out in this project, a considerable effect of hydrogen in the dissolution rates of radioactive materials was observed. The experimental results obtained in this project with a-doped UO{sub 2}, high burn-up spent fuel and MOX fuel together with literature data give a reliable background to use fractional alteration/dissolution rates for spent fuel of the order of 10{sup -6}/yr - 10{sup -8}/yr with a recommended value of 4x10{sup -7}/yr for dissolved hydrogen concentrations above 10{sup -3} M and Fe(II) concentrations typical for European repository concepts. Finally, based on a review of the experimental data and available literature data, potential mechanisms of the hydrogen effect are also discussed. The work reported in this document was performed as part of the Project SFS of the European Commission 5th Framework Programme under contract no FIKW-CT-2001-20192 SFS. It represents the deliverable D10 of the experimental work package 'Key experiments using a-doped UO{sub 2} and real spent fuel', coordinated by SKB with the participation of ITU, FZK-INE, ENRESA, CIEMAT, ARMINES-SUBATECH and SKB.

  7. The legal situation relating to the reprocessing in other EC member countries of spent fuel from German nuclear power stations

    International Nuclear Information System (INIS)

    Haedrich, H.

    1993-01-01

    The author states that reprocessing can continue, showing by his analysis that discontinuing the reprocessing of spent fuel from Germany in installations in France or Great Britain would mean a breach of - prior-ranking - Euratom law, which offers equally efficient protection of public security and public health and safety in accordance with the internationally defined and accepted state of the art in science and technology. In addition, such a decision would mean an infringement of the basic principles of the free market economy as laid down by the Euratom treaty and by the EC treaty, as there are no facts or conditions allowing application of the exemption provision given by the EC treaty. (orig./HP) [de

  8. Handling of spent nuclear fuel and final storage of vitrified high level reprocessing waste

    International Nuclear Information System (INIS)

    1978-01-01

    A summary of the planning of transportation and plant design in the Swedish KBS project on management and disposal reprocessed radioactive waste. It describes a transportation system, a central storage facility for used fuel elements, a plant for intermediate storage and encapsulation and a final repository for the vitrified waste. Accounts are given for the reprocessing and vitrification. The safety of the entire system is discussed

  9. Improvement of shacking helical elevators used in spent fuel reprocessing. Perfectionnement aux elevateurs helicoidaux a secousses, utilises dans le traitement des combustibles irradies

    Energy Technology Data Exchange (ETDEWEB)

    Tucoulat, D.; Kerlau, D.; Cagin, R.; Pellier, R.; Tarnero, M.; Saudray, D.

    1991-01-25

    For reprocessing cut spent fuel elements are introduced in a tank and raised gradually with an helical ramp by a back and forth motion around a vertical axis. Spent fuel is dissolved and hulls are recovered at the top of the ramp.

  10. MOX use in PWRs. EDF operation experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2011-01-01

    From the origin, EDF back-end fuel cycle strategy has focused on 'closing the fuel cycle', in other words integrating fuel reprocessing, with vitrification of high level waste concentrated within small volumes, and the recycling of valuable materials. The implementation of this policy was marked in 1987 by the first loading of sixteen MOX. By December 2010, 20 reactors have been loaded with 1750 tHM of MOX. EDF current strategy is to match the reprocessing program with MOX manufacturing capacity to limit the quantity of separated plutonium. This is routinely called the 'flow ad-equation' strategy. Currently, the MOX Parity core management achieves balance of MOX and UOX performance with a significant increase of the MOX discharge burn-up. Globally, the behavior under irradiation of MOX fuel assemblies has been satisfactory. So far, from the beginning of MOX use in EDF PWRs, only 6 MOX FAs with rod leakage have been identified, which gives a very satisfactory level of reliability. The industrial maturity of MOX fuel, with increased performances, allows the improvement of nuclear KWh competitiveness and of the plant operation performance, while maintaining in operation the same safety level, without significant impact on environment and radiological protection. (author)

  11. Absorption column working study for iodine formed in spent fuel reprocessing plant gaseous effluents: hydrodynamic and mass transfer

    International Nuclear Information System (INIS)

    Vignau, B.

    1986-09-01

    The hydrodynamic and matter transfer parameters has been studied on absorption columns destined to trap iodine issued of spent fuel reprocessing plants. These columns have different packing - Raschig rings (glass, ceramic, PVC, steel) - Berl saddles (ceramic) - Weaved metallic thread (steel). The effect of dimension and of packing structure on gas pressure drop and on liquid holdup has been evaluated. The partial transfer coefficients of I 2 -Air-NaOH system has been the object of an experimental study. This system can be simulated by CO 2 -Air-NaOH system [fr

  12. Analysis of a control and data acquisition system for radiation protection monitors of spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Liu Boxue

    1997-01-01

    For the radiation protection monitoring of spent nuclear fuel reprocessing plant, the paper analyzes the composition and requirements of a control and data acquisition system. With the concepts of typical distributing and opening models, the hardware consists of IPC, communication of RS-485 bus lines and data multiplexer. The software consists of real-time multi-services operation system and modelling program. It can sample monitoring data, control monitor's operation, and process data and other information. It has good expansive and compatible features

  13. Method for increasing the lifetime of an extraction medium used for reprocessing spent nuclear fuel and/or breeder materials

    International Nuclear Information System (INIS)

    Schmieder, H.; Stieglitz, L.

    1977-01-01

    A method is provided for increasing the lifetime of an extraction medium containing an organophosphorus acid ester and a hydrocarbon and being used for reprocessing spent nuclear fuel and/or breeder materials. Impurities resulting from chemical and/or radiolytic decomposition and interfering compounds of such impurities with radionuclides are removed from the extraction medium by bringing the extraction medium, after use, into intimate contact with an aqueous hydrazine hydrate solution having a concentration of between 0.1 and 1.0 molar at a temperature between 20 to 75 0 C. The aqueous hydrazine hydrate solution is then separated from the extraction medium

  14. Interest in 100% MOX future reactors as seen from the fuel fabrication and from the Pu manager point of view

    International Nuclear Information System (INIS)

    Golinelli, C.; Guillet, J.L.; Nigon, J.L.

    1996-01-01

    Today, plutonium recycling in PWR type reactors has reached the industrial phase. But, on a competitive market, cost reduction can be achieved by improving fuel performances and fuel management. That is why researches on MOX future reactors are still carried out in the world and particularly in France. As a matter of fact, MOX future reactors can be more competitive if the in-reactor utilization is improved. This solution should certainly be the next step to re-use the recovered plutonium from reprocessed spent fuel. (O.M.)

  15. The MELOX MOX fabrication facility: history of an industrial success and future prospects

    International Nuclear Information System (INIS)

    Arslan, M.; Jacquet, R.; Krellmann, J.

    2005-01-01

    Along with the La Hague reprocessing plant, MELOX is part of the two industrial facilities that ensure the closure of the nuclear fuel cycle in France. Since started up in 1995, MELOX has specialized into recycling separated plutonium recovered from reprocessing operations performed at La Hague on spent UO 2 fuel. Capitalizing on the unique know-how acquired through thirty years of plutonium-based fuel fabrication at the Cadarache plant, this subsidiary of AREVA group has quickly become a worldwide expert in the industrial process of fabricating MOX: a fuel blend comprised of both uranium and plutonium oxides that allows at safely exploiting the energetic potential of plutonium. In order to address the various factors responsible for this industrial breakthrough, we will first present an overview of MELOX's history in regards of the emergence of a global MOX market. The added-value provided through treatment and recycling operations on spent fuel will be further described in terms of waste volume and radiotoxicity reduction. The emphasis will then be put on the total quality management policy that is at the core of MELOX's corporate strategy. Because MELOX has succeeded in meeting both productivity requirements and stringent quality constraints, it has won confidence from its European and Japanese clients. With increased production capacity of diversified MOX designs, MELOX is demonstrating the industrial efficiency of a new concept of MOX plants that is inspiring large construction projects in Japan, the US, and Russia. (authors)

  16. Advances in reprocessing

    International Nuclear Information System (INIS)

    Giraud, J.P.; Guais, J.C.

    1993-01-01

    In a comprehensive nuclear energy program based on Light Water Reactor, closing the nuclear fuel cycle by reprocessing the spent fuel and recycling the recovered fissile materials is a key activity which is now fully mastered at the industrial level. In France a large, modern commercial reprocessing plant called UP3 is operating at La Hague since 18 months in excellent conditions regarding products quality, plant availability, safety and waste management. At the same time, industrial capacities for plutonium recycling by MOX fuel fabrication are under operation and larger units are in construction in France and in Europe. Our customers, the utilities which are engaged in a complete closed fuel cycle in Japan, in Germany, Switzerland, Belgium, the Netherlands, and in France, are having a comprehensive industrial system available for their spent fuel management. Three main objectives are being met by this system: (1) saving natural resources by recycling energetic material: plutonium and uranium; (2) solving the waste management question by a segregating the waste according to their characteristics for a proper conditioning, in particular with vitrification for HLW; and (3) preparing the future developments of nuclear power generation with advanced reactors, and best Pu use, and keeping open progresses in long lived waste processing and disposal

  17. Issues for Conceptual Design of AFCF and CFTC LWR Spent Fuel Separations Influencing Next-Generation Aqueous Fuel Reprocessing

    International Nuclear Information System (INIS)

    D. Hebditch; R. Henry; M. Goff; K. Pasamehmetoglu; D. Ostby

    2007-01-01

    In 2007, the U.S. Department of Energy (DOE) published the Global Nuclear Energy Partnership (GNEP) strategic plan, which aims to meet US and international energy, safeguards, fuel supply and environmental needs by harnessing national laboratory R and D, deployment by industry and use of international partnerships. Initially, two industry-led commercial scale facilities, an advanced burner reactor (ABR) and a consolidated fuel treatment center (CFTC), and one developmental facility, an advanced fuel cycle facility (AFCF) are proposed. The national laboratories will lead the AFCF to provide an internationally recognized R and D center of excellence for developing transmutation fuels and targets and advancing fuel cycle reprocessing technology using aqueous and pyrochemical methods. The design drivers for AFCF and the CFTC LWR spent fuel separations are expected to impact on and partly reflect those for industry, which is engaging with DOE in studies for CFTC and ABR through the recent GNEP funding opportunity announcement (FOA). The paper summarizes the state-of-the-art of aqueous reprocessing, gives an assessment of engineering drivers for U.S. aqueous processing facilities, examines historic plant capital costs and provides conclusions with a view to influencing design of next-generation fuel reprocessing plants

  18. Sodium fast reactor: an asset for a PWR UOX/MOX fleet - 5327

    International Nuclear Information System (INIS)

    Tiphine, M.; Coquelet-Pascal, C.; Girieud, R.; Eschbach, R.; Chabert, C.; Grosman, R.

    2015-01-01

    Due to its low fissile content, Pu from spent MOX fuels is sometimes regarded as not recyclable in LWR. Based on the existing French nuclear infrastructure (La Hague reprocessing plant and MELOX MOX manufacturing plant), AREVA and CEA have evaluated the conditions of Pu multi recycling in a 100% LWR fleet. As France is currently supporting a Fast Reactor prototype project, scenario studies have also been conducted to evaluate the contribution of a 600 MWe SFR in the LWR fleet. These scenario studies consider a nuclear fleet composed of 8 PWR 900 MWe, with or without the contribution of a SFR, and aim at evaluating the following points: -) the feasibility of Pu multi-recycling in PWR; -) the impact on the spent fuels storage; -) the reduction of the stored separated Pu; -) the impact on waste management and final disposal. The studies have been conducted with the COSI6 code, developed by CEA Nuclear Energy Direction since 1985, that simulates the evolution over time of a nuclear power plants fleet and of its associated fuel cycle facilities and provides material flux and isotopic compositions at each point of the scenario. To multi-recycle Pu into LWR MOX and to ensure flexibility, different reprocessing strategies were evaluated by adjusting the reprocessing order, the choice of used fuel assemblies according to their burn-up and the UOX/MOX proportions. The improvement of the Pu fissile quality and the kinetic of Pu multi-recycling in SFR depending on the initial Pu quality were also evaluated and led to a reintroduction of Pu in PWR MOX after a single irradiation in SFR, still in dilution with Pu from UOX to maintain a sufficient fissile quality. (authors)

  19. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO2 and MOX spent fuels

    International Nuclear Information System (INIS)

    Sasahara, Akihiro; Matsumura, Tetsuo; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-01-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO 2 spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, a) isotopic analysis, b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  20. Isotopic analyses and calculation by use of JENDL-3.2 for high burn-up UO{sub 2} and MOX spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Sasahara, Akihiro; Matsumura, Tetsuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.; Nicolaou, G.; Betti, M.; Walker, C.T.

    1997-03-01

    The post irradiation examinations (PIE) were carried out for high burn-up UO{sub 2} spent fuel (3.8%U235, average burn-up:60GWd/t) and mixed oxide (MOX) spent fuel (5.07%Pu, average burn-up:45GWd/t). The PIE includes, (a) isotopic analysis, (b) electron probe microanalysis (EPMA) in pellet cross section and so on. The results of isotopic analyses and EPMA were compared with ORIGEN2/82 and VIM-BURN calculation results. In VIM-BURN calculation, the nuclear data of actinides were proceeded from new data file, JENDL-3.2. The sensitivities of power history and moderator density to nuclides composition were investigated by VIM-BURN calculation and consequently power history mainly effected on Am241 and Am242m and moderator density effected on fissile nuclides. From EPMA results of U and Pu distribution in pellet, VIM-BURN calculation showed reasonable distribution in pellet cross section. (author)

  1. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  2. Nondestructive measurement of spent fuel assemblies at the Tokai Reprocessing and Storage Facility

    International Nuclear Information System (INIS)

    Phillips, J.R.; Bosler, G.E.; Halbig, J.K.; Lee, D.M.

    1979-12-01

    Nondestructive verification of irradiated fuel assemblies is an integral part of any safeguards system for a reprocessing facility. Available techniques are discussed with respect to the level of verification provided by each. A combination of high-resolution gamma spectrometry, neutron detectors, and gross gamma activity profile monitors provide a maximum amount of information in a minimum amount of time

  3. Experience in the construction of a spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Yamashita, Hiroshi

    1976-01-01

    The construction and operation of a reprocessing plant was first published in 1956. The Reprocessing Expert Committee of AEC was established in 1959, and the preliminary design was finished in 1964 by NCP of Britain. The detailed design was completed in 1969 by SGN of France, and the training of operators was carried out in parallel with this in France. The results of the safety investigation was approved in Jan. 1970, and the construction was started in June 1971. The site of the reprocessing plant is the eastern part of the Tokai Establishment of PNC. The process adopted is the wet Purex process having been established in large practical plants. The treating capacity is 0.7 t/day. The main processes are acceptance and storage, mechanical treatment, and chemical treatment. The reprocessing facilities comprise the main shop, the analysis station, the main exhaust stack, the decontamination station, the solid waste store, the sea discharge pipe, and other incidental facilities. The construction works were about 7 months behind the schedule when the water flow test was finished. The chemical test was finished in March, 1975, and the uranium test is in progress since Sept., 1975. The problems for future are the developments of effective waste treatment and storing techniques, and the researches have been carried out by PNC. The construction project of the second plant is urgently required, since it takes 10 years from planning to operation. (Kako, I.)

  4. Reprocessing of spent nuclear fuels. Status and trends; Upparbetning av anvaent kaernbraensle. Laege och trender

    Energy Technology Data Exchange (ETDEWEB)

    Hultgren, Aa

    1993-01-01

    The report gives a short review of the status for industrial reprocessing and recycling of Uranium/Plutonium. The following countries are covered: Belgium, France, Germany, Great Britain, India, Japan, Russia, USA. Different fuel cycle strategies are accounted for, and new developments outlined. 116 refs, 27 figs, 12 tabs.

  5. Reprocessing of spent nuclear fuel, Annex 3: Chemical and radiometric control analyses

    International Nuclear Information System (INIS)

    Gal, I.

    1964-01-01

    Simple, fast and reliable control analyses are obligatory during reprocessing. The analyses performed covered measuring the contents of uranium in water and organic solutions, contents of plutonium in water and organic solutions as well as the free acid in both solutions. In addition temporary analyses were done to determine the density of water and organic solutions as well as content of TBP in kerosine

  6. Handbook on process and chemistry of nuclear fuel reprocessing version 2

    International Nuclear Information System (INIS)

    2008-10-01

    Aqueous nuclear fuel reprocessing technology, based on PUREX technology, has wide applicability as the principal reprocessing technology of the first generation, and relating technologies, waste management for example, are highly developed, too. It is quite important to establish a database summarizing fundamental information about the process and the chemistry of aqueous reprocessing, because it contributes to establish and develop fuel reprocessing technology and nuclear fuel cycle treating high burn-up UO 2 fuel and spent MOX fuel, and to utilize aqueous reprocessing technology much widely. This handbook is the second edition of the first report, which summarizes the fundamental data on process and chemistry, which was collected and examined by 'Editing Committee of Handbook on Process and Chemistry of Nuclear Fuel Reprocessing' from FY 1993 until FY 2000. (author)

  7. Capability of minor nuclide confinement in fuel reprocessing

    International Nuclear Information System (INIS)

    Fujine, Sachio; Uchiyama, Gunzo; Mineo, Hideaki; Kihara, Takehiro; Asakura, Toshihide

    1999-01-01

    Experiment with spent fuels has started with the small scale reprocessing facility in NUCEF-BECKY αγ cell. Primary purpose of the experiment is to study the capability of long-lived nuclide confinement both in the PUREX flow sheet applied to the large scale reprocessing plant and also in the PARC (Partitioning Conundrum key process) flow sheet which is our proposal as a simplified reprocessing of one cycle extraction system. Our interests in the experiment are the behaviors of minor long-lived nuclides and the behaviors of the heterogeneous substances, such as sedimentation in the dissolver, organic cruds in the extraction banks. The significance of those behaviors will be assessed from the standpoint of the process safety of reprocessing for high burn-up fuels and MOX fuels. (author)

  8. Export control guide: Spent nuclear fuel reprocessing and preparation of plutonium metal

    International Nuclear Information System (INIS)

    1993-10-01

    The international Treaty on the Non-Proliferation of Nuclear Weapons, also referred to as the Non-Proliferation Treaty (NPT), states in Article III, paragraph 2(b) that open-quotes Each State Party to the Treaty undertakes not to provide . . . equipment or material especially designed or prepared for the processing, use or production of special fissionable material to any non-nuclear-weapon State for peaceful purposes, unless the source or special fissionable material shall be subject to the safeguards required by this Article.close quotes This guide was prepared to assist export control officials in the interpretation, understanding, and implementation of export laws and controls relating to the international Trigger List for irradiated nuclear fuel reprocessing equipment, components, and materials. The guide also contains information related to the production of plutonium metal. Reprocessing and its place in the nuclear fuel cycle are described briefly; the standard procedure to prepare metallic plutonium is discussed; steps used to prepare Trigger List controls are cited; descriptions of controlled items are given; and special materials of construction are noted. This is followed by a comprehensive description of especially designed or prepared equipment, materials, and components of reprocessing and plutonium metal processes and includes photographs and/or pictorial representations. The nomenclature of the Trigger List has been retained in the numbered sections of this document for clarity

  9. Why reprocess

    International Nuclear Information System (INIS)

    Greenwood, T.

    1977-01-01

    Prospective costs of reprocessing, waste management, and mixed oxide fuel fabrication have risen so much that the costs of U/P recycle and of spent fuel storage are nearly equal. This paper reviews the current state of the reprocessing industry, with a list of facilities all over the world, and examines the incentives and disincentives other than short-term economics that will affect the decision of states to acquire their own reprocessing facilities. Finally, it examines the possibility of avoiding a widespread commercial reprocessing industry

  10. Application of a room temperature ionic liquid for nuclear spent fuel reprocessing: speciation of trivalent europium and solvatation effects

    International Nuclear Information System (INIS)

    Moutiers, G.; Mekki, S.; Billard, I.

    2007-01-01

    One of the solutions proposed for the optimization of the long term storage and conditioning of spent nuclear fuel is to separate actinide and lanthanide both from each other and from other less radioactive metallic species. The industrial proposed processes, based on liquid liquid extraction steps, involve solvents with non negligible vapour pressure and may generate contaminated liquid wastes that will have to be reprocessed. During the last decade, some room-temperature ionic liquids have been studied and integrated into industrial processes. The interest on this class of solvent came out from their 'green' properties (non volatile, non flammable, recyclable, etc...), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL chemical composition. Indeed, it has been shown that classical chemical industrial processes could be transferred into those media, even more improved, while a certain number of difficulties arising from using traditional solvent can be avoided. In this respect, it could be promising to investigate the ability to use room temperature ionic liquid into the spent nuclear fuel reprocessing field. The aim of this this study is to test the ability of the specific ionic liquid bumimTf 2 N to allow trivalent europium extraction. The choice of this metal is based on the chemical analogy with trivalent minor actinides Curium and Americium which are contributing the greatest part of the long-lived high level radioactive wastes. Handling these elements needs to be very cautious for the safety and radioprotection aspect. Moreover, europium is a very sensitive luminescent probe to its environment even at the microscopic scale. The report is structured with four parts. In a first chapter, we present the main physico-chemical properties of an imidazolium-based ionic liquid family, and then we choose the ionic liquid bumimTf 2 N for the whole thesis and start with the electrochemical

  11. The impact of spent fuel reprocessing facilities deployment rate on transuranics inventory in alternative fuel cycle strategies

    International Nuclear Information System (INIS)

    Aquien, A.; Kazimi, M.; Hejzlar, P.

    2007-01-01

    The depletion rate of transuranic inventories from spent fuel depends on both the deployment of advanced reactors that can be loaded with recycled transuranics, and on the deployment of the facilities that separate and reprocess spent fuel. In addition to tracking the mass allocation of TRU in the system and calculating a system cost, the fuel cycle simulation tool CAFCA includes a flexible recycling plant deployment model. This study analyses the impact of different recycling deployment schemes for various fuel cycle strategies in the US over the next hundred years under the assumption of a demand for nuclear energy growing at a rate of 2,4%. Recycling strategies explored in this study fall under two categories: recycling in thermal light water reactors using combined non-fertile and UO 2 fuel (CONFU) and recycling in fast reactors (either fertile-free actinide burner reactors, or self-sustaining gas-cooled fast reactors). Preliminary results show that the earlier deployment of recycling in the thermal reactors will limit the stored levels of TRU below those of fast reactors. However, the avoided accumulation of spent fuel interim storage depends on the deployment rate of the recycling facilities. In addition, by the end of the mid century, the TRU in cooling storage will exceed that in interim storage. (authors)

  12. Investigation of pharmaceuticals and medical devices containing 90Y extracted from high radioactive liquid waste in spent-fuel reprocessing

    International Nuclear Information System (INIS)

    Hosoma, Takashi

    2012-07-01

    Pharmaceuticals and medical devices containing radioactive 90 Y are realized, approved and placed on the international market where three products are available in Europe and the United States, and one product in Japan. These products are used not for diagnosis but for treatment by internal irradiation. It was estimated from the deliberative report of the approval in Japan that 90 Y was extracted in Europe from high radioactive liquid waste (HALW) yielded in spent-fuel reprocessing. In this report, products placed on the market and physical properties were reviewed, reasons of the realization and conditions to realize succeeding products were estimated, extraction method was compared with other methods, technical subjects, and relevant regulations were investigated. Although a medical device containing radioactive 90 Y has been studied in Japan and one pharmaceutical product was approved, a breakthrough would be necessary to put 90 Y utilization beyond alternative treatments. The breakthrough would become be promising; for example, if conventional treatments could be supported by technical development to deliver 90 Y more sharply to the target with shorter serum half-life. Extraction of 90 Y nuclide from HALW has advantages over thermal neutron irradiation of natural nuclide, a system is envisioned where 90 Sr as a parent nuclide is separated in the reprocessing then transported to and stored in a factory of radiopharmaceuticals followed by 90 Y extraction on demand. (author)

  13. Total Data Management System for the La Hague spent fuel reprocessing plants

    International Nuclear Information System (INIS)

    Chabert, J.; Coignaud, G.; Perot, J.P.; Fournier, W.; Silvain, B.

    1991-01-01

    Operation of the UP2 and UP3 reprocessing plants at La Hague, France, generates considerable data processing requirements. To meet these requirements, a Total Data Management System (TDMS) has been designed and installed to operate the biggest Ethernet industrial network in Europe. This network, called Haguenet, interconnects a large number of computers and user terminals. The TDMS' main operational functions are plant operation and production data management, maintenance data management, technical documents management and computer-aided design (CAD). Extensive experience was gained through the design and operation of the TDMS at La Hague. (author)

  14. Application of an indirect method for determination of quality of spent solvent in a reprocessing plant

    International Nuclear Information System (INIS)

    Gupta, K.K.; Thomas, George; Varadarajan, N.

    1986-01-01

    In Purex process, the solvent tri-n-butyl phosphate with an inert diluent n-dodecane is employed for the separation of uranium and plutonium. Since the solvent undergoes degration, it is necessary to constantly monitor the quality of the spent solvent before it is reused. Uranium retention number for solvent as a measure of the presence of dibutyl phosphate in the solvent has been investigated. This paper describes an indirect method for the estimation of the quality of the spent solvent. (author)

  15. Pilot studies of an extraction process for reprocessing of spent fuel from fast reactors: Hardware and process details of extractor selection

    International Nuclear Information System (INIS)

    Anisimov, V.I.; Pavlovich, V.B.; Smetanin, E.Ya.; Glazunov, N.V.; Shklyar, L.I.; Dubrovskii, V.G.; Serov, A.V.; Zakharkin, B.S.; Konorchenko, V.D.; Korotkov, I.A.; Neumoev, N.V.; Renard, E.V.

    1992-01-01

    While acknowledging the bold and persistent efforts of U.S. and Russian specialists to develop the concept of pyrochemical reprocessing of spent nuclear fuel from fast reactors on remote-controlled equipment for removal of actinides from the fission products one should recognize that the tasks of reprocessing such fuel can be handled only by using water-extraction technology, especially since the known Purex process continues to be improved to the point that a single-cycle scheme may be developed. This article presents results of pilot studies conducted in hot cells using multistage extractors in continuous counterflow operation; data on various extractor types used in reprocessing spent mixed oxide nuclear fuel; advantages and disadvantages of centrifugal and pulsed column extractor; comparison of column-type and centrifugal extractors; and extraction process

  16. Biamperometric estimation of uranium in input KMP samples of spent fuel reprocessing plant: field experience

    International Nuclear Information System (INIS)

    Gurba, P.B.; Dhakras, S.P.; Chaugule, G.A.; Venugopal, A.K.; Singh, R.K.; Bajpai, D.D.; Nair, P.R.; Xavier, Mary; Aggarwal, S.K.

    2000-01-01

    Feasibility of simple, precise and accurate biamperometric determination of uranium at about 0.1 mg level was earlier established using simulated uranium standards. To evaluate the usefulness of this method for accurate determination of uranium in spent fuel dissolver solution samples, analytical work was carried out

  17. Confirmation test of powder mixing process in J-MOX

    International Nuclear Information System (INIS)

    Ota, Hiroshi; Osaka, Shuichi; Kurita, Ichiro

    2009-01-01

    Japan Nuclear Fuel Ltd. (hereafter, JNFL) MOX Fuel Fabrication Plant (hereafter, J-MOX) is what fabricates MOX fuel for domestic light water power plants. Development of design concept of J-MOX was started mid 90's and the frame of J-MOX process was clarified around 2000 including adoption of MIMAS process as apart of J-MOX powder process. JNFL requires to take an answer to any technical question that has not been clarified ever before by world's MOX and/or Uranium fabricators before it commissions equipment procurement. J-MOX is to be constructed adjacent to the Rokkasho Reprocessing Plant (RRP) and to utilize MH-MOX powder recovered at RRP. The combination of the MIMAS process and the MH-MOX powder is what has never tried in the world. Therefore JNFL started a series of confirmation tests of which the most important is the powder test to confirm the applicability of MH-MOX powder to the MIMAS process. The MH-MOX powder, consisting of 50% plutonium oxide and 50% uranium oxide, originates JAEA development utilizing microwave heating (MH) technology. The powder test started with laboratory scale small equipment utilizing both uranium and the MOX powder in 2000, left a solution to tough problem such as powder adhesion onto equipment, and then was followed by a large scale equipment test again with uranium and the MOX powder. For the MOX test, actual size equipment within glovebox was manufactured and installed in JAEA plutonium fuel center in 2005, and based on results taken so far an understanding that the MIMAS equipment, with the MH-MOX powder, can present almost same quality MOX pellet as what is introduced as fabricated in Europe was developed. The test was finished at the end of Japanese fiscal year (JFY) 2007, and it was confirmed that the MOX pellets fabricated in this test were almost satisfied with the targeted specifications set for domestic LWR MOX fuels. (author)

  18. Radiological impacts of spent nuclear fuel management options

    International Nuclear Information System (INIS)

    Riotte, H.; Lazo, T.; Mundigl, S.

    2000-01-01

    An important technical study on radiological impacts of spent nuclear fuel management options, recently completed by the NEA, is intended to facilitate informed international discussions on the nuclear fuel cycle. The study compares the radiological impacts on the public and on nuclear workers resulting from two approaches to handling spent fuel from nuclear power plants: - the reprocessing option, that includes the recycling of spent uranium fuel, the reuse of the separated plutonium in MOX fuel, and the direct disposal of spent MOX fuel; and the once-through option, with no reprocessing of spent fuel, and its direct disposal. Based on the detailed research of a group of 18 internationally recognised experts, under NEA sponsorship, the report concludes that: The radiological impacts of both the reprocessing and the non-reprocessing fuel cycles studied are small, well below any regulatory dose limits for the public and for workers, and insignificantly low as compared with exposures caused by natural radiation. The difference in the radiological impacts of the two fuel cycles studied does not provide a compelling argument in favour of one option or the other. The study also points out that other factors, such as resource utilisation efficiency, energy security, and social and economic considerations would tend to carry more weight than radiological impacts in decision-making processes. (authors)

  19. Experience in construction of a spent nuclear fuel reprocessing plant in Japan

    International Nuclear Information System (INIS)

    Hashimoto, K.; Sakuma, A.; Inoue, K.

    1977-01-01

    In June 1970, Japan Gasoline Co., Ltd (JGC)and Saint-Goblan Techniques Nouvelles of France received an order for the construction of a reprocessing plant from Power Reactor and Nuclear Fuel Development Corporation, as a joint prime contractor. JGC was responsible for: procurement, inspection, and schedule control of equipment and materials other than those imported from Europe; for conclusion of contracts with various subcontractors relating to the building construction, piping, and similar work; and for supervision of field work. Field work began in June 1971 and was completed in about 40 months. This paper describes the experiences of JGC during the period of the entire operation, and on the basis of this experience recommends modifications to their approach to similar projects in the future

  20. French experience of regulation and operation on reprocessing facilities of LWR spent fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mercier, J P [DES/SESUL (France)

    1992-02-01

    This presentation describes the French experience of regulation and operation on reprocessing facilities: how the safety assessment was made of UP3-A plant of the La Hague establishment for the building permit and operating license within the context of French nuclear regulations and the national debate on the need for reprocessing. Other factors discussed are how the public was involved, how the regulations were improved in the process and what the different stages of commissioning consisted of. In the design studies of a reprocessing facility, three complementary approaches are used: - observance of regulations born of technical considerations, and good practice, - analysis of the hazards, using deterministic and probabilistic methods, within the framework of a safety report, - review of experience feedback from such a facility or like plants. The design of the facility must permit the prevention of accidents and limit their consequences. Moreover, during all foreseeable cases (normal operating, incidents and accidents), the safety of the staff, the public and the environment with regard to consequences of radioactive releases and ionising radiations must be ensured. In the evaluation of these consequences, the approach used is voluntarily pessimistic in order to take into account every possible case. It is based on the main following principles: definition of the events considered for the dimensioning of the facility; redundancy and diversification; defense in depth which consists of the multiplication of the barriers. The experience feedback comes, on the one hand from operator's findings aiming at improving its facility, on the other hand from incidents, the lessons of which being taken into account after careful analysis. These incidents are analyzed by the Safety Authority upon presentation of the data by the operator and on site findings of inspections. In other respects, the aim of inspections is to check that the plant and its operating practices are

  1. Electrocoagulation of solvent residues in the reprocessing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gidarakos, E.; Gramatte, W.; Koehling, A.; Schmitt, R.E.

    1989-03-01

    The aim of this project was to find out the potential of the method for the electrocoagulation (EC) of colloidally dispersed particles for an improved fine feed purification in the reprocessing of high burnup nuclear fuels with the help of real fuel solutions on a laboratory scale. In EC, the particles colloidally dispersed in the solution are fed with electric charges at the electrodes; this leads to a coagulation of the particles, with separation taking place at the electrodes. The methods of analysis chosen for the EC were nephelometry for inactive experiments with RuO 2 suspensions, and gamma spectroscopy for experiments with radioactive fuel solutions, with the nuclide pair Ru/Rh-106 acting as a colloidal tracer nuclide. On the whole, the present experimental data permit the conclusion that under the experimental conditions and with the apparatus applied, EC gives rise to the separation of colloidally dispersed noble metal particles in an active fuel solution. (orig./RB) [de

  2. Corrosion studies on materials of construction for spent nuclear fuel reprocessing plant equipment

    International Nuclear Information System (INIS)

    Kamachi Mudali, U.; Dayal, R.K.; Gnanamoorthy, J.B.

    1993-01-01

    Corrosion studies on specimens of commercial Type 304L stainless steel (SS), nuclear grade type 304L SS, extra low-carbon nitric acid grade (NAG) Uranus-16 SS, NAG Uranus-65 SS, Ti, Ti-5% Ta, Ti-0.25% Pd, Zircaloy-2, weldments of Ti and of Ti-5% Ta, and surface-modified (thermally oxidised and anodised) Ti were carried out to assess their corrosion resistance in nitric acid medium. The results indicated that Zircaloy-2, Ti-5% Ta, Uranus-16 SS and Uranus-65 SS have excellent corrosion resistance in boiling nitric acid solution. Specimens of Zircaloy-2, Ti-5% Ta and thermally-oxidised Ti showed excellent corrosion resistance also in a simulated uranium-containing reprocessing medium in a concentrated nitric acid solution. SEM and XRD analyses were carried out on the tested specimens to examine the scale morphology and phases present on the surface. (orig.)

  3. Handling and storage of high-level liquid wastes from reprocessing of spent fuel

    International Nuclear Information System (INIS)

    Finsterwalder, L.

    1982-01-01

    The high level liquid wastes arise from the reprocessing of irradiated nuclear fuels, which are dissolved in aqueous acid solution, and the plutonium and unburned uranium removed in the chemical separation plant. The remaining solution, containing more than 99% of the dissolved fission products, together with impurities from cladding materials, corrosion products, traces of unseparated plutonium and uranium and most of the transuranic elements, constitutes the high-level waste. At present, these liquid wastes are usually concentrated by evaporation and stored as an aqueous nitric acid solution in high-integrity stainless-steel tanks. There is now world-wide agreement that, for the long term, these liquid wastes should be converted to solid form and much work is in progress to develop techniques for the solidification of these wastes. This paper considers the design requirements for such facilities and the experience gained during nearly 30 years of operation. (orig./RW)

  4. Advantages of co-located spent fuel reprocessing, repository and underground reactor facilities

    International Nuclear Information System (INIS)

    Mahar, James M.; Kunze, Jay F.; Wes Myers, Carl; Loveland, Ryan

    2007-01-01

    The purpose of this work is to extend the discussion of potential advantages of the underground nuclear park (UNP) concept by making specific concept design and cost estimate comparisons for both present Generation III types of reactors and for some of the modular Gen IV or the GNEP modular concept. For the present Gen III types, we propose co-locating reprocessing and (re)fabrication facilities along with disposal facilities in the underground park. The goal is to determine the site costs and facility construction costs of such a complex which incorporates the advantages of a closed fuel cycle, nuclear waste repository, and ultimate decommissioning activities all within the UNP. Modular power generation units are also well-suited for placement underground and have the added advantage of construction using current and future tunnel boring machine technology. (authors)

  5. Environmental impact and risk analysis of direct disposal of spent fuel as compared to reprocessing

    International Nuclear Information System (INIS)

    Vuori, S.; Peltonen, E.; Vira, J.

    1984-01-01

    It is important to put the estimated environmental impacts and radiation exposures of alternatives considered into perspective with each other as well as with similar man-made or natural exposures taking into account all the stages of the pertinent fuel cycles and all relevant impact factors. The likely differences in safety between the reprocessing case and the direct disposal case are not very significant taking into account the uncertainties involved in the analyses and the problems of value judgement in the comparison of different types of impacts. Furthermore the difference of costs of measures to achieve a desired level of safety in each case should be considered in view of the other cost impacts arising from the choice of the fuel cycle

  6. The curium tagging approach for enhanced safeguards for spent fuel handling and reprocessing

    International Nuclear Information System (INIS)

    Menlove, H.O.; Beddingfield, D.H.; Rinard, P.M.; Wenz, T.R.

    1999-01-01

    Because of the intense neutron emission rate from curium, it can be a useful signature to measure and track special nuclear material in spent fuel and waste. By measuring the concentration of curium as well as plutonium and uranium in spent fuel streams, the ratio of curium to plutonium, uranium or other actinides can be used for waste assay. The quantity of special nuclear material in the waste streams such as the leached hulls and vitrified high-level waste can be calculated from the ratio of the curium to the plutonium, etc. The quantity of curium can be measured from the neutron emission rate from the various waste streams in the presence of the high-level gamma-ray backgrounds from fission products. Examples of using the curium ratio technique for measuring plutonium in leached hulls and vitrified waste canisters are presented in this paper. (author)

  7. Vitrifiable concrete for disposal of spent nuclear fuel reprocessing waste at I.N.E.L

    International Nuclear Information System (INIS)

    Gougar, M.L.D.; Scheetz, B.E.; Siemer, D.D.

    1996-01-01

    A cement capable of being Hot Isostatically Pressed (HIP'ed) into a glass-ceramic has been proposed for use as the waste form for SNF reprocessing wastes at the Idaho National Engineering Laboratories. Such an ''intermediate'' cement, with a composition based on that of common glasses, has been designed and tested. The cement formulations included mixed I.N.E.L. wastes, blast furnace flag, reactive silica, alumina, and I.N.E.L. soil or vermiculite, which was activated with potassium or sodium hydroxide. Modified FUETAP processing was performed and the cement was subsequently characterized. Results of compressive strength testing ranged from 1,452 psi to 4,163 psi, exceeding the NRC-suggested standard of >500 psi. Total dissolved solids concentrations in waste form leachates were calculated from a static leach test in which leachate conductivity was measured. Effective diffusivities for radioisotopes Cs and Sr were calculated from leachate analysis data. Diffusivity values were on the order of 10 -15 to 10 -10 cm 2 /sec, which compare favorably with diffusivities in other materials

  8. Translational reprocessing of spent fuel elements in the light of European Community law

    International Nuclear Information System (INIS)

    Scheuing, D.H.

    1991-01-01

    Objections are being raised against the current reprocessing of fuel elements from German nuclear power plants in France and Great Britain on the grounds that, measured by German protection requirements, it cannot be regarded as 'inncuous utilization' of radioactive waste material; this brings a momentous intervention of the German authorities against the operators of German nuclear power plants into consideration. Yet would not such a 'national solo attempt' conflict with European Community law?. This question is illuminated in its different aspects. First the issue is examined from the point of view of radiation protection law under the Euratom Treaty and of the aim of the EC to establish the single market. Subsequent focal points are an inquiry into compatibility with the freedom of merchandise traffic and commercial services as provided by European Community law. The outcome is that European Community law does not oppose the German authorities intervencing. Rather such self-discipline practised by member states for the benefit of the European environment is admissible so long as the other EC member states do not establish equally stringent standards on their own accord or European Community law itself does not provide protection on a high level. (orig.) [de

  9. Mono- and di-n-butyl phosphates of some metals in spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Solovkin, A.S.

    1982-01-01

    Results of investigations which have been carried out in the Soviet Union for the last 10 years on the determination of the composition, structure, conditions of the formation and solubility of mono- and di-n-butyl phosphates of metals (U/sup 6 +/, Pu/sup 4 +/, Pu/sup 3 +/, Th, Zr, Fe/sup 3 +/, Am, Al, rare-earth elements), which are important for the processes of irradiated nuclear fuel reprocessing, are presented. A conclusion is made that zirconium mono- and di-n-butyl phosphates are the least soluble in aqueous and organic solvents of all investigated compounds. FeA/sub 3/ and AmA/sub 3/ are weakly soluble in aqueous solutions. The other compounds are sufficiently soluble in moderately acidic aqueous solutions or in DBP and TBP with dilutents. The obtained results indicate at the similarity of zirconium and plutonium (4) chemical properties; thorium, in this respect, is not an analogue of plutonium (4). Possible structural formulas of the investigated compounds are considered.

  10. Waste management system alternatives for treatment of wastes from spent fuel reprocessing

    International Nuclear Information System (INIS)

    McKee, R.W.; Swanson, J.L.; Daling, P.M.

    1986-09-01

    This study was performed to help identify a preferred TRU waste treatment alternative for reprocessing wastes with respect to waste form performance in a geologic repository, near-term waste management system risks, and minimum waste management system costs. The results were intended for use in developing TRU waste acceptance requirements that may be needed to meet regulatory requirements for disposal of TRU wastes in a geologic repository. The waste management system components included in this analysis are waste treatment and packaging, transportation, and disposal. The major features of the TRU waste treatment alternatives examined here include: (1) packaging (as-produced) without treatment (PWOT); (2) compaction of hulls and other compactable wastes; (3) incineration of combustibles with cementation of the ash plus compaction of hulls and filters; (4) melting of hulls and failed equipment plus incineration of combustibles with vitrification of the ash along with the HLW; (5a) decontamination of hulls and failed equipment to produce LLW plus incineration and incorporation of ash and other inert wastes into HLW glass; and (5b) variation of this fifth treatment alternative in which the incineration ash is incorporated into a separate TRU waste glass. The six alternative processing system concepts provide progressively increasing levels of TRU waste consolidation and TRU waste form integrity. Vitrification of HLW and intermediate-level liquid wastes (ILLW) was assumed in all cases

  11. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    Energy Technology Data Exchange (ETDEWEB)

    Besnus, F. [Institut de Radioprotection et de Surete Nucleaire (IRSN), 92 - Fontenay-aux-Roses (France)

    2006-07-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  12. Safety of direct disposal of spent fuel and of disposal of reprocessing waste

    International Nuclear Information System (INIS)

    Besnus, F.

    2006-01-01

    In 2005, the French Agency for Radioactive waste management (ANDRA) established a report on the feasibility of the geological disposal of high level and intermediate level long lived radioactive waste, in a clay formation. The hypothesis of spent fuel direct disposal was also considered. By the end of 2005, IRSN performed a complete technical review of ANDRA's report, aiming at highlighting the salient safety issues that were to be addressed within a process that may possibly lead to the creation of a disposal facility for these wastes. The following publication presents the main conclusions of this technical review. (author)

  13. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    International Nuclear Information System (INIS)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas; Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc; Grassi, Gabriele

    2015-01-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the 137 Cs and 134 Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a 137 Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional 3 He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  14. Status of the nuclear measurement stations for the process control of spent fuel reprocessing at AREVA NC/La Hague

    Energy Technology Data Exchange (ETDEWEB)

    Eleon, Cyrille; Passard, Christian; Hupont, Nicolas; Estre, Nicolas [CEA, DEN, Cadarache, Nuclear Measurement Laboratory, F-13108 St Paul-lez-Durance (France); Battel, Benjamin; Doumerc, Philippe; Dupuy, Thierry; Batifol, Marc [AREVA NC, La Hague plant - Nuclear Measurement Team, F-50444 Beaumont-Hague (France); Grassi, Gabriele [AREVA NC, 1 place Jean-Millier, 92084 Paris-La-Defense cedex (France)

    2015-07-01

    Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no. 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)

  15. Recycling of MOX fuel for LWRs

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Oh, Soo Youl

    1992-01-01

    The status and issues related to the thermal recycling of reprocessed nuclear fuels have been reviewed. It is focused on the use of reprecessed plutonium in the form of mixed oxide (MOX) for a light water reactor and the review on reprocessing and fabrication processes is beyond the scope. In spite of the difference in the nuclear characteristics between plutonium and uranium isotopes, the neutronics behavior in a core with MOX fuels is similar to that with normal uranium fuels. However, since the neutron spectrum is hardened in a core with MOX, the Doppler, viod, and moderator temperature coefficients become more negative and the control rod and boron worths are slightly reduced. Therefore, the safety will be evaluated carefully in addition to the core neutronics analysis. The MOX fuel rod behavior related to the rod performance such as the pellet to clad interaction and fission gas release is also similar to that of uranium rods, and no specific problem arises. Substituting MOX fuels for a portion of uranium fuels, it is estimated that the savings be about 25% in uranium ore and 10% in uranium enrichment service requirements. The use of MOX fuel in LWRs has been commercialized in European countries including Germany, France, Belgium, etc., and a demonstration program has been pursued in Japan for the commercial utilization in the late 1990s. Such a worldwide trend indicates that the utilization of MOX fuel in LWRs is a proven technology and meets economics criteria. (Author)

  16. On the possibility of reprocessing spent nuclear fuel and radioactive waste by plasma methods

    Energy Technology Data Exchange (ETDEWEB)

    Vorona, N. A.; Gavrikov, A. V., E-mail: gavrikov@ihed.ras.ru; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Khomyakov, Yu. S. [Innovation–Technology Center of the Project Proryv (Russian Federation)

    2015-12-15

    The concept of plasma separation of spent nuclear fuel and radioactive waste is presented. An approach that is based on using an accelerating potential to overcome the energy and angular spread of plasma ions at the separation region inlet and utilizing a potential well to separate spatially the ions of different masses is proposed. It is demonstrated that such separation may be performed at distances of about 1 m with electrical potentials of about 1 kV and a magnetic field of about 1 kG. The estimates of energy consumption and performance of the plasma separation method are presented. These estimates illustrate its potential for technological application. The results of development and construction of an experimental setup for testing the method of plasma separation are presented.

  17. Glutarimidedioxime. A complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Liang [China Institute of Atomic Energy, Beijing (China). Radiochemistry Dept.; Tian, Guoxin [China Institute of Atomic Energy, Beijing (China). Radiochemistry Dept.; Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Chemical Sciences Div.; Beavers, Christine M.; Teat, Simon J. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Advanced Light Source; Shuh, David K. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Chemical Sciences Div.

    2016-04-04

    Efficient separation processes for recovering uranium and plutonium from spent nuclear fuel are essential to the development of advanced nuclear fuel cycles. The performance characteristics of a new salt-free complexing and reducing reagent, glutarimidedioxime (H{sub 2}A), are reported for recovering plutonium in a PUREX process. With a phase ratio of organic to aqueous of up to 10:1, plutonium can be effectively stripped from 30 % tributyl phosphate (TBP) in kerosene into 1M HNO{sub 3} with H{sub 2}A. The complexation-reduction mechanism is illustrated with the combination of UV/Vis absorption spectra and the crystal structure of a Pu{sup IV} complex with the reagent. The fast stripping rate and the high efficiency for stripping Pu{sup IV}, through the complexation-reduction mechanism, is suitable for use in centrifugal contactors with very short contact/resident times, thereby offering significant advantages over conventional processes.

  18. Operational experience in the spent fuel receipt and storage facility at the Tokai Reprocessing Plant

    International Nuclear Information System (INIS)

    Nakashima, S.; Yamaguchi, Y.; Iimura, I.; Yamamura, O.; Ogata, Y.

    1992-01-01

    The development of the double containment system led to the reduction of labor time for the cask decontamination to one-tenth compared to the original manner. And also it led to the great decrease of floor contamination in the receipt and storage facility. The decrease permitted as many as about 20,000 visitors to take tours in the fuel receipt and storage facility in the past three years without contamination trouble with the visitors. Different types of spent fuels can be easily handled and stored by the specially designed tools in the pool water. The exchange of the cooling water in the transport cask before unloading and the use of the storage container keep contamination of the pool water to a minimum. The pool water treatment system has been successfully operated. As result, the pool water condition has been well-controlled

  19. Memento. Maritime transport of MOX fuels from Europe to Japan

    International Nuclear Information System (INIS)

    1999-07-01

    The maritime transport of MOX fuels from Europe to Japan represents the last of the 3 steps of transport of the nuclear fuel reprocessing-recycling program settled between ORC (Japan), BNFL (UK) and Cogema (France). This document summarizes the different aspects of this program: the companies concerned, the physical protection measures, the US-Japan agreements (accompanying warship), the in-depth safety, the handling of MOX fuels (containers and ships), and the Japan MOX fuel needs. (J.S.)

  20. Stock management optimization. Example of the management of a reprocessed plutonium stock

    International Nuclear Information System (INIS)

    Herault, L.; Privault, C.

    1997-01-01

    This paper describes a method developed by the CEA for the management of a stock of nuclear materials of Electricite de France and which combines meta-heuristics with mathematical programing results for a better efficiency. The industrial problem to solve concerns the reprocessing of spent fuels and the reuse of their plutonium content for the manufacturing of mixed oxide (MOX) fuels. In this problem, the plutonium stock is shared into subsets which must supply fuel fabrication plants at a given date and with precise energetic, chemical and quality criteria in order to minimize the reprocessing costs. (J.S.)

  1. An assessment system for the system safety engineering capability maturity model in the case of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Zhenghai; Liu Zhiming; Wan Yaping; Bai Xiaofeng

    2012-01-01

    We can improve the processing, the evaluation of capability and promote the user's trust by using system security engineering capability maturity model (SSE-CMM). SSE-CMM is the common method for organizing and implementing safety engineering, and it is a mature method for system safety engineering. Combining capability maturity model (CMM) with total quality management and statistic theory, SSE-CMM turns systems security engineering into a well-defined, mature, measurable, advanced engineering discipline. Lack of domain knowledge, the size of data, the diversity of evidences, the cumbersomeness of processes, and the complexity of matching evidences with problems are the main issues that SSE-CMM assessment has to face. To improve effectively the efficiency of assessment of spent fuel reprocessing system security engineering capability maturity model (SFR-SSE-CMM), in this paper we de- signed an intelligent assessment software based on domain ontology and that uses methods such as ontology, evidence theory, semantic web, intelligent information retrieval and intelligent auto-matching techniques. This software includes four subsystems, which are domain ontology creation and management system, evidence auto collection system, and a problem and evidence matching system. The architecture of the software is divided into five layers: a data layer, an oncology layer, a knowledge layer, a service layer arid a presentation layer. (authors)

  2. Glutarimidedioxime: a complexing and reducing reagent for plutonium recovery from spent nuclear fuel reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Xian, Liang [Radiochemistry Department, China Institute of Atomic Energy, Beijing (China); Tian, Guoxin [Radiochemistry Department, China Institute of Atomic Energy, Beijing (China); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Beavers, Christine M.; Teat, Simon J. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Shuh, David K. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-04-04

    Efficient separation processes for recovering uranium and plutonium from spent nuclear fuel are essential to the development of advanced nuclear fuel cycles. The performance characteristics of a new salt-free complexing and reducing reagent, glutarimidedioxime (H{sub 2}A), are reported for recovering plutonium in a PUREX process. With a phase ratio of organic to aqueous of up to 10:1, plutonium can be effectively stripped from 30 % tributyl phosphate (TBP) in kerosene into 1 m HNO{sub 3} with H{sub 2}A. The complexation-reduction mechanism is illustrated with the combination of UV/Vis absorption spectra and the crystal structure of a Pu{sup IV} complex with the reagent. The fast stripping rate and the high efficiency for stripping Pu{sup IV}, through the complexation-reduction mechanism, is suitable for use in centrifugal contactors with very short contact/resident times, thereby offering significant advantages over conventional processes. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Melting process to condition decladding hulls generated by the reprocessing of LWR and FBR spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1981-01-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel, and volume reduction factors in the region of 5 to 7, corresponding to the theoretical density of the alloy obtained, are arrived at quite easily. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy, appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. The decreasing of fusion temperature is less spectacular with stainless steel; only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy which reduces the principal oxide components of glasses and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging although they were obtained using artificially contaminated hulls; they should therefore be considered with precaution and be confirmed by further tests in hot cells using real hulls

  4. MOX fuel cycle technologies for medium and long term deployment. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    More than thirty years of reactor experience using MOX fuel as well as the fabrication of 2000 MOX assemblies with the use of 85 t of Pu separated from spent fuel from power reactors indicates that the recycling of plutonium as MOX fuel in LWRs has become a mature industry. The number of countries engaged in plutonium recycling could be increasing in the near future, aiming for the reduction of stockpiles of separated plutonium from earlier and existing reprocessing contracts. Economic and strategic considerations are the main factors on which to base such a decision to use MOX. Transport of MOX fuel assemblies is a vital element in these recycle programmes but could have the potential to be a weak link in the chain. To avoid problems, it is essential that sufficient numbers of transport flasks of the required types, licensed for the increasing Pu contents, be made available in a timely manner to keep pace with the planned increases in fabrication rates. Despite the excellent safety records for radioactive and MOX transports over many decades, continuous attention should be drawn to establishing the transport modalities, buffer stores, secure vehicles, and transport routes, at the same time accounting for public sensitivities on radioactive transports in general and MOX transport in particular. A large number of technical presentations updated and reconfirmed the good and almost defect-free performance of MOX fuel at increasingly high burn-up levels. MOX fuel is designed to meet the same operational and safety criteria as uranium fuels under equivalent conditions. This is also confirmed by the parallel development of design codes to accommodate the special characteristics of MOX. Integral and specific parameter testing of MOX fuel in normal and off-normal operation is under way in a number of countries with particular emphasis on high burnup behaviour. Here the important contributions of the OECD/NEA Halden BWR programme should be mentioned. The reactor

  5. MOX fuel cycle technologies for medium and long term deployment. Proceedings

    International Nuclear Information System (INIS)

    2000-01-01

    More than thirty years of reactor experience using MOX fuel as well as the fabrication of 2000 MOX assemblies with the use of 85 t of Pu separated from spent fuel from power reactors indicates that the recycling of plutonium as MOX fuel in LWRs has become a mature industry. The number of countries engaged in plutonium recycling could be increasing in the near future, aiming for the reduction of stockpiles of separated plutonium from earlier and existing reprocessing contracts. Economic and strategic considerations are the main factors on which to base such a decision to use MOX. Transport of MOX fuel assemblies is a vital element in these recycle programmes but could have the potential to be a weak link in the chain. To avoid problems, it is essential that sufficient numbers of transport flasks of the required types, licensed for the increasing Pu contents, be made available in a timely manner to keep pace with the planned increases in fabrication rates. Despite the excellent safety records for radioactive and MOX transports over many decades, continuous attention should be drawn to establishing the transport modalities, buffer stores, secure vehicles, and transport routes, at the same time accounting for public sensitivities on radioactive transports in general and MOX transport in particular. A large number of technical presentations updated and reconfirmed the good and almost defect-free performance of MOX fuel at increasingly high burn-up levels. MOX fuel is designed to meet the same operational and safety criteria as uranium fuels under equivalent conditions. This is also confirmed by the parallel development of design codes to accommodate the special characteristics of MOX. Integral and specific parameter testing of MOX fuel in normal and off-normal operation is under way in a number of countries with particular emphasis on high burnup behaviour. Here the important contributions of the OECD/NEA Halden BWR programme should be mentioned. The reactor

  6. LWR Spent Fuel Management for the Smooth Deployment of FBR

    International Nuclear Information System (INIS)

    Fukasawa, T.; Yamashita, J.; Hoshino, K.; Sasahira, A.; Inoue, T.; Minato, K.; Sato, S.

    2015-01-01

    Fast breeder reactors (FBR) and FBR fuel cycle are indispensable to prevent the global warming and to secure the long-term energy supply. Commercial FBR expects to be deployed from around 2050 until around 2110 in Japan by the replacement of light water reactors (LWR) after their 60 years life. The FBR deployment needs Pu (MOX) from the LWR-spent fuel (SF) reprocessing. As Japan can posses little excess Pu, its balance control is necessary between LWR-SF management (reprocessing) and FBR deployment. The fuel cycle systems were investigated for the smooth FBR deployment and the effectiveness of proposed flexible system was clarified in this work. (author)

  7. Suggestions of radiation protection instruments in ships used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants

    International Nuclear Information System (INIS)

    Warenmo, G.

    1979-01-01

    Some radiation protection measures are necessary in ships which will be used for transporting spent fuel elements from nuclear power plants to central stores and further to fuel reprocessing plants in order to protect the crew from unnecessarily high radiation doses and to ensure that not allowable values occur. Such measures are discussed in this report as well as suitable radiation protection instruments for such ships. (E.R.)

  8. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  9. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    International Nuclear Information System (INIS)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-01-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  10. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    Energy Technology Data Exchange (ETDEWEB)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D. [General Atomics 3550 General Atomics Court San Diego, CA 92130 (United States)

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  11. Radiative capture on $^{242}$Pu for MOX fuel reactors

    CERN Multimedia

    The use of MOX fuel (mixed-oxide fuel made of UO$_{2}$ and PuO$_{2}$) in nuclear reactors allows substituting a large fraction of the enriched Uranium by Plutonium reprocessed from spent fuel. Indeed around 66% of the plutonium from spent fuel is made of $^{239}$Pu and $^{241}$Pu, which are fissile in thermal reactors. A typical reactor of this type uses a fuel with 7% reprocessed Pu and 93% depleted U, thus profiting from both the spent fuel and the remaining $^{238}$U following the $^{235}$U enrichment. With the use of such new fuel compositions rich in Pu the better knowledge of the capture and fission cross sections of the Pu isotopes becomes very important. This is clearly stated in the recent OECD NEA’s “High Priority Request List” and in the WPEC-26 “Uncertainty and target accuracy assessment for innovative systems using recent covariance data evaluations” report. In particular, a new series of cross section evaluations have been recently carried out jointly by the European (JEFF) and United ...

  12. MOX fuel transport: the French experience

    International Nuclear Information System (INIS)

    Sanchis, H.; Verdier, A.; Sanchis, H.

    1999-01-01

    In the back-end of the fuel cycle, several leading countries have chosen the Reprocessing, Conditioning, Recycling (RCR) option. Plutonium recycling in the form of MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants an several European countries. The COGEMA Group has developed the industrialized products to master the RCR operation including transport COGEMA subsidiary, TRANSNUCLEAIRE has been operating MOX fuel transports on an industrial scale for more than 10 years. In 1998, around 200 transports of Plutonium materials have been organised by TRANSNUCLEAIRE. These transports have been carried out by road between various facilities in Europe: reprocessing plants, manufacturing plants and power plants. The materials transported are either: PuO 2 and MOX powder; BWR and PWR MOX fuel rods; BWR and PWR MOX fuel assemblies. Because MOX fuel transport is subject to specific safety, security and fuel integrity requirements, the MOX fuel transport system implemented by TRANSNUCLEAIRE is fully dedicated. Packaging have been developed, licensed and manufactured for each kind of MOX material in compliance with relevant regulations. A fleet of vehicles qualified according to existing physical protection regulations is operated by TRANSNUCLEAIRE. TRANSNUCLEAIRE has gained a broad experience in MOX transport in 10 years. Technical and operational know-how has been developed and improved for each step: vehicles and packaging design and qualification; vehicle and packaging maintenance; transport operations. Further developments are underway to increase the payload of the packaging and to improve the transport conditions, safety and security remaining of course top priority. (authors)

  13. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor; Diseno de una recarga mixta con ensambles MOX de mayor relacion de moderacion para un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2004-07-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  14. Implement of MOX fuel assemblies in the design of the fuel reload for a BWR; Implemento de ensambles de combustible MOX en el diseno de la recarga de combustible para un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Enriquez C, P.; Ramirez S, J. R.; Alonso V, G.; Palacios H, J. C., E-mail: pastor.enriquez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    At the present time the use of mixed oxides as nuclear fuel is a technology that has been implemented in mixed reloads of fuel for light water reactors. Due to the plutonium production in power reactors, is necessary to realize a study that presents the plutonium use like nuclear fuel. In this work a study is presented that has been carried out on the design of a fuel assembly with MOX to be proposed in the supply of a fuel reload. The fissile relationship of uranium to plutonium is presented for the design of the MOX assembly starting from plutonium recovered in the reprocessing of spent fuel and the comparison of the behavior of the infinite multiplication factor is presented and of the local power peak factor, parameters of great importance in the fuel assemblies design. The study object is a fuel assembly 10 x 10 GNF2 type for a boiling water reactor. The design of the fuel reload pattern giving fuel assemblies with MOX, so the comparison of the behavior of the stop margin for a fuel reload with UO{sub 2} and a mixed reload, implementing 12 and 16 fuel assemblies with MOX are presented. The results show that the implement of fuel assemblies with MOX in a BWR is possible, but this type of fuels creates new problems that are necessary to study with more detail. In the development of this work the calculus tools were the codes: INTREPIN-3, CASMO-4, CMSLINK and SIMULATE-3. (Author)

  15. Design of a mixed recharge with MOX assemblies of greater relation of moderation for a BWR reactor

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.; Palacios H, J.

    2004-01-01

    The study of the fuel of mixed oxides of uranium and plutonium (MOX) it has been topic of investigation in many countries of the world and those are even discussed in many places the benefits of reprocessing the spent fuel to extract the plutonium created during the irradiation of the fuel in the nuclear power reactors. At the moment those reactors that have been loaded partially with MOX fuel, are mainly of the type PWR where a mature technology has been achieved in some countries like they are France, Belgium and England, however the experience with reactors of the type BWR is more limited and it is continued studying the best way to introduce this type of fuel in BWRs, one of the main problems to introduce MOX in reactors BWR is the neutronic design of the same one, existing different concepts to introduce the plutonium in the assemblies of fuel and one of them is the one of increasing the relationship of moderation of the assemble. In this work a MOX fuel assemble design is presented and the obtained results so far in the ININ. These results indicate that the investigated concept has some exploitable advantages in the use of the MOX fuel. (Author)

  16. MOX fuel fabrication: Technical and industrial developments

    International Nuclear Information System (INIS)

    Lebastard, G.; Bairiot, H.

    1990-01-01

    The plutonium available in the near future is generally estimated rather precisely on the basis of the reprocessing contracts and the performance of the reprocessing plants. A few years ago, decision makers were convinced that a significant share of this fissile material would be used as the feed material for fast breeder reactors (FBRs) or other advanced reactors. The facts today are that large reprocessing plants are coming into commercial operations: UP3 and soon UP2-800 and THORP, but that FBR deployment is delayed worldwide. As a consequence, large quantities of plutonium will be recycled in light water reactors as mixed oxide (MOX) fuels. MOX fuel technology has been properly demonstrated in the past 25 years. All specific problems have been addressed, efficient fabrication processes and engineering background have been implemented to a level of maturity which makes MOX fuel behaving as well as Uranium fuel. The paper concentrates on todays MOX fabrication expertise and presents the technical and industrial developments prepared by the MOX fuel fabrication industry for this last decade of the century

  17. On-Line Monitoring for Process Control and Safeguarding of Radiochemical Streams at Spent Fuel Reprocessing Plants

    International Nuclear Information System (INIS)

    Bryan, S.; Levitskaia, T.; Casella, A.

    2015-01-01

    The International Atomic Energy Agency (IAEA) has established international safe- guards standards for fissionable material at spent nuclear fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) techniques in conjunction with the traditional and highly precise DA methods may provide a more timely, cost-effective and resource-efficient means for MC&A verification at such facilities. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including a spectroscopy-based monitoring system, to potentially reduce the time and re- source burden associated with current techniques. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using ultra-violet and visible, near infrared and Raman spectroscopy. This paper will provide an overview of the methods and report our on-going efforts to develop and demonstrate the technologies. Our ability to identify material intentionally diverted from a liquid-liquid solvent extraction contactor system was successfully tested using on-line process monitoring as a means to detect the amount of material diverted. A chemical diversion, and detection of that diversion, from a solvent extraction scheme was demonstrated using a centrifugal contactor system operating with the PUREX flowsheet. A portion of the feed from a counter-current extraction system was diverted while a continuous extraction experiment was underway. The amount observed to be diverted by on-line spectroscopic process monitoring was in excellent agreement with values based from the known mass of

  18. Monitoring, controlling and safeguarding radiochemical streams at spent fuel reprocessing facilities with optical and gamma-ray spectroscopic methods

    International Nuclear Information System (INIS)

    Schwantes, J.M.; Bryan, S.A.; Orton, C.R.; Levitskaia, T.G.; Fraga, C.G.

    2013-01-01

    The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-usable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MCA) at these facilities require time-consuming and resource intensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop

  19. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant.

    Science.gov (United States)

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-09-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH(3)T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH(3)T concentrations. The HT and CH(3)T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Östlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH(3)T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH(4) to estimate global warming in its 2007 report. The longer environmental half-life of CH(3)T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  1. Reprocessing decision

    International Nuclear Information System (INIS)

    Heising, C.D.

    1978-01-01

    The United States must decide whether to permit, delay, or prohibit the reprocessing and recycling of nuclear spent fuel. To permit reprocessing would allow recycle as early as 1985; to delay the decision for a later administration to deal with means spent fuel would mount up at nuclear reactor sites; to prohibit would eliminate recycling and mandate permanent storage. Bayesian decision analysis was used to examine reprocessing costs associated with risks and economic benefits. Three distinct categories of risk that are important in the nuclear fuel cycle are discussed. These are: health, environment, and safety risks; nuclear theft and sabotage; and nuclear weapons proliferation risks. Results are discussed from comparing nine routes to weapons-usuable mterial available to nonweapons states that desire a nuclear capability. These are: production reactor and military reporcessor; research reacotr and military reprocessor; power plant plus military reprocessor or commercial reprocessor; enrichment (centrifuge, gaseous diffusion, electromagnetic separation, or aerodynamic jet cascade); and accelerator. It was found that the commercial power reactor-commercial reprocessor route is comparatively unattractive to a nonweapons state. In summary, allowing nuclear fuel reprocessing to go forward in the United States can be expected to increase the costs to society by a maximum $360 million a year. This is approximately one-seventh of the expected benefit (reduced electricity bills) to be dderived by society from closing the fuel cycle. It appears that the permitting reprocessing now is logically preferable to delaying or prohibiting the technology, the author concludes

  2. Fuel reprocessing/fabrication interface

    International Nuclear Information System (INIS)

    Benistan, G.; Blanchon, T.; Galimberti, M.; Mignot, E.

    1987-01-01

    EDF has conducted a major research, development and experimental programme concerning the recycling of plutonium and reprocessed uranium in pressurized water reactors, in collaboration with its major partners in the nuclear fuel cycle industry. Studies already conducted have demonstrated the technical and economic advantages of this recycling, as also its feasibility with due observance of the safety and reliability criteria constantly applied throughout the industrial development of the nuclear power sector in France. Data feedback from actual experience will make it possible to control the specific technical characteristics of MOX and reprocessed uranium fuels to a higher degree, as also management, viewed from the economic standpoint, of irradiated fuels and materials recovered from reprocessing. The next step will be to examine the reprocessing of MOX for reprocessed uranium fuels, either for secondary recycling in the PWR units, or, looking further ahead, in the fast breeders or later generation PWR units, after a storage period of a few years

  3. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    Akata, Naofumi; Kakiuchi, Hideki; Shima, Nagayoshi; Iyogi, Takashi; Momoshima, Noriyuki; Hisamatsu, Shun'ichi

    2011-01-01

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH 3 T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH 3 T concentrations. The HT and CH 3 T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Ostlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH 3 T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH 4 to estimate global warming in its 2007 report. The longer environmental half-life of CH 3 T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. - Highlights: → We observed background tritium concentrations in atmospheric environment at Rokkasho, Japan. → Tritium concentration in precipitation was high in spring and low in summer. → The atmospheric HT

  4. Tritium concentrations in the atmospheric environment at Rokkasho, Japan before the final testing of the spent nuclear fuel reprocessing plant

    Energy Technology Data Exchange (ETDEWEB)

    Akata, Naofumi, E-mail: nao@ies.or.jp [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Kakiuchi, Hideki [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Shima, Nagayoshi [Entex Inc., 1-2-8 Asahi, Kashiwa, Chiba 277-0852 (Japan); Iyogi, Takashi [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan); Momoshima, Noriyuki [Radioisotope Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Hisamatsu, Shun' ichi [Department of Radioecology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Aomori 039-3212 (Japan)

    2011-09-15

    This study aimed at obtaining background tritium concentrations in precipitation and air at Rokkasho where the first commercial spent nuclear fuel reprocessing plant in Japan has been under construction. Tritium concentration in monthly precipitation during fiscal years 2001-2005 had a seasonal variation pattern which was high in spring and low in summer. The tritium concentration was higher than that observed at Chiba City as a whole. The seasonal peak concentration at Rokkasho was generally higher than that at Chiba City, while the baseline concentrations of both were similar. The reason for the difference may be the effect of air mass from the Asian continent which is considered to have high tritium concentration. Atmospheric tritium was operationally separated into HTO, HT and hydrocarbon (CH{sub 3}T) fractions, and the samples collected every 3 d-14 d during fiscal year 2005 were analyzed for these fractions. The HTO concentration as radioactivity in water correlated well with that in the precipitation samples. The HT concentration was the highest among the chemical forms analyzed, followed by the HTO and CH{sub 3}T concentrations. The HT and CH{sub 3}T concentrations did not have clear seasonal variation patterns. The HT concentration followed the decline previously reported by Mason and Ostlund with an apparent half-life of 4.8 y. The apparent and environmental half-lives of CH{sub 3}T were estimated as 9.2 y and 36.5 y, respectively, by combining the present data with literature data. The Intergovernmental Panel on Climate Change used the atmospheric lifetime of 12 y for CH{sub 4} to estimate global warming in its 2007 report. The longer environmental half-life of CH{sub 3}T suggested its supply from other sources than past nuclear weapon testing in the atmosphere. - Highlights: > We observed background tritium concentrations in atmospheric environment at Rokkasho, Japan. > Tritium concentration in precipitation was high in spring and low in summer. > The

  5. China's spent fuel treatment: The present status and prospects

    International Nuclear Information System (INIS)

    Jiang Yunqing

    1999-01-01

    In the mid 1980s, China launched the development of nuclear power dominated by PWRs and opted for the closed fuel cycle strategy. On the basis of irradiated fuel reprocessing for defence purpose, an R and D programme for civil reprocessing has been implemented. Currently, China's spent fuel arising is limited but its amount will sharply increase with nuclear power expansion early next century. Spent fuel stored at reactor site for at least 5 years will be transported either by a combination of sea and rail or by road directly to the Lanzhou Nuclear Fuel Complex. A wet centralized storage facility with a 550 tHM capacity has been built for interim storage of spent fuel. Also, a multi-purpose reprocessing pilot plant with a maximum throughput of 400 kg HM/d is now under construction and will be put into commissioning by the turn of the century. A large-scale commercial reprocessing plant, perhaps with a capacity of 800 tHM/a, will be set up around 2020. Recovered uranium and plutonium from reprocessing will go to a demonstration plant and be manufactured into MOX fuel for FBR and PWR. The defence radwaste from reprocessing is at present being conditioned into the proper forms and will be disposed in appropriate repositories. All expertise and experience gained from these practices will be utilized in the future civil radwaste management. (author)

  6. Status of development on simulation technology for pyrochemical reprocessing

    International Nuclear Information System (INIS)

    Arie, Kazuo; Mizuguchi, Koji; Fujita, Reiko

    2004-01-01

    Simulation techniques for the elemental behaviors in the pyrochemical reprocessing process of spent nuclear fuels are important for fuel reprocessing and future power station development. The authors developed a simulation code SPR1.0 which can analyze co-occurring electrochemical and chemical reactions simultaneously and which is applicable to know the behavior of any element in the system. The present report describes the status of the code development, the database for fundamental electrochemical reactions, and verification of the code. The code employs TRIAS code for electrochemical reactions and SOLGASMIX-PV for chemical reactions. Electrolytic process for MOX (mixed oxide) fuels with different Pu redox ratios were simulated using the present code and the effect of introducing iron ions was studied. The prospect of future development is also described. (S. Ohno)

  7. Need for Asian regional spent fuel recycle center (ARRC)

    International Nuclear Information System (INIS)

    Yamamura, Osamu

    2009-01-01

    Energy demand is increasing rapidly in the Asia-Pacific region. From the viewpoint of preventing global warming, countries in the region are expected to introduce more nuclear power plants (NPPs) which do not emit greenhouse gases (GHGs). At the end of this century, the capacity for NPPs is estimated to reach around 1600 GWe and around 300,000 tons of uranium (TU) as spent fuel will be accumulated. The spent fuel from the NPPs should be reprocessed and fabricated into MOX fuel to decrease the amounts of radioactive wastes and future fuel recycling should be supported in the Asian Regional Spent Fuel Recycle Center (ARRC) under international regulation. The ARRC will include a reprocessing plant, an MOX fuel fabrication plant, a high-activity vitrified solid waste storage facility, and sea discharge pipes for extremely low activity liquid wastes etc. Furthermore, the ARRC should be operated as a component in an international organization scheme, an ASIATOM and it should accept the full scope of IAEA safeguards to verify the nonproliferation of nuclear materials. When the ARRC is designed, knowledge obtained through experiences in the Tokai and the Rokkasho reprocessing plants in Japan, which is a non-nuclear weapons country, will be used. (author)

  8. Application of curium measurements for safeguarding at reprocessing plants. Study 1: High-level liquid waste and Study 2: Spent fuel assemblies and leached hulls

    International Nuclear Information System (INIS)

    Rinard, P.M.; Menlove, H.O.

    1996-03-01

    In large-scale reprocessing plants for spent fuel assemblies, the quantity of plutonium in the waste streams each year is large enough to be important for nuclear safeguards. The wastes are drums of leached hulls and cylinders of vitrified high-level liquid waste. The plutonium amounts in these wastes cannot be measured directly by a nondestructive assay (NDA) technique because the gamma rays emitted by plutonium are obscured by gamma rays from fission products, and the neutrons from spontaneous fissions are obscured by those from curium. The most practical NDA signal from the waste is the neutron emission from curium. A diversion of waste for its plutonium would also take a detectable amount of curium, so if the amount of curium in a waste stream is reduced, it can be inferred that there is also a reduced amount of plutonium. This report studies the feasibility of tracking the curium through a reprocessing plant with neutron measurements at key locations: spent fuel assemblies prior to shearing, the accountability tank after dissolution, drums of leached hulls after dissolution, and canisters of vitrified high-level waste after separation. Existing pertinent measurement techniques are reviewed, improvements are suggested, and new measurements are proposed. The authors integrate these curium measurements into a safeguards system

  9. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  10. On the Potential of Nuclear Fission Energy for Effective Reduction of Carbon Emission under the Constraint of Uranium Resources Use without Spent Fuel Reprocessing

    International Nuclear Information System (INIS)

    Knapp, V.; Pevec, D.; Matijevic, M.

    2010-01-01

    Urgency to stop further increase of greenhouse gases emissions and reverse the trends, as stated in the Fourth Intergovernmental Panel on Climate Change (IPPC) Report and in Copenhagen discussions, limits the realistic choice of energy technologies to those available now or in the near future of few decades. In the coming fifty years neither nuclear fusion nor carbon capture and storage (CCS) can be expected to give a significant contribution to world energy production. Two perspective intermittent sources such as wind and solar together with nuclear fission energy covering the base load consumption appears to be a combination with a potential to produce a large share of carbon free energy in the total world energy production. This contribution considers the issues, associated with required large scale deployment of nuclear fission energy. A serious question associated with nuclear energy is nuclear proliferation. Spread of uranium enrichment and spent fuel reprocessing installations in many new countries constructing nuclear reactors would be a major concern in present political environment. We investigate whether uranium resources would be sufficient to support nuclear build-up in next 50-60 years sufficiently large to significantly reduce carbon emission without reprocessing of spent nuclear fuel. A positive answer would mean that 50-60 years can be available to develop effective international control of nuclear fuel cycle installations. Our results show that a maximum nuclear build-up which would consume currently estimated uranium resources by 2065 without reprocessing could reduce by 2065 carbon emission by 39.6% of the total reduction needed to bring the WEO 2009 Reference Scenario prediction of total GHG emissions in 2065 to the level of the WEO 450 Scenario limiting global temperature increase to 2 degrees of C. The less demanding strategy of the nuclear replacement of all non-CCS coal power plants retiring during the 2025-2065 period would reduce emission

  11. The status of BNFL's MOX project

    International Nuclear Information System (INIS)

    Edwars, John; Cooch, Julian P.; Slater, Michel W.

    2002-01-01

    Full text: In the late 1980s BNFL decided to enter the MOX fuel fabrication business to support our reprocessing business and return the plutonium product to our customers in the useable form of MOX fuel. The first phase of the strategy was to gain some irradiation experience for MOX produced by our own Short Binderless Route (SBR) process. To achieve this the MOX Demonstration Facility (MDF) was built at Sellafield and 28 MOX fuel assemblies were produced up to 1998 that were loaded into PWRs in Europe. In 1994, BNFL started the construction of their large scale MOX production plant, SMP. The design and construction of the plant and supporting facilities was completed some years ago and the commissioning of the plant with uranium commenced around June 1999. In October 2001, the UK Government provided BNFL with the approval to operate SMP with plutonium. On 20 December 2001, the UK Regulators gave BNFL their approval to start plutonium operations. This paper summarises the approach used to commission SMP and describes some of the lessons learnt during the commissioning phase of the project and the start up of the plant with plutonium. An explanation of our experience obtaining a licence to operate the plant is provided together with a description of the changes we have made to ensure that the quality of the product from SMP can be guaranteed. Finally, the paper summarises the experience BNFL has gained during irradiating MOX fuel produced by the SBR process and explains how the data compares with that available for UO2 and supports the in reactor use of MOX fuel made in SMP. (author)

  12. Transport of MOX fuel from Europe to Japan

    International Nuclear Information System (INIS)

    2002-01-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  13. Wastes from fuel reprocessing

    International Nuclear Information System (INIS)

    Eschrich, H.

    1976-01-01

    Handling, treatment, and interim storage of radioactive waste, problems confronted with during the reprocessing of spent fuel elements from LWR's according to the Purex-type process, are dealt with in detail. (HR/LN) [de

  14. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  15. Transport of MOX fuel from Europe to Japan; Transport de combustible mox d' Europe vers le Japon

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    The MOX fuel transports from Europe to Japan represent a main part in the implementing of the Japan nuclear program. They complement the 160 transports of spent fuels realized from Japan to Europe and the vitrified residues return from France to Japan. In this framework the document presents the MOX fuel, the use of the MOX fuel in reactor, the proliferation risks, the MOX fuel transport to Japan, the public health, the transport regulations, the safety and the civil liability. (A.L.B.)

  16. Why reprocess

    International Nuclear Information System (INIS)

    Hagen, M.

    1977-01-01

    The problem of whether to reprocess spent nuclear fuel elements has been studied already in the early days of the commercial utilization of nuclear power and has been answered positively. This also, and in particular, applies to the United States. Under the new American nuclear policy reprocessing is rejected only for reasons of non-proliferation. Although these are valid reasons, the effectiveness of a ban on reprocessing, as fas as the non-profileration of nuclear weapons is concerned, is not accepted worldwide because the necessary knowledge either already exists in many countries or can be obtained. Only if there had been a realistic chance to prevent the proliferation of nuclear weapons, also the other industrialized countries would have seconded the policy of the United States. A country like the Federal Republic of Germany, with a substantial long-term nuclear power program based initially on light water reactors, subsequently on advanced reactor systems, cannot do without a complete nuclear fuel cycle. This reasoning is outlined in the light of economic and radioecological aspects. Extensive experience on a technical scale is available in the reprocessing sector. The technical problems associated with this activity have been solved in principle and have largely been demonstrated to function in practice. (orig.) [de

  17. Application of the gravimetric method to closing the material balance around the chop-leach cell of a spent-fuel reprocessing plant

    International Nuclear Information System (INIS)

    Fishbone, L.G.

    1985-01-01

    For a spent-fuel reprocessing plant handling commercial light-water-reactor fuel, plutonium accounting is traditionally done for the material balance area (MBA) extending from the input accountability tank to the product accountability tank - the process MBA. Consider an MBA comprising the chop-leach cell, with an inward flow consisting of the intact spent-fuel assemblies and outward flows consisting of leached hulls and dissolver solution. Given knowledge of the original uranium mass in the fuel and a measurement of the uranium-plutonium concentration ratio in the dissolver solution, the gravimetric method can be used to determine the amount of plutonium in the spent-fuel assemblies. A measurement of residual plutonium in the leached hulls would then permit the determination of a plutonium material balance for the chop-leach cell alone, since the volumetrically determined plutonium in the input accountability tank yields the plutonium in the flow leaving the chop-leach cell for the process MBA. The uncertainty in the balance can be estimated given the individual measurement uncertainties

  18. Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; Itahara, Kuniyuki; Suzuki, Katsuo; Hamada, Koji

    1998-01-01

    According to the Long-term Program for Research, Development and Utilization of Nuclear Energy (June, 1994) in Japan, the Rokkasho Reprocessing Plant will be operated shortly after the year 2000, and the planning of the construction of the second commercial plant will be decided around 2010. Also, it is described that spent fuel storage has a positive meaning as an energy resource for the future utilization of Pu. Considering the balance between the increase of spent fuels and the domestic reprocessing capacity in Japan, it can be expected that the long-term storage of UO 2 spent fuels will be required. Then, we studied the effect of long-term storage of spent fuels on Pu-thermal fuel cycle. The burnup calculation were performed on the typical Japanese PWR fuel, and the burnup and criticality calculations were carried out on the Pu-thermal cores with MOX fuel. Based on the results, we evaluate the influence of extending the spent fuel storage term on the criticality safety, shielding design of the reprocessing plant and the core life time of the MOX core, etc. As the result of this work on long-term storage of LWR spent fuels, it becomes clear that there are few demerits regarding the lifetime of a MOX reactor core, and that there are many merits regarding the safety aspects of the fuel cycle facilities. Furthermore, long-term storage is meaningful as energy storage for effective utilization of Pu to be improved by technological innovation in future, and it will allow for sufficient time for the important policymaking of nuclear fuel cycle establishment in Japan. (author)

  19. Nuclear Fuel Reprocessing

    International Nuclear Information System (INIS)

    Simpson, Michael F.; Law, Jack D.

    2010-01-01

    This is a submission for the Encyclopedia of Sustainable Technology on the subject of Reprocessing Spent Nuclear Fuel. Nuclear reprocessing is the chemical treatment of spent fuel involving separation of its various constituents. Principally, it is used to recover useful actinides from the spent fuel. Radioactive waste that cannot be re-used is separated into streams for consolidation into waste forms. The first known application of nuclear reprocessing was within the Manhattan Project to recover material for nuclear weapons. Currently, reprocessing has a peaceful application in the nuclear fuel cycle. A variety of chemical methods have been proposed and demonstrated for reprocessing of nuclear fuel. The two most widely investigated and implemented methods are generally referred to as aqueous reprocessing and pyroprocessing. Each of these technologies is described in detail in Section 3 with numerous references to published articles. Reprocessing of nuclear fuel as part of a fuel cycle can be used both to recover fissionable actinides and to stabilize radioactive fission products into durable waste forms. It can also be used as part of a breeder reactor fuel cycle that could result in a 14-fold or higher increase in energy utilization per unit of natural uranium. Reprocessing can also impact the need for geologic repositories for spent fuel. The volume of waste that needs to be sent to such a repository can be reduced by first subjecting the spent fuel to reprocessing. The extent to which volume reduction can occur is currently under study by the United States Department of Energy via research at various national laboratories and universities. Reprocessing can also separate fissile and non-fissile radioactive elements for transmutation.

  20. Comparison of waste management aspects of direct disposal of spent fuel and reprocessing. Construction of data sets

    International Nuclear Information System (INIS)

    Greathead, R.J.

    1992-01-01

    A model comparing various reprocessing scenarios and direct disposal scenarios has been created using the Coddar computer code. The model has been used to rank the scenarios and establish the most and least favourable disposal routes when judged against four different sets of criteria, chosen to reflect different concerns for : (i) cost; (ii) the environment, including long-term impact; (iii) local impact; and (iv) general shorter-term radiological impact. This has been achieved by applying different sets of weighting factors, each chosen to reflect one of the four concerns, to the absolute impacts associated with different attributes (cost, risk and dose -to different groups and for various processes) and summing these impacts to get a total impact. When cost is stressed, direct disposal is the solution with the least impact and reprocessing the solution with most impact; but if moderate investment discounting is taken into account, say 3% delayed reprocessing becomes the best solution. When radiological impact is stressed, especially in the long term, direct disposal into granite would have by far the greatest impact, whilst disposal into a salt dome would have least. The performance and development potentials of Coddar are considered. Usability needs to be improved: (i) to allow greater flexibility in data input; (ii) to provide a better choice of graphic and tabular outputs; and (iii) to make processing and data modification more efficient. Functionality needs to be changed: (i) to allow a greater range of stages to be modelled, including decommissioning; (ii) to provide clearer delineation between collective dose data and risk data; and (iii) to not automatically reduce dose and risk impacts to take account of radioactive decay. 17 refs., 29 figs., 13 tabs., 2 appendices

  1. A real-time data acquisition and processing system for the analytical laboratory automation of a HTR spent fuel reprocessing facility

    International Nuclear Information System (INIS)

    Watzlawik, K.H.

    1979-12-01

    A real-time data acquisition and processing system for the analytical laboratory of an experimental HTR spent fuel reprocessing facility is presented. The on-line open-loop system combines in-line and off-line analytical measurement procedures including data acquisition and evaluation as well as analytical laboratory organisation under the control of a computer-supported laboratory automation system. In-line measurements are performed for density, volume and temperature in process tanks and registration of samples for off-line measurements. Off-line computer-coupled experiments are potentiometric titration, gas chromatography and X-ray fluorescence analysis. Organisational sections like sample registration, magazining, distribution and identification, multiple data assignment and especially calibrations of analytical devices are performed by the data processing system. (orig.) [de

  2. A compound refining system for separation of gaseous fission products incorporated in a reprocessing pilot plant for spent fuel from neclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    In the V. G. Khlopin Radium Institute, a gas treatment experimental apparatus was installed to the SU-2 type experimental facility. The purpose is to solve variety of problems in the separation, collection and subsequent treatment for gaseous fission products and highly volatile fission products in spent fuel reprocessing. The experimental apparatus has the functions as follows: the measurement of air flow such as flow rate, pressure, total γ activity and krypton-85 content, preliminary air flow cleaning and drying removing aerosol, hydrogen fluoride and nitrogen oxide, and the trapping and analysis of gaseous fission products and highly volatile fission products in air flow. For the collection of these two types of fission products, a liquid absorbent and a solid adsorbent are used in series arrangement. (J.P.N.)

  3. Status of power reactor fuel reprocessing in India

    International Nuclear Information System (INIS)

    Kansra, V.P.

    1999-01-01

    Spent fuel reprocessing in India started with the commissioning of the Trombay Plutonium Plant in 1964. This plant was intended for processing spent fuel from the 40 MWth research reactor CIRUS and recovering plutonium required for the research and development activities of the Indian Atomic Energy programme. India's nuclear energy programme aims at the recycle of plutonium in view of the limited national resources of natural uranium and abundant quantities of thorium. This is based on the approach which aims at separating the plutonium from the power reactor spent fuel, use it in the fast reactors to breed 233 U and utilise the 233 U generated to sustain a virtually endless source of power through thorium utilisation. The separated plutonium is also being utilised to fabricate MOX fuel for use in thermal reactors. Spent fuel treatment and extracting plutonium from it makes economic sense and a necessity for the Indian nuclear power programme. This paper describes the status and trends in the Indian programme for the reprocessing of power reactor fuels. The extraction of plutonium can also be seen as a far more positive approach to long-term waste management. The closed cycle approach visualised and pursued by the pioneers in the field is now steadily moving India towards the goal of a sustainable source of power through nuclear energy. The experience in building, operating and refurbishing the reprocessing facilities for uranium and thorium has resulted in acquiring the technological capability for designing, constructing, operating and maintaining reprocessing plants to match India's growing nuclear power programme. (author)

  4. Corrosion resistance of ceramic materials in pyrochemical reprocessing atmosphere by using molten salt for spent nuclear oxide fuel. Corrosion research under chlorine gas condition

    International Nuclear Information System (INIS)

    Takeuchi, Masayuki; Hanada, Keiji; Koizumi, Tsutomu; Aose, Shinichi; Kato, Toshihiro

    2002-12-01

    Pyrochemical reprocessing using molten salts (RIAR process) has been recently developed for spent nuclear oxide fuel and discussed in feasibility study. It is required to improve the corrosion resistance of equipments such as electrolyzer because the process is operated in severe corrosion environment. In this study, the corrosion resistance of ceramic materials was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas condition. And further consideration about the effects of oxygen, carbon and main fission product's chlorides were evaluated in molten salt. The result of thermodynamic calculation shows most of ceramic oxides have good chemical stability on chlorine, oxygen and uranyl chloride, however the standard Gibb's free energies with carbon have negative value. On the other hand, eleven kinds of ceramic materials were examined by corrosion test, then silicon nitride, mullite and cordierite have a good corrosion resistance less than 0.1 mm/y. Cracks were not observed on the materials and flexural strength did not reduce remarkably after 480 hours test in molten salt with Cl 2 -O 2 bubbling. In conclusion, these three ceramic materials are most applicable materials for the pyrochemical reprocessing process with chlorine gas condition. (author)

  5. Application of the basic concepts of dynamic materials accountancy to the Tokai spent fuel reprocessing facilityssing facility

    International Nuclear Information System (INIS)

    Lovett, J.E.; Ikawa, Koji; Hirata, Mitsuho; Augustson, R.H.

    1980-11-01

    During 1978 and 1979 individuals from the International Atomic Energy Agency, the Los Alamos Scientific Laboratory, and the Japan Atomic Energy Research Institute investigated the feasibility of applying the basic concepts of dynamic materials accountancy to PNC-Tokai reprocessing facility in Japan. The system developed for Tokai requires weekly in-process physical inventories for the process MBA, and allows 2-3 additional days for completion of measurements and for data reduction and evaluation. The study concluded that such a system would be feasible, and recommended that an actual field test should be conducted as soon as feasible. (author)

  6. Spent Nuclear Fuel Reprocessing Flowsheet. A Report by the WPFC Expert Group on Chemical Partitioning of the NEA Nuclear Science Committee

    International Nuclear Information System (INIS)

    Na, Chan; Yamagishi, Isao; Choi, Yong-Joon; Glatz, Jean-Paul; Hyland, Bronwyn; Uhlir, Jan; Baron, Pascal; Warin, Dominique; De Angelis, Giorgio; Luce, Alfredo; INOUE, Tadashi; Morita, Yasuji; Minato, Kazuo; Lee, Han Soo; Ignatiev, Victor V.; Kormilitsyn, Mikhail V.; Caravaca, Concepcion; Lewin, Robert G.; Taylor, Robin J.; Collins, Emory D.; Laidler, James J.

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials, and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific fields in the nuclear fuel cycle. The Expert Group on Chemical Partitioning was created in 2001 to (1) perform a thorough technical assessment of separations processes in application to a broad set of partitioning and transmutation (P and T) operating scenarios and (2) identify important research, development and demonstration necessary to bring preferred technologies to a deployable stage and (3) recommend collaborative international efforts to further technological development. This report aims to collect spent nuclear fuel reprocessing flowsheet of various processes developed by member states: aqueous, pyro and fluoride volatility. Contents: 1 - Hydrometallurgy process: Standard PUREX, Extended PUREX, UREX+3, Grind/Leach; 2 - Pyrometallurgy process: pyro-process (CRIEPI - Japan), 4-group partitioning process, pyro-process (KAERI - Korea), Direct electrochemical processing of metallic fuel, PyroGreen (reduce radiotoxicity to the level of low and intermediate level waste - LILW); 3 - Fluoride volatility process: Fluoride volatility process, Uranium and protactinium removal from fuel salt compositions by fluorine bubbling, Flowsheet studies on non-aqueous reprocessing of LWR/FBR spent nuclear fuel; Appendix A: Flowsheet studies of RIAR (Russian Federation), List of contributors, Members of the expert group

  7. Economic evaluation of reprocessing

    International Nuclear Information System (INIS)

    This paper, which also appears as an Appendix to the Final Working Group 4 report, considers the economics of the four basic options available in nuclear programmes namely: the once-through cycle; reprocessing with uranium recycle and plutonium storage; reprocessing with both uranium and plutonium recycle; and the fast reactor. These options are represented by four separate areas on a ''phase diagram'' showing the relationship between relative generating costs and uranium ore price. The basic algebra defining each component of electricity cost is given for each option. The diagram can take different forms depending upon the relative magnitudes of the costs of reprocessing and MOX fuel fabrication and whether the once-through fuel cycle is acceptable or not on grounds other than strictly economic, i.e. environmental grounds. The shortcomings of this form of presentation are also identified

  8. Selection of critical group in relation to the release of radionuclides from nuclear spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    Ohmomo, Y.

    1980-01-01

    In respect of internal radiation due to the coastal release of radionuclides, survey on marine food consumption is most useful for the selection of critical group. Species of marine organisms they usually eat is fully over 100 in the coastal area of Ibaraki prefecture where the fuel reprocessing plant is located. Though it gives only a spot datum, one day's consumption survey a season is of convenience to obtain cooperation from housewives and is of use to pick up critical organisms and those who eat much of them. However, long-term survey is required to estimate ordinary intake of the critical foods or those who are supposed critical people. One day's consumption survey makes it easy to perform the subsequent long-term one

  9. Determination of metal impurities in MOX powder by direct current arc atomic emission spectroscopy. Application of standard addition method for direct analysis of powder sample

    International Nuclear Information System (INIS)

    Furuse, Takahiro; Taguchi, Shigeo; Kuno, Takehiko; Surugaya, Naoki

    2016-12-01

    Metal impurities in MOX powder obtained from uranium and plutonium recovered from reprocessing process of spent nuclear fuel have to be determined for its characterization. Direct current arc atomic emission spectroscopy (DCA-AES) is one of the useful methods for direct analysis of powder sample without dissolving the analyte into aqueous solution. However, the selection of standard material, which can overcome concerns such as matrix matching, is quite important to create adequate calibration curves for DCA-AES. In this study, we apply standard addition method using the certified U_3O_8 containing known amounts of metal impurities to avoid the matrix problems. The proposed method provides good results for determination of Fe, Cr and Ni contained in MOX samples at a significant quantity level. (author)

  10. Transport of MOX fuel

    International Nuclear Information System (INIS)

    Porter, I.R.; Carr, M.

    1997-01-01

    The regulatory framework which governs the transport of MOX fuel is set out, including packages, transport modes and security requirements. Technical requirements for the packages are reviewed and BNFL's experience in plutonium and MOX fuel transport is described. The safety of such operations and the public perception of safety are described and the question of gaining public acceptance for MOX fuel transport is addressed. The paper concludes by emphasising the need for proactive programmes to improve the public acceptance of these operations. (Author)

  11. Probability of Criticality for MOX SNF

    International Nuclear Information System (INIS)

    P. Gottlieb

    1999-01-01

    The purpose of this calculation is to provide a conservative (upper bound) estimate of the probability of criticality for mixed oxide (MOX) spent nuclear fuel (SNF) of the Westinghouse pressurized water reactor (PWR) design that has been proposed for use. with the Plutonium Disposition Program (Ref. 1, p. 2). This calculation uses a Monte Carlo technique similar to that used for ordinary commercial SNF (Ref. 2, Sections 2 and 5.2). Several scenarios, covering a range of parameters, are evaluated for criticality. Parameters specifying the loss of fission products and iron oxide from the waste package are particularly important. This calculation is associated with disposal of MOX SNF

  12. Advances in applications of burnup credit to enhance spent fuel transportation, storage, reprocessing and disposition. Proceedings of a technical meeting

    International Nuclear Information System (INIS)

    2007-05-01

    Given a trend towards higher burnup power reactor fuel, the IAEA began an active programme in burnup credit (BUC) with major meetings in 1997 (IAEA-TECDOC-1013), 2000 (IAEA-TECDOC-1241) and 2002 (IAEA-TECDOC-1378) exploring worldwide interest in using BUC in spent fuel management systems. This publication contains the proceedings of the IAEA's 4th major BUC meeting, held in London. Sixty participants from 18 countries addressed calculation methodology, validation and criticality, safety criteria, procedural compliance with safety criteria, benefits of BUC applications, and regulatory aspects in BUC. This meeting encouraged the IAEA to continue its activities on burnup credit including dissemination of related information, given the number of Member States having to deal with increased spent fuel quantities and extended durations. A 5th major meeting on burnup credit is planned 2008. Burnup credit is a concept that takes credit for the reduced reactivity of fuel discharged from the reactor to improve loading density of irradiated fuel assemblies in storage, transportation, and disposal applications, relative to the assumption of fresh fuel nuclide inventories in loading calculations. This report has described a general four phase approach to be considered in burnup credit implementation. Much if not all of the background research and data acquisition necessary for successful burnup credit development in preparation for licensing has been completed. Many fuel types, facilities, and analysis methods are encompassed in the public knowledge base, such that in many cases this guidance will provide a means for rapid development of a burnup credit program. For newer assembly designs, higher enrichment fuels, and more extensive nuclide credit, additional research and development may be necessary, but even this work can build on the foundation that has been established to date. Those, it is hoped that this report will serve as a starting point with sufficient reference to

  13. An overview of economic and technical issues related to LWR MOX fuel usage

    International Nuclear Information System (INIS)

    Malone, J.P.; Varley, G.; Goldstein, L.

    1999-01-01

    This paper will present comparisons of the economics of MOX versus UO 2 fuels. In addition to the economics of the front end, the scope of the comparison will include the back end of the fuel cycle. Management of spent MOX fuel assemblies presents utilities with some technical issues that can complicate spent fuel pool operation. Alternative spent fuel management methods, such as dry storage of spent MOX fuel assemblies, will also be discussed. Differences in decay heat loads versus time for spent MOX and UO 2 fuel assemblies will be presented. This difference is one of the main problems confronting spent fuel managers relative to MOX. The difference in decay heat loads will serve as the basis for a performance overview of the various spent fuel technologies available today. The economics of the front end of MOX will be presented relative to UO 2 fuel. Availability of MOX manufacturing capability will also be discussed, along with a discussion of its impact on future MOX fabrication prices. The in-core performance of MOX will be compared to that of UO 2 fuel with similar performance characteristics. The information will include highlights of nuclear design and related operational considerations such as: Reactivity reduction with burnup is slower for MOX fuel than for UO 2 fuel; Spectral hardening resulting in lower control rod worths and a lower soluble boron worth; and more negative moderator, void and fuel temperature coefficients. A comparison of Westinghouse and ABB-CE core designs for use on disposition of weapons MOX in 12- and 18-month cycles will be presented. (author)

  14. Melting process to condition decladding hulls generated by the reprocessing of L.W.R. and F.B.R. spent fuels

    International Nuclear Information System (INIS)

    Bonniaud, R.; Jacquet-Francillon, N.; Jouan, A.; Sombret, C.

    1980-11-01

    The fusion compaction of metallic waste from spent fuel hulls is shown to be easily feasible for both Zircaloy and for stainless steel with volume reduction factors of 5 to 7. The Zircaloy copper alloy, put into use to lower the fusion point of the Zircaloy appears extremely interesting both as to the ease with which it can be used and the possibility which it offers of working at temperatures always lower than 1250 0 C. With stainless steel, only the use of silicon enabling the lowering of the temperature to around 1200 0 C appears really feasible. The use of decontaminating agents either during or at the end of the fusion operation seems to be a promising technique, especially in the case of stainless steel where the use of a borosilicated glass is easy. The choice of decontaminating agent is more difficult for Zircaloy and makes necessary the use of molten salts mixtures, the composition of which has not yet been defined. The decontamination factors obtained during the tests run on steel are encouraging, they should be confirmed by further tests in hot cells using real hulls. This study has made it possible to determine the principal parameters necessitated by the setting up of an industrial furnace project. The realisation of fusion compaction units for waste from fuel hulls generated by future reprocessing plants seems to be a real short-term possibility

  15. A column exchange chromatographic procedure for the automated purification of analytical samples in nuclear spent fuel reprocessing and plutonium fuel fabrication

    International Nuclear Information System (INIS)

    Zahradnik, P.; Swietly, H.; Doubek, N.; Bagliano, G.

    1992-11-01

    A Column Exchange Chromatographic procedure using Tri-n-Octyl-Phosphine-Oxide (TOPO) as stationary phase, is in routine use at SAL since 1984 on nuclear spent fuel reprocessing and on Pu product samples, prior to alpha and mass spectrometric analysis. This standard procedure was further on modified in view of its automation in a glove box; the resulting new procedure is described in this paper. Laboratory Robot Compatible (LRC) disposable columns were selected because their dimensions are particularly favorable and reproducible. A less corrosive HNO 3 -HI mixture substituted the former HC1-HI plutonium eluant. The inorganic support of the stationary phase used to test the above mentioned changes was unexpectedly withdrawn from the market so that another support had to be selected and the procedure reoptimized accordingly. The resulting procedure was tested with the robot and validated against the manual procedure taken as reference: the comparison showed that the modified procedure meets the analytical requirements and has the same performance than the original procedure. (author). Refs, figs and tabs

  16. Corrosion-Resistant Ti- xNb- xZr Alloys for Nitric Acid Applications in Spent Nuclear Fuel Reprocessing Plants

    Science.gov (United States)

    Manivasagam, Geetha; Anbarasan, V.; Kamachi Mudali, U.; Raj, Baldev

    2011-09-01

    This article reports the development, microstructure, and corrosion behavior of two new alloys such as Ti-4Nb-4Zr and Ti-2Nb-2Zr in boiling nitric acid environment. The corrosion test was carried out in the liquid, vapor, and condensate phases of 11.5 M nitric acid, and the potentiodynamic anodic polarization studies were performed at room temperature for both alloys. The samples subjected to three-phase corrosion testing were characterized using scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX). As Ti-2Nb-2Zr alloy exhibited inferior corrosion behavior in comparison to Ti-4Nb-4Zr in all three phases, weldability and heat treatment studies were carried out only on Ti-4Nb-4Zr alloy. The weldability of the new alloy was evaluated using tungsten inert gas (TIG) welding processes, and the welded specimen was thereafter tested for its corrosion behavior in all three phases. The results of the present investigation revealed that the newly developed near alpha Ti-4Nb-4Zr alloy possessed superior corrosion resistance in all three phases and excellent weldability compared to conventional alloys used for nitric acid application in spent nuclear reprocessing plants. Further, the corrosion resistance of the beta heat-treated Ti-4Nb-4Zr alloy was superior when compared to the sample heat treated in the alpha + beta phase.

  17. Management of radioactive waste from reprocessing including disposal aspects

    International Nuclear Information System (INIS)

    Malherbe, J.

    1991-01-01

    Based on a hypothetical scenario including a reactor park of 20 GWe consisting of Pressurised-Water-Reactors with a resulting annual production of 600 tonnes of heavy metal of spent fuel, all aspects of management of resulting wastes are studied. Waste streams from reprocessing include gaseous and liquid effluents, and a number of solid conditioned waste types. Disposal of waste is supposed to be performed either in a near-surface engineered repository, as long as the content of alpha-emitting radionuclides is low enough, and in a deep geological granite formation. After having estimated quantities, cost and radiological consequences, the sensitivity of results to modification in reactor park size, burn-up and the introduction of mixed-oxide fuel (MOX) is evaluated

  18. Economics and resources analysis of the potential use of reprocessing options by the current Spanish nuclear reactor park

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Velarde, F.; Merino Rodriguez, I.; Gonzalez-Romero, E.

    2014-07-01

    Reprocessing of irradiated nuclear fuel serves multiple purposes, from Pu separation and recovery for MOX fuel fabrication to reduction of high level waste volume, and is nowadays being implemented in several countries like France, Japan, Russia or United Kingdom. This work is aimed at exploring the possibility (in resources and economic terms) of implementing reprocessing for MOX fabrication in Spain. (Author)

  19. The recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Lannegrace, J.-P.

    1991-01-01

    The 1990 update to the Uranium Institute's report ''Uranium Market Issues'', presented to this Symposium last year (1990) stated that the impact of recycled reprocessing products on uranium demand would be limited in the near future to that due to MOX fuel fabrication. The report stated that the recycling of reprocessed uranium was still at an early discussion stage, rather than being a short-term prospect. This paper will set out to challenge this assertion, on the basis both of facts and of economic and environmental incentives. (author)

  20. Reprocessing of spent nuclear fuel, Annex 1: Experimental facility for testing and development of pulsed columns and auxiliary devices; Prerada isluzenog nuklearnog goriva, Prilog 1: Opitno postrojenje za ispitivanje i razvoj pulsnih kolona i pomocnih uredjaja

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1964-12-15

    After completing the design project for building the experimental facility for testing and development of pulsed columns for spent fuel reprocessing, the construction started by the end of 1963 and was completed in August 1964. The facility was built in Kjeller, Norway within cooperation project between out country and Norway. This report covers a brief description of the facility and the action plan of its implementation.

  1. Safeguards on MOX assemblies at LWRs

    International Nuclear Information System (INIS)

    Arenas Carrasco, J.; Koulikov, I.; Heinonen, O.J.; Arlt, R.; Grigoleit, K.; Clarke, R.; Swinhoe, M.

    2000-01-01

    Operating within the framework of the New Partnership Approach (NPA) for unirradiated MOX fuel assemblies in LWRs, the IAEA and EURATOM have gained experience in safeguarding 13 LWRs licensed to operate with MOX assemblies. In order to fulfil SIR requirements, verification methods and techniques capable of measuring MOX assemblies under water have been and are still being developed. These encompass both qualitative tests for the detection of plutonium (gross attribute tests) and quantitative tests for the measurement of the amount of plutonium (partial defect tests) and are based on gamma and neutron detection techniques. There are nine PWR and two BWR where the reactor and the spent fuel pond can be covered by the same surveillance device. These are Type I reactors where the reactor and the pond are located in the same hall. In these types of facilities relying on surveillance during the MOX refuelling is especially difficult at the BWRs due to the depth of the core pond. There are two PWR type facilities where the reactor and the spent fuel pond are located in different halls and cannot be covered by the same surveillance device (Type II). An open core camera has not been installed during refuelling and therefore indirect surveillance is currently used to survey MOX loading. Improvements are therefore required and are under consideration. After receipt at the facility, there are a few facilities which must keep the received fresh MOX fuel in wet storage, not only for a short period prior to refuelling, but for more than a year, until the next refuelling campaign. In these cases timely inspections for direct use fresh nuclear material require considerable inspection effort. Additionally, where human surveillance of core loading and finally core closure are necessary there is also a large demand for manpower. Either an agreement should be reached with the operators to delay the MOX loading until the end of the fuelling campaign, or alternative approaches should be

  2. BWRs with MOx fuel

    International Nuclear Information System (INIS)

    Demaziere, C.

    1999-01-01

    Calculations has been performed for loading BWRs with pure MOx or UOx/MOx fuel. It seems to be possible to load MOx bundles in BWRs, since most of the core characteristics are comparable with the ones of a full UOx core. Nevertheless two main problems arise: The shutdown margin at BOC is lower than 1%, this requires to have a new design for the control rods in order to increase their efficiency - but the problem can also be solved by modifying the Pu quality. The cores with MOx fuel are slightly less stable, unfortunately the simple model applied does not allow giving an absolute value for the decay ratio but only allows comparing the stability with the full UOx core

  3. Radiation shielding calculation for the MOX fuel fabrication plant Melox

    International Nuclear Information System (INIS)

    Lee, Y.K.; Nimal, J.C.; Chiron, M.

    1994-01-01

    Radiation shielding calculation is an important engineering work in the design of the MOX fuel fabrication plant MELOX. Due to the recycle of plutonium and uranium from UO2 spent fuel reprocessing and the large capacity of production (120t HM/yr.), the shielding design requires more attention in this LWR fuel plant. In MELOX, besides several temporary storage facilities of massive fissile material, about one thousand radioactive sources with different geometries, forms, densities, quantities and Pu concentrations, are distributed through different workshops from the PuO 2 powder reception unit to the fuel assembly packing room. These sources, with or without close shield, stay temporarily in different locations, containers and glove boxes. In order to optimize the dimensions, the material and the cost of shield as well as to limit the calculation work in a reasonable engineer-hours, a calculation scheme for shielding design of MELOX is developed. This calculation scheme has been proved to be useful in consideration of the feedback from the evolutionary design and construction. The validated shielding calculations give a predictive but reliable radiation doses information. (authors). 2 figs., 10 refs

  4. LWR high burn-up operation and MOX introduction. Fuel cycle performance from the viewpoint of waste management

    International Nuclear Information System (INIS)

    Inagaki, Yaohiro; Iwasaki, Tomohiko; Niibori, Yuichi; Sato, Seichi; Ohe, Toshiaki; Kato, Kazuyuki; Torikai, Seishi; Nagasaki, Shinya; Kitayama, Kazumi

    2009-01-01

    From the viewpoint of waste management, a quantitative evaluation of LWR nuclear fuel cycle system performance was carried out, considering both higher burn-up operation of UO 2 fuel coupled with the introduction of MOX fuel. A major parameter to quantify this performance is the number of high-level waste (HLW) glass units generated per GWd (gigawatt-day based on reactor thermal power generation before electrical conversion). This parameter was evaluated for each system up to a maximum burn-up of 70GWd/THM (gigawatt-day per ton of heavy metal) assuming current conventional reprocessing and vitrification conditions where the waste loading of glass is restricted by the heat generation rate, the MoO 3 content, or the noble metal content. The results showed that higher burn-up operation has no significant influence on the number of glass units generated per GWd for UO 2 fuel, though the number of glass units per THM increases linearly with burn-up and is restricted by the heat generation rate. On the other hand, the introduction of MOX fuel causes the number of glass units per GWd to double owing to the increase in the heat generation rate. An extended cooling period of the spent fuel prior to reprocessing effectively reduces the heat generation rate for UO 2 fuel, while a separation of minor actinides (Np, Am, and Cm) from the high-level waste provides additional reduction for MOX fuel. However, neither of these leads to a substantial reduction in the number of glass units, since the MoO 3 content or the noble metal content restricts the number of glass units rather than the heat generation rate. These results suggest that both the MoO 3 content and the noble metal content provide the key to reducing the amount of waste glass that is generated, leading to an overall improvement in fuel cycle system performance. (author)

  5. Biodegradation of radioactive organic liquid waste from spent fuel reprocessing; Biodegradacao de rejeitos radioativos liquidos organicos provenientes do reprocessamento do combustivel nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael Vicente de Padua

    2008-07-01

    The research and development program in reprocessing of low burn-up spent fuel elements began in Brazil in 70's, originating the lab-scale hot cell, known as Celeste located at Nuclear and Energy Research Institute, IPEN - CNEN/SP. The program was ended at the beginning of 90's, and the laboratory was closed down. Part of the radioactive waste generated mainly from the analytical laboratories is stored waiting for treatment at the Waste Management Laboratory, and it is constituted by mixture of aqueous and organic phases. The most widely used technique for the treatment of radioactive liquid wastes is the solidification in cement matrix, due to the low processing costs and compatibility with a wide variety of wastes. However, organics are generally incompatible with cement, interfering with the hydration and setting processes, and requiring pre -treatment with special additives to stabilize or destroy them. The objective of this work can be divided in three parts: organic compounds characterization in the radioactive liquid waste; the occurrence of bacterial consortia from Pocos de Caldas uranium mine soil and Sao Sebastiao estuary sediments that are able to degrade organic compounds; and the development of a methodology to biodegrade organic compounds from the radioactive liquid waste aiming the cementation. From the characterization analysis, TBP and ethyl acetate were chosen to be degraded. The results showed that selected bacterial consortia were efficient for the organic liquid wastes degradation. At the end of the experiments the biodegradation level were 66% for ethyl acetate and 70% for the TBP. (author)

  6. The reprocessing-recycling of spent nuclear fuel. Actinides separation - Application to wastes management; Le traitement-recyclage du combustible nucleaire use. La separation des actinides - Application a la gestion des dechets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    After its use in the reactor, the spent fuel still contains lot of recoverable material for an energetic use (uranium, plutonium), but also fission products and minor actinides which represent the residues of nuclear reactions. The reprocessing-recycling of the spent fuel, as it is performed in France, implies the chemical separation of these materials. The development and the industrial implementation of this separation process represent a major contribution of the French science and technology. The reprocessing-recycling allows a good management of nuclear wastes and a significant saving of fissile materials. With the recent spectacular rise of uranium prices, this process will become indispensable with the development of the next generation of fast neutron reactors. This book takes stock of the present and future variants of the chemical process used for the reprocessing of spent fuels. It describes the researches in progress and presents the stakes and recent results obtained by the CEA. content: the separation of actinides, a key factor for a sustainable nuclear energy; the actinides, a discovery of the 20. century; the radionuclides in nuclear fuels; the aquo ions of actinides; some redox properties of actinides; some complexing properties of actinide cations; general considerations about treatment processes; some characteristics of nuclear fuels in relation with their reprocessing; technical goals and specific constraints of the PUREX process; front-end operations of the PUREX process; separation and purification operations of the PUREX process; elaboration of finite products in the framework of the PUREX process; management and treatment of liquid effluents; solid wastes of the PUREX process; towards a joint management of uranium and plutonium: the COEX{sup TM} process; technical options of treatment and recycling techniques; the fuels of generation IV reactors; front-end treatment processes of advanced fuels; hydrometallurgical processes for future fuel

  7. Inspection activities of other strategic points (OSPs) at Rokkasho Reprocessing Plant

    International Nuclear Information System (INIS)

    Kaifuki, Yukinobu; Ebata, Takashi; Nakano, Sadayuki; Fujimaki, Kazunori

    2008-01-01

    At Rokkasho Reprocessing Plant (RRP), Active Test (AT) using actual spent fuels for the final confirmation of the equipment and the system has been performed since March 31, 2006 toward the commercial operation. The safeguards inspection during AT is required in the same manner as commercial operation condition because plutonium is handled. In RRP automated verification systems are established by using unattended verification systems including a number of process monitoring systems along with main plutonium handling process from the spent fuel storage until the MOX product storages. Even under the modernized safeguards, inspection activities at Other Strategic Points (OSPs) are required to confirm plant status in accordance with requirements of the IAEA safeguards criteria. This paper presents procedures and inspection activities at OSPs which has been implemented in RRP since start of AT. (author)

  8. Criticality safety philosophy for the Sellafield MOX plant

    International Nuclear Information System (INIS)

    Edge, Jane; Gulliford, Jim

    2003-01-01

    The Sellafield MOX Plant (SMP) has been operational since 2001, blending plutonium dioxide from THORP reprocessing operations, with uranium dioxide to produce Mixed Oxide (MOX) fuel elements. In handling the quantities of fuel associated with a commercial fuel fabrication plant, it is necessary to impose criticality controls. Plutonium dioxide (PuO 2 ), uranium dioxide (UO 2 ) and recycled MOX are mixed together in batches. An Engineered Protection System (EPS) prevents the production of MOX powder in excess of 20w/o Pu(fissile)/(Pu+U), achieved through the combination of a weight-based' system and a diverse 'neutron monitoring' radiometric system. The 'neutron monitoring' component of the EPS determines the fissile enrichment of the batch of MOX powder, based on pessimistic isotopic requirements of the PuO 2 feedstock powder. Guaranteeing the maximum MOX enrichment of 20w/o Pu(fissile)/(Pu + U) at an early stage of the fuel manufacturing process enables the criticality safety assessor to demonstrate that normal operations are deterministically safe. This paper describes in detail the EPS at the front end of plant and the engineered and operational protection in downstream areas. In addition plant operational experience in producing the first fuel assemblies is discussed. (author)

  9. Top-MOX fuel solution: strategies, challenges, opportunities

    International Nuclear Information System (INIS)

    Breitenstein, P.; Vo Van, V.

    2014-01-01

    TOP-MOX is a nuclear fuel solution and product developed by AREVA and successfully implemented in Europe. It allows utilities burning plutonium (instead of enriched uranium) even when this plutonium is not stemming from own reprocessed used fuel - that is third party plutonium. The important challenges for utilities along with TOP-MOX implementation are legal/patrimonial Pu-ownership issues and general economical aspects. Available sponsorship of such plutonium permits UO2 competitive market prices. For new MOX customers licensing and technical aspects come along. Further AREVA proposes a flexible solution which is called 'TOP-MOX pre-cycling'. This involves making available third party plutonium for fuel fabrication and reactor use pending the utilities' final strategic fuel cycle decision. The paper gives insight into and analyses the impacts of allowing customers the implementation of a TOP-MOX program with focus on Pu-ownership, economics, technical and legal aspects as well as the impact on used MOX management and final waste management. (authors)

  10. Environmental evaluation of reprocessing

    International Nuclear Information System (INIS)

    1979-01-01

    This paper addresses two specific points. (a) The means by which it is established that reprocessing is carried out within the basic standards for radiological protection set by the ICRP. (b) A summary of the products, wastes and effluents of reprocessing together with the energy and water resources required. It is concluded that reprocessing of spent thermal reactor fuel can be undertaken whilst conforming to the basic standards set by ICRP. For domestic reasons of public acceptability some countries adopt very strict limits. Any attempt at comparisons between limits set by individual countries could lead to misunderstandings if account is not taken of these additional factors which may in turn influence the cost of reprocessing

  11. Recycling schemes of Americium targets in PWR/MOX cores

    International Nuclear Information System (INIS)

    Maldague, Th.; Pilate, S.; Renard, A.; Harislur, A.; Mouney, H.; Rome, M.

    1999-01-01

    From the orientation studies performed so far, both ways to recycle Am in PWR/MOX cores, homogeneous in MOX or heterogeneous in target pins, appear feasible, provided that enriched UO 2 is used as support of the MOX fuel. Multiple recycling can then proceed and stabilize Pu and Am quantities. With respect to the Pu multiple recycling strategy, recycling Am in addition needs 1/3 more 235 U, and creates 3 times more Curium. Thus, although feasible, such a fuel cycle is complicated and brings about a significant cost penalty, not quantified yet. The advantage of the heterogeneous option is to allow to manage in different ways the Pu in MOX fuel and the Am in target pins. For example, should Am remain combined to Cm after reprocessing, the recycling of a mix of Am+Cm could be deferred to let Cm transform into Pu before irradiation. The Am+Cm targets could also stay longer in the reactor, so as to avoid further reprocessing if possible. (author)

  12. Present status of foreign reprocessing technology

    International Nuclear Information System (INIS)

    Otagaki, Takao; Ishikawa, Yasusi; Mori, Jyunichi

    2000-03-01

    In considering extensively and evaluating advanced nuclear fuel recycle technologies then selecting credible one among those technology options and establishing practicable plan of future fast reactor fuel recycle technology, it is important to investigate foreign reprocessing information extensively and minutely as much as possible then to know trends of reprocessing technology development in the world and present technology level of each country. This report is intending to present information of the status and the technology of operating, constructing and closed foreign reprocessing facilities in the world, including, mixed oxide (MOX) fuel reprocessing technology. The conceptual study of 'Foreign Reprocessing Technology Database' was also performed in order to add or revise the information easily. The eight countries, France, The U.K., Russia, The U.S., Germany, Belgium, India and China, were studied regarding outline of the facilities, operation status, future plan, technical information of process flow sheet, primary components, maintenance system etc, construction and operating costs, accidents or troubles, decommissioning status. (author)

  13. Consolidated fuel reprocessing program

    Science.gov (United States)

    1985-04-01

    A survey of electrochemical methods applications in fuel reprocessing was completed. A dummy fuel assembly shroud was cut using the remotely operated laser disassembly equipment. Operations and engineering efforts have continued to correct equipment operating, software, and procedural problems experienced during the previous uranium compaigns. Fuel cycle options were examined for the liquid metal reactor fuel cycle. In high temperature gas cooled reactor spent fuel studies, preconceptual designs were completed for the concrete storage cask and open field drywell storage concept. These and other tasks operating under the consolidated fuel reprocessing program are examined.

  14. Reprocessing the truth

    International Nuclear Information System (INIS)

    Goldsmith, E.; Bunyard, P.; Hildyard, N.

    1978-01-01

    Comments are made on the Report by the Inspector, Mr. Justice Parker, after the public inquiry into the application by British Nuclear Fuels Limited for permission to construct and operate a thermal oxide reprocessing plant at their Windscale works. Particular questions raised include: corrosion or storage of spent fuel, vitrification of radioactive waste; radiation effects, and permissible levels; radioactive emissions, critical groups and critical pathways; risks; reprocessing economics; commitment to the FBR; sociological aspects, including employment, nuclear weapon proliferation and terrorism, and Britain's moral responsibilities. (U.K.)

  15. Recent prospects of MOX fuel and strategy about nuclear fuel cycle

    International Nuclear Information System (INIS)

    Liu Dingqin

    1991-04-01

    It is clearly described what is the preliminary adequate strategic concern for different nuclear power countries under different nuclear power development conditions. It is also stressed on the basic situation of the design technology, manufacture technology, operation experiences and quantitative economic analysis for MOX fuel application since fast breed reactor commercialization has been delayed. The author specially proposed that in a short term China should adopt an intermediate storage strategy matched with the construction of a pilot reprocessing plant to prepare the technical basis for commercialized reprocessing plant later on and to follow the development of MOX fuel technology

  16. MOX and UOX PWR fuel performances EDF operating experience

    International Nuclear Information System (INIS)

    Provost, Jean-Luc; Debes, Michel

    2005-01-01

    Based on a large program of experimentations implemented during the 90s, the industrial achievement of new FAs designs with increased performances opens up new prospects. The currently UOX fuels used on the 58 EDF PWR units are now authorized up to a maximum FA burn-up of 52 GWd/t with a large experience from 45 to 50 GWd/t. Today, the new products, along with the progress made in the field of calculation methods, still enable to increase further the fuel performances with respect to the safety margins. Thus, the conditions are met to implement in the next years new fuel managements on each NPPs series of the EDF fleet with increased enrichment (up to 4.5%) and irradiation limits (up to 62 GWd/t). The recycling of plutonium is part of EDF's reprocessing/recycling strategy. Up to now, 20 PWR 900 MW reactors are managed in MOX hybrid management. The feedback experience of 18 years of PWR operation with MOX is satisfactory, without any specific problem regarding manoeuvrability or plant availability. EDF is now looking to introduce MOX fuels with a higher plutonium content (up to 8.6%) equivalent to natural uranium enriched to 3.7%. It is the goal of the MOX Parity core management which achieve balance of MOX and UOX fuel performance with a significant increase of the MOX average discharge burn-up (BU max: 52 GWd/t for MOX and UOX). The industrial maturity of new FAs designs, with increased performances, allows the implementation in the next years of new fuel managements on each NPPs series of the EDF fleet. The scheduling of the implementation of the new fuel managements on the PWRs fleet is a great challenge for EDF, with important stakes: the nuclear KWh cost decrease with the improvement of the plant operation performance. (author)

  17. Spent fuel management in France: Programme status

    International Nuclear Information System (INIS)

    Chaudat, J.P.

    1990-01-01

    France's programme is best characterized as a closed fuel cycle including reprocessing, Plutonium recycling in PWR and use of breeder reactors. The current installed nuclear capacity is 52.5 GWe from 55 units. The spent fuel management scheme chosen is reprocessing. This paper describes the national programme, spent nuclear fuel storage, reprocessing and contracts for reprocessing of spent fuel from various countries. (author). 5 figs, 2 tabs

  18. Storage of spent fuel from power reactors. 2003 conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-10-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings.

  19. Storage of spent fuel from power reactors. 2003 conference proceedings

    International Nuclear Information System (INIS)

    2003-01-01

    An International Conference on Storage of Spent Fuel from Power Reactors was organized by the IAEA in co-operation with the OECD Nuclear Energy Agency. The conference gave an opportunity to exchange information on the state of the art and prospects of spent fuel storage, to discuss the worldwide situation and the major factors influencing the national policies in this field and to identify the most important directions that national efforts and international co-operation in this area should take. The conference confirmed that the primary spent fuel management solution for the next decades will be interim storage. While the next step can be reprocessing or disposal, all spent fuel or high level waste from reprocessing must sooner or later be disposed of. The duration of interim storage is now expected to be much longer than earlier projections (up to 100 years and beyond). The storage facilities will have to be designed for these longer storage times and also for receiving spent fuel from advanced fuel cycle practices (i.e. high burnup and MOX spent fuel). It was noted that the handling and storage of spent fuel is a mature technology and meets the stringent safety requirements applicable in the different countries. The changes in nuclear policy and philosophy across the world, and practical considerations, have made storage a real necessity in the nuclear power industry. Utilities, vendors and regulators alike are addressing this adequately. The IAEA wishes to express appreciation to all chairs and co-chairs as well as all authors for their presentations to the conference and papers included in these proceedings

  20. R and D on fast reactor fuel reprocessing

    International Nuclear Information System (INIS)

    Subba Rao, R.V.; Vijaya Kumar, V.; Natarajan, R.

    2012-01-01

    Development of Fast Reactor Fuel Reprocessing technology, with low out of pile inventory, is carried out at the Indira Gandhi Centre for Atomic Research (IGCAR). Based on the successful R and D programme which addressed specific issues of fast reactor fuels, a pilot plant called CORAL was set up. This plant is operational since 2003 and several reprocessing campaigns with spent FBTR fuels of varying burnups have been carried out. Based on the valuable operating experience of CORAL, the design of demonstration fast reactor fuel reprocessing plant (DFRP) and the commercial reprocessing plant, FRP have been taken up. Concurrently R and D efforts are continuing for improving the process and equipment performance apart from reducing the waste volumes and the radiation exposures to the operating personnel. Some important R and D efforts are highlighted in the paper. Reducing the dissolution time is one of the vital area of investigation especially for the high plutonium bearing MOX fuels which are known to dissolve slowly. To address this as well as criticality issues, continuous dissolvers are being developed. Solvent extraction based process is employed for getting highly pure nuclear grade uranium and plutonium. In view of the lower cooling time the fission product activity in the spent fuel is higher, formulation of process flowsheet with reduced number of solvent extraction cycles to improve the decontamination of ruthenium and zirconium without the formation of second organic phase due to plutonium loading, is under investigation. Retention of plutonium in lean organic is another issue to be addressed as otherwise it would lead to further deterioration of the solvent on storage. Several reagents to effectively wash the lean solvent have been investigated and flowsheets have been formulated to recover the retained plutonium with minimum secondary wastes. Partitioning of uranium and plutonium is an important step and methods reported in the literature have inherent

  1. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1996-05-01

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  2. Reprocessing of the spent nuclear fuel, Report for period from January 1 - October 1 1962; Prerada isluzenog nuklearnog goriva, Izvestaj za period 1. Januar-1. Oktobar 1962

    Energy Technology Data Exchange (ETDEWEB)

    Gal, I [Institute of Nuclear Sciences Boris Kidric, Laboratorija za hemiju visoke aktivnosti, Vinca, Beograd (Serbia and Montenegro)

    1962-10-15

    This is the progress report on the design project of the pilot plant for fuel reprocessing which started on May 28 1962 upon arrival of Yugoslav experts to Oslo. Detailed list of activities includes tasks which are already completed and others with dead lines.

  3. Reprocessing facility for spent fuel from LWR type reactors and mixed-oxide fuel fabrication plant in the Taxoeldern Forest near Wackersdorf, Bavaria (WAA) - first partial licence

    International Nuclear Information System (INIS)

    1985-01-01

    Full text of the first partial licence for the WAA, allowing erection of the following buildings or structures: External fence; guardhouse 1, i.e. the building and the ground connection system with lightning protection system, the fire alarm system and mobile fire-fighting systems; the fuel receiving station, including building and operation systems; excavation work for the main reprocessing building. (HP) [de

  4. Reprocessing of nuclear fuels: economical, ecological and technical aspects

    International Nuclear Information System (INIS)

    Kueffer, K.

    1994-01-01

    The report deals with the questions on reprocessing and final storage of spent fuel elements from the point of view of the Swiss. The contractual obligations were discussed, of the present situation of reprocessing and their assessment. 1 fig

  5. Mox pellet reference material

    International Nuclear Information System (INIS)

    Perolat, J.P.

    1991-01-01

    A first batch of MOX pellets certified in plutonium and uranium has been prepared and characterised in France to meet the needs of laboratories which are engaged upon destructive analysis for safeguards purposes especially in fuel fabrication plants. The pellets sintering has been obtained in a special fabrication to achieve an homogeneity better than 0.1%. The plutonium and uranium characterisation by chemical analysis has been carried out by two laboratories using at least two different methods. 1 fig., 5 refs

  6. The MOX fuel in France

    International Nuclear Information System (INIS)

    2011-01-01

    This document briefly describes the MOX production cycle which is performed in the MELOX plant in Marcoule by AREVA. It briefly indicates the main risks occurring during the whole MOX production and use cycle. They are associated with MOX production (high neutron and gamma dose rates, contamination, criticality, heat release), transportation, its use in reactors, its storage in pools after irradiation. All these stages need radiation protection measures

  7. The international reprocessing situation

    International Nuclear Information System (INIS)

    Sornein, J.

    1976-01-01

    It is investigated what volume and availability of reprocessing capacity is needed for LWR (and AGR) fuel elements for Western Europe, USA, and Japan during the period from 1980 to 1990. Taking into account the technical, financial, and licensing difficulties, an optimistic and pessimistic assessment is made especially for Western Europe, and from the findings conclusions are drawn for spent fuel element storage and nuclear power plant construction. (HR/LN) [de

  8. French experience and prospects in the reprocessing of fast breeder reactor fuels

    International Nuclear Information System (INIS)

    Megy, J.

    1983-06-01

    Experience acquired in France in the field of reprocessing spent fuels from fast breeder reactors is recalled. Emphasis is put on characteristics and quantities of spent fuels reprocessed in La Hague and Marcoule facilities. Then reprocessing developments with the realisation of the new pilot plant TOR at Marcoule, new equipments and study of industrial reprocessing units are reviewed [fr

  9. Fast and Simultaneous Determination of Pu(Ⅳ) and Nitric Acid in Spent Nuclear Fuel Reprocessing Sample by Near Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    LI; Ding-ming; ZHANG; Li-hua; WANG; Ling; GONG; Yan-ping; FAN; De-jun; YI; Bao-shan; CHEN; Qiang; JI; Yong-chao; WU; Ji-zong

    2013-01-01

    Determination of Pu(Ⅳ)and nitric acid plays significant role in nuclear fuel reprocessing plant to control process accurately and timely.Coupling C-T fixed-type grating with InGaAs detector,a new novel analytical system for simultaneous measurement of nitric acid and Pu(Ⅳ)was developed by our working group.After obtaining near infrared absorptive spectra by the spectroscopic instrument,the spectra data

  10. Recycling of nuclear matters. Myths and realities. Calculation of recycling rate of the plutonium and uranium produced by the French channel of spent fuel reprocessing

    International Nuclear Information System (INIS)

    Coeytaux, X.; Schneider, M.

    2000-05-01

    The recycling rate of plutonium and uranium are: from the whole of the plutonium separated from the spent fuel ( inferior to 1% of the nuclear matter content) attributed to France is under 50% (under 42 tons on 84 tons); from the whole of plutonium produced in the French reactors is less than 20% (42 tons on 224 tons); from the whole of the uranium separated from spent fuels attributed to France is about 10 % (1600 tons on 16000 tons); from the whole of the uranium contained in the spent fuel is slightly over 5%. (N.C.)

  11. How not to reduce plutonium stocks. The danger of MOX-fuelled nuclear reactors

    International Nuclear Information System (INIS)

    1999-01-01

    Plutonium is a radioactive by-product of nuclear reactor operation and one of the most toxic substances known. The world would be a safer place if the governments of countries with stocks of it, including Britain, would adopt effective policies for reducing and managing them. Two recent authoritative reports recommend that the British government take urgent action to reduce its 'civil' plutonium stock - currently one quarter of the world's total and set to rise to about two-thirds by the year 2010. The March 1999 House of Lords report, Management of Nuclear Waste, concludes that British government policy on plutonium 'should be the maintenance of the minimum strategic stock, and the declaration of the remainder as waste'. A report from the Royal Society, Britain's main learned society, meanwhile states that: 'In addition to disposing of some of the plutonium already in the stockpile, steps should be taken to reduce the amount added to it each year, primarily by reducing the amount of reprocessing carried out'. The government's reply to the House of Lords is expected to be followed by a public consultation before changes in legislation are proposed. But, at the same time, the government is considering an application from British Nuclear Fuels Limited (BNFL), the government-owned company which separates plutonium from spent nuclear fuel rods, for a licence to operate a new plant at Sellafield in Cumbria to produce mixed-oxide (MOX) nuclear fuel from its plutonium stockpile. The nuclear industry justifies the Sellafield MOX plant as one way of reducing plutonium stocks. But critics point out that this is not a rational way to manage plutonium. This briefing aims to contribute to an informed debate during the current flurry of British government nuclear policymaking by explaining why. (author)

  12. Achieving High Burnup Targets With Mox Fuels: Techno Economic Implications

    International Nuclear Information System (INIS)

    Clement Ravi Chandar, S.; Sivayya, D.N.; Puthiyavinayagam, P.; Chellapandi, P.

    2013-01-01

    For a typical MOX fuelled SFR of power reactor size, Implications due to higher burnup have been quantified. Advantages: – Improvement in the economy is seen upto 200 GWd/ t; Disadvantages: – Design changes > 150 GWd/ t bu; – Need for 8/ 16 more fuel SA at 150/ 200 GWd/ t bu; – Higher enrichment of B 4 C in CSR/ DSR at higher bu; – Reduction in LHR may be required at higher bu; – Structural material changes beyond 150 GWd/ t bu; – Reprocessing point of view-Sp Activity & Decay heat increase. Need for R & D is a must before increasing burnup. bu- refers burnup. Efforts to increase MOX fuel burnup beyond 200 GWd/ t may not be highly lucrative; • MOX fuelled FBR would be restricted to two or four further reactors; • Imported MOX fuelled FBRs may be considered; • India looks towards launching metal fuel FBRs in the future. – Due to high Breeding Ratio; – High burnup capability

  13. The main methods of solving the problem of radioactive waste management from nuclear power stations and spent fuel reprocessing plants in the USSR

    International Nuclear Information System (INIS)

    1978-09-01

    The main directions of solving the problem of radioactive waste management from nuclear power stations and radiochemical plants, the aspects of gaseous waste management, liquid HLW storage in vessels and the problems of heat removal during storage of vitrified HLW in surface storages are considered. The main problems arising during fine decontamination of gaseous discharges from nuclear power stations and reprocessing plants are discussed. The migration of fission products in the environment and technical aspects of their capture from gaseous discharges are also considered

  14. National Option of China's Nuclear Energy Systems for Spent Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.X. [University of Science and Technology, Daejeon (Korea, Republic of); Ko, W. I.; Lee, S. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Along with safety concerns, these long standing environmental challenges are the major factors influencing the public acceptance of nuclear power. Although nuclear power plays an important role in reducing carbon emissions from energy generation, this could not fully prove it as a sustainable energy source unless we find a consensus approach to treat the nuclear wastes. There are currently no countries that have completed a whole nuclear fuel cycle, and the relative comparison of the reprocessing spent fuel options versus direct disposal option is always a controversial issue. Without exception, nowadays, China is implementing many R and D projects on spent fuel management to find a long-term solution for nuclear fuel cycle system transition, such as deep geological repositories for High Level Waste (HLW), Pu Reduction by Solvent Extraction (PUREX) technology, and fast reactor recycling Mixed U-Pu Oxide (MOX) fuels, etc. This paper integrates the current nation's projects of back-end fuel cycle, analyzes the consequences of potential successes, failures and delays in the project development to future nuclear fuel cycle transition up to 2100. We compared the dynamic results of four scenarios and then assessed relative impact on spent fuel management. The result revealed that the fuel cycle transition of reprocessing and recycling of spent fuel would bring advantages to overall nuclear systems by reducing high level waste inventory, saving natural uranium resources, and reducing plutonium management risk.

  15. Buildup of radioxenon isotopes in MOX-assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Gniffke, Thomas; Kirchner, Gerald [Carl Friedrich von Weizsaecker-Centre for Science and Peace Research, Hamburg (Germany)

    2015-07-01

    Radioxenon is the main tracer for detection of nuclear tests conducted underground under the verification regime of the Comprehensive Nuclear Test Ban Treaty (CTBT). Since radioxenon is emitted by civilian sources too, like commercial nuclear reactors, source discrimination is still an important issue. Inventory calculations are necessary to predict which xenon isotopic ratios are built up in a reactor and how they differ from those generated by a nuclear explosion. The screening line actually used by the CTBT Organization for source discrimination is based on calculations for uranium fuel of various enrichments used in pressurized water reactors (PWRs). The usage of different fuel, especially mixed U/Pu oxide (MOX) assemblies with reprocessed plutonium, may alter the radioxenon signature of civilian reactors. In this talk, calculations of the radioxenon buildup in a MOX-assembly used in a commercial PWR are presented. Implications for the CTBT verification regimes are discussed and open questions are addressed.

  16. Linear thermal expansion, thermal diffusivity and melting temperature of Am-MOX and Np-MOX

    International Nuclear Information System (INIS)

    Prieur, D.; Belin, R.C.; Manara, D.; Staicu, D.; Richaud, J.-C.; Vigier, J.-F.; Scheinost, A.C.; Somers, J.; Martin, P.

    2015-01-01

    Highlights: • The thermal properties of Np- and Am-MOX solid solutions were investigated. • Np- and Am-MOX solid solutions exhibit the same linear thermal expansion. • The thermal conductivity of Am-MOX is about 10% higher than that of Np-MOX. • The melting temperatures of Np-MOX and Am-MOX are 3020 ± 30 K and 3005 ± 30 K, respectively. - Abstract: The thermal properties of Np- and Am-MOX solid solution materials were investigated. Their linear thermal expansion, determined using high temperature X-ray diffraction from room temperature to 1973 K showed no significant difference between the Np and the Am doped MOX. The thermal conductivity of the Am-MOX is about 10% higher than that of Np-MOX. The melting temperatures of Np-MOX and Am-MOX, measured using a laser heating self crucible arrangement were 3020 ± 30 K and 3005 ± 30 K, respectively

  17. Contribution to the study of degradation products of spent fuel reprocessing solvents using mass spectroscopy, its different linkages and by the use of stable isotopes

    International Nuclear Information System (INIS)

    Lesage, Denis

    1995-01-01

    Tributylphosphate (TBP) is used as an extraction solvent in nuclear fuel reprocessing. The presence of uranium fission products leads to the formation of a large variety of organic compounds resulting from radiolytic degradation of TBP. Some of these compounds can complex metallic cations, and as a result, to decrease nuclear fuel extraction yields. In this work we have studied by tandem mass spectrometry the fragmentation mechanisms of different TBP and their dimers. These molecules are interesting because of the similarity of their structures to other more complex molecules formed by irradiation (functionalized TBP and TBP dimers). This work allowed to identify mixtures of degradation products and relate their structures to radiolytic mechanisms. Ail these results, including structure determination and formation mechanisms, have been validated by using specifically labeled compounds (deuterium, oxygen 18, nitrogen 15). (author) [fr

  18. HTGR fuel reprocessing technology

    International Nuclear Information System (INIS)

    Brooks, L.H.; Heath, C.A.; Shefcik, J.J.

    1976-01-01

    The following aspects of HTGR reprocessing technology are discussed: characteristics of HTGR fuels, criteria for a fuel reprocessing flowsheet; selection of a reference reprocessing flowsheet, and waste treatment

  19. Selective decontamination of cesium and strontium from evaporation concentrates of spent fuel reprocessing plants with crown ethers by transport through supported liquid membranes

    International Nuclear Information System (INIS)

    Casas i Garcia, J.

    1993-01-01

    Reprocessing operations lead to the production of radioactive medium activity liquid waste which is treated by evaporation and solutions of very high salinity are thus formed. The concentrates from reprocessing plant evaporators have to be stored in geological storage sites in view of their strong caesium, strontium and actinides activity. These elements, contained in acid and high sodium nitrate content liquid waste, are removed by means of selective extractants, using the supported liquid membrane technique (SLM), which allows them to be stored in surface sites, the actinides and long-life fission products being respectively recycled and concentrated into reduced volumes. The removal of the actinides is done by means of an Octyl N.N Diisobutyl Carbamoyl Methyl Phosphine Oxide (C.M.P.O.) based liquid membrane, whereas the removal of the caesium and strontium involves crown ethers. Supported liquid membranes (S.L.M.s) have the advantage of implementing very small quantities of extractant, but they generally have poor stability. The extractant, the diluent and the phase modifier impregnating the membrane play a vital role in SLM stability; the support also affects stability by its nature and geometry. For the extraction of strontium, the most lipophilic extractant, DtBu 18 C 6, enables higher strontium transfer kinetics to be attained. As regards caesium, the extremely lipophilic nDec B21 C7 is the most efficient. Caesium cannot be quantitatively removed, due to the competition of the very high content of sodium ions in the concentrate. Stable membranes are obtained with DC18 C6 or DtBu18 C6 diluted in alkylbenzenes with an added phase modifier such as decanol or especially isotridecanol

  20. Experience and prospects in reprocessing

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1997-01-01

    Reprocessing nuclear fuels is a long and successful industrial story. For decades, commercial reprocessing plants have been operating in France, the United Kingdom and Japan. The industrial outcome is clear and widely recognized: thousand tons of spent fuels have been reprocessed in these plants. Over the years, these facilities have been adapted to new types of fuel. Thus, the nuclear industry has fully demonstrated its ability to cope with technological change and its capacity to adapt itself to improvements. For decades, technical capability has been stressed and emphasized by nuclear industrial leaders as the most important point. This is no longer the case. Today the industry has to face a new commercial reality and to find the most adaptable answer to the utilities' requirements. This paper presents the current achievements and medium and long-term trends of the nuclear reprocessing activity, the ongoing commercial changes and gives an outlook for future evolutions. International political factors will also be examined. (author)

  1. Plant overview of JNFL MOX fuel fabrication plant (J-MOX)

    International Nuclear Information System (INIS)

    Hiruta, Kazuhiko; Suzuki, Masataka; Shimizu, Junji; Suzuki, Kazumi; Yamamoto, Yutaka; Deguchi, Morimoto; Fujimaki, Kazunori

    2005-01-01

    In April 2005, JNFL submitted METI an application for the permission of MOX fuel fabrication business for JNFL MOX Fuel Fabrication Plant (J-MOX). Accordingly, safeguards formalities and discussion with the Agency have been also started for J-MOX as an official project. This report describes J-MOX plant overview and also presents outline of J-MOX by focusing on safeguards features and planned material accountancy method. (author)

  2. Future of the reprocessing business at the RT-1 plant

    International Nuclear Information System (INIS)

    Bukharin, O.

    1995-01-01

    Economic viability of reprocessing operations at the RT-1 plant is provided by the contracts with nuclear utilities from Finland and Hungary. Finland will stop sending fuel to Mayak for reprocessing after 1996. Hungary will be capable to resolve the problem of spent fuel domestically some time in the future. This increases vulnerability of the reprocessing business at Mayak to future political uncertainties. (author)

  3. Document of the Commission for the Council concerning details of a joint strategy in the field of reprocessing of spent fuels and a draft of a resolution of the Council concerning the set-up of an ad-hoc committee for the reprocessing of spent fuels. Information by the Federal Government

    International Nuclear Information System (INIS)

    1977-01-01

    The document contains the elements of a joint strategy by the countries of the European Communities concerning the reprocessing of fuels. The Communities' aims are as follows: Aims with a special emphasis on industry and energy policies, protection of population and environment and protection against the theft of nuclear material for purposes not authorised. (RB) [de

  4. Full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Ihara, Toshiteru; Mochida, Takaaki; Izutsu, Sadayuki; Fujimaki, Shingo

    2003-01-01

    Electric Power Development Co., Ltd. (EPDC) has been investigating an ABWR plant for construction at Oma-machi in Aomori Prefecture. The reactor, termed FULL MOX-ABWR will have its reactor core eventually loaded entirely with mixed-oxide (MOX) fuel. Extended use of MOX fuel in the plant is expected to play important roles in the country's nuclear fuel recycling policy. MOX fuel bundles will initially be loaded only to less than one-third of the reactor, but will be increased to cover its entire core eventually. The number of MOX fuel bundles in the core thus varies anywhere from 0 to 264 for the initial cycle and, 0 to 872 for equilibrium cycles. The safety design of the FULL MOX-ABWR briefly stated next considers any probable MOX loading combinations out of such MOX bundle usage scheme, starting from full UO 2 to full MOX cores. (author)

  5. Development of MOX fuel database

    International Nuclear Information System (INIS)

    Ikusawa, Yoshihisa; Ozawa, Takayuki

    2007-03-01

    We developed MOX Fuel Database, which included valuable data from several irradiation tests in FUGEN and Halden reactor, for help of LWR MOX use. This database includes the data of fabrication and irradiation, and the results of post-irradiation examinations for seven fuel assemblies, i.e. P06, P2R, E03, E06, E07, E08 and E09, irradiated in FUGEN. The highest pellet peak burn-up reached ∼48GWd/t in MOX fuels, of which the maximum plutonium content was ∼6 wt%, irradiated in E09 fuel assembly without any failure. Also the data from the instrumented MOX fuels irradiated in HBWR to study the irradiation behavior of BWR MOX fuels under the steady state condition (IFA-514/565 and IFA-529), under the load-follow operation condition (IFA-554/555) and under the transit condition (IFA-591) are included in this database. The highest assembly burn-up reached ∼56 GWd/t in IFA-565 steady state irradiation test, and the maximum linear power of MOX fuel rods was 58.3-68.4 kW/m without any failure in IFA-591 ramp test. In addition, valuable instrument data, i.e. cladding elongation, fuel stack elongation, fuel center temperature and rod inner pressure were obtained from IFA-554/555 load-follow test. (author)

  6. Statement on the Consolidated Fuel Reprocessing Program

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1984-01-01

    Oak Ridge National Laboratory has chosen the following objectives for future reprocessing plant design: reduced radiation exposure to workers; minimal environmental impact; improved plant operation and maintenance; improved accountability; no plutonium diversion; and reduced overall capital and operating cost. These objectives lead to a plant with totally remote operation. The Breeder Reactor Engineering Test (BRET) has been designed to perform a key role in demonstrating advanced reprocessing technology. It has been scheduled to be available to reprocess spent fuel from the Fast Flux Test Facility. The principal features of the Consolidated Fuel Reprocessing Program and of the BRET facility are appropriate for all reactor types

  7. Development of ORIGEN libraries for mixed oxide (MOX) fuel assembly designs

    International Nuclear Information System (INIS)

    Mertyurek, Ugur; Gauld, Ian C.

    2016-01-01

    Highlights: • ORIGEN MOX library generation process is described. • SCALE burnup calculations are validated against measured MOX fuel samples from the MALIBU program. • ORIGEN MOX libraries are verified using the OECD Phase IV-B benchmark. • There is good agreement for calculated-to-measured isotopic distributions. - Abstract: ORIGEN cross section libraries for reactor-grade mixed oxide (MOX) fuel assembly designs have been developed to provide fast and accurate depletion calculations to predict nuclide inventories, radiation sources and thermal decay heat information needed in safety evaluations and safeguards verification measurements of spent nuclear fuel. These ORIGEN libraries are generated using two-dimensional lattice physics assembly models that include enrichment zoning and cross section data based on ENDF/B-VII.0 evaluations. Using the SCALE depletion sequence, burnup-dependent cross sections are created for selected commercial reactor assembly designs and a representative range of reactor operating conditions, fuel enrichments, and fuel burnup. The burnup dependent cross sections are then interpolated to provide problem-dependent cross sections for ORIGEN, avoiding the need for time-consuming lattice physics calculations. The ORIGEN libraries for MOX assembly designs are validated against destructive radiochemical assay measurements of MOX fuel from the MALIBU international experimental program. This program included measurements of MOX fuel from a 15 × 15 pressurized water reactor assembly and a 9 × 9 boiling water reactor assembly. The ORIGEN MOX libraries are also compared against detailed assembly calculations from the Phase IV-B numerical MOX fuel burnup credit benchmark coordinated by the Nuclear Energy Agency within the Organization for Economic Cooperation and Development. The nuclide compositions calculated by ORIGEN using the MOX libraries are shown to be in good agreement with other physics codes and with experimental data.

  8. THORP and the economics of reprocessing

    International Nuclear Information System (INIS)

    Berkhout, F.; Walker, W.

    1990-11-01

    This Report compares the costs of reprocessing spent fuels at the new THORP reprocessing plant at Sellafield with the alternative of storing them prior to final disposal. It finds that even when the cost of constructing THORP is treated as a sunk cost, reprocessing has no decisive economic advantage over spent fuel storage. Electric utilities in Western Europe and Japan have already largely paid for the construction of the new British and French reprocessing plants. Today, their economic judgements therefore depend on the future costs of operating and eventually decommissioning the plants, and of dealing with the resulting wastes and separated products. The costs attached to reprocessing have risen mainly due to the higher estimated costs of waste management and decommissioning, and to the costs of coping with unwanted plutonium. Most of these costs are passed directly on to utilities and thus electricity consumers under the terms of cost-plus contracts. Using cost estimates favourable to the reprocessing option, the total future undiscounted liabilities arising from the first ten years of THORP reprocessing come to Pound 2.4-3.7 billion at today's prices. This compares with the more predictable although still burdensome fuel storage, conditioning and disposal costs of Pound 3.0-3.8 billion. If disposal is not anticipated, the economic advantage shifts decisively in favour of spent fuel storage: Pound 0.9-1.3 billion against Pound 1.4-2.4 billion for reprocessing. (author)

  9. The need for integral critical experiments with low-moderated MOX fuels

    International Nuclear Information System (INIS)

    2004-01-01

    The use of MOX fuel in commercial reactors is a means of burning plutonium originating from either surplus weapons or reprocessed irradiated uranium fuel. This requires the fabrication of MOX assemblies on an industrial scale. The OECD/NEA Expert Group on Experimental Needs for Criticality Safety has highlighted MOX fuel manufacturing, as an area in which there is a specific need for additional experimental data for validation purposes. Indeed, integral experiments with low-moderated MOX fuel are either scarce or not sufficiently accurate to provide an appropriate degree of validation of nuclear data and computer codes. New and accurate experimental data would enable a better optimisation of the fabrication process by decreasing the uncertainties in the determination of multiplication factors of configurations such as the homogenization of MOX powders. In this context, the OECD/NEA Nuclear Science Committee organised a workshop to address the following topics: expression and justification of the need for critical or near-critical experiments employing low-moderated MOX fuels; proposals for experimental programmes to address these needs; prospects for an international co-operative programme. The workshop was held at OECD headquarters in Paris on 14-15 April 2004. (author)

  10. Full MOX high burn-up PWR

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Tsutomu; Kugo, Teruhiko; Shimada, Shoichiro; Araya, Fumimasa; Ochiai, Masaaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1999-12-01

    As a part of conceptual investigation on advanced light water reactors for the future, a light water reactor with the high burn-up of 100 GWd/t, the long cycle operation of 3 years and the full MOX core is being studied, aiming at the improvement on economical aspects, the reduction of the spent fuel production, the utilization of Plutonium and so forth. The present report summarizes investigation on PWR-type reactors. The core with the increased moderation of the moderator-to-fuel volume ratio of 2.6 {approx} 3.0 has been proposed be such a core that accomplishes requirements mentioned above. Through the neutronic and the thermo-hydrodynamic evaluation, the performances of the core have been evaluated. Also, the safety designing is underway considering the reactor system with the passive safety features. (author)

  11. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K. NNL

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  12. Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel

    Science.gov (United States)

    Mullabaev, Albert; Tkacheva, Olga; Shishkin, Vladimir; Kovrov, Vadim; Zaikov, Yuriy; Sukhanov, Leonid; Mochalov, Yuriy

    2018-03-01

    Crystallization temperatures (liquidus and solidus) in the LiCl-Li2O and (LiCl-KCl)-Li2O systems with the KCl content of 10 and 20 mol.% were obtained with independent methods of thermal analysis using cooling curves, isothermal saturation, and differential scanning calorimetry. The linear sweep voltammetry was applied to control the time of the equilibrium establishment in the molten system after the Li2O addition, which depended on the composition of the base melt and the concentration of Li2O. The fragments of the binary LiCl-Li2O and quazi-binary [LiCl-KCl(10 mol.%)]-Li2O and [LiCl-KCl(20 mol.%)]-Li2O phase diagrams in the Li2O concentration range from 0 to 12 mol.% were obtained. The KCl presence in the LiCl-KCl-Li2O molten mixture in the amount of 10 and 20 mol.% reduces the liquidus temperature by 30 and 80°, respectively, but the region of the homogeneous molten state of the system is considerably narrowed, which complicates its practical application. The Li2O solubility in the molten LiCl, LiCl-KCl(10 mol.%) and LiCl-KCl(20 mol.%) decreases with increasing the KCl content and is equal to 11.5, 7.7 and 3.9 mol.% at 650°С, respectively. The LiCl-KCl melt with 10 mol.% KCl can be recommended for practical use as a medium for the SNF pyro-chemical reprocessing at temperature below 700 °C.

  13. High burnup MOX fuel assembly

    International Nuclear Information System (INIS)

    Blanpain, P.; Brunel, L.

    1999-01-01

    From the outset, the MOX product was required to have the same performance as UO 2 in terms of burnup and operational flexibility. In fact during the first years the UO 2 managements could not be applied to MOX. The changeover to an AFA 2G type fuel allowed an improvement in NPP operational flexibility. The move to the AFA 3G design fuel will enable an increase in the burnup of the MOX assemblies to the level of the UO 2 ones ('MOX Parity' project). But the FRAMATOME fuel development objective does not stop at the obtaining of parity between the current MOX and UO 2 products: this parity must remain guaranteed and the MOX managements must evolve in the same way as the UO 2 managements. The goal of the MOX product development programmes underway with COGEMA and the CEA is the demonstration over the next 10 years of a fuel capable of reaching burnups of 70 GWD/T. The research programmes focus on the fission gas release aspect, with three issues explored: optimization of pellet microstructures and validation in experimental reactor ; build-up of experience feedback from fission gas release at elevated burnups in commercial reactors, both for current and experimental products; adaptation and qualification of the design models and tools, over the ranges and for the products concerned. The product arising from these development programmes should be offered on the market around 2010. While meeting safety requirements, it will cater for the needs of the utilities in terms of product reliability, personnel dosimetry and kWh output costs (increase in burnup, NPP maneuverability and availability, minimization of process waste). (authors)

  14. Phenix: A Reprocessing and Multiple Recycling Experiment Unique in the World

    International Nuclear Information System (INIS)

    Guidez, J.

    2013-01-01

    Fast reactor fuel cycle principle: The Phenix fresh fuel is MOX with about 20% of Plutonium, and 80% of uranium. It can be natural or even depleted uranium. After reprocessing of this burned fuel, you obtain more plutonium(surgenerator). If you use this plutonium with depleted uranium, you can produce new MOX for the reactor. And again… at the end you operate the plant, burning only natural and depleted uranium

  15. MOX fuel fabrication at AECL

    International Nuclear Information System (INIS)

    Dimayuga, F.C.; Jeffs, A.T.

    1995-01-01

    Atomic Energy of Canada Limited's mixed-oxide (MOX) fuel fabrication activities are conducted in the Recycle Fuel Fabrication Laboratories (RFFL) at the Chalk River Laboratories. The RFFL facility is designed to produce experimental quantities of CANDU MOX fuel for reactor physics tests or demonstration irradiations. From 1979 to 1987, several MOX fuel fabrication campaigns were run in the RFFL, producing various quantities of fuel with different compositions. About 150 bundles, containing over three tonnes of MOX, were fabricated in the RFFL before operations in the facility were suspended. In late 1987, the RFFL was placed in a state of active standby, a condition where no fuel fabrication activities are conducted, but the monitoring and ventilation systems in the facility are maintained. Currently, a project to rehabilitate the RFFL and resume MOX fuel fabrication is nearing completion. This project is funded by the CANDU Owners' Group (COG). The initial fabrication campaign will consist of the production of thirty-eight 37-element (U,Pu)O 2 bundles containing 0.2 wt% Pu in Heavy Element (H.E.) destined for physics tests in the zero-power ZED-2 reactor. An overview of the Rehabilitation Project will be given. (author)

  16. Public acceptance of MOX - fuel

    International Nuclear Information System (INIS)

    Huettmann, A.; Reddehase, C.G.

    1995-01-01

    In the Federal Republic of Germany 'Plutonium-Business' got fresh nutrient because of the carried out licensing of the use of Mixed Oxide (MOX)-fuel LWR and in connection with the negative attitude of the Hessian authorities, who are responsible for the licensing procedures of the production of MOX-fuel in the Siemens-factories at Hanau. The opponents of the peaceful use of nuclear energy try with the emotive expression 'Plutonium' (Pu) a frontal attack against the use of nuclear energy in Germany. They justify their actions with so-called safety deficits of the plants and increased danger of cancer in case of using MOX-fuel. (orig./HP)

  17. Development of MOX manufacturing technology in BNFL

    International Nuclear Information System (INIS)

    Buchan, P.G.; Powell, D.J.; Edwards, J.

    1998-01-01

    BNFL is successfully operating a small scale MOX fuel fabrication facility at its Sellafield Site and is currently constructing an advanced, commercial scale MOX facility to complement its existing LWR UO 2 fabrication capability. BNFL's MOX fuel capability is fully supported by a comprehensive technology development programme aimed at providing a high quality product which is successfully competing in the market. Building on the experience gained over the last 30 years, is from the production of both thermal and fast reactor MOX fuels, BNFL's development team set a standard for its MOX product which is targeted at exceeding the performance of UO 2 fuel in reactor. In order to meet the stringent design requirements the product development team has introduced the Short Binderless Route (SBR) process that is now used routinely in BNFL's MOX Demonstration Facility (MDF) and which forms the basis for BNFL's large scale Sellafield MOX Plant. This plant not only uses the SBR process for MOX production but also incorporates the most advanced technology available anywhere in the world for nuclear fuel production. A detailed account of the technology developed by BNFL to support its MOX fuels business will be provided, together with an explanation of the processes and plants used for MOX fuel production by BNFL. The paper also looks at the future needs of the MOX business and how improvements in pellet design can assist the MOX fabrication production process to meet the user demand requirements of utilities around the world. (author)

  18. Management of radioactive waste from reprocessing plants

    International Nuclear Information System (INIS)

    Kanwar Raj

    2010-01-01

    Reprocessing and recycling of both fissile and fertile components back into appropriate reactor systems is an integral part of three stage nuclear energy programme of India. Different steps involved in processing of spent nuclear fuel (SNF) are decladding, dissolution and recovery of fissile and fertile materials. Reprocessing of SNF is a complex process involving handling of large quantity of radioactive materials and processing chemicals. There are three reprocessing plants in operation in the country at Trombay, Tarapur and Kalpakkam. Out of these plants, Trombay reprocessing plant is engaged in reprocessing of SNF from research reactors and other two plants are processing of SNF from PHWRs. A facility is being built for reprocessing of thorium based spent fuel at BARC, Trombay based on the experience of pilot plant scale. Like other industrial activities of nuclear fuel cycle, fuel reprocessing facilities too generate various types of radioactive waste streams. These are generated in all the three physical forms namely solid, liquid and gas. These waste streams are primarily categorized on the basis of concentration of radionuclides, their half lives and toxicity. Management of these wastes aims at (a) recovery and recycle of useful materials, (b) concentration and confinement of radioactivity in inert and stable matrices, (c) minimization of final waste volume for disposal, (d) decontamination of effluents following ALARA principle and (e) minimization of radioactive discharge to the environment. The present paper outlines the salient features of management of different types of radioactive waste generated in reprocessing plants handling SNF from research reactors and PHWR

  19. Experimental microstructures MOX fuels elaboration

    International Nuclear Information System (INIS)

    Gotta, M.J.; Dubois, S.; Lechelle, J.; Sornay, P.

    2000-01-01

    In order to propose a new MOX fuel, owning higher combustion rate, studies are realized at the CEA in collaboration with Cogema, EDF and Framatome. New microstructures of MOX are looked for around two approaches: the grains size and the plutonium distribution. These approaches are presented and discussed in this paper. The first one develops big grains microstructures obtained, either with anionic (sulfur), or cationic (Cr 2 O 3 ) additives. The second one concerns the CER-CER type composite microstructures. (A.L.B.)

  20. Radioactive wastes from reprocessing plants

    International Nuclear Information System (INIS)

    Huppert, K.L.

    1977-01-01

    The lecture deals with definition, quantity and type of radioactive waste products occurring in a fuel reprocessing plant. Solid, liquid and gaseous fission and activation products are formed during the dissolution of the fuel and during the extraction process, and they must be separated from the fissionalble uranium and plutonium not spent. The chemical behaviour of these products (Zr, Ru, Np, gaseous substances, radiolysis products), which is sometimes very problematic, necessitates careful process control. However, the lifetime of nuclides is just as important for the conditions of the reprocessing procedure. The types of waste obtained after reprocessing are classified according to their state of aggregation and level of activity and - on the basis of the operational data of a prototype plant - they are quantitatively extrapolated for the operation of a large-scale facility of 1,400 tons of fuel annually. (RB) [de

  1. Design of full MOX core in ABWR

    International Nuclear Information System (INIS)

    Kinoshita, Y.; Hirose, T.; Sasagawa, M.; Sakuma, T

    1999-01-01

    A Full MOX-ABWR, loaded with mixed-oxide (MOX) fuels of up to 100% of the core, is planned. Increased MOX fuel utilization will result in greater savings of uranium. Studies on the fuel rod thermal-mechanical design, the core design and the safety evaluation have been made, and the results are summarized in this paper. To sum it all up, the safety of the Full MOX-ABWR has been confirmed through design evaluations adequately considering the MOX fuel and core characteristics. (author)

  2. Research and development of pyro-reprocessing and its world status

    International Nuclear Information System (INIS)

    Inoue, Tadashi

    2005-01-01

    The next generation fuel cycle requires a strong resistance of nuclear proliferation and lightening the environmental burden as well as safety and economic advantage. The pyro-reprocessing technology satisfies such kinds of requirements. Central Research Institute of Electric Power Industry, CRIEPI, has been involving the development of metal fuel cycle integrated pyro-reprocessing with metal-electrorefining and metal fuel fast reactor since 1986. The study on pyro-processing technology of spent MOX fuel from LWR has been also started. Based on the fast that metal-electrorefining does not produce pure plutonium but transuranium elements, irradiation experiment of metal fuel with minor actinides is carried out by use of Phenix Fast Reactor in France. This article reports an overview of pyro-reprocessing and the present status of its research and development. The R and D activity proceeds to the process verification by use of genuine material and the development of engineering model of the process after finishing the verification of elemental technology. Irradiation study of metal fuel will be started by use of JOYO Fast Reactor as well as Phenix Fast Reactor. The target at 2015 is to finish the irradiation programs by both reactors and to demonstrate the pyro-process flow and related technologies by use of irradiated material. After finishing this stage, we expect to be technically feasible to design a pyro-process facility with a throughput of several tones of spent fuels. While R and D on pyro-technology has started initially in the U.S. and followed by CRIEPI, the several activities, currently, are followed in European and Asian nations. The engineering installation of electrochemical reduction successfully achieved by uranium test with 20 kg/batch and the construction of hot cell for handling a 20 kg/batch spent fuel finished in the Korean Atomic Energy Research Institute, KAERI. China has started R and D on metal fuel fast reactor and pyro-reprocessing as a

  3. Reprocessing considerations for a developing country

    International Nuclear Information System (INIS)

    This paper describes some of the alternatives for dealing with spent fuel that face a developing country. It then discusses the considerations that affect decisions on the size and siting of reprocessing plants, and shows how small plants may be suitable in countries without the means to transport spent fuel easily. The paper also outlines the reasons for reprocessing in India, and describes the development of India's reprocessing capability. It shows how the economic conditions in India, such as low skilled labour costs, make reprocessing plants of 100 to 200 tonnes U/yr capacity economic, and includes a table giving technical data on a 100 t U/yr national plant for inclusion in the reference cases used by INFCE Working Group 4

  4. Toward full MOX core design

    International Nuclear Information System (INIS)

    Rouviere, G.; Guillet, J.L.; Bruna, G.B.; Pelet, J.

    1999-01-01

    This paper presents a selection of the main preliminary results of a study program sponsored by COGEMA and currently carried out by FRAMATOME. The objective of this study is to investigate the feasibility of full MOX core loading in a French 1300 MWe PWR, a recent and widespread standard nuclear power plant. The investigation includes core nuclear design, thermal hydraulic and systems aspects. (authors)

  5. Remote handling in reprocessing plants

    International Nuclear Information System (INIS)

    Streiff, G.

    1984-01-01

    Remote control will be the rule for maintenance in hot cells of future spent fuel reprocessing plants because of the radioactivity level. New handling equipments will be developed and intervention principles defined. Existing materials, recommendations for use and new manipulators are found in the PMDS' documentation. It is also a help in the choice and use of intervention means and a guide for the user [fr

  6. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  7. Indian experience in fuel reprocessing

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1977-01-01

    Plant scale experience in fuel reprocessing in India was started with the successful design, execution and commissioning of the Trombay plant in 1964 to reprocess aluminium clad metallic uranium fuel from the 40 MWt research reactor. The plant has helped in generating expertise and trained manpower for future reprocessing plants. With the Trombay experience, a larger plant of capacity 100 tonnes U/year to reprocess spent oxide fuels from the Tarapur (BWR) and Rajasthan (PHWR) power reactors has been built at Tarapur which is undergoing precommissioning trial runs. Some of the details of this plant are dealt with in this paper. In view of the highly corrosive chemical attack the equipment and piping are subjected to in a fuel reprocessing plant, some of them require replacement during their service if the plant life has to be extended. This calls for extensive decontamination for bringing the radiation levels low enough to establish direct accesss to such equipment. For making modifications in the plant to extend its life and also to enable expansion of capacity, the Trombay plant has been successfully decontaminated and partially decommissioned. Some aspects of thi decontamination campaign are presented in this paper

  8. Full MOX core for PWRs

    International Nuclear Information System (INIS)

    Puill, A.; Aniel-Buchheit, S.

    1997-01-01

    Plutonium management is a major problem of the back end of the fuel cycle. Fabrication costs must be reduced and plant operation simplified. The design of a full MOX PWR core would enable the number of reactors devoted to plutonium recycling to be reduced and fuel zoning to be eliminated. This paper is a contribution to the feasibility studies for achieving such a core without fundamental modification of the current design. In view of the differences observed between uranium and plutonium characteristics it seems necessary to reconsider the safety of a MOX-fuelled PWR. Reduction of the control worth and modification of the moderator density coefficient are the main consequences of using MOX fuel in a PWR. The core reactivity change during a draining or a cooling is thus of prime interest. The study of core global draining leads to the following conclusion: only plutonium fuels of very poor quality (i.e. with low fissile content) cannot be used in a 900 MWe PWR because of a positive global voiding reactivity effect. During a cooling accident, like an spurious opening of a secondary-side valve, the hypothetical return to criticality of a 100% MOX core controlled by means of 57 control rod clusters (made of hafnium-clad B 4 C rods with a 90% 10 B content) depends on the isotopic plutonium composition. But safety criteria can be complied with for all isotopic compositions provided the 10 B content of the soluble boron is increased to a value of 40%. Core global draining and cooling accidents do not present any major obstacle to the feasibility of a 100% MOX PWR, only minor hardware modifications will be required. (author)

  9. Advanced analysis technology for MOX fuel

    International Nuclear Information System (INIS)

    Hiyama, T.; Kamimura, K.

    1997-01-01

    PNC has developed MOX fuels for advanced thermal reactor (ATR) and fast breeder reactor (FBR). The MOX samples have been chemically analysed to characterize the MOX fuel for JOYO, MONJU, FUGEN and so on. The analysis of the MOX samples in glove box has required complicated and highly skilled operations. Therefore, for quality control analysis of the MOX fuel in a fabrication plant, simple, rapid and accurate analysis methods are necessary. To solve the above problems instrumental analysis and techniques were developed. This paper describes some of the recent developments in PNC. 2. Outline of recently developed analysis methods by PNC. 2.1 Determination of oxygen to metal atomic ratio (O/M) in MOX by non-dispersive infrared spectrophotometry after inert gas fusion. 7 refs, 9 figs, 4 tabs

  10. MOX fuel for Indian nuclear power programme

    International Nuclear Information System (INIS)

    Kamath, H.S.; Anantharaman, K.; Purushotham, D.S.C.

    2000-01-01

    A sound energy policy and a sound environmental policy calls for utilisation of plutonium (Pu) in nuclear power reactors. The paper discusses the use of Pu in the form of mixed oxide (MOX) fuel in two Indian boiling water reactors (BWRs) at Tarapur. An industrial scale MOX fuel fabrication plant is presently operational at Tarapur which is capable of manufacturing MOX fuels for BWRs and in future for PHWRs. The plant can also manufacture mixed oxide fuel for prototype fast breeder reactor (PFBR) and development work in this regard has already started. The paper describes the MOX fuel manufacturing technology and quality control techniques presently in use at the plant. The irradiation experience of the lead MOX assemblies in BWRs is also briefly discussed. The key areas of interest for future developments in MOX fuel fabrication technology and Pu utilisation are identified. (author)

  11. Fast reactor fuel reprocessing. An Indian perspective

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2005-01-01

    The Department of Atomic Energy (DAE) envisioned the introduction of Plutonium fuelled fast reactors as the intermediate stage, between Pressurized Heavy Water Reactors and Thorium-Uranium-233 based reactors for the Indian Nuclear Power Programme. This necessitated the closing of the fast reactor fuel cycle with Plutonium rich fuel. Aiming to develop a Fast Reactor Fuel Reprocessing (FRFR) technology with low out of pile inventory, the DAE, with over four decades of operating experience in Thermal Reactor Fuel Reprocessing (TRFR), had set up at the India Gandhi Center for Atomic Research (IGCAR), Kalpakkam, R and D facilities for fast reactor fuel reprocessing. After two decades of R and D in all the facets, a Pilot Plant for demonstrating FRFR had been set up for reprocessing the FBTR (Fast Breeder Test Reactor) spent mixed carbide fuel. Recently in this plant, mixed carbide fuel with 100 GWd/t burnup fuel with short cooling period had been successfully reprocessed for the first time in the world. All the challenging problems encountered had been successfully overcome. This experience helped in fine tuning the designs of various equipments and processes for the future plants which are under construction and design, namely, the DFRP (Demonstration Fast reactor fuel Reprocessing Plant) and the FRP (Fast reactor fuel Reprocessing Plant). In this paper, a comprehensive review of the experiences in reprocessing the fast reactor fuel of different burnup is presented. Also a brief account of the various developmental activities and strategies for the DFRP and FRP are given. (author)

  12. Will the world SNF be reprocessed in Russia?

    International Nuclear Information System (INIS)

    Gagarinski, A.

    2000-01-01

    Russia's possibilities in nuclear fuel reprocessing are well known. RT-1 plant with 400 tons/year in the Chelyabinsk region can provide reprocessing of fuel from Russian and Central European WWER-440 reactors, as well as from transport and research reactors. Former military complex Krasnoyarsk-26 with unique underground installations situated in rock galleries, already has an aqueous facility for storage of 6000 tons of spent nuclear fuel (SNF), half-built plant RT-2 for nuclear fuel reprocessing with 1500 tons/year capacity, as well as the projects of dry storage facility for 30000 tons of SNF and of MOX fuel production plant. Russian nuclear specialists understand well, that the economic efficiency of nuclear fuel reprocessing industry is shown only in case of large-scale production, which would require consolidation of the countries, which develop nuclear energy. They also understand, that Russia has all the possibilities to become one of the centers of such a consolidation and to use these possibilities for the benefit of the country. The idea of foreign nuclear fuel reprocessing (for a long time realized for East and Central European countries, which operate Soviet-design reactors) has existed in the specialists' minds, and sometimes has appeared in the mass media. On the other hand, rehabilitation of territories of nuclear fuel cycle enterprises in Russia continues, including the Karachai lake, which contains 120 million Curie of radioactivity. Unfortunately, Russia simply has no money for complete solution of the problems of radiation military legacy. During discussion of the budget for 2000, the Russian Minatom has made a daring step. A real program, how to find money needed for solving the 'radiation legacy' problem, was proposed. With this purpose, it was proposed to permit storage and further reprocessing of other countries' SNF on Russian territory. It is well known, that another countries' SNF is accepted for reprocessing by UK and France, and Russia

  13. MOX fuel assembly and reactor core

    International Nuclear Information System (INIS)

    Shimada, Hidemitsu; Koyama, Jun-ichi; Aoyama, Motoo

    1998-01-01

    The MOX fuel assembly of the present invention is of a c-lattice type loaded to a BWR type reactor. 74 MOX fuel rods filled with mixed oxides of uranium and plutonium and two water rods disposed to a space equal to that for 7 MOX fuel rods are arranged in 9 x 9 matrix. MOX fuel rods having the lowest enrichment degree are disposed to four corners of the 9 x 9 matrix. The enrichment degree means a ratio of the weight of fission products based on the total weight of fuels. Two MOX fuel rods having the same enrichment degree are arranged in each direction so as to be continuous from the MOX fuel rods at four corners in the direction of the same row and different column and same column and the different row. In addition, among the outermost circumferential portion of the 9 x 9 matrix, MOX fuel rods having a lower enrichment degree next to the MOX fuel rods having the lowest enrichment degree are arranged, each by three to a portion where MOX fuel rods having the lowest enrichment degree are not disposed. (I.N.)

  14. WESTINGHOUSE 17X17 MOX PWR ASSEMBLY - WASTE PACKAGE CRITICALITY ANALYSIS (SCPB: N/A)

    International Nuclear Information System (INIS)

    J.W. Davis

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to compare the criticality potential of Westinghouse 17 x 17 mixed oxide (MOX) PWR fuel with the Design Basis spent nuclear fuel (SNF) analyzed previously (Ref. 5.1, 5.2). The basis of comparison will be the conceptual design Multi-Purpose Canister (MPC) PWR waste package concepts. The objectives of this evaluation are to show that the criticality potential of the MOX fuel is equal to or lower than the DBF or, if necessary, indicate what additional measures are required to make it so

  15. MX 8: the next generation high capacity system for the transport of fresh MOX fuel

    International Nuclear Information System (INIS)

    Potelle, F.; Issard, H.

    1998-01-01

    The choice of reprocessing policy was made a long time ago in France, leading to the development of an advanced Pu recycling industry. In 1987, Saint Laurent was the first French reactor to be loaded with fresh MOX fuel. Transnucleaire, then in charge of transport packaging development, created the FS 69 concept, derived from the classical RCC concept for the transport of UO 2 fresh fuel. On the other hand, Cogema, as the main actor in the field of fuel cycle and thus in transport matters, developed the associated security truck and security caisson in order to provide the transport system with the acceptable Physical Protection devices required by French Authorities. As a whole, the security truck and the FS 69 have now been used for more than ten years with a remarkable level of efficiency and safety. Indeed, more than 600 fresh MOX fuel elements have been delivered, without any incident, both regarding safety or fuel integrity requirements. But, as a matter of fact, the replacement of FS 69 transport system is now scheduled for several reasons. First of all, the burnups achieved with UO 2 fuel progressed together with its enrichment within the last ten years, and the MOX 'equivalence' also implies that its Pu content be increased to enhance its reactor performances: from 5.25 % of Pu content today, the MOX fuel will reach 7% tomorrow, and almost 10% the day after tomorrow. Lastly, the reprocessing/recycling policy has been confirmed and amplified, leading to an increasing number of 'moxified' reactors. As a consequence, the French utility (EDF), the fuel designer (Fragema, the joint venture between Framatome and Cogema), the fuel manufacturer (Cogema), and the transporter (Transnucleaire) joined in a specific working group devoted to the development of the MX 8, the next generation high capacity system for the land transport of MOX fuel. (authors)

  16. Program on MOX fuel utilization in light water reactors

    International Nuclear Information System (INIS)

    Kenda, Hirofumi

    2000-01-01

    MOX fuel utilization program by the Japanese electric power companies was released in February, 1997. Principal philosophy for MOX fuel design is that MOX fuel shall be compatible with Uranium fuel and behavior of core loaded with MOX fuel shall be similar to that of conventional core. MOX fuel is designed so that geometry and nuclear capability of MOX fuel are equivalent to Uranium fuel. (author)

  17. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1992-01-01

    Information and data are provided on several aspects of the transportation of spent fuel elements. These aspects include contract, transportation, reprocessing batch size, and economical considerations. (author)

  18. Burnup Credit of French PWR-MOx fuels: methodology and associated conservatisms with the JEFF-3.1.1 evaluation

    International Nuclear Information System (INIS)

    Chambon, A.

    2013-01-01

    Considering spent fuel management (storage, transport and reprocessing), the approach using 'fresh fuel assumption' in criticality-safety studies results in a significant conservatism in the calculated value of the system reactivity. The concept of Burnup Credit (BUC) consists in considering the reduction of the spent fuel reactivity due to its burnup. A careful BUC methodology, developed by CEA in association with AREVA-NC was recently validated and written up for PWR-UOx fuels. However, 22 of 58 French reactors use MOx fuel, so more and more irradiated MOx fuels have to be stored and transported. As a result, why industrial partners are interested in this concept is because taking into account this BUC concept would enable for example a load increase in several fuel cycle devices. Recent publications and discussions within the French BUC Working Group highlight the current interest of the BUC concept in PWR-MOx spent fuel industrial applications. In this case of PWR-MOx fuel, studies show in particular that the 15 FPs selected thanks to their properties (absorbing, stable, non-gaseous) are responsible for more than a half of the total reactivity credit and 80% of the FPs credit. That is why, in order to get a conservative and physically realistic value of the application k eff and meet the Upper Safety Limit constraint, calculation biases on these 15 FPs inventory and individual reactivity worth should be considered in a criticality-safety approach. In this context, thanks to an exhaustive literature study, PWR-MOx fuels particularities have been identified and by following a rigorous approach, a validated and physically representative BUC methodology, adapted to this type of fuel has been proposed, allowing to take fission products into account and to determine the biases related to considered isotopes inventory and to reactivity worth. This approach consists of the following studies: - isotopic correction factors determination to guarantee the criticality

  19. MOX fuel design and development consideration

    International Nuclear Information System (INIS)

    Yamate, K.; Abeta, S.; Suzuki, K.; Doi, S.

    1997-01-01

    Pu thermal utilization in Japan will be realized in several plants in late 1990's, and will be expanded gradually. For this target, adequacy of methods for MOX fuel design, nuclear design, and safety analysis has been evaluated by the committee of competent authorities organized by government in advance of the licensing application. There is no big difference of physical properties and irradiation behaviors between MOX fuel and UO 2 fuel, because Pu content of MOX fuel for Pu thermal utilization is low. The fuel design code for UO 2 fuel will be applied with some modifications, taking into account of characteristic of MOX fuel. For nuclear design, new code system is to be applied to treat the heterogeneity in MOX fuel assembly and the neutron spectrum interaction with UO 2 fuel more accurately. For 1/3 MOX fueled core in three loop plant, it was confirmed that the fuel rod mechanical design could meet the design criteria, with slight reduction of initial back-fitting pressure, and with appropriate fuel loading patterns in the core to match power with UO 2 fuel. With the increase of MOX fuel fraction in the core, control rod worth and boron worth decrease. Compensating the decrease by adding control rod and utilizing enriched B-10 in safety injection system, 100% MOX fueled core could be possible. Up to 1/3 MOX fueled core in three loop plant, no such modifications of the plant is necessary. The fraction of MOX fuel in PWR is designed to less than 1/3 in the present program. In order to improve Pu thermal utilization in future, various R and D program on fuel design and nuclear design are being performed, such as the irradiation program of MOX fuel manufactured through new process to the extent of high burnup. (author). 8 refs, 9 figs, 2 tabs

  20. Study on remain actinides recovery in pyro reprocessing

    International Nuclear Information System (INIS)

    Suharto, Bambang

    1996-01-01

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  1. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  2. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel

    International Nuclear Information System (INIS)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C.

    2006-01-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  3. 1. round table - Spent fuels composition. Back-end of the fuel cycle and reprocessing, plutonium and other nuclear materials management. 2. round table - Separation-transmutation. 3. round table - Scenarios for a long term inventory of nuclear materials and wastes

    International Nuclear Information System (INIS)

    2005-01-01

    The law from December 30, 1991, precisely defines 3 axes of researches for the management of high level and long-lived radioactive wastes: separation/transmutation, surface storage and underground disposal. A global evaluation report about these researches is to be supplied in 2006 by the French government to the Parliament. A first synthesis of the knowledge gained after 14 years of research has led the national commission of the public debate (CNDP) to organize a national debate about the general options of management of high-level and long-lived radioactive wastes before the 2006 date line. The debate comprises 4 public hearings (September 2005: Bar-le-Duc, Saint-Dizier, Pont-du-Gard, Cherbourg), 12 round-tables (October and November 2005: Paris, Joinville, Caen, Nancy, Marseille), a synthesis meeting (December 2005, Dunkerque) and a closing meeting (January 2006, Lyon). This document is the synthesis of the round table debates which took place at Paris on the reprocessing of spent fuels. Three aspects are discussed: the risks linked with the recovery of valorizable materials, the economical viability of the separation/transmutation option, and the future of the nuclear option in the French energy policy. Six presentations (transparencies) are attached with these proceedings which treat of: the reprocessing/recycling to the test, perspectives of future wastes, present day wastes/valorizable materials and future scenarios, critical analysis scenarios, why reprocessing spent fuels?, processing of spent fuels and recycling, separation and transmutation of long-lived radioactive wastes, thorium-uranium cycle. (J.S.)

  4. Near surface spent fuel storage: environmental issues

    International Nuclear Information System (INIS)

    Nelson, I.C.; Shipler, D.B.; McKee, R.W.; Glenn, R.D.

    1979-01-01

    Interim storage of spent fuel appears inevitable because of the lack of reprocessing plants and spent fuel repositories. This paper examines the environmental issues potentially associated with management of spent fuel before disposal or reprocessing in a reference scenario. The radiological impacts of spent fuel storage are limited to low-level releases of noble gases and iodine. Water needed for water basin storage of spent fuel and transportation accidents are considered; the need to minimize the distance travelled is pointed out. Resource commitments for construction of the storage facilities are analyzed

  5. Burn of actinides in MOX fuel cells; Quemado de actinidos en celdas de combustible MOX

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  6. Spent fuel treatment in Japan

    International Nuclear Information System (INIS)

    Takahashi, K.

    1999-01-01

    In Japan, 52 nuclear power reactors are operating with a total power generation capacity of 45 GWe. The cumulative amount of spent fuel arising, as of March 1998, is about 14,700 W. Spent fuel is reprocessed and recovered nuclear materials are to be recycled in LWRs and FBRs. Pu utilization in LWRs will commence in 1999. In January 1997, short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of the reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, back-end measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away-from-reactor sites, considering the increasing amount of spent fuel arising. Valuable experience was been accumulated at the Tokai Reprocessing Plant (TRP), from the start of hot operation in 1977 up to now. The role of the TRP will be changed from an operation-oriented to a more R and D oriented facility, when PNC is reorganized into the new organization JNC. The Rokkasho reprocessing plant is under construction and is expected to commence operation in 2003. R and D of future recycling technologies is also continued for the establishment of a nuclear fuel cycle based on FBRs and LWRs. (author)

  7. Fission gas release behaviour in MOX fuels

    International Nuclear Information System (INIS)

    Viswanathan, U.K.; Anantharaman, S.; Sahoo, K.C.

    2002-01-01

    As a part of plutonium recycling programme MOX (U,Pu)O 2 fuels will be used in Indian boiling water reactors (BWR) and pressurised heavy water reactors (PHWR). Based on successful test irradiation of MOX fuel in CIRUS reactor, 10 MOX fuel assemblies have been loaded in the BWR of Tarapur Atomic Power Station (TAPS). Some of these MOX fuel assemblies have successfully completed the initial target average burnup of ∼16,000 MWD/T. Enhancing the burnup target of the MOX fuels and increasing loading of MOX fuels in TAPS core will depend on the feedback information generated from the measurement of released fission gases. Fission gas release behaviour has been studied in the experimental MOX fuel elements (UO 2 - 4% PuO 2 ) irradiated in pressurised water loop (PWL) of CIRUS. Eight (8) MOX fuel elements irradiated to an average burnup of ∼16,000 MWD/T have been examined. Some of these fuel elements contained controlled porosity pellets and chamfered pellets. This paper presents the design details of the experimental set up for studying fission gas release behaviour including measurement of gas pressure, void volume and gas composition. The experimental data generated is compared with the prediction of fuel performance modeling codes of PROFESS and GAPCON THERMAL-3. (author)

  8. MOX in reactors: present and future

    International Nuclear Information System (INIS)

    Arslan, Marc; Gros, Jean Pierre; Niquille, Aurelie; Marincic, Alexis

    2010-01-01

    In Europe, MOX fuel has been supplied by AREVA for more than 30 years, to 36 reactors: 21 in France, 10 in Germany, 3 in Switzerland, 2 in Belgium. For the present and future, recycling is compulsory in the frame of sustainable development of nuclear energy. By 2030 the overall volume of used fuel will reach about 400 000 t worldwide. Their plutonium and uranium content represents a huge resource of energy to recycle. That is the reason why, the European Utilities issued an EUR (European Utilities Requirement) demanding new builds reactors to be able of using MOX Fuel Assemblies in up to 50 % of the core. AREVA GEN3+ reactors, like EPR TM or ATMEA TM designed with MHI partnership, are designed to answer any utility need of MOX recycling. The example of the EPR TM reactor operated with 100 % MOX core optimized for MOX recycling will be presented. A standard EPR TM can be operated with 100 % MOX core using an advanced homogeneous MOX (single Pu content) with highly improved performances (burn-up and Cycle length). The adaptations needed and the main operating and safety reactor features will be presented. AREVA offers the utilities throughout the world, fuel supply (UO 2 , ERU, MOX), and reactors designed with all the needed capability for recycling. For each country and each utility, an adapted global solution, competitive and non proliferant can be proposed. (authors)

  9. Spent nuclear fuel storage

    International Nuclear Information System (INIS)

    Romanato, Luiz Sergio

    2005-01-01

    When a country becomes self-sufficient in part of the nuclear cycle, as production of fuel that will be used in nuclear power plants for energy generation, it is necessary to pay attention for the best method of storing the spent fuel. Temporary storage of spent nuclear fuel is a necessary practice and is applied nowadays all over the world, so much in countries that have not been defined their plan for a definitive repository, as well for those that already put in practice such storage form. There are two main aspects that involve the spent fuels: one regarding the spent nuclear fuel storage intended to reprocessing and the other in which the spent fuel will be sent for final deposition when the definitive place is defined, correctly located, appropriately characterized as to several technical aspects, and licentiate. This last aspect can involve decades of studies because of the technical and normative definitions at a given country. In Brazil, the interest is linked with the storage of spent fuels that will not be reprocessed. This work analyses possible types of storage, the international panorama and a proposal for future construction of a spent nuclear fuel temporary storage place in the country. (author)

  10. Nuclear spent fuel management scenarios. Status and assessment report

    International Nuclear Information System (INIS)

    Dufek, J.; Arzhanov, V.; Gudowski, W.

    2006-06-01

    The strategy for management of spent nuclear fuel from the Swedish nuclear power programme is interim storage for cooling and decay for about 30 years followed by direct disposal of the fuel in a geologic repository. In various contexts it is of interest to compare this strategy with other strategies that might be available in the future as a result of ongoing research and development. In particular partitioning and transmutation is one such strategy that is subject to considerable R and D-efforts within the European Union and in other countries with large nuclear programmes. To facilitate such comparisons for the Swedish situation, with a planned phase out of the nuclear power programme, SKB has asked the team at Royal Inst. of Technology to describe and explore some scenarios that might be applied to the Swedish programme. The results of this study are presented in this report. The following scenarios were studied by the help of a specially developed computer programme: Phase out by 2025 with direct disposal. Burning plutonium and minor actinides as MOX in BWR. Burning plutonium and minor actinides as MOX in PWR. Burning plutonium and minor actinides in ADS. Combined LWR-MOX plus ADS. For the different scenarios nuclide inventories, waste amounts, costs, additional electricity production etc have been assessed. As a general conclusion it was found that BWR is more efficient for burning plutonium in MOX fuel than PWR. The difference is approximately 10%. Furthermore the BWR produces about 10% less americium inventory. An ADS reactor park can theoretically in an ideal case burn (transmute) 99% of the transuranium isotopes. The duration of such a scenario heavily depends on the interim time needed for cooling the spent fuel before reprocessing. Assuming 10 years for cooling of nuclear fuel from ADS, the duration will be at least 200 years under optimistic technical assumptions. The development and use of advanced pyro-processing with an interim cooling time of only

  11. Nuclear spent fuel management scenarios. Status and assessment report

    Energy Technology Data Exchange (ETDEWEB)

    Dufek, J.; Arzhanov, V.; Gudowski, W. [Royal Inst. of Technology, Stockholm (Sweden). Dept. of Nuclear and Reactor Physics

    2006-06-15

    The strategy for management of spent nuclear fuel from the Swedish nuclear power programme is interim storage for cooling and decay for about 30 years followed by direct disposal of the fuel in a geologic repository. In various contexts it is of interest to compare this strategy with other strategies that might be available in the future as a result of ongoing research and development. In particular partitioning and transmutation is one such strategy that is subject to considerable R and D-efforts within the European Union and in other countries with large nuclear programmes. To facilitate such comparisons for the Swedish situation, with a planned phase out of the nuclear power programme, SKB has asked the team at Royal Inst. of Technology to describe and explore some scenarios that might be applied to the Swedish programme. The results of this study are presented in this report. The following scenarios were studied by the help of a specially developed computer programme: Phase out by 2025 with direct disposal. Burning plutonium and minor actinides as MOX in BWR. Burning plutonium and minor actinides as MOX in PWR. Burning plutonium and minor actinides in ADS. Combined LWR-MOX plus ADS. For the different scenarios nuclide inventories, waste amounts, costs, additional electricity production etc have been assessed. As a general conclusion it was found that BWR is more efficient for burning plutonium in MOX fuel than PWR. The difference is approximately 10%. Furthermore the BWR produces about 10% less americium inventory. An ADS reactor park can theoretically in an ideal case burn (transmute) 99% of the transuranium isotopes. The duration of such a scenario heavily depends on the interim time needed for cooling the spent fuel before reprocessing. Assuming 10 years for cooling of nuclear fuel from ADS, the duration will be at least 200 years under optimistic technical assumptions. The development and use of advanced pyro-processing with an interim cooling time of only

  12. Modular dry storage of spent fuel

    International Nuclear Information System (INIS)

    Baxter, J.W.

    1982-01-01

    Long term uncertainties in US spent fuel reprocessing and storage policies and programs are forcing the electric utilities to consider means of storing spent fuel at the reactor site in increasing quantitities and for protracted periods. Utilities have taken initial steps in increasing storage capacity. Existing wet storage pools have in many cases been reracked to optimize their capacity for storing spent fuel assemblies

  13. Status and prospects for spent fuel management in France

    International Nuclear Information System (INIS)

    Portal, R.; L'Epine, P. de

    1996-01-01

    The spent fuel arisings and storage capacities, the interface between fuel storage and transportation activities, the spent fuel storage technology, the reprocessing and recycling industrial activities in France are described in the paper. (author). 6 figs, 8 tabs

  14. Fuel reprocessing at a loss to prove its justification

    International Nuclear Information System (INIS)

    Traube, K.

    1986-01-01

    Commercial utilization of nuclear energy is possible with or without fuel reprocessing of spent fuel elements. Demands on terminal storage are about equal in both cases. There is no reason - excluding the military one - to decide in favour of fuel reprocessing instead of direct terminal storage, for neither does fuel reprocessing offer advantages in regard of the safety of nuclear waste disposal, nor is it necessary to produce plutonium for the breeder reactor. Fuel reprocessing is analyzed considering those changed aspects with a view to scarcer uranium resources, juridical motives, and what is termed the development deficit. (DG) [de

  15. A MOX fuel attribute monitor

    International Nuclear Information System (INIS)

    Bliss, Mary; Jordan, David V.; Barnett, Debra S.; Redding, Rebecca L.; Pearce, Stephen K.

    2007-01-01

    Euratom performs safeguards monitoring of Fresh MOX fuel for domestic power production in the European Union. Video cameras monitor the reactor storage ponds. If video surveillance is lost for a certain amount of time a measurement is required to verify that no fuel was diverted. The attribute measurement to verify the continued presence of MOX fuel is neutron emission. Ideally this measurement would be made without moving or handling the fuel rod assembly. A prototype attribute measurement system was made using scintillating neutron sensitive glass waveguides developed by Pacific Northwest National Laboratory. Short lengths (5-20 cm) of the neutron sensitive fiber were mechanically spliced to 15 m lengths of commercial high numerical aperture fiber optic cable (Ceramoptec Optran Ultra 0.44). The light detector is a Hamamatsu R7400P photomultiplier tube. An electronics package was built to use the sensors with a GBS Elektronik MCA-166 multichannel analyzer and user interface. The MCA-166 is the system most commonly used by Euratom inspectors. It can also be run from a laptop computer using Maestro (Ortec) or other software. A MCNP model was made to compare to measurements made with several neutron sources including NIST traceable 252 Cf

  16. Management of reprocessed uranium. Current status and future prospects

    International Nuclear Information System (INIS)

    2007-02-01

    There is worldwide interest in developing advanced and innovative technologies for nuclear fuel cycles, minimizing waste and environmental impacts. As of the beginning of 2003, about 171000 tonnes heavy metal spent nuclear fuel is in storage, while smaller amounts have been reprocessed. In several countries, including France, India, Japan and the Russian Federation, spent fuel has been viewed as a national energy resource. Some countries hold reprocessed uranium as the result of their commercial reprocessing service contracts for reprocessing the spent fuel of others. Reprocessed uranium has a potential value for recycling either directly or after appropriate treatment. This report analyses the existing options, approaches and developments in the management of reprocessed uranium. It includes the technical issues involved in managing reprocessed uranium which are RepU arisings, storage, chemical conversion, re-enrichment, fuel fabrication, transport, reactor irradiation, subsequent reprocessing and disposal options, as well as assessment of holistic environmental impacts. The objective of this document is to overview the information on the current status and future trends in the management of RepU and to identify major issues to be considered for future projects

  17. Study of assessing aqueous reprocessing process for the pipeless reprocessing plant

    International Nuclear Information System (INIS)

    Hanzawa, Masatoshi; Morioka, Nobuo; Fumoto, Hiromichi; Nishimura, Kenji; Chikazawa, Takahiro

    2000-02-01

    The purpose of this study is to investigate the possibility of new reprocessing process for the purpose of introducing pipeless plant concept, where aqueous separation methods other than solvent extraction method are adopted in order to develop more economical FBR fuel (MOX fuel) reprocessing process. At it's first stage, literature survey on precipitation method, crystallization method and ion-exchange method was performed. Based on the results, following processes were candidated for pipeless reprocessing plant. (1) The process adopting crystallization method and peroxide precipitation method (2) The process adopting oxalate precipitation method (3) The process under mild aqueous conditions (crystallization method and precipitation method) (4) The process adopting crystallization method and ion-exchange method (5) The process adopting crystallization method and solvent extraction method. The processes (1)-(5) were compared with each others in terms of competitiveness to the conventional reference process, and merits and demerits were evaluated from the viewpoint of applicability to pipeless reprocessing plant, safety, economy, Efficiencies in consumption of Resources, non-proliferation, and, Operation and Maintenance. As a result, (1) The process adopting crystallization method and peroxide precipitation method was selected as the most reasonable process to pipeless plant. Preliminary criticality safety analyses, main process chemical flowsheet, main equipment list and layout of mobile vessels and stations were reported for the (1) process. (author)

  18. Processing of spent nuclear fuel from light water reactors

    International Nuclear Information System (INIS)

    Sraier, V.

    1978-11-01

    A comprehensive review is given of the reprocessing of spent nuclear fuel from LWR's (covering references up to No. 18 (1977) of INIS inclusively). Particular attention is devoted to waste processing, safety, and reprocessing plants. In the addendum, the present status is shown on the example of KEWA, the projected large German fuel reprocessing plant. (author)

  19. Remarks on the transportation of spent fuel elements

    International Nuclear Information System (INIS)

    Krull, W.

    1986-01-01

    In this chapter topics discussed are the need for contracts, a transport company and risk insurance. Also, a section on transportation covers cranes, subpressure, contamination, cask limitations, physical protection and shipping. Reprocessing discusses minimum reprocessing batch and spent fuel. Finally, economical considerations concerning transportation and reprocessing are given

  20. Reprocessing in Sweden: History and perspective

    International Nuclear Information System (INIS)

    Hultgren, Aa.; Oesterlund, C.G.

    1990-10-01

    Against the background of nuclear power development and installation in Sweden an overview is presented of the parallel domestic development of the reprocessing of spent nuclear fuel. The original selection of the natural uranium - heavy water reactor in the 1950s included spent fuel reprocessing and recycle, and process and plant studies were performed to that end. The switch to light water reactors in the 1960s did not change the planning to recycle; however, the participation in the Eurochemic undertaking, and the delay in the nuclear programme stopped further domestic development work. A number of governmental committee investigations in the 1970s on the radioactive waste issue and, above all, the decision to phase out nuclear power by 2010, after a referendum following the TMI-accident, finally resulted in a decision to plan only for direct disposal of spent nuclear fuel. This policy still prevails. (42 refs.)

  1. Burn-up credit applications for UO2 and MOX fuel assemblies in AREVA/COGEMA

    International Nuclear Information System (INIS)

    Toubon, H.; Riffard, C.; Batifol, M.; Pelletier, S.

    2003-01-01

    For the last seven years, AREVA/COGEMA has been implementing the second phase of its burn-up credit program (the incorporation of fission products). Since the early nineties, major actinides have been taken into account in criticality analyses first for reprocessing applications, then for transport and storage of fuel assemblies Next year (2004) COGEMA will take into account the six main fission products (Rh103, Cs133, Nd143, Sm149, Sm152 and Gd155) that make up 50% of the anti-reactivity of all fission products. The experimental program will soon be finished. The new burn-up credit methodology is in progress. After a brief overview of BUC R and D program and COGEMA's application of the BUC, this paper will focus on the new burn-up measurement for UO2 and MOX fuel assemblies. It details the measurement instrumentation and the measurement experiments on MOX fuels performed at La Hague in January 2003. (author)

  2. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Mineo, H.; Nomura, Y.; Sakamoto, K.

    1998-01-01

    In Japan 52 commercial nuclear power units are now operated, and the total power generation capacity is about 45 GWe. The cumulative amount of spent fuel arising is about 13,500 tU as of March 1997. Spent fuel is reprocessed, and recovered nuclear materials are to be recycled in LWRs and FBRs. In February 1997 short-term policy measures were announced by the Atomic Energy Commission, which addressed promotion of reprocessing programme in Rokkasho, plutonium utilization in LWRs, spent fuel management, backend measures and FBR development. With regard to the spent fuel management, the policy measures included expansion of spent fuel storage capacity at reactor sites and a study on spent fuel storage away from reactor sites, considering the increasing amount of spent fuel arising. Research and development on spent fuel storage has been carried out, particularly on dry storage technology. Fundamental studies are also conducted to implement the burnup credit into the criticality safety design of storage and transportation casks. Rokkasho reprocessing plant is being constructed towards its commencement in 2003, and Pu utilization in LWRs will be started in 1999. Research and development of future recycling technology are also continued for the establishment of nuclear fuel cycle based on FBRs and LWRs. (author)

  3. Spent fuel management in Japan

    International Nuclear Information System (INIS)

    Shirahashi, K.; Maeda, M.; Nakai, T.

    1996-01-01

    Japan has scarce energy resources and depends on foreign resources for 84% of its energy needs. Therefore, Japan has made efforts to utilize nuclear power as a key energy source since mid-1950's. Today, the nuclear energy produced from 49 nuclear power plants is responsible for about 31% of Japan's total electricity supply. The cumulative amount of spent fuel generated as of March 1995 was about 11,600 Mg U. Japan's policy of spent fuel management is to reprocess spent nuclear fuel and recycle recovered plutonium and uranium as nuclear fuel. The Tokai reprocessing plant continues stable operation keeping the annual treatment capacity or around 90 Mg U. A commercial reprocessing plant is under construction at Rokkasho, northern part of Japan. Although FBR is the principal reactor to use plutonium, LWR will be a major power source for some time and recycling of the fuel in LWRs will be prompted. (author). 3 figs

  4. Handbook on process and chemistry of nuclear fuel reprocessing. 3rd edition

    International Nuclear Information System (INIS)

    2015-03-01

    The fundamental data on spent nuclear fuel reprocessing and related chemistry was collected and summarized as a new edition of 'Handbook on Process and Chemistry of Nuclear Fuel Reprocessing'. The purpose of this handbook is contribution to development of the fuel reprocessing and fuel cycle technology for uranium fuel and mixed oxide fuel utilization. Contents in this book was discussed and reviewed by specialists of science and technology on fuel reprocessing in Japan. (author)

  5. MOX-fuel inherent proliferation-protection due to {sup 231}Pa admixture

    Energy Technology Data Exchange (ETDEWEB)

    Kryuchkov, E.F.; Glebov, V.B.; Apse, V.A.; Shmelev, A.N. [Moscow Engineering Physics Institute (State University), Moscow (Russian Federation)

    2003-07-01

    The proliferation protection levels of MOX-fuel containing small additions of protactinium are evaluated for equilibrium closed and open cycles of a light-water reactor (LWR).Analysis of the ways to the proliferation protection of MOX-fuel by small {sup 231}Pa addition and comparison of this way with another options for giving MOX-fuel the proliferation self-protection property enable us to make the 3 following conclusions: -1) Unique nature of protactinium as a small addition to MOX-fuel is determined by the following properties: - Protactinium is available in the nature (uranium ore) as a long-lived mono-isotope {sup 231}Pa, - under neutron irradiation, {sup 231}Pa is converted into {sup 232}U, which is a long-term source of high energy gamma-radiation and practically non-separable from main fuel mass, - essentially, {sup 231}Pa is a high-quality burnable neutron absorber. -2) From the proliferation self-protection point of view, nuclear fuel cycle closure with fuel recycle is a preferable option because, under this condition, introduction of protactinium into MOX-fuel allows to create the inherent radiation barrier which is in action during full cycle of fuel management at the level corresponding to the accepted today criterion of the Spent Fuel Standard (SFS). In particular, the considered example of multiple MOX-fuel recycle with small addition of {sup 231}Pa (0.2% HM) at each cycle demonstrates a possibility to reach the proliferation protection level of fresh MOX-fuel corresponding to once irradiated fuel with the same cooling time. In this case, the lethal dose (at 30 cm distance from fuel assembly) is received within the minute range. -3) Introduction of {sup 231}Pa into MOX-fuel composition in amount of 0.5% HM allows to prolong action of the SFS from 100 to 200 years. If {sup 231}Pa content is increased up to 5% HM, then MOX-fuel conserves the proliferation self-protection property in respect to short-term unauthorized actions for 200-year period of its

  6. Economic evaluation of reprocessing - Indicative Canadian position

    International Nuclear Information System (INIS)

    1979-05-01

    This paper, which also appears as an Appendix to the final Working Group 4 report, forms part of the overall economic evaluation of reprocessing. The indicative national position and illustrative ''phase diagram'' for Canada is presented. Three fuel cycles are considered. (1) CANDU operating on the natural uranium, once-through fuel cycle. (2) CANDU operating with low enrichment (1.2%) once-through fuel cycle. (3) CANDU operating with recycle of plutonium and depleted uranium which has been extracted from spent CANDU natural uranium fuel. The diagrams show that reprocessing and recycle of fuel can be used to reduce further the sensitivity of CANDU fuelling costs to increasing uranium ore price

  7. Nondestructive assay measurements applied to reprocessing plants

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lee, R. Stephen; Ottmar, Herbert; Guardini, Sergio

    1999-01-01

    Nondestructive assay for reprocessing plants relies on passive gamma-ray spectrometry for plutonium isotopic and plutonium mass values of medium-to-low-density samples and holdup deposits; on active x-ray fluorescence and densitometry techniques for uranium and plutonium concentrations in solutions; on calorimetry for plutonium mass in product; and passive neutron techniques for plutonium mass in spent fuel, product, and waste. This paper will describe the radiation-based nondestructive assay techniques used to perform materials accounting measurements. The paper will also discuss nondestructive assay measurements used in inspections of reprocessing plants [ru

  8. PYRO, a system for modeling fuel reprocessing

    International Nuclear Information System (INIS)

    Ackerman, J.P.

    1989-01-01

    Compact, on-site fuel reprocessing and waste management for the Integral Fast Reactor are based on the pyrochemical reprocessing of metal fuel. In that process, uranium and plutonium in spent fuel are separated from fission products in an electrorefiner using liquid cadmium and molten salt solvents. Quantitative estimates of the distribution of the chemical elements among the metal and salt phases are essential for development of both individual pyrochemical process steps and the complete process. This paper describes the PYRO system of programs used to generate reliable mass flows and compositions

  9. Industrial experience of irradiated nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Delange, M.

    1981-01-01

    At the moment and during the next following years, France and La Hague plant particularly, own the greatest amount of industrial experience in the field of reprocessing, since this experience is referred to three types of reactors, either broadly spread all through the world (GCR and LWR) or ready to be greatly developed in the next future (FBR). Then, the description of processes and technologies used now in France, and the examination of the results obtained, on the production or on the security points of view, are a good approach of the actual industrial experience in the field of spent fuel reprocessing. (author)

  10. The case for reprocessing: the operational experience of a modern reprocessing industry

    International Nuclear Information System (INIS)

    Giraud, J.P.; Kelly, W.

    1993-01-01

    Reprocessing is a high-tech industry that works. An impressive effort of R and D, industrial deployment and operational experience has been accumulated by COGEMA and BNFL, leading these companies to offer a commercial service which is the only proper management of spent fuel and waste that is both technically demonstrated and qualified by the safety authorities of European and overseas countries. Reprocessing, as every technology-based industry will continue to progress in the future. Recycling the fissile materials reclaimed from spent fuel: uranium and plutonium, is the complementary and indispensable last link to effectively close the fuel cycle and control in particular the production of plutonium and other long-lived actinides. This paper will describe the state of development attained in France and Great Britain and will underline the main advantages of the reprocessing/recycling strategy

  11. Safety highlights of UP2 reprocessing in La Hague

    International Nuclear Information System (INIS)

    Marc, A.; Dubois, G.

    1998-01-01

    The UP2-800 reprocessing plant basically implements the same proven process (PUREX) as UP3 plant. However, some evolutions and additions have been realised: - to reprocess high burn up and MOX fuel assemblies; - to dissolve scraps from reprocessing facilities or from the fabrication of MOX fuels such as UO 2 - PuO 2 powders; - to recover plutonium from ash resulting from alpha waste incineration prior to ash conditioning; - to reduce solid waste alpha activity below the regulatory limits for shallow land disposal. Safety considerations relating to these functions have been taken into account in each step of process design. Safety design rules have been implemented for the UP2-800 plant with the same goals as for the UP3 plant: - keeping the discharge of radioactive liquids and gas within the annual limits authorized under normal operating conditions; - reducing the personnel exposure to a minimum so that 'the number of operators whose integrated dose over a year exceeds 5 mSv be nil or practically nil under normal operating conditions'; - preventing the accidental situations and having at one's disposal the dysfunction monitoring and detection systems and the means to limit their consequences. Particular risks prevention related to the UP2-800 specific functions are described in this paper. (author)

  12. Advanced chemical quality control techniques for use in the manufacture of (U-Pu) MOX fuels

    International Nuclear Information System (INIS)

    Panakkal, J.P.; Prakash, Amrit

    2010-01-01

    Analytical chemistry plays a very important role for nuclear fuel cycle activities be it fuel fabrication, waste management or reprocessing. Nuclear fuels are selected based on the type of reactor. The nuclear fuel has to conform to various stringent chemical specifications like B, rare earths, H, O/M heavy metal content etc. Selection of technique is very important to determine the true specification. This is important particularly when the analyses has to be performed inside leak tight enclosure. The present paper describes the details of the advanced techniques being developed and used in the manufacture of (U,Pu) MOX fuels. (author)

  13. Reprocessing of research reactor fuel the Dounreay option

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  14. Occupational dose at Rokkasho reprocessing plant (RRP)

    International Nuclear Information System (INIS)

    Takashima, F.; Taguchi, R.; Kano, M.; Moriyama, T.; Ogaki, K.; Noda, K.

    2008-01-01

    In Japan, Rokkasho Reprocessing Plant (RRP) is going to start the operation in service as the first large-scale commercial reprocessing plant of spent fuels that has annual reprocessing quantity of 800tU pr in maximum. The occupational external exposure is controlled for the purpose of keeping dose as low as reasonably achievable, and it is monitored by the personal dosimeter. On the other hand, the occupational internal exposure is controlled for the purpose of preventing, and it is monitored by the periodical evaluation of internal dose from the radioactive concentration in air of workplace. The individual doses of radiation workers are less than the dose limits in the statute and our lower management values enough. Dose data will be stored continuously and the rational management method will be examined. (author)

  15. LTA Physics Design: Description of All MOX Pin LTA Design

    International Nuclear Information System (INIS)

    Pavlovichev, A.M.

    2001-01-01

    In this document issued according to Work Release 02.P.99-1b the results of neutronics studies of > MOX LTA design are presented. The parametric studies of infinite MOX-UOX grids, MOX-UOX core fragments and of VVER-1000 core with 3 MOX LTAs are performed. The neutronics parameters of MOX fueled core have been performed for the chosen design MOX LTA using the Russian 3D code BIPR-7A and 2D code PERMAK-A with the constants prepared by the cell spectrum code TVS-M

  16. Japanese perspectives and research on packaging, transport and storage of spent fuel

    International Nuclear Information System (INIS)

    Saegusa, T.; Ito, C.; Yamakawa, H.; Shirai, K.

    2004-01-01

    The Japanese policy on spent fuel is reprocessing. Until, reprocessed, spent fuel shall be stored properly. This paper overviews current status of transport and storage of spent fuel with related research in Japan. The research was partly carried out under a contract of Ministry of Economy, Trade and Industry of the Japanese government

  17. A risk-informed evaluation of MOX fuel loading in PWRS

    International Nuclear Information System (INIS)

    Lyman, E.S.

    2001-01-01

    The full text follows: The U.S. Department of Energy (DOE) has signed a contract with Duke Cogema Stone and Webster (DCS) for fabrication of mixed-oxide (MOX) fuel and irradiation of the MOX fuel at the Catawba and McGuire pressurized-water reactors (PWRs), operated by Duke Power. The first load of MOX fuel is scheduled for 2007. In order to use MOX in these plants, Duke Power will have to apply to the Nuclear Regulatory Commission (NRC) for amendments to their operating licenses. Until recently, there have been no numerical guidelines for determining the acceptability of license amendment requests. However, such guidelines are now at hand with the adoption in 1998 of NRC Regulatory Guide 1.174, which defines a maximum value for the permissible increase in risk to the public resulting from a proposed change to a nuclear plant's licensing basis (LB). The substitution of MOX fuel for low-enriched uranium (LEU) fuel in LWRs will have an impact on risk to the public that will require regulatory evaluation. One of the major differences is that use of MOX will increase the inventories of plutonium and minor actinides in the reactor core, thereby increasing the source term for certain severe accidents, such as a core melt with early containment failure or a spent fuel pool drain-down. The goal of this paper is to quantitatively evaluate the increase in risk associated with the greater actinide source term in MOX-fueled reactors, and to compare this increase with RG 1.174 guidelines. Standard computer programs (SCALE and MACCS2) are used to estimate the increase in severe accident risk to the public associated with the DCS plan to use 40% cores of weapons-grade MOX fuel. These values are then compared to the RG 1.174 acceptance criteria, using publicly available risk information. Since RG 1.174 guidelines are based on the assumption that severe accident source terms are not affected by LB changes, the RG 1.174 formalism must be modified for this case. A similar

  18. Vver-1000 Mox core computational benchmark

    International Nuclear Information System (INIS)

    2006-01-01

    The NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, fuel performance and fuel cycle issues related to disposing of weapons-grade plutonium in mixed-oxide fuel. The objectives of the group are to provide NEA member countries with up-to-date information on, and to develop consensus regarding, core and fuel cycle issues associated with burning weapons-grade plutonium in thermal water reactors (PWR, BWR, VVER-1000, CANDU) and fast reactors (BN-600). These issues concern core physics, fuel performance and reliability, and the capability and flexibility of thermal water reactors and fast reactors to dispose of weapons-grade plutonium in standard fuel cycles. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close co-operation (jointly, in most cases) with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A prominent part of these activities include benchmark studies. At the time of preparation of this report, the following benchmarks were completed or in progress: VENUS-2 MOX Core Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); VVER-1000 LEU and MOX Benchmark (completed); KRITZ-2 Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); Hollow and Solid MOX Fuel Behaviour Benchmark (completed); PRIMO MOX Fuel Performance Benchmark (ongoing); VENUS-2 MOX-fuelled Reactor Dosimetry Calculation (ongoing); VVER-1000 In-core Self-powered Neutron Detector Calculational Benchmark (started); MOX Fuel Rod Behaviour in Fast Power Pulse Conditions (started); Benchmark on the VENUS Plutonium Recycling Experiments Configuration 7 (started). This report describes the detailed results of the benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel. It contributes to the computer code certification process and to the

  19. Reprocessing of nuclear fuels

    International Nuclear Information System (INIS)

    Hatfield, G.W.

    1960-11-01

    One of the persistent ideas concerning nuclear power is that the fuel costs are negligible. This, of course, is incorrect and, in fact, one of the major problems in the development of economic nuclear power is to get the cost of the fuel cycles down to an acceptable level. The irradiated fuel removed from the nuclear power reactors must be returned as fresh fuel into the system. Aside from the problems of handling and shipping involved in the reprocessing cycles, the two major steps are the chemical separation and the refabrication. The chemical separation covers the processing of the spent fuel to separate and recover the unburned fuel as well as the new fuel produced in the reactor. This includes the decontamination of these materials from other radioactive fission products formed in the reactor. Refabrication involves the working and sheathing of recycled fuel into the shapes and forms required by reactor design and the economics of the fabrication problem determines to a large extent the quality of the material required from the chemical treatment. At present there appear to be enough separating facilities in the United States and the United Kingdom to handle the recycling of fuel from power reactors for the next few years. However, we understand the costs of recycling fuel in these facilities will be high or low depend ing on whether or not the capital costs of the plant are included in the processing cost. Also, the present plants may not be well adapted to carry out the chemical processing of the very wide variety of power reactor fuel elements which are being considered and will continue to be considered over the years to come. (author)

  20. Reprocessing on the whole fuel cycle operations

    International Nuclear Information System (INIS)

    Megy, J.

    1983-11-01

    Spent fuel reprocessing, in France, is become an industrial reality which takes an importance place in several fields: place surely essential in the fuel cycle from the energetic material economy and waste management point of view; place priority in the CEA (Commissariat a l'Energie Atomique) research and development programs; place in the industry where it is an important activity sector with the realizations in progress [fr

  1. Optimization of the sizes and dates of starting up of reprocessing plants

    International Nuclear Information System (INIS)

    Nagashima, Kikusaburo

    1977-01-01

    It is desirable to complete the nuclear fuel cycle domestically for promoting nuclear power generation in Japan, and the reprocessing of spent fuel is indispensable. However, the capacity of the reprocessing plant in PNC and the reprocessing by the commissioning to foreign countries will be insufficient by the latter half of 1980s. In the planning of the second reprocessing plant in Japan, the following problems remain yet to be solved. The international regulation and the laws in Japan regarding the storage and transport of spent fuel, the disposal of radioactive wastes, and the recycling of plutonium must be established. The consensus of the public on the necessity and the safety of fuel reprocessing must be obtained. The technical investigation about fuel reprocessing and related business must be carried out sufficiently, including the necessity of introducing the technology from abroad. The economy and various conditions for industrializing fuel reprocessing must be studied. The economy of fuel reprocessing plants, the reprocessing cost taking escalation into account, mean reprocessing cost, the optimization of the time of starting full operation and the time of starting-up, the rise of reprocessing cost due to the escalation of operational cost are explained. Numerical calculation was carried out about the second reprocessing plant in Japan, and the results are examined. (Kako, I.)

  2. Alternative reprocessing schemes evaluation

    International Nuclear Information System (INIS)

    1979-02-01

    This paper reviews the parameters which determine the inaccessibility of the plutonium in reprocessing plants. Among the various parameters, the physical and chemical characteristics of the materials, the various processing schemes and the confinement are considered. The emphasis is placed on that latter parameter, and the advantages of an increased confinement in the socalled PIPEX reprocessing plant type are presented

  3. Example of material accounting and verification of reprocessing input

    International Nuclear Information System (INIS)

    Koch, L.; Schoof, S.

    1981-01-01

    An example is described in this paper of material accounting at the reprocessing input point. Knowledge of the fuel history and chemical analyses of the spent fuel permitted concepts to be tested which have been developed for the determination of the input by the operator and for its verification by nuclear material safeguards with the intention of detecting a protracted as well as an abrupt diversion. Accuracies obtained for a material balance of a PWR fuel reprocessing campaign are given. 6 refs

  4. Prospects of spent management in Spain

    International Nuclear Information System (INIS)

    Melches, C.; Ramirez, E.; Selgas, F.; Cabanilles, P.A.; Lopez Perez, B.; Uriarte, A.

    1978-01-01

    The purpose of this paper is to outline the forecast on spent fuel management in Spain, taking into account the international developments produced during the last years and specially on LWR fuels. This forecast is based on the following actions: increase of the storage capacity in the reactors: construction of an independent spent fuel storage installation (ISFSI) and a fuel reprocessing pilot plant. (author)

  5. Status of the development on simulation technology for pyrochemical reprocessing

    International Nuclear Information System (INIS)

    Arie, Kazuo; Kawabe, Akihiro; Fujita, Reiko; Yamamura, Tsutomu; Sato, Yuzuru; Goto, Takuya; Minato, Kazuo; Tosaka, Ikuo; Amano, Osamu; Yamamoto, Kazuhiko

    2005-01-01

    The computerized simulation technique of element behaviors in pyrochemical reprocessing is largely useful to raise the efficiency in development of pyrochemical reprocessing technique and moreover to operate reasonably practical plans in the near future. The simulation code SPR1.0 has currently been developed, which can simultaneously analyze the electrochemical and chemical reactions and can deal generally also with many elements of study. It was found from some trial calculations that this code can analyze an electrolytic behavior of MOX. The present study was performed by Toshiba Co., Ltd. together with Tohoku University. and Kyoto University as entrusted from Japan Atomic Power Company Co., Ltd. in cooperation with JAERI, Tohoku Electric Power Co., Inc. and Tokyo Electric Power Co., Inc. (M.H.)

  6. Equipment specifications for an electrochemical fuel reprocessing plant

    International Nuclear Information System (INIS)

    Hemphill, Kevin P.

    2010-01-01

    Electrochemical reprocessing is a technique used to chemically separate and dissolve the components of spent nuclear fuel, in order to produce new metal fuel. There are several different variations to electrochemical reprocessing. These variations are accounted for by both the production of different types of spent nuclear fuel, as well as different states and organizations doing research in the field. For this electrochemical reprocessing plant, the spent fuel will be in the metallurgical form, a product of fast breeder reactors, which are used in many nuclear power plants. The equipment line for this process is divided into two main categories, the fuel refining equipment and the fuel fabrication equipment. The fuel refining equipment is responsible for separating out the plutonium and uranium together, while getting rid of the minor transuranic elements and fission products. The fuel fabrication equipment will then convert this plutonium and uranium mixture into readily usable metal fuel.

  7. Report on the Savannah River Site aluminum-based spent nuclear fuel alternatives cost study

    International Nuclear Information System (INIS)

    1998-12-01

    Initial estimates of costs for the interim management and disposal of aluminum-based spent nuclear fuel (SNF) were developed during preparation of the Environmental Impact Statement (EIS) on the Nuclear Weapons Nonproliferation Policy Concerning Foreign Research Reactor Spent Nuclear Fuel. The Task Team evaluated multiple alternatives, assessing programmatic, technical, and schedule risks, and generated life-cycle cost projections for each alternative. The eight technology alternatives evaluated were: direct co-disposal; melt and dilute; reprocessing; press and dilute; glass material oxidation dissolution system (GMODS); electrometallurgical treatment; dissolve and vitrify; and plasma arc. In followup to the Business Plan that was developed to look at SNF dry storage, WSRC prepared an addendum to the cost study. This addendum estimated the costs for the modification and use of an existing (105L) reactor facility versus a greenfield approach for new facilities (for the Direct Co-Disposal and Melt and Dilute alternatives). WSRC assessed the impacts of a delay in reprocessing due to the potential reservation of H-Canyon for other missions (i.e., down blending HEU for commercial use or the conversion of plutonium to either MOX fuel or an immobilized repository disposal form). This report presents the relevant results from these WSRC cost studies, consistent with the most recent project policy, technology implementation, canyon utilization, and inventory assumptions. As this is a summary report, detailed information on the technical alternatives or the cost assumptions raised in each of the above-mentioned cost studies is not provided. A comparison table that briefly describes the bases used for the WSRC analyses is included as Appendix A

  8. Gas chromatographic analysis of extractive solvent in reprocessing plants

    International Nuclear Information System (INIS)

    Marlet, B.

    1984-01-01

    Operation of a reprocessing plant using the Purex process is recalled and analytical controls for optimum performance are specified. The aim of this thesis is the development of analytical methods using gas chromatography required to follow the evolution of the extraction solvent during spent fuel reprocessing. The solvent at different concentrations, is analysed along the reprocessing lines in organic or aqueous phases. Solvent degradation interferes with extraction and decomposition products are analysed. The solvent becomes less and less efficient, also it is distilled and quality is checked. Traces of solvent should also be checked in waste water. Analysis are made as simple as possible to facilitate handling of radioactive samples [fr

  9. Spent fuel pyroprocessing demonstration

    International Nuclear Information System (INIS)

    McFarlane, L.F.; Lineberry, M.J.

    1995-01-01

    A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option

  10. Disposition of excess plutonium using ''off-spec'' MOX pellets as a sintered ceramic waste form

    International Nuclear Information System (INIS)

    Armantrout, G.A.; Jardine, L.J.

    1996-02-01

    The authors describe a potential strategy for the disposition of excess weapons plutonium in a way that minimizes (1) technological risks, (2) implementation costs and completion schedules, and (3) requirements for constructing and operating new or duplicative Pu disposition facilities. This is accomplished by an optimized combination of (1) using existing nuclear power reactors to ''burn'' relatively pure excess Pu inventories as mixed oxide (MOX) fuel and (2) using the same MOX fuel fabrication facilities to fabricate contaminated or impure excess Pu inventories into an ''off-spec'' MOX solid ceramic waste form for geologic disposition. Diversion protection for the SCWF to meet the ''spent fuel standard'' introduced by the National Academy of Sciences can be achieved in at least three ways. (1) One can utilize the radiation field from defense high-level nuclear waste by first packaging the SCWF pellets in 2- to 4-L cans that are subsequently encapsulated in radioactive glass in the Defense Waste Processing Facility (DWPF) glass canisters (a ''can-in-canister'' approach). (2) One can add 137 Cs (recovered from defense wastes at Hanford and currently stored as CsCl in capsules) to an encapsulating matrix such as cement for the SCWF pellets in a small hot-cell facility and thus fabricate large monolithic forms. (3) The SCWF can be fabricated into reactor fuel-like pellets and placed in tubes similar to fuel assemblies, which can then be mixed in sealed repository containers with irradiated spent nuclear fuel for geologic disposition

  11. Fabrication, inspection, and test plan for the Advanced Test Reactor (ATR) Mixed-Oxide (MOX) fuel irradiation project

    International Nuclear Information System (INIS)

    Wachs, G.W.

    1997-11-01

    The Department of Energy (DOE) Fissile Materials Disposition Materials Disposition Program (FMDP) has announced that reactor irradiation of MOX fuel is one of the preferred alternatives for disposal of surplus weapons-usable plutonium (Pu). MOX fuel has been utilized domestically in test reactors and on an experimental basis in a number of Commercial Light Water Reactors (CLWRs). Most of this experience has been with Pu derived from spent low enriched uranium (LEU) fuel, known as reactor grade (RG) Pu. The MOX fuel test will be irradiated in the ATR to provide preliminary data to demonstrate that the unique properties of surplus weapons-derived or weapons-grade (WG) plutonium (Pu) do not compromise the applicability of this MOX experience base. In addition, the test will contribute experience with irradiation of gallium-containing fuel to the data base required for resolution of generic CLWR fuel design issues (ORNL/MD/LTR-76). This Fabrication, Inspection, and Test Plan (FITP) is a level 2 document as defined in the FMDP LWR MOX Fuel Irradiation Test Project Plan (ORNL/MD/LTR-78)

  12. Design of the MOX fuel fabrication facility

    International Nuclear Information System (INIS)

    Johnson, J.V.; Brabazon, E.J.

    2001-01-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  13. Design of the MOX fuel fabrication facility

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.V. [MFFF Technical Manager, U.S. dept. of Energy, Washington, DC (United States); Brabazon, E.J. [MFFF Engineering Manager, Duke Cogema Stone and Webster, Charlotte, NC (United States)

    2001-07-01

    A consortium of Duke Engineering and Services, Inc., COGEMA, Inc. and Stone and Webster (DCS) are designing a mixed oxide fuel fabrication facility (MFFF) for the U.S. Department of Energy (DOE) to convert surplus plutonium to mixed oxide (MOX) fuel to be irradiated in commercial nuclear power plants based on the proven European technology of COGEMA and BELGONUCLEAIRE. This paper describes the MFFF processes, and how the proven MOX fuel fabrication technology is being adapted as required to comply with U.S. requirements. (author)

  14. The MOX Demonstration Facility - the stepping stone to commercial MOX production

    International Nuclear Information System (INIS)

    Macdonald, A.G.

    1994-01-01

    The paper provides an insight into MOX fuel and the economic benefits of its use in pressurized water reactors (PWRs). BNFL and AEA are collaborating in the design, construction and operation of a thermal MOX Demonstration Facility (MDF) on the AEA Windscale site in Cumbria. The process flowsheet and equipment employed in MDF are discussed and the special precautions required to handle plutonium bearing materials are highlighted. The process flowsheet includes the short binderless route which has been specially developed for use in MDF and results in fuel pellets with an homogeneous structure. MDF is the forerunner to the design and construction of a larger scale Sellafield MOX Plant and hence is the stepping-stone to commercial MOX production. (author)

  15. Overview on spent fuel management strategies

    International Nuclear Information System (INIS)

    Dyck, P.

    2002-01-01

    This paper presents an overview on spent fuel management strategies which range from reprocessing to interim storage in a centralised facility followed by final disposal in a repository. In either case, more spent fuel storage capacity (wet or dry, at-reactor or away-from-reactor, national or regional) is required as spent fuel is continuously accumulated while most countries prefer to defer their decision to choose between these two strategies. (author)

  16. Cost and availability of gadolinium for nuclear fuel reprocessing plants

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1985-06-01

    Gadolinium is currently planned for use as a soluble neutron poison in nuclear fuel reprocessing plants to prevent criticality of solutions of spent fuel. Gadolinium is relatively rare and expensive. The present study was undertaken therefore to estimate whether this material is likely to be available in quantities sufficient for fuel reprocessing and at reasonable prices. It was found that gadolinium, one of 16 rare earth elements, appears in the marketplace as a by-product and that its present supply is a function of the production rate of other more prevalent rare earths. The potential demand for gadolinium in a fuel reprocessing facility serving a future fast reactor industry amounts to only a small fraction of the supply. At the present rate of consumption, domestic supplies of rare earths containing gadolinium are adequate to meet national needs (including fuel reprocessing) for over 100 years. With access to foreign sources, US demands can be met well beyond the 21st century. It is concluded therefore that the supply of gadolinium will quite likely be more than adequate for reprocessing spent fuel for the early generation of fast reactors. The current price of 99.99% pure gadolinium oxide lies in the range $50/lb to $65/lb (1984 dollars). By the year 2020, in time for reprocessing spent fuel from an early generation of large fast reactors, the corresponding values are expected to lie in the $60/lb to $75/lb (1984 dollars) price range. This increase is modest and its economic impact on nuclear fuel reprocessing would be minor. The economic potential for recovering gadolinium from the wastes of nuclear fuel reprocessing plants (which use gadolinium neutron poison) was also investigated. The cost of recycled gadolinium was estimated at over twelve times the cost of fresh gadolinium, and thus recycle using current recovery technology is not economical. 15 refs., 4 figs., 11 tabs

  17. Technology developments for Japanese BWR MOX fuel utilization

    International Nuclear Information System (INIS)

    Oguma, M.; Mochida, T.; Nomata, T.; Asahi, K.

    1997-01-01

    The Long-Term Program for Research, Development and Utilization of Nuclear Energy established by the Atomic Energy Commission of Japan asserts that Japan will promote systematic utilization of MOX fuel in LWRs. Based on this Japanese nuclear energy policy, we have been pushing development of MOX fuel technology aimed at future full scale utilization of this fuel in BWRs. In this paper, the main R and D topics are described from three subject areas, MOX core and fuel design, MOX fuel irradiation behaviour, and MOX fuel fabrication technology. For the first area, we explain the compatibility of MOX fuel with UO 2 core, the feasibility of the full MOX core, and the adaptability of MOX design methods based on a mock-up criticality experiment. In the second, we outline the Tsuruga MOX irradiation program and the DOMO program, and suggest that MOX fuel behaviour is comparable to ordinary BWR UO 2 fuel behaviour. In the third, we examine the development of a fully automated MOX bundle assembling apparatus and its features. (author). 14 refs, 11 figs, 3 tabs

  18. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    Energy Technology Data Exchange (ETDEWEB)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A. [AREVA - Tour AREVA, 1 Place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO{sub 2} fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory.

  19. MOX recycling in GEN 3 + EPR Reactor homogeneous and stable full MOX core

    International Nuclear Information System (INIS)

    Arslan, M.; Villele, E. de; Gauthier, J.C.; Marincic, A.

    2013-01-01

    In the case of the EPR (European Pressurized Reactor) reactor, 100% MOX core management is possible with simple design adaptations which are not significantly costly. 100% MOX core management offers several highly attractive advantages. First, it is possible to have the same plutonium content in all the rods of a fuel assembly instead of having rods with 3 different plutonium contents, as in MOX assemblies in current PWRs. Secondly, the full MOX core is more homogeneous. Thirdly, the stability of the core is significantly increased due to a large reduction in the Xe effect. Fourthly, there is a potential for the performance of the MOX fuel to match that of new high performance UO 2 fuel (enrichment up to 4.95 %) in terms of increased burn up and cycle length. Fifthly, since there is only one plutonium content, the manufacturing costs are reduced. Sixthly, there is an increase in the operating margins of the reactor, and in the safety margins in accident conditions. The use of 100% MOX core will improve both utilisation of natural uranium resources and reductions in high level radioactive waste inventory

  20. Conversion of highly enriched uranium in thorium-232 based oxide fuel for light water reactors: MOX-T fuel

    Energy Technology Data Exchange (ETDEWEB)

    Vapirev, E; Jordanov, T; Khristoskov, I [Sofia Univ. (Bulgaria). Fizicheski Fakultet

    1996-12-31

    The possibility of using highly enriched uranium available from military inventories for production of mixed oxide fuel (MOX) has been proposed. The fuel is based on U-235 dioxide as fissile isotope and Th-232 dioxide as a non-fissile isotope. It is shown that although the fuel conversion coefficient to U-233 is expected to be less than 1, the proposed fuel has several important advantages resulting in cost reduction of the nuclear fuel cycle. The expected properties of MOX fuel (cross-sections, generated chains, delayed neutrons) are estimated. Due to fuel generation the initial enrichment is expected to be 1% less for production of the same energy. In contrast to traditional fuel no long living actinides are generated which reduces the disposal and reprocessing cost. 7 refs.

  1. Fuel reprocessing experience in India: Technological and economic considerations

    International Nuclear Information System (INIS)

    Prasad, A.N.; Kumar, S.V.

    1983-01-01

    The approach to the reprocessing of irradiated fuel from power reactors in India is conditioned by the non-availability of highly enriched uranium with the consequent need for plutonium for the fast-reactor programme. With this in view, the fuel reprocessing programme in India is developing in stages matching the nuclear power programme. The first plant was set up in Trombay to reprocess the metallic uranium fuel from the research reactor CIRUS. The experience gained in the construction and operation of this plant, and in its subsequent decommissioning and reconstruction, has not only provided the know-how for the design of subsequent plants but has indicated the fruitful areas of research and development for efficient utilization of limited resources. The Trombay plant also handled successfully, on a pilot scale, the reprocessing of irradiated thorium fuel to separate uranium-233. The second plant at Tarapur has been built for reprocessing spent fuels from the power reactors at Tarapur (BWR) and Rajasthan (PHWR). The third plant, at present under design, will reprocess the spent fuels from the power reactors (PHWR) and the Fast Breeder Test Reactor (FBTR) located at Kalpakkam. Through the above approach experience has been acquired which will be useful in the design and construction of even larger plants which will become necessary in the future as the nuclear power programme grows. The strategies considered for the sizing and siting of reprocessing plants extend from the idea of small plants, located at nuclear power station sites, to a large-size central plant, located at an independent site, serving many stations. The paper discusses briefly the experience in reprocessing uranium and thorium fuels and also in decommissioning. An attempt is made to outline the technological and economic aspects which are relevant under different circumstances and which influence the size and siting of the fuel reprocessing plants and the expected lead times for construction

  2. Spent fuel management

    International Nuclear Information System (INIS)

    2005-01-01

    The production of nuclear electricity results in the generation of spent fuel that requires safe, secure and efficient management. Appropriate management of the resulting spent fuel is a key issue for the steady and sustainable growth of nuclear energy. Currently about 10,000 tonnes heavy metal (HM) of spent fuel are unloaded every year from nuclear power reactors worldwide, of which 8,500 t HM need to be stored (after accounting for reprocessed fuel). This is the largest continuous source of civil radioactive material generated, and needs to be managed appropriately. Member States have referred to storage periods of 100 years and even beyond, and as storage quantities and durations extend, new challenges arise in the institutional as well as in the technical area. The IAEA gives high priority to safe and effective spent fuel management. As an example of continuing efforts, the 2003 International Conference on Storage of Spent Fuel from Power Reactors gathered 125 participants from 35 member states to exchange information on this important subject. With its large number of Member States, the IAEA is well-positioned to gather and share information useful in addressing Member State priorities. IAEA activities on this topic include plans to produce technical documents as resources for a range of priority topics: spent fuel performance assessment and research, burnup credit applications, cask maintenance, cask loading optimization, long term storage requirements including records maintenance, economics, spent fuel treatment, remote technology, and influence of fuel design on spent fuel storage. In addition to broader topics, the IAEA supports coordinated research projects and technical cooperation projects focused on specific needs

  3. Description of solid waste expected from a large commercial reprocessing plant

    International Nuclear Information System (INIS)

    Keely, R.B.

    1979-01-01

    Both low-level and high-level solid wastes generated during reprocessing of spent nuclear fuel are characterized in this paper with respect to source, quantity, content, radioactivity, potential volume reduction, and transuranic content

  4. Laser-enhanced chemical reactions and the liquid state. II. Possible applications to nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    DePoorter, G.L.; Rofer-DePoorter, C.K.

    1976-01-01

    Laser photochemistry is surveyed as a possible improvement upon the Purex process for reprocessing spent nuclear fuel. Most of the components of spent nuclear fuel are photochemically active, and lasers can be used to selectively excite individual chemical species. The great variety of chemical species present and the degree of separation that must be achieved present difficulties in reprocessing. Lasers may be able to improve the necessary separations by photochemical reaction or effects on rates and equilibria of reactions

  5. Transportation of spent nuclear fuels

    International Nuclear Information System (INIS)

    Meguro, Toshiichi

    1976-01-01

    The spent nuclear fuel taken out of reactors is cooled in the cooling pool in each power station for a definite time, then transported to a reprocessing plant. At present, there is no reprocessing plant in Japan, therefore the spent nuclear fuel is shipped abroad. In this paper, the experiences and the present situation in Japan are described on the transport of the spent nuclear fuel from light water reactors, centering around the works in Tsuruga Power Station, Japan Atomic Power Co. The spent nuclear fuel in Tsuruga Power Station was first transported in Apr. 1973, and since then, about 36 tons were shipped to Britain by 5 times of transport. The reprocessing plant in Japan is expected to start operation in Apr. 1977, accordingly the spent nuclear fuel used for the trial will be transported in Japan in the latter half of this year. Among the permission and approval required for the transport of spent nuclear fuel, the acquisition of the certificate for transport casks and the approval of land and sea transports are main tasks. The relevant laws are the law concerning the regulations of nuclear raw material, nuclear fuel and reactors and the law concerning the safety of ships. The casks used in Tsuruga Power Station and EXL III type, and the charging of spent nuclear fuel, the decontamination of the casks, the leak test, land transport with a self-running vehicle, loading on board an exclusive carrier and sea transport are briefly explained. The casks and the ship for domestic transport are being prepared. (Kato, I.)

  6. Application of a room temperature ionic liquid for nuclear spent fuel reprocessing: speciation of trivalent europium and solvatation effects; Application d'un liquide ionique basse temperature pour les procedes de separation: speciation de l'europium trivalent et effets solvatation

    Energy Technology Data Exchange (ETDEWEB)

    Moutiers, G.; Mekki, S. [CEA Saclay, Dept. de Physico-Chimie, Service de Chimie Physique, 91 - Gif sur Yvette (France); Billard, I. [IN2P3/CNRS, 69 - Villeurbanne (France)

    2007-07-01

    One of the solutions proposed for the optimization of the long term storage and conditioning of spent nuclear fuel is to separate actinide and lanthanide both from each other and from other less radioactive metallic species. The industrial proposed processes, based on liquid liquid extraction steps, involve solvents with non negligible vapour pressure and may generate contaminated liquid wastes that will have to be reprocessed. During the last decade, some room-temperature ionic liquids have been studied and integrated into industrial processes. The interest on this class of solvent came out from their 'green' properties (non volatile, non flammable, recyclable, etc...), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL chemical composition. Indeed, it has been shown that classical chemical industrial processes could be transferred into those media, even more improved, while a certain number of difficulties arising from using traditional solvent can be avoided. In this respect, it could be promising to investigate the ability to use room temperature ionic liquid into the spent nuclear fuel reprocessing field. The aim of this this study is to test the ability of the specific ionic liquid bumimTf{sub 2}N to allow trivalent europium extraction. The choice of this metal is based on the chemical analogy with trivalent minor actinides Curium and Americium which are contributing the greatest part of the long-lived high level radioactive wastes. Handling these elements needs to be very cautious for the safety and radioprotection aspect. Moreover, europium is a very sensitive luminescent probe to its environment even at the microscopic scale. The report is structured with four parts. In a first chapter, we present the main physico-chemical properties of an imidazolium-based ionic liquid family, and then we choose the ionic liquid bumimTf{sub 2}N for the whole thesis and start with

  7. Division of Waste Management, Production, and Reprocessing programs progress report for January--December 1976

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1977-04-01

    Development of the acid digestion process for treating combustible nuclear wastes has progressed to design and construction of the Radioactive Acid Digestion Test Unit (RADTU). Tests were continued in the nonradioactive Acid Digestion Test Unit (ADTU) in an effort to improve the performance of the system. Nitric acid consumption has been decreased from 8.8 to 4.5 kg HNO 3 /kg digested waste by adding the nitric acid deep below the liquid surface in the annular heating vessel instead of at the surface of the tray digester. A highly successful 70-hr continuous processing run was completed in the ADTU to confirm the operating experience in shorter runs and to test the use of air (instead of nitrogen) in the airlift pump. Initial studies were completed on fixation of acid digestion residue following recovery and drying. A variety of solidification and testing equipment was assembled to prepare and test immobilized waste products. Studies were continued on immobilization of salts and wet wastes. Salt residue-cement systems characterized include calcium sulfate, ferric sulfate, sodium sulfate, sodium nitrate, calcium chloride, and sodium chloride. Anion and cation exchange resin immobilization in cement has also been studied, as well as immobilization of sodium silicate in cement. A new program on Intermediate Level Liquid Waste (ILLW) Solidification was started with the purpose of developing and demonstrating immobilization technologies for liquid and particulate solid ILW within the fuel cycle. The four primary fuel cycle operations (reactors, spent fuel storage basins, fuel reprocessing plants, and MOX fuel fabrication plants) were reviewed and a list of sources and quantities of waste was formulated. The annual accumulation of radioactive waste materials at the six commercial waste burial sites was updated through 1976. The total accumulated volume at the end of 1976 was about 434,000 m 3

  8. MOX - equilibrium core design and trial irradiation in KAPS - 1

    International Nuclear Information System (INIS)

    Pradhan, A.S.; Ray, Sherly; Kumar, A.N.; Parikh, M.V.

    2006-01-01

    Option of usage of MOX fuel bundles in the equilibrium core of Indian 220 MWe PHWRs on a regular basis has been studied. The design of the MOX bundle considered is MOX -7 with inner 7 elements with uranium and plutonium oxide MOX fuel and outer 12 elements with natural uranium fuel. The composition of the plutonium isotopes corresponds to that at about 6500 MWD/TeU burnup. Burnup optimization has been done such that operation at design rated power is possible while achieving the maximum average discharge burnup. Operation with the optimized burnup pattern will result in substantial saving of natural uranium bundles. To obtain feedback on the performance of MOX bundles prior to its large scale use about 50 MOX-7 bundles have been loaded in KAPS - 1 equilibrium core. Locations have been selected such that reactor should be operating at rated power without violating any constraints on channel bundle powers and also meeting the safety requirements. Burnup of interest also should be achieved in minimum period of time. The fissile plutonium content in the 50 MOX fuel bundles loaded is about 75.6 wt % . About 38 bundles out of the 50 bundles loaded have been already discharged and remaining bundles are still in the core. The maximum discharge burnup of the MOX bundles is about 12000 MWD/TeU. The performance of the MOX bundles were excellent and as per prediction. No MOX bundle is reported to be failed. (author)

  9. HFIR spent fuel management alternatives

    International Nuclear Information System (INIS)

    Begovich, J.M.; Green, V.M.; Shappert, L.B.; Lotts, A.L.

    1992-01-01

    The High Flux Isotope Reactor (HFIR) at Martin Marietta Energy Systems' Oak Ridge National Laboratory (ORNL) has been unable to ship its spent fuel to Savannah River Site (SRS) for reprocessing since 1985. The HFIR storage pools are expected to fill up in the February 1994 to February 1995 time frame. If a management altemative to existing HFIR pool storage is not identified and implemented before the HFIR pools are full, the HFIR will be forced to shut down. This study investigated several alternatives for managing the HFIR spent fuel, attempting to identify options that could be implemented before the HFIR pools are full. The options investigated were: installing a dedicated dry cask storage facility at ORNL, increasing HFIR pool storage capacity by clearing the HFIR pools of debris and either close-packing or stacking the spent fuel elements, storing the spent fuel at another ORNL pool, storing the spent fuel in one or more hot cells at ORNL, and shipping the spent fuel offsite for reprocessing or storage elsewhere

  10. Operating experience in reprocessing

    International Nuclear Information System (INIS)

    Schueller, W.

    1983-01-01

    Since 1953, reprocessing has accumulated 180 years of operating experience in ten plants, six of them with 41 years of operation in reprocessing oxide fuel from light water reactors. After abortive, premature attempts at what is called commercial reprocessing, which had been oriented towards the market value of recoverable uranium and plutonium, non-military reprocessing technologies have proved their technical feasibility, since 1966 on a pilot scale and since 1976 on an industrial scale. Reprocessing experience obtained on uranium metal fuel with low and medium burnups can now certainly be extrapolated to oxide fuel with high burnup and from pilot plants to industrial scale plants using the same technologies. The perspectives of waste management of the nuclear power plants operated in the Federal Republic of Germany should be viewed realistically. The technical problems still to be solved are in a balanced relationship to the benefit arising to the national economy out of nuclear power generation and can be solved in time, provided there are clearcut political boundary conditions. (orig.) [de

  11. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  12. Integrated international safeguards concepts for fuel reprocessing

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Gutmacher, R.G.; Markin, J.T.; Shipley, J.P.; Whitty, W.J.; Camp, A.L.; Cameron, C.P.; Bleck, M.E.; Ellwein, L.B.

    1981-12-01

    This report is the fourth in a series of efforts by the Los Alamos National Laboratory and Sandia National Laboratories, Albuquerque, to identify problems and propose solutions for international safeguarding of light-water reactor spent-fuel reprocessing plants. Problem areas for international safeguards were identified in a previous Problem Statement (LA-7551-MS/SAND79-0108). Accounting concepts that could be verified internationally were presented in a subsequent study (LA-8042). Concepts for containment/surveillance were presented, conceptual designs were developed, and the effectiveness of these designs was evaluated in a companion study (SAND80-0160). The report discusses the coordination of nuclear materials accounting and containment/surveillance concepts in an effort to define an effective integrated safeguards system. The Allied-General Nuclear Services fuels reprocessing plant at Barnwell, South Carolina, was used as the reference facility

  13. Spent fuel storage and transportation - ANSTO experience

    International Nuclear Information System (INIS)

    Irwin, Tony

    2002-01-01

    The Australian Nuclear Science and Technology Organisation (ANSTO) has operated the 10 MW DIDO class High Flux Materials Test Reactor (HIFAR) since 1958. Refuelling the reactor produces about 38 spent fuel elements each year. Australia has no power reactors and only one operating research reactor so that a reprocessing plant in Australia is not an economic proposition. The HEU fuel for HIFAR is manufactured at Dounreay using UK or US origin enriched uranium. Spent fuel was originally sent to Dounreay, UK for reprocessing but this plant was shutdown in 1998. ANSTO participates in the US Foreign Research Reactor Spent Fuel Return program and also has a contract with COGEMA for the reprocessing of non-US origin fuel

  14. Collective processing device for spent fuel

    International Nuclear Information System (INIS)

    Irie, Hiroaki; Taniguchi, Noboru.

    1996-01-01

    The device of the present invention comprises a sealing vessel, a transporting device for transporting spent fuels to the sealing vessel, a laser beam cutting device for cutting the transported spent fuels, a dissolving device for dissolving the cut spent fuels, and a recovering device for recovering radioactive materials from the spent fuels during processing. Reprocessing treatments comprising each processing of dismantling, shearing and dissolving are conducted in the sealing vessel can ensure a sealing barrier for the radioactive materials (fissionable products and heavy nuclides). Then, since spent fuels can be processed in a state of assemblies, and the spent fuels are easily placed in the sealing vessel, operation efficiency is improved, as well as operation cost is saved. Further, since the spent fuels can be cut by a remote laser beam operation, there can be prevented operator's exposure due to radioactive materials released from the spent fuels during cutting operation. (T.M.)

  15. Open problems in reprocessing of a molten salt reactor fuel

    International Nuclear Information System (INIS)

    Lelek, Vladimir; Vocka, Radim

    2000-01-01

    The study of fuel cycle in a molten salt reactor (MSR) needs deeper understanding of chemical methods used for reprocessing of spent nuclear fuel and preparation of MSR fuel, as well as of the methods employed for reprocessing of MSR fuel itself. Assuming that all the reprocessing is done on the basis of electrorefining, we formulate some open questions that should be answered before a flow sheet diagram of the reactor is designed. Most of the questions concern phenomena taking place in the vicinity of an electrode, which influence the efficiency of the reprocessing and sensibility of element separation. Answer to these questions would be an important step forward in reactor set out. (Authors)

  16. Implications of ICPR 60 for nuclear fuel reprocessing in france

    International Nuclear Information System (INIS)

    Mathieu, P.

    1992-01-01

    The ICRP 60 publication intends to guide the regulatory agencies on the main rules and principle of protection. The text contains recommendations for practices and for emergencies. The following report intends to develop the possible consequences of the publication for the reprocessing of spent fuel as managed by COGEMA in the plants of La Hague and Marcoule. (author)

  17. West Valley Reprocessing Plant. Safety analysis plant, supplement 18

    International Nuclear Information System (INIS)

    1975-01-01

    Supplement 18 contains the following additions to Appendix II--5.0 Geology and Seismology: Section 12 ''Seismic Investigations for Spent Fuel Reprocessing Facility at West Valley, New York,'' October 20, 1975, and Section 13 ''Earthquake Return Period Analysis at West Valley, New York, for Nuclear Fuel Services, Inc.'' November 5, 1975

  18. Materials management in an internationally safeguarded fuels reprocessing plant

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Cobb, D.D.; Dayem, H.A.; Dietz, R.J.; Kern, E.A.; Markin, J.T.; Shipley, J.P.; Barnes, J.W.; Scheinman, L.

    1980-04-01

    The first volume of this report summarizes the results and conclusions for this study of conventional and advanced nuclear materials accounting systems applicable for both large (1500 MTHM/y) and small (210 MTHM/y) spent-fuel reprocessing facilities subject to international verification

  19. Reprocessing in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Rossney, G [United Reprocessors G.m.b.H., Karlsruhe (F.R. Germany)

    1976-04-01

    The status of reprocessing activities within the member organizations of United Reprocessors is reviewed. The U.K. government has approved overseas deals by BNFL which will help to pay for their planned plant of 1000 te U p.a. at Windscale. In Germany KEWA has selected a site at Aschenburg as a fuel cycle centre where they plan to build a utility financed reprocessing plant of 1500 te U p.a. France has formed a new fuel cycle corporation, Cogema, which hopes to participate in the large volume of Japanese business negotiated by BNFL. United Reprocessors have agreed to pool their technology which may be available to organisations wishing to construct reprocessing plants in their own countries.

  20. Storage of spent fuel from light water reactors

    International Nuclear Information System (INIS)

    Wolkenhauer, W.C.

    1976-01-01

    The effects of possible inadequate nuclear fuel reprocessing capability upon a public utility, Washington Public Power Supply System, are studied. The possible alternatives for storing spent fuel are reviewed

  1. Compilation of papers presented to the KTG conference on 'Advanced LWR fuel elements: Design, performance and reprocessing', 17-18 November 1988, Karlsruhe Nuclear Research Center

    International Nuclear Information System (INIS)

    Bahm, W.

    1989-05-01

    The two expert groups of the Nuclear Society (KTG), 'chemistry and waste disposal' and 'fuel elements' discussed interdisciplinary problems concerning the development and reprocessing of advanced fuel elements. The 10 lectures deal with waste disposal, mechanical layout, operating behaviour, operating experiences and new developments of fuel elements for water moderated reactors as well as operational experiences of the Karlsruhe reprocessing plant (WAK) with reprocessing of high burnup LWR and MOX fuel elements, the distribution of fission products, the condition of the fission products during dissolution and with the effects of the higher burnup of fuel elements on the PUREX process. (DG) [de

  2. Progress of full MOX core design in ABWR

    International Nuclear Information System (INIS)

    Izutsu, S.; Sasagawa, M.; Aoyama, M.; Maruyama, H.; Suzuki, T.

    2000-01-01

    Full MOX ABWR core design has been made, based on the MOX design concept of 8x8 bundle configuration with a large central water rod, 40 GWd/t maximum bundle exposure, and the compatibility with 9x9 high-burnup UO 2 bundles. Core performance on shutdown margin and thermal margin of the MOX-loaded core is similar to that of UO 2 cores for the range from full UO 2 core to full MOX core. Safety analyses based on its safety parameters and MOX property have shown its conformity to the design criteria in Japan. In order to confirm the applicability of the nuclear design method to full MOX cores, Tank-type Critical Assembly (TCA) experiment data have been analyzed on criticality, power distribution and β eff /l measurements. (author)

  3. Overview of MOX fuel fabrication achievements

    International Nuclear Information System (INIS)

    Bairiot, H.; Vliet, J. van; Chiarelli, G.; Edwards, J.; Nagai, S.H.; Reshetnikov, F.

    2000-01-01

    Such overview having been adequately covered in an OECD/NEA publication providing the situation as of end 1994, this paper is mainly devoted to an update as of end 1998. The Belgian plant, Belgonucleaire/Dessel, is now dedicated exclusively to the fabrication of MOX fuel and has operated consistently around its nameplate capacity (35tHM/a) through the 1990s involving a large variety of PWR and BWR fuels. The two French plants have also achieved routine operation during the 1990s. CFCa, historically the largest FBR MOX fuel manufacturer, is utilizing the genuine COCA process for that type of fuel and the MIMAS process for LWR fuel: a nominal capacity (40 tHM/a) has been gradually approached. MELOX has operated at 100 tHM/a, as defined in the operating licence granted originally. The British plant, MDF/Sellafield with 8tHM/a nameplate capacity is devoted to fuel and has manufactured several small fabrication campaigns. In Japan, JNC operates three facilities located at Tokai: PFDF, devoted to basic research and fabrication of test fuels, PFFF/ATR line, for the fabrication of Fugen fuel and of corresponding fuel for the critical facility DCA, and PFPF for the fabrication of FBR fuel. In Russia, fabrication techniques have been developed to fuel four BN-800 FBRs contemplated to be constructed and be fuelled with the civilian Pu stockpile. Two demonstration facilities Paket (Mayak) and RIAR (Dimitrovgrad) fabricated respectively pellet and vipac type FBR MOX fuel for BR-5, BOR-60, BN-350 and BN-600. The paper includes a brief description of each of the fabrication routes mentioned, as well as the production of respectively LWR and FBR MOX fuel in each fabrication facility, since the start-up of the plant, since 1 January 1993 and since 1 January 1998 up to 31 December 1998. (author)

  4. Waste management in MOX fuel fabrication plants

    International Nuclear Information System (INIS)

    Schneider, V.

    1982-01-01

    After a short description of a MOX fuel fabrication plant's activities the waste arisings in such a plant are discussed according to nature, composition, Pu-content. Experience has shown that proper recording leads to a reduction of waste arisings by waste awareness. Aspects of the treatment of α-waste are given and a number of treatment processes are reviewed. Finally, the current waste management practice and the α-waste treatment facility under construction at ALKEM are outlined. (orig./RW)

  5. Dissolution studies of spent nuclear fuels

    International Nuclear Information System (INIS)

    1991-02-01

    To obtain quantitative data on the dissolution of high burnup spent nuclear fuel, dissolution study have been carried out at the Department of Chemistry, JAERI, from 1984 under the contract with STA entitled 'Reprocessing Test Study of High Burnup Fuel'. In this study PWR spent fuels of 8,400 to 36,100 MWd/t in averaged burnup were dissolved and the chemical composition and distribution of radioactive nuclides were measured for insoluble residue, cladding material (hull), off-gas and dissolved solution. With these analyses basic data concerning the dissolution and clarification process in the reprocessing plant were accumulated. (author)

  6. Validation of MOX fuel through recent BELGONUCLEAIRE international programmes

    International Nuclear Information System (INIS)

    Basselier, J.; Maldague, T.; Lippens, M.

    1997-01-01

    The paper reviews the present experience of BELGONUCLEAIRE in promoting and managing international programmes dedicated to improvement and updating of MOX fuel data bases on what concerns core physics and rod behaviour with a view of assist all MOX fuel designers and users in their validation and modelization work. All these programmes were completed or will be completed with the support of numerous international organizations deeply concerned by MOX recycling strategies. (author). 9 figs, 2 tabs

  7. Technical aspects of fuel reprocessing

    International Nuclear Information System (INIS)

    Groenier, W.S.

    1982-02-01

    The purpose of this paper is to present a brief description of fuel reprocessing and some present developments which show the reliability of nuclear energy as a long-term supply. The following topics are discussed: technical reasons for reprocessing; economic reasons for reprocessing; past experience; justification for advanced reprocessing R and D; technical aspects of current reprocessing development. The present developments are mainly directed at the reprocessing of breeder reactor fuels but there are also many applications to light-water reactor fuel reprocessing. These new developments involve totally remote operation, and maintenance. To demonstrate this advanced reprocessing concept, pilot-scale demonstration facilities are planned with commercial application occurring sometime after the year 2000

  8. Dissolution behavior of PFBR MOX fuel in nitric acid

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Kapoor, Y.S.; Singh, Mamta; Meena, D.L.; Pandey, Ashish; Bhatt, R.B.; Behere, P.G.

    2017-01-01

    Present paper describes the dissolution characteristics of PFBR MOX fuel (U,Pu)O 2 in nitric acid. An overview of batch dissolution experiments, studying the percentage dissolution of uranium and plutonium in (U, Pu)O 2 MOX sintered pellets with different percentage of PuO 2 with reference to time and nitric acid concentration are described. 90% of uranium and plutonium of PFBR MOX gets dissolves in 2 hrs and amount of residue increases with the decrease in nitric acid concentration. Overall variation in percentage residue in PFBR MOX fuel after dissolution test also described. (author)

  9. BNFL assessment of methods of attaining high burnup MOX fuel

    International Nuclear Information System (INIS)

    Brown, C.; Hesketh, K.W.; Palmer, I.D.

    1998-01-01

    It is clear that in order to maintain competitiveness with UO 2 fuel, the burnups achievable in MOX fuel must be enhanced beyond the levels attainable today. There are two aspects which require attention when studying methods of increased burnups - cladding integrity and fuel performance. Current irradiation experience indicates that one of the main performance issues for MOX fuel is fission gas retention. MOX, with its lower thermal conductivity, runs at higher temperatures than UO 2 fuel; this can result in enhanced fission gas release. This paper explores methods of effectively reducing gas release and thereby improving MOX burnup potential. (author)

  10. Worldwide reprocessing supply and demand

    International Nuclear Information System (INIS)

    Pinto, S.

    1987-01-01

    The aim of this paper is to broadly examine the current situation in the LWR fuel reprocessing services market on a worldwide basis through 2010. The main factors influencing this market (nuclear programs, fuel discharges, reprocessing capacities, buyer philosophies, etc.) are identified in the paper and the most important are highlighted and discussed in more detail. Emphasis has been placed on the situation with respect to reprocessing in those countries having a significant influence on the reprocessing market

  11. Reprocessing: experience and future outlooks

    International Nuclear Information System (INIS)

    Rapin, M.

    1981-01-01

    It is shown that reprocessing is the best way to cope with irradiated fuels since it provides an optimized waste conditioning for long term storage, the possibility to recycle fissile material and the reduction of Pu diversion risk. The reprocessing constraints are discussed from political, technical, safety, public acceptance, and economical points of view. The French reprocessing programme (thermal reactor fuel fast breeder fuels) is presented together with a short review of the reprocessing experience and outlooks out of France [fr

  12. Reprocessing of irradiated fuel: pros and cons

    International Nuclear Information System (INIS)

    Lebedev, O.G.; Novikov, V.M.

    1991-01-01

    The acceptable-safety nuclear reactors (APWR, LMFBR, MSBR, MSCR) can be provided by the enrichment industry and by plutonium reserves. But steady accumulation of spent fuel will inevitably make to return to the problems of fuel recycle. PUREX-processing increases a danger of radionuclides spreading due to the presence of large buffer tanks. Using of compact fluoride - volatility process will sharply reduce a nuclide leakage likewise permit to reprocess a fuel with a burnup as high as possible. Success of a powerful robots development give an opportunity to design a fluoride-volatility plant twice cheaper than PUREX. (author)

  13. Nuclear fuel reprocessing: A time for decision

    International Nuclear Information System (INIS)

    O'Donnell, A.J.; Sandbery, R.O.

    1983-01-01

    Availability of adequate supplies of energy at an affordable cost is essential to continued growth of the world's economics. The tie between economic growth and electricity usage is particularly strong and the pervasive wordwide trend toward increasing electrification shows no signs of abating. Very few viable alternatives are available for supplying the projected increase in baseload electric generating capacity in the next several decades, and most industrialized nations have chosen nuclear power to play a major role. Sustained growth of nuclear power can only be achieved, however, by reprocessing spent fuel to recover and utilize the residual uranium and plutonium energy values

  14. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel; Evaluacion de los costos del reciclado como una forma de disposicion del combustible nuclear gastado

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2006-07-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  15. Future trends in reprocessing

    International Nuclear Information System (INIS)

    Rouyer, H.

    1994-01-01

    This paper about future trends in reprocessing essentially reflects French experience and points of view as an example of countries which, like England and Japan, consider that reprocessing is the best solution for the back end of the fuel cycle. In order to know what the future will be, it is necessary to look back at the past and try to find what have been the main reasons for evolution in that period. For reprocessing, it appears that these motivations have been 'safety and economics'. They will remain the motivations for the future. In addition, new motivations for development are starting to appear which are still imprecise but can be expressed as follows: 'which guarantees will public opinion require in order to be convinced that solutions for waste management, proposed by specialists shall ensure that a healthy environment is preserved for the use of future generations'. Consequently the paper examines successively the evolution of reprocessing in the recent past, what the immediate future could be and finally what should be necessary in the long term. (Author)

  16. Irradiated uranium reprocessing

    International Nuclear Information System (INIS)

    Gal, I.

    1961-12-01

    Task concerned with reprocessing of irradiated uranium covered the following activities: implementing the method and constructing the cell for uranium dissolving; implementing the procedure for extraction of uranium, plutonium and fission products from radioactive uranium solutions; studying the possibilities for using inorganic ion exchangers and adsorbers for separation of U, Pu and fission products

  17. Spent fuels transportation coming from Australia

    International Nuclear Information System (INIS)

    2002-01-01

    Maritime transportation of spent fuels from Australia to France fits into the contract between COGEMA and ANSTO, signed in 1999. This document proposes nine information cards in this domain: HIFAR a key tool of the nuclear, scientific and technological australian program; a presentation of the ANSTO Australian Nuclear Science and Technology Organization; the HIFAR spent fuel management problem; the COGEMA expertise in favor of the research reactor spent fuel; the spent fuel reprocessing at La Hague; the transports management; the transport safety (2 cards); the regulatory framework of the transports. (A.L.B.)

  18. Spent fuel management in Spain

    International Nuclear Information System (INIS)

    Gago, J.A.; Gravalos, J.M.

    1996-01-01

    There are presently nine Light Water Reactors in operation, representing around a 34% of the overall electricity production. In the early years, a small amount of spent fuel was sent to be reprocessed, although this policy was cancelled in favor of the open cycle option. A state owned company, ENRESA, was created in 1984, which was given the mandate to manage all kinds of radioactive wastes generated in the country. Under the present scenario, a rough overall amount of 7000 tU of spent fuel will be produced during the lifetime of the plants, which will go into final disposal. (author)

  19. Importance of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Allday, C.

    1977-01-01

    The following topics are discussed: world energy requirements; energy conservation and the economics of recycle environmental considerations and the timescale of reprocessing; and problems associated with reprocessing. The conclusion is reached that reprocessing is essential to the conservation of the world's energy resources and is an environmentally, and probably an economically, more acceptable option to the ''throw away'' alternative

  20. Safety aspects in fuel reprocessing and radioactive waste management

    International Nuclear Information System (INIS)

    Agarwal, K.

    2018-01-01

    Nuclear energy is used for generation of electricity and for production of a wide range of radionuclides for use in research and development, healthcare and industry. Nuclear industry uses nuclear fission as source of energy so a large amount of energy is available from very small amount of fuel. As India has adopted c losed fuel cycle , spent nuclear fuel from nuclear reactor is considered as a material of resource and reprocessed to recovery valuable fuel elements. Main incentive of reprocessing is to use the uranium resources effectively by recovering/recycling Pu and U present in the spent fuel. This finally leads to a very small percentage of residual material present in spent nuclear fuel requiring their management as radioactive waste. Another special feature of the Indian Atomic Energy Program is the attention paid from the very beginning to the safe management of radioactive waste

  1. Study on high performance MOX fuel and core design in full MOX ABWR(1) by GNF-J

    International Nuclear Information System (INIS)

    Izutsu, Sadayuki; Goto, Daisuke; Saeki, Jun; Kokubun, Takehiro; Yokoya, Jun

    2003-01-01

    The concepts of high-performance MOX fuel using 10x10 lattices suitable for full-MOX ABWR are shown in this paper, in which average discharge exposure is extended up to 45 GWd/t with heavy-metal inventory increased over current MOX, reducing the number of refueling bundles, resulting in fuel cycle cost reduction and core performance satisfaction. Also, the increase of Pu inventory is taken into account from the viewpoint to extend the flexibility of MOX fuel utilization. (author)

  2. Thermal conductivity of heterogeneous LWR MOX fuels

    Science.gov (United States)

    Staicu, D.; Barker, M.

    2013-11-01

    It is generally observed that the thermal conductivity of LWR MOX fuel is lower than that of pure UO2. For MOX, the degradation is usually only interpreted as an effect of the substitution of U atoms by Pu. This hypothesis is however in contradiction with the observations of Duriez and Philiponneau showing that the thermal conductivity of MOX is independent of the Pu content in the ranges 3-15 and 15-30 wt.% PuO2 respectively. Attributing this degradation to Pu only implies that stoichiometric heterogeneous MOX can be obtained, while we show that any heterogeneity in the plutonium distribution in the sample introduces a variation in the local stoichiometry which in turn has a strong impact on the thermal conductivity. A model quantifying this effect is obtained and a new set of experimental results for homogeneous and heterogeneous MOX fuels is presented and used to validate the proposed model. In irradiated fuels, this effect is predicted to disappear early during irradiation. The 3, 6 and 10 wt.% Pu samples have a similar thermal conductivity. Comparison of the results for this homogeneous microstructure with MIMAS (heterogeneous) fuel of the same composition showed no difference for the Pu contents of 3, 5.9, 6, 7.87 and 10 wt.%. A small increase of the thermal conductivity was obtained for 15 wt.% Pu. This increase is of about 6% when compared to the average of the values obtained for 3, 6 and 10 wt.% Pu. For comparison purposes, Duriez also measured the thermal conductivity of FBR MOX with 21.4 wt.% Pu with O/M = 1.982 and a density close to 95% TD and found a value in good agreement with the estimation obtained using the formula of Philipponneau [8] for FBR MOX, and significantly lower than his results corresponding to the range 3-15 wt.% Pu. This difference in thermal conductivity is of about 20%, i.e. higher than the measurement uncertainties.Thus, a significant difference was observed between FBR and PWR MOX fuels, but was not explained. This difference

  3. Models for MOX fuel behaviour. A selective review

    International Nuclear Information System (INIS)

    Massih, Ali R.

    2006-01-01

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO 2 fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO 2 . In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO 2 fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO 2 fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO 2 vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO 2 . This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation

  4. Mox fuel experience: present status and future improvements

    International Nuclear Information System (INIS)

    Blanpain, P.; Chiarelli, G.

    2001-01-01

    Up to December 2000, more than 1700 MOX fuel assemblies have been delivered by Framatome ANP/Fragema to 20 French, 2 Belgian and 3 German PWRs. More than 1000 MOX fuel assemblies have been delivered by Framatome ANP GmbH (formerly Siemens) to 11 German PWRs and BWRs and to 3 Swiss PWRs. Operating MOX fuel up to discharge burnups of about 45,000 MWd/tM is done without any penalty on core operating conditions and fuel reliability. Performance data for fuel and materials have been obtained from an outstanding surveillance program. The examinations have concluded that there have been no significant differences in MOX fuel assembly characteristics relative to UO 2 fuel. The data from these examinations, combined with a comprehensive out-of-core and in-core analytical test program on the current fuel products, are being used to confirm and upgrade the design models necessary for the continuing improvement of the MOX product. As MOX fuel has reached a sufficient maturity level, the short term step is the achievement of the parity between UO 2 and MOX fuels in the EdF French reactors. This involves a single operating scheme for both fuels with an annual quarter core reload type and an assembly discharge burnup goal of 52,000 MWd/tM. That ''MOX parity'' product will use the AFA-3G assembly structure which will increase the fuel rod design margins with regards to the end-of-life internal pressure criteria. But the fuel development objective is not limited to the parity between the current MOX and UO 2 products: that parity must remain guaranteed and the MOX fuel managements must evolve in the same way as the UO 2 ones. The goal of the MOX product development program underway in France is the demonstration over the next ten years of a fuel capable of reaching assembly burnups of 70,000 MWd/tM. (author)

  5. Models for MOX fuel behaviour. A selective review

    Energy Technology Data Exchange (ETDEWEB)

    Massih, Ali R. [Quantum Technologies AB, Uppsala Science Park (Sweden)

    2006-12-15

    This report reviews the basic physical properties of light water reactor mixed-oxide (MOX) fuel comprising nuclear characteristics, thermal properties such as melting temperature, thermal conductivity, thermal expansion, and heat capacity, and compares these with properties of conventional UO{sub 2} fuel. These properties are generally well understood for MOX fuel and are well described by appropriate models developed for engineering analysis. Moreover, certain modelling approaches of MOX fuel in-reactor behaviour, regarding densification, swelling, fission product gas release, helium release, fuel creep and grain growth, are evaluated and compared with the models for UO{sub 2}. In MOX fuel the presence of plutonium rich agglomerates adds to the complexity of fuel behaviour on the micro scale. In addition, we survey the recent fuel performance experience and post irradiation examinations on several types of MOX fuel types. We discuss the data from these examinations, regarding densification, swelling, fission product gas release and the evolution of the microstructure during irradiation. The results of our review indicate that in general MOX fuel has a higher fission gas release and helium release than UO{sub 2} fuel. Part of this increase is due to the higher operating temperatures of MOX fuel relative to UO{sub 2} fuel due to the lower thermal conductivity of MOX material. But this effect by itself seems to be insufficient to make for the difference in the observed fission gas release of UO{sub 2} vs. MOX fuel. Furthermore, the irradiation induced creep rate of MOX fuel is higher than that of UO{sub 2}. This effect can reduce the pellet-clad interaction intensity in fuel rods. Finally, we suggest that certain physical based approaches discussed in the report are implemented in the fuel performance code to account for the behaviour of MOX fuel during irradiation.

  6. Spent fuel interim management: 1995 update

    International Nuclear Information System (INIS)

    Anderson, C.K.

    1995-01-01

    The problems of interim away-from-reactor spent fuel storage and storage in spent fuel pools at the reactor site are discussed. An overview of the state-of-the-art in the USA, Europe, and Japan is presented. The technical facilities for away-from-reactor storage are briefly described, including wet storage pools, interactive concrete systems, metallic containers, and passive concrete systems. Reprocessing technologies are mostly at the design stage only. It is predicted that during the 20 years to come, about 50 000 tonnes of spent fuel will be stored at reactor sites regardless of the advance of spent fuel reprocessing or interim storage projects. (J.B.). 4 tabs., 2 figs

  7. Evaluation of fuel cycle scenarios on MOX fuel recycling in PWRs and SFRs

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, B.; Caron-Charles, M.; Van Den Durpel, L. [AREVA, 1 place Jean Millier, Paris La Defense (France); Senentz, G. [AREVA, 33 rue La Lafayette, 75009 Paris (France); Serpantie, J.P. [AREVA, 10 rue Juliette Recamier, Lyon (France)

    2013-07-01

    Prospects on advanced fuel cycle scenario are considered for achieving a progressive integration of Sodium Fast Reactor (SFR) technology within the current French Pressurized Water Reactor (PWR) nuclear fleet, in a view to benefit from fissile material multi-recycling capability. A step by step process is envisioned, and emphasis is put on its potential implementation through the nuclear mass inventory calculations with the COSAC code. The overall time scale is not optimized. The first step, already implemented in several countries, the plutonium coming from the reprocessing of used Light Water Reactor (LWR) fuels is recycled into a small number of LWRs. The second step is the progressive introduction of the first SFRs, in parallel with the continuation of step 1. This second step lets to prepare the optimized multi recycling of MOX fuel which is considered in step 3. Step 3 is characterized by the introduction of a greater number of SFR and MOX management between EPR reactors and SFRs. In the final step 4, all the fleet is formed with SFRs. This study assesses the viability of each step of the overall scenario. The switch from one step to the other one could result from different constrains related to issues such as resources, waste, experience feedback, public acceptance, country policy, etc.

  8. Safety problems related to the use of MOX assemblies in PWRS

    International Nuclear Information System (INIS)

    Gouffon, A.; Merle, J.P.

    1989-12-01

    Curtailment of the LMFBR program along with the satisfactory performance of the La Hague reprocessing plant, with the consequent availability of large quantities of plutonium, provides Electricite de France (EDF) with the possibility of burning mixed uranium and plutonium oxide fuel (MOX fuel) in the core of certain PWR power plant reactors, hence reducing enriched uranium fuel requirements. Design provision has in fact been made for this possibility on sixteen 900 MWe plant units and is explicitly authorized in the relevant authorization decrees. In this paper, we have restricted our discussion to safety aspects pertaining to utilization of the fuel in the reactor. Generally speaking, the Safety Analysis Department has checked that the provisions made by EDF and/or the scheduled plant modifications enabled reactor unit operating safety to be maintained at the same level as for standard fuel management systems and that, in particular, the recycling of 30% MOX assemblies was compatible with observance, under accident conditions, of the same safety criteria as for all uranium cores

  9. Safe transport of spent fuels after long-term storage

    International Nuclear Information System (INIS)

    Aritomi, M.; Takeda, T.; Ozaki, S.

    2004-01-01

    Considering the scarcity of energy resources in Japan, a nuclear energy policy pertaining to the spent fuel storage has been adopted. The nuclear energy policy sets the rules that spent fuels generated from LWRs shall be reprocessed and that plutonium and unburnt uranium shall be recovered and reused. For this purpose, a reprocessing plant, which has a reprocessing capability of 800 ton/yr, is under construction at Rokkasho Village. However, it is anticipated that the start of its operation will be delayed. In addition, the amount of spent fuels generated from nuclear power plants exceeds its reprocessing capability. Therefore, the establishment of storage technology for spent fuels becomes an urgent problem in Japan in order to continue smoothly the LWR operations. In this paper, the background of nuclear power generation in Japan is introduced at first. Next, the policy of spent fuel storage in Japan and circumstances surrounding the spent fuels in Japan are mentioned. Furthermore, the major subjects for discussions to settle and improve 'Standard for Safety Design and Inspection of Metal Casks for Spent Fuel Interim Storage Facility' in Atomic Energy Society of Japan are discussed, such as the integrity of fuel cladding, basket, shielding material and metal gasket for the long term storage for achieving safe transport of spent fuels after the storage. Finally, solutions to the unsolved subject in establishing the spent fuel interim storage technologies ase introduced accordingly

  10. ERDA activities related to reprocessing and plutonium recycle

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    1977-01-01

    ERDA has redirected its program in support of the LWR fuel cycle from one emphasizing the commercialization of existing fuel cycle technology to a broader based assessment of alternative fuel cycle concepts with the emphasis on safeguardability and avoidance of proliferation risks. As part of this program, ERDA will evaluate a number of possible technical and institutional options to reduce proliferation risks. ERDA will continue its current program of LWR fuel reprocessing R and D with added emphasis on improved safeguards capability as well as the applicability of conventional reprocessing technology to large multinational plants. These activities and supporting design studies will provide the basis for a decision regarding the design of an optimized system for the management of spent LWR fuel. Such a system would provide a model for the development of future domestic and foreign facilities and programs. A recently completed ERDA study of the benefits of LWR reprocessing and recycle would also be expected to be factored into such a decision. The study concluded that based on currently available data, recycle of uranium and plutonium in LWR's is attractive from the standpoint of economics and resource utilization relative to the discarding of spent fuel. The LWR reprocessing/recycle picture today is clouded by several unresolved policy issues. These include the need for adequate spent fuel storage capacity for both domestic and foreign reactors; the possibility of foreign reprocessing of U.S. produced fuel; the possibility of the disposal of foreign fuel in the U.S.; the possible need to dispose of wastes generated by multinational reprocessing plants; and finally, determination of the optimum balance between recycling recovered plutonium and saving it for the breeder

  11. Material control for a reprocessing plant

    International Nuclear Information System (INIS)

    Rundquist, D.; Bray, G.; Donelson, S.; Glancy, J.; Gozani, T.; Harris, L.; McNamera, R.; Pence, D.; Ringham, M.

    1976-01-01

    Adequate control of special nuclear material (SNM) implies a basic knowledge of the quantities of SNM processed through or contained within a fuels processing facility with sufficient accuracy that diversion of the SNM for deleterious purposes can be detected in a timely manner. This report to the Lawrence Livermore Laboratory (LLL) describes the primary process streams containing plutonium that are handled routinely within a spent fuel reprocessing plant and conversion facility. As an aid in implementing the objectives of the accountability system in a realistic situation, the Allied General Nuclear Services (AGNS) reprocessing plant now under construction near Barnwell, South Carolina, was chosen as the study model. The AGNS plant processes are discussed in detail emphasizing those portions of the process that contain significant quantities of plutonium. The unit processes within the separations plant, nitrate storage, plutonium product facility and the analytical laboratory are described with regard to the SNM control system currently planned for use in the facilities. A general discussion of laboratory techniques, nondestructive assay and process instrumentation for plutonium process and product material from a reprocessing plant is included. A comprehensive discussion is given of holdup measurements in plutonium recycle facilities. A brief preliminary overview is presented of alternative processing strategies for LWR fuel. An extensive review and summary of modeling efforts for liquid-liquid extraction cycles is included. A comprehensive bibliography of previous modeling efforts is covered

  12. Legal problems of nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Rossnagel, A.

    1987-01-01

    The contributions in this book are intended to exemplify the legal situation in connection with the reprocessing of spent nuclear fuel from the point of view of constitutional law, administrative law, and international law. Outline solutions are presented with regard to ensuring health, personal freedom, democratic rights and other rights, and are discussed. The author Rossnagel investigates whether the principle of essential matter can guarantee a parliamentary prerogative concerning this field of large-scale technology. The author Schmidt shows that there is no legal obligation of commitment to a reprocessing technology that would exclude research for or application of a less hazardous technology. The contribution by Baumann explains the problems presented by a technology not yet developed to maturity with regard to the outline approval of the technological concept, which is a prerequisite of any partial licence to be issued. The final contribution by Guendling investigates the duties under international law, as for instance transfrontier information, consultation, and legal protection, and how these duties can be better put into practice in order to comply the seriousness of the hazards involved in nuclear fuel reprocessing. (orig./HP) [de

  13. Technical design considerations in the provision of a commercial MOX plant

    International Nuclear Information System (INIS)

    Elliott, M.F.

    1997-01-01

    The Sellafield MOX Plant (SMP) has a design production target of 120 t/year Heavy Metal of mixed uranium dioxide and plutonium dioxided (MOX) fuel. It will have the capability to produce fuel with fissile enrichments up to 10%. The feed materials are those arising from reprocessing operations on the Sellafield site, although the plant also has the capability to receive and process plutonium from overseas reprocessing plants. The ability to produce 10% enriched fuels, together with the requirement to use high burn-up feed has posed a number of design challenges to prevent excessive powder temperatures within the plant. As no stimulants are available to represent the heat generating nature of plutonium powders, it is difficult to prove equipment design by experiment. Extensive use has therefore been made of finite element analysis techniques. The requirement to process material of low burn-up (i.e. high fissile enrichment) has also impacted on equipment design in order to ensure that criticality limits are not exceeded. This has been achieved where possible by 'safe by geometry' design and, where appropriate, by high integrity protection systems. SMP has been designed with a high plant availability but at minimum cost. The requirement to minimize cost has meant that high availability must be obtained with the minimum of equipment. This had led to major challenges for equipment designers in terms of both the reliability and also the maintainability of equipment. Extensive use has been made of theoretical modelling techniques which have given confidence that plant throughput can be achieved. (author). 1 fig

  14. Spent fuel transportation problems

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kosarev, Yu.A.; Yulikov, E.A.

    1977-01-01

    In this paper, problems of transportation of nuclear spent fuel to reprocessing plants are discussed. The solutions proposed are directed toward the achievement of the transportation as economic and safe as possible. The increase of the nuclear power plants number in the USSR and the great distances between these plants and the reprocessing plants involve an intensification of the spent fuel transportation. Higher burnup and holdup time reduction cause the necessity of more bulky casks. In this connection, the economic problems become still more important. One of the ways of the problem solution is the development of rational and cheap cask designs. Also, the enforcement in the world of the environmental and personnel health protection requires to increase the transportation reliability and safety. The paper summarizes safe transportation rules with clarifying the following questions: the increase of the transport unit quantity of the spent fuel; rational shipment organization that minimizes vehicle turnover cycle duration; development of the reliable calculation methods to determine strength, thermal conditions and nuclear safety of transport packaging as applied to the vehicles of high capacity; maximum unification of vehicles, calculation methods and documents; and cask testing on models and in pilot scale on specific test rigs to assure that they meet the international safe fuel shipment rules. Besides, some considerations on the choice and use of structural materials for casks are given, and problems of manufacturing such casks from uranium and lead are considered, as well as problems of the development of fireproof shells, control instrumentation, vehicles decontamination, etc. All the problems are considered from the point of view of normal and accidental shipment conditions. Conclusions are presented [ru

  15. Neutronics benchmark of a MOX assembly with near-weapons-grade plutonium

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Fisher, S.E.

    1998-01-01

    One of the proposed ways to dispose of surplus weapons-grade plutonium (Pu) is to irradiate the high-fissile material in light-water reactors in order to reduce the Pu enrichment to the level of spent fuels from commercial reactors. Considerable experience has been accumulated about the behavior of mixed-oxide (MOX) uranium and plutonium fuels for plutonium recycling in commercial reactors, but the experience is related to Pu enrichments typical of spent fuels quite below the values of weapons-grade plutonium. Important decisions related to the kind of reactors to be used for the disposition of the plutonium are going to be based on calculations, so the validation of computational algorithms related to all aspects of the fuel cycle (power distributions, isotopics as function of the burnup, etc.), for weapons-grade isotopics is very important. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad cities boiling-water reactor (BWR) is the most recent US destructive examination. This effort involved the irradiation of five MOX assemblies using 80 and 90% fissile plutonium. These benchmark data were gathered by General Electric under the sponsorship of the Electric Power Research Institute. It is emphasized, however, that global parameters are not the focus of this benchmark, since the five bundles containing MOX fuels did not significantly affect the overall core performance. However, since the primary objective of this work is to compare against measured post-irradiation assembly data, the term benchmark is applied here. One important reason for performing the benchmark on Quad Cities irradiation is that the fissile blends (up to 90%) are higher than reactor-grade and, quite close to, weapons-grade isotopics

  16. Consolidated fuel reprocessing program

    International Nuclear Information System (INIS)

    Kuban, D.P.; Noakes, M.W.; Bradley, E.C.

    1987-01-01

    The Advanced Servomanipulator (ASM) System consists of three major components: the ASM slave, the dual arm master controller or master, and the control system. The ASM is a remotely maintainable force-reflecting servomanipulator developed at the Oak Ridge National Laboratory (ORNL) as part of the Consolidated Fuel Reprocessing Program of (CFRP). This new manipulator addresses requirements of advanced nuclear fuel reprocessing with emphasis on force reflection, remote maintainability, and reliability. It uses an all-gear force transmission system. The master arms were designed as a kinematic replica of ASM and use cable force transmission. Special digital control algorithms were developed to improve the system performance. The system is presently operational and undergoing evaluation. Preliminary testing has been completed and is reported. The system is now undergoing commercialization by transferring the technology to the private sector

  17. Reprocessing plants safety

    International Nuclear Information System (INIS)

    Davies, A.G.; Leighton, C.; Millington, D.

    1989-01-01

    The reprocessing of irradiated nuclear fuel at British Nuclear Fuels (BNFL) Sellafield site consists of a number of relatively self-contained activities carried out in separate plants across the site. The physical conditions and time scales applied in reprocessing and storage make it relatively benign. The potential for minor releases of radioactivity under fault conditioning is minimised by plant design definition of control procedures, training and supervision. The risks to both the general public and workforce are shown to be low with all the safety criteria being met. Normal operating conditions also have the potential for some occupational radiation exposure and the plant and workers are monitored continuously. Exposure levels have been reduced steadily and will continue to fall with plant improvements. (U.K.)

  18. Plutonium - out of the stockpile and into the MOX market

    International Nuclear Information System (INIS)

    Edwards, J.; Hexter, B.C.; Powell, D.J.

    1993-01-01

    Reducing the risks associated with growing stocks of plutonium is just one of the factors behind the manufacture of mixed oxide (MOX) fuel. A United Kingdom collaboration, described here, has recently taken the first steps into the market place for MOX. (Author)

  19. Reprocessing input data validation

    International Nuclear Information System (INIS)

    Persiani, P.J.; Bucher, R.G.; Pond, R.B.; Cornella, R.J.

    1990-01-01

    The Isotope Correlation Technique (ICT), in conjunction with the gravimetric (Pu/U ratio) method for mass determination, provides an independent verification of the input accountancy at the dissolver or accountancy stage of the reprocessing plant. The Isotope Correlation Technique has been applied to many classes of domestic and international reactor systems (light-water, heavy-water, graphite, and liquid-metal) operating in a variety of modes (power, research, production, and breeder), and for a variety of reprocessing fuel cycle management strategies. Analysis of reprocessing operations data based on isotopic correlations derived for assemblies in a PWR environment and fuel management scheme, yielded differences between the measurement-derived and ICT-derived plutonium mass determinations of (-0.02 ± 0.23)% for the measured U-235 and (+0.50 ± 0.31)% for the measured Pu-239, for a core campaign. The ICT analyses has been implemented for the plutonium isotopics in a depleted uranium assembly in a heavy-water, enriched uranium system and for the uranium isotopes in the fuel assemblies in light-water, highly-enriched systems. 7 refs., 5 figs., 4 tabs

  20. Transport and storage of spent nuclear fuel

    International Nuclear Information System (INIS)

    Lung, M.; Lenail, B.

    1987-01-01

    From a safety standpoint, spent fuel is clearly not ideal for permanent disposal and reprocessing is the best method of preparing wastes for long-term storage in a repository. Furthermore, the future may demonstrate that some fission products recovered in reprocessing have economic applications. Many countries have in fact reached the point at which the recycling of plutonium and uranium from spent fuel is economical in LWR's. Even in countries where this is not yet evident, (i.e., the United States), the French example shows that the day will come when spent fuel will be retrieved for reprocessing and recycle. It is highly questionable whether spent fuel will ever be considered and treated as waste in the same sense as fission products and processed as such, i.e., packaged in a waste form for permanent disposal. Even when recycled fuel material can no longer be reused in LWR's because of poor reactivity, it will be usable in FBR's. Based on the considerable experience gained by SGN and Cogema, this paper has provided practical discussion and illustrations of spent fuel transport and storage of a very important step in the nuclear fuel management process. The best of spent fuel storage depends on technical, economic and policy considerations. Each design has a role to play and we hope that the above discussion will help clarify certain issues

  1. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2009-01-01

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core design and a mixed MOX/UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance

  2. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)

    2008-07-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core and a mixed MOX / UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  3. AP1000 core design with 50% MOX loading

    International Nuclear Information System (INIS)

    Fetterman, Robert J.

    2008-01-01

    The European Utility Requirements (EUR) document states that the next generation European Passive Plant (EPP) reactor core design shall be optimized for UO 2 fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO 2 core and a mixed MOX / UO 2 core design, discussing relevant results related to reactivity management, power margin and fuel rod performance. (authors)

  4. AP1000 core design with 50% MOX loading

    Energy Technology Data Exchange (ETDEWEB)

    Fetterman, Robert J. [Westinghouse Electric Company, LLC, Pittsburgh, PA (United States)], E-mail: fetterrj@westinghouse.com

    2009-04-15

    The European uility requirements (EUR) document states that the next generation European passive plant (EPP) reactor core design shall be optimized for UO{sub 2} fuel assemblies, with provisions made to allow for up to 50% mixed-oxide (MOX) fuel assemblies. The use of MOX in the core design will have significant impacts on key physics parameters and safety analysis assumptions. Furthermore, the MOX fuel rod design must also consider fuel performance criterion important to maintaining the integrity of the fuel rod over its intended lifetime. The purpose of this paper is to demonstrate that the AP1000 is capable of complying with the EUR requirement for MOX utilization without significant changes to the design of the plant. The analyses documented within will compare a 100% UO{sub 2} core design and a mixed MOX/UO{sub 2} core design, discussing relevant results related to reactivity management, power margin and fuel rod performance.

  5. Reprocessing-recycling, or the application of the selective sorting and recycling policy to nuclear activities

    International Nuclear Information System (INIS)

    1998-12-01

    In France, the reprocessing of spent fuels is the solution that has been retained for the management of the end-of-cycle. The sorting of the different components of spent fuels allows the recycling of uranium and plutonium for the further production of enriched uranium and mixed oxide fuels. This paper presents Cogema's advances in this domain (facilities and plants), the transfer of Cogema's reprocessing and recycling technologies in other countries (Japan, USA, Russia), the economical and environmental advantages of the recycling of spent fuels, the economical resources provided by this activity, and the cooperation with foreign countries for the reprocessing of their spent fuels at Cogema-La Hague. (J.S.)

  6. MOX Cross-Section Libraries for ORIGEN-ARP

    International Nuclear Information System (INIS)

    Gauld, I.C.

    2003-01-01

    The use of mixed-oxide (MOX) fuel in commercial nuclear power reactors operated in Europe has expanded rapidly over the past decade. The predicted characteristics of MOX fuel such as the nuclide inventories, thermal power from decay heat, and radiation sources are required for design and safety evaluations, and can provide valuable information for non-destructive safeguards verification activities. This report describes the development of computational methods and cross-section libraries suitable for the analysis of irradiated MOX fuel with the widely-used and recognized ORIGEN-ARP isotope generation and depletion code of the SCALE (Standardized Computer Analyses for Licensing Evaluation) code system. The MOX libraries are designed to be used with the Automatic Rapid Processing (ARP) module of SCALE that interpolates appropriate values of the cross sections from a database of parameterized cross-section libraries to create a problem-dependent library for the burnup analysis. The methods in ORIGEN-ARP, originally designed for uranium-based fuels only, have been significantly upgraded to handle the larger number of interpolation parameters associated with MOX fuels. The new methods have been incorporated in a new version of the ARP code that can generate libraries for low-enriched uranium (LEU) and MOX fuel types. The MOX data libraries and interpolation algorithms in ORIGEN-ARP have been verified using a database of declared isotopic concentrations for 1042 European MOX fuel assemblies. The methods and data are validated using a numerical MOX fuel benchmark established by the Organization for Economic Cooperation and Development (OECD) Working Group on burnup credit and nuclide assay measurements for irradiated MOX fuel performed as part of the Belgonucleaire ARIANE International Program

  7. Method for processing spent nuclear reactor fuel

    International Nuclear Information System (INIS)

    Levenson, M.; Zebroski, E.L.

    1981-01-01

    A method and apparatus are claimed for processing spent nuclear reactor fuel wherein plutonium is continuously contaminated with radioactive fission products and diluted with uranium. Plutonium of sufficient purity to fabricate nuclear weapons cannot be produced by the process or in the disclosed reprocessing plant. Diversion of plutonium is prevented by radiation hazards and ease of detection

  8. Demonstration and development of safeguards techniques in the PNC reprocessing plant. Part of a coordinated programme on the use of installed instrumentation in fuel reprocessing facilities for safeguards purposes

    International Nuclear Information System (INIS)

    Kurihara, H.

    1979-04-01

    A hull-monitoring system in the Head-End facility and systems for surveillance and containment in the spent fuel receiving and storage facility at Tokai Reprocessing Plant are described. Operating experience on them is analyzed

  9. RIA tests in CABRI with MOX fuel

    International Nuclear Information System (INIS)

    Schmitz, F.; Papin, J.; Gonnier, C.

    2000-01-01

    Three MOX-fuel tests have been successfully performed within the framework of the CABRI REP-Na test program. From the experimental findings which are presently available, no evidence for thermal effects resulting from the heterogeneous nature of the fuel can be given. There are very clear hints however that fission gas effects are enhanced with regard to the behaviour of UO 2 . The clad rupture observed in REP-Na 7 is of different nature than the failures observed in Cabri tests with UO 2 fuel. Failures of UO 2 fuel rods only occurred when the clad mechanical properties were severely affected by the presence of hydride blisters, while in REP-Na 7 a clear indication is made that the loading potential of the MOX fuel pellets was high enough to break a sound cladding. Concerning the transient fuel behaviour after reaching the critical heat-flux under reactor typical conditions (pressure, temperature and flow), no data base could be provided by the tests in the present sodium test loop (as for the UO 2 fuel behaviour). The IPSN project to implement into the Cabri reactor a pressurised water loop which will allow to simulate the complete RIA accident sequence under PWR reactor typical conditions, aims at providing this missing data base. (author)

  10. Fuel production for LWRs - MOX fuel aspects

    International Nuclear Information System (INIS)

    Deramaix, P.

    2005-01-01

    Plutonium recycling in Light Water Reactors is today an industrial reality. It is recycled in the form of (U, Pu)O 2 fuel pellets (MOX), fabricated to a large extent according to UO 2 technology and pellet design. The similarity of physical, chemical, and neutron properties of both fuels also allows MOX fuel to be burnt in nuclear plants originally designed to burn UO 2 . The industrial processes presently in use or planned are all based on a mechanical blending of UO 2 and PuO 2 powders. To obtain finely dispersed plutonium and to prevent high local concentration of plutonium, the feed materials are micronised. In the BNFL process, the whole (UO 2 , PuO 2 ) blend is micronised by attrition milling. According to the MIMAS process, developed by BELGONUCLEAIRE, a primary blend made of UO 2 containing about 30% PuO 2 is micronised in a ball mill, afterwards this primary blend is mechanically diluted in UO 2 to obtain the specified Pu content. After mixing, the (U, Pu)O 2 powder is pressed and the pellets are sintered. The sintering cover gas contains moisture and 5 v/o H 2 . Moisture increases the sintering process and the U-Pu interdiffusion. After sintering and grinding, the pellets are submitted to severe controls to verify conformity with customer specifications (fissile content, Pu distribution, surface condition, chemical purity, density, microstructure). (author)

  11. Developments in MOX fuel pellet fabrication technology: Indian experience

    International Nuclear Information System (INIS)

    Kamath, H.S.; Majumdar, S.; Purusthotham, D.S.C.

    1998-01-01

    India is interested in mixed oxide (MOX) fuel technology for better utilisation of its nuclear fuel resources. In view of this, a programme involving MOX fuel design, fabrication and irradiation in research and power reactors has been taken up. A number of experimental irradiations in research reactors have been carried out and a few MOX assemblies of ''All Pu'' type have been loaded in our commercial BWRs at Tarapur. An island type of MOX fuel design is under study for use in PHWRs which can increase the burn-up of the fuel by more than 30% compared to natural UO 2 fuel. The MOX fuel pellet fabrication technology for the above purpose and R and D efforts in progress for achieving better fuel performance are described in the paper. The standard MOX fuel fabrication route involves mechanical mixing and milling of UO 2 and PuO 2 powders. After detailed investigations with several types of mixing and milling equipments, dry attritor milling has been found to be the most suitable for this operation. Neutron Coincident Counting (NCC) technique was found to be the most convenient and appropriate technique for quick analysis of Pu content in milled MOX powder and to know Pu mixing is homogenous or not. Both mechanical and hydraulic presses have been used for powder compaction for green pellet production although the latter has been preferred for better reproducibility. Low residue admixed lubricants have been used to facilitate easy compaction. The normal sintering temperature used in Nitrogen-Hydrogen atmosphere is between 1600 deg. C to 1700 deg. C. Low temperature sintering (LTS) using oxidative atmospheres such as carbon dioxide, Nitrogen and coarse vacuum have also been investigated on UO 2 and MOX on experimental scale and irradiation behaviour of such MOX pellets is under study. Ceramic fibre lined batch furnaces have been found to be the most suitable for MOX pellet production as they offer very good flexibility in sintering cycle, and ease of maintainability

  12. Case outsourcing medical device reprocessing.

    Science.gov (United States)

    Haley, Deborah

    2004-04-01

    IN THE INTEREST OF SAVING MONEY, many hospitals are considering extending the life of some single-use medical devices by using medical device reprocessing programs. FACILITIES OFTEN LACK the resources required to meet the US Food and Drug Administration's tough quality assurance standards. BY OUTSOURCING, hospitals can reap the benefits of medical device reprocessing without assuming additional staffing and compliance burdens. OUTSOURCING enables hospitals to implement a medical device reprocessing program quickly, with no capital investment and minimal effort.

  13. Reprocessing decision: a study in policymaking under uncertainty

    International Nuclear Information System (INIS)

    Heising, C.D.

    1978-01-01

    The U.S. reprocessing decision is examined in this thesis. Decision analysis is applied to develop a rational framework for the assessment of policy alternatives. Benefits and costs for each alternative are evaluated and compared in dollar terms to determine the optimal decision. A fuel cycle simulation model is constructed to assess the economic value of reprocessing light water reactor (LWR) spent fuel and recycling plutonium. In addition, a dynamic fuel substitution model is used to estimate the economic effects of the reprocessing decision's influence on the introduction date of the liquid metal fast breeder reactor (LMFBR). Risks estimated in dollar terms for comparison with the economic values include those related to health, the environment and safety, nuclear theft and sabotage, and nuclear proliferation

  14. Development and application of special instrumentation for materials accountancy and process control in spent fuel recycle plants

    International Nuclear Information System (INIS)

    Clark, P.A.; Gardner, N.; Merrill, N.H.; Whitehouse, K.R.

    1996-01-01

    Safe and optimum operations of spent fuel recycle plants rely on the availability of real time measurement systems at key points in the process. More than thirty types of special instrument systems have been developed and commissioned on the THORP reprocessing plant at Sellafield. These systems are compiled together with the associated information on measurement purpose, measurement technique and plant performance. A number of these measurement systems are of interest to support Safeguards arrangements on the plant. A more detailed overview of two such instrument systems respectively within the Head End and Product Finishing Stages of THORP is provided. The first of these is the Hulls Monitor, based on high resolution gamma spectrometry, as well as active and passive neutron measurements, of the basket of leached fuel cladding. This provides vital data for criticality assurance, nuclear material accountancy and inventory determination for ultimate disposal of the cladding waste. The second system is the Plutonium Inventory Monitoring System (PIMS) which employs passive neutron counting from a distributed array of neutron detectors within the Pu Finishing Line. This provides a near real time estimate of Pu inventories both during operations and at clean out of the Finishing Line. Both the Hulls Monitor and PIMS technologies are applicable to MOX Fuel recycle. Both systems enhance the control of fissile material in key areas of the recycle process which are of interest to the Safeguards authorities. (author)

  15. Economic evaluation of reprocessing

    International Nuclear Information System (INIS)

    1978-11-01

    This discussion paper first identifies the main factors which influence the economic assessment of reprocessing. It proposes the use of a diagram - the so-called ''phase diagram'' - which plots the fast reactor premium against the price of uranium. The diagram delineates areas where the once-through fuel cycle, thermal recycle and fast reactor will be the preferred choice from micro-economic considerations. The paper then goes on to consider the circumstances under which a country may or may not wish to introduce thermal recycle or fast reactors. Finally, a procedure for further discussion on economic considerations with WG4 is proposed

  16. Economic evaluation of reprocessing

    International Nuclear Information System (INIS)

    1979-02-01

    This paper presents a progress report of work undertaken relevant to the economic evaluation of reprocessing. It sets out the assumptions to be made for the preparation of the economic ''phase diagram'' - a plot of fast reactor premium against uranium (U 3 O 8 ) price. The paper discusses the assumptions to be made in respect of present worth methodology, LWR fuel logistics, U 3 O 8 price, enrichment tails, plutonium values, fast reactor premium and proposes a set of reference costs to be used for the preparation of the phase diagram

  17. MOX fuel fabrication, in reactor performance and improvement

    International Nuclear Information System (INIS)

    Vliet, J. van; Deramaix, P.; Nigon, J.L.; Fournier, W.

    1998-01-01

    In Europe, MOX fuel for light water reactors (LWRs) has first been manufactured in Belgium and Germany. Belgonucleaire (BN) loaded the first MOX assembly in the BR3 Pressurised Water Reactor (PWR) in 1963. In June 1998, more than 750 tHM LWR MOX fuel assemblies were manufactured on a industrial scale in Europe without any particular difficulty relating to fuel fabrication, reactor operation or fuel behaviour. So, today plutonium recycling through MOX fuel is a mature industry, with successful operational experience and large-scale fabrication plants. In this field, COGEMA and BELGONUCLEAIRE are the main actors by operating simultaneously three complete multidesign fuel production plants: MELOX plant (in Marcoule), CADARACHE plant and P0 plant (in Dessel, Belgium). Present MOX production capacity available to COGEMA and BN fits 175 tHM per year and is to be extended to reach about 325 tHM in the year 2000. This will represent 75% of the total MOX fabrication capacity in Europe. The industrial mastery and the high production level in MOX fabrication assured by high technology processes confer to these companies a large expertise for Pu recycling. This allows COGEMA and BN to be major actors in Pu-based fuels in the coming second nuclear era with advanced fuel cycles. (author)

  18. Spent fuel management newsletter. No. 2

    International Nuclear Information System (INIS)

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel

  19. Spent fuel management newsletter. No. 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-04-01

    This issue of the newsletter consists of two parts. The first part describes the IAEA Secretariat activities - work and programme of the Nuclear Materials and Fuel Cycle Technology Section of the Division of Nuclear Fuel Cycle and Waste Management, recent and planned meetings and publications, Technical Co-operation projects, Co-ordinated Research programmes. The second part contains country reports - national programmes on spent fuel management: current and planned storage and reprocessing capacities, spent fuel arisings, safety, transportation, storage and treatment of spent fuel.

  20. Power ramp tests of BWR-MOX fuels

    International Nuclear Information System (INIS)

    Asahi, K.; Oguma, M.; Higuchi, S.; Kamimua, K.; Shirai, Y.; Bodart, S.; Mertens, L.

    1996-01-01

    Power ramp test of BWR-MOX and UO 2 fuel rods base irradiated up to about 60 GWd/t in Dodewaard reactor have been conducted in BR2 reactor in the framework of the international DOMO programme. The MOX pellets were provided by BN (MIMAS process) and PNC (MH method). The MOX fuel rods with Zr-liner and non-liner cladding and the UO 2 fuel rods with Zr-liner cladding remained intact during the stepwise power ramp tests to about 600 W/cm, even at about 60 GWd/t

  1. KAERI results for BN600 full MOX benchmark (Phase 4)

    International Nuclear Information System (INIS)

    Lee, Kibog Lee

    2003-01-01

    The purpose of this document is to report the results of KAERI's calculation for the Phase-4 of BN-600 full MOX fueled core benchmark analyses according to the RCM report of IAEA CRP Action on U pdated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects. T he BN-600 full MOX core model is based on the specification in the document, F ull MOX Model (Phase4. doc ) . This document addresses the calculational methods employed in the benchmark analyses and benchmark results carried out by KAERI

  2. New Digital Metal-Oxide (MOx Sensor Platform

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2018-03-01

    Full Text Available The application of metal oxide gas sensors in Internet of Things (IoT devices and mobile platforms like wearables and mobile phones offers new opportunities for sensing applications. Metal-oxide (MOx sensors are promising candidates for such applications, thanks to the scientific progresses achieved in recent years. For the widespread application of MOx sensors, viable commercial offerings are required. In this publication, the authors show that with the new Sensirion Gas Platform (SGP a milestone in the commercial application of MOx technology has been reached. The architecture of the new platform and its performance in selected applications are presented.

  3. Neutronic and Logistic Proposal for Transmutation of Plutonium from Spent Nuclear Fuel as Mixed-Oxide Fuel in Existing Light Water Reactors

    International Nuclear Information System (INIS)

    Trellue, Holly R.

    2004-01-01

    The use of light water reactors (LWRs) for the destruction of plutonium and other actinides [especially those in spent nuclear fuel (SNF)] is being examined worldwide. One possibility for transmutation of this material is the use of mixed-oxide (MOX) fuel, which is a combination of uranium and plutonium oxides. MOX fuel is used in nuclear reactors worldwide, so a large experience base for its use already exists. However, to limit implementation of SNF transmutation to only a fraction of the LWRs in the United States with a reasonable number of license extensions, full cores of MOX fuel probably are required. This paper addresses the logistics associated with using LWRs for this mission and the design issues required for full cores of MOX fuel. Given limited design modifications, this paper shows that neutronic safety conditions can be met for full cores of MOX fuel with up to 8.3 wt% of plutonium

  4. The risks of the Taiwan research reactor spent fuel project

    International Nuclear Information System (INIS)

    1991-06-01

    The proposed action is to transport up to 118 spent fuel rods, to include canned spent fuel rod particulates immobilized on filters, from a research reactor in Taiwan by sea to Hampton Roads, Virginia, and then overland by truck to the Receiving Basin for Offsite Fuels at the Savannah River Site (SRS). At SRS, the spent fuel will be reprocessed to recover uranium and plutonium. 55 refs., 8 tabs

  5. Expansion of capacity of spent fuel pools and associated problems

    International Nuclear Information System (INIS)

    Francisco, J.L. De; Lopez-Cotarelo, J.; Ramos, J.M.

    1978-01-01

    Expanding the spent fuel storage pool capacity is a good solution for utilities facing the current shortage in fuel reprocessing capacity. The problems more likely to be found when expanding a spent fuel storage facility by using high density storage racks are reviewed. Basically three types of problems arise: 1) Problems related with the characteristics of the new facility. 2) Problems related with the works of expansion. 3) Problems related with the long term storage of large quantities of spent fuel. (author)

  6. TCA UO2/MOX core analyses

    International Nuclear Information System (INIS)

    Tahara, Yoshihisa; Noda, Hideyuki

    2000-01-01

    In order to examine the adequacy of nuclear data, the TCA UO 2 and MOX core experiments were analyzed with MVP using the libraries based on ENDF/B-VI Mod.3 and JENDL-3.2. The ENDF/B-VI data underpredict k eff values. The replacement of 238 U data with the JENDL-3.2 data and the adjustment of 235 ν-value raise the k eff values by 0.3% for UO 2 cores, but still underpredict k eff values. On the other hand, the nuclear data of JENDL-3.2 for H, O, Al, 238 U and 235 U of ENDF/B-VI whose 235 ν-value in thermal energy region is adjusted to the average value of JENDL-3.2 give a good prediction of k eff . (author)

  7. Assembly of laboratory line for nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Fidler, J.; Chotivka, V.

    1979-01-01

    The dismantling of a laboratory line for spent fuel reprocessing after the termination of the research programme and the procedures for hot and semi-hot cell decontamination are described. The equipment was mostly disassembled in smaller parts which were then decontaminated by wiping them with cotton wool soaked in detergent and citric acid, varnished with two-component epoxi varnish, wrapped into multiple polyethylene foils, sealed in PVC bags and thus ready for transport. (B.S.)

  8. The cost of spent fuel storage

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Badillo, V.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-11-15

    Spent fuel is one of the most important issues in the nuclear industry, currently spent fuel management is been cause of great amount of research, investments, constructing repositories or constructing the necessary facilities to reprocess the fuel, and later to recycle the plutonium recovered in thermal reactors. What is the best solution?, or What is the best technology for an specific solution? Many countries have deferred the decision on selecting an option, while others works actively constructing repositories and others implementing the reprocessing facilities to recycle the plutonium obtained from nuclear spent fuel. In Mexico the nuclear power is limited to two reactors BWR type and medium size. So the nuclear spent fuel discharged has been accommodated at reactor's spent fuel pools. Originally these pools have enough capacity to accommodate spent fuel for the 40 years of designed plant operation. However currently, the plants are under a process for extended power up-rate to 20% of original power and also there are plans to extended operational life for 20 more years. Under these conditions there will not be enough room for spent fuel in the pools. (Author)

  9. Japanese national reference reprocessing plant

    International Nuclear Information System (INIS)

    1978-08-01

    This paper gives a general description of the proposed Japanese national reprocessing plant and of the design philosophy. The plant is in most respects similar to the base case reprocessing plant, with an annual throughput of 100-1500 tU. The plant would be co-located with a fuel fabrication facility

  10. MOX fuel development: Experience in Argentina

    International Nuclear Information System (INIS)

    Marchi, D.E.; Adelfang, P.; Menghini, J.E.

    1999-01-01

    Since 1973, when a laboratory conceived for the safe manipulation of a few hundred grams of plutonium was built, the CNEA (Argentinean Atomic Energy Commission) has been involved in the small-scale development of MOX fuel technology. The plutonium laboratory consists in a glove box facility (α Facility) featuring the necessary equipment to prepare MOX fuel rods for experimental irradiations and to carry out studies on preparative processes development and chemical and physical characterization. The irradiation of the first prototypes of (U,Pu)O 2 fuels fabricated in Argentina began in 1986. These experiments were carried out in the HFR (High Flux Reactor)- Petten , Holland. The rods were prepared and controlled in the CNEA's a Facility. The post-irradiation examinations (PIE) were performed in the KFK (Kernforschungszentrum Karlsruhe), Germany and the JRC (Joint Research Center), Petten. In the period 1991-1995, the development of new laboratory methods of co-conversion of uranium and plutonium were carried out: reverse strike co-precipitation of ADU-Pu(OH) 4 and direct denitration using microwaves. The reverse strike process produced pellets with a high sintered density, excellent micro-homogeneity and good solubility in nitric acid. Liquid wastes showed a very low content of actinides and the process is easy to operate in a glove box environment. The microwave direct denitration was optimized with uranium alone and the conditions to obtain high density pellets, with a good microstructure, without using a milling step, have been developed. At present, new experiments are being carried out to improve the reverse strike co-precipitation process and direct microwave denitration. A new glove box is being installed at the plutonium laboratory, this glove box has process equipment designed to recover scrap from previous fabrication campaigns, and to co-convert mixed U-Pu solutions by direct microwave denitration. (author)

  11. Reprocessing RTR fuel in the La Hague plants

    International Nuclear Information System (INIS)

    Thomasson, J.; Drain, F.; David, A.

    2001-01-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  12. Technology development of fast reactor fuel reprocessing technology in India

    International Nuclear Information System (INIS)

    Natarajan, R.; Raj, Baldev

    2009-01-01

    India is committed to the large scale induction of fast breeder reactors beginning with the construction of 500 MWe Prototype Fast Breeder Reactor, PFBR. Closed fuel cycle is a prerequisite for the success of the fast reactors to reduce the external dependence of the fuel. In the Indian context, spent fuel reprocessing, with as low as possible out of pile fissile inventory, is another important requirement for increasing the share in power generation through nuclear route as early as possible. The development of this complex technology is being carried out in four phases, the first phase being the developmental phase, in which major R and D issues are addressed, while the second phase is the design, construction and operation of a pilot plant, called CORAL (COmpact Reprocessing facility for Advanced fuels in Lead shielded cell. The third phase is the construction and operation of Demonstration of Fast Reactor Fuel Reprocessing Plant (DFRP) which will provide experience in fast reactor fuel reprocessing with high availability factors and plant throughput. The design, construction and operation of the commercial plant (FRP) for reprocessing of PFBR fuel is the fourth phase, which will provide the requisite confidence for the large scale induction of fast reactors

  13. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, F-78140 Velizy (France); Drain, F.; David, A. [SGN, F-78182 Saint Quentin en Yvelines (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for the back-end management of their spent fuel. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  14. Reprocessing RTR fuel in the La Hague plants

    Energy Technology Data Exchange (ETDEWEB)

    Thomasson, J. [Cogema, 78 - Velizy Villacoublay (France); Drain, F.; David, A. [SGN, 78 - Saint Quentin en Yveline (France)

    2001-07-01

    Starting in 2006, research reactors operators will be fully responsible for their research and testing reactors spent fuel back-end management. It appears that the only solution for this management is treatment-conditioning, which could be done at the La Hague reprocessing complex in France. The fissile material can be separated in the reprocessing plants and the final waste can be encapsulated in a matrix adapted to its potential hazards. RTR reprocessing at La Hague would require some modifications, since the plant had been primarily designed to reprocess fuel from light water reactors. Many provisions have been taken at the plant design stage, however, and the modifications would be feasible even during active operations, as was done from 1993 to 1995 when a new liquid waste management was implemented, and when one of the two vitrification facilities was improved. To achieve RTR back-end management, COGEMA and its partners are also conducting R and D to define a new generation of LEU fuel with performance characteristics approximating those of HEU fuel. This new-generation fuel would be easier to reprocess. (author)

  15. Zirconium molybdate hydrate precipitates in spent nuclear fuel reprocessing

    International Nuclear Information System (INIS)

    Magnaldo, A.; Noire, M.H.; Esbelin, E.; Dancausse, J.P.; Picart, S.

    2004-01-01

    This paper presents through 2 posters a general overview studies realised by CEA teams on deposits observed in the La Hague plant dissolution facilities. Their main constituents are metallic debris bound together with zirconium molybdate hydrate. A comprehensive study of zirconium molybdate hydrate formation included nucleation and growth kinetics was developed. Fouling mechanisms were consequently explained as influenced by the operation conditions. Pu insertion was also overviewed. Its behaviour is important when curative and preventive chemical treatments are considered. (authors)

  16. The future of reprocessing: a synergy of enhanced processes and new approaches

    International Nuclear Information System (INIS)

    Boullis, B.; Josso, F.; Montmain, J.; Buffereau, M.

    1996-01-01

    The December 30, 1991 french law has led scientists to develop new reprocessing processes in order to implement different strategies for the management of long-lived radioactive wastes from spent fuels. Various existing reprocessing processes and facility operation supervision and control techniques (PUREX, DIAMEX, SESAME, ACTINEX, DIAPASON) are briefly described. Three leading CEA scientists discuss the challenges of the future and according research programs. (C.B.)

  17. Reprocessing of nonoptimally exposed holograms

    International Nuclear Information System (INIS)

    Phipps, G.S.; Robertson, C.E.; Tamashiro, F.M.

    1980-01-01

    Two reprocessing techniques have been investigated that are capable of correcting the effects of nonoptimum optical density of photographic amplitude holograms recorded on Agfa-Gevaert type 10E75 plates. In some cases a reprocessed hologram will exhibit a diffraction efficiency even higher than that obtainable from a hologram exposed and processed to the optimum density. The SNR of the reprocessed holograms is much higher than that of the same holograms belached with cupric bromide. In some cases the SNR approaches the optimum value for a properly exposed amplitude hologram. Subjective image quality and resolution of reprocessed hologram reconstructins appear to be no different than for normal single-development holograms. Repeated reprocessing is feasible and in some cases desirable as a means of increasing diffraction efficiency

  18. Spent Fuel Working Group Report

    International Nuclear Information System (INIS)

    O'Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary's initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group's Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities

  19. Current state of spent fuel management in the Russian Federation

    International Nuclear Information System (INIS)

    Makarchuk, T.F.; Spichev, V.V.; Tikhonov, N.S.; Simanovsky, V.M.; Tokarenko, A.I.; Bespalov, V.N.

    1998-01-01

    Twenty nine power units of nine nuclear power plants of total installed capacity 22 GW(e) are now in operation in the Russian Federation. They produce approximately 12% of electric power in the country. The annual spent fuel arising is about 790 tU. The spent fuel from VVER-440 and BN-600 is reprocessed at the RT-1 plant near Chelyabinsk. The VVER-1000 spent fuel is planned to be reprocessed at the reprocessing plant RT-2 which is under construction near Krasnoyarsk. The RBMK-1000 spent fuel is not reprocessed because of its low fissile content. It is meant to be stored in intermediate storage facilities at the NPP sites and in a centralized storage facility during a period not less than 50 years and then to be disposed of in geological formations. State of the art of spent fuel reprocessing, storage and transportation is considered in the paper. Problems of nuclear fuel cycle back-end in Russia are taken into account. (author)

  20. Characteristics of MOX dissolution with silver mediated electrolytic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Miki; Nakazaki, Masato; Kida, Takashi; Sato, Kenji; Kato, Tadahito; Kihara, Takehiro; Sugikawa, Susumu [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    MOX dissolution with silver mediated electrolytic oxidation method is to be applied to the preparation of plutonium nitrate solution to be used for criticality safety experiments at Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF). Silver mediated electrolytic oxidation method uses the strong oxidisation ability of Ag(II) ion. This method is though to be effective for the dissolution of MOX, which is difficult to be dissolved with nitric acid. In this paper, the results of experiments on dissolution with 100 g of MOX are described. It was confirmed from the results that the MOX powder to be used at NUCEF was completely dissolved by silver mediated electrolytic oxidation method and that Pu(VI) ion in the obtained solution was reduced to tetravalent by means of NO{sub 2} purging. (author)